Smartphone Connection to Husqvarna Products

Master of Science Thesis in Embedded Electronics System Design

SIGURSTEINN HAUKUR REYNISSON

Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, August 2013

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet. The Author warrants that he/she is the author to the Work,
and warrants that the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Smartphone Connection to Husqvarna Products
SIGURSTEINN HAUKUR REYNISSON

© SIGURSTEINN HAUKUR REYNISSON, August, 2013
Examiner: LARS SVENSSON

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Gothenburg

Sweden

Telephone: + 46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden, August 2013

Abstract

Embedded systems are increasingly finding their way into various equipment and ma-
chines. Many embedded systems need to be monitored, adjusted and updated at some
point during their lifetime.

Smartphones are already dominating the mobile market in some countries and are ex-
pected to dominate the mobile market worldwide in a few years. The evolution of smart-
phones has been rapid and they already possess several different wireless communication
technologies. Wireless communication between embedded systems and smartphones could
enable monitoring, adjustment and servicing of embedded systems in a simple and cost
effective manner.

The main task of this project was to create a smartphone application for work tracking
and servicing of a battery powered ride-on mower from Husqvarna. The system is to be
used as a demonstrator to illustrate some of the possibilities that smartphone connectivity
can provide. This project can also be used as a platform for further development of
machine to machine solutions for Husqvarna products.

A study of suitable wireless technologies was conducted and different development
platforms were evaluated. The proposed system uses Bluetooth technology and is built
for Android devices. It allows monitoring of all the major system variables in a graphical
manner. The system includes fault diagnostics features for the machine as well as a test
interface that can be used to test different actuators and indicators. Several other service
related features were also implemented.

Safety and security aspects of the proposed solution have to be studied further but
the system has sufficient quality for in-house use and demonstration.

Keywords: Smartphone, Embedded System, Wireless Connectivity, Remote Servicing, An-
droid, Bluetooth, WiFi, Machine to Machine

II

Contents

VI

VII

IX

v

List of Figures

11 Husqgvarna Battery Rjder]
13 WT12 connected to a Raspberry Pi mmnuter]
4 WTI12 connection to the RCUJ o oo
5) Modified Rider Control Unitl

7 Architecture of the basic GUI components!

0 Work tracking GUI]

List of Tables

VI

1

l4

Wireless protocols - typic

i0S 6: Supp

Acknowledgements

I would like to thank everyone working in the Electronics Technology department at Husqvarna
AB, especially Anders Mattsson and Mikael Larsson Alexiusson for their help and patience.
I would also like to thank my examiner, Lars Svensson, for his friendly attitude and support
during my studies at Chalmers.

I want to thank my fiancée, Sigran Inga, for her immense support, patience and help over
the years. And finally I want to thank my son, Elias Ari, for providing me with high quality
study breaks at regular intervals.

Gothenburg, August 2013
Sigursteinn Haukur Reynisson

VII

VIII

List of Acronyms

8DPSK Differential Encoded 8-ary Phase Shift Keying
A2DP Advanced Audio Distribution Profile

AMP Alternate MAC/PHY

AP Access Point

APIT Application Programming Interface

AVRCP Audio/Video Remote Control Profile

BLE Bluetooth Low Energy

BR Basic Rate

DSSS Direct-Sequence Spread Spectrum

EDR Enhanced Data Rate

EEPROM Electrically Erasable Programmable Read-Only Memory
FH-CDMA Frequency Hopping Code-division Multiple Access
GFSK Gaussian Frequency Shift Keying

GPS Global Positioning System

GUI Graphical User Interface

HDP Health Device Profile

HID Human Interface Device Profile

HFP Hands-Free Profile

HS High Speed

HSP Headset Profile

ISM Industrial, Scientific and Medical

ISP In System Programming

MAC Media Access Control

MAP Message Access Profile

MFi Made for iPhone/iPod/iPad

NDA Non-Disclosure Agreement

NFC Near Field Communication

OBD On Board Diagnostics

OFDM Orthogonal Frequency-Division Multiplexing
PHY Physical

PAN Personal Area Network Profile

PCB Printed Circuit Board

PBAP Phone Book Access Profile

RCU Rider Control Unit

RPM Revolutions Per Minute

RTOS Real-time Operating System

SDK Software Development Kit

SIG Special Interest Group

UART Universal Asynchronous Receiver/Transmitter
U-NII Unlicensed National Information Infrastructure
XML Extensible Markup Language

7/4-DQPSK /4 rotated Differential Encoded Quaternary Phase Shift Keying

1 Introduction

It is appropriate to begin this report by putting the master thesis work into perspective. The
project background as well as the main purpose and goals are outlined in this section. A short
overview of similar solutions that are currently available is presented as well. The selected
design method is introduced and the section ends with an overview of the report structure.

1.1 Project background

Smartphones are expected to dominate the worldwide mobile phone market in the coming
years. Over 50% of mobile users in North America and Western Europe are currently using
smartphones [1].

With ever increasing amount of embedded electronics in various tools and machines comes
an increased demand for easy monitoring, servicing and fault diagnosis. Enabling commu-
nication between machines, with embedded systems inside, and smartphones seems to be a
promising approach to improve the user experience. It may also reduce servicing cost and
improve the overall quality of the product. Husqvarna AB has recognized this need and wants
to demonstrate this in its products for forestry and gardening.

The most basic embedded systems may rely on mechanical switches and potentiometers to
control the system behavior. Analog meters and light indicators are sometimes used for mon-
itoring and possibly diagnosing and troubleshooting the system. More sophisticated systems
may need displays and keyboards of various sizes to allow proper operation and maintenance.

In some cases it is not feasible to add displays and keyboards to a system. There may
be several reasons for this. Limiting factors could for example be the small physical size of
the machine or the additional cost that comes with increased complexity. Furthermore, the
machine may be operating under harsh environmental conditions that a cost effective solution
would not be able to withstand.

One solution to this challenge is to provide the embedded system with some kind of
a communication interface. This interface may be wired (e.g. USB or RS232 cables) or
wireless (e.g. Bluetooth, WiFi or ANT). The wired solutions have the obvious drawback of
physically tying the user and the machine together, which limits the movement of the user.
Personal computers, laptops or specialized equipment can then be used to communicate with
the embedded system over this interface.

Personal computers and laptops are bulky and unlikely to be found in the pocket or back-
pack of a regular worker in the area of forestry and gardening. Specialized service equipment
on the other hand is usually not distributed or made available to the end-user.

Today’s smartphones possess many of the qualities that are needed to build an easily
available, low cost solution for servicing and monitoring of machines that contain embedded
systems. Furthermore it is possible to use the capabilities of the smartphones to add new
features to the product. It is for example possible to use the Global Positioning System (GPS))
and/or the gyroscope in the smartphone to monitor the movement and current location of the
machine. This could lead to improved efficiency and safety as well as creating opportunities
for fleet management of a wide variety of machines.

One of the major challenges of designing a smartphone based solution of this kind is
the huge diversity of mobile devices on the market. Selection of a platform (iOS, Android,
Windows Phone etc.) and compatibility between different hardware is a central question in a
project of this kind. It is also important to try to realize what the future trends on the mobile
market might be.

Prediction is very difficult, especially if it’s about the future.
(Niels Bohr)

1.2 Purpose and goals

The main objective of this master thesis is to develop and build a demonstrator that showcases
the possibilities that a connection between a machine, with an embedded system inside, and
a smartphone can provide. A battery powered ride-on mower from Husqvarna (referred to as
the Battery Rider in this report) was selected as the platform for this project.

The main goal is to provide the Battery Rider with work tracking features and a servicing
interface using a smartphone. The final product should include all the necessary features listed
under the requirements section (Section [B]) and have acceptable quality for in-house use and
demonstration.

1.3 Related designs

Bluetooth enabled robotic mowers are already on the market, one example is the LawnBott
LB3510. This mower is said to be Bluetooth ready, but the remote control has not been made
available. An application is available for a small set of mobile phones [2]. Almost all of the
supported phones are Java based feature phones. They can therefore not be considered to be
modern smartphones.

A good place to look for similar solutions would be the car industry. Bluetooth has
been used for years in the car industry to connect phones to the built-in sound system and
microphones (headset features) in cars. Volvo provides some of their cars with smartphone
connectivity option called “Volvo on Call”. This mobile application enables the user to view
basic statistics from the car, start the car heater and check fuel status to name few examples.

When it comes to servicing and monitoring cars using smartphones there are several op-
tions available. The reason for this is that the diagnostics connector and protocol have been
standardized. This creates a large market for a solution of this kind. These solutions all
rely on a Bluetooth enabled module that is inserted into the On Board Diagnostics (OBDI)
connector in the car. This opens a door to detailed information about the state of the car
and can be used for various purposes. Fleet management solutions that are based on this
information are already available.

Finally, it is important to emphasize that the task of designing a smartphone connected
product for the forest and gardening industry can obviously be translated to almost any other
equipment. The challenges will be more or less the same although the requirements may
change.

1.4 Development method

This project followed the V-model design methodology. The design process started with a
system specification and a high-level design of the system. After that, the low-level design and
the actual implementation was started. When the main implementation and debugging was
finished, unit and component testing was performed. System integration test was performed
towards the end of the project.

1.5 Report structure

The structure of the report is as follows:

Section [2] presents the Husqvarna Battery Rider that was used to demonstrate the pro-
posed solution.

The requirements for the system are presented in Section [Bl

A study of suitable communication technologies is found in Section [@l

Section [l outlines the Android and iOS operating systems with respect to their support
for different wireless technologies.

Modification of the Battery Rider is described in Section
Description of the Android software design is presented in Section [1l
Section [§ contains discussions and Section [9 contains the conclusions.

The references and appendices are found at the end of this report.

2 Husqgvarna Battery Rider

One important factor in this project was the selection of a machine that could be used as a
test platform for the design. The designers at Husqvarna AB had already realized that the
Battery Rider (seen in Figure[I]) could be a good candidate for a project of this kind.

Figure 1: Husqvarna Battery Rider.

Some of the important features of the Battery Rider are listed below.

e The machine contains a fair amount of sensors and actuators that can be observed or
controlled.
— Sixteen digital inputs (e.g. buttons and control signals).
— Fifteen digital outputs (e.g. lights and relays).

— Five analog inputs from sensors (e.g. throttle).
e The machine is already equipped with a wired communication interface.

— USB connectivity using a virtual COM port operating at 115.2 kbps.
— Decently documented protocol.
— Built in logging features that can be modified.
e The microcontroller in the Rider Control Unit (RCU) is equipped with an unused

Universal Asynchronous Receiver/ Transmitter (ZART]) port that has its pins drawn out
to an unused connector on the Printed Circuit Board (PCBI).

e Test bench for the [RCUlis already available.

In addition to the above it is clear that a machine of this kind could benefit from a
connection to a smartphone (e.g. location and speed information).

3 Requirements

A specification for the system was presented in a special specification report early in this
project. This specification report was the result of a discussion with the project supervisor
at Husqvarna. The requirements from the specification report are listed in this section with
minor rearrangements and corrections.

3.1 Hardware requirements

The only hardware requirement that this project has is the requirement of the communication
module. Its requirements depend heavily on the data that will be transmitted from the Battery
Rider to the smartphone and vice versa.

The communication link will mainly be used under two different scenarios. The first
scenario is when the link is used to provide constant flow of information to/from the user.
This will be referred to as live data. This could for example be when the user wants to
constantly monitor the status of the machine or use applications that rely on continuous
data transmission. The other scenario is when the link is used to transmit larger amount of
data that has been stored, or should be stored, on the machine. This will be referred to as
a file transfer. File transfer could for example be used to access historical data about the
temperature of the machine, error logs of the embedded system or to upload new firmware to
the machine.

3.1.1 Data rates

Up-link: live data

The requirement for a link of this type depends on the amount of relevant information that
is collected on the machine and the rate of changes in the system. No more than 128 bits of
data are needed to represent all sensor values in the system that is currently found in the
Battery Rider. Although the current system does not allow a simple transmission of this data
at once it is considered to be a good measure for the maximum amount of data that would be
transmitted at a given instance. Assuming that some other variables in the system might be
of interest it is reasonable to add another 256 bits (eight 32-bit variables) to this data, giving
a total of 384 bits.

The other major factor that needs to be considered for this type of data transmission is
how often this data has to be transmitted. The minimum rate of updates is different for
different measurements. Values like Revolutions Per Minute (RPM]) need frequent updates
while temperature measurements could safely be sent with long intervals.

One way of looking at this is that we want the user to perceive the observations as they
were continuous and the movement of indicators should be smooth. To achieve this, a rapidly
changing value (e.g. [RPM)) has to be refreshed around 24 times every second. This refresh rate
(24 Hz) is widely accepted as sufficient to display smooth animations. Lower rates are likely
to be sufficient since the illusion of continuous movement can be achieved with other methods
(bridging, interpolation etc.) on the smartphone. Using very high rates is not considered
to be reasonable for a system of this kind since its purpose is not to provide high resolution
debugging information.

Based on the discussion above, it is possible to estimate the required data rate has to be
no less than 9600 bps (384 bits-25s~1). It is considered feasible to leave room for improvement
and transmission of higher data rates. Quadrupling the data rate gives a data rate of 38400 bps
which will be used as the minimum requirement on the up-link for live data.

Up-link: file transfer

As for the link for live data, the requirement on this link relies on the amount of information
that needs to be transferred. Although the internal storage of embedded systems may be
increasing, it is usually relatively small. One way of estimating the requirement on this link is

to assume that the entire contents of the system memory can be transferred within a reasonable
time. The current system has less than 1 Mb of memory and we consider ten seconds to be
acceptable for a complete transfer. From this it is clear that the data rate has to be at least
100 kbps. Quadrupling the data rate gives data rate of 400 kbps which will be used as the
minimum requirement on the up-link for file transfers.

Down-link: live data

This form of communication will be used to transmit commands from the user via the smart-
phone to the machine. These commands could be fairly simple and easily represented with
two 8-bit words. It is obvious that this link is not the limiting one with respect to data rates
but it requires relatively fast response time to ensure proper user experience.

Down-link: file transfer

This form of communication could for example be used when the user wants to upload firmware
(or any larger files) from the smartphone to the machine. This link is subject to the same
requirements as the up-link for file transfers. That is, filling the entire memory of the embedded
system should be completed within a reasonable time. This link cannot be considered likely
to become a bottleneck since file transfers of this kind will not be performed very often. One
could imagine that the intervals between file transfers of this kind might be months or even
years.

3.1.2 Energy efficiency

Since the link for the live data is continuously active it is important that the communication
technology selected is energy efficient. Although the machine may have access to large batteries
or power sources, the smartphones usually carry small batteries. This could of course be
circumvented by providing the user with a power source (e.g. USB port) but it is not considered
to be a preferable solution in this case.

Since file transfers are not going to be continuous, the energy efficiency of that part is not
considered to be of high importance.

3.1.3 Response times

Basic limits for response times in human-computer interaction are discussed in [3] and [4].
According to [3], the response time has to be less than 100 ms for any action that the user
should experience as having an immediate effect. Other sources state that this value could be
as high as 200ms [4]. For this reason, the preferred response time is limited to 100-200 ms for
all commands that are sent to the machine using a smartphone. If this response time is for
some reasons unachievable, the absolute maximum response time of 1s should be achieved.

3.1.4 Range of wireless connection

The minimum range of the wireless connectivity should be at least 5m and preferably as long
as 100 m.

3.1.5 Other design considerations

The communication module is to be added to an already existing system. For this reason, the
module has to support a 2-wire UART interface.

Although the system developed during this project will only be compatible with a small
subset of all available smartphones, it is feasible to select a communication module that could
be used with as many smartphones as possible. In other words, it should only require software
development to make this solution compatible with other smartphones.

3.2 Software requirements

The main purpose of the software is to proof the concept of smartphone connected products by
implementing several work tracking and servicing features. The requirements for the Android
software are listed as Reql to Reqll in Section B.2ZIl The requirements for the embedded
software for the Battery Rider control unit are listed as ReqA and RegB in Section

3.2.1 Android application

The specification for the Android application is listed below with minor changes and rear-
rangements from the original specification report.

Reql: Device pairing

The software should enable the user to find and initiate a connection to a smartphone
enabled machine. The initiation of the connection may require user interaction but
once it has been established it should be stable enough to allow continuous operation.

Req2: Two-way communication

The software should be capable of using two-way communication; hence it should
be able to receive data from the machine as well as sending commands to it. This
requires the embedded system to be capable of responding to requests/commands
(see ReqA).

Req3: Basic work timer

The software should be capable of measuring the time that the machine has been
actively working. This timer should measure the time that the machine is running
with the cutter down and rotating. It should pause as soon as the cutter is raised
and/or turned off. Options for resetting the timer should also be implemented.

Req4: Measure the area covered

The software should be capable of using GPS data or any other available information
to measure the distance traveled by the machine. This information should then be
used to calculate the area that the machine has covered in active mode (cutter lowered
and rotating).

Reqg5: Estimate and store the size of a lawn

By using any available information about the distance traveled, the software should
be capable of measuring the size of a lawn and storing the data for later use (e.g.
estimation of time to completion).

Req6: Estimation of time to completion

By using information about the size of the area to be cut (input from the user or
saved value), the software should be able to predict how long it takes to cut what is
still remaining.

Req7: Sensor values and complete state

The software should be capable of displaying all sensor values to the user in a mean-
ingful manner. It should also be capable of displaying the state of all levers and
pedals to the user. This should include the battery level.

Req8: Fault diagnosis

The software should guide the user through a simple test of all the levers, pedals and
buttons of the machine. This feature should be equivalent to the feature found in
other service applications from Husqvarna.

Req9: Service guidance

The software should react to information about the work hour counter of the machine
and remind the user to perform preventive and periodic maintenance when applicable.

Reql0: User manual

The software should enable the user to access the user manual (could also be service
manual and part list) of the machine with little or no effort.

Reqll: Service finder

The software should use Google Maps together with information about all Husqvarna
service providers to locate the nearest service provider. It should display all relevant
contact information to the user and even enable the user to get driving directions
using other smartphone software (e.g. Google Maps).

3.2.2 Battery Rider embedded software

The specification report did not specifically mention any software requirements for the em-
bedded system on board the Battery Rider. The following requirements could never the less
be deduced from the other requirements listed in the specification report and are listed here
for completeness.

ReqA: Two-way communication

The embedded system must be capable of responding to serial request/commands.

ReqgB: Timer

The embedded system must be able to keep track of the active work time of the
machine.

10

4 Wireless connectivity

When it comes to designing wireless solutions there are numerous wireless communication
standards to choose from. The requirements for this project quickly narrowed this selection
down to Bluetooth and WiFi. The reason is that they are the only ones that are widely
supported on today’s smartphones (see Section [Bl). Other technologies such as ANT+ and
ZigBee are emerging but are not widely available in smartphones at the time this is written.

The Near Field Communication (NFC) technology is an interesting option that could be
used for device pairing in conjunction with Bluetooth or WiFi but is not suitable as the
main communication method. The focus will be on WiFi Direct instead of the regular WiFi
standard. This is because the main objective is to connect smartphones and machines directly
to each other without any external equipment such as an Access Point (AD]).

This section outlines the Bluetooth and WiFi Direct technologies. Historical and tech-
nological background of the two technologies is presented. The energy efficiency of the two
technologies is compared and finally, security issues and future trends are considered.

4.1 Background information

This section should provide a brief overview and a historical perspective of the communication
technologies that are considered for this project.

4.1.1 A brief history of Bluetooth

Bluetooth was originally created by Ericsson in 1994 with the main purpose of replacing RS-
232 cables. It is designed to provide robust, low power, low cost connections that work over
relatively short distances [5]. Bluetooth uses the Industrial, Scientific and Medical (ISM]) radio
band in the range of 2400-2485 MHz [6].

The core specification of Bluetooth is maintained by the Bluetooth Special Interest Group
(SIG) that was formed in 1998 [5]. The first version (v1.0) of the Bluetooth specification was
released in 1999, this version is often referred to as Bluetooth Basic Rate (BRl). Updated
version (v2.0) of the core specification was released in 2004, this version is also known as
Bluetooth Enhanced Data Rate (EDRJ). Yet another version of the Bluetooth core specification
was released in 2009, this version is called Bluetooth High Speed (HS).

The most recent version of the core specification is Bluetooth 4.0 which was announced in
2010. This specification differs from the previous ones since it introduces a new concept into
the Bluetooth specification. This new option has had several different names throughout its
short lifetime but Bluetooth Low Energy (BLE) and Bluetooth Smart are the most common
names for it.

This new part of the Bluetooth specification defines a new variant of Bluetooth that is
intended for low energy applications. Here, low energy application means that it should be
possible to power the device on a coin-cell battery for many months or even years [6].

The [BLE] technology differs significantly from previous versions and is therefore not com-
patible with older versions. To increase the confusion even more the Bluetooth [SIG| has
introduced the concept of Bluetooth Smart Ready devices. Bluetooth Smart Ready devices
implement both the previously known versions of the Bluetooth specification (BRI [EDR], [HS))
as well as the new [BLEl technology. Bluetooth Smart Ready smartphones have been on the
market since late 2011.

The Physical (PHY]) and Media Access Control (MAC) parts of Bluetooth technology were
standardized in the IEEE 802.15.1 standard in 2002 and then in an updated version in 2005
[7]. IEEE list this standard as active but it should be noted that the Bluetooth [SIGl has issued
several new core specifications since then.

11

4.1.2 A brief history of WiFi Direct

The WiFi Alliance officially announced WiFi Direct in October 2010 [8]. WiFi Direct is
built on the solid foundation of previously known WiFi technologies (IEEE 802.11 a/g/n) and
should in most cases be interoperable with older devices although it does not support the
IEEE 802.11b standard [9]. It is worth mentioning that WiFi Direct is not directly connected
to any IEEE 802.11 standard.

The main purpose of this technology is to allow WiFi devices to communicate directly
with each other without having to use an [APl It should enable quick, reliable and secure
connections between devices that need to sync or exchange information with each other.

Since WiFi Direct is so closely related to previous WiFi technology it can in some cases
be enough to perform a software upgrade on older devices to allow it to operate as a WiFi
Direct device. This means that although the technology is relatively new, it is already widely
available.

4.2 Technical Overview

Bluetooth and WiFi Direct both operate in the [[SM| band but that is about all they have in
common from a technical point of view. This section outlines the basic techniques used in
Bluetooth and WiFi Direct communication.

4.2.1 Bluetooth

As mentioned earlier, Bluetooth operates in frequencies in the range of 2400-2485 MHz. When
Bluetooth devices connect they form a so called piconet. Each piconet can only have one
master device and up to seven slaves. All the devices in one piconet share the physical channel
and therefore its capacity. A master in one piconet can serve as a slave in another piconet.
Piconets that share one or more slaves form a scatternet. A piconet can be thought of as a
network with star topology. Each slave is directly connected to the corresponding master but
not to any of the other slaves.

Bluetooth uses Frequency Hopping Code-division Multiple Access (EH-CDMA]) scheme.
It uses 79 different carriers with 1 MHz spacing for the channel hopping and the dwell time for
each hop is 625 us (1600 hops/second). The is suitable for use in the band
since on average it uses relatively broad spectrum but only a small piece at a time [I0]. This
helps it to avoid interference. It is also possible to adjust the hopping sequence so that it
avoids unusable frequencies. The hopping sequence is pseudo-random and is determined by
the master of each piconet. When a slave connects to a master device it synchronizes its clock
to the clock of the master device and selects the appropriate hopping sequence.

The first version of Bluetooth (BR]) uses a binary modulation scheme, a Gaussian Fre-
quency Shift Keying (GESK)]) to be more specific. Signal bandwidth for a frequency hopping
system in the [SMl band is limited to 1 MHz which results in a maximum data rate of 1 Mb/s
using this modulation scheme [10)].

Later versions of Bluetooth modified the modulation scheme to allow higher data rates.
Bluetooth [EDRI] uses a mixture of and /4 rotated Differential Encoded Quaternary
Phase Shift Keying to achieve data rates of up to 2 Mbps. Furthermore, Blue-
tooth EDR uses a mixture of Differential Encoded 8-ary Phase Shift Keying (8DPSK]) and
to achieve data rates of up to 3 Mbps [11].

Bluetooth HS introduced a feature called Alternate MAC/PHY ([AMD)) to further improve
data rates up to a maximum of 24 Mbps. This method uses the regular Bluetooth channel to
negotiate communication between the devices. If both of the devices support HS operation
and a higher data rate is needed, the transmission moves to an 802.11 channel.

The low energy version of Bluetooth (BLEI) uses 40 carriers with 2 MHz spacing between
carriers and it uses [GESK], just as the BR version. The main difference between [BLE] and the
other version is the protocol stack which is tailored to low-power operation.

12

Bluetooth defines various profiles to ensure interoperability between Bluetooth devices
from different manufacturers. This is a major benefit since it ensured that devices that imple-
ment the same profile are able to communicate with each other. WiFi Direct currently lacks
this feature

4.2.2 WiFi Direct

WiFi Direct (and WiFi in general) operates in the band from 2400 MHz 2500 MHz and
in some cases the 5 GHz Unlicensed National Information Infrastructure (U=NII) band. The
modulation used is either Direct-Sequence Spread Spectrum (DSSS) or Orthogonal Frequency-
Division Multiplexing (OFDM]) and the channel bandwidth is either 20 MHz or 40 MHz. Data
rates are somewhere in the range of 11 Mbps to 450 Mbps for current standards (IEEE 802.11

a/g/n) [12].

4.3 Energy efficiency

WiFi Direct and [BLE] are both relatively new technologies and they have been evolving rapidly
since they were announced in 2010. For this reason, accurate and non-biased information about
their efficiencies are not easily accessible.

To obtain some insight into the energy efficiency aspects of these two technologies it is
possible to start by looking at the older versions and then look at the newer versions and their
benefits compared to the previous ones.

Attempts to compare the efficiency of different wireless technologies are found in [I3] and
[14]. Attempts to evaluate the energy consumption and throughput of wireless technologies
in smartphones are found in [I5].

The articles mentioned above state that the power efficiency of different wireless technolo-
gies is more or less determined by the required data rates and latency restrictions. Table [Tl
(based on information in [14]) shows some typical parameters for WiFi and Bluetooth.

Table 1: Wireless protocols - typical parameters [14].

Bluetooth BR | WiFi (ad-hoc mode)
Max. Packet Size (bytes) 339 2312
Max. Data Rate (Mbps) 72 54
Energy per 1Kb (mJ) 0.034 0.013

This information allows us to draw some basic conclusions. Bluetooth seems to be more
suitable for applications that frequently send small amount of data. This is because of its small
packet size. The packet size of WiFi is much larger which makes it inefficient for sending small
chunks of data. The exception to this would be when it is possible to collect data until a larger
packet has been created, this would obviously increase the latency. If we consider the amount
of energy spent on transmitting each bit it is clear that WiF1i is more efficient for higher data
rates.

Table 2: Typical low power operation characteristics [14].
Bluetooth | WiFi

TX Current 57mA 219mA

RX Current 47mA 215mA
Sleep Current 15 uA 10mA
Via 3.3V 3.3V

Table [2] shows some basic low power characteristics for Bluetooth and WiFi while Table [3]
shows typical power-up values (both from [I4]). The values shown in these tables will obviously

13

vary between different Bluetooth and WiFi modules, but this information gives some idea of
the energy efficiency of the two technologies. Information of this kind also allows a designer
to estimate when it is efficient to turn a wireless interface off. The long startup time and
high sleep current for the WiFi module is noteworthy. These values show that the Bluetooth
technology is suitable for low data rate, low latency and low energy applications such as this
one.

Table 3: Typical power-up characteristics [14].

Bluetooth | WiFi

Startup Current | 5.5mA | 37.9 uA
Startup Vyg 2V 3.3V
Startup time 120 ps 2s

One of the major drawbacks of regular WiFi is that it does not make use of power saving
techniques when operating in ad-hoc mode [I5]. Enabling WiFi Direct to use the power saving
features that a regular client{AP] connection is likely to improve the energy efficiency [16].

When it comes to[BLEl the Bluetooth [SIGIstates that [BLElshould be able to provide power
consumption that is somewhere in the range of 1/2 - 1/100 of the classical versions [17].

4.4 Initiating a connection and security issues

There is not a significant difference in the complexity of pairing devices with Bluetooth (BR/E-
DR/HS/BLE) and WiFi Direct. Both technologies offer different methods for establishing a
connection. Since the Battery Rider is not equipped with a display or a keyboard we are
limited to very simple pairing methods. That is, methods that don’t require password entries
or confirmation from the machine. This obviously creates several security issues. A general
rule of thumb is that the simpler the process of initiating a connection, the less secure the
connection will be. An interesting option here is to use [NEC] for pairing. This would enable
out-of band pairing which is much more secure than the simple pairing methods.

14

5 Developing for smartphones

This section summarizes some of the important aspects of application development for smart-
phones. An overview of the mobile market and a short analysis of the connectivity options
available in the Android and iOS operating systems are presented.

5.1 Overview of the smartphone market

Reports from mobile market research companies ([I8], [19]) show that the smartphone market
is dominated by the Android operating system. Android has almost 80 % market share when
it comes to shipped units (worldwide) under the second quarter of 2013. The iOS operating
system has around 13 % market share [I8]. This means that around 93 % of smartphones
shipped under this period ran either Android or iOS. This leaves little room for the competing
operating systems like Windows, BlackBerry OS and Symbian.

These numbers do not tell the whole story since the market share varies significantly
between different markets. Reports show that around 50 % of mobile subscribers in the US
are using Android smartphones while around 40 % of them have iOS based devices [20].

5.2 Smartphone connectivity options by operating systems

Following is a short summary of the Bluetooth and WiFi connectivity options that exist in
Android and iOS.

5.2.1 iOS

Bluetooth connectivity

When it comes to developing Bluetooth connected accessories for iPhone, or any other i0OS
device, things tend to get a little complicated. Apple states that anyone that wants to develop
accessories for iPhone/iPad/iPod using standard Bluetooth (BR/EDR/HS) profiles can do
so freely [2I]. To be able to design products that rely on Apple’s licensed components or
software, one has to join Apple’s Made for iPhone/iPod/iPad (MEl) program which is a fairly
complicated process. It includes a strict Non-Disclosure Agreement (NDAJ) and a credit review
of the applying company has to be completed.

Table [shows the Bluetooth profiles supported by devices running Apple iOS 6 [22].
According to Apple it should be possible to use these profiles freely to develop applications or
accessories but there is one major limitation to this. This is only true (for most of the profiles)
when developing for iOS and compliant devices. All Bluetooth connections have to go
through Apple’s publicly available frameworks. To my best knowledge there are only two of
them. One is the External Accessory framework and the other one is the GameKit framework
both are limited to iOS and [MFil compliant devices [23].

It is tempting to try to find ways to get around these limitations. One can for example
make the connected device mimic a keyboard and use the profile to send simulated
keyboard strokes to the application or use modulated audio to transfer the data as shown
in [24]. One major concern is that any application that takes advantage of this may not be
accepted by Apple for distribution in the Apple Store and therefore rendered useless.

An exception to this limitation is that iPhone 5 is Bluetooth Smart Ready. To refresh the
memory of the reader, it means that it implements both the classic versions (BR/EDR/HS)
and the new Low Energy (BLE) versions of Bluetooth. Apple Inc. has been a little more liberal
when it comes to providing development tools for this technology. Apple’s Core Bluetooth
framework is public and developers are free to use it in connection with any [BLEl device.

WiFi Direct connectivity

Apple i0S does not support WiFi Direct at the time this is written but has its own variants
instead, they are called AirPlay and AirDrop. As with the classical Bluetooth connections,
Apple limits this technology to Apple and [MFil compliant devices.

15

Table 4: i0OS 6: Supported Bluetooth profiles [22].
X

iPhone 4 and later
iPhone 3GS
iPhone 3G
Original iPhone

Ol &S| S| Advanced Audio Distribution Profile (A2DPI
0| S| & &| Audio/Video Remote Control Profile (AVRCP]) 1
0| 0| <| | Human Interface Device Profile (HIDI)

«|«|«|«| Hands-Free Profile (HEP) 1.6
<|«| &[4 | Phone Book Access Profile (PBAD))

O] & &| &| Personal Area Network Profile (PAN))

0| O| O] &| Message Access Profile (MAP

5.2.2 Android

Bluetooth connectivity
The Android OS supports the classical Bluetooth versions (BR/EDR/HS) and provides im-
plementations of four different Bluetooth profiles. Android devices running Application Pro-
gramming Interface (API) 14 or later support the [HEDPI (v1.5), Headset Profile (HSPJ), [A2DPI
and the Health Device Profile (HDP)) profiles. It is also possible to implement any other pro-
file that might be needed using the BluetoothProfile interface that is available in Android’s
Bluetooth [APIL

Android added official support for [BLElin [APIl 18 which was released in July 2013. Some
third party implementations were available before that time. They were designed by differ-
ent chipmakers like Motorola [25] and Broadcom [26]. This caused compatibility issues and
using [BLE] could not be considered to be a reasonable option for Android before [API 18 was
announced.

WiFi Direct connectivity

Android devices running [APIl 14 or later support WiFi Direct, given that they have the
necessary hardware [27].

16

6 Modification of the Battery Rider

The analysis presented in Section @ and Section [B]lead to the conclusion that adding a Blue-
tooth classic module to the Battery Rider would be suitable for this project. The process of
adding the module to the Battery Rider and modification of the embedded software on the
is described in this section. Few notes on testing can be found at the end of this section.

6.1 Bluegiga WT12 module

The Bluetooth module that was selected for this design was the Bluegiga WT12 module with
iWRAP firmware. This module was widely available, well supported and came with a complete
Bluetooth protocol stack. The module also fulfilled the data rate requirements that were set

in Section Bl
Some of the main features o

f the module are [28]:

e Bluetooth v2.1 + EDR qualified.

Integrated chip antenna.

e 30 meters range (line-of-sight).

UART with bypass mode.

iWRAP protocol stack.

6.2 Development proces

The task of adding the module directly to the [RCU] of the Battery Rider was considered to be
too complex to complete in a single step. Intermediate steps were added to the design process,

these steps are shown below.

1. Connect the WT12 module to a Raspberry Pi computer using UART.
A Raspberry Pi computer was used to perform initial tests on the WT12 module. The
connections are shown in Figure P2l Wires were soldered directly to the WT'12 module

USB version 2.0 compatible.

S

and connected to the GPIO pins on the Raspberry Pi, see Figure 3

WT12-A-Al VDD Ll

(i\WRAPS) VoD 16 fut
NRTS [P53
RXD 6 P1:8
NCTS 10 P5:6
XD 26 P1:10
GND 14* P1:6

*Pins 1,14,15,28,29 and 31 should all be
connected to the GND plane of a PCB.
Only pin 14 is used in this implementation.

3.3V

CTS (GPIO 30)

Raspberry Pi
(Model B)

TXD (GPIO 14)

RTS (GPIO 31)

RXD (GPIO 15)

GND

Figure 2: Wiring WT12 to the Raspberry Pi computer.

The Raspberry Pi computer was running a Linux based operating system called Rasp-
bian. Python scripts were used to send serial commands over the UART interface to the

WT12 module.

2. Establish a Bluetooth connection between the Raspberry Pi and a PC.
By using Python scripts on both the Raspberry Pi and a regular PC it was possible
to configure and test the pairing process with the WT12 module. After a successful
pairing, data could be transmitted back and forth over the Bluetooth interface.

18

Figure 3: WT12 connected to a Raspberry Pi computer.

3. Implement the serial protocol of the Battery Rider with a Python script.

This enabled testing of the serial protocol and helped with the debugging process of the
Android software as well as the embedded software on the [RCU]

. Connect the module to the [RCU] of the Battery Rider.

Having completed the steps above it was possible to connect the module directly to the
[RCU Minor modifications had to be made to the embedded software running on the
RCUI see Section 3l This enabled Bluetooth communication between Battery Rider
and either a PC computer or an Android device. The connections between the WT12
module and the are shown in Figure [

WT12-A-Al LPC1765 FBD 100
(IWRAPS5) +33V

voD 2 T

voo 16§ 1521

RXD (2 = VA S P00} 1xp3

0 126 1518 [POL| o

GND [14* J7E7E s J_

GND

*Pins 1,14,15,28,29 and 31 should all be
connected to the GND plane of a PCB.
Only pin 14 is used in this implementation.

Figure 4: WT12 connection to the RCU.

. Firmware upgrade and reconfiguration of WT12 module.

The pairing process was complicated and inconsistent with the iWRAP3 firmware that
the WT12 module was shipped with. It was therefore necessary to upgrade the firmware
to iWRAPS5 that has improved pairing options. This upgrade was performed from a
Windows 7 computer using software that Bluegiga provides. The serial port of the
Raspberry Pi was forwarded over an Ethernet connection to a virtual serial port on a
PC running Windows 7. Upgrading of the module can be performed with various other
methods but this method was used since all the hardware and connections were already
in place.

The modified [RCUlis shown in Figure Bl

Figure 5: Modified Rider Control Unit.

6.3 Embedded software modification

The modification of the embedded software on the [RCUl proved to be simple since the system
already had a working implementation of a serial interface via USB. Following is a short
description of the software changes that led to the fulfillment of ReqA and ReqB listed in
Section [3l

6.3.1 Software requirement ReqA

The [RCU runs on a CooCox Real-time Operating System (RTOS)). The runs several
tasks, one of them is the task of providing serial communication via the USB. The Bluegiga
WT12 module was connected to an available UART port of the LPC1765 microcontroller.
The appropriate pins were reconfigured and a new serial communication task that used this
port was added. This solution allows the USB and the Bluetooth interfaces to coexist.

6.3.2 Software requirement ReqB

Another modification of the embedded software was the addition of a timer. This timer should
measure the time that the Battery Rider is active. Built in functions of the are used
to measure the time. The value of the timer is regularly saved to an Electrically Erasable
Programmable Read-Only Memory (EEPROM)]) to preserve the value when the machine is
turned off. The value is then read from the when the machine is turned on again.

6.4 Range, response time and data rate

Simple tests were performed to check the range of the Bluetooth communication. Line-of-sight
range proved to be at least 20m. Communication was also possible through concrete walls
with a range of around 5m.

Scientific testing of response times and data rates for the modified system was not con-
ducted. Nevertheless, the overall impression was that the response time was sufficiently short
to give the user the feeling of immediate change. No data on maximum connection through-
put was gathered since the main emphasis was on the transmission of live data rather than
transmission of large files,

19

20

7 Software design - Android application

There were several reasons for selecting Android as a platform for the smartphone application.
The fact that Android is open source plays a major role in this decision. Another factor is
that developing applications with the classical Bluetooth versions is well supported.

This section describes the design of the Android application. Overview of the design is
given in Section [Z.I] and a description of the system architecture is found in Section [.2
Descriptions of the system components can be found in Section [[33l Short description on the
testing of the software can be found at the end of this section.

7.1 Design overview

The Android application was designed using the development tools that Google provides with
the Android Software Development Kit (SDK]). Version 21.0.1 of the SDK tools was used
throughout the project. The target [APIl is Google [API] 17 with the minimum [APT level of
14. Please refer to http://developer.android.com/ for further information regarding the
development tools and the API levels.

Google[SDKl comes with several sample projects that can be used as templates or reference
designs for new projects. This application uses two of these sample projects. The first one is
named “HoneycombGallery” and was used as a template for the Graphical User Interface (GUI)
of the application. The other sample project that was used is named “BluetoothChat”. It was
used as a reference design for the Bluetooth communication part of this application. Both of
these projects are distributed under the Apache 2.0 license.

It is possible to split the resources behind this application into two main categories, one
is the actual Java code and the other is the resources that the Java code relies on. These
resources are mostly images and various Extensible Markup Language (XMTJ) files that are
used to store layouts for different views, text strings and other constants.

Describing the details of software development for Android devices is not considered to be
within the scope of this report. It is assumed that the user is familiar with Java programming
and the basic concepts of Android software development.

This application uses fragments. Fragments are recommended to separate and reuse con-
tent and code in Android applications. Fragments also simplify the process of making the
application run on devices with different screen sizes.

Detailed discussion about the system architecture and the system components is found in
Section and [T3] respectively. Each component is a separate Java class.

A requirement matrix for the Android application is shown in Table Bl Tt lists the most
important classes of the application and their relation to the software requirements that were
listed in Section B.22.1l The other classes that the application is based on are mainly for basic
functionalities such as menus and other visualizations that cannot be related directly to any
of the requirements.

21

http://developer.android.com/

22

Class name

Table 5: Requirements matrix for the Android application.

Software requirements

12|
E15] £
S|
(5]
g ol &=
«g o) N o g
w + o
94 % [<D) [¢b) ©
Elzglz| 8|8 g
w|El 8[| 2|S || 2|8 |=|%
8|2 |22 |B8| 2|8 |||
B8 = =l 8| 2| 2|28
AR IHEIEIERIE
2l = 9o | &2 5.8 O =R
o | S| B | B | B || || e S
S|Elel|Z|2|E|8|=|S|lg]|E
AR IEIEIE AR R R AR
Qg a2 ld|ala|&|la]T |8
A A A A AR R R =
gl T| T
| | o || d| | d| S| d| |
2= == o= B o= </ [~ = o= == I o= o'
AreaMeasure VIivIivI|Vv
BTService VIVIVIVIVIVIVIV]V
ContentFragment VIVIVIVIVIVIVIVIVIV]Y
Dashboard v
DeviceListActivity v
FaultDiagProcedure v
GPSData Viv|VY v
JSONParser v
JSONParserDetails v
MachineState VIiIVIVIVIV IV]|V
MainActivity VIVIVIVIVIVIVIVIVIV]V
MaintenanceSchedule v
RawData v
ReceiveThread ViIivVvIivIivIivIivIiVv| VY
SerialMessages VIVIVIVIVIVIV|Y
Tests v v

7.2 System architecture

This section focuses on the interaction of classes. Please refer to Section [[.3] for a description
of the inner workings of each class.

Time pressure and late design decisions have complicated the architecture of this software
to some extent. This does not affect the functionality of the software but it is likely to
complicate the code maintenance and/or reuse in the future.

There are two Java classes that play a central role in this software, the MainActivity
class and the ContentFragment class. Both of them are involved in nearly all the activities
within the program. In an attempt to avoid too cluttered diagrams the system architecture
is visualized using the three different diagrams shown in Figures [6], [[l and [

7.2.1 Bluetooth functionality

Figure [(] shows how the MainActivity class interacts with other classes to provide the Blue-
tooth connectivity. The interaction is best described by going through a single life cycle of a
Bluetooth connection.

1. The user starts the application, this will start the MainActivity. During startup, Main-
Activity performs some initialization, ask the user to enable the Bluetooth interface if
it is disabled and starts a service called BTService. BTService will later on handle the
actual establishment and management of the Bluetooth connection.

2. When the user begins the process of initiating a Bluetooth connection, the DeviceLis-
tActivity is started. The user will search for a Battery Rider to connect to and select
the appropriate one from a list. The DeviceListActivity is then closed and the address
of the selected device returned to MainActivity.

3. MainActivity receives a value from DeviceListActivity, passes it to BTService and re-
quests a connection.

4. BTService starts a ConnectThread which in turn tries to initiate a connection. If a
connection is established, BTService will start a ConnectedThread. It then notifies
MainActivity that a connection has been established and stops the ConnectThread.
The ConnectedThread will run as long as the Bluetooth connection is active. It will
continuously forward all incoming messages to MainActivity and forward all messages
that it receives from MainActivity to the Battery Rider.

5. When MainActivity is notified about a connection being established, it starts a Re-
ceiveThread that parses the incoming messages. ReceiveThread updates the informa-
tion in MachineState with the latest information received over the Bluetooth connec-
tion. ReceiveThread will also check what view is currently displayed to the user (in
ContentFragment) and refreshes it to make sure that the screen is updated with the new
information.

6. All commands that are sent to the Battery Rider are stored in the SerialMessages class.
When the user presses a command button, the appropriate message from SerialMessages
is sent via MainActivity to BTService and then to the Battery Rider.

7. When the Bluetooth connection is closed, ReceiveThread and Connected Thread are both
stopped. After that, the software is ready to begin the process again.

23

BTService

See section 7.3.2
for more details

AcceptThread

DevicelistActivity

See section7.3.6
for more details

MainActivity

ConnectThread

ConnectedThread

SerialMessages

MachineState

See section 7.3.12
for more details

See section7.3.11
for more details

—————>

1] |

See section 7.3.19
for more details

ReceiveThread

7.2.2 Basic GUI functionality

Figure [shows the interaction of MainActivity and ContentFragment with other classes to

See section 7.3.18
for more details

N

4

ContentFragment

See section 7.3.4
for more details

-

Legend

Class name

Depends on

References

Figure 6: Architecture of the components related to Bluetooth connectivity.

provide the basic functionality. As before, MainActivity plays a central role.

responsible for managing the background features of the [GUI| such as detecting screen sizes
and selecting proper layouts. If the screen size is large enough (tablet) it will display both the
MenuFragment and the ContentFragment, otherwise it will only display one of them at a time.
The program menus and the application preferences are also managed by the MainActivity

class.

24

MyMenuEntry PreferenceFragment SettingsActivity

See section 7.3.14 See section 7.3.16 é _____ See section 7.3.16
I_ _> for more details for more details for more details
! ~
, 1.% !
| |
! |
: MyMenuCategory ContentActivity MainActivity
|
I See section 7.3.14 See section 7.3.3 é _____ See section 7.3.12
) for more details for more details for more details
|
~ | |
|
I 1..%* | | I
b e oo oo oo - L L T |
|) | |
| | J W
| MyMenu MenuFragment ContentFragment
|
L - See section 7.3.14 é _____ Seesection7.3.14 | __ 9 See section 7.3.4
for more details for more details for more details
[N |
| |
e e e e e e e e e e e e e e a
Legend
Classname | — — — — =~ >
Depends on
References

Figure 7: Architecture of the basic GUI components.

7.2.3 Work tracking and servicing functionalities

Figure [§ shows the interaction of MainActivity and ContentFragment with other classes to
provide the work tracking and servicing functionalities.

As soon as the application has finished the Bluetooth initialization mentioned earlier it will
try to initialize the GPS interface. If the GPS is not enabled on the device the user is offered
to open the settings where it is possible to enable the GPS. Some features of the application
will be limited if the device is not equipped with a GPS or the user decides to leave the GPS
disabled.

Tasks that check the maintenance schedule and service times are started as soon as the
application starts, these tasks are a part of the MaintenanceSchedule class. The checks will
run in the background for as long as the application is running. They will notify the user
about any maintenance that is due. After the initialization completes, the program is ready
for use and the device will try to acquire a GPS location.

ContentFragment is the central point for this part of the application. The major role of
ContentFragment is to respond to the user’s menu selection and display the corresponding
view to the user. All of the views are connected to [XMI] layouts except the “User Manual”
view which is completely handled by the ContentFragment. A selection of a certain program
feature will make ContentFragment expand one XML layout file. Each XML layout file is
connected to one Java class, this Java class is then responsible for providing the specific
program features.

The MachineState class is important to many of the other classes since it contains the
current state of the machine. One exception is the RawData class which displays raw sensor
data from the Battery Rider. This view is updated directly from the ReceiveThread for the

25

Dashboard

See section 7.3.5
for more details

A\ 72

MachineState

See section 7.3.11

MaintenanceSchedule

for more details @lllll.—
|
S |
| |
| I
Tests |
|
See section 7.3.20 e _I p—
for more details |
|
|
|
A4
MainActivity

See section 7.3.13
for more details

(—===3

See section 7.3.12
for more details

AreaMeasure

See section 7.3.1
for more details

LogFormatter

See section 7.3.10
for more details

ContentFragment depends on:

T AreaMeasure
| Dashboard
T _n g FaultDiagProcedure
aultDiagProcedure - R -
E n. > MainActivity
MaintenanceSchedule
See section 7.3.7 —
for more details] RawData
| Tests
] |
I |
|]
] ContentFragment RawData
I
— See section7.3.4 See section 7.3.17
—_—— for more details ¢ === for more details
R ——
0.1
MyMapFragment JSONParser

GPSData

—————>

b e e e e e . . - - - - - -

See section 7.3.8
for more details

See section7.3.15
for more details

See section 7.3.9
for more details

JSONParserDetails

0.1

See section 7.3.9
for more details

Legend

—_—————>

Depends on
—_—

References

Class name

Figure 8: Architecture of the work tracking and servicing components.

26

sake of simplicity.

The Tests class uses MainActivity to send messages to the Battery Rider. This is also
true for the FaulDiagProcedure class which also uses the LogFormatter class to format the log
messages during the test procedure.

Classes named JSONParser and JSONParserDetails are both used to retrieve and parse
data about approved Husqgvarna service providers from the company website. The information
that they retrieve is used by the MyMapFragment class and the ContentFragment class to
provide the service map features of the application.

7.3 Component description

The components of the application are described in this section. Each component corresponds
to a single Java class.

7.3.1 AreaMeasure

This class is responsible for all the work tracking features that the application has. The class
depends on information about the state of the machine and the GPS position.

The [GUI that this class presents to the user is shown in Figure @l The information is
presented in a scrolling view that is partially hidden in this figure. The users is able to observe
the time, distance and area that has been cut since the application started. It is possible to
save current area measurement for future reference. If the user has saved work areas, he/she
can select that area as the current work area and get estimations of the remaining area and
time to completion. The user can also delete previously saved areas from this view.

@Husqvarna Work tracking

Worktracker
Current workarea:Hemma 56,86 m?
Elapsed Time
00:00:08
Distance:
2,49 m
Area:
2,11 m?
Remaining area:
54,75 m?
Remaining time:
00:03:40
Reset

Save current area

Select workarea: Hemma
4

Figure 9: Work tracking GUI.

The GPSData service uses a certain function (add()) to update the total distance value
every time the position is updated.

The estimation of remaining time is done by calculating the average speed of the machine
(current distance divided by current time). The remaining time is then calculated using that
average value.

27

The class specifies an asynchronous task called BackgroundCheck. This task is started by
the MainActivity when the work tracking feature is first started. The purpose of this task is
to perform necessary status checks on the machine and make sure that all values related to
work tracking are updated, even when the user has changed to another view.

The current implementation requires that the forward pedal is being pressed down to a
certain threshold level and that the cutting unit is rotating. This is done to increase the
accuracy of the area measurements since the user only wants to measure the actual area that
is being cut. The application preferences allow some modification to these requirements but
are there for development purposes.

Please refer to Figure [AT]in the appendix (pg. 42) for a class diagram of this class. The
purpose of each function should be clear from its name.

7.3.2 BTService

The functionality of this class was discussed in detail in Section [[2Zl This class contains
definition of a thread that has not been mentioned earlier. That is the AcceptThread which
is run when an incoming connection is expected. This thread is not used in the current
implementation since it is always the Android device that initiates the connection.

Please refer to Figure [A.2in the appendix (pg. E3]) for a class diagram of this class.

7.3.3 ContentActivity

This activity is merely a wrapper for the ContentFragment when the application is running
on a device with a small screen, such as a smartphone.

7.3.4 ContentFragment

The functionality of this class was discussed in detail in Section This is the fragment
that shows the content selected in the MenuFragment. Its main purpose is to remove and
add content to the main view of the application. It contains one view for each function of the
program with two exceptions. The “About” screen is inflated directly from an layout
file and the service map is contained in a special fragment (MyMapFragment).

Please refer to Figure [A3]in the appendix (pg. 4] for a class diagram of this class.

7.3.5 Dashboard

This class provides a graphical representation of the current state of the Battery Rider. An
example of this is shown in Figure [I0l

All of the elements in this view are drawn at run time using the Android drawing [APIl
The view can be drawn in two different ways. If the view is shown in portrait mode, the view
is made narrower and longer to increase readability. Landscape mode draws a wider view to
minimize scrolling.

Please refer to Figure [A4]in the appendix (pg. [43]) for a class diagram of this class.

7.3.6 DeviceListActivity

The purpose of this activity is to search for nearby Bluetooth devices and display a list for
the user to select from. An example of this is shown in Figure 1l When the user selects a
device from the list the address of that device is returned to MainActivity which in turn will
request BTService to connect to it.

28

@Husqvarna supronr 3 0

_ = s - s =
Fault Diagnostics
Maintenance Schedule
General Tests
Thotle Cument Speed Temp Charge
Raw data
INPUTS
MCUERROR CUTDECK LIFTSWITCH STARTINIT
ECOMODE P-BRAKE SEAT CHARGER
WD RVS CUTILEDT CUTILED2
UT2LED1 CUT2LED2 U2 STATUS BLOCK THROTTLE
OUTPUTS
5V oUT STARTLED ERRORLED ECO_LED
MCUENABLE ~ FORWARD BATTERY_100 BATTERY.7S
BATTERY.SO BATTERY.2S BATTERY_U25 Main Relay
Cutteron PCB_LED _FET

Figure 10: Dashboard for the Battery Rider.

Paired devices:

Husqgvarna EIRider
00:07:80:4B:39:EB

Scan

Figure 11: Bluetooth devices search results.

7.3.7 FaultDiagProcedure

The fault diagnostics part of the application is managed by this class. The user is guided
through several test of the Battery Rider. Instructions regarding the test procedure are given

at the beginning of each step, this may include information about the location of individual
parts.

The testing of different parts of the system is performed in the following order:

1. Test IRCU| Bluetooth connectivity.

2. Test [RCU] external environment such as voltages and control signals from other parts of
the system.

3. Forward pedal test. Tests throttle potentiometer together with the forward pedal switch.
4. Reverse pedal test. Tests throttle potentiometer together with the reverse pedal switch.
5. Brake pedal switch test.

6. Lift lever switch test.

7. Deck lock switch test.

29

8. Seat switch test.
9. Start button test.

10. ECO button test.

All of these tests require an active Bluetooth connection to the Battery Rider. Before
starting each test the status of the Bluetooth connection is checked and the user notified if
the connection is not active.

P 4% M

@Husqvarna Fault Diagnostics

Possible solutions to this problem

Press the start button below to perform basic
testing on the control unit.

Possible solutions to this problem:
1. THE RCU is faulty.

Before starting this test, make sure that the 2. Blown 5 A fuse.
ignition key is in the on (1) position and that you 3. Main fuse blown (150 A).
are connected to the machine via Bluetooth. o
4. RCU or contacts are faulty (bring
When the test has started, you will have to wait for to servicing dealer).
it to finish before moving to the next test. 5. The switch in the ignition is faulty

(bring to servicing dealer).
6. Operator panel broken (bring to

servicing dealer)
Start

Solutions

The test failed.The MCU ERROR signal is low.

Please retry the test by pressing start again or

check out the suggested solutions by pressing
the solution button.

— —
(a) (b)

Figure 12: Examples of the fault diagnostics GUI.

When a test is started, an asynchronous timeout task is started. This task performs testing
in the background and counts down a timer. FEach test is given ten seconds to complete,
otherwise it will fail and display the results to the user. An example of this is shown in Figure
12(a)}

When a test fails, the program presents the user with possible solutions, see Figure .
A summary of the test results is given at the end of the test procedure. During the tests a
detailed log is kept, collecting the user actions and the state changes of the Battery Rider.
This log can be sent via email at the end of the procedure for further analysis.

Please refer to Figure in the appendix (pg. @) for a class diagram of this class.

7.3.8 GPSData

This class handles all the GPS related functions. It serves both the work tracking features
found in the AreaMeasure class as well as the service map feature in MyMapFragment. It
includes a function that calculates the distance between two points on a sphere using the
Haversine formula.

Please refer to Figure in the appendix (pg. 7)) for a class diagram of this class.

30

7.3.9 JSONParser and JSONParserDetails

The purpose of these classes is to download and parse data from Husqvarna’s website. Infor-
mation about the names and locations of the dealers is gathered with JSONParser. A more
detailed set of information is gathered with JSONParserDetails. The detailed information
includes phone numbers as well as web and email addresses. This information is used by the
service map fragment. It should be noted that these classes are very dependent on the service
map on the official website of Husqvarna. This solution is therefore very vulnerable to any
changes that might be made on the website.

7.3.10 LogFormatter

This class is used to format the log entries that are gathered during the fault diagnostic
procedure.

7.3.11 MachineState

This class is used to store the current state of the Battery Rider when a Bluetooth connection
is active. ReceiveThread is the only class that updates the machine state, other classes only
read the state.

Please refer to Figure in the appendix (pg. A7) for a class diagram of this class.

7.3.12 MainActivity

Many of the features of this class are covered in Section

This class is responsible for coordinating all the program features and determines the
display layout. An example of the layout on a large screen is given in Figure [[3l The layout
on a smaller screen is shown in Figures [14(a)| and [14(b)|

Please refer to Figure [A.8in the appendix (pg. E8)) for a class diagram of this class.

@ Husqvarna WORK SERVICE SUPPORT b)B‘ 5

Worktracker
Current workarea-Hemma 23,05 m?

Elapsed Time

00:00:05
Distance:

20T m
Area:

1,71 m?
Remaining area:

21,34 m?
Remaining time:

00:00:59

Reset

Save current area

Select workarea: Hemma

Delete selected area

Figure 13: Application running on a tablet (large screen).

31

482l 20:39

tHHusqvarna 3 (H)Husqvarna Work tracking

WORK SERVICE SUPPORT

Worktracker

Current workarea:Hemma 56,86 m?
Elapsed Time
00:00:08

Work tracking

Distance:

249 m
Area:

2,11 m?
Remaining area:

54,75 m?
Remaining time:

00:03:40

Reset

Save current area

Select workarea: Hemma
Y|

(a) Menu displayed at startup (b) Work tracker displayed in a separate
fragment

Figure 14: Application running on a phone (small screen).

7.3.13 MaintenanceSchedule

The maintenance schedule feature is handled by this class. The maintenance intervals are
taken from the user manual for the Battery Rider and are hard-coded into the application.
This could easily be changed so that the intervals could be adjusted in the application settings.

@ Husqvarna WORK SERVICE SUPPORT >)B1 13'
—
Dashboard Maintenance Intery. Dur. Checked
Cleaning Daily
Fault Diagnostics
Check the steering wires. Daily
_ Check the brakes Daily
General Tests Check the battery acid level and condition. Daily
Raw data Check the safety system Daily 0z
Check nuts and screws. Daily
Check the electrical cables and connections, 25 hrs
Check the cutting deck. 25hrs
Check the tire pressure. 25 hrs
Lubricate joints, shafts and chain 25hrs
Check/adjust parking brake 50hrs
Confirm

Figure 15: Maintenance Schedule GUI (tablet view).

32

The MaintenanceSchedule class depends on two asynchronous tasks. One is for fetching the
latest value of the timer and updating the display when the user has the maintenance schedule
display open, see Figure [[3l The user is able to see how long it is since the maintenance was
performed and check the maintenance that has just been completed. Tasks that are due are
displayed in red color.

The other tasks runs in the background, no matter what is being displayed, and notifies
the user if any maintenance is needed. This is done with a regular Android notification (see
Figure [[6) and an alarm sound.

Meddelanden Radera

Snotra 20:42

The machine should be cleaned! 1

Figure 16: Maintenance notification.

Please refer to Figure in the appendix (pg. E9) for a class diagram of this class.

7.3.14 MenuFragment, MyMenu, MyMenuCategory and MyMenuEntry

The functions of these classes was discussed in Section [[.2.2]

7.3.15 MyMapFragment

MyMapFragment contains the service map features. An example of the service map view
is shown in Figures . It depends on JSONParser and JSONParserDetails since they
gather all the information that is displayed. When the user selects a specific service provider
a detailed view of that service provider is displayed, see Figure . The user can choose to
use the information displayed to contact the service provider by phone or email, browse the
company’s website or use the navigational features of the smartphone to get directions to the
given address.

33

@Husqvarna Find Service

\,
N No6dinge-Nol
\
\

Selected service provider

& P Whas il Lo AB
Kungalv EH
<] Address:
Sj}une Gra “- - ,‘..
\:‘\ - | R R T
;' Angered Sweden
Nolvik | Other details:
iy Website: www. o i se
S : Email: s it sc
Krihese Telephone Shop: 031 &
Savedalen
Goteborg
Johanne&erg _Landvetter
Alvsborg Hags| | e 27
\ MoalInlycke i .
@ Mél\ﬁ\ y Select action below: @ call
y .
Askim Alvered| O Email
\\ .
i; (O View webpage
Billdal Lindome N .
AR AT (O Navigate
Kullavik 5@ NN IS = ‘ 4
((Hjalmared ‘ — ‘ Cancel Continue
Google + s { —
| -
(a) Service map at startup. (b) Detailed information about a service

provider.

Figure 17: Service map GUI (small screen).

7.3.16 PreferenceFragment and SettingsActivity

SettingsActivity is a wrapper for the PreferenceFragment. The program preferences are shown
in Figure [I8]

© 3 T .aleoxll 20:47
DEVELOPMENT OPTIONS
Debug:

Set debugging to On/Off
AREA MEASUREMENT OPTIONS
Run timer when area is measu..

Timer on when area is measured (On/
Off)

4

Require forward pedal:
Require FWD pedal (On/Off)

Require cutter on forward:
Require cutter on (On/Off)

Throttle threshold (0-100):

Lowest allowed throttle level for active cutting

MAINTENANCE SCHEDULE

Daily interval minutes (0-480):
How many minutes between daily checks

Figure 18: Preferences for the Android application.

34

7.3.17 RawData

The purpose of this class is to display the current state of the Battery Rider in a simple text
form, see Figure 9 The views are updated directly from ReceiveThread.

7]

@ Husqvarna WORK SERVICE SUPPORT ,)g‘

L
——
Dashboard GPIO

) . POO: 1 PIO:D P20 1

Fault Diagnostics PO_1: 1 PI_1: 1 P4.29:0
P02 1 P14 1
Maintenance Schedule L
P04 0 P1.G: D
PO_5: 0 P1_10:0
General Tests P06 1 P1.140
PO_7: 1 PI_150
_ e
POS: 1 PI_IT:
PO_10:0 P1.18:1

PO_11:0 P1.18:0
PO_15:0 P1_20:0
PO_16:0 P1.21:0
PO17:0 P1.22:0
PO_18:0 P1_23:0
P0_19:0 P1_24:0
PD_20:0 P1.25:0
PD_21:0 P1.26:0
P0_22:0 P1.27:0
P0_23:0 P1.28:0
P0_24:0 P1.29:0
P0_25:0 P1.30:0
PO_26:0 P1.31:0

Throttle Potentiometer:93
Current Drawn: 0
Current Speed 0
Temperature: 0
Battery Charge 29

Figure 19: Raw Data GUI (tablet view).

7.3.18 ReceiveThread

The functionality if this class has been described shortly in Section [.2.Il This thread is
started as soon as a Bluetooth connection is established. It reads from a list of received
messages that MainActivity stores. It parses the received messages and updates the machine
state according to the information that the messages contain. After a successful reception of
a message it invalidates the view that is currently displayed to the user.

7.3.19 SerialMessages

This class holds constants with all the serial messages of the Battery Rider serial communi-
cation protocol.

35

7.3.20 Tests

The purpose of this class is to enable the user to control the outputs of the The user
interface is shown in Figure

At startup, the current state of the Battery Rider is checked and the initial position of
the switches moved to the correct position. Whenever a switch is moved a serial message is
sent via Bluetooth to the Battery Rider. This view also displays the serial number, product
number and software version of the connected machine.

|

@ Husqvarna WORK SERVICE SUPPORT N

Dashboard

Fault Diagnostics

Maintenance Schedule Husqvarna El-Rider
Software Version:0108
Raw data Product Number:9668008
Serial Number:00000000000
Set All LEDs - Ping Machine
Set GPIO pin
Start LED [Tay Error LED - Eco LED -
MCU Enable - Forward [TAy Battery 100% | Ay
Battery 75% Av Battery 50% Av Battery 25% Av
Battery <25% - uzout | Ay Mainrelay [Ty
Cutter Av PCB LED Av Reserve FET Av

Figure 20: General Tests GUI (tablet view).

7.4 Compatibility issues and testing

The Android software was tested on two devices. The smartphone that was used was Samsung
Galaxy S3 (GT-19300) running Android version 4.1.2. The tablet that was used for testing
was Samsung Galaxy Tab 10.1 (GT-P7510) running Android version 4.0.4.

The testing was performed continuously throughout the design phase. A system test was
performed towards the end of the project. It was verified that the software was able to meet
all the requirements on both of the devices. That is, the software provides the user with all
the required features. The behavior of the software also proved to be consistent between the
two devices.

Thorough testing was not performed on other devices but quick checks showed that the
software could be improved with respect to compatibility. Inconsistent rendering of text on
different devices was one of the compatibility issues that were noticed during these tests.

The accuracy of the distance measurement used in the work tracking features depends
heavily on the quality of the [GPS| receiver and the signal quality. Simple tests imply that the
accuracy is within £10%. This may be improved by tweaking system parameters but that
requires more extensive testing.

36

8 Discussion and future work

Previous sections describe the design of a system that provides smartphone connectivity to a
Battery Rider from Husqvarna. The major challenges and observations will be discussed in
this section. Ideas for future work and improvements are also presented.

Diversity is a major challenge in a project of this kind. On one side there are mobile devices
that are rapidly changing, both in terms of hardware and software. On the other side are the
machines and equipment that Husqvarna builds, and they are far from being homogeneous.

One way to deal with the issue of diversity is to keep the design as modular as possible.
If one software module is responsible for managing the wireless connection then it would be
possible to have many different connection types (Bluetooth, WiFi, ANT+ or ZigBee) and the
only thing that had to be changed would be one hardware module and one software module.
Another module would be responsible for implementing the serial protocol since it may vary
between machines. Each specific program feature could also be implemented as modules and
could be removed or added to the software to create different software solutions for different
machines.

The process of adding the connectivity option to existing systems is a challenge on its
own. Some systems, such as the Battery Rider, only require a firmware update and a simple
hardware module to enable this option. The hardware could be sold as an additional feature
or included as a standard with every new machine. The embedded systems of other machines
could require extensive redesign to enable this feature. Systems that are currently equipped
with a USB service port could possibly be modified with a USB to Bluetooth module.

Husqvarna might also want to consider the option of moving to purely wireless solutions
for their servicing equipment.

When it comes to future work, adding remote connectivity options to the software would
be interesting since it allows a whole new set of features to be added. Fleet management
is one example of such a feature. Another important feature to implement is firmware up-
grading via smartphone. This option together with remote access to the system could enable
remote updating of the firmware. A quick investigation on the topic of firmware upgrading
shows that there should be no fundamental difference between upgrading the firmware with a
wireless solution compared to the existing USB solution. The major obstacle is the software
implementation of the In System Programming ([SP)) protocol. Information about the proto-
col and source code for existing solutions may be available. Time pressure prevented further
analysis of this topic.

There are several things that need to be taken into consideration when a commercial
solution of this kind is designed. Security and safety of the system are probably the most
important factors although market research and user behavior might also be of great interest.

Current solution uses a very simple pairing method that provides no security at all. Anyone
with the Android application installed can connect to the machine and therefore view and alter
its state. Different methods of device pairing exist and could be used for this system. Using
[NFC] tags to establish the connection is one option that could improve security.

The safety issues that a wireless connectivity brings to a system has to be studied in detail
and individually for each system. Having wireless connectivity on a machine that only allows
reading of system parameters cannot be considered to be a safety risk. In the case of the
Battery Rider, it is possible to alter the state of the machine at any time. This is an obvious
safety hazard. A solution to this might be to use interlocks of some kind. The user could for
example enable service mode by inserting and turning a special key.

Another issue that has to be addressed in future development of the design is the privacy
aspect. Gathering and possibly distributing data about the movement and usage of a certain
equipment could violate the privacy of the user. In any case, the user must be made aware of
and agree to the use of this data.

This project may be used, in part or as a whole, for further investigation of smartphone
connectivity solutions for Husqvarna products. This master thesis was run in parallel with
another master thesis at Husqvarna AB. The other thesis focused on implementing different

37

features. The work of that thesis relies on the hardware implementation that is described in
this report. Despite this dependency the work of the two students was completely independent.

It has already been mentioned that the task of adding wireless connectivity to the Battery
Rider from Husqvarna could be generalized and applied to other embedded systems. Many em-
bedded systems could benefit from improved monitoring and maintenance options. Improved
servicing features and user guidance could extend the lifetime of the equipment. This could
also improve the efficiency of the equipment. The end result would be more efficient use of
resources. Smartphone connectivity to embedded systems could therefore advance sustainable
development in the field of embedded systems design.

38

9 Conclusion

Smartphone connectivity has successfully been added to a battery powered ride-on mower
from Husqvarna.

Analysis of a suitable communication technique lead to the conclusion that energy efficient
solutions, such as Bluetooth, should be used. The fact that Android is both widespread and
open source made it ideal for building a demonstrator of this kind.

The existing system was analyzed and modified to allow wireless two-way Bluetooth com-
munication to an Android device running a custom application. The result is a system that
demonstrates various new features and can be added to an existing system with minor software
and hardware changes.

All of the software requirements that were set at the beginning of the project were met.
Some of the hardware requirements that were set could not be measured to confirm their
fulfillment. More time is needed to implement proper tests for maximum throughput of the
current wireless solution.

Adding features like firmware upgrading over a smartphone connection was identified as a
time consuming but interesting task for the future.

39

References

[1]

[10]

[11]

[12]

[13]

[14]

[15]

40

eMarketer Inc., “Half of uk smartphones run on android,” May 2013, accessed 7. August
2013. [Online|. Available: http://www.emarketer.com/Article/Smartphone- Adoption-
Tips-Past-50-Major-Markets- Worldwide /1009923

“Lawnbotts.com,” October 2011, accessed 08. August 2013. [Online|. Available: http://
blog.lawnbotts.com/bluetooth-compatible- phones-remote-for-lawnbott-1b3510/

J. Nielsen, “Response times: The 3 important limits,” January 1993, accessed 16.
April 2013. [Online]. Available: http://www.nngroup.com/articles/response-times-3-
important-limits/

S. Seow, “User interface timing cheatsheet — revision 0.2.0,” 2009, accessed 16.
April 2013. [Online]. Available: http://www.stevenseow.com/papers/UI%20Timing
%20Cheatsheet.pdf

“Fast Facts | Bluetooth Technology Website,” 2011, accessed 10. April 2013. [Online].
Available: http://www.bluetooth.com /Pages/fast-facts.aspx

“Core Specifications | Bluetooth Technology Website,” 2011, accessed 10. April
2013. [Online|. Available: http://www.bluetooth.org/Building/HowTechnology Works/
CoreSpecifications.htm

“IEEE standard for information technology - telecommunications and information ex-
change between systems - local and metropolitan area networks - specific requirements.
- part 15.1: Wireless medium access control (MAC) and physical layer (PHY) specifica-
tions for wireless personal area networks (WPANS),” IEEE Std 802.15.1-2005 (Revision
of IEEE Std 802.15.1-2002), 2005.

“Wi-Fi CERTIFIED Wi-Fi Direct: Personal, portable Wi-Fi technol-
ogy (2010),” October 2010, accessed 11. April 2013. [Online]. Avail-
able: http://www.wi-fi.org/knowledge- center /white-papers/wi-fi-certified- wi-fi-direct
%E2%84% A2-personal-portable-wi-fi%C2% A E-technology-2010

“Wi-Fi CERTIFIED Wi-Fi Direct: Frequently Asked Questions,” October 2010, accessed
11. April 2013. [Online|. Available: http://www.wi-fi.org/sites/default/files/uploads/
files/faq 20101021 Wi-Fi_Direct FAQ.pdf

J. Haartsen, “The bluetooth radio system,” Personal Communications, IEEE, vol. 7, no. 1,
pp. 28-36, 2000.

B. SIG, “Architecture & Terminology Overview - covered core package version: 4.0,” in
Specification of the Bluetooth system. Bluetooth SIG, 2010, vol. 1.

“Discover and Learn | Wi-Fi Alliance,” 2013, accessed 9. August 2013. [Online].
Available: http://www.wi-fi.org/discover-and-learn

J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless protocols: Blue-
tooth, uwb, zigbee, and wi-fi,” in Industrial Electronics Society, 2007. IECON 2007. 33rd
Annual Conference of the IEEE, 2007, pp. 46-51.

V. Loseu, H. Ghasemzadeh, and R. Jafari, “A wireless communication selection approach
to minimize energy-per-bit for wearable computing applications,” in Distributed Com-
puting in Sensor Systems and Workshops (DCOSS), 2011 International Conference on,
2011, pp. 1-8.

R. Friedman, A. Kogan, and Y. Krivolapov, “On power and throughput tradeoffs of wifi
and bluetooth in smartphones,” in INFOCOM, 2011 Proceedings IEEE, 2011, pp. 900
908.

http://www.emarketer.com/Article/Smartphone-Adoption-Tips-Past-50-Major-Markets-Worldwide/1009923
http://www.emarketer.com/Article/Smartphone-Adoption-Tips-Past-50-Major-Markets-Worldwide/1009923
http://blog.lawnbotts.com/bluetooth-compatible-phones-remote-for-lawnbott-lb3510/
http://blog.lawnbotts.com/bluetooth-compatible-phones-remote-for-lawnbott-lb3510/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.stevenseow.com/papers/UI%20Timing%20Cheatsheet.pdf
http://www.stevenseow.com/papers/UI%20Timing%20Cheatsheet.pdf
http://www.bluetooth.com/Pages/fast-facts.aspx
http://www.bluetooth.org/Building/HowTechnologyWorks/CoreSpecifications.htm
http://www.bluetooth.org/Building/HowTechnologyWorks/CoreSpecifications.htm
http://www.wi-fi.org/knowledge-center/white-papers/wi-fi-certified-wi-fi-direct%E2%84%A2-personal-portable-wi-fi%C2%AE-technology-2010
http://www.wi-fi.org/knowledge-center/white-papers/wi-fi-certified-wi-fi-direct%E2%84%A2-personal-portable-wi-fi%C2%AE-technology-2010
http://www.wi-fi.org/sites/default/files/uploads/files/faq_20101021_Wi-Fi_Direct_FAQ.pdf
http://www.wi-fi.org/sites/default/files/uploads/files/faq_20101021_Wi-Fi_Direct_FAQ.pdf
http://www.wi-fi.org/discover-and-learn

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

A. G. D. Camps Mur and P. Serrano, “Device to device communications with
wifi direct: overview and experimentation,” 2013, accessed 18. April 2013.
[Online|. Available: http://www.campsmur.cat/files/camps_ssavedra_serrano_ WCM
11 00112 final version.pdf

“Basics | Bluetooth Technology Website,” 2011, accessed 18. April 2013. [Online].
Available: http://www.bluetooth.com/Pages/Basics.aspx

International Data Corporation, “Apple cedes market share in smartphone operating
system market as android surges and windows phone gains, according to idc,” August
2013, accessed 9. August 2013. [Online|. Available: http://www.idc.com/getdoc.jsp?
containerld=prUS24257413

R. van der Meulen and J. Rivera, “Gartner says worldwide mobile phone sales declined
1.7 percent in 2012,” February 2013, accessed 3. April 2013. [Online|. Available: http://
www.gartner.com/newsroom /id /2335616

comScore Inc., “comscore reports april 2013 u.s. smartphone subscriber
market share,” June 2013, accessed 9. August 2013. [Online|. Avail-
able: http://www.comscore.com/Insights/Press Releases/2013/6/comScore Reports
April 2013 U.S. Smartphone Subscriber Market Share

A. Inc., “Mfi program enrollment: Frequently asked questions,” 2013, accessed 13. April
2013. [Online|. Available: http://mfi.apple.com/faqgs

——, “ios: Supported bluetooth profiles,” Oct 2012, accessed 12. April 2013. [Online].
Available: http://support.apple.com/kb/ht3647

——, “Technical q&a qal657 using external accessory framework with bluetooth
devices,” October 2012, accessed 13. April 2013. [Online]. Available: https://developer.
apple.com/library/ios/#qa/qal657/ index.html# //apple ref/doc/uid/DTS40010232

C. De Dominicis, D. Mazzotti, M. Piccinelli, S. Rinaldi, A. Vezzoli, and A. Depari, “Eval-
uation of bluetooth hands-free profile for sensors applications in smartphone platforms,”
in Sensors Applications Symposium (SAS), 2012 IEEE, 2012, pp. 1-6.

Motorola, “Motorola Bluetooth low energy API” 2011, accessed 18. April 2013. [Online].
Available: http://www.motorola.com /sites/motodev/library/bluetooth apis.html

“Android Open Bluetooth Low Energy APIL” 2013, accessed 18. April 2013. [Online].
Available: http://android-btle.github.io/framework/

Google, “Wi-fi direct | Android Developers,” 2013, accessed 18. April 2013. [Online|.
Available: http://developer.android.com/guide/topics/connectivity /wifip2p.html

“WT12 data sheet, version 2.95,” Bluegiga Technologies, January 2012.

41

http://www.campsmur.cat/files/camps_ssavedra_serrano_WCM_11_00112_final_version.pdf
http://www.campsmur.cat/files/camps_ssavedra_serrano_WCM_11_00112_final_version.pdf
http://www.bluetooth.com/Pages/Basics.aspx
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://www.gartner.com/newsroom/id/2335616
http://www.gartner.com/newsroom/id/2335616
http://www.comscore.com/Insights/Press_Releases/2013/6/comScore_Reports_April_2013_U.S._Smartphone_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2013/6/comScore_Reports_April_2013_U.S._Smartphone_Subscriber_Market_Share
http://mfi.apple.com/faqs
http://support.apple.com/kb/ht3647
https://developer.apple.com/library/ios/#qa/qa1657/_index.html#//apple_ref/doc/uid/DTS40010232
https://developer.apple.com/library/ios/#qa/qa1657/_index.html#//apple_ref/doc/uid/DTS40010232
http://www.motorola.com/sites/motodev/library/bluetooth_apis.html
http://android-btle.github.io/framework/
http://developer.android.com/guide/topics/connectivity/wifip2p.html

Appendix

Class diagrams

(CIl AreaMeasure

o S ArrayList<String=> arealist
o S ArrayList<String= areaNames
o S ArrayList=String= areaSizes
o S AreaMeasure.BackgroundCheck areaTask
e° AreaMeasure (Context context, AttributeSet atirs)
ef ArealMeasure (Context context)
e void addSpinner ()
@ Svoid addDist (double d)
@ Svoid resetDist 0
m void saveArea (String id, double totalArea)
m boolean delArea (int area)
m ArraylList=String= getArealist ()
& void onRestorelnstanceState (Parcelable state)
& Parcelable onSavelnstanceState ()
© void onAttachedToWindow ()
@ void onltemSelected (AdapterView=?= parent, View view, int pos, long id)
@ void onNothingSelected (AdapterView=?= parent)
@ Svoid startTimer 0
@ Svoid stopTimer ()
o Svoid resetTimer 0]
@ Svoid showTime (float time)
o Svoid reShowTime 0
m Svoid showTimeRemaining (double time)
@ Shoolean isRunning ()
o Svoid stopTasks ()
@ Sdouble timeRemaining 9)
@ $bhoolean checkMachineState ()
[CW BackgroundCheck
& String dolnBackground (String[] params)
< void onPostExecute (String result)
& void onPreExecute ()
& void onCancelled ()
& void onProgressUpdate (Void]] values)

Figure A.1: Class diagram for AreaMeasure.

42

(CH BTService

&FF String NAME

SFUUID MY_UUID_INSECURE
#Fint STATE_NONE

&Fint STATE_LISTEN
#Fint STATE_CONNECTING
&#Fint STATE_CONNECTED

ef BTService (Context context, Handler handler)

movoid setState (int state)

@ nint getState)

@gvoid start 0]

@gVvoid connect (BluetoothDevice device)

@gVvoid connected (BluetoothSocket socket, BluetoothDevice device, String socketType)
@qvoid stop 0]

@ void write (byte[] out)

m void connectionFailed ()

m void connectionLost ()

(CW AccepfThread

e AcceptThread ()
@ void run)
@ void cancel ()

(CW ConnecfThread

e ConnectThread (BluetoothDevice device)
@ void run ()
@ void cancel ()

(W ConnectedThread

e° ConnectedThread (BluetoothSocket socket, String socketType)

@ void run ()
@ void write (byte[] buffer)
@ void cancel 0]

Figure A.2: Class diagram for BT Service.

43

44

(CH ContentFragment

o SString mConnectedDeviceName

o Sint mCategory

o Sint mCurPosition

o S View pm

o S View temp

o S View oil

o §View dashboard

o S View logs

o S View sensors

o S View worktimer

o S View areameasure

o S View faultDiag

o S View tests

o STextView gpio

o SGoogleMap mMap

o SMarker currLocationMarker

o Shoolean maplnitialized

SFintlg GPIO_LOOKUP

o View onCreateView (Layoutinflater inflater, ViewGroup container, Bundle savedinstanceState)
@ Vvoid onActivityCreated (Bundle savedinstanceState)
@ boolean onOptionsltemSelected (Menuitem item)

@ Vvoid onSavelnstanceState (Bundle outState)

a void setSystemUiVisible (boolean show)

a void updateContent (int category, int position)
@ void putMarkers (JSONObject res)

(CW DownloadServices

© void

& JSONObject dolnBackground (Object]] params)

onPostExecute (Object result)

Figure A.3: Class diagram for ContentFragment.

OF DESEN

E E E E E E B EEE BB O OC O O O O O O O 0 0

o o

o

)
a

void
void
Parcelable
void
void
void
void
void
int
int
void
void
void
void
void
void
void
void
void

Dashboard
Dashboard
Dashboard
onAttachedToWindow

onDetachedFromWindow

onRestorelnstanceState
onSavelnstanceState
onMeasure
onConfigurationChanged
onDraw
onSizeChanged
initDrawingTools
chooseDimension
getPreferredSize
drawReading
drawReadingNarrow
drawlndicators
drawlndicatorsNarrow
drawLEDs
drawLEDsNarrow
drawReadingBkg
drawBackground
regenerateBackground

(Context context)

(Context context, AttributeSet attrs)
(Context context, AttributeSet attrs, int defStyle)
(0]

(0]

(Parcelable state)

(0]

(int widthMeasureSpec, int heightMeasureSpec)
(Configuration newConfig)
(Canvas canvas)

(int w, int h, int oldw, int oldh)

(0]

(int mode, int size)

(0]

(Canvas canvas)

(Canvas canvas)

(Canvas canvas)

(Canvas canvas)

(Canvas canvas)

(Canvas canvas)

(Canvas canvas)

(Canvas canvas)

(0]

Figure A.4: Class diagram for Dashboard.

45

ICHl FaultDiagProcedure

(2]

(2]

void
void
void
Parcelable
void
void
void
boolean
void
void
void
boolean
boolean
boolean

E B B B E EBE E B BB O O O O @ @

FaultDiagProcedure
FaultDiagProcedure

(Context context, AttributeSet attrs)
(Context context)

onRestorelnstanceState (Farcelable state)

onAttachedToWindow

()

onDetachedFromWindow ()

onSavelnstanceState
loggerinit
viewSetup
cancelRunningTask
checkConnection
setState
displayDialog
displaySolution
initialChecks
pedalChecks
pedalOk

()

()

()

()

()

(int newState)

(int item, Context context)
(int item, Context context)
()

(int pedal)

(int pedal)

¢ ¢ ¢ ¢

String dolnBackground
void onPostExecute

void onPreExecute ()
void onProgressUpdate (Void[] values)

(Stringl] params)
(String result)

Figure A.5: Class diagram for FaultDiagProcedure.

46

(Cll GPSData

o€ GPSData (Context context)

@ boolean isEnabled ()

@ double qgetlLatitude O

@ double getLongitude ()

@ double getDistance (9]

@ void showSettingsAlert ()

@ Location getLocation ()

m Vvoid init 0

@ void stopGPS ()

@ int onStatCommand (/ntent intent, int flags, int startld)

@ void onLocationChanged (Location location)

@ void onProviderDisabled (String provider)

@ void onProviderEnabled (String provider)

@ void onDestroy ()

@ void onStatusChanged (String provider, int status, Bundle extras)
@ [Binder onBind (/ntent intent)

m double calDist (double lat1, double lon1, double lat2, double lon2)

Figure A.6: Class diagram for GPSData.

O EEIESECE

e Sint getPinValue (int port, int pin)
@ Svoid setPinValue (int port, int pin, Int value)
o Svoid initPorts ()

@ Svoid setSwver (String sw)

@ Svoid setProdNum (String pr)

o Svoid setSerNum (String sr)

o $3iring getSwver ()

o SString getProdNum ()

o 5 String getSerNum ()

e Sint getWorkedMinutes ()

e Svoid setWorkedMinutes (int mins)

Figure A.7: Class diagram for MachineState.

48

(CH MainActivity
SFint

MESSAGE_STATE_CHANGE

SFint MESSAGE_READ

SFint MESSAGE_WRITE

SFint MESSAGE_DEVICE_NAME

SFint MESSAGE_TOAST

SF String DEVICE_NAME

FF String TOAST

&*F String ACTION_DIALOG

&F String TAG

o $Boolean debugOn

o Shoolean ack

o $Boolean justConnected

o SBuilder builder

o SNotificationManager notificationManager

o Sint mThemeld

o SContext context

o SHandier handler

o SArmraylList<bytefl> mList

e void onCreate (Bundle savedinstanceState)
e void onActivityResult (int requestCode, int resultCode, /ntent data)
@ boolean onCreateQOptionsMenu (Menu menu)

@ boolean onPrepareOptionshenu (Menu menu)

@ boolean onOptionsitemSelected (Menultem item)
e vold onConfigurationChanged (Configuration newCenfig)
o Void onSavelnstanceState (Bundle outState)
e Vvoid onltemSelected (int category, int position)
© gvoid onResume ()

© gvoid onPause ()

@ Vvoid onStop 0

@ void onDestroy ()

@ Vvoid onBackPressed ()

& void onNewlntent (/ntent intent)

@ void toggleVisibleMenu ()

@ Svoid initRcvArray (¢]

o Svoid startRov ()

o Svoid sendMessage (bytel] message)
o SBoolean connected ()

| void setUpBT ()

| Vvoid connectDevice (Intent data)

| void initializeBT ()

| void seiBTStatus (int mState)

| void showDialog (String text)

s Vvoid initNotification (boolean custom)
@ Pending/ntent getDialogPendingintent (String dialogText)

MyDialogFragment

@ Dialog

@ SMainActivity MyDialogFragment newinstance

(String title)

onCreateDialog (Bundle savedinstanceState)

Figure A.8: Class diagram for MainActivity.

ICIl MaintenanceSchedule

& void

& void

MaintenanceSchedule (Context context, AttributeSet atirs)

MaintenanceSchedule (Context context)

startAlarmCheck ()
stopTasks ()
setTempValues ()
getValues ()
display ()

onRestorelnstanceState (FParcelable state)

onAttachedToWindow ()

& Parcelable onSavelnstanceState ()

ICHl BackgroundTick

<

<

&

&

&

String dolnBackground (String[] params)

void

void

void

void

onPostExecute (String result)
onPreExecute ()
onCancelled ()

onProgressUpdate (Void[] values)

[CHl MaintenanceAlarms

&

&

String dolnBackground (String/[] params)

void

void

void

void

onPostExecute (String result)
onPreExecute ()
onCancelled ()

onProgressUpdate (Void[] values)

Figure A.9: Class diagram for MaintenanceSchedule.

49

20

¢ ¢ ¢ ¢ © @

void
void
void

Tests (Context context, AttributeSet attrs)
Tests (Context context)
displaylnfo ()

onRestorelnstanceState (Parcelable state)
onAttachedToWindow ()

Parcelable onSavelnstanceState ()

Figure A.10: Class diagram for Tests.

	List of figures
	List of tables
	Preface
	List of acronyms
	Introduction
	Project background
	Purpose and goals
	Related designs
	Development method
	Report structure

	Husqvarna Battery Rider
	Requirements
	Hardware requirements
	Data rates
	Energy efficiency
	Response times
	Range of wireless connection
	Other design considerations

	Software requirements
	Android application
	Battery Rider embedded software

	Wireless connectivity
	Background information
	A brief history of Bluetooth
	A brief history of WiFi Direct

	Technical Overview
	Bluetooth
	WiFi Direct

	Energy efficiency
	Initiating a connection and security issues

	Developing for smartphones
	Overview of the smartphone market
	Smartphone connectivity options by operating systems
	iOS
	Android

	Modification of the Battery Rider
	Bluegiga WT12 module
	Development process
	Embedded software modification
	Software requirement ReqA
	Software requirement ReqB

	Range, response time and data rate

	Software design - Android application
	Design overview
	System architecture
	Bluetooth functionality
	Basic GUI functionality
	Work tracking and servicing functionalities

	Component description
	AreaMeasure
	BTService
	ContentActivity
	ContentFragment
	Dashboard
	DeviceListActivity
	FaultDiagProcedure
	GPSData
	JSONParser and JSONParserDetails
	LogFormatter
	MachineState
	MainActivity
	MaintenanceSchedule
	MenuFragment, MyMenu, MyMenuCategory and MyMenuEntry
	MyMapFragment
	PreferenceFragment and SettingsActivity
	RawData
	ReceiveThread
	SerialMessages
	Tests

	Compatibility issues and testing

	Discussion and future work
	Conclusion
	References
	Appendix

