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Design and Implementation
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ABSTRACT

In this thesis an Autonomous Cruise Control for a vehicle simulator is designed and implemented. 
Autonomous Cruise Control is a type of cruise control based on distance keeping as opposed to 
velocity keeping. In order to establish realtime communication over an existing CAN-bus the 
program dealing with this was remodelled and changes to the program was implemented. In order to 
allow feedback of the distance to and velocity of a leading vehicle, a plug-in to the vehicle 
simulator´s graphics program was created. A cascaded PID controller was designed and compared 
with a controller taken from litterature. Simulations suggest that these controllers are comparable in 
certain simulated safety aspects.

Keywords: Autonomous Cruise Control, Chalmers Vehicle Simulator, radar, gray-box model, step 
response, residual analysis, PID controller, emergency stopping, cut-in situations, CAN-bus, 
realtime communication.
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List of Symbols

k Sample index.
M Sample horizon.
N Number of samples.

   s Laplacian variable (Complex frequency).
t [s] Time.
τ [s] Time; variable.

   ω [s-1] Frequency.

Control:
   a(t) [m / s] Acceleration.
   Am Gain margin.
   b( ẋ , ẍ ) The uncontrollable part of the acceleration dynamics of a 

car.
   c Constant; Df over (KP KD).
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   CV Feedback of vehicle velocity.
   d [m] Distance variable.
   Df Derivation filter time.
   dm( ẋ ) [kg m / s2 ] Mechanical drag of car.
   e Control error.
   eD Distance error.
   eV Velocity error.
   Ka Feedback of vehicle acceleration.
   KD Derivation gain.
   kd [kg / m] Aerodynamic drag of car.
   KI Integration gain.
   KP Proportional gain.
   Kv Velocity gain.
   Kv Feedback gain of velocity (difference).
   m [kg] Mass of vehicle.
   N Number of circulations around minus one.
   P Number of poles in the right half-plane of the complex 

plane.
   R Radius of halfcircle and refence value in Laplace plane.



   r [-] Radius of halfcircle and reference value.
   S0 [m] Minimum safe distance, used in AICC.
   t5% [s] Settling time.
   u(t) Control signal.
   v(t) [m / s] Velocity.
   vD [m / s] Velocity difference.
   vl [m / s] Velocity of leading vehicle.
   w Measurement noise.
   x [m] Position of your car.
ẋ [m / s] Velocity, time derivative of position.
ẍ [m / s2] Acceleration, second time derivative of  position.

   Z Number of zero crossings in right half-plane of complex 
plane.

   ẋ  [(kg s)-1] Function multiplied to throttle in AICC.

   δ(t) [m] The safety distance policy in AICC. 
   θ [rad] Angle.
   λ [s-1] The gain of the velocity when added to the safety distance 

policy from AICC.

   ẋ  [s] Time constant of engine.

   φm [°] Phase margin.

Transfer functions:
F The controller without integration.

   F The controller.
   G General process model.
   Gdu Model of the process d over u.
   Gdvl Model of the process d over vl.
   Gm Model of a “real” process.
   L The loop of a feedback control system.
   Ld The loop; broken up at the distance signal.
   Lu The loop; broken up at the control signal.



Modelling:
   Pr Variance of predicted crosscovariance function.
   Ru(k) Covariance function of input signal.
   Rε(k) Covariance function of predicted error.
Rεuτ  Predicted crosscovariance function.

   u(t) Input signal.
   y(t) Output signal.

yt∣θN  Prediction of system output signal.

   ε(t) Prediction error.
θN

Estimated model parameters.

Automata:
QP  The finite set of state-names of automaton P.

P The alphabet of automaton P. 

iP  The initial state of automaton P.

P The transition function of automata P. 

Table 1: Prefixes for Binary Mulitiples. According to (Nordling, Österman, 2004) in part CU, chapter 2.6 on  page 23.
Factor Name Symbol
2^10 kibi Ki
2^20 mebi Mi
2^30 gibi Gi
2^40 tebi Ti
2^50 pebi Pi
2^60 exbi Ei



Chapter 1   

Introduction

HE FIRST PART of this introductory chapter consists of a 
short introduction to Autonomous Cruise Control and then 

an introduction to the Chalmers Vehicle Simulator (CVS) itself 
is presented. Finally the goal and scope of the thesis are 
presented.  The two next coming chapters deals with signal 
routing (the CAN-bus) and sensor creation. The two thereafter 
following chapters deals with modelling and control design. The 
chapter coming after those presents and discusses the 
implementations done in the Simulink model used in the vehicle 
simulator and in the last chapter discussions, future work and 
conclusions are brought up.

T

1.1  Autonomous Cruise Control

AUTONOMOUS CRUISE CONTROL or ACC for short is a term 
used in this paper to describe a cruise control based on distance 
keeping. In the litterature this has almost as many names and 
variations as there are researchers in the field. Examples of the 
variations of names can be Adaptive Cruise Control and 
Autonomous Intelligent Cruise Control. 

1



2 Chapter 1   Introduction

The name used here is chosen to minimize the confusion of the 
reader and in order not imply that the ACC designed in this 
paper is of adaptive type (no parameter is changed by the control 
algorithm) or some type of machine intelligence.

An ACC is basically a Cruise Control taken a step further, so 
that instead of using a velocity feedback (from the speedometer) 
to maintain a preset speed, feedback of distance to and velocity 
of a leading vehicle is created in order to maintain a safe 
distance, see for instance (Iuanno, 1993). The feedback needed 
for an ACC is usually created using a radar but other sensors can 
also be used. For instance one can use GPS and communicate 
information about velocity and position to other vehicles over a 
wireless connection. 

1.2  Thesis goal 

THE GOAL OF this thesis is primarily to design an Autonomous 
Cruise Control for use on the Chalmers Vehicle Simulator. The 
purpose of which is to investigate a couple of control strategies. 
More specific goals of the control design are: elimination of 
persistent errors, the closed loop must be stable, the controller 
needs to provide a comfortable ride (none or small overthrows) 
it should be able to handle emergency stopping and cut-ins, and 
it needs to be somewhat unsensitive against measurement noise. 

In order to enable use of the ACC and cruise control from the 
driving seat, some form of communication between the 
steeringwheel key panel and the Control computer needs to be 
established. 

There is a need to have appropriate sensors mimicing the 
behavior of existing senors used in determining distance and 
velocity of vehicles in the proximity of a car. 

There is an ongoing goal of increasing the realism of the 
simulator, associated with all work on the CVS, this is 
considered a secondary goal in this work.
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1.3  Thesis scope

THE WORK IS centered around the design and implementation 
of an ACC on a vehicle simulator (more specifically Chalmers 
Vehicle Simulator) and tools deemed necessary to use this in 
conjunction with said simulator. 

Realtime communication between the controls in the 
simulator car and the  software model needs to be assured. The 
communication between the car body and the ACC is limited to 
the existing CAN-bus. 

A sensor providing feedback of distance and velocity of 
appropriate leading vehicles needs to be developed and 
implemented. The sensory equipment used is limited to a 
software based radar sensor implemented using the plug-in 
capabilities of the graphics program.

