
 

 

Evaluation of Document and
Search Query Processing Frameworks

TOBIAS SVENSSON

Chalmers University of Technology
University of Gothenburg

Department of Computer Science & Engineering
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Abstract

As search becomes a vital cornerstone of any organization and as expectations and
demands on findability and search steadily increase, there is a need for high-performance,
scalable and simple Text Processing Frameworks to implement document processing
solutions. Today, there are many open source solutions available to this end.

In this thesis, the processing frameworks GATE, UIMA, OpenPipeline, Hydra and
Storm are analyzed and compared. We investigate the impact of parallelism and distri-
bution on throughput and performance.

Additionally, the possibilities and demands of performing Natural Language Process-
ing tasks on real-time search queries is analyzed. The feasibility of using the processing
frameworks for this task is investigated and the results are discussed. Finally, recom-
mendations are made for which kind of system to implement for different use cases and
improvements to existing systems are suggested.
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1
Introduction

T
oday, search is a vital feature for any organization. With the large amount
of data that is generated every day in today’s society, search is more important
than ever. A good search infrastructure can allow employees to quickly find the
information they need in a large information database generated from several

sources such as documents, files, web pages, presentations, employee information and
more.

To provide search solutions across such varied data sources, many Text Processing
Frameworks have been developed over the last years. Today there exist many varia-
tions of such frameworks, each with its own architecture and advantages. To gain an
understanding of what makes a Text Processing Framework efficient, an in-depth study
is needed. Most have been developed for continuous processing of data streams, but is
it also possible to use them in real-time applications with strict timing demands?

1.1 Background

To provide the demands described above, there is a need for software solutions to solve
the search problem. Findwise is a Search consultancy company which provides a Search
and Text Processing Architecture as shown in Figure 1.1.

In this architecture, the Content Collection and Refinement section processes docu-
ments and information to extract properties and search information. The processed and
searchable data is then sent to the Search Core, which can be used by various user appli-
cations and interfaces to provide search functionality. The Content Refinement stage is
where the text content of collected document is subject to Natural Language Processing,
which is implemented by a Text Processing Framework (TPF).

The essence of a Text Processing Framework is the ability to analyze, augment and
process textual information in a uniform fashion. Its core is a pipeline which consists
of (pluggable) stages, where each of them is often dedicated to a single task (e.g. white
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1.2. PROBLEM DESCRIPTION CHAPTER 1. INTRODUCTION

Figure 1.1: Findwise Search and Text Processing Architecture

space tokenization, copy one document field to another, extract date, etc.). In addition,
the Processing Framework needs to be extendible - which means it can easily be adapted
to new domains, languages or tasks, as well as scale to large number of document, work
in a distributed environment and do not crash.

While there are a number of such frameworks available, two of them are well-known
- the open source frameworks for document processing, GATE and Apache UIMA. In
addition to these frameworks which have native support for linguistic analysis there exist
a number of open source solutions with pipelines which have the potential to be extended
with third-party components and even have built-in NLP capabilities. Two such exam-
ples are OpenPipeline, and Hydra which is currently being developed at Findwise. In
addition there is also Storm, a distributed real-time computation system which can be
used as a text processing framework.

1.2 Problem Description

The problem as described by Findwise is that there has been recent interest in new fields
of usage for their Text Processing Frameworks which would impose stricter requirement
for these frameworks. However, there is not enough knowledge about the characteristics
of the available frameworks, which makes it hard to evaluate their current ability to meet
these restrictions and to make informed decisions about future development efforts.

The task of this thesis is to evaluate these five pipelines for the use of document/text
processing from the point of view of scalability, robustness, stability and performance.
This can be done in the form of a Test Framework which tests these pipelines. There
should be at least one or more tasks which will be performed by the pipelines (such as
Named Entity Recognition, or data extraction, etc.). The thesis should take into con-
sideration the technical requirements which Findwise has with respect to the processing
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1.3. PURPOSE CHAPTER 1. INTRODUCTION

pipelines and verify which of them are fulfilled.
We are also interested in evaluating the possibility of using these pipelines for the

purpose of Search Query Processing. There is an interest in performing more in-depth
analysis of search queries to extract valuable information such as e.g. person names,
organization names, locations file types or base forms of words. To perform these steps,
the question is if the same NLP components which are used for Text Processing can be
re-used. Therefore it is of interest to evaluate the performance of these pipelines and
compare with the requirements imposed on Search Query processing software.

1.3 Purpose

The thesis will attempt to answer these research questions:

1. What are the differences between the Text Processing Frameworks in terms of
scalability, robustness, stability and performance?

2. Can any of these Text Processing Frameworks also be used for search query pro-
cessing?

To answer question 2, the thesis will need to collect requirements for the query processing
use case.
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2
Literature

2.1 Natural Language Processing

Natural Language Processing (NLP) is at the core of any search solution. It is a field
which appears in a vast number of software applications, such as artificial intelligence,
text or speech interpretation, language translation and most forms of human-computer
interaction. NLP occurs in any situation where human text or speech, in any language,
needs to be understood, interpreted or otherwise processed.

The field of NLP has its roots in the late 1940’s. One of the earliest articles in the
field is the influential ’Translation’ article by Warren Weaver[1]. This article is can be
seen as one of the first steps into the area of NLP, as it describes the possible use of
powerful computers to solve the tasks before such computers existed. The article was
followed rapidly by the publication of a well-known article by Alan Turing [2] describing
the Turing Test, which attempts to determine a machines ability to exhibit intelligent
behavior, a test which involves language processing.

NLP is a vast field of which only a subset is used in the topic of text processing
for search applications, in which the task can be described as processing documents to
generate terms and information which can be used to increase the quality of results to
search queries.

In this section, we will describe the NLP steps we have used in this project. These
are also the steps which are most commonly occurring in any NLP solution used for
search.

2.1.1 Tokenization

Tokenization is usually the first step performed after retrieving the source text[3]. When
tokenizing a text, the text is split into separated usable chunks called tokens. Tokens are
usually single words. A first attempt at a basic tokenizer using regular-expressions might
simply split an English text on whitespaces. More complicated solutions are required
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2.2. APPLICATION PIPELINES CHAPTER 2. LITERATURE

to solve issues such as punctuations at the end of words or abbreviations such as can’t.
For some languages, such as Chinese, the task is much more tricky as the text is not
separated into words by whitespaces.

Tokenization results can be different depending on the language and the NLP task
being performed. For example, the English word can’t may be split differently using
different tokenizers. In OpenNLP, the english.Tokenizer stage splits can and not into
two tokens for use with subsequent grammar parsing, whereas SimpleTokenizer stage
simply splits on whitespaces and special characters. Other techniques might be applied
in this step, such as Case alterations or Stopword removals.

2.1.2 Sentence splitting

Tokenization of a text, in certain situations, can have the disadvantage of obfuscating
paragraphs and sentences. For example, in a standard article, a new paragraph is often
introduced by adding a new line and indentation before the first word, both of which
are lost in tokenization. Sentence Splitting divides the source text (or tokens, depending
on the application used) into sentences, so that subsequent stages can produce more
accurate results.[3]

In the standard OpenNLP pipeline, the Sentence Splitting stage occurs before the
Tokenization stage.

2.1.3 Part-of-Speech tagging

Part-of-Speech (POS) tagging is the process of determining the POS for each token, such
as if it is a verb, noun, adjective or otherwise[3]. Having this information available can
increase the quality of results in later steps.[3] It can help distinguish between e.g. the
adjective nice and the french city Nice. For the same reason it will also help with Named
Entity Extraction, see 2.1.4.

2.1.4 Named Entity Recognition

Named Entity Recognition (NER) is the process of recognizing named entities such as
persons, organizations or locations.[3]

Of the steps described in this section, NER is the first step which produces informa-
tion than can be used in standard search applications to improve search results.

2.2 Application pipelines

In this report we will regularly refer to application pipelines. A pipeline within the
software field generally refers to a series of processing stages, in which a subsequent stage
depends on the results of previous stages, such that an item being processed through the
pipeline must be fed through the stages in a predetermined order.
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2.2. APPLICATION PIPELINES CHAPTER 2. LITERATURE

2.2.1 Synchronous vs Asynchronous pipelines

We define a synchronous pipeline to be a pipeline in which only one stage may be
processing a job at any given point in time. In such a pipeline, a job must typically be
fully processed before another job can be sent into the pipeline.

We define an asynchronous pipeline to be a pipeline in which more than one stage
may be processing jobs at the same time. This can be due either to running stages in
parallel using separate threads, or due to the pipeline supporting distributed execution
across multiple computers, or nodes. In such a pipeline, typically there is no limit to the
number of jobs that can currently be in the processing queue for any of the stages, thus
a job can be submitted at any time regardless of the current state of the stages of the
pipeline and the jobs within the pipeline.

2.2.2 Pipeline throughput

When looking at the performance of a pipeline, the most important metric is the through-
put of the pipeline as a system. The throughput is defined by BusinessDictionary as
’Productivity of a machine, procedure, process or system over a unit period’[4]. In the
context of NLP, we are interested in the average amount of documents processed per
second. However, since documents can vary in length and complexity, we would require
a different metric. Looking at the amount of bytes processed is not feasible as various
data sources can have different compression and encoding, so we generalize this to the
average amount of characters processed per second.

The throughput τS of a pipeline stage S can be defined as [5]:

τS =
C

TS
(2.1)

where C is the total amount of characters processed and TS is the total amount of
time used for processing for stage S.

The total throughput τ for a pipeline with N stages is determined by its slowest
stage[5]:

τ = MIN (τ0, τ1, ..., τN ) (2.2)

From this we can gather that the slowest stage in a pipeline will bottleneck the
performance of the rest of the pipeline.

Note also that these definitions assume that the stages are running asynchronously.
If a set of sequential stages are synchronous, i.e. at any given time a maximum of one
of the stages may be processing, this set of stages may be considered as a single stage
for the purposes of these definitions.

2.2.3 Parallelism and throughput

Using the formulas in the previous chapter, we can derive formulas for throughput of
pipelines with parallel instances of stages.
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By increasing the number of parallel instances of the slowest stages, we can increase
the total throughput of the system. If a stage S has throughput τS and we run P parallel
instances of it, then the maximum throughput through this part of the pipeline is PτS .
We could define the increase in throughput as:

PτS
τS

= I (2.3)

Any method of communication between and maintenance of parallel instances will add
some overhead to the system as a whole. But, as long as throughput of document
transmission between the stages, τO, is larger than PτS , the increased throughput of the
system is not affected (even though the total workload for processing a single document
may be substantially higher):

MIN(PτS , τO)

τS
= I (2.4)

Note that this does not account for other consequences of the increased resource
usage. If the maximum I/O speed of a memory or disk device is reached, or problems
such as disk trashing or memory swapping occur, the system can slow down and Tmax
may increase enough to decrease the total throughput.

We now revise the formulas in 2.2.2 to account for pipelines with stages running in
parallel, but excluding performance drawbacks of the increased number of processes.

When running P parallel instances of stage S, the total computation time of the
stage as a whole is determined by the parallel instance with the longest computation
time T , so from (2.1) we get:

τPS =
C

MAX (TS1, TS2, ..., TSP )
(2.5)

As the execution time of the stage increases, the difference in computation time
between stages proportional to the total computation time will decrease. We can thus
generalize (2.5) for long execution times. Recall from equation 2.1 that TS is the total
computation time of stage S. Under parallel execution we can use the approximation:

τPS =
C

TS/P
= PτS (2.6)

Let PX be the number of parallel instances of stage X. From (2.2) we get the following
expression for the throughput of a parallel pipeline with N stages:

τ = MIN (P0τ0, P1τ1, ..., PNτN ) (2.7)

2.3 Real-time & Stream Processing

In Computer Science, two commonly used terms for describing processing systems are
Real-time processing systems and Stream processing system
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A Real-time processing system refers to a system where it is critical that a result is
delivered within a certain time-frame. Simply put, a real-time system has a strict timing
requirement on the time from submission of a task to the delivery of its result.

A Stream processing system refers to a system which operates on a data input with
the following properties[6]:

• The size of input data is unbounded

• Input data may become available at any time

• The system processes input data continuously over a long period of time

In other words, a Stream processing system operates on a data stream with high volumes
of data. Due to the nature of such a system, it is not possible to put any strict timing
demands, as the volume of data may vary over time. Instead, important factors for such
a system are availability, reliability and scalability.
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3
Method

3.1 Text Processing Frameworks

In this section we will describe the Text Processing Framework (TPF) applications which
have been studied in this project.

Common aspects of all chosen TPS is that they are open-source and are wholly or
partially developed in Java.

3.1.1 GATE

GATE1 (General Architecture for Text Engineering) is a TPF which began development
as part of an R&D program started in 1995[7]. Since then, GATE has been continu-
ously in development. GATE has seen use in large corporations, research programs and
undergraduate studies. Many third-party plugins have been developed for GATE.

GATE comes with an IDE which allows easy configuration of a text processing
pipeline by combining and configuring available plugins.

3.1.2 Apache UIMA

The Apache Unstructured Information Management Architecture (UIMA)2 is a compo-
nent software architecture designed to enable analysis of unstructured information[8]. It
is one of the most widely used publicly available NLP solutions, being the first TPF to
become an OASIS standard[9]. In 2011 IBM used the Watson computer to compete in
an subsequently win a competition of Jeopardy!. Watson used UIMA to process real time

1GATE is available at http://gate.ac.uk/. The version used in this project is Release 7.1 (Nov 30th
2012).

2UIMA is available at http://uima.apache.org/. The version used in this project is 2.4.0 (Nov 15th
2012).
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3.1. TEXT PROCESSING FRAMEWORKS CHAPTER 3. METHOD

information[10]. A wide selection of applications are available and many search engines
such as Solr have support for Apache UIMA.

3.1.3 OpenPipeline

OpenPipeline3 is an open-source software for crawling, parsing and analyzing documents,
which can be used to tie together incomplete NLP solutions. Development began near
the beginning of 2008[11]. OpenPipeline comes packaged with some basic stages and a
GUI for creating a text processing pipeline from available stages.

3.1.4 Storm

Storm4 is a distributed real-time computation system suitable for any kind of stream pro-
cessing. It is an open-source project developed by Nathan Marz and is used within many
companies and projects, including Twitter and Groupon. While Storm is developed in
Java, the API can be extended to any programming language.

Dependencies

To enable its distributed behavior Storm uses Zookeeper, a distributed coordination
service useful for maintaining distributed applications. The Zookeeper project began as
a subproject of Hadoop, but has now branched off and become a stand-alone open source
software product. Storm also uses Nimbus, a toolkit providing common cloud computing
features.

3.1.5 Hydra

Hydra5 is a open-source, distributed processing framework for search solutions, which
has been in development at Findwise since 2012.

The goals of the Hydra project are to provide a distributable, stable, scalable and
reliable solution for text processing. Each stage runs in a separate JVM and stages which
crash or enter faulty states will be restarted automatically to a working state.

Dependencies

Hydra uses MongoDB, a NoSQL[12] database with high performance and built-in dis-
tribution support, to store data and for communication between the different nodes of a
Hydra cluster.

3OpenPipeline is available at http://openpipeline.com/. The version used in this project is 0.8.4.
4Storm is available at http://storm-project.net/. The version used in this project is 0.8.4.
5Hydra is available at GitHub. (https://github.com/Findwise/Hydra)
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3.2 Apache Solr

The search engine used in this project is Apache Solr, an open-source enterprise search
server based on the Lucene Java search library. Solr is designed to be scalable and fault
tolerant, with an extensive plugin architecture for in-depth customization of most of its
features[13].

Communication with Solr is provided via a REST interface, see 4.1.1. Documents
are submitted to Solr as a set of fields. Each field can contain any value, being a number
or string, or a list of values. When searching, a selection algorithm compares the search
terms to the fields of each documents and assigns each document a score based on how
accurately the search term matches the document. The documents with the highest
scores will be returned as a result to the search query.

3.3 Research

Prior to initiating any design work, the fields of NLP and testing which were expected
to be applied to the projects were researched.

For the field on NLP, we focused on researching the standard applications and
methodologies that are common to most NLP solutions. The goal of the research was
to identify which NLP techniques (stages) would be used during testing and how to
implement these efficiently and fairly between the various TPF.

For the field of testing, research focused primarily on which test metrics and method-
ologies would yield the most interesting and useful results. Existing scheduler imple-
mentations were examined, such as the scheduler for the Linux operating system[14], to
gain an understanding of which the most critical metrics are. Resource usage collection
strategies were researched specifically for the Linux operating system.

3.4 Requirements

Due to the nature of the testing methodology of this project, it was hard to define any
requirements to work towards as we were more interested in the comparative differences
between the TPF. For this reason it was decided to leave out requirements for most
tests.

When testing a TPF’s feasibility for use in search query processing, a time limit
was necessary to define the maximum time before a response on the search query from
the server. After taking into account perceived factors such as usability, quality of
the results and perceived UI responsiveness, we decided to use the requirement of one
second from the time the search query was sent to the time the response is received.
This requested limit on responsiveness would likely change between products, use cases
and environments.
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Figure 3.1: Target Pipeline

3.5 Test methodology

3.5.1 Target pipeline

In order to be able to fairly compare the performance of the TPF’s, it is vital that the
pipeline and pipeline stages used are exactly the same for each TPF. An overview of the
target pipeline can be seen in figure 3.1. A document, consisting of a title and a body,
is sent into the pipeline which consists of four NLP stages, see 2.1. The pipeline yields
annotations as results, which are exported to Apache Solr, see 3.2.

3.5.2 OpenNLP

The stages in all the TPF need to be as similar as possible, so to this end we have chosen
the Apache OpenNLP Library as the NLP solution for our processing stages.

OpenNLP is a set of NLP stages available for free use. It is widely supported by
most TPF which is one of the main reasons that OpenNLP was chosen as the NLP
solution. OpenNLP uses machine learning algorithms to perform common NLP tasks.
Each stage requires a model which needs to be generated in advance, by training the
machine learning algorithm with example data. There are ready-made models for most
stages available for download, which are what we use in our target pipeline.

Although interestingly, OpenNLP does not require the POS results for the NER
stage, meaning the POS tags are not used in any of the subsequent stage in our target
pipeline, the POS stage is still included in our target pipeline as it is a very common
processing stage.

3.5.3 Metrics

Throughput

We measure the throughput of a pipeline as the average amount of documents that
finish execution per second. The throughput is an indicator of how efficient the TPF
is at feeding documents through the various stages of the pipeline. The higher the
throughput, the faster the TPF can, on average, finish processing a set of documents.

12
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End-to-end time

We measure the end-to-end time, or response time, of a job as the time taken from
sending of the job to the pipeline until the finished results are retrieved back from the
pipeline. This metric is an indicator on how fast one can expect to get a result when
submitting a document to the NLP framework. It is also an indicator of fairness of the
pipeline and its stability in efficiency, since if the end-to-end times vary wildly for jobs
of the same size under the same load there may be a problem with either of those two
factors.

Starvation

We look for starvation issues in a pipeline by measuring the delay times until a job is
sent to the next stage. In a TPF with fair scheduling, jobs are processed in the order
they enter the waiting queue, which implies equal waiting times for all jobs depending
on the length of the queue. In a TPF which does not have fair scheduling, unlucky jobs
may be stuck waiting for a very long time.

Resource usage

An important aspect for the performance of each TPF is the amount of computer re-
sources they use during processing. To measure this, the resource usage of the system as
a whole will be measured per second. The metrics collected will be CPU usage, memory
and swap file usage and maximum available space for each, I/O operations for each disk
device, and I/O operations for each network device.

For more accurate and informative results it would be preferable to measure only
the resource usage of the specific processes. As each application to be tested is a Java
application, this could be performed by measuring the resource usage of each respective
JVM. However, while this is fine for those involved TPF which only use one Java process,
it is a much more difficult task to do this for Storm and Hydra, as these run several
JVM’s which may be destroyed and recreated under certain conditions. Thus it was
determined that the resource usage of the system as a whole would give a sufficiently
detailed overview of the performance of each TDF, such that the extra effort of measuring
usages for each JVM was not justified.

3.5.4 Test methodologies

Performance test

The Performance Test is a stress test in which documents are constantly sent to the TPF
at high loads such that the TPF is operating at maximum efficiency. This test is designed
to test the maximum throughput and efficiency of the TPF, while also exposing their
behavior under heavy load. The test is performed by pushing jobs to the TPF until a
specified amount of jobs are either being processed, or in a buffer of incoming jobs waiting
to be processed, depending on if the target pipeline is synchronous or asynchronous.

13
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Query processing test

We are interested in the scenario in which a certain number of queries is submitted
at the same time. The Query Burst Test was developed to investigate this case. The
test submits a pack of documents simultaneously in bursts and verifies the end-to-end
time for each submitted query. The size of the document pack is increased after each
submission until a failure is detected, in which case the pack size is decreased again,
where a failure is defined as the response being received after the specified time limit as
discussed in 3.4.

The test makes smaller increments and decrements over time, eventually stabilizing
at a constant pack size which we use to determine the search query burst that the TPF
can be expected to handle.

3.5.5 Distribution

Running Hydra in a distributed fashion is as simple as installing Hydra on each server
with the same setup as on a standalone setup, then configuring each installation to use
the same MongoDB host address. No further configuration changes are necessary. Hydra
uses locks in the MongoDB database to ensure that all actions are synchronized between
the various Hydra instances.

To run Storm in a distributed fashion, Storm and its dependencies must be installed
on each machine. One machine acts as the master server, which is running a master
instance of ZooKeeper, and also a Nimbus host. This server also runs ActiveMQ. The
other two servers need only run storm and a slave instance of ZooKeeper.

3.5.6 Data sources

In the interest of measuring the effect the size of the submitted content has on the TPF,
we run all tests several times with different data sources each time. The goal is to have
a large and a small data source for performance tests, and a data source for query tests.
The data sources used in the tests are:

• Search query logs - Logs from search queries made by users on production environ-
ments. Used for query testing.

• Twitter feeds - Twitter feeds were collected for some time and stored. Since each
Twitter post has a 140 character limit, these are acceptable as small data sources.
Used for performance tests.

• Wikipedia articles - Wikipedia articles between 15kb to 50kb as text files, as large
data source. Used for performance tests.
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4
System design

4.1 Network communication

When executing the tests, the test application itself should not impact the performance
of the TPF which is being tested. The test application is therefore run on the local
computer, while the TPF is run remotely on a server. This also mirrors a standard
production environment. A problem which needed to be solved was how to actually send
the documents over the network. The only TPF involved in the tests which provides
this feature by default is Hydra. For other TPF, this had to be developed manually.

4.1.1 REST

REpresentational State Transfer (REST) is a standardized design design pattern for
HTTP communication and resource sharing.

Since Gate, UIMA and OpenPipeline do not have any built-in network capabilities,
each of these needs to be managed by a service capable of communicating with the test
framework across the network. The method chosen for this has been to develop a REST
service for each of these framework, which runs inside Tomcat1. REST was chosen due
to the ease of interaction with such a system - requests can be made and data can be
analyzed using most modern web browsers or any programming language capable of
making HTTP requests.

4.1.2 ActiveMQ

For Storm, we decided to use an available component which allows sending and receiving
documents using the message broker Apache ActiveMQ, an open-source JMS message

1Tomcat is a webserver application developed in Java, which can be installed on any Java-compatible
computer to easily set up an HTTP webserver.
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broker. A message broker is a service which receives messages to specified queues from
producers and sends them to one of the available consumers.

4.2 Resource usage

Resource usage statistics are collected from Linux by reading the content of the /proc
folder once per second and printing it to a log file. /proc is a virtual file system containing
information on the hardware and processes of the Linux machine[15]. The log file is
generated by parsing this date once per second and appending the information to a log
file. This log file is then retrieved using SCP at the end of the test and saved together
with the rest of the test results.

In the following subsections we will detail how each metric is collected.

4.2.1 CPU load

The path /proc/stat contains various statistics about the system, including the amount
of time the processor cores have spent in processing and idle states respectively, detailed
for each core and summarized for all cores collectively. The increase in these values are
sampled each second to calculate the CPU usage in percentage per second.

4.2.2 Memory and Swap file usage

Memory and swap file usage is read from the path /proc/meminfo which contains detailed
statistics about the current state of both, in kB.

4.2.3 Disk I/O

While /proc contains all information on current disk usage, the data detailing how much
data has been read or written is slightly complicated to parse. The Linux application
iostat summarizes the information neatly, thus the disk I/O statistics are read from the
output of the command iostat -d. An example output looks like:

Linux 3.2.0-45-generic (vmpipetest) 06/04/2013 _x86_64_ (2 CPU)

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sda 26.58 277.27 625.46 1195019 2695720

.

4.2.4 Network interface usage

The amount of bytes which have been transmitted and received through each network
interface is collected from the following paths, in this case for the device eth0 :

/sys/class/net/eth0/statistics/tx_bytes

/sys/class/net/eth0/statistics/rx_bytes
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These files contain the bytes transmitted and received respectively as an integer.

4.3 Vagrant

Deploying all systems on a server can be a time consuming task. All systems and
dependencies need to be installed and tested for each server. In addition, each time a
component is updated it needs to be upgraded on each node.

To streamline the task of deployment we use the Vagrant deployment tool, which
automates the task of ’rolling up’ a new VM and configuring services and dependencies
on it. With Vagrant, the VM configuration is specified in a Ruby file. A provisioning
system is used where specific services and their settings are specified. Vagrant will
then create and provision the entire VM with a single command line call. This greatly
simplifies the testing process.

In the test framework, a Vagrant VM is specified which contains Gate, UIMA, Open-
Pipeline, Hydra, Storm and their required applications and dependencies. This is then
deployed on each server used for testing.

4.4 Implementation

While an API has been developed for the test framework such that it can be reused for
each framework, the implementation of the text processing varies greatly. The facili-
ties available for extracting processing information from each document also vary from
detailed to non-existent.

4.4.1 GATE

The Application containing the GATE pipeline is predefined using the GATE Developers
Interface, the GUI accompanying GATE. When the test framework processing is initi-
ated, the application is launched. To submit documents through the pipeline, a Corpus
is created at initialization. Documents are converted to GATE’s Document class and
added to this Corpus which is then submitted through the Application. After this all
the finished documents are retrieved and the Corpus is cleared for the next run. Since
GATE contains no Solr export functionality, document export to Solr is delegated to a
separate thread running in parallel with the execution thread.

After the pipeline has finished processing a document, the result is exported to Solr.
To do this, all annotations need to be iterated through. Since annotations specify their
span as start and end positions in the source text but do not contain the source string
for the annotation itself, the source text must be kept in memory until the export is
complete and each annotation string must be extracted from the source text using its
span. It is possible to optimize this process by requesting only annotations of certain
types.
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4.4.2 UIMA

A Processing Engine Archive (PEAR) file containing the UIMA pipeline is generated
client-side and packaged with the UIMA Service WAR to be deployed with Vagrant. The
PEAR file is loaded when the server is initialized, which in turn loads all the pipeline
stages into memory. Documents are submitted as plain-text one at a time. Since UIMA
contains no Solr export functionality, document export to Solr is delegated to a separate
thread running in parallel with the execution thread.

Annotations contain their source text which makes Solr export trivial.

4.4.3 OpenPipeline

The pipeline is stored in an XML file which is loaded by OpenPipeline on server startup.
Each stage is loaded when the pipeline is ’started’, which occurs automatically when the
first item is sent through the pipeline.

Submission to Solr occurs as its own stage at the end of the pipeline.

4.4.4 Hydra

Hydra regularly polls its MongoDB server to look for new documents to process, and to
look for updates to existing documents. To submit a document to Hydra, it is necessary
to write the document directly to the MongoDB database. The document is then fed
through the stages of the pipeline until it reaches an OutputStage, which in this case is
the SolrOutputStage. When the document has finished its processing path through all
relevant stages in the pipeline, it is moved to a separate MongoDB collection oldDocu-
ments. The test framework scans for finished documents by polling this collection for
updates. The finished document contains information on when each stage fetched the
document and when each stage finished processing (touched) each document.

4.4.5 Storm

In Storm, a topology is built using Bolts and Spouts. A Spout generates data tuples.
These tuples are then sent to Bolts which perform processing on the tuples and may
emit further tuples after processing is finished. A spout can send tuples to number of
bolts and a bolt can receive tuples from any number of spouts, making design of the
topologies flexible.

The Storm topology is pre-compiled into a JAR file, which is uploaded to the server-
side Storm client when the server is deployed.

With Storm, the choice of bolts affects the performance of the system. Each bolt
which is added to a topology increases the overhead load and also increases waiting times.
However having more bolts further pipelines the processing path which may result in an
increase in throughput.

To communicate with Storm, the message broker ActiveMQ is used. ActiveMQ runs
as a service on one of the deployed nodes. A spout is defined in the storm topology which
reads messages containing documents to process from the input queue storm in. At the
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end of the topology, an output bolt writes messages containing information about a
processed document, which are sent to the output queue storm out. To send documents
to Storm, the test framework converts the documents to messages and sends them to
storm in, then subscribes to the storm out queue to receive finished jobs.

4.5 Generating results

At the end of the test, the test data is saved to disk as JSON data. From this data,
graphs and statistics can be generated by a Java script. To generate charts, JFreeChart
was used. Finally, the generated statistics are displayed in an HTML report page.
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5
Results & Analysis

In this chapter we will detail and discuss the results gathered from our tests.

5.1 Test results

5.1.1 Throughput

These chart shows the average throughput, in documents per second, for each pipeline
tested.

Twitter feeds

The throughput charts from the Twitter feed tests can be seen in Figure 5.1.
Gate and UIMA have roughly the same performance, although UIMA slightly out-

performs Gate.
OpenPipeline is an interesting case. Since OpenPipeline has functionality for running

several pipelines synchronously, this feature was tested by breaking out the Solr output
stage and running it in a separate pipeline. As we can see, with a single pipeline,
with small pieces of content, the throughput suffers, see 5.2.1. However, running more
than one pipeline alleviates the issue and brings OpenPipeline up to roughly the same
throughput as UIMA. Refer to the formulas in 2.2.3 for why throughput increases when
one pipeline is divided into several parallel pipelines.

Hydra’s communication overhead issues become readily apparent in this test with
many small pieces of content as the throughput is very low, see 5.2.3.

Storm by default features the option of running several instances of the pipeline in
parallel. Thus Storm was tested with one and two pipelines respectively. When running
a dual pipeline, the throughput is doubled as is to be expected, see 2.2.3.
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Figure 5.1: Average Throughput during tests with Twitter data

Figure 5.2: Average Throughput during tests with Wikipedia articles

Wikipedia articles

The throughput charts from the Wikipedia article tests can be seen in Figure 5.2. This
chart shows interesting results when compared to Figure 5.1.

GATE and UIMA see slower performance as the document size increases, see 5.2.2.
For Hydra, the communication overhead has much less impact as there are fewer jobs

to be communicated and thus fewer instances of communication overhead impact.
Finally, the OpenPipeline scheduling issues no longer have any significant effect, as
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Figure 5.3: Average throughput, Twitter data, with and without distribution

Figure 5.4: Average throughput, Wikipedia articles, with and without distribution

there are fewer jobs to schedule and thus less impact from scheduling issues.

Distributed tests

As can be seen in Figures 5.3 and 5.4, when running Hydra in a distributed fashion, the
result is as expected in that the throughput increases according to the amount of nodes
added. In these distributions tests three nodes were used, so the throughput is tripled.

For Storm, the effect is interesting. For the Wikipedia tests, Figure 5.4, the through-
put is tripled during distribution. But for the twitter test, Figure 5.3, the throughput
is reduced from 210 documents/s to 185 documents/s. The added overhead from com-
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Figure 5.5: End-to-end times, average and worst-case

munication across several Storm nodes seems to be large enough to hinder performance
when large volumes of small jobs are sent.

5.1.2 End-to-end

Figure 5.5 shows the end-to-end times of the performance test with Wikipedia data. The
test was configured to keep 100 jobs running simultaneously, and this number affects the
end-to-end times linearly. This chart is mostly the inverse of the Throughput chart with
Wikipedia articles, where higher throughput equals lower end-to-end times. But there
is one interesting outlier, and that is the Hydra worst-case end-to-end time. This outlier
happens because some jobs encounter starvation due to the scheduling issues of Hydra,
see 5.2.1.

5.1.3 Starvation

Starvation was measured for all pipelines during all tests. GATE, UIMA, OpenPipeline
and Storm show no issues with starvation, while Hydra does.

The effect of starvation in Hydra can be seen most clearly for the NER stage. This
stage has the longest average processing times and is thus the bottleneck stage. This
means that it will be stage with the largest set of waiting incoming jobs, as it will receive
jobs faster than it can output them.

Each data sample in Figure 5.6 is a document. The time axis represents how long
the document waited from the moment it was output from the previous stage to the
moment it began processing in the next stage. What we can see in this graph is that,
while most jobs get processed within a few seconds, some unlucky jobs must wait several
minutes to get processed. The order that the jobs are submitted to the waiting queue
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Figure 5.6: Starvation before the bottleneck stage in Hydra

is not considered when polling for unfinished documents, therefore this starvation issue
occurs.

5.1.4 Resource usage

Resource usage was collected from each node during the tests with the help of NodePerf.
Charts for the CPU Load are available in Appendix C. Charts were generated for other
resource usage metrics, however they did not show any findings significant to the purpose
of this report and thus have not been included.

CPU Load

The nodes used during tests were outfitted with dual-core processors, see Appendix A.2.
As can be seen in the CPU charts, GATE and UIMA both average slightly above 50%
CPU usage, fully utilizing one core. Storm averages above 90% as stages run in separate
threads, thus all available processor resources can be utilized. Hydra shows lower CPU
usage, averaging around 15% CPU load, due to delays caused by polling behavior as
described in 5.2.3. OpenPipeline also shows some idle CPU time caused by scheduling,
see 5.2.1.
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Figure 5.7: Results from the Query Burst tests

Other resource metrics

Memory usage charts showed increased memory usage for each instance of an OpenNLP
stage opened and for each document currently being processed. However no significant
difference could be noticed between the different TPF.

Naturally, distributed frameworks generate more network traffic. There were no
noticeable difference between Storm and Hydra in this regard, as most of the traffic
generated during tests consisted of the document contents.

Finally, Disk IO data showed no noteworthy impact on performance or any notewor-
thy difference between the TPF.

5.1.5 Query processing test

The results from the Query Burst Test described in 3.5.4 can be seen in Figure 5.7.
The results show the final stabilized packet size, and also the maximum packet size

that was successfully sent plus the minimum packet size that experienced a failure. The
packets had an end-to-end time requirement of 1 second.

The first thing which is immediately apparent from the results is that OpenPipeline
and Hydra are not able to process queries within the time requirement at all.

For Hydra this is due to communication overhead as described in section 5.2.3, which
means that even for a simple pipeline the query will not process on time.

For OpenPipeline the cause is a little more intricate. When sending a single query,
the time requirement does not always fail. After studying the response times, it was
discovered that the end-to-end time varies around the 1-second mark, however the total
processing time is shorter than 200ms in all cases. The cause for this seems to be the
Quartz scheduler as described in section 5.2.1.
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Distributed tests

Remarkably, neither Storm nor Hydra succeed the Query Burst Test when run in a dis-
tributed fashion. For Hydra, distribution does not alleviate its communication overhead.
For Storm however, the test does not succeed because when run in a distributed fash-
ion, end-to-end times for jobs increase to approximately 20 seconds. The cause for this
behavior could not be ascertained, but for the purposes of this report we consider this
delay to be a communication overhead. Specifically, there seemed to be some waiting
time, averaging 10 seconds, before jobs were sent to another node.

5.2 Performance impact factors

5.2.1 Scheduling

Ideally, to minimize the processing time on a set of documents and to maximize efficiency,
each stage in a pipeline should always be working on processing a document. It is the
task of the scheduling implementation for each TPF to ensure that this is the case.
During testing, we discovered performance differences caused by the different scheduling
implementations.

GATE and UIMA have no schedulers, as they process documents one-at-a-time. Thus
it is up to the developer to submit the next document quickly.

OpenPipeline uses the Quartz scheduler and is able to execute several pipelines in
parallel. Quartz schedules jobs by defining triggers which will start a job either at a
specified time with millisecond precision, or with a certain periodicity, such as running
a job once per second. By analyzing the CPU usage charts it was discovered that
OpenPipeline goes idle for short periods of time even though documents are submitted
continuously. This suggests that the scheduler is causing slight delays between documents
by causing short periods during which the pipeline is idle.

Storm uses message passing to communicate the state of each stage, see 5.2.3. While
analyzing Storm, all stages of the topology were constantly running at maximum effi-
ciency, implying no idle times between tuples and an efficient scheduling behavior.

Hydra uses a polling behavior to discover document states, which causes idle times
as described in 5.2.3.

5.2.2 Execution overhead

In this section we examine processing and communication overhead on execution of a
document through each pipeline.

Hydra

For Hydra, we noticed a flat delay time for each stage. When a stage asks for a new
document, the Hydra core must find and serialize the next document and send it to the
stage which must then deserialize it. Currently the serialization format is JSON. When
a stage has finished processing the document, these serializations are again repeated
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Figure 5.8: UIMA Processing times (in milliseconds)

to submit the document back to the Hydra core. Additionally, requests between the
Hydra core and individual stages are performed using a REST interface which adds
some overhead as described in 5.4

GATE & UIMA

An interesting effect of the execution overhead can be seen in GATE and especially
UIMA, where the overhead increases polynomially as the document size increases, see
Figure 5.8. This effect has been verified not to be apparent in the other TPF or other
OpenNLP implementations, thus we conclude that this is not due to an increase in
processing time by OpenNLP stages themselves. That leaves an execution overhead
imposed by the TPF as the cause for the slowdown.

A common design choice between GATE and UIMA is that NLP processing results
are represented as annotations covering spans of the source text. Each annotation is
represented as a Java object, meaning the amount of objects increase as the document
size increases. For each individual stage, the TPF data model must be traversed during
data extraction for OpenNLP execution. The results in Figure 5.8 seem to indicate that
these TPF have inefficient data models and therefore suffer from increased execution
time for each stage proportional to the size of the document.

5.2.3 Communication overhead

For distributed pipelines, the communication between different nodes is another source
of delay on text processing. Each event must be communicated between the different
components and nodes, potentially increasing delay times and resource usage.
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Hydra

Hydra is engineered in such a way that communication between stages is performed by
updating properties of a document in the MongoDB database. When a stage fetches
a document, it sets the fetched property to the time of fetching. When it has finished
processing, it sets either the touched or processed property to the finishing time, depend-
ing on the stage, The largest source of delays is the fact that Hydra currently relies on
database polling to notice these updates to documents.

A document is sent to a subsequent stage once it has been processed by the previous
stage. Hydra regularly polls the MongoDB database for updates on unfinished documents
and takes action once it notices a new update to a document. For this reason, once a
document has finished processing through a stage, rather than instantly notifying the
next stage, it must instead wait for Hydra to notice this update in MongoDB before it
is sent to the next stage. This waiting time is the largest source of delay for Hydra. It
is also a source of increased CPU load and network traffic.

For an example document, in this case a twitter post, the end-to-end time was mea-
sured to 4613ms. Of this time, 553ms was spent processing the document, meaning the
total idle time for the document was 4060ms, which is 88% of the end-to-end time.

Storm

Storm relies on message passing for communication between its components. When a
Spout or Bolt emits or finishes processing a tuple, it sends an ack message and also
outputs the next tuple.

The message passing feature minimizes delay times between different stages, at the
cost of increased CPU load and network traffic. However, if a topology is distributed
across a storm cluster such that each worker node contains an instance of each Spout
and Bolt, most messages can be sent to a target within the same worker node and do
not need to be sent over the network, thus reducing the impact on network traffic.

5.2.4 Memory leaks

The tests have been designed to attempt to discover memory leaks for each TPF. The
method for discovering these have been to operate the TPF under high load for a long
period of time. However, no memory leaks of any remarkable impact could be discovered.

5.3 Development complexity

In practice, the choice of which TPF to use for a search solution does not only depend
on their technical performance. Many organizations do not have high search loads, or
for other reasons do not have strong requirements on the performance of the system. For
these organizations, other factors may be more important, such as cost of implementation
and maintenance. Therefore, in practice the difficulty of implementing and administrat-
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Task GATE UIMA OpenPipeline Storm Hydra

Stage Development Easy Easy Medium Hard Easy

Configuration Easy Hard Easy Hard Medium

Execution Easy Easy Easy Medium Medium

Document Submit Medium Medium Medium Hard Easy

Overall Easy Medium Easy Hard Medium
Table 5.1: Implementation and Maintenance Complexity

ing a search solution will sometimes be a more important factor when deciding which
TPF to use.

For this section we will look at the difficulty of implementing the target pipeline for
each of our TPF. Our findings are summarized in Table 5.1 and explained in detail in
the following sections.

5.3.1 Stage development

All of the TPF covered in this report share similar implementation techniques. To
implement a stage, one needs to create the stage as a class which inherits a specific
interface or abstract class, which the TPF will then notice upon launch. Although there
are slight technical differences, the programming of a basic stage is mostly trivial.

For Storm, stages are implemented as Spouts and Bolts, which is slightly more com-
plex as a technical understanding of the system is required to be able to develop an
efficient implementation. For example, the developer needs to know in advance which
fields are available as input from the previous bolt. Additionally, the bolt will be seri-
alized and sent to workers which will marshal an instance of the class for each thread.
Since many classes (such as OpenNLP stages) are not serializable, it is important not to
instantiate such classes before serialization.

A complicating factor with OpenPipeline is that the program scans the JAR’s in its
classpath for stages at launch time. For a stage to be noticed, it needs to implement the
correct interface but also needs to be pointed towards by a resource listing file. If any
of these are not correctly configured the application will silently fail to notice the stage.

5.3.2 Pipeline configuration

GATE and OpenPipeline each provide a GUI which makes the creation and configuration
of a pipeline easy, by piecing together available stages with a configuration for each. For
other TPF, the process is more complicated. Hydra uses JSON configuration files to read
the configuration for each stage. To submit a stage to Hydra, the pipeline is specified as
a series of JSON files together with the corresponding JAR files containing the stages.
A Java application is available for submitting these to Hydra.
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UIMA is more complicated, as it takes pipelines as input in the form of a Processing
Engine ARchive (PEAR) file, which must be generated by building an ANT project
with a hierarchy of XML files, describing the stages, their order in the pipeline and their
configuration including required files.

Finally, Storm poses the largest difficulty of successfully submitting a pipeline. A
pipeline must be specified as a ’topology’ of Spouts and Bolts. This topology needs
to be implemented as a Java class which instantiates and configures each Spout and
Bolt, including configuration of parameters for each, which cover the standard NLP
parameters but also Storm-specific information such as requested parallel instances of
each. This class is then compiled as a JAR file and submitted to an active Storm cluster.
Additionally, the document submission method must be considered and implemented as
a part of the pipeline. In our project, ActiveMQ was chosen for sending messages
containing documents to the topology. This required an ActiveMQ-specific Spout to
receive messages to the topology, and a similar Bolt to send back results.

5.3.3 Execution

Executing GATE and UIMA is done by creating a new instance of their respective main
class. OpenPipeline is designed to be executed as a web service running on a provider
such as Tomcat. Hydra and Storm are designed to run as stand-alone services on a
server. Hydra requires a MongoDB instance, whereas Storm requires Zookeeper and
some Java library dependencies.

5.3.4 Document submission

For GATE, UIMA and OpenPipeline, document submission is performed using a Java
API which submits documents to an active instance of the application on the same
machine. If one desires to submit documents over a network, this functionality must be
added separately. This usually means wrapping the application with your own HTTP
service. As OpenPipeline is already such a service, it would be required to extend the
functionality of the existing service.

Hydra provides a MongoDocumentIO class for submitting documents to and reading
documents from a local or remote MongoDB instance, making the submission process
simple.

Storm comes with no built-in submission method and few default Spouts. The im-
plementation method must be chosen and implemented manually, although some third-
party solutions are available.

5.4 Communication Overhead

During the early testing phases of the project, when performing tests with the small
documents obtained from Twitter, it was noticed that the throughput of the TPF for
which we had developed a separate REST service for network transmission was unrea-
sonably low and the CPU usage was unexpectedly low. It was quickly discovered that
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this was due to the TPF processing documents faster than it was receiving them - the
REST interface was simply transferring documents too slowly.

As described in 4.1.1, The REST interface is in practice a design structure based
on HTTP. When making a HTTP request, the HTTP protocol adds a header to the
data sent, increasing its size. It is also necessary to wait for an answer from the remote
server to the request. These two factors significantly increase the delay time of each
request. Since the REST client could only send one document per request, and since the
same client was used for both sending and receiving documents meaning each of these
operation would block the other, in the worst-case scenario the transmission rate was as
low as 8 documents per second.

The issue was resolved by changing the REST service to receive a large amount of
documents per request. We also create a separate client each for sending and receiving
documents. However, the REST interface could still be a bottleneck, and still introduces
a minor impact on resource usage as it needs to serialize and deserialize the transmitted
data which is sent as JSON.

This can be compared to the choice of message brokering service for interaction with
Storm. In this case we use ActiveMQ over TCP, which creates a TCP tunnel sending
an unbounded byte stream, greatly increasing data transfer rates. The protocol can
also be configured not to require waiting for a response from the server, eliminating
wait times[16]. A simple transmission test showed rates of more than 5000 documents
sent per second, a major improvement over the REST interface. For further transmission
speed improvements, Java objects could be sent as byte streams instead of JSON strings,
reducing data size and serialization processing times.

5.5 Extensions to Existing Software

During the project, the following additional modules were developed:

• An OpenNLP Bolt and a Solr-output Bolt for Storm.

• Four OpenPipeline stages, one for each OpenNLP stage.

• Four Hydra stages, one for each OpenNLP stage.

• The Linux runtime statistics collector NodePerf, developed in C++.

31



6
Conclusion

We have tested and analyzed the Text Processing Frameworks (TPF) with a focus on
scalability, robustness, stability and performance. We have measured throughput, end-
to-end times, starvation and the responsiveness of the system with a focus on feasibility
for search query processing. Based on our findings, we give recommendations for which
TPF to use in which use case, see 6.1.

We have analyzed the impact of pipeline design and architecture on throughput.
Our research gives insight into how to design a pipeline for increased throughput of the
system. We have found the biggest impact on the throughput of the system to be a
combination of which stages are chosen for use in the pipeline and the TPF’s support
for parallelism of the individual pipeline stages.

6.1 Recommendations

Based on the findings throughout the results chapter, we make the following recommen-
dations for which TPF to use in which use case.

• Search query processing - In this use case, we recommend to use GATE, UIMA or
Storm in a non-distributed fashion. For fastest response times, choose Storm with
several parallel instances.

• Text processing with no performance requirements - For this use case, we would
recommend GATE or OpenPipeline, as they are the most easy-to-use TPF out of
the 5 covered in this report and thus may reduce implementation and maintenance
time.

• Text processing with demands on availability - For this use case, we recommend
using Storm or Hydra in a distributed fashion, as both gracefully support fail-over
in the case of a server going offline.
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• Text processing of data streams with demands on availability and performance -
For this use case we recommend using Storm in a distributed fashion as it is the
most high-performance choice out of the 5 TPF covered in this report, while also
providing reliability.
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A
Test Procedure

A.1 Server specifications

The server used for testing is a Dell PowerEdge R720 with components:

Intel Xeon E5-2609 2.40GHz,10M Cache, 6.4GT/s QPI, No Turbo, 4C, 80W, DDR3-1066MHz

1600 MHz RDIMMs

12x 8GB RDIMM, 1600 MHz, Standard Volt, Dual Rank, x4

2x Heat Sink for PowerEdge R720 and R720xd

DIMM Blanks for Systems with 2 Processors

Intel Xeon E5-2609 2.40GHz, 10M Cache, 6.4GT/s QPI, No Turbo, 4C, 80W, DDR3-1066MHz

VFlash, 8GB SD Card for iDRAC Enterprise

6x 1TB, SATA, 3.5-in, 7.2K Hard Drive (Hot-plug)

PERC H710 Integrated RAID Controller, 512MB NV Cache

Dual, Hot-plug, Redundant Power Supply (1+1), 750W

Intel Ethernet i350 QP 1Gb Network Daughter Card

Intel Ethernet I350 DP 1Gb Server Adapter

RAID 5 for H710p, H710, H310 Controllers

iDRAC7 Enterprise

A.2 VM specifications

The test were performed on VM’s created on the above server using Hyper-V Server
2012, with the following configuration for each VM:

Cores: 2

Memory: 4GB RAM

36



A.3. TEST PROCEDURE CHECKLIST APPENDIX A. TEST PROCEDURE

A.3 Test Procedure Checklist

• Reboot server VM

• Ensure required services are running

• Ensure no unnecessary services are running

• Wipe the Solr index

• Ensure NodePerformance collector is running

• Execute StressTest

• Check that correct number of jobs were sent and received

• Check that no errors occurred during execution

• Perform a basic data validation check in Solr
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B
Test Framework Design

B.1 REST Service interface

Below is a specification of the REST service interface.
The following paths can be queried with a GET query:

/start - Initiates the application and begins processing

/stop - Closes application and stops processing documents

/document/poll - Returns a finished document, if available

The following paths can be queried with a POST query, combined with a JSON data
string matching the specified pattern:

/document/addText - Add document from text source.

data: {"name":"jobname", "text":"Document text"}

/document/addLocalFile - Add document from local file.

{"file":"/path/to/file/on/server.xml"}

/document/addListText - Add list of documents from text sources.

[

{"name":"jobname1", "text":"Document text"},

{"name":"jobname2", "text":"Document text"}

]

/document/addListLocalFile - Add list of documents from local files.

[

{"file":"/path/to/file/on/server.xml"},

{"file":"/path/to/file/on/server.xml"}

]
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C
CPU Resource usage per TPF

These charts show the recorded CPU usage for each TPF during the non-distributed
test with Twitter data. The data was collected using NodePerf.

Figure C.1: UIMA
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APPENDIX C. CPU RESOURCE USAGE PER TPF

Figure C.2: Gate

Figure C.3: OpenPipeline
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Figure C.4: Hydra

Figure C.5: Storm
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