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Abstract
Cars that drive autonomously are rapidly becoming a reality, and to provide safety
complying with both the regulations and customers’ expectation, the system has to
be tested rigorously. By identifying scenarios that have been challenging historically,
testing of new software and hardware configurations can be done more efficiently
starting with the most commonly occurring ones. This thesis aims to find these
scenarios by applying unsupervised machine learning methods, and more specifically
find the best method both in terms of the algorithm for clustering as well as distance
measure.

The best clustering solution found was resulting from an agglomerative hi-
erarchical clustering algorithm, using average linkage as the criterion for cluster
similarity. The data set used for clustering was containing a set of 10 parameters,
describing the kinematics of the host vehicle, the object triggering the activation of
the emergency brake, as well as what type of objects were found in the surround-
ings. The 10 parameters were reduced to 3 using an auto-encoder, which is a neural
network with a hidden layer containing the same number of neurons as the desired
output dimensionality, and is trained to match the output with the input.

A set of 28 clusters was identified as the optimal solution, and 82 % of the
observations belonged to the 6 largest clusters. From these clusters 5 test scenarios
were identified by looking at the characteristics of each cluster. Uncertainties, espe-
cially in the form of emergency brake activations due to unidentified vehicles, limits
the usage of the test scenarios.

Future work includes a study on how software updates affect the distribution of
emergency brake activations for different clusters, as well as a deeper understanding
of the surrounding environment by using a data set containing information about
the road and weather conditions.

Keywords: Clustering, Sensor data, Automatic Emergency Brake, Test scenario
identification, Auto-encoder, Dimensionality reduction, Principal Component Anal-
ysis.
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1
Introduction

This report describes a Master thesis work that was conducted during the spring of
2019. The introduction chapter gives a brief overview of the background to why the
problem is of interest and why Volvo Car Corporation (VCC) wants the topic to
be researched. Also, the three detailed questions that were to be answered during
the project are stated. The chapter ends with a discussion about the ethical and
sustainability aspects. In the second chapter some background to the problem at
hand is given, along with a description of the data origin and a short introduction
to data clustering. The third chapter describes the method that was used, and why
the choice was adequate. The fourth chapter presents the results from the study
and in the following chapters a discussion and a conclusion are found.

1.1 Background
In 2018 IPCC released a report [1] that studies the goal to restrict the average
global temperature increase since the period 1850-1900 to 1.5 ◦C. This is related to
the Paris Agreement [2], which entered into force 2016 and currently is ratified or
accepted by 184 countries. To stop the global warming in time, the way we consume
energy needs to change. Examples of this are the way energy is produced and used,
which food is consumed and how transports are made.

Autonomous cars have the potential to radically change how people get around.
According to a study conducted by M. Taibeat et al. [3], the future of autonomous
cars can reduce the emissions and increase the vehicle efficiency, but one has to
be careful so that they do not end up being a replacement to the current public
transport. At VCC the future of mobility is visualized by the conceptual car 360c1.
For example, the 360c could replace short flights, by providing a service that takes a
person directly to their destination without the hassle of waiting times and security
checks. Instead, the time can be spent doing things that matter, or just by taking
a break. When the autonomous car becomes a reality, the car can be transformed
from just a vehicle into an office or a bedroom on wheels, just to give some examples.

A crucial part of an autonomous car is the safety. When the car takes over
the control from the driver, the liability in case of an accident [4] is shifted from
the driver towards the manufacturer. Advancements in the safety area are made on
a daily basis, with better and more sensors as well as better software for decision-
making. This progress is made possible with testing, where real driving data makes
up the foundation. However, doing testing on new technology with all test scenarios

1https://www.volvocars.com/intl/cars/concepts/360c
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1. Introduction

becomes more and more expensive, since the sensors increase in both number and
complexity.

New cars from Volvo have an Automated Emergency Brake (AEB) system.
As the name suggests, the car can make the decision to brake if it considers a
collision unavoidable, to minimize the results of an impact. Currently, testing is
conducted by exposing the system to a field-test, which means driving the car for
a large number of kilometers in different conditions. The AEB is handling most
scenarios well, but sometimes the car brakes, even though there is no real collision
threat. These scenarios are defined as errors, which are to be eliminated from the
final product. In general, it would be preferable to expose the system to as many
challenging scenarios as possible in the field test. To do this, knowledge about
which scenarios are interesting have to be identified. An approach to this would
be to analyze all driving data from situations when the AEB was activated, and
divide it into clusters based on its characteristics, such as kinematics of the car and
identified objects. Tests can then be more focused on scenarios frequently occurring,
increasing the efficiency of testing and also allowing for a better final product.

1.1.1 Previous studies

No studies treating clustering of field data to identify problematic scenarios for the
AEB in general are known to the author. However, a study [5] to identify test
scenarios for usage of AEB in intersections was done in 2017. In this study, the
authors tried to determine a small set of test scenarios that would be representative
for a large set of collisions found in the German In-Depth Accident Study (GIDAS).
This was done by clustering, and they came to the conclusion that small changes
in a scenario had a big impact on the outcome, making it practically impossible to
limit the test set size by the methods they evaluated. Their proposal was to instead
use physical testing to validate simulation models, in which a larger set of tests can
be made virtually.

Another study [6] on the GIDAS data treated run-off-road crashes. In this case
it was shown that it is possible to cluster this type of crashes, and extract relevant
information from each cluster that can be used to design test scenarios. Using an
hierarchical clustering method, 13 clusters were found and 9 test scenarios could be
designed by examining the distribution of each parameter in every cluster.

1.2 Aim

The aim of this thesis is to cluster data from situations when the AEB has been
activated and, if possible, to identify problematic scenarios by examining the char-
acteristics of each cluster. With a sorted list based on the number of situations
in each cluster, the testing can be geared towards situations often encountered. To
achieve this, important parameters are to be identified and extracted from a field test
data set, different clustering algorithms implemented, and their results evaluated by
different cluster criteria.

2



1. Introduction

1.3 Limitations
The project is limited to only investigate distance-based clustering algorithms. The
available data comes from a set of different cars of the same model, all driven for
the purpose of data collection of real world scenarios.

1.4 Specification of issue under investigation
The following questions should be investigated and answered during the project:

1. Which parameters in the data set are relevant for clustering and how will they
be determined?

2. Which distance-based clustering method is the best choice for the specific case?
3. Is it possible to cluster the field test data so that problematic scenarios for the

AEB can be found?

1.5 Ethical and sustainability aspects
Active safety is a hot topic regarding the ethical discussion, and even though the
autonomous cars are getting safer they are still making mistakes. In the case of
an accident, it is the manufacturer that has to take the responsibility to attract
customers. Hence, it is of importance that the cars become even safer so that
manufacturers can be confident in providing the autonomous functionality. Projects
like this intend to increase the insights into the problems with different subsystems,
and what can be done to further increase the overall safety. This thesis by itself will
not solve the problems the AEB has, but it can provide a reference for test design
and future improvements.

There are two aspects of the sustainability question in this project, the first
being autonomous cars in general and the second the specific problem at hand. As
for the general case, a fleet of autonomous cars can vastly reduce the collective
footprint. VCC has a vision of cars being used as a shared resource, and by making
them autonomous they can be called on demand by the user instead of being idle in
parking spots. Looking at the problem at hand, a reduced amount of data that needs
to be collected during a field test impacts both the storing and also the distance
that has to be driven by a new car, in which focus can be directed to situations
found to be problematic. Reducing the distance a car has to be driven during the
test phase has a direct relation to the energy being used.

3
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2
Preliminaries

This chapter gives a brief background to important parts of this thesis. An introduc-
tion to the AEB is given, how the data used for this study was collected is presented,
and lastly a general overview of data clustering is provided.

2.1 Automated Emergency Braking
The AEB is an active safety function that has been implemented in new cars from
VCC in different forms since the first City Safety system [7] was showcased in 2007.
Based on the sensor data and the tuning of the software making decisions, the car
is constantly assessing the current collision threat level. The sensors used for the
AEB in this specific case is facing forward and they consist of a combination of
radar and camera, which data is processed in a sensor fusion software. Relying on
just one sensor gives big uncertainties, and their different features complement each
other well. The camera is good for object recognition and the radar for determining
kinematics of surrounding objects. However, the radar usually gets several readings
from every object and can not conclude if they belong to one single object or more,
nor if the recorded signal is from an actual object, which is why the fusion with the
camera data is crucial.

There are four levels for describing a threat at VCC; no threat, a collision
warning to the driver, a pre-brake, and a full brake. For a threat to be detected at
all there has to be an object in the path of the car, that has been recognized by the
camera. It also has to be estimated to still be in the path of the car when reached at
a later time. The level of intervention in a situation does not only depend on other
objects, but also on the driver – if the driver is active the system will intervene later
or not as much. If the driver is not showing any sign of taking action after a collision
warning or not braking hard enough, the system will ensure maximum braking force
to minimize the collision damage. Note however, that the AEB is designed to be
activated late, sometimes so late that a collision is already unavoidable, since it is
an emergency system.

2.2 Origin of data
All data was collected in field tests between March and October in 2014. The
purpose of the field test was to create a data set for evaluation of the collision
avoidance system software. By recording all signals from the car and the raw data
from the camera and radar, software can be applied afterwards in a simulation

5



2. Preliminaries

environment. During the field tests no AEB functionality was activated. The driving
was conducted in several parts of the world by different drivers, and a total of 16
cars were used, all of them a 2013 year’s model of the Volvo XC70.

2.3 Data clustering
To group observations in a data set is called clustering. There are three main do-
mains; model-based, density-based and distance-based clustering. The model-based
algorithms extract the underlying probability distributions of the data set, while
the density-based find dense regions. The distance-based algorithms are grouping
observations so that the distances within a group are minimized and to other groups
maximized. This project will only treat the distance-based algorithms. The problem
can be defined using a set D of n observations. The set D is divided into K parts
C1, C2, ..., CK , where Ci is the ith cluster.

The clustering algorithms are usually split up in hard and soft clustering. In
the latter, an observation can belong to several clusters, with different probabilities,
in contrast to the hard clustering in which every observation belongs to one cluster
only; the hard clustering ensures that Ci∩Cj = ∅ for i 6= j and that Ci 6= ∅. To create
the clusters, two different approaches can be used, either partitional or hierarchical
clustering. The first one creates one partition of D, with a fixed number of clusters.
The hierarchical clustering instead creates a partition of D for each of 1 to n number
of clusters, by starting with all observations in their own cluster and add them
together until all of them belong to the same cluster, called agglomerative clustering.
Alternatively they start with all observations in one cluster and then divide them into
smaller clusters until all of them are alone, called divisive clustering. A validation
criterion can be used to know which number of clusters can be considered ideal in
case it is unknown.[8]

2.3.1 Evaluation of clustering
Clustering evaluation criteria are usually a measure of the distances between obser-
vations within a cluster, distances between different clusters, or a combination of
these. The optimal solution is found by evaluating the cluster algorithm for several
different number of clusters, and finding an extremum in the clustering criterion,
depending on the scale being used.

6



3
Methodology

In this chapter, the frame of the problem solving method is presented. It is divided
into several parts; finding the adequate parameters to use for clustering, how to
reduce the dimensionality of the data, measures to determine similarity, a description
of the two clustering algorithms, and lastly how to evaluate the results. When the
data set has been divided into well defined clusters, problematic scenarios for the
AEB can be analyzed.

3.1 Choice of parameters

A critical part will be to choose the parameters from the data that the clustering
is done upon, since there are thousands available. Some are more interesting than
others by inspection, for example is the speed of the car more likely to play a
significant role than whether the back window wiper is activated or not. The braking
algorithm is designed to brake when objects heading in a direction that relative to
the host vehicle will result in a collision in a near future. Since this is a known fact,
it was not considered relevant for the clustering. Instead, parameters related to the
situation in general and the environment in specific were investigated.

3.1.1 Kinematics
A common way to represent the movement is by the speed and how it is changing,
both in longitudinal and lateral directions. Available data are for example explicit
parameters like the speed, acceleration, and yaw-rate, but also implicit parameters
like how the steering wheel is being turned and how the pedals are being pressed by
the driver.

3.1.2 Surrounding objects
A setup consisting of radar and camera is used to get information about the sur-
roundings, and the data from the two sources is fused and processed in the car’s
software. A large number of objects can be registered at every time instant. In-
formation is being stored for every object, such as its position relative to the car
in a two-dimensional coordinate frame, its velocity, and what kind of object it is.
The recorded surroundings are dependent on the software used for sensor fusion and
object recognition.

7



3. Methodology

3.1.3 Environmental conditions
The third set of parameters that describes a situation is the environment it takes
place in. For example, the weather and type of road can be of interest. The temper-
ature is recorded by the car, but there is no other record of the weather. Instead,
implicit signals like the activation level of the frontal windshield wiper could be used
to represent if it is raining. In some cases the road type was recorded while driving,
and in others the satellite coordinates of the car are available and can be processed
to determine which type of road is being used.

For the cars that did not have the road type in the meta data the GPS posi-
tion recorded was fed through the OpenCage Geocoder [9] software, which allowed
information about the position to be extracted. In most cases, the GPS position
gave a hit on a road and the road type could be found directly, while for some others
the car had been driving in a city and the GPS coordinates gave a match with for
example a house, shop or parking lot. All of these were considered city driving, and
no further distinction was made.

3.2 Reduction of data dimensionality
The more parameters that are clustered on, the smaller the difference between the
closest and the furthest neighbor in the data set becomes. This is often referred
to as the curse of dimensionality [10], and reducing the dimensionality can be a
crucial part of getting any relevant results when clustering. However, just removing
parameters means that information is lost. Instead, different methods are available
to extract information from the parameters and reduce it to a representation of lower
dimensionality. One such is Principal Component Analysis (PCA), which finds an
orthogonal set of vectors representing the directions in the data covariance matrix.
The dimensionality of the reduced set can then be chosen arbitrarily, with more
information lost the more the dimensionality is decreased. Another method is to
use a neural network called Auto-encoder (AE). The network is trained to match the
output with the input, and in the network there is a hidden layer with the desired
dimensionality representing the data set. The better the match between output and
input, the better the code-layer represents the data.

3.2.1 Principal Component Analysis
PCA can be interpreted by an N-dimensional ellipsoid that is spanned by the scaled
eigenvectors of the data-covariance matrix, and the principal components can be
found by identifying the directions with the highest variance in the data. A two-
dimensional visualization of the problem is shown in Figure 3.1. To use this method
it is assumed that the data is centered around the origin, and usually also that the
variance of each parameter is unitary, i.e. the data is normalized.

For which size of the eigenvalues it is adequate to remove a parameter is not
fixed, instead it depends on its relative size and the set size. Therefore it has to
be analyzed what effect removing a dimension has on the algorithms for clustering
described in Section 3.3, so that not too much important information is lost.[11]

8



3. Methodology

λ2v2

λ1v1

Figure 3.1: A data set of six observations, which covariance matrix has the eigen-
vectors v1 and v2 with corresponding eigenvalues λ1 and λ2. The principal axis is v1
since λ1 is the largest eigenvalue.

3.2.2 Auto-encoder

An AE is a special case of a neural network, in which the output of the network is
trained to match the input. The input is fed through an arbitrary number of hidden
layers, that encode the data to a code-layer. This layer consists of fewer neurons
than the input, which allows for dimensionality reduction. If the decoder successfully
can extract the information in the code-layer to match the original input, an AE
has been created. A data set with observations that are spread out has benefits
for clustering analysis, and the success of using AEs instead of PCA to achieve this
was shown in a study [12] comparing different dimensionality reduction methods
on labelled data sets such as MNIST [13]. The MNIST data contains handwritten
digits which are labelled, and using the reduced data set found by the AE, the
different digits tended to be pushed to different edges of the available space. The
corresponding reduced data set from PCA instead showed that most digits ended
up in dense regions, where a mix of several digits were found.

In Figure 3.2 an example of an AE with three inputs is shown. The network
consists of an encoder and decoder with one layer and five neurons each, and a
code-layer with two neurons. If the network is trained so that the output matches
the input, the two neurons in the code-layer can be said to represent the input.

Code-layer
Input-layer Output-layer

Encoder Decoder

Figure 3.2: An AE with 3 inputs and 3 outputs. If the weights and biases are
chosen properly the output matches the input, and the code-layer, here consisting
of 2 neurons, can be said to represent the input data. The encoder and decoder can
consist of an arbitrary number of layers as well as neurons, but in general they both
have the same structure. In this case, one hidden layer with 5 neurons is chosen.
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3. Methodology

For an observation µ, neuron j in layer l+ 1 is updated by using the values of
all the neurons i in layer l in the following way:

V µ,l+1
j = g

(∑
i

wl+1
ji V

µ,l
i + θl+1

j

)
(3.1)

where g is an activation function to be chosen, wl+1
ji is a weight connecting neuron i

in layer l to neuron j in layer l+1, and θl+1
j is a bias for neuron j in layer l+1. The

weights are initially given random values according to a normal distribution with
mean 0 and variance 1, and the biases are all set to 0 according to suggestions from
[11]. By choosing an input pattern and letting it propagate through the network,
the output can be compared to the input. Using backpropagation, the weights
and biases can be adjusted so that the difference between input and output can be
minimized.

When the network is trained to a small enough error, or for a maximum number
of epochs, the training is considered done. The encoder consisting of the weights,
biases and activation functions between the input-layer to the code-layer can then
be used to reduce the dimensionality of the data. If the network is chosen too small,
it might be hard to capture the features of the input in the code-layer. Using too
many hidden layers and neurons will also make the training more difficult, since
over-fitting can become a problem with too many free parameters.

3.2.2.1 Activation functions

The activation function g(·) introduced above for the forward propagation in the net-
work is to be chosen and can, theoretically, be different for each neuron. However,
it is common to have the same activation function for each layer. For the backprop-
agation, further explained in Section 3.2.2.3, it is shown that the derivatives of the
activation functions plays an important role. Therefore, activation functions with
well-defined derivatives are used. Some common choices are the sigmoid function
and a pure linear function. The sigmoid function, σ(x), and its derivative, σ′(x), is
given by

σ(x) = 1
1 + e−x

, σ′(x) = [1− σ(x)]σ(x). (3.2)

It is efficient for computations, since it is enough to do the calculation of the sigmoid
function once for each neuron, and then the same value can be used for the derivative
as well. The pure linear function is just the function f(x) = x, with the derivative
f ′(x) = 1, ∀x. It can be beneficial to use activation functions that are bounded to
reduce the risk of weights growing to infinity and problems arising with computations
with large numbers, but they can not represent any real value required for the
neurons in the output in an AE, assuming the input is not shifted and scaled to the
same bounds the activation function takes values in.
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3.2.2.2 Objective function

To be able to find the best representation during training, there has to be an objective
function. The chosen measure was the Mean-Squared Error (MSE),

MSE = 1
n

n∑
µ=1

k∑
i=1

(Iµi −O
µ
i )2, (3.3)

which looks at the difference between input Ii and output Oi, for all parameters i,
and squares it and take the average for all parameters.

3.2.2.3 Backpropagation

Using the weights, biases, and activation functions the input propagates forward
in the network using Equation (3.1). In the final layer, the output is given. This
output is compared to the input as described above, in the objective function. As
we want to minimize the error, the analytic problem to solve would be to find for
which values of the weights and bias the derivative of the function (3.3) is equal to
zero and ensuring it is a global minimum. However, the function depends on all the
weights and all the biases, as well as the activation functions, which makes finding
an analytic solution practically impossible. Instead, other properties of calculus can
be used.

By treating the objective function as a multi-parameter function depending on
all the weights and biases, the gradient of the function can be calculated. By ran-
domly initializing the weights and biases, and then adjusting them in the direction
of the gradient iteratively, the error can be decreased and a set of weights and biases
found. To make the computations easier, this can be done for one randomly chosen
input, or batch of inputs, at a time, which will not ensure a global gradient descent
towards a minimum, but instead allow the algorithm to get out of local minimums
to find a possible global minimum. The formula for the weight and bias update for a
layer can be found by differentiating the objective function (3.3), by expressing the
output O in terms of the weights and biases in the specific layer by using Equation
(3.1).

3.3 Clustering algorithms
Two different types of algorithms were implemented: one hierarchical and one par-
titional. The hierarchical clustering explores any number of clusters by iteratively
combining or splitting clusters, while the partitional uses a fixed number of clus-
ters and iteratively changes the cluster-belonging of the observations. There are
also some possible modifications for each of them that give small changes in the
algorithm, e.g., the distance measure can be changed.

3.3.1 Distance measures
Two distance measures used for clustering are treated in this thesis: Euclidean dis-
tance and Gower’s general similarity coefficient. The Euclidean distance is a measure
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for the distance between two observations, and is usually defined for continuous pa-
rameters given in the same unit. However, it has been shown [6] that also data
with mixed types of parameters can use the Euclidean distance successfully, if the
data is pre-processed to have the same mean and variance. The other distance mea-
sure, Gower’s general similarity coefficient, is instead specifically designed to handle
both continuous and categorical parameters of different units, by a built-in scaling
function.

3.3.1.1 Euclidean distance

The Euclidean distance dij between two observations xi and xj is defined by

dEuclidean
ij =

√√√√ N∑
k=1

(xik − xjk)2, (3.4)

where k represents the N parameters.

3.3.1.2 Gower distance

In 1971 Gower [14] introduced a similarity measure, which looks at the contribution
of each parameter k individually. The contribution is represented by Sijk, which in
the case of categorical parameters is defined as 1 if xik = xjk and 0 otherwise. If the
parameter instead is continuous, the contribution is Sijk = 1 − |xik−xjk|

|xkmax−xkmin|
, which

gives a value of Sijk ∈ [0, 1]. A weight Wijk is also included, which takes the value
0 if the comparison is not valid and 1 if it is. It is also possible to set the weight
to any value in the range [0, 1] to specify relative importance of the parameter k.
Using these definitions the Gower’s similarity coefficient is given by

Sij =
∑p
k=1 WijkSijk∑p
k=1 Wijk

. (3.5)

The larger the similarity coefficient Sij, between two observations i and j, the smaller
the distance. Therefore the Gower distance used for clustering is defined as

dGower
ij = 1− Sij. (3.6)

3.3.2 Hierarchical clustering
For the hierarchical clustering an agglomerative algorithm is chosen. Agglomerative
means that all observations belong to one cluster each, and by using the distance
measure, the two most similar clusters are merged into one. Apart from different
distance measures, there are several ways to define similarity when comparing two
clusters. Two so called linkage criteria were used; complete and average. The
complete linkage is considering all pair-wise distances between observations in one
cluster to observations in another cluster, and chooses the largest distance as the
difference between the clusters. The average linkage looks at the central observations
of each cluster and the distances in between them.
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When the two clusters have been merged, the new cluster center is considered
to be located in the center of all the observations belonging to the new cluster. This
merging is done recursively until all observations belong to the same cluster. When
there is only one cluster left the algorithm stops. Using the information about every
stage of the clustering procedure, different evaluation criteria can be used to find
the optimal number of clusters. These criteria are treated in Section 3.4.

3.3.3 Partitional clustering
In contrast to hierarchical clustering, the partitional clustering algorithms have a
fixed number of clusters. Observations representing the starting clusters are either
selected randomly or by other means, for example by using the results from running
the k-means++ algorithm [15], which has been proven to give better clustering
results. The algorithm can be run several times with different initial clusters to
avoid local minimums. In general, using the starting clusters and the information
about all observations, an algorithm rearranges the observations to the different
clusters, while also allowing the cluster centers to move. Some algorithms allow
cluster centers to overlap, effectively removing a cluster.

One of the most popular [5] algorithms is the k-means algorithm. The k-means
algorithm minimizes the total distance error, which is defined as the distance be-
tween all observations to their respective cluster center, by iteratively rearranging
observations and cluster centers. For data sets containing parameters that are cate-
gorical instead of continuous, it can be beneficial to work with medoids rather than
centroids, i.e. having cluster centers in actual observations. For example, consider
the parameter headlights which can be off or on, represented by 0 and 1. A cluster
center in 0.9 would not give any meaning if analyzed directly. Using medoids always
makes sure that the cluster is represented by an available state.

Partitioning Around Medoids (PAM) [16] is one algorithm that applies the
k-medoids approach. All observations are assigned to the closest cluster medoid.
When this is done, the algorithm checks whether any member of the cluster would
lower the dissimilarity within the cluster, i.e. the total distance to all observations
from the center. If at least one such exists in any cluster, the ones that minimize the
dissimilarities within their cluster are chosen as the new cluster medoids, and the
algorithm starts over by assigning all observations to the new set of cluster medoids.
The algorithm is stopped if it did not find any candidate for new cluster medoid for
any cluster, since a local optimum is reached.

3.4 Evaluation of performance
As for the clustering itself, there is not a single approach for clustering evaluation.
In a study of high-dimensional data clustering [10], it is stated that every method
has its own advantages and specific area of use, and sometimes multiple criteria
can be combined to come to a conclusion. Furthermore, the curse of dimensionality
makes it difficult to distinguish near and distant observations and therefore also
to determine what is a good clustering result. However, it is also noted that data
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with parameters that follow different distributions is not as highly affected by this
problem.

An evaluation criterion is, in general, a combination of distances between ob-
servations within each cluster, and distances between the different clusters. To get
a good score, the observations in a cluster should be as close as possible, and the
distances between the clusters maximized. Some common criteria are the Silhou-
ette, C, Calinski-Harabasz, and Davies-Bouldin indexes. Their definition will be
stated in the following subsections, using the following notation: An observation xp

belongs to a cluster Ci, i ∈ {1, ..., K} and p ∈ {1, ..., n}, where n is the number of
observations and K the number of clusters. Cluster i contains |Ci| of the total n
observations. The cluster center belonging to cluster i is given by zi, and the center
of all data is denoted as ztot. The distance between two observations xq and xq is
denoted by dist(xq,xp), where dist(·) is calculated with the distance metric used for
clustering. The Calinski-Harabasz and Davies-Bouldin indexes are not defined for
Gower distance.

3.4.1 Silhouette index
The Silhouette index (SILindex) [17] uses the average distance to all observations
within the same cluster i from the observation xp,

ap = 1
|Ci| − 1

∑
xq∈Ci,q 6=p

dist(xq,xp), (3.7)

and the distance from observation xp to the closest other cluster,

bp = min
j∈{1...K},i 6=j

{ 1
|Cj|

∑
xq∈Cj

dist(xq,xp)
}
. (3.8)

The resulting SILindex is then given by the average for all observations,

SILindex = 1
n

n∑
p=1

bp − ap
max{ap, bp}

. (3.9)

3.4.2 C-index
The Cindex [10] is a combination of the distances between observations within the
cluster and their extrema. The index is based on the factor θ, defined by

θ =
∑

p,q∈{1...n}
Ip,q · dist(xp,xq), (3.10)

where Ip,q is 1 if p and q belong to the same cluster, and 0 otherwise. Using θ, the
Cindex is then given by

Cindex = θ −min θ
max θ −min θ , (3.11)

where min θ is the sum of the N smallest distances, and max θ the N largest dis-
tances, when N is the total number of within-cluster pairs.
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3.4.3 Calinski-Harabasz index
In 1974 Calinski and Harabasz [18] developed an evaluation criterion that has been
widely used since then. It is based on the Euclidean distances within and between
clusters in the following way: the Calinski-Harabasz index (CHindex) is given by

CHindex = n−K
K − 1

B
W (3.12)

in which B is the scatter matrix between clusters defined as

B =
K∑
i=1
|Ci| · dist(zi, ztot)2, (3.13)

and the scatter matrix within clusters W is given by

W =
K∑
i=1

∑
xp∈Ci

dist(xp, zi)2. (3.14)

3.4.4 Davies-Bouldin index
The Davies-Bouldin index (DBindex) uses the “diameter” of the clusters to evaluate
the within cluster distances [17], and is defined for Euclidean distance as

DBindex = 1
K

K∑
i=1

max
j=1,...,K i 6=j

{diam(Ci) + diam(Cj)
dist(zi, zj)

}
(3.15)

for which the diameter is given by

diam(Ci) =
√√√√ 1
|Ci|

∑
xp∈Ci

dist(xp, zi)2. (3.16)
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4
Results

The results chapter first introduces which parameters were chosen for the clustering,
and how the data dimensionality reduction is treated. The clustering results from the
different combinations of distance measures, data sets, and algorithms are presented
next, and the combinations that prove to be the best according to the evaluation
criteria are analyzed in detail.

4.1 Cluster parameters
In the data set there was no information about the weather and lighting conditions.
The final set of parameters chosen and a short description of each can be found
in Table 4.1. The chosen parameters represent the host vehicle’s movement, the
object type that triggered the AEB, and the surrounding objects found by the latest
software version. It was noted that each car had only been tested for a short time
frame in a small region, which meant that the variance of the temperature was often
small for a specific car, but big differences between cars were recorded. To avoid
a strong bias based on the car used in the clustering result, the temperature data
were discarded.

4.2 Euclidean distance
For the Euclidean distance, all parameters were normalized so that their mean was
0 and variance 1. This was to ensure that the different parameters were treated
equally.

4.2.1 Data dimensionality reduction
An AE with three hidden layers in both the encoder and decoder was designed.
The number of neurons in each layer was chosen to 85, 65, and 45 respectively,
consulting the choices made in [19] in regard to their relative sizes and number
of layers. The input consisting of 10 parameters was reduced to 3 in the code-
layer. The sigmoid function was used as the activation function between all layers,
apart from in the decoder to the output, where a linear function was used. This is
necessary to be able to represent all possible values found in the input, since the
sigmoid function is restricted to values in [0, 1]. An MSE of 0.0283 for the 5412
observations was achieved. This can be compared to doing PCA on the same data
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Table 4.1: The parameters chosen for clustering and a short description and mo-
tivation for each of them.

Parameter Description and motivation
The speed of the car has a direct impact on a

Speed potential collision and is a key parameter for the AEB.
The acceleration is describing how the kinematics are
changing, and the AEB is considering whether the driver
is trying to decelerate and avoid a potential accident

Acceleration himself when making a brake decision.
How fast the car is turning can describe where a collision
threat is happening, for example in an intersection,

Yaw-rate or when the driver is trying to avoid danger.
The type of object triggering the AEB, represented by

Object type an integer, see Table 4.2, corresponding to the type.
Cars Number of cars in surroundings.
Motorbikes Number of motorbikes in surroundings.
Trucks Number of trucks in surroundings.
Pedestrians Number of pedestrians in surroundings.
Bikes Number of bikes in surroundings.
Unidentified vehicles Number of unidentified vehicles in surroundings.

set, and reconstruct the data from the three principal components, which resulted
in an MSE of 0.5536.

Since the data now is reduced to 3 dimensions, the data points can be plotted
to get a visual interpretation of the data at hand. In Figure 4.1 the resulting set from
the AE can be seen, and in Figure 4.2 the values from the three principal components
of the PCA is shown. The PCA seems to place all observations into a dense region,
while the AE push it to the edges of the cube of size 1× 1× 1, which is spanned by
the values from three sigmoid functions. This is consistent with earlier findings for
labeled data sets and supports further investigations in the reduced data set coming
from the AE, both in the sense that the MSE is significantly smaller compared to
the PCA, but also the separation achieved between observations.

Table 4.2: The way an object of a certain type is represented in the data set. The
chosen integers are arbitrarily chosen for this study.

Type Description
0 Undetermined
1 Car
2 Motorcycle or moped
3 Truck or other large vehicle
4 Pedestrian
5 General object
6 Bicycle
7 Unidentified vehicle
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Figure 4.1: The 5412 observations with 10 parameters reduced to 3 with an AE.
The observations seems to be pushed towards the edges, spreading them more evenly
in the available space.

Figure 4.2: The 5412 observations with 10 parameters reduced to 3 with PCA.
The observations seems to be concentrated into one dense region, with two small
tails.
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4.2.2 Hierarchical clustering
As described in the Section 3.3.2, the hierarchical clustering was done using the
agglomerative method and with the complete and average linkage criterion. To get
an evaluation of the AE, the clustering was done both on the entire data set, as well
as with the reduced set.

4.2.2.1 Clustering with full data set

The result of the clustering using the full data set with the complete linkage criterion
can be seen in Figure 4.3. No obvious best score can be seen. However, there is a
local minimum for both the Cindex and DBindex at a cluster size of 5, and the CHindex
agrees with a low score. For the average linkage criterion the results can be seen in
Figure 4.4. As for the complete linkage, no single cluster size can be determined as
the best solution.

4.2.2.2 Clustering with reduced data set

In Figure 4.5 the cluster criteria values for cluster sizes from 2 to 50 is shown when
using the complete linkage method on the reduced data set from the AE. The best
solution is 6 clusters, which all criteria agree on. There is also a local best solution
for 21 clusters, which might allow for better insight into their specific characteristics.
In Figure 4.6 the results of using the average linkage criterion instead is shown. A
set of 28 clusters are suggested as the best solution by both the Cindex and DBindex
which have global minima there, and the other criteria have local minima indicating
it might be a good solution, at the very least in the region.

4.2.3 Partitional clustering
As for the hierarchical clustering a few different options were explored for the parti-
tional clustering. The following results are using the K++ algorithm for initializing
cluster centers when using the k-means algorithm. The algorithm was ran with
both the original and reduced data set, five times for each to minimize effects of
local minima in the clustering solution. In Figure 4.7 the results for the full data
set can be seen, which shows a good clustering choice of 11 clusters. Only the Cindex
does not show a global best solution here. For the reduced data set, the results can
be seen in Figure 4.8. No global best solution can be found but a set of 23 clusters
seems to be the best choice, consulting local minima.

4.3 Gower distance
For the algorithms to be compatible with the Gower distance the data set was not
reduced, due to the nature of the data and what motivated the introduction of the
Gower distance metric. A weight of 0.3 for the categorical parameters were used, so
that the average distance between continuous parameters would match the distance
between categorical parameters with different values. Only the Cindex and SILindex
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Figure 4.3: All evaluation criteria scores are scaled to the interval [0,1], where 0
indicates a good clustering solution and 1 a bad. Combining all four indexes, no
single best solution can be found.

Figure 4.4: Looking at all four indexes, no common low score for any numbers of
clusters can be found.
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Figure 4.5: A global best solution is found at a cluster size of 6, but there is also
an indication that a size of 21 might be worth looking into, given the local minima
for the solution.

Figure 4.6: Global minima for both the Cindex and DBindex, as well as local minima
for the other two criteria suggest that 28 clusters might be a good solution.

22



4. Results

Figure 4.7: A best clustering solution can be found for 11 clusters, only debated
by the Cindex which only has a local minimum and not its global minimum there.

Figure 4.8: The best solution seems to be for using 23 clusters, with a small local
minimum for all 4 criteria.

23



4. Results

were used for the evaluation, since the other two criteria are not designed for Gower
distance.

4.3.1 Hierarchical clustering
In Figure 4.9 the results from using the complete linkage criterion can be seen. A
choice of either 5, 20 or 48 clusters can be considered good solution, but none of them
are an obvious choice. In Figure 4.10 the corresponding results but from the average
linkage is shown instead. Both evaluation criteria suggests that the clustering gets
better the more clusters are being used, starting at around 40 clusters. Since the
clustering was not done for more than 50 clusters, there might be even better options.

Figure 4.9: Local minima for both indexes at a cluster size of 5 suggests that this
would be a good solution, as well as a local best solution at 20 and 48.

4.3.2 Partitional clustering
When using the Gower distance, the k-medoids algorithm PAM was used, due its
benefits in regard to cluster centers compared to the k-means algorithm. In Figure
4.11 the average value of the criteria from 5 runs can be seen. The Cindex indicates
that as many clusters as possible should be used, having a minimum value at 50,
which is the largest amounts of clusters analyzed. On the contrary, the SILindex
shows worse performance for more clusters, making the results ambiguous.

4.4 Identified scenarios
The best clustering solutions found in the previous sections were all from using the
reduced data set with Euclidean distance. In Table 4.3 the evaluation criteria scores
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Figure 4.10: The clustering solution seems to get better the more clusters are
present, in this case 50 would be the optimal choice with a global minimum for the
Cindex and a local minimum for the SILindex.

Figure 4.11: The Cindex indicates a better solution for more clusters, while the
SILindex indicates the opposite.
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Table 4.3: Clustering evaluation criteria score for the three clustering solutions
considered the best. All clustering was done on the reduced data set, using Euclidean
distance. A low score is considered better for the Cindex and DBindex, while higher
scores indicate a better solution for the SILindex and CHindex.

Clustering algorithm (# of clusters) Cindex CHindex DBindex SILindex
Hierarchical average linkage (28) 0.0333 1583.7 0.7922 0.3272
Hierarchical complete linkage (21) 0.0474 2064.1 0.9531 0.2703
Partitional k-means (22) 0.105 445.5869 1.9162 0.094

can be seen for hierarchical clustering with both linkage criteria as well as for the
partitional clustering. Since the values come from clustering using the same data
set, they can be compared without further processing. The hierarchical clustering
do significantly better for both linkage types compared to the partitional clustering.
The average linkage shows better results than the complete linkage for all evaluation
criteria except for the CHindex.

In Figure 4.12 the 10 largest clusters in the set of 28 clusters found by the
hierarchical clustering with average linkage on the reduced data set are shown.
The parameters belonging to each cluster is represented by the original data. The
number of observations belonging to each cluster is shown next to the cluster number.
Note that a few parameters are not present, namely the yaw-rate, the number of
motorcycles, and the number of bikes. These were all very similar for all clusters,
which can be seen in Table 4.4, and removed from the figure for readability. In the
same table, the parameters representing a cluster can be studied in greater detail,
along with the object types that triggered the AEB in each cluster shown as a
percentage for the three most common in Table 4.5.

Table 4.4: The average value of the parameters used for clustering, except for
the object type that triggered the braking, in each of the 28 clusters found by the
hierarchical clustering with average linkage on the reduced data set.

Cluster
(# obs.)

Speed
[m/s]

Acc.
[m/s2]

Yawrate
[rad/s] Car Mot.

bike Truck Ped. Bike Unid.
veh.

8 (1414) 8.22 0.32 -0.10 0.9 0 0.1 0 0 1.2
9 (1318) 7.60 0.17 0.00068 1.7 0 0.1 0 0 0.4
13 (659) 18.9 0.13 0.0077 1.9 0 0.2 0 0 1.2
14 (602) 30.7 0.20 0.0014 1.1 0 1.8 0 0 1.8
15 (254) 8.39 0.075 0.036 2.1 0 0.1 1.0 0 0.9
16 (179) 7.33 0.18 0.0089 2.2 0 0.2 2.6 0 1.0
7 (140) 8.86 0.59 0.0071 1.9 0 0.6 0 0 3.1
27 (137) 10.8 0.085 0.0034 1.5 0 0.1 0 1 0.9
26 (133) 21.4 -0.0061 0.0029 4.8 0 1.0 0 0 5.6
21 (126) 11.8 2.18 -0.0068 1.7 0 0.4 0 0 1.1
6 (96) 20.3 0.21 0.0029 0.7 0 1.9 0 0 7.0
24 (60) 9.06 0.14 0.0022 1.2 0 0.2 0.9 1.6 0.5
20 (48) 10.4 1.25 0.022 1.6 0 1.6 0 0 3.9
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Table 4.4 continued from previous page
Cluster
(# obs.)

Speed
[m/s]

Acc.
[m/s2]

Yawrate
[rad/s] Car Mot.

bike Truck Ped. Bike Unid.
veh.

12 (44) 20.8 0.096 -0.0028 2.1 0 1.6 0.1 0 13
25 (38) 9.79 0.35 0.027 2.2 1 0.1 0.2 0 1.3
18 (33) 8.72 0.57 0.011 1.9 1.9 0.3 0.3 0.1 1.3
23 (30) 7.00 0.0074 0.0083 1.9 0 0.1 2.8 1 0.6
11 (22) 36.6 -0.055 0.0032 5.0 0 0.5 0 0 1.7
17 (19) 9.82 0.32 -0.065 1.4 1 0.05 0.2 0 1.3
19 (15) 9.41 0.15 0.0064 7.1 0 0 0 0 0.1
2 (12) 18.4 0.0064 0.0037 3.4 1 1.1 0 0 8.3
5 (11) 8.75 0.32 0.0029 3.9 1 0.09 1.5 0 1
3 (6) 12.8 0.0099 0.0012 3.5 0.3 1.3 0 0 4
28 (6) 19.1 0.15 0.0046 1.2 3 2.3 0.8 0 2.3
4 (4) 6.53 1.41 -0.020 1 1 0 2 0 0.5
22 (4) 12.4 4.59 -0.0087 2 0 0.8 0 0.8 1.3
1 (1) 5.85 0.52 0.0068 1 1 2 0 0 9
19 (1) 8.79 0.40 -0.0042 0 2 0 4 0 2

From the clusters found, test scenarios can be designed. Cluster number 8,
which is the largest one, consists almost exclusively of braking events due to uniden-
tified vehicles. Using the information about the surroundings it can be seen that
only a few objects were present on average, most being either cars or unidentified
vehicles. It has a lot of similarities to cluster number 9, which is the second largest.
The difference being that more objects could be determined as cars, and that the
big majority of the objects triggering the AEB was a car. Considering their similar-
ities the first identified scenario can be seen as a combination of these two clusters,
representing just above 50 % of the observations. The scenario is characterized by a
small number of vehicles around: 1 or 2 cars, maybe a truck and another vehicle in
the picture. The host car is going at a low speed of around 8 m/s, and has a small
positive acceleration of around 0.2 m/s2.

The second scenario can be extracted from the third largest cluster, number 13.
It represents 12 % of the events, and is characterized by a significantly higher speed
of around 19 m/s for the host car. The acceleration is around 0.1 m/s2, and there
is on average one more vehicle in the surroundings compared to the first identified
scenario. The triggering object identified was mostly a car or alternatively a truck.

In the fourth largest cluster, number 14, the object triggering the AEB is a
truck in a majority of the cases, and looking at the surroundings there is 2 trucks on
average present. A third scenario, representing 11 % of the observations, would be
based on this cluster which has a host vehicle speed of over 30 m/s on average. The
acceleration is still small and positive of around 0.2 m/s2, and there is also almost 2
unidentified vehicles present in the situation on average.

A fourth scenario can be found looking at cluster 15, which contains a bit
less than 5 % of the observations. The big difference to the first three scenarios is
that here it is on average 1 pedestrian in the surroundings. The scenario can be
identified with a host car speed of 8 m/s, no acceleration, 2 cars and 1 pedestrian in
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Figure 4.12: The 10 largest out of the 28 clusters found by the hierarchical clus-
tering with average linkage on the reduced data set. (For interpretation of the
references to the object type colors, the reader is referred to the web version of this
thesis.)
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the surroundings. Looking at what triggered the braking, it is in half of the cases a
car, and in 40 % either a truck or unidentified vehicle.

The fifth and final scenario comes from cluster 16, with just above 3 % of the
observations. It is characterized by a large number of pedestrians, on average 2.6,
as well as more than 2 cars and another unidentified vehicle in the surroundings on
average. The speed is around 8 m/s with a small positive acceleration of 0.2 m/s2.
In over 40 % of the situations, the object triggering the AEB is a pedestrian, and in
30 % it is a car.

In the remaining 22 clusters, which consist of 18 % of the observations, more
scenarios can be identified but with less importance to initial testing. Their relative
sizes and details about their characteristics can be found in Table 4.4.

Table 4.5: The object triggering the AEB shown as a percentage for the three
most common types in each cluster, for the 28 clusters found by the hierarchical
clustering with average linkage.

Cluster
(# of obs.) Most frequent Second most frequent Third most frequent

8 (1414) Unidentified vehicle (95.7 %) General object (2.3 %) Car (0.6 %)
9 (1318) Car (75.4 %) Truck (16 %) Pedestrian (5.9 %)
13 (659) Car (72.7 %) Truck (22.6 %) Pedestrian (2.9 %)
14 (602) Truck (73.1 %) Car (22.9 %) Unidentified vehicle (1.5 %)
15 (254) Car (47.2 %) Truck (18.9 %) Unidentified vehicle (18.9 %)
16 (179) Pedestrian (41.3 %) Car (31.3 %) Truck (12.3 %)
7 (140) Car (62.9 %) Truck (25.7 %) Pedestrian (7.9 %)
27 (137) Bike (63.5 %) Car (15.3 %) Unidentified vehicle (9.5 %)
26 (133) Truck (56.4 %) Car (36.1 %) Unknown (3 %)
21 (126) Unidentified vehicle (74.6 %) Car (16.7 %) Truck (8.7 %)
6 (96) Truck (52.1 %) Car (36.5 %) Pedestrian (8.3 %)
24 (60) Bike (70 %) Car (10 %) Unidentified vehicle (8.3 %)
20 (48) Unidentified vehicle (41.7 %) Car (33.3 %) Truck (22.9 %)
12 (44) Truck (56.8 %) Car (31.8 %) Unidentified vehicle (9.1 %)
25 (38) Car (52.6 %) Motorbike (28.9 %) Truck (10.5 %)
18 (33) Car (33.3 %) Unidentified vehicle (21.2 %) Truck (18.2 %)
23 (30) Bike (40 %) Car (26.7 %) Pedestrian (23.3 %)
11 (22) Car (40.9 %) Truck (31.8 %) Unidentified vehicle (27.3 %)
17 (19) Unidentified vehicle (94.7 %) Bike (5.3 %) -
19 (15) Car (80 %) Unknown (13.3 %) Truck (6.7 %)
2 (12) Car (41.7 %) Truck (33.3 %) Motorbike (16.7 %)
5 (11) Car (54.5 %) Pedestrian (18.2 %) Motorbike (9.1 %)
3 (6) Truck (66.7 %) Unidentified vehicle (33.3 %) -
28 (6) Truck (66.7 %) Car (16.7 %) Pedestrian (16.7 %)
4 (4) Pedestrian (50 %) Truck (25 %) Unidentified vehicle (25 %)
22 (4) Car (50 %) Truck (25 %) Bike (25 %)
1 (1) Unidentified vehicle (100 %) - -
19 (1) Pedestrian (100 %) - -
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4.5 Clustering with road type
The road type could be extracted by using the GPS position for 2954 of the observa-
tions, or 54 % of the full data set. The loss of almost half of the observations makes
this section a sub-result, exploring what can be seen from the road information.
Additional uncertainties in the road type information resulted in the observations
being divided into two groups: city, or not city. The clustering for this data set of
11 parameters was done with a reduced set with a dimensionality of 3, found by
an AE, and using hierarchical clustering with the average linkage criterion. The
MSE for the AE, trained in the same way as for the full data set, was 0.0324, and
for the three first components of PCA it was 0.5667. In Figure 4.13 the clustering
evaluation criteria scores can be seen, which indicates a set of 21 clusters, possibly
up to 28, as seen for the same algorithm without the road type information. There
is also a global best score for 7 clusters, but they might be too few to get any insight
into the characteristics of each cluster.

In Figure 4.14 the 6 largest clusters and their characteristics are shown. The
results are similar to the identified test scenarios, but the largest cluster in the
former solution, containing activations of the AEB triggered by an unidentified
vehicle, is divided into two clusters here. The difference is that one cluster contains
observations from city-driving, while the other one does not. The only big difference
to the clustering without road type information is the lack of pedestrians in any of
these largest clusters.

Figure 4.13: A best solution according to the criteria can be found at 7 clusters,
but there is also a local minima for the criteria at 21 clusters, possibly even up to
28.
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Figure 4.14: The 6 largest out of the 21 clusters found by the hierarchical clustering
with average linkage on the reduced data set containing road type information. For
the road type, city driving is represented by blue and non-city driving by orange.
(For interpretation of the references to the object type colors, the reader is referred
to the web version of this thesis.)
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The discussion is intended to highlight important results and what can be done
further to improve these, as well as give an idea of what could have been done
differently. The sections are supposed to be read in any order.

5.1 Dimensionality reduction
It had been proven before that an AE could be used with better results compared to
PCA for the purpose of dimensionality reduction before clustering on a labeled data
set. The results from this thesis support this claim, by showing that the desired
data separation is achieved also for data from the field test. The major reason to
still use PCA would be its well defined mathematical properties, however, there is
no indication that important information is lost in the AE that only the PCA can
find. Considering that the best result from the clustering was found by clustering
on the reduced data set from the AE, further highlights its practical uses.

5.2 Cluster parameters
Considering the vast amount of different signals recorded during the field test this
was one of the biggest parts to consider. After careful evaluation of what was
sought as well as already known, a relatively small set was chosen, considered to
represent the general movement of the car, the surroundings in regard to other
vehicles, and what type of object triggered the braking. That the software is designed
to intervene on objects heading in collision course with the host vehicle is a known
fact. Instead of finding clusters characterized by having other objects nearby, we
wanted to investigate if there are specific challenges in the surroundings that could
be manipulated when designing the test scenarios. It was decided to use the latest
software as the ground truth for the surrounding objects, since this was the best
available data. It is worth noting that the software used for triggering the AEB,
was in some cases identifying different types of objects wrongly according to the
ground truth. The conclusions drawn can therefore to some extent also be applied
to design of software for object recognition, since this is a crucial part of the decision
the AEB makes.

A larger set of parameters to cluster on was the original plan, including light-
ning conditions, temperature, weather, and road type. The road type could be
extracted for 55% of all observations, using available GPS data and the open maps
software. It was decided to treat the observation containing this information in a
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separate set, which could be clustered according to the method found best by the
full data set without road type information. The temperature was found to be rang-
ing in a very small span for each car, effectively distancing the cars from each other
based on which one it was, rather than the conditions of the situation at hand. Not
the lightning conditions nor the weather data were available in the data set, but
would be highly interesting to investigate further if available, see Section 5.5.

5.3 Choice of distance measure

The idea to investigate the usage of other distance criteria than the Euclidean dis-
tance was discussed at an early stage, since important information like the object
type triggering the AEB was a categorical parameter. In [6] the Euclidean distance
was used, however it was reflected upon by the authors whether it really was ap-
propriate to use a continuous measure for the categorical parameters in question,
which is why the Gower distance was considered being of interest. A study using
the Gower distance [5] indicated that a lot of pre-processing had to be done in order
to get any results, e.g., by arbitrarily setting limits to the variance in parameters
and removing observations considered outliers. Since the idea was to analyze the
given data without too much human input in this project, the data was left as it was
recorded by the car during the field test. This might be the reason that the Gower
distance seems to have worse characteristics compared to the Euclidean distance,
even though it is able to treat categorical parameters fair. Another important as-
pect might be that the evaluation criteria are designed with Euclidean distance in
mind, and even though they are defined for any other distance measure their results
might be biased to prefer clustering solutions with a measure originally intended
for. The choice to set the weight to 0.3 for the categorical parameter when using
the Gower distance was made so that the distance between two different values of a
categorical parameter would be similar to the average distance between two values
of a continuous parameter. When setting all weights to 1, the clustering algorithms
divided the observations only by the categorical parameter.

5.4 Test scenarios

There is an inherent problem in drawing conclusions based on observations including
unidentified vehicles. They are present no matter the method for identifying the test
scenarios, and it is impossible to include an unidentified vehicle in the test setup
without knowing what triggers this identification in the software. Consulting the
results, it seems that the object identification software has to reach a certain level
before the algorithm for collision avoidance is applied.

An important aspect of the clustering results was that solutions containing
few clusters did not give much information useful for test scenario identification.
Dividing the 5412 observations into 15 or less clusters just resulted in every cluster
having a distribution of each parameter similar to the distribution of that parameter
in the entire data set. There is no correct solution that can be used as reference,
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however, it seems clear that it is desirable to find a large amount of clusters with
specific characteristics, and arrange their importance by relative size.

For this reason, good clustering results found by the evaluation criteria that
indicated a small set of clusters (< 15), were not considered candidates for best
solution. As can be seen in the results Section 4.2, the evaluation criteria scores
for a small amount of clusters were also not very robust, further highlighting the
problems with few clusters for this data.

5.5 Future work
The next step regarding testing, is to examine if there is a correlation between
a software update and a specific identified scenario. This can be done by using
the same original field test and see which clusters the activations of the AEB for
this software belong. A specific update and its implications on past events can
teach about how to handle new problems, and which software updates should be
prioritized to eliminate as many problems as possible at an early stage.

It would be beneficial to have a data set consisting of more environmental data
in the first place, such as the weather and road type. This could further increase the
insight into the problem. The data collection has increased rapidly in recent years,
and data sets containing this information is not too distant. By running the same
algorithms that have shown viable for this data set, it is likely that a good starting
point for further research is found.

Even though the Gower distance did not give any results there is still reasons
to further investigate it. That it can handle categorical parameters without ordering
them should be of great importance, however, there is need for pre-processing of the
data to make it suitable for clustering. Since the distance metric has weights for each
parameter built-in, looking at how to optimize these weights might give substantial
better clustering results if executed correctly.
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Based on the study of the parameters a small set representing the kinematics of
the car, the surrounding objects, and the object triggering the AEB was chosen.
However, there were some variables related to the environmental conditions that
were not available, which if present in a data set might give a clustering allowing for
identification of more detailed test scenarios. The best result found for the problem
at hand was agglomerative hierarchical clustering made with the average linkage
criterion to determine which clusters to be merged at each step, using a data set of
10 dimensions reduced by an AE to 3.

Five test scenarios were identified, using the information from the 6 largest
clusters out of the 28 in total. These scenarios are based on 82% of the observations
used for clustering. In short, the first scenario is identified by a host car with low
speed, 3 vehicles in the surrounding of which 1 or 2 are cars and the rest a truck
or another vehicle. The second scenario can be described by medium speed, 2 cars
and 1 more vehicle. The third has a host car with high speed, 5 vehicles on average
of which at least 2 are trucks and 1 a car. The fourth and fifth scenarios have
pedestrians in the surroundings, and a host car with a low speed. They differ in the
sense that the fifth scenario has several more objects, both cars and pedestrians, in
the surroundings compared to the fourth scenario.

Apart from the identified test scenarios it could also be concluded that data
dimensionality reduction is important, and that an AE can be useful to extract
important features and represent them in a way that is beneficial for clustering.
Compared to PCA the MSE of the reconstructed data can be magnitudes smaller
for the AE, and the observations get spread out in the available space instead of
packed densely. This had been shown for labeled data sets before, but showed to be
valid also for data recorded during a field test for a car.
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