The ACC needs a control law in order to work and the design 
and analysis of this requires a simple model of the controlled 
process. The controllers investigated are limited to simple PID 
controllers with different types of negative feedback and the 
model is limited to maximally second order process models.
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1.4  Chalmers Vehicle Simulator

THE SIMULATOR ITSELF consists of three PC computers: one 
controling the simulation marked Control Computer on which 
the user interface is launched, one running the model called 
xPCTarget named after the operating system running on it and 
one computer running the graphics program named Graphics 
Computer. The Graphics computer has a program that handles 
the graphical environment in which the simulated vehicle can be 
driven in  realistic traffic situations. This program has 
capabilities to handle plug-in programs which are ment to send 
information to the simulink model running on the xPCTarget 
Computer. The plug-ins that are currently avaliable handles 
things like measuring wheel positions. 

Furthermore the simulator consists of a hexapodic platform 
with parts of a car body attached to it. In order to display the 
graphics a backprojector is also mounted on the platoform, as 
can be seen in figure 1.1. The link between the car body and the 
rest of the simulator is the car´s original CAN-bus, which has 
been connected to the Control Computer. In order to use the 
CAN-bus the computer has a program that handles the hardware 
interface named CanCom.  



1.4  Chalmers Vehicle Simulator 5

figure 1.1: An overview of Chalmers Vehicle Simulator, or at least the parts 
that are mentioned in this paper. The lines represent different types of  
communications, where the CAN-bus is dashed as it is the only one 
considered in the paper.
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The vehicle dyamics is modelled in Simulink and this model is 
maintained on the Control Computer and at startup a 
precompiled version of this is loaded into the xPCTarget 
Computer and the model runs on that computer while the 
simulator is being used. The Simulink model is organized 
according to figure 1.2.

The block dealing with the vehicle dynamics is named Vehicle 
in figure 1.2. The contents of this block can be seen in figure
1.3.

In figure 1.3 one can see how information is transmitted through 
the model using one forward directional bus and one backward 
directional. The most interesting block, at least in regards to this 
paper, is the Vehcle Control block. The contents of this block 
can be seen in figure 1.4.

figure 1.2: The top view of the Simulink model associated with  the vehicle  
dynamics. From left to right the blocks contain: all the inputs to the model 
(from hardware-based like throttle and steeringwheel to software-based like 
the wheel position generated in the graphics computer) ,  road irregularities 
represented by adding noise, the vehicle dynamics is computed in the Vehicle  
block, the motions of the platform is calculated in the Platform Washout 
block and the outgoing signals are communicated to their recipients in the 
Output block.
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figure 1.4: The vehicle control block from figure 1.3. The linear reference 
model is used in the ESP, which handles stability of the vehicle. The ABS 
block prevents the brakes from locking up. The EPS & DSR block contains 
both the force feedback calculation associated with the Electronic Power 
Steering and a steeringwheel torque associated with a Driver Steering 
Recommendation system implemented in a previous master thesis.

In figure 1.5 the implementation of the Cruise Control can be 
seen. The Cruise Control is allowed to be enabled when the 
longitudinal velocity is high enough. If the throttle or brake 
signal is higher than what the controller dictates, the input 
signal is taken as outputs.

figure 1.5: The Cruise Control block from figure 1.4 showing the 
implementation of the previosly existing Cruise Control.
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The Control block from figure 1.5 can be seen in figure 1.6 
where the PI-contoller used for Cruise Control is shown. The 
lower speed limitation and the activation signal are also 
implemented here.

There is completely software based version of the simulator that 
in this work is called offline simulator. The offline simulator 
only consist of a Simulink model which has the same layout as 
the online version.

figure 1.6: The block named Control in figure 1.5 showing how the PI-
controller is implemented.
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Chapter 2  

CAN-bus communication

HE PRESENTLY USED program for communication over the 
CAN-bus already has all of the features that is required for 

using it with the current applications. Features that allows usage 
of the existing driving information system and warning 
messages. It has however one distinct disadvantage in regards to 
some of the applications presented in this paper; a complete lack 
of realtime processing of incoming CAN-messages. 

T

Little or no attention has previously been given to the 
realtime problem. Only a single incoming CAN-message is 
considered in the current application: the position of the ignition 
key. As one of the objectives of this work was to enable use of 
the existing keyboards associated with Cruise Control, which at 
least to some degree increases the realism of the simulator. 
Increasing the realtime capabilities of the CAN-bus 
communication program was given high priority.

2.1  A brief introduction to the CAN-bus

THE CONTROLLER AREA network or CAN for short, is a serial 
communications protocol mainly used within the automotive 
industries. Due to the cost effectiveness and security of the 
CAN-bus it has become commonplace in modern cars.  Cars 
equiped with such a bus use them in a wide range of 
applications, from engine control units to anti-skid systems. 

9
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The CAN-bus protocol built into the simulator car is of type 
2.0B, see (Robert Bosch, 1991), allowing for multiple messages 
with the same priority and  longer message identifiers. The car 
also has two separate CAN-buses with differing bandwidths 
(125 [Kibit/s] and 250 [Kibit/s]).

The CAN-bus basically consists of a wire pair connecting 
two or more computers. These wires can either have the same 
electric potential or have different ones, corresponding to the 
bus communicating a binary zero or one. The wires have, if left 
unaffected differing potentials and has to be “written to” in 
order to be given the same potential. This allows the bus to 
prioritize between different messages in accordance with low 
number – high priority.

Every connected unit has one writing unit and one reading 
unit, these are capable of running simultaneous. The reading unit 
is usualy always active, in order to keep track of transmitted 
messages and to know when the bus is occupied. The writing 
unit only needs to be active when outputing a binary zero.

The original idea with the CAN protocol is that every 
message to be sent has a unique identification code 
corresponding to the message´s priority. Every message sent 
begins with writing the corresponding identification code. 
During this the bus is monitored by the reading unit and as soon 
as one of the readings differ from the written output; the bus is 
assumed to be required by a higher priority message and the 
output is stopped for a period of time corresponding to the 
length of a message. This is repeated until the message has been 
sent. Since the bus needs to be free in order to write a one; the 
messege with the lowest identification code (the highest 
priority) is the first to be transmitted.
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2.2  Probem description

THE FIRST PROBLEM encountered with the CAN-bus was 
associated with wire routing. The contact mechanism that was 
originally placed inside the steering-wheel to allow electrical 
contact between the keys placed on the steering-wheel and the 
rest of the car, was broken and had to be repaired.

Once the contacts had been repaired, it became obvious that 
there was a problem with the software handling the CAN-bus 
communication.  The  problem  appered  as  an  almost  twenty 
seconds long time delay when using the keypad associated with 
Cruise Control as opposed to the radio controls wich were also 
placed  on  the  steering-wheel  but  was  unaffected  by  any 
noticable time delay. 

2.3  Current algorithm

IN ORDER TO analyse the software related problem, an 
algorithm describing the behaviour of the source code was 
written. The existing software solution was designed with the 
main goal of allowing the use of outgoing CAN messaging 
capabilities sending commands to the vehicle. Little attention 
has been given to the opposite directional data traffic, messages 
received from the vehicle. This meant that the software needed 
to be remodelled in order to allow the realtime communication 
required to use the cruise control keypad.

The software problem described in the section above is not 
exacly a design flaw, since no critical process is dependent on 
realtime information from the car´s CAN-bus. The usage of the 
cruise control keyboard however changes that; if the signals can 
not be received fast enough, then the use of the original 
keyboard would be an obstacle to the realism of the simulation.

In figure 2.1 the discussed algorithm is shown as a flow 
chart, together with the algorithm for the main program thread, 
wich mostly displays the simulated velocity and engine speed. 
The algorithm is based on the framesAndSignals object called 
fas which is a database that describe the state of all signals 
transmitted over the CAN-bus.
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figure 2.1: Algorithm currently used in handling CAN-bus messages in the 
program CanCom.exe. The object of type framesAndSignals called fas seen 
in the second square in the CAN thread handles the current messages, both 
read from the CAN-bus  and to be written to the same. The thread called 
“Main” displayed on the left is the programs main thread.

The fas object consists of all the messages that can be sent, 
together with timing intervals and all the messages that can be 
read from the CAN-bus and their last received status. The idea 
with the object fas is to organize the messages so that a picture 
of the current status of the car is easily avaliable. Creating the 
CAN messages is also simplified by the use of the fas, since the 
program only needs to cycle through it and given the time 
intervals, create new messages to be sent.

The CAN thread seen in figure 2.1, works very well in 
sending messages, since this is totally deterministic and 
everything associated with that is time based. However that is 
not the case with receiving messages from the CAN-bus, here 
everyting is more or less random, at least event based, and even 
if the messages were to be renewed on specific time intervals by 
an external source, they would be delayed by messages of higher 
priority on the CAN-bus.

Initializing, create 
database fas

Wait for new CAN
message

Display velocity

Display  engine 
speed

Main

Is ESC pressed?

End program

CAN thread

Make changes to 
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Create appropriate 
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2.4  Remodelled CAN communication

THE BEST SULUTION to the problem of insufficent realtime 
communication was deemed to be remodelling the excisting 
software. In order to distribute the processor time more evenly 
the CAN communication thread is divided into two threads. In 
figure 2.2 an illustration of how the remodelled program will 
transport information to and from the CAN-bus is shown.

The type of system shown in figure 2.2 is known as a Discrete 
Event System (DES) and is easily modelled using Automata in 
for instance Supremica, which is a program that is used to work 
with DES. For a formal definition of Automata see (Fabian, 
2006) page 14, here it is sufficient to know that a Automaton is 
a 4-tuple given by equation (2.1).

P = 〈QP ,  P , iP , P 〉 (2.1)
where:
QP  Is the finite set of state-names.
P Is a finite set of event-labels called the alphabet of the 

automata. 
iP  Is the initial state that the automaton occupies from start 

(belongs to the set QP).
P Is the transition function which, for a specific event and a 

specific occupied state, describes which state the 
automaton is in after the event has taken place. 

figure 2.2: Illustration of how the reader and writer threads allocates  
information. The fas, a framesAndSignals object, is a database of all, or at  
least most, signals and their last known status.
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In figure 2.3 on page 15 the processes called reader and writer 
are shown as automata modelled as consumer and producer 
processes in Supremica. The reader starts at the RestRead state 
and when a message is received, which is marked as an 
uncontrollable  event, it enters a state called Read in wich the fas 
can be updated by the event named updFas, which is a 
controllable event and when no more messages occupies the 
incoming message queue (the event queueEmpty occurs) the 
reader goes back into the resting state. The automata 
correspoding to the Reader is shown below.

Reader = 〈QR , R , iR , R〉

QR = 〈RestRead , Read 〉
R = 〈msgRcvd , queueEmpty , updFas 〉
iR = RestRead
R = 〈 〈〈RestRead , msgRcvd 〉 , Read 〉

〈〈Read , updFas〉 , Read 〉
〈〈Read , qeueuEmpty 〉 , RestRead 〉 〉

(2.2)

The writer is modelled in a similar way. It starts in a resting 
state in which the event named updFas, which is the same event 
as in the reader, is allowed to occur and the controllable event 
srcCAN, in which the fas database is searched for messages to 
output on the CAN-bus, can occur. Most messages needs to be 
output with individual time intervals. When srcCAN occur, the 
writer changes to the Write state where the uncontrollable events 
outputMsg and srcCpl may occur.

Writer = 〈QW , W , iW , W 〉

QW = 〈RestWrite , Write〉
W = 〈outputMsg , srcCAN , srcCpl , updFas 〉
iW = RestWrite
W = 〈〈 〈RestWrite , updFas 〉 , RestWrite〉

〈〈RestWrite , srcCAN 〉 , Write 〉
〈〈Write , srcCpl〉 , RestWrite〉
〈〈Write , outputMsg 〉 , Write 〉〉

(2.3)
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In order to see what happens when the reader and writer 
automata work in pseudo-parallel with each other, the automata 
are synchronized. The synchronous compostition for automaton 
A and B is denotet A || B and is defined by equation (2.4). The 
result from when synchronization was done on the reader and 
writer automata can be seen in figure 2.4 and equation (2.7).

A∥B = 〈Qa×Qb ,A∪B , 〈 i A , iB 〉 , A∥B 〉 (2.4)
where:

A∥B 〈qA ,qB 〉 , = {{AqA ,}×{B qB ,} ∈A∪B

{AqA ,}×{qB}              ∈ A−B

{qA}×{BqB ,} ∈B− A

(2.5)

C×D = {c ,d ;c∈C∧d∈D }                    
Cartesian product (Råde et al., 1998) p. 16

(2.6)

Writer || Reader = 〈QW||R , W||R , iW||R , W||R 〉

QW||R = 〈RR.RW , RR.W R.RW , R.W〉
W||R = 〈outputMsg , srcCAN , msgRcvd ,

queueEmpty , scCpl , updFas 〉
iW||R = RR.RW
W||R = 〈〈〈R.RW , queueEmpty〉 , RR.RW 〉

〈 〈R.RW , srcCAN 〉 , R.W 〉
〈 〈R.RW , updFas〉 , R.RW 〉
〈 〈R.W , outputMsg 〉 , R.W 〉
〈 〈R.W , queueEmpty〉 , RR.W 〉
〈 〈R.W , srcCpl 〉 , R.RW 〉
〈 〈RR.RW , msgRcvd 〉 , R.RW 〉
〈 〈RR.RW , srcCAN〉 , RR.W 〉
〈 〈RR.W , msgRcvd〉 , R.W 〉
〈 〈RR.W , outputMsg 〉 , RR.W 〉
〈 〈RR.W , srcCpl〉 , RR.RW 〉〉

(2.7)

figure 2.3: The reader and writer from  figure 2.2, modelled as Automata. It  
is important to know that they have separate alphabets. The “!” character 
means that the event is uncontrollable. 
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The automaton in figure 2.4 describes the desired behaviour of 
the reader and writer threads. There are no reachable places that 
are forbidden and it is easy to make sure that the threads will not 
get stuck in either deadlocking or livelocking using built in 
functions in Supremica.

The reader and writer threads were implemented under the 
names CANCom_thread and CANWrite_thread and can be seen 
in Appendix A. These threads also handles other tasks but these 
do not affect the CAN-bus communication. The implementation 
is done using a critical section which is a synchronization 
primitive that stops the switching of threads within the process. 
This is used around the events updFAS and srcCAN in figure
2.3 which are controllable events. This ensures mutual exclusion 
the same way as in figure 2.4.

figure 2.4: The syncronization between the reader and writer found in figure
2.3. Mutual exclusion is achieved by not allowing updFAS to occur when the 
automaton is in the Write.Read state. 



Chapter 3  

Sensor development

N THIS CHAPTER a way of sensing the simulated vehicles in 
the graphics environment is developed. This is done in the 

graphics program using the plug-in capabilities of the program. 
First the graphics environment is introduced, then the algorithm 
used  is presented. Finally the idea behind the algorithm is 
discussed. 

I

3.1  The graphics environment

CHALMERS VEHICLE SIMULATOR has a graphics program 
developed by thesis workers. It has been equiped with plugin 
capabilities,  which allows for measurements and computations 
done in the graphics program to be sent to the other computers 
using the UDP protocol. The graphics program is based on Open 
Scean Graph, (OSG Community, 2007) which is an open source 
graphics engine. The advantages of OSG is mainly economical 
(it is free to use) but also that it has extensive, easily accessed 
online documentation. 

The online documentation of OSG has, in some manner of 
speaking, made it possible to work with the program since the 
documentation of the graphics program left much to be desired. 
Due to that more than one source code exists and few people 
know which one is actualy in use, focus was put on creating 
plugins to the program, instead of changing the program itself.

17
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The existing plug-ins provide the model running on the 
xPCTarget computer with the position of the tires of the 
simulated car. The basic structure of this plug-in was used in the 
creation of the radar plug-in. Changes was however necessary 
regarding the information flow to the plug-in. In the existing 
plug-ins, the only apparent information accessable to the plug-in 
is a few variables sent from the core program. Fortunately there 
are no restrictions to the direct access of most objects in the 
program, which allows the plug-in to gather all information 
necessary to compute for instance the distance to, speed of and 
angle to any vehicle displayed by the graphics environment.
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3.2  The radar sensor 

ONE WAY TO sense a leading vehicle is to use a radar mounted 
to the front of your car. Such a sensor can give you both the 
distance and the velocity of a detected object. A radar sensor 
was implemented using the plug-in capabilities of the graphics 
program. An illustation of how a real radar find leading vehicles 
is shown in figure 3.1. 

figure 3.1: Traffic situation illustrating how a radar selects leading vehicle.  
If a car appears within the dashed area it will be discovered  by the radar 
and its distance and velocity is measured. If no car is present within the 
dashed area the maximum range and zero velocity are returned. The 
illustration is done off-scale.

The radar sensor  implemented works in a very different way as 
compared to a real radar. The leading vehicle is selected using a 
quadratic criterion expressed in the angle and distance relative to 
the simulated car. The angle is calculated as the angle from a 
line going through both the simulated car and the leading 
vehicle, to a plane defined by the global  z-axis and the 
simulated car´s direction. Thereby the angle is limited to 
positive values below 90º, which is acceptable since only cars in 
front of the simulated car, are considered and the selection is 
only sensitive to the angle squared. The quadratic criterion is 
shown in figure 3.2.
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figure 3.2: The quardratic criterion used when selecting a leading vehicle.  
The criterion is mirrored in the plane where the angle is zero and centered 
around an assumed reference distance of 50 meters (150 feet).

The realism of this criterion is questionable since vehicles 
appearing between the leader and the simulated car recieves a 
lower value than the vehicle being followed. A possible solution 
to this problem could be to use a criterion that is cubic in the 
distance variable. Such a criterion would however be more 
sensitive to measurement noise, since the leading vehicle would 
not be close to a minimum. Therefore a quadratic criterion was 
deemed sufficiently realistic and was implemented in the source 
code of the radar sensor, which can be found in Appendix B.

A measurement series was taken in order to find out how 
much noise the signal is exposed to and the resulting noise is 
shown in figure 3.3. The distance noise shown would probably 
not be much of a problem, especially if low-pass filtered. 
However, the noise of the measured velocity of the simulated 
cars are equal to the noise of the numerical derivation of  this 
signal, which is shown in figure 3.4.
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figure 3.3: The noise of the distance signal measured with the software based 
radar. The reason for the periodicy of the noise comes from the source of the 
noise, which is the pixelation of the position of the car.

figure 3.4: The numerical derivation of the signal shown in figure 3.3.  
Illustrates the noise of the measured velocity signal.

A reasonable way of increasing the realism of the sensor would 
be to add noise to the measurements. It could for instance be 
more realistic to add noise with a variance of half a car length to 
the distance measurement, thereby simulating different 
reflective surfaces, see the implementation done for the offline 
version of the simulator in figure 6.1 on page 56.





Chapter 4  

System modelling 

N ORDER TO perform and analyse the control design a simple 
model describing the linear parts of the simulator is required. 

Therefore a collection of mathematical models representing the 
process: car velocity over level of acceleration requested, were 
created using a step response. Thereafter the models were 
evaluated against each other, in order to find the best 
approximation of the simulation result. Finally the model is 
modified to represent the distance between a leading vehicle and 
the simulated car, thereby creating a grey-box model suitable for 
control design and analysis.

I

4.1  Model synthesis

THE GOAL OF this modelling is not to create a “perfect” model, 
just to create a model good enough to design a controller from. 
Therefore and for other reasons, like computational efficiency 
and to keep the model generally applicable, no model with order 
higher than second will be considered. Moreover the process is 
initially assumed not to need any zeros in order to accurately 
describe the model.

23
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4.1.1  Experiment and data collection

IN ORDER TO allow experiments outside of the simulator, there 
is an offline version of the simulink model which was used to 
carry out the above mentioned step response. The main 
difference between the offline and the online versions is that all 
external communication blocks have been replaced with signal 
builders and constants for all inputs and scopes for all outputs.

The experiment was designed with a step in the signal builder 
representing the throttle, at 25 seconds after start, when the 
throtte was set to full. All the rest of the signal builders was set 
to appropriate values and a switch was added to allow use of the 
automatic gearbox. After the experiment was completed, the 
result was recorded in an iddata object as displayed in figure 4.1.

figure 4.1: An oveview of the data stored in an iddata object containing the 
resulting velocity (and throttle) from a step in throttle level. Experiment 
carried out on the offline version of the simulink model, using the same 
automatic gearbox as used in the online version.
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4.1.2  Modelling

TWO DIFFERENT MODELLING techniques were used in the 
model design. Mostly to benchmark the best model, but also to 
make sure the selected technique is better then at least one other. 
The techniques used was: Matlab´s System Identification 
Toolbox, or SIT for short, and step response identification for 
processes with two time constants, as presented in (Thomas, 
2001), or BT for short. 

SIT is a toolbox in Matlab which uses an itterative 
identification process to identify models. It is easy to use and 
offers a wide range of model types, such as Box-Jenkins type 
parametric models and process models. SIT is designed with the 
intent to allow evaluation of different model types, however the 
only models considered here is of process type, so only a part of 
SIT´s capabilities are used. The models estimated in SIT is 
presented in equations (4.1) and (4.2).

GSIT ,2nd order =
65.07

2.364 s219.05 s1
(4.1)

 GSIT ,1st order =
65.07

31.07 s1 (4.2)

The BT modelling technique is based on manual calculations 
and measurements in two graphs. This requires a little bit more 
work than SIT and do not offer as much in the way of evaluation 
tools, so this has to be done manually. The BT  method however 
has the advantage of not requiring any software licence. 

The BT method consists of the four steps:
1. The first step in the method is to divide the final value 

with the step size to achieve the static gain, called  K, of 
the system. 

2. The next step is to measure the t1/3 and the t2/3 times, the 
times at which one third and two thirds of the final value 
is achieved. 
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3. The ratio t2/3  over t1/3 is then computed and given the 
name Q. The constant Q is then used to aquire valus for 
the constants P and a from two graphs presented in 
figure 4.2. 

figure 4.2: The graphs used to measure the constants a and P.  
See (Thomas, 2001), on page 113.

4. The final step is to calculate the largest time constant T 
using equation (4.3) and to put all the calculated 
constants (K, a and T) into equation (4.4) which then 
becomes the model.

               T =
t2 /3

P1 a 
(4.3)

         G = K
1 Ts1  aTs (4.4)

Table 4.1:  Measured and calculated constants related to the BT modelling 
process. the constants a and P is taken as extreme values (due to high Q) 
from figure 4.2.

Constant Measured value

K 65.08
t⅓ 7.28
t⅔ 23.66
Q 3.25
a 0
P 1.096
T 10.33
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Due to the low constant “a”, the model estimated with the BT 
method becomes a first order model, which is presented in 
equation (4.5).

GBT =
65.08

21.59s1
(4.5) 

In figure 4.3  a collection of step responses on the designed 
models given by equations (4.1), (4.2) and (4.5) is shown 
together with the data collected from the experiment. This figure 
suggests that either the model represented by the dashed black 
line, equation (4.1), or by the dotted red line, equation (4.5), 
gives the the best approximation of the real system based on the 
step response, here represented by a solid blue line.

figure 4.3: Step responses of the different models designed with the data 
shown in figure 4.1. It is hard to tell which model is the best one from this 
graph, so the choise of model will be decided in the verification section.
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4.2  Model verification

IN ORDER TO get a measurement on the quality of the model, it 
is important to verify the model. This is best preformed on a 
different set of data than that which the model is designed on. 
This is very important especially true if model order selection is 
considered. However the specific model quality is of little 
importance here and the model order is fixed to max two, while 
the verification of the choise between models is more important.

The verification is therefore focused primarily on 
benchmarking the models and it is preformed on the same data 
set as the models was constructed from. This is mostly for 
practical reasons, since there is a high degree of non-linearity in 
the process, a different step may indiacte that a generally good 
model is insufficient to describe the system and a frequency 
experiment will not likely work due to non-linearities.

4.2.1  Model benchmarking

THE VERIFICATION DONE here consists of residual analysis as 
presented in (Ljung, 2004), on page 367, the residuals are the 
predition errors of the model output, see equaiton (4.6). This 
consists of investigating the correlation between the model 
prediction error and the input signal, see equation (4.7). Ideally 
these signals are totally uncorrelated, in which case the 
correlation would consist of normally distributed values with a 
mean of zero and a variance given by equation (4.8).

    ε t  = ε t , θN  = yt  − yt∣θN  (4.6)

Rεuτ  =
1
N
∑
t = 1

N

ε t − τ u t  , ∣τ∣≤ M (4.7)

      Pr =
1
N
∑

k =−∞

∞

R k Ru k  (4.8)
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In figure 4.4 the residuals for the models are plotted in a 
comparative way. This figure supports what was suggested in 
figure 4.3. However, the residuals are supposed to be normally 
distributed with a mean of zero, which implies that the second 
order model designed in System identification toolbox is the one 
producing best results, at least with reguards to the data used in 
the modelling process.

figure 4.4: The residuals of the designed models. The closer they are to zero 
the better the model prediction is. The residuals are taken from the same 
data set as the models are design from.

Usually the residuals are plotted together with the allowable 
variance limits, given by three times the square root of equation 
(4.8), in order to show a measure of acceptable deviation from 
zero. In figure 4.5 the second order SIT model is plotted in such 
a fashion. According to (Ljung, 2004) page 367, high deviation 
from zero for negative τ (tau in figure 4.5) indicates that data 
was collected under feedback and not that the model is unable to 
capture the system dynamics.
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figure 4.5: Residuals of the second order model designed with SIT, plotted 
together with the lines +/- 3 * √(Pr). where Pr is given by equation (4.8). The 
high level of deviation for negative tau comes from that the data was 
collected under feedback.
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4.3  Model completion and noise sources

SINCE THE MODEL only describes the velocity dynamics of the 
simulated vehicle, the model now needs to be put into proper 
physical context. Then it will instead descride the distance to a 
leading vehicle. In order to achieve this, the velocity of a leading 
vehicle also needs to be included.

To describe the change of distance between two points, the 
difference between the speed of the farthest point and the speed 
of the closest is computed and integrated. This is applied to the 
models as shown in figure 4.6.

figure 4.6: Block diagram representation of the extension of the velocity  
model. Implementation done in Matlab/Simulink.

The model now becomes a two input, two output grey-box 
model, described with the transfer-functions given in equations 
(4.9) to (4.12).

Gdu =
distance
thottle

= −
Gm

s
(4.9)

Gdvl =
distance

velocityof leader
= 1

s
(4.10)

Gdvl =
velocitydifference

throttle
= −Gm (4.11)

Gdvl =
velocitydifference
velocityof leader

= 1 (4.12)

velocity of
leader 1

distanceThrottle

1

Integrator

1
s

Gm

65.0785

12.3636 s  +19.0475 s+12 v d
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This model only describe the linear distance and velocity and do 
not takes into account the effects of horizontal direction or 
velocity of the cars, see figure 4.7. The sensor presented in 
chapter three measures the norm of the vector vl when returning 
the velocity of the leading vehicle. That velocity is not always 
equal to ḋ . The difference between vl and ḋ  (below called 
measurement error) depends on the curvature of the road, which 
is deterministic (given by the road) but unkown and therefore 
treated as stochastic. The curvature is assumed to be a random-
walk process, meaning that low frequencies will dominate the 
measurement error caused by the curvature of the road.

figure 4.7: An illustration of how the road curvature impact the measured 
velocity with what is assumed to be random-walk noise. Here d is the scalar  
distance to the leading vehicle, y always points in the direction of the leading 
vehicle, vl is a vector representing th e speed of the leading car. 

The same type of measurement error occurs when the curvature 
of the road becomes three-dimensional, which happens when the 
simulated environment has a hilly characteristics. 
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Control Design

N THIS CHAPTER the ACC controller is to be computed and 
analysed. The controllers considered are of PID compensator 

type with feedback of distance or a combination of distance and 
velocity difference. First the control loops are formulated, after 
which the controllers are computed and tested, both on the 
model and on the offline simulator. Finally a controller taken 
from litterature is presented and compared with one of the 
designed controllers.

I

5.1  Control loop formulation

WHEN FORMULATING A control loop it is important to 
consider the physical model. In the considered case this is 
presented in figure 4.6 on page 31. In formulating the control 
error, it was deemed logical to use negative feedback with a 
positive reference value, see figure 5.1.

The distance reacts with opposite sign to the speed of a 
following car. For a case of equal initial velocity between leader 
and follower, an incrementation of the velocity of the follower 
will, naturally, decrease the distance. This means that in order to 
have negative feedback , the contoller needs to react with 
opposite sign to the formulated distance error. 

33
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One limiting factor to the controller is that in reality, the vehicle 
has a very small control range, from minus one to plus one. This 
comes from that the velocity of the modelled vehicle is 
controlled using brake and throttle levels respectively. Since no 
model of the braking process has been done and it is known that 
the braking is a much faster process than accelerating, this was 
simulated by simply muliplying negative parts of the control 
signal by ten.

figure 5.1: Simulink model used for simulations of simple PID controllers.  
Braking simulated by taking negative part of control signal and multiplying it  
by ten. Limits to brake and throttle signals are set to 0.3 and 0.7 respectively  
in order to achieve comfort.

One way to add dynamics and increase stability is to add 
feeback of  the velocity difference between the leading vehicle 
and the simulated car. Thereby making the de facto reference 
value sensitive to velocity in accordence with equation (5.1). 
This is simulated with the simulink model shown in figure 5.2. 

rv = r − K v vD (5.1)

figure 5.2: Simulink model of the control loop using external feedback to 
make the reference value sensitive to the speed difference.

The closed loop system in figure 5.2 is a simplification (where 
the noise is ignored) of equation (5.3) below. The controller, the 
PID block in the figure, is assigned to the transfer function F and 
the system model is assigned to G. 

u

throttle

r

30

distance

brake Velocity of
leader 20

PID

-[Kp*(Kd+Df) Kp*(1+Ki*Df) Kp*Ki ]

Df.s  +s2
Integrator

1
s

Gm

65.0785

12.3636 s  +19.0475 s+12

Gain

10

v d

u2

u1u

throttle

r

30

distance

brake
Velocity of

leader 20

PID

-[Kp*(Kd+Df) Kp*(1+Ki*Df) Kp*Ki]

Df.s  +s2
Integrator

1
s

Gm

65.0785

12.3636 s  +19.0475 s+12

Gain 1

Kv

Gain

10

v d
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V D = sD (5.2)

D = 1
s
V l GF R − D − V D −W  (5.3)

(5.2) in (5.3) ⇒ :

D1  GF
s
1 s = 1

s
V l GF R −W  (5.4)

⇔

D = 1
s GF 1 s

V l 
GF

s GF 1  s 
R−W  (5.5)

In equation (5.5) the transfer-functions corresponding to the 
sensitivity and the complementary sensitivity functions are 
visible. They decide the performance of the control system but 
they do not have the same simple connection to stability in this 
controller as they do in one with a single feedback loop. This 
comes from that the loop is no longer a single expression, see 
equations (5.20) and (5.22) on page 45.

There is a few requirements that needs to be fulfilled for the 
closed loop system: The closed loop needs to be stable, which 
will be checked after the control synthesis using the Nyquist 
criterion. The ride also needs to be comfortable for the 
passengers, in order to allow for user confidence in the ACC, 
which will also be investigated after the control synthesis, by the 
use of simulations. 

The goal of persistent error elimination is centered around 
elimination of the distance error, defined in equation (5.6).

ED = R − D (5.6)

F =
F
s

where: F≠0  when s 0 (5.7)

(5.6) in (5.3) with W = 0 ⇒ :

D = 1
s
V l−GF E D−V D  (5.8)

(5.2) and (5.7) in (5.8) ⇒ :

ED =
1
GF

V l −
s
GF

D  V D =

= s
G F

V l  s
G F − s
G F

D (5.9)
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In order to calculate the persistent error the final value theorem, 
see (Lennartson, 2002) p. 40, is used.

lim
t∞

eD t  = lim
s0

sED =

= lim
s0

s s
G F

V l  s
G F − s
G F

D = 0 (5.10)

The presistent distance error is, according to equation (5.10) 
eliminated by the controller used in figure 5.2 on page 34.

5.2  Control synthesis and approach analysis

THE CONTROL SYNTHESIS is of intuitive type, based on the 
control signal limits, first formed for a single feedback PID 
controller and then for a PID controller with feedback of both 
distance and difference of velocity. This controller approach will 
have the advantage of actually considering the limits of the 
simulator (the non-linear, simulated “reality”), but it may not be 
as good (regarding performance, robustness etc.) as a controller 
designed from a frequency based approach. The algorithm is 
exemplified with a distance feedback controller.

The algorithm of the intuitive PID approach
1. Using  the physical control signal limit (plus one to 

minus one) to decide on how big the control range of a 
proportional controller should be. An appropriate 
maximum error was chosen to 12 meters, see figure 5.3, 
corresponding to a KP = 1/12 ≈ 0.08. This is by no means 
a hard limit, only a theoretical limit to were full throttle 
will be applied without regards to integratory and 
derivatory outputs. The throttle and brake limitations are 
tightened further in order to achieve a more comfortable 
ride.
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figure 5.3: Illustration of how the proportional control parameter was 
selected. At an error of minus 12 meters, a control signal of minus one (full  
brake) is chosen. Because of the negative feedback, the error increases in the 
opposite direction of the vehicles. (units in meter)

2. Now a derivative gain is to be selected, generally this is 
done in order to achieve desired control speed. However 
since this is to be filtered, a filter time constant is also to 
be selected or more precisely a factor c according to: Df 

= c * KD*KP is to be selected (a filter with a filter time 
expressed as a factor of the total derivative gain). I order 
to select the gain a simulation of the model in figure 5.1 
with initial leader velocity of 20 m/s and initial distance 
of 60 m, was executed. An appropriate derivative gain 
was selected from the simulation to: KD = 2. The 
constant c is chosen to be 0.5 thereby achieving a filter 
cutoff frequency of (Kp)-1 = 12.5 rad/s.

3. Finally, the Integration gain KI is selected as small as 
possible, to suppress the magnitude of overthrows, while 
till having acceptable t5% . The choise of KI = 0.0015 
gives a simulated t5%  = 35 s (under brake and throttle 
limits of 0.1 and 0.7 respectively and under the same 
initial conditions as the simulation in step 2).
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5.2.1  Distance feedback

WHEN FOLLOWING THE above presented algorithm in creating 
a  controller with negative feedback of the distance, a controller 
of PID structure was synthesied. The resulting controller will 
have the apperence of equation (5.11) and the nummerical 
approximation of equation (5.12):

F PID s = K P1 K I

s


K D s

D f s  1 ≈ (5.11)

≈
0.1664 s20.08001 s0.00012

0.08 s2s
(5.12)

This controller gives a loop expression according to equation 
(5.13):

L s = F s Gm  s
1
s
≈ (5.13)

≈
10.83 s25.207 s0.007809

0.1891 s53.887 s419.13 s3s2 (5.14)

In order to investigate the closed loop stability, the loop 
expression is to be checked against the Nyquist criterion. Due to 
the fact that the loop is subject to more than one integration, the 
simplified criterion can not be used. Instead the complete 
criterion is to be applied. 

According to the Nyquist criterion, see (Lennartson, 2002) on 
page 240, a system is stable if equation (5.15) is fulfilled.

Z = P  N = 0 (5.15)
Where: 
Z = number of transmission zeros in right half of the 

complex plane for 1 + L(s).
P = number of poles in right half of the complex plane for 

L(s). 
N = number of clockwise rotations around the point (-1, 0) in 

the complex plane for the depiction of L(s) when s is 
assigned the Nyquist contour.
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The Nyquist criterion requires the Nyquist contour to be applied 
to the process. The contour is defined in four sections: the 
positive complex axis from zero to complex infinity, see 
equation (5.16), a half circle infintly far away from complex 
infinity to minus complex infinity (5.17), the negative complex 
axis from minus complex infinity to zero (5.18) and finaly  a 
half circle infinitly close to zero from negative (complex) zero 
to positive (complex) zero (5.19) , see (Lennartson, 2002) page 
239.

The contour is applied to a process by letting the Laplacian 
operator s be replaced with equation (5.16) to (5.19) and plot the 
results in a Nyquist diagram.

s = j , 0 ∞ (5.16)

s = Re j , clockwise rotation

2
≥  ≥−


2
, R∞

(5.17)

s = j , −∞  0 (5.18)

s = r e j  , counterclockwise rotation

−

2
≤ ≤


2
, r0

(5.19)

This was done in Matlab and in figure 5.4 the resulting Nyquist 
diagram can be viewed. Equation (5.16) is represented by the 
bottom line, going towards zero. Equation (5.17) becomes an 
infinitly small circle (two integrations) around zero. Equation 
(5.18) is shown as the top line, growing towards minus infinity 
and plus complex infinity. Equation (5.19) is not possible to see, 
since it becomes an infinitly large circle from the “end-point” of 
the top line, to the “start-point” of the bottom line in the 
clockwise direction (due to integration).
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figure 5.4: The Nyquist diagram of the circuit loop of the control loop, in a 
general overview.

In figure 5.5 the Nyquist diagram in close up around the minus 
one point is shown. In this figure it can clearly be seen that no 
small scale rotations around the minus one point occurs. 

figure 5.5: The Nyquist diagram in close-up around minus one

In Table 5.1 the data needed to chek the citerion is presented. Z 
and P are both given by equation (5.14) and computed in 
Matlab. N is given by figure 5.4 and (5.5), following the text 
explaining them. Since the collected data satisfy equation (5.15) 
the linear approximation of the system is concluded to be stable 
and some of the sulutions to the nonlinear system is therefore 
assumed to be stable as well.



5.2.1  Distance feedback 41

Table 5.1: The constants used in the Nyquist criterion. They obviously satisfy  
equation (5.15)

Constant  value

Z 0
P 0
N 0

This controller was tested in the Simulink model in figure 5.1 
which produced the results shown in figure 5.6. The plot 
suggests that the controller is most likely fast enough, but it also 
shows a “slinky” effect around 30 seconds into the simulation 
which is not acceptable under the comfort requirement. No one 
would use an ACC unless it provides a more comfortable ride 
than what is suggested.

figure 5.6: Plot of the distance response to a leading vehicle speed of 20 m/s  
with an initial distance of 60 m. The simulated car starts with initial speed of  
0 m/s.
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5.2.2  Distance and speed difference 
feedback

IN ORDER TO eliminate the “slinky” effect, the control loop is 
complemented with a negative feedback of the velocity 
difference in accordance with the structure in figure 5.2. The 
three steps of the intuitive control design above is only changed 
in the first step. This step is complemented with the choise of an 
appropriate KV. The new controller constants are shown in Table
5.2.

Table 5.2: Control constants selected with step 1-3 of the algorithm on pages 
36 to 37. With the KV selected as unity.

Constant Assigned value

KV 1
KP 0.08
KI 0.0015
KD 3.59
c 1.2

Using this controller gives the experiment presented in figure
5.7 a t5% of approximately 35 seconds, wich is the same settling 
time as with the controller without the extra feedback. The 
reason that the “slinky” behavior is avoided with this controller 
is that the complex poles otherwise experienced by the closed 
loop system, are damped.
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figure 5.7: Plot of the distance response to a leading vehicle speed of 20 m/s  
with an initial distance of 60 m. The simulated car starts with initial speed of  
0 m/s and has a reference value of 30 m. Simulation of the Simulink model in 
figure 5.2.

The control signal activity is an important factor in control 
engineering, especially in the case of sensitive actuators that are 
subject to wear or when a economically or environmentally 
expensive fuel is used. In the studied case with a software based 
simulator this is not as important, but may still be worth looking 
at since it is closely connected with sensitivity to measurement 
noise. In figure 5.8 the control signal activity of a simulation in 
the offline version of the simulator with noisy, but filtered 
measurements. The controller has damped the high frequency 
part of the added measurement noise, but is unable to damp the 
low frequency part. If the derivative filter time constant is 
increased, the control signal activity is reduced at the cost of a 
slower system.
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figure 5.8: The control signal activity of the discussed controller under a 
simulation with a leader starting with 0 m/s and accelerating to 20 m/s (72 
km/h)  in 16 s and holding that velocity then on. The simulated car is first  
accelerated to 16.67 m/s (60 km/h) whereafter the ACC is engaged.

In figure 5.9 the control signal from the same simulation but 
without the added noise, is presented. The signal in that figure 
seams to be a good approximation to the mean of figure 5.8. The 
most important difference is the Brake signal (the negative part).

figure 5.9: The same simulation as in figure 5.8 but without the added 
measurement noise. This illustrates the controllers sensitivity to  
measurement noise. In general the mean value of the noisy signal in figure 
5.8 seams not to deviate much from the signal in this figure.
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In figure 5.10 the Bode diagram of the controller can be seen. It 
has a characteristic PID apperence with the infinite low-
frequency response and two fairly constant gain levels.

figure 5.10: The Bode diagram of the controller given by Table 5.2.

As can be seen in figure 5.10 the controller has a high-frequency 
gain of just  below one (zero dB) which limits the control signal 
activity and the sensitivity against high frequency measurement 
noise, at least for singel loop PID controllers according to 
(Lennartson, 2002) on page 285. 

This controller has two controlled variables, velocity 
difference as well as distance, and therefore it has no single 
circuit loop expression. Instead it has two circuit loops, 
depending on where the circuit is broken up. Equation (5.20) 
describe the circuit loop if the loop is broken at the control 
signal u and (5.22) if it is broken at the primary controlled 
variable d.

Lu = F 
1
s
GmGm  =

F Gm

s
1s ≈ (5.20)

≈ 25.15s331.54s26.404 s0.009587
s510.96s423.81s31.228s2 (5.21)
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Ld =
1
s FGm

1  FGm
 ≈ (5.22)

≈ 25.15s26.395s0.009587
s510.96s448.95 s37.622s20.009587s

(5.23)

In order for this system to be stable, both Lu and Ld must 
represent stable systems. Ld can is this case be proven to be 
stable using the simplified Nyquist criterion (only one 
integration and no poles with positive real part), while Lu 

requires the non-simplified Nyquist criterion to be fulfilled. In 
figure 5.11 the Nyquist diagram for Lu is presented. Since Lu is 
integratory (equation (5.19) changes direction) the curve does 
not circulate the point minus one and since all poles and zero 
crossings have negative real part, the system represented by Lu is 
stable. The Lu expression is studied in conjunction with 
robustness against model errors and Ld in the sensitivity against 
measurement noise. They naturally have different margins and 
these are given in Table 5.3.

Table 5.3: The gain and phase margins of the loop expressions.

Margin Lu Ld

Am, [-] -inf. 19.8364
φm, [°] 99.5752 74.2905

figure 5.11: Nyquist diagram of the Lu circuit loop according to equation 
(5.21).
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The simplfied Nyquist criterion say that a feedbacked system is 
stable if the point (-1,0) is to the left of (and below) the curve 
L(jω) for all ω. In figure 5.12 the Nyquist diagram of Ld is 
shown. As can be seen in the figure, the system represted by Ld 

is stable according to the simplified Nyquist criterion.

figure 5.12: Nyquist diagram of the Ld circuit loop, according to equation 
(5.23).
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5.2.3  A benchmarking controller 

AS  A COMPARATIVE with existing controllers the Autonomous 
Intelligent Cruise Control, AICC, from (Ioannou, 1993) is 
introduced. This is based on a safety distance policy and will 
therefore not have formal error elimination. However the 
stationary “error” will come from the mentioned safety distance 
policy and allow for closer spacing between cars and thereby a 
higher traffic flow. The safety distance policy is given according 
to equation (5.24).

t  = d − L  S o vt  (5.24)

Here d stands for distance, L is the car length, So is the minimum 
safe distance (a reference variable), λ is the slope of the velocity 
dependent part and v is the cars velocity. The δ(t) is the policy 
deviation, which should be zero under stationary conditions. The 
control law presented in the article is given by equation (5.25) 
and is based on feedback linearization.

u t = 1
 ẋ 

c t  − b ẋ , ẍ  (5.25)

Where α, c and b are given by equations (5.26), (5.27) and 
(5.29) and comes from the feedback linerization technique.

 ẋ  = 1
m ẋ  (5.26)

c t  = C pt   C v ̇ t   K vvt   K aa t  (5.27)

The design constants  in equation (5.27) are given in (Ioannou, 
1993), as  Cp = 4, Cv = 28, Kv = 0, Kd = -0.04 and ̇t  is taken 
as the time derivative of equation (5.24) which becomes 
equation (5.28), where vd means the velocity difference. 

̇t  = vd − a t  (5.28)

b ẋ , ẍ  = −2
k d

m
ẋ ẍ −

1
 ẋ  ẍ  kd

m
ẋ 2

dm  ẋ 
m  (5.29)
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Where m is the vehicle mass, kd is the aerodynamic drag 
coefficient,  ẋ  is the engine time constant and dm  ẋ  is 
the mechanical drag. An implementation of this controller can 
be seen in figure 5.13. 

figure 5.13: An implementation of the AICC discussed in the text. Note the 
derivative block necessary in the controller.

This controller is more complex than the two previously 
considered and with increased model accuracy the complexity of 
the AICC will increase further. It requires the model to provide 
data about the distance to the leading vehicle, the velocity 
difference, the simulated car´s velocity and acceleration. Since 
the model, Gm, does not provide the car´s acceleration, the 
model needs to take the derivative of the velocity which 
increases the computation time.

In  figure 5.14 the results of a simulation of the different 
control system is presented. The difference is that the AICC do 
not have any proper reference value, instead the minimum safety 
distance L + S0, see figure 5.13, is set to 24 m, which gives a 
total distance of approximetly 30 m.
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figure 5.14: A simulation of the different controllers.

This controller gives a t5% of approximately 40 seconds and it 
completely eliminates the slinky behaviour of the simpler 
controllers considered.

An interesting control property is the control signal activity 
especially when the measurement signal is subject to noise. A 
simulation in the off-line simulator with noise added to the 
simulated leader was carried out and the resulting control signal 
is presented in figure 5.15. The control signal activity in this 
simulation is very high and it is likely that the high activity is 
rooted in the controller´s built-in model flaws, since the same 
simulation with the noise removed was done and the high 
activity remained. If the physical modelling done is improved 
less constant approximations and so forth, it is likely that the 
controller will preform better in all aspects including control 
signal activity.
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figure 5.15: The resulting control signal from a simulation with a simulated 
leader and carried out with the same conditions as the simulation in figure
5.8. 

5.2.4  Simulations of stopping and cut-ins 

TWO IMPORTANT TRAFFIC situations that can occur in reality, 
outside of the simulators otherwise considered in this paper, is if 
the leading vehicle has to preform an emergency stop and if a 
third vehicle overtakes your car and cut-in directly in front of 
you. First a simulation of the emergency stopping capabilities of 
the controller with feedback of distance and velocity (PID) is 
compared with that of the AICC, from (Ioannou, 1993).

The simulation starts with the leading vehicle at a distance of 
100 m at standstill. Then the leader is accelerated to 20 m/s with 
a maximum acceleration of 0.4 g. After 100 s the leader is 
deccelerated back to standstill with a maximum acceleration of 
0.8 g. The stopping distance is noted with full braking allowed 
and with braking limited to maximum 30 %. The results of the 
simulation can be found in table 5.4 on page 52.
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Table 5.4: Results of a simulation of emergency stopping with two different  
controllers. S0 + l  is the minimum safe distance of the AICC and the λ is  
chosen to 0.4. The reduced distance is the initial distance minus the distance 
directly after the emergency stopping is completed, when both vehicles are at  
standstill.

Controller Initial 
distance, [m]

Braking level, 
[-]

Reduced 
distance, [m]

PID 30 0.3 26
PID 30 1 10
PID 10 1 9
AICC 38 (S0+ l = 30) 0.3 29
AICC 38 1 20
AICC 18 (S0+ l = 10) 1 20

The PID controller seams to out-preform the AICC but this is 
most likely only an effect of the modelling of the AICC not 
corresponding very well with the simulated vehicle. However 
the controllers have at least comparable performance in their 
emergency stopping capabilities.

The cut-in simulations is done with an initial distance to the 
leading vehicle of 100 m and at standstill. The leading vehicle is 
thereafter accelerated to 20 m/s and after 100 s a negative step 
that brings the distance to 2 m is executed. This does not affect 
the velocity of the leading vehicle, which is assumed to have 
already adjusted its speed. During this simulation, the 
controllers are both allowed to use full brake. The results of the 
simulations are presented in figure 5.16 and figure 5.17
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figure 5.16: The cut-in simulation for the PID controller.

figure 5.17: The simulation of a cut-in situaiