
Online Planning Based Reinforcement
Learning for Robotics Manipulation
Master’s thesis in Systems, Control and Mechatronics

INDREK KIVI

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

Online Planning Based Reinforcement Learning
for Robotics Manipulation

INDREK KIVI

Department of Electrical Engineering
Division of Systems and Control

Chalmers University of Technology
Gothenburg, Sweden 2019

Online Planning Based Reinforcement Learning for Robotics Manipulation
INDREK KIVI

© INDREK KIVI, 2019.

Supervisor: Shahbaz Khader, ABB Corporate Research
Examiner: Yiannis Karayiannidis, Department of Electrical Engineering, Chalmers
University of Technology

Master’s Thesis 2019
Department of Electrical Engineering
Division of Systems and Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Online Planning Based Model Learning for Robotics Manipulation
INDREK KIVI
Department of Electrical Engineering
Chalmers University of Technology

Abstract
There is a growing interest for adding learning capabilities to industrial robots and
thus reducing the demand for tedious programming. Future autonomous robots are
envisioned to learn autonomously complex tasks. In this thesis we consider a task of
inserting a peg into a tight-fitting hole. Due to a lot of contact forces involved, the
dynamics of this process is difficult to model. A model-based reinforcement learning
method is used to overcome this problem, i.e. first the dynamics is learned based on
observations of actions and resulting states, then an optimal control policy is com-
puted based on the learned model. For model learning an artificial neural network is
used while the control actions are calculated online, using model predictive control.
During each trial, state-action data is collected and after a fixed number of trials
the model is relearned using the improved dataset. Several iterations of relearning
the model and collecting new data are done until the task is completed successfully.

We explore three different approaches to optimization. In particular, a gradient
descent based optimization is compared with stochastic optimization method called
random-sampling shooting method, and a more sophisticated version of the latter,
a cross entropy method (CEM). Evaluation is performed on simulations of low-
dimensional cart-pole task and an insertion task with 7-joint robot arm. While in the
simpler task all mentioned optimization methods achieve similar results regarding
the success rate, CEM proves to the best in the insertion task. This is illustrated
by its high data efficiency and high robustness regarding the success rate. It is able
to achieve 100 % success rate after 6 iterations, each containing 5 trials, while the
computation time at each time step stays below critical 50 ms required for a real
robot.

Keywords: robotics, model predictive control, optimization, model-based rein-
forcement learning, neural networks.

v

Acknowledgements
I am glad that I could work with this exciting project and grateful to the ABB
Corporate Research in Västerås for this opportunity. I am especially thankful to my
supervisor, Shahbaz Khader, for offering me a part in his project and his guidance
throughout. He was very patient in explaining me anything, whenever I had prob-
lems and his advice was valuable to keep me on track. I appreciate his interest not
only on the results of my experiments, but also on my whole thesis process. Finally,
I thank my examiner Yiannis Karayiannidis for his constant support. His feedback
was essential to shape this report to its final form.

Indrek Kivi, Tallinn, August 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Related work . 2
1.3 Structure and approach . 3

2 Theoretical background 5
2.1 Reinforcement learning . 5
2.2 Model predictive control . 6
2.3 Model learning . 7

2.3.1 Neural network as function approximator 8
2.3.2 Gradient descent for minimization 9
2.3.3 Generalization of neural networks 9

3 Model-based reinforcement learning 11
3.1 Skill learning problem as MDP . 11
3.2 Learning based MPC as RL . 12
3.3 ANN based model learning . 14
3.4 Gradient descent based optimization 15
3.5 Stochastic optimization . 16

3.5.1 Cross-entropy method . 17

4 Evaluation 19
4.1 Description of experiments . 19
4.2 Cost function . 20
4.3 Cart-pole simulation . 21

4.3.1 Reinforcement learning . 22
4.3.2 Optimization with random shooting 22
4.3.3 Optimization with cross entropy method 24
4.3.4 Optimization with gradient descent 26
4.3.5 Comparison . 27

4.4 Insertion . 27
4.4.1 Reinforcement learning . 28
4.4.2 Optimization with random shooting 28

ix

Contents

4.4.3 Optimization with CEM . 30
4.4.4 Optimization with gradient descent 30
4.4.5 Comparison . 31

4.5 Insertion with obstacle . 32

5 Conclusion 35

Bibliography 37

x

List of Figures

2.1 Interaction between the agent and the environment in reinforcement
learning. 5

2.2 Artificial neural network. 9

3.1 Model based reinforcement learning. The policy improves with every
iteration due more accurate model as a result of improved dataset. . . 13

4.1 A screenshot of the cart-pole problem in MuJoCo simulation. Shown
is the cart moving on the rail and the pendulum on top of the cart. . 19

4.2 A screenshot of the insertion problem in MuJoCo simulation. Yumi
robot is illustrated in the initial position (left) and in the target po-
sition (right). 20

4.3 Input, cart position and pendulum angle and cost with random shoot-
ing at first iteration and tenth iteration. 23

4.4 Average episode state cost and prediction error with random shooting
over ten iterations for cart-pole task. 24

4.5 Input, cart position and pendulum angle and cost with CEM at first
iteration and tenth iteration. 25

4.6 Average episode state cost and prediction error with CEM over ten
iterations for cart-pole task. 25

4.7 Input, cart position and pendulum angle and cost with gradient de-
scent at first iteration and tenth iteration. 26

4.8 Cost and prediction error with gradient descent over ten iterations
for cart-pole task. 27

4.9 State cost and success rate over 20 iterations with random shooting
method. 29

4.10 State cost and success rate over 20 iterations with CEM. 30
4.11 State cost and success rate over 20 iterations with gradient descent

method. 31
4.12 Initial position of the modified insertion task. A wall is added as an

obstacle in front of the target. 32
4.13 State cost and success rate over 20 iterations with random shooting

method for obstacle task. 33
4.14 State cost and success rate over 20 iterations with CEM method for

obstacle task. 33
4.15 State cost and success rate over 20 iterations with gradient descent

method for obstacle task. 33

xi

List of Figures

xii

List of Tables

4.1 Comparison of different methods for cart-pole problem. Shown are
average input calculation time and state cost and input cost in the
final iteration. 27

4.2 Comparison of different methods for insertion problem in simulation.
Shown are average input calculation time, state cost and input cost
in the best iteration. 31

4.3 Comparison of different methods for insertion problem with an ob-
stacle. Shown are state cost and input cost in the best iteration. . . . 34

xiii

List of Tables

xiv

1
Introduction

1.1 Background

The use of robots for assembly tasks has long been practiced in the industry. A
typical task for a robot is to connect two mating parts. This is usually achieved
by programming the robot to move between manually taught points with desired
speed. However, recent advances in robot skill learning have made it possible for a
robot to learn the best control policy itself.

The goal of skill learning is to find a control policy i.e. a strategy that defines the
way of doing a task. The trajectory emerges from the execution of the learned skill
and is not manually specified. We use a skill learning approach, called reinforcement
learning (RL), where the policy is autonomously learned by the robot by a trial
and error approach. In this case, no correct way of doing a task is given, but
achieving the desired objective is rewarded [1]. Reinforcement learning has been
widely successful in playing computer games and logic games. For example, Google
Deepmind’s program AlphaGo defeated the world champion in a game of Go in 2016
[2]. Using RL in robotics is more challenging due to high-dimensional systems and
impossibility to observe the environment with full accuracy [3]. However, promising
results have been achieved with numerous simpler tasks and simulations [4] [5].

There are two different approaches to RL: model-based and model-free method.
In the case of model-free RL, the agent (controller) directly learns a policy, i.e. it
chooses the best action to take (action that minimizes cost) based on the information
it has acquired during the trials. Model-based method uses the acquired data to
learn a model of the environment (dynamics) instead. In both cases the goal is
specified by a user defined cost function. Model-based controllers are known to be
able to learn a policy with fewer samples than model-free controllers [6] [7]. Since
obtaining a large dataset of samples with real robots is difficult, we use model-based
control in the thesis.

The optimal policy is obtained either by online optimization that searches for
the best control action at every time step or by directly optimizing a parameterized
policy offline. In this thesis, we prefer online optimization method, called MPC.
The optimal policy is recalculated at every execution step, instead of using a policy
calculated offline. That allows to always use the most recent state information, but
also adds a significant computational burden to the controller. Another advantage
of MPC is that it allows to include constraints to the states and input.

The objective of the thesis is to study different aspects of MPC based RL
method while evaluating it on a challenging robotics manipulation task of assembly.

1

1. Introduction

The effectiveness of the method is demonstrated on a simulated peg in hole task
being performed by an ABB YuMi robot. The main contribution of this thesis
is the comparison of different online optimization methods using learned forward
dynamics model.

1.2 Related work
There have been numerous attempts to use reinforcement learning for control of
manipulators. Kober et al. [4], for example, demonstrated a robot learning to hit
table-tennis ball, while Deisenroth et.al. [5] used model-based learning to stack
small blocks on top of each other.

A problem with reinforcement learning is data inefficiency, i.e. to learn to com-
plete some task, a lot of trials are generally needed. Having some prior knowledge
about the system helps to reduce the amount of data needed. One skill learning
approach is imitation learning, where the user first demonstrates how to complete
the task and the robot learns to mimic the user, using the data it collected while
observing the user’s demonstration. Pastor et al. [8] showed a robot learning to
imitate human in simple manipulation tasks. Regarding more difficult contact-rich
tasks, Tang et al. have performed a task of inserting peg into hole, using learning
based on human demonstration.

Alternatively, model-based reinforcement learning is found by many researchers
to manage with little data, even when there is no prior information. Deisenroth
and Rasmussen use model-based algorithm called PILCO, which shows high data
efficiency, however, only with tasks of low dimensionality [6]. Levine et al. present a
method that can solve a wide range of contact-rich manipulation tasks, using model-
based learning [7]. They learn a time-varying Gaussian mixture model and use it to
optimize an LQ-controller. They conclude that the method can generalize well to
changes in the task and can learn to solve the problems with only a few real-world
samples. However, this method used only locally linear dynamics model and has to
train an ANN policy as well. In our approach we do not perform linearization of
the dynamics and also completely avoid learning a policy model.

Approaches have differed on question of how to model the dynamics. One choice
has been to use probabilistic models, which use probability to take into account the
uncertainty of dynamics. Afore-mentioned PILCO for example uses Gaussian pro-
cesses(GP) as a probabilistic model, same method is used by Kamthe and Deisen-
roth [9]. The tasks that they solve are however low-dimensional (inverted pendulum,
double pendulum, uni-cycle). According to Calandra et al. the standard GP has
difficulties in case of highly non-linear functions [10].

Another choice is to approximate the dynamics by artificial neural networks
(ANN) model. Fu et al., for instance, use NN model with complex manipulation
tasks [11]. Nagabandi et al. have achieved impressive results with high-dimensional
and contact-rich locomotion tasks using deterministic neural network models [12].
The problem with ANN can be that deterministic ANN models do not consider
uncertainties, which often lead to model errors, due to overfitting when the amount
of data is small. Chua et al. propose a method to include uncertainty in the ANN
model [13].

2

1. Introduction

Regarding policy optimization, a number of papers dealing with RL in robotics
have suggested using MPC [9] [12] [14] [11]. MPC offers a way to handle state and
control constraints [9] and the limited horizon of MPC helps to avoid the problem
of model error accumulation [14].

We base our work mainly on the paper by Nagabandi et al. [12]. Similarly to
them, we use deterministic neural network models to learn dynamics and an MPC
approach to optimize the control. We attempt to reach to similar results with a
different task. While they do locomotion, trying to move different legged robots in
a certain direction, we do insertion with a 7-joint robot. In addition, we compare
different optimization methods, particularly gradient based optimization and vari-
ants of stochastic optimization, to improve the computation time and performance
of the controller.

1.3 Structure and approach
In the thesis we show our method of applying reinforcement learning for insertion
task. Three methods for doing MPC optimization are considered, one is based
on gradient descent, another is a stochastic optimization method called random-
sampling shooting. The third is a cross-entropy method, which is an inproved version
of the standard random-sampling. To evaluate our method, several experiments are
done. First, we will show the results with the simulation of a simple cart-pole
balancing task. Then simulation of YuMi model is shown for insertion task.

Regarding the structure of the thesis, first the problem is formulated in detail
in Chapter 2. In Chapter 3, some theoretical background is given for the techniques
utilized in the thesis. In Chapter 4, the method implemented by us, for controlling
the robot with reinforcement learning, is thoroughly explained. Finally, the results
of the experiments are shown in Chapter 5. All of this is concluded with a short
discussion and suggestions for future work in Chapter 6.

3

1. Introduction

4

2
Theoretical background

In this chapter, theoretical background is given for some methods used in the thesis.
First, reinforcement learning is introduced and difference between model-free and
model-based approach given. Then a control method, called model predictive con-
trol, is explained. Finally, it is shown how model learning can be used to estimate
models, with special focus on neural networks.

2.1 Reinforcement learning

A reinforcement learning (RL) problem can be modelled as a Markov decision process
(MDP). We can define MDP as a tuple (S,U , T , C), where S is a state space and U
is an action space, T is a transition function and C is a cost function.

Figure 2.1: Interaction between the agent and the environment in reinforcement
learning.

In MDP there are two interacting components. The decision maker is called
the agent (controller) and the entity it interacts with is called the environment
(system). The interaction between them happens at discrete time steps. At every
time step t the agent gets information from the system about the system’s state
st ∈ S. Based on the state information, the controller selects an action ut ∈ U . A
policy π determines the way how the agent chooses actions given the current state
and is formulated as a conditional distribution

π = P [ut = u|st = s]. (2.1)

5

2. Theoretical background

After taking an action, the process moves to a new state st+1 ∈ S. The probability
of ending up in a particular state st+1 = s

′ is dependent on the action taken and
the present state, according to a transition function T :

T = P [st+1 = s′|st = s, ut = u]. (2.2)
The transition function completely defines the dynamics of a system. Immediately
after taking action, agent receives information about the cost. C is an expected cost
resulting from taking an action u at state s:

C = c(st, ut) = E[ct|st = s, ut = u]. (2.3)
The policy’s goal is to minimize the total cost over future. This means that it
should take into account all the cost over many time steps in the future, not only
the immediate cost. Such cumulative cost can be calculated for a current time step
as

Vt = ct + ct+1 + ... =
T∑

k=0
ct+k, (2.4)

where T is a final time step[15].
Note that usually in RL framework one talks about rewards rather than cost.

We use cost instead in our work. The only difference is that one seeks to maximize
the reward, while the cost is sought to be minimized.

By knowing the transition function i.e. dynamics, it is possible to estimate
future states and the resulting cumulative cost depending on control actions chosen.
The main problem of MDP is to find a policy, according to which the agent at every
time step chooses the action resulting in the smallest cumulative cost:

ut = arg min
ut

Vt. (2.5)

If the state transition function T is known, then policy can be found using optimal
control theory. In case of RL, T and π are both unknown.

Based on the learning objective of the RL algorithm, two approaches to RL
can be distinguished: model-free and model-based. In model-free RL, the algorithm
does not learn T , but tries to directly learn a policy π that minimizes the cumulative
cost. Model-free methods are known to achieve better asymptotic performance, but
may require thousands of trials. Since the experiments on a real robot are expensive,
this approach is not feasible for real physical systems. [16]

In model-based RL a dynamics model T is learned and based on the learned
model an optimization is performed to find a policy that minimizes the cost. Even
though model-based methods can be suboptimal, they are more data efficient. Sam-
ple (information about action and following state) obtained from every step is useful
for learning the dynamics better, while for model-free control only the samples that
provide reward contribute to learning [16].

2.2 Model predictive control
Here we give a brief summary of model predictive control. More details are available
in a book by Rawlings and Mayne [17].

6

2. Theoretical background

Model predictive control (MPC) is an advanced control method, which com-
putes the control online, i.e. at every sampling instant. Given a discrete time system
model relating current state st and control input ut to the next state st+1,

st+1 = f(st, ut), (2.6)

the objective is to minimize at every time step t some cost function in the form

VH(st,u)) =
t+H−1∑

i=t

c(si, ui). (2.7)

which is dependent on a finite number of H future states and control inputs. A
model of the system dynamics is used to predict the future states. If the model
in (2.6) is not exact representation of the system, the predicted future states are
inaccurate with the errors increasing the farther into future the predictions are made.
Another problem is a long calculation time of the predictions. As a remedy, MPC
uses a receding horizon, i.e. the predictions are limited to a finite number of H time
steps.

A major benefit of the MPC is the possibility to subject the minimization
problem to constraints:

sk ∈ S; k = t, . . . , t+H − 1 , (2.8)

uk ∈ U; k = t, . . . , t+H − 1 . (2.9)

The solution to the minimization problem is a control sequence

ut, . . . , ut+H−1 = arg min
ut,...,ut+H−1

VH(st,u). (2.10)

Only the first control ut from the solution is applied, the rest are discarded. A new
control action is then calculated at the next time step.

Various optimization methods are possible for solving (2.10). In the thesis in
Section 3.4 gradient-based optimization is considered, while Section 3.5 introduces
stochastic optimization.

2.3 Model learning
For a simple system, for which the physics is well-known, it is possible to write an
analytical model to describe the relationship between its inputs and outputs. For
more complex situations it is either impossible or too time-consuming. If sufficiently
many input-output pairs are observed, system identification, or in machine learning
terms model learning, can be used to estimate a model of the system. The goal of
model learning is to estimate parameters θ to make a model p(x; θ) map the inputs
x to the output y:

y ∼ p(y|x; θ) (2.11)

7

2. Theoretical background

A common strategy is to use so-called black-box models. These assume no prior
knowledge about the system and the parameters in black-box model have no physical
meaning. Alternatively, a gray box modelling is possible, where the structure of the
model is fully or partially known, but not all or none of the parameters are known
[18].

Furthermore, one can distinguish between probabilistic and deterministic mod-
els. Probabilistic models express model uncertainty by giving posterior distribution
as in (2.11), while deterministic models disregard the uncertainty and treat the
model as a true system function. For deterministic cases, the model can be denoted
as

y = f̂(x; θ). (2.12)
Once the model structure and size are chosen, the parameters need to be esti-

mated. This is done by minimization of some criterion function, we will call it loss
function to distinguish it from cost function used by MPC optimization. A common
loss function is sum of squared error between observed outputs and model outputs:

J(θ) = 1
2

N∑
i=1
||y(i)− ŷ(i)||2, (2.13)

where N is the number of observations and ŷ(i) = f(x(i); θ). Alternatively, average
of the squared error can be used:

J(θ) = 1
N

N∑
i=1
||y(i)− ŷ(i)||2. (2.14)

2.3.1 Neural network as function approximator
One possible model learning technique is to employ artificial neural network (NN).
We give here a quick overview of the NN. Interested readers can refer to the book
by Goodfellow et. al. [19] for a more detailed insight.

We can see neural network as an approximation of a function f(x; θ) that maps
the inputs x to an output y. NN model is a parametric model, which means that
the model is characterized by a fixed number of parameters θ, the values of which
are to be learned.

The main element of a neural network is called a node or a neuron. Each node
can take a vector of inputs x and the output of the neuron is

h = g(xTw + b), (2.15)
where w is a vector of weight parameters, b a scalar bias parameter and g is an
activation function. Most commonly used activation function is the rectified linear
activation function (RelU), which is defined as

g(z) = max{0, z}. (2.16)
If several of such nodes are used in parallel it is called a layer of nodes and the

number of nodes in one layer is called layer size. The network can be made deeper

8

2. Theoretical background

by adding more layers, so that the output of the previous layer is the input for the
next layer. The output of the final layer is the model output y.

Figure 2.2: Artificial neural network.

The weight and bias parameters are learnable. This means that the parameters
are changed in a way that the NN model best fits the function it tries to approximate.
The fit is decided by minimization of a loss function. Most NN learning algorithms
use gradient descent for the minimization.

2.3.2 Gradient descent for minimization
In the beginning, the parameters θ are initialized either randomly or in some other
manner. Using the current parameters, the output of the model for all input data is
calculated. That step is called forward propagation. Then, using the loss function,
a loss is found and a back-propagation algorithm is used to compute the gradient of
the loss function w.r.t. all parameters. Finally, the parameters are updated using
the gradient information. Usually, a learning rate α is used, that way only a fraction
of the gradient is subtracted from the parameters. Many iterations of this process
are done, whereas in each iteration i, new parameter value

θ(i+ 1) = θ(i)− α · dJ

dθ(i) . (2.17)

This explanation applies for the most basic gradient descent algorithm. A modified
version of this is generally used for training NN.

2.3.3 Generalization of neural networks
Important characteristic of an NN model is generalization. It means that the loss
function needs to be small not only for the training data, but also for a new data.
To evaluate the generalization of an NN model, two datasets are created - training

9

2. Theoretical background

dataset and validation dataset. NN model is fitted using the training dataset, after
that the parameters are not changed anymore. The loss is then calculated using the
validation data. The validation loss is typically equal or larger than training loss. If
the gap is too large, there is an overfitting problem, i.e. the model cannot predict
well when dealing with unseen data. This is common when the model capacity is
very high, i.e. it is able to fit very complex models. To deal with the problem of
overfitting, the best solution is to increase the amount of training data if possible.

On the other hand, underfitting is the problem arising when the model is unable
to reduce the loss on the training set. Then the model capacity needs to be increased,
which can be done by increasing the network’s depth or the amount of neurons in its
hidden layers. It is generally recommended to choose as simple model as possible,
that is still precise enough to solve the task at hand.

For the evaluation with the training and validation sets to have meaningful
information, the data needs to satisfy i.i.d. assumptions. In particular, every data
sample is assumed to be independent of each other and drawn from the same dis-
tribution.

10

3
Model-based reinforcement

learning

The ultimate goal of the methods described in the thesis is to find a policy that
enables a manipulator to complete an insertion task. While optimal control theory
aims to find a control law with the aid of system dynamics for achieving the desired
objective, here we do not assume any prior information about the system dynamics.
Instead, we use model learning to learn the system dynamics and then apply online
control to the learned model. By repeatedly relearning the model to improve it
after acquiring new data, the method becomes reinforcement learning approach. In
this chapter we first formulate the insertion problem as a Markov decision process
(MDP) in Section 3.1 and follow by explaining our strategy of solving the problem
with reinforcement learning in Section 3.2. Section 3.3 goes more into detail about
the way we learn the model with neural network and sections 3.4 and 3.5 discuss the
different methods compared in the thesis for solving an MPC optimization problem.

3.1 Skill learning problem as MDP
We assume the environment to be rigid and stationary (the dynamics are not de-
pendent on time). Therefore, every new state is only dependent on the previous
state and previous action, satisfying the Markov property. The problem can thus
be formulated as an MDP.

As explained in Section 2.1, MDP is a tuple (S,U , T , C). For the insertion task,
state space S consists of manipulator joint positions and velocities as well as end
effector cartesian coordinates and their velocities. Actions U are the control inputs,
specifically the torques applied to each joint. We consider a deterministic dynamics
function

st+1 = f(st, ut). (3.1)
The cost function

ct = c(st, ut) (3.2)
defines our objective and is thus designed to penalize distance of the manipulator
from the target position. In addition, the control inputs are added to the cost
function to encourage policy to use minimal force.

We consider the task to be limited to a finite length of T time steps. It means
that during one trial, the controller has T time steps to complete the task. We call
such a trial an episode. Every episode starts from some state s0 and the policy’s
goal is always to complete the task by minimizing the cumulative cost over future

11

3. Model-based reinforcement learning

VT =
T∑

i=t

ci. (3.3)

3.2 Learning based MPC as RL

Generally model-based reinforcement learning can be divided into three steps: col-
lecting new data, model learning, and policy optimization.

In the beginning we have no information about the dynamics, which is necessary
for model-based optimization. To learn the dynamics model, a dataset D consisting
of input-output observations is used. The data is collected by running some episodes
and observing the actions taken and resulting states. More specifically, we start from
some initial state s0, apply some control input according to the policy, and observe
the next state that resulted from this action. As a result we have gathered one
sample of data, which is a tuple consisting of action and the next state (u0, s1). The
same process is repeated in the new state and so on. In the end we have a dataset
D storing (s0, u0, s1, u1, . . .).

The policy used in this first data collection phase, which we call initial policy,
can not be based on any model, since we do not have any yet. The easiest option is
to use a completely random controller. This means that at every state, we apply a
random control input from a uniform distribution with specified limits.

After we have sufficient data in the set D, we proceed with model learning. We
use a deterministic neural network model f̂(st, ut), which approximates a function
f(st, ut), and the model is trained by learning the weights of a neural network. The
details about the model learning process are given in the Section 3.3. This model
represents the dynamics of the system, meaning that now, when it is learned, a
model-based policy can be implemented.

The model can be used to predict the next state st+1 = f̂(st, ut) at any time
step. Based on the predicted next state, even another future state can be predicted
st+2 = f̂(st+1, ut+1). In fact, we can predict as many futures states as we wish,
which allows us to calculate cumulative cost VT at every time step. However, since
the model f̂ is not perfect, the predictions are not accurate and the predictions that
are based on previous predictions are even less accurate, making VT also inaccurate.
In MPC we consider limited horizon H and the cost function

VH =
t+H−1∑

i=t

ct+k, (3.4)

which is less erroneous, given that H < T .
Knowing the model and the cost function, we can now use a model-based policy.

There are offline optimization methods, e.g. policy search, that find a parametric
policy function π(θ), before starting an episode. The function would then be used
at every time step to calculate a control action. We use an MPC control instead,
which calculates new action at every time step. The MPC policy’s job is at every
time step to choose the control input that minimizes VH . This is done by solving

12

3. Model-based reinforcement learning

ut, . . . , ut+H−1 = arg min
ut,...,ut+H−1

t+H−1∑
i=t

c(si, ui) (3.5)

Different optimization methods are possible and we consider two methods: gra-
dient descent based optimization and stochastic optimization. These are discussed
in detail in sections 3.4 and 3.5 respectively.

The dynamics of the manipulator is very complex. To learn the model f̂ pre-
cisely enough, dataset D needs to be very large. This means that the robot needs to
run for a long time, which is expensive. To overcome this problem, we use the idea
of data aggregation. While utilizing the MPC policy, all states s0, . . . , sT visited and
all the control signals u0, . . . , uT applied during the episode are added to the dataset
D. After a fixed number of episodes, the enriched D is used to relearn the dynamics,
i.e. to fit the data to a model. The new model should be better, because the data
contains more states that the controller is likely to encounter during the execution.
In other words there is a smaller mismatch between state-action distribution of the
data and the MPC controller [20] [12].

Several such iterations of alternating between learning a model and collecting
new data are done until the model is sufficiently accurate for MPC to complete the
task.

Figure 3.1: Model based reinforcement learning. The policy improves with every
iteration due more accurate model as a result of improved dataset.

In every iteration several episodes are executed. While the initial state can be
the same for all episodes, we decide to change it each time by a small amount to
encourage exploration, i.e. to increase the chance that the controller finds a new,
but more optimal route. Another technique that we use to encourage exploration,
is a simple ε-greedy exploration. This means that at every time step there is a small
chance for the controller to pick a random action from a limited range instead of cal-
culating an optimal action. The likelihood of taking a random action is determined
by value of 0 < ε < 1.

13

3. Model-based reinforcement learning

We summarize the model-based reinforcement learning method in Algorithm 1.
Algorithm 1: Model-based reinforcement learning
1 collect initial data D
2 for iteration = 0 to n_iterations do
3 train model f̂(st, ut) using D
4 for episode = 0 to n_episodes do
5 move to initial state s0
6 for t = 0 to T do
7 Generate a random number ρ from uniform distribution between

0 and 1
8 if ρ < ε then
9 pick random ut from a uniform distribution of limited range

10 else
11 estimate optimal control input sequence ut . . . uH using

f̂(st, ut) and c(st, ut)
12 apply the first input ut from the sequence
13 end
14 observe the new state st+1
15 add (ut, st+1) to D
16 end
17 end
18 end

Detailed explanation about the line 3 is given in Section 3.3 and about the line
11 in Section 3.4 and Section 3.5.

3.3 ANN based model learning

We have described how we get a dataset D, consisting of N input-output pairs, in
every iteration of our RL algorithm. We will now look into how we obtain the model
f̂(st, ut) using this data.

An important first step for the training is data preprocessing. We normalize
the inputs by finding the mean and standard deviation of input states and input
actions. Then we subtract the corresponding mean from every sample and divide
the result by the corresponding standard deviation. Such preprocessing makes sure
that all states are weighted equally by the loss function [12].

The purpose of the model f̂ is to predict the next state st+1, given current
state st and control input ut. Nagabandi et al. suggest learning the change in state
instead of learning the next state directly, pointing out that st and st+1 might be
too similar and the effect of control input on output seemingly small as a result [12].
Following their advice, the predicted next state is

st+1 = st + f̂(st, ut). (3.6)

We use average squared error as our loss function:

14

3. Model-based reinforcement learning

J(θ) = 1
N

N∑
i=1
||(st+1 − st)− f(st, ut; θ)||22. (3.7)

To minimize the loss function, we use gradient descent. There are many variants
of gradient descent. Standard batch gradient descent computes the gradient in 2.17
using the whole dataset. Stochastic gradient descent, on the contrary, approximates
the gradient and updates the parameters at every data sample. We use a variant
of gradient descent called mini-batch gradient descent, which is a middle ground
between batch and stochastic gradient descent. It divides the dataset into mini-
batches (smaller sets of data) and uses one mini-batch at a time to calculate gradient
and perform parameter update. The number of data samples in one mini-batch is
called batch size. The gradient calculation with the mini-batch method is the most
efficient, allowing the fastest training.

One pass through the whole data is called an epoch. We shuffle our data after
every epoch and split the data into mini-batches in a random order. During shuffling,
we make sure that inputs remain connected to the correct output.

We are using The Adaptive Moment Estimation (Adam) optimization algo-
rithm, which is one of the most widely used modification of gradient descent in
neural network training. The Adam algorithm computes individual learning rates
for all parameters, using the estimates of first and second moments of gradients [21].

All the parameters used by NN optimization algorithm, which are not learned,
but need to be tuned by us, are called hyperparameters. The hyperparameters are:

• number of hidden layers,
• number of neurons in hidden layers,
• batch size,
• number of epochs,
• hyperparameters specific to Adam (β1, β2, ε and learning rate α)

3.4 Gradient descent based optimization
Once we have a dynamics function and cost function, we can perform policy opti-
mization. The particular challenge is, how to solve (3.5). We have already talked
about gradient descent as a way to minimize loss function for model estimation in
Section 2.3.1. It is natural to try the same approach in minimization of the MPC cost
function. The requirement for using the gradient descent is that the cost function
is differentiable.

The cost function we want to minimize is

VH(st,u) =
t+H−1∑

i=t

c(si, ui), (3.8)

where st+1 = st + f̂(st, ut; θ). Algorithm 2 explains how the optimal control input
u = ut, . . . , ut+H is found iteratively. While it is common to continue the iterative
process until the solution has converged i.e. the difference between two consequent
solution u is below some threshold, we set a limit to the number of iterations instead.
We call one iteration a gradient step, and we take n_steps gradient steps. Learning

15

3. Model-based reinforcement learning

rate γ determines how fast the algorithm moves in the negative direction of gradient.
If it is too large, the algorithm may not converge, while too small γ makes reaching
the solution slow.

Algorithm 2: Gradient descent based optimization
1 initialize u(0)
2 for i = 0 to n_steps do
3 u(i+ 1) = u(i)− γ · dVH

du(i)
4 end

At the first time step of every episode u(0) is initialized to zero. In the next
time steps u(0) is equal to the solution of the previous time step.

An important challenge is to keep the computation time of this algorithm below
50 ms, as it is difficult to control a robot with frequency smaller than 20 Hz. We
limit the computation time by choosing n_steps small and tuning γ appropriately.
The most time-consuming part in the algorithm is the computation of gradient.
We have implemented the algorithm in TensorFlow, as well as all the relations
between current state, input and the summarized cost function, which are required
to calculate the gradient. The TensorFlow function tf.gradients() then manages to
compute the gradients with high efficiency.

Algorithm 2, which we have implemented, demonstrates a simple standard gra-
dient descent for MPC optimization. One can also consider a constrained optimiza-
tion to guarantee that the states and control inputs stay in a limited range. We
have left this for possible future work. To keep the inputs low, we penalize them in
the cost function with relatively large weights.

The gradient descent method has a few drawbacks. While working well with
simple functions, it can become too slow if the dimensionality is high and the func-
tions become nonlinear, as is the case with 7-joint robot dynamics in constraint-rich
environment. Another problem is that the algorithm can converge to a local mini-
mum instead of a global minimum. To tackle these issues we consider alternatively
a stochastic optimization method.

3.5 Stochastic optimization

Nagabandi et al. use a random-sampling shooting method (we will henceforth call
it random shooting), claiming it to be a simple solution for nonlinear optimization.
Indeed, the method as summarized by Algorithm 3 is straightforward.

Algorithm 3: Random shooting method for optimization
1 Generate K candidate control input sequences ut, . . . , ut+H−1, picking each

sequence from a uniform distribution
2 Using the cost function (2.7) and the dynamics model (3.6), calculate cost

for all K sequences
3 Pick the control input sequence that results in the lowest cost
From now on we will call the candidate sequences shootings. The number of

shootings K is a critical tunable parameter, that determines the likelihood that the
best solution found is close to the optimal solution.

16

3. Model-based reinforcement learning

The random control input sequences are each picked independently from a
uniform distribution of a limited range. This way we can easily constrain the control
inputs to our desired limits, which is an advantage over the gradient descent method.
The possible drawback can be a high number of shootings required for a satisfactory
performance in high-dimensional problems.

3.5.1 Cross-entropy method
To improve on the random shooting method, we use a modified version of it, called
cross-entropy method (CEM), which was first introduced by Rubinstein [22]. Chua
et al. show that CEM can achieve better performance than standard random shoot-
ing, while using the same sample size [13]. We use the code provided by Chua et al.
as a basis for our own implementation.

Similarly to the standard random search method, we want to generate K ran-
dom control input sequences. However, we sample them from a multivariate normal
distribution instead of a uniform distribution. Each candidate input sequence is a
matrix

u =
[
ut ut+1 . . . ut+H−1

]T
, (3.9)

that is sampled from a normal distribution

u ∼ NH·N(µ, Σ) , (3.10)

whereN is the input space dimension, µ ∈ RH·N is a mean vector and Σ ∈ RH·N×H·N

is a covariance matrix. Using the cost function, we find a fixed number of best
sequences (elites). Based on the elites we estimate a new narrower Gaussian dis-
tribution for the next iteration. This process is repeated iteratively, whereas the
distribution is expected to generally produce more optimal samples after each iter-
ation. In detail, the process is described by Algorithm 4.

Algorithm 4: Cross-entropy method for optimization
1 Pick initial mean vector µ and covariance matrix Σ
2 for i = 0 to n_iterations do
3 Generate K candidate control input sequences u from the mean µ and

covariance Σ
4 Using the cost function (2.7) and the dynamics model (3.6), calculate

cost for all K sequences
5 Order the sequences, from those that result in the smallest cost to the

largest, Uordered =
[
u1 . . . uK

]T

6 Choose n_elites first sequences from the ordered list
Uelites =

[
u1 . . . un_elites

]T

7 new mean vector µ = E[Un_elites] and new covariance matrix
Σ = cov[Un_elites]

8 end
We set a limit to the number of iterations to avoid the iterative process taking

too much time. The algorithm is expected to be more data efficient than the ran-

17

3. Model-based reinforcement learning

dom shooting method, i.e. the total number of samples created at each time step
to be smaller. While the CEM algorithm does multiple iterations, each of these
can use fewer shootings compared to the random shooting algorithm due to more
sophisticated choice of distribution.

18

4
Evaluation

4.1 Description of experiments
In order to validate the method, we evaluate it on two different problems with differ-
ent complexity. Making the manipulator to perform the insertion with reinforcement
learning is an ambitious task and therefore we start with a simpler cart-pole prob-
lem, which is a well-studied problem in the control field. It consists of an inverted
pendulum, that must be balanced on top of a moving cart. The cart has one degree
of freedom and its movement can be controlled by applying horizontal force to it.

In reinforcement learning problems we define a state space S and action space
U . The state space for the cart-pole problem consists of cart position and velocity
as well as pendulum angle and angular velocity. The action space consists of the
horizontal force applied to the cart.

Figure 4.1: A screenshot of the cart-pole problem in MuJoCo simulation. Shown
is the cart moving on the rail and the pendulum on top of the cart.

The second problem is the insertion task performed by robot manipulator. As
a manipulator, the YuMi robot arm is used. There is a block with a hole inside it
set up next to the robot. A cylindrical peg is attached to the end effector and the
robot’s task is to bring the object to the hole. Since the cross-section of the hole is
not much larger than the cross-section of the cylinder, the manipulator is expected
to collide with the block. The controller also cannot choose the most direct path to
the target, but has to plan the way over the wall.

The state space S of the manipulator includes joint positions and velocities,
while the action space U is a set of torques generated by the motors to control the

19

4. Evaluation

(a) Initial position (b) Target position

Figure 4.2: A screenshot of the insertion problem in MuJoCo simulation. Yumi
robot is illustrated in the initial position (left) and in the target position (right).

joints. The high dimensionality of the state and action spaces makes it a much more
complex problem compared to the cart-pole task.

4.2 Cost function
A cost function defines the objective which we want to achieve by minimizing that
cost. In the case of cart-pole task, where we wish the pendulum to stay upright and
the cart to stay near the initial position, we choose to penalize the pendulum angle
θ and the cart position x. We would also like minimal force to be used, so we also
penalize the control input. Penalizing the velocities did not increase the stability
during the experiments, so they are not included in the cost function. Consequently,
the cost function

c(st, ut) = w1 · x2
t + w2 · θ2

t + v · u2
t , (4.1)

where w1, w2 and v are weights that help scale or prioritize some terms over others.
For insertion task, the state space for the controlled system consists of 32 states

in total. First there are joint positions and velocities. To make it easier to achieve
the objective, the positions of three points on the end effector and their velocities
are also measured and added as states. In the end, states

s =
[
q q̇ p ṗ

]T
, (4.2)

20

4. Evaluation

where the joint positions
q =

[
q1 q2 ... q7

]T
, (4.3)

the joint velocities
q̇ =

[
q̇1 q̇2 ... q̇7

]T
, (4.4)

the coordinates of three points on the end effector

p =
[
p1

x p1
y p1

z ... p3
x p3

y p3
z

]T
, (4.5)

and the velocities of the three points on the end effector

ṗ =
[
ṗ1

x ṗ1
y ṗ1

z ... ṗ3
x ṗ3

y ṗ3
z

]T
. (4.6)

A quadratic cost function is used, where we penalize the distance of the end
effector from the target pr, joint position difference from the target joint position
qr, joint velocities and control inputs:

c(st, ut) = w1 · ||pt − pr||2 + w2 · ||qt − qr||2 + w3 · q̇2
t + v · u2

t . (4.7)
To obtain the target position, the manipulator is brought to the desired final position
in the simulation environment. It is then possible to measure pr and qr.

Inserting an object into tight-fitting hole is an objective that requires high
precision. The given cost function is generally enough to reach the desired position,
but can often fail to complete the final insertion step. Levine et. al. suggest using
a logarithmic cost term, called Lorentzian ρ-function wl · log(d2 +α), where d is the
penalized distance, wl is a weight and α some small number [7]. This term gives a
negative cost, which has a bigger effect close to the target. This way it encourages
the completion of the task, when the end effector is close to the hole. The value of α
determines the distance from the target, where the term starts having a considerable
effect.

4.3 Cart-pole simulation
The goal of the cart-pole experiments, besides proving that the derived method
works for a simple control problem, was to compare two methods: random shooting
and gradient descent. An improved method of random shooting, CEM, was also
tested. In addition to confirming that the methods are able to achieve the objective,
we also wanted to evaluate the time it takes to calculate the control action at each
time step. Since this time is limited for a real robot, we would like to minimize it
as much as possible.

To do the simulations we use the inverted pendulum environment from OpenAI
Gym MuJoCo library [23]. MuJoCo is a physics engine, that is efficient at simulating
contacts [24].

To compare performances with different methods, two quantities are considered:

cs = 1
M

M∑
i=1

N∑
j=1

θ2
j (4.8)

21

4. Evaluation

and

cs = 1
M

M∑
i=1

N∑
j=1

θ2
j , (4.9)

where M is number of episodes in iteration and N is episode length.
The first is the total cost over the episode, averaged over all episodes in the

iteration. The cost function to calculate this is not the same that is minimized by
optimization algorithm. Rather, only the angular distance of the pendulum from
the target is considered as well as only the true state at every time step instead of
the predicted states over the horizon.

The second quantity is the input cost in the episode, i.e. sum of squared forces
applied to the cart at every time step in episode. Again the average over all the
episodes in an iteration is taken.

4.3.1 Reinforcement learning
First, to gather data for training, 50 episodes with the length of 50 time steps each
are run with a random controller generating random actions.

When using neural networks, there are several hyperparameters to choose. The
choice can substantially affect the control performance. While bigger network can
achieve more accurate model, smaller network is faster and sufficient for this rel-
atively simple task. Thus, no advanced method like grid search was used for hy-
perparameter choice, as this would always rate unnecessarily large networks higher
(smaller validation set error). Instead, small network was preferred with size that is
enough to complete the task in small number of RL iterations.

The Adam optimization algorithm was used. The default parameters as given
in the paper by Kingma and Ba, were chosen, with learning rate α = 0.001, the
exponential decay rates for moment estimates β1 = 0.9, β2 = 0.999 and ε = 10−8

[21]. For other hyperparameters:
• network depth - 1 hidden layer with ReLU activation,
• layer size - 32 neurons,
• batch size - 64.
We train for 200 epochs as we have confirmed from learning curves that by

that time the error is nearly zero for most iterations. Every iteration consists of 5
episodes. Each episode has a length of 100 time steps. The sampling frequency is
50 Hz, which means that episode length is 2 s. 10 iterations are run altogether. To
encourage learning, the initial state is random. All initial states are drawn from a
uniform distribution with range from -0.01 to 0.01.

4.3.2 Optimization with random shooting
Penalizing the angles has a higher priority than penalizing the cart position. There-
fore, the weights were chosen w1 = 1 for the cart position and w2 = 1000000 for the
angle. In addition, the force applied to the cart is penalized with a weight of 0.1.
A sum of costs over all the predicted future states is taken. Thus, the cost for one
shooting at time t is given by:

22

4. Evaluation

V (t) =
t+H−1∑

i=t

(x2
t + 1000000 · θ2

t + 0.1 · u2
t), (4.10)

where H is planning horizon.
The horizon H and number of shootings K were chosen as small as possible

to decrease calculation time, while still achieving the objective. The chosen values
were H = 8 and K = 20. Each random control input is drawn from a uniform
distribution between -10 and 10 N .

0 20 40 60 80 100

−10

−5

0

5

10

C
o
n
tr
o
l
in
p
u
t
[N

]

0 20 40 60 80 100

−0.06

−0.04

−0.02

0.00

S
ta
te
s

x [m]

θ [rad]

0 20 40 60 80 100

Time steps

0

1

2

3

4

C
o
st

×10−5

(a) Iteration 1

0 20 40 60 80 100
−10

−5

0

5

10

C
o
n
tr
o
l
in
p
u
t
[N

]

0 20 40 60 80 100

0.000

0.005

0.010

S
ta
te
s

x [m]

θ [rad]

0 20 40 60 80 100

Time steps

0

1

2

3

C
o
st

×10−5

(b) Iteration 10

Figure 4.3: Input, cart position and pendulum angle and cost with random shoot-
ing at first iteration and tenth iteration.

Figure 4.3 shows that after doing 10 iterations of RL, the controller performance
has improved. The cost quickly goes down and stays low. The performance is already
satisfactory in the first iteration though, which shows that for this problem doing
reinforcement learning is actually unnecessary and it is enough to just train the
model on some initial randomly generated data once.

23

4. Evaluation

Figure 4.4 shows that already after 2 RL iterations model learning has converged
and there is little improvement regarding the state cost in the following iterations.
We can conclude that RL has been successful.

2 4 6 8 10

Iterations

0.5

1.0

A
v
er
a
g
e
ep
is
o
d
e
st
a
te

co
st ×10−3

(a) State cost

2 4 6 8 10

Iterations

0

1

2

A
v
er
a
g
e
p
re
d
ic
ti
o
n
er
ro
r ×10−4

(b) Prediction error

Figure 4.4: Average episode state cost and prediction error with random shooting
over ten iterations for cart-pole task.

4.3.3 Optimization with cross entropy method

The same cost function was used as with random shooting. Planning horizon was
kept 8, while number of shootings could be lowered to K = 10. The CEM algorithm
is stopped after four iterations are run. Various parameters related to CEM were
chosen as follows:

• rarity parameter - 5

• initial variance - 25

• initial mean - 0

From Figure 4.5 we see that even though the controller fails to balance the pole
in the first iteration, it has learned to do it successfully by the tenth iteration. There
is a significant improvement between the first and second iteration and not much
change after that, as seen in the Figure 4.6

24

4. Evaluation

0 20 40 60 80 100

−10

−5

0

5

C
o
n
tr
o
l
in
p
u
t
[N

]

0 20 40 60 80 100

−0.075

−0.050

−0.025

0.000

S
ta
te
s

x [m]

θ [rad]

0 20 40 60 80 100

Time step

0.0

0.5

1.0

1.5

2.0

C
o
st

×10−4

(a) Iteration 1

0 20 40 60 80 100

−5

0

5

C
o
n
tr
o
l
in
p
u
t
[N

]

0 20 40 60 80 100

−0.02

−0.01

0.00

S
ta
te
s

x [m]

θ [rad]

0 20 40 60 80 100

Time step

0

1

2

C
o
st

×10−5

(b) Iteration 10

Figure 4.5: Input, cart position and pendulum angle and cost with CEM at first
iteration and tenth iteration.

2 4 6 8 10

Iterations

1

2

A
v
er
a
g
e
ep
is
o
d
e
st
a
te

co
st ×10−3

(a) State cost

2 4 6 8 10

Iterations

0

2

4

6

8

A
v
er
a
g
e
p
re
d
ic
ti
o
n
er
ro
r ×10−5

(b) Prediction error

Figure 4.6: Average episode state cost and prediction error with CEM over ten
iterations for cart-pole task.

25

4. Evaluation

4.3.4 Optimization with gradient descent

With gradient descent method, the same cost function was used as with random
shooting method. Learning rate of 0.01 was used for the optimization of control
input. The number of gradient steps could be reduced to 3, while the planning
horizon H = 5. Figure 4.7 shows that after ten RL iterations, gradient descent
method achieves smaller cost than in the first iteration. Again, the performance is
good enough already in the first iteration. Figure 4.8 shows only slight improvement
on state cost and model accuracy after first 2 iterations.

0 25 50 75 100

−20

0

20

40

C
o
n
tr
o
l
in
p
u
t
[N

]

0 25 50 75 100

−0.025

0.000

0.025

0.050

0.075

S
ta
te
s

x [m]

θ [rad]

0 25 50 75 100

Time steps

0.0

0.5

1.0

C
o
st

×10−3

(a) Iteration 1

0 20 40 60 80 100

−10

−5

0

5

10

C
o
n
tr
o
l
in
p
u
t
[N

]

0 20 40 60 80 100

−0.015

−0.010

−0.005

0.000

0.005

S
ta
te
s

x [m]

θ [rad]

0 20 40 60 80 100

Time steps

0

2

4

6

C
o
st

×10−5

(b) Iteration 10

Figure 4.7: Input, cart position and pendulum angle and cost with gradient descent
at first iteration and tenth iteration.

26

4. Evaluation

2 4 6 8 10

Iterations

0.000

0.002

0.004

0.006

0.008

A
v
er
a
g
e
ep
is
o
d
e
st
a
te

co
st

(a) State cost

2 4 6 8 10

Iterations

0

1

2

3

A
v
er
a
g
e
p
re
d
ic
ti
o
n
er
ro
r ×10−4

(b) Prediction error

Figure 4.8: Cost and prediction error with gradient descent over ten iterations for
cart-pole task.

4.3.5 Comparison
The table 4.1 compares the time it takes to calculate control with different methods
as well as their performance evaluation quantities. It can be seen that gradient
descent and random shooting have similar computation time, also their performance
as implied by state cost is similar. Gradient descent method, however, uses lower
control inputs on average. CEM is about two times slower than other methods. The
reason is that with CEM multiple iterations of cost calculation for each shooting are
done at every time step. At the same time CEM does not achieve better performance
than other methods.

The worse performance of CEM compared to random shooting is surprising,
since we expected it to be better in both performance and computation time. The
results are also not sufficient to make a choice between random shooting and gradient
for the robot insertion task, since in a high dimensional task, there can be significant
differences. Thus, we decided to repeat the experiments with all three methods also
in the insertion task.

Computation time (ms) State cost Input cost
Shooting 13 1.7 · 10−4 2245
CEM 25 2.2 · 10−4 1073

Gradient 11 1.9 · 10−4 703

Table 4.1: Comparison of different methods for cart-pole problem. Shown are
average input calculation time and state cost and input cost in the final iteration.

4.4 Insertion
To do the simulations, YuMi model in MuJoCo environment was used. The same
three methods that were used for cart-pole problem were tested again, in order to
decide which method would be the best for the insertion task.

27

4. Evaluation

Again two quantities are created to measure the performance of the different
methods. The state cost is defined as

cs = 1
M

M∑
i=1

N∑
j=1

(||q − qt||2 + ||p− pt||2), (4.11)

where jt is the target joint positions and pt is the target end effector point positions.
The input cost is defined as

ci = 1
M

M∑
i=1

N∑
j=1

u2, (4.12)

4.4.1 Reinforcement learning
To collect initial data, 15 episodes with the length of 100 time steps are run with
an initial policy. The initial policy can not simply take completely random actions,
since it would clearly lead to unwanted collisions in case of a real robot. As a simple
solution we implement a proportional-derivative (PD) control.

First, we define the error in joint position at current time step

qe
t = qr − qt (4.13)

and error in joint velocity

q̇e
t = q̇r − q̇t (4.14)

Then at each step we find the control as

ut = Kp · qe
t +Kd · q̇e

t + n, (4.15)

where Kp and Kd are proportional and derivative coefficient of PD controller respec-
tively. n is a noise that is added to ensure sufficient exploration.

We have tuned the coefficients asKp = diag([10, . . . , 10]) andKd = diag([3, . . . , 3]).
Trying to keep the neural network small, we choose the hyperparameters:

• network depth - 1 hidden layer with ReLU activation,
• layer size - 64 neurons,
• batch size - 128.

Adam optimization algorithm with its default parameters was used for this case as
well. We train for 100 epochs.

Each experiment consists of 20 RL iterations, each consisting of 5 episodes.
Every episode has a length of 100 time steps which equals to 5 s. To reduce the time
it takes to train a new model after each iteration, only the data produced in the
most recent five iterations is used for training, while the rest of the data is forgotten.

4.4.2 Optimization with random shooting
The weights used for the cost function are

• w1 = 1 for the distance of the end effector from the target,

28

4. Evaluation

0 5 10 15 20

Iterations

50

100

150

A
v
er
a
g
e
ep
is
o
d
e
st
a
te

co
st

(a) State cost

0 5 10 15 20

Iterations

0

2

4

S
u
cc
es
sf
u
l
ep
is
o
d
es

(b) Success rate

Figure 4.9: State cost and success rate over 20 iterations with random shooting
method.

• w2 = 1 for the joint position difference from the target joint position,
• w3 = 0.02 for the joint velocities,
• v3 = 0.001 for the control inputs.

In addition, we found that adding a Lorentzian ρ-function, significantly increases
the rate of success. The weight for this term wl = 1 and α = 10−5. The resulting
cost function is

Vt =
t+H−1∑

i=t

(||pt−pr||2+||qt−qr||2+0.02·q̇2
t +0.001·u2

t +log(||pt−pr||2+10−5)). (4.16)

The weights for joint velocity and control input are selected low not to seriously
weaken the performance, while still reducing the average input cost and velocities.

We set the time limit for computing one control input as 50 ms. We choose the
horizon H = 10, which gives a good performance. Lower horizon can suffer from
being too shortsighted, while with longer horizon model errors are more likely. We
manage to increase the number of shootings to K = 2000, without violating the
time limit.

The control inputs are drawn randomly from a uniform distribution. The limits
of this distribution are different depending on the joint. Particularly, it is 6 N for
the first three joints, 2 N for the fourth joint and 1 N for the last three joints. These
limits were deliberately chosen small to keep the control inputs low, as limiting them
this way is more efficient than penalizing the control inputs.

Figure 4.9 shows that the RL method is able to learn to complete the insertion
task. As seen in Figure 4.9a, the average episode cost comes down in 5 iterations,
after which there is no significant improvement in further iterations. Figure 4.9a
displays in how many episodes out of five in each iteration the controller managed
to complete the insertion task successfully. We see that after first 4 iterations, at
least three episodes are always successful.

29

4. Evaluation

4.4.3 Optimization with CEM
With CEM the exact same cost function is used as with random shooting. We also
keep the horizon same H = 10, but we can reduce the number of shootings to K =
200. Instead of setting a stopping criterion for CEM algorithm, we limit the number
of iterations to 4. The initial variance is different for different control inputs and is
designed to limit the actions to the similar range as with standard random shooting.
This is achieved by selecting the initial variance vector as

[
36 36 36 4 1 1 1

]
.

Initial mean is zero and rarity parameter is 10.

0 5 10 15 20

Iterations

40

60

80

100

A
v
er
a
g
e
ep
is
o
d
e
st
a
te

co
st

(a) State cost

0 5 10 15 20

Iterations

0

2

4

S
u
cc
es
sf
u
l
ep
is
o
d
es

(b) Success rate

Figure 4.10: State cost and success rate over 20 iterations with CEM.

As visible in Figure 4.10a, the average episode state cost comes down in 4
iterations. In iteration 10, the controller has probably learned a poor model and
consequently completes the task successfully in only one episode out of five. With
this exception the results are robust, with the controller being successful in 4 or 5
episodes out of five in every iteration after the fifth (Figure 4.10b).

4.4.4 Optimization with gradient descent
Since our implementation of gradient descent does not constrain the control inputs,
we keep it in the desired range by using larger weight to penalize control inputs and
we choose a similar cost function as follows:

Vt =
t+H−1∑

i=t

||pt−pr||2 + ||qt−qr||2 +0.02 · q̇2
t +0.05 ·u2

t +log(||pt−pr||2 +10−5). (4.17)

We use the same horizon as with other methods H = 10 and manage to do 9
gradient steps, while ensuring that the computation time does not exceed 50 ms.
We use learning rate 0.5.

Figure 4.11 illustrates how the average episode cost decreases greatly in few
iterations. It stays low, but after 8 iterations increases again and stays on higher
level further on. The success rate also decreases. The reason might be that the
gradient descent finds some local minimum and gets stuck in it.

30

4. Evaluation

4.4.5 Comparison

Computation time (ms) State cost Input cost
Shooting 31.6, σ = 4.1 50.2 3658
CEM 38.5, σ = 1.3 39.4 2579

Gradient 43.1, σ = 2.0 44.2 764

Table 4.2: Comparison of different methods for insertion problem in simulation.
Shown are average input calculation time, state cost and input cost in the best
iteration.

The Table 4.2 compares the computation times, the average state costs and the
average input costs. The average state cost over five episodes is taken from the best
iteration, i.e. in the iteration where this cost is lowest. The average input cost is
taken from the same iteration.

First when looking at the computation time, we see that in all cases they are
more than 3 σ away from the limit of 50 ms. Thus, the risk of exceeding this limit
is minimal as was intended with the choice of parameters. The average state cost
in the best iteration is similarly low for CEM and gradient descent, while being a
bit higher for random shooting. Considering the average input cost, the gradient
descent method is surely the best, while the random shooting is the worst.

We expected CEM to give better results than standard random shooting. In-
deed, it seems to achieve a bit lower average state cost as well as input cost. At the
same time it is more data efficient: there are 4 iterations for 200 shootings, which
means the predictions for H = 10 future states need to be made and their cost cal-
culated 800 times. In contrast, for standard random shooting it is done 2000 times.
We expected data efficiency to also lead to reduced computation time, however we
see CEM having a higher computation time on average. This is probably caused
by implementation issues. The predictions are calculated in TensorFlow, while rest
of the code is not implemented in TensorFlow. Accessing TensorFlow takes time
and in CEM it is done 4 times every time step, since there are 4 iterations, whilst

0 5 10 15 20

Iterations

50

75

100

125

A
v
er
a
g
e
ep
is
o
d
e
st
a
te

co
st

(a) State cost

0 5 10 15 20

Iterations

0

2

4

S
u
cc
es
sf
u
l
ep
is
o
d
es

(b) Success rate

Figure 4.11: State cost and success rate over 20 iterations with gradient descent
method.

31

4. Evaluation

in the random shooting there’s only one iteration. We leave it for future work to
implement the code in TensorFlow.

4.5 Insertion with obstacle

To add further solidity to the results, we decided to do another insertion experiment,
with slightly alternated conditions. Particularly, we make a task more difficult by
adding an obstacle into the end effector’s path. The initial state stays the same, but
there is a wall in front of the target hole. The policy has to plan the way around
the wall. Figure 4.12 shows the task with the robot in its initial state. The results
for all methods are presented in the figures below (Figures 4.13, 4.14, 4.15), while
Table 4.3 compares the state cost and input cost for the best achieved iteration of
each method.

All the tunable parameters, that define the model learning and optimization
stay the same as is described in the previous section. The results are presented
below, showing the state cost and success rate.

Figure 4.12: Initial position of the modified insertion task. A wall is added as an
obstacle in front of the target.

32

4. Evaluation

0 5 10 15 20

Iterations

50

100

150

200

250

A
v
er
a
g
e
ep
is
o
d
e
st
a
te

co
st

(a) State cost

0 5 10 15 20

Iterations

0

2

4

S
u
cc
es
sf
u
l
ep
is
o
d
es

(b) Success rate

Figure 4.13: State cost and success rate over 20 iterations with random shooting
method for obstacle task.

0 5 10 15 20

Iterations

50

75

100

125

A
v
er
a
g
e
ep
is
o
d
e
st
a
te

co
st

(a) State cost

0 5 10 15 20

Iterations

0

2

4

S
u
cc
es
sf
u
l
ep
is
o
d
es

(b) Success rate

Figure 4.14: State cost and success rate over 20 iterations with CEM method for
obstacle task.

0 5 10 15 20

Iterations

80

100

A
v
er
a
g
e
ep
is
o
d
e
st
a
te

co
st

(a) State cost

0 5 10 15 20

Iterations

0

2

4

S
u
cc
es
sf
u
l
ep
is
o
d
es

(b) Success rate

Figure 4.15: State cost and success rate over 20 iterations with gradient descent
method for obstacle task.

33

4. Evaluation

State cost Input cost
Shooting 51.1 3645
CEM 45.3 2846

Gradient 63.7 878

Table 4.3: Comparison of different methods for insertion problem with an obstacle.
Shown are state cost and input cost in the best iteration.

We notice that the results are similar as in the case without the obstacle. Ran-
dom shooting and CEM methods still achieve first successful result quickly, already
in the second iteration. By 7th iteration both have achieved a 100 % successful
iteration. The robustness of CEM is weaker than in the task without an obstacle,
with more than one iteration in the latter part having only two successful episodes.
Nevertheless, comparing the average state cost of the two methods, CEM is clearly
better. Gradient descent achieves also very strong results in the beginning, but in
the latter iterations is failing a lot. This is similar to the behavior noticed in the
initial task.

34

5
Conclusion

The problem that this thesis sought solution for was controlling a robotics manip-
ulator using reinforcement learning. The specific method used was a model-based
reinforcement learning, which instead of learning a control policy directly, aims to
learn the dynamics of the environment. Based on the learned dynamics model, an
optimal policy is calculated online at each time step, using model predictive control.

For evaluation of the results, different experiments were conducted in a simu-
lation environment. We started with a simple cart-pole balancing task, before we
moved on to an insertion task with a manipulator. In the insertion task, the goal
was to move a peg towards a target hole in a block and then insert the peg into the
hole. In the final experiment, the situation was complicated further, by introducing
an obstacle in front of the hole.

To learn the dynamics model, an artificial neural network was used. We no-
ticed that even for the complex 7-joint manipulator, the neural network can learn a
sufficiently accurate model with a simple structure consisting of only one layer.

Regarding online policy optimization, we compared three different methods: a
gradient descent method, that iteratively calculates gradient of the cost function and
moves in a negative direction of the gradient, a random-sampling shooting method
that generates numerous candidate actions from a uniform distribution and picks
the one that results in a minimal cost, and a cross-entropy method (CEM), which
generates candidate actions from a normal distribution, while the distribution is
narrowed iteratively to produce potentially better candidates.

When evaluating the methods, 10 iterations were run for the cart-pole task
and 20 iterations for the insertion tasks. Each insertion consists of learning a new
dynamics model based on the information acquired from the previous iterations, and
making five attempts (episodes) to complete the task.

We found that all methods are able to solve the tasks. In the cart-pole task,
no significant difference was observed between the three methods regarding the
performance. In insertion tasks, the gradient descent method achieved good results
in early iterations, but its performance decreased in later iterations, with many
episodes failing. A possible explanation for the failure is that the gradient descent
gets stuck in some local optimum. On the other hand, the gradient descent method
used the lowest control inputs on average, which is positive for preserving energy.

We concluded, however, that the other two methods should be preferred, as
the experiments showed more robust results in these cases. Out of the two, the
CEM was regarded as better, because it achieved a smaller average state cost. More
importantly, it is more data efficient, which should result in faster policy calculation.
This is critical to ensure that the robot runs smoothly. We did not see that the CEM

35

5. Conclusion

was faster, when we measured the computation time, which we reasoned to be due
to inefficient implementation of algorithm. A TensorFlow implementation could
potentially reduce the computation time.

There is a lot of potential for future work with this project. Certainly the most
interesting would be to test the developed method on a real robot. The learned
model is critical to the performance, probabilistic models could serve better instead
of a neural network. We offered one idea, how to reduce computation time. That
would leave room to more possible calculations at each time step (more candidates,
more iterations), leading to more optimal control actions.

36

Bibliography

[1] Jan Peters, Jens Kober, Katharina Mülling, Oliver Krämer, and Gerhard Neu-
mann. Towards robot skill learning: From simple skills to table tennis. volume
8190, pages 627–631, 09 2013. doi: 10.1007/978-3-642-40994-3_42.

[2] David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529:484–489, 01 2016. doi:
10.1038/nature16961.

[3] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research, 32:1238–
1274, 09 2013. doi: 10.1177/0278364913495721.

[4] Jens Kober, Erhan Oztop, and Jan Peters. Reinforcement learning to adjust
robot movements to new situations. In Proceedings of the Twenty-Second In-
ternational Joint Conference on Artificial Intelligence - Volume Volume Three,
IJCAI’11, pages 2650–2655. AAAI Press, 2011. ISBN 978-1-57735-515-1.
doi: 10.5591/978-1-57735-516-8/IJCAI11-441. URL http://dx.doi.org/10.
5591/978-1-57735-516-8/IJCAI11-441.

[5] H. Durrant-Whyte, N. Roy, and P. Abbeel. Learning to Control a Low-Cost
Manipulator Using Data-Efficient Reinforcement Learning. MITP, 2012. ISBN
9780262305969. URL https://ieeexplore.ieee.org/document/6301026.

[6] Marc Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-
efficient approach to policy search. pages 465–472, 01 2011.

[7] Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich ma-
nipulation skills with guided policy search. 2015.

[8] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization
of motor skills by learning from demonstration. In 2009 IEEE International
Conference on Robotics and Automation, pages 763–768, May 2009. doi: 10.
1109/ROBOT.2009.5152385.

[9] Sanket Kamthe and Marc Peter Deisenroth. Data-efficient reinforcement learn-
ing with probabilistic model predictive control, 2017.

37

http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-441
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-441
https://ieeexplore.ieee.org/document/6301026

Bibliography

[10] Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Peter
Deisenroth. Manifold gaussian processes for regression, 2014.

[11] Justin Fu, Sergey Levine, and Pieter Abbeel. One-shot learning of manipulation
skills with online dynamics adaptation and neural network priors, 2015.

[12] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neu-
ral network dynamics for model-based deep reinforcement learning with model-
free fine-tuning, 2017.

[13] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
reinforcement learning in a handful of trials using probabilistic dynamics mod-
els, 2018.

[14] Aviv Tamar, Garrett Thomas, Tianhao Zhang, Sergey Levine, and Pieter
Abbeel. Learning from the hindsight plan – episodic mpc improvement, 2016.

[15] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learn-
ing. MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

[16] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal
difference models: Model-free deep rl for model-based control, 2018.

[17] James B. Rawlings and David Q. Mayne. Model Predictive Control: Theory
and Design. Nob Hill Publishing, Madison, Wisconsin, USA, 2015.

[18] Gábor Horváth. Neural networks in system identification. 2002.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[20] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of
imitation learning and structured prediction to no-regret online learning, 2010.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2014.

[22] Reuven Y. Rubinstein. Optimization of computer simulation models with rare
events. European Journal of Operations Research, 99:89–112, 1996.

[23] Invertedpendulum-v2. URL https://gym.openai.com/envs/
InvertedPendulum-v2/.

[24] Mujoco. URL mujoco.org.

38

http://www.deeplearningbook.org
https://gym.openai.com/envs/InvertedPendulum-v2/
https://gym.openai.com/envs/InvertedPendulum-v2/
mujoco.org

	List of Figures
	List of Tables
	Introduction
	Background
	Related work
	Structure and approach

	Theoretical background
	Reinforcement learning
	Model predictive control
	Model learning
	Neural network as function approximator
	Gradient descent for minimization
	Generalization of neural networks

	Model-based reinforcement learning
	Skill learning problem as MDP
	Learning based MPC as RL
	ANN based model learning
	Gradient descent based optimization
	Stochastic optimization
	Cross-entropy method

	Evaluation
	Description of experiments
	Cost function
	Cart-pole simulation
	Reinforcement learning
	Optimization with random shooting
	Optimization with cross entropy method
	Optimization with gradient descent
	Comparison

	Insertion
	Reinforcement learning
	Optimization with random shooting
	Optimization with CEM
	Optimization with gradient descent
	Comparison

	Insertion with obstacle

	Conclusion
	Bibliography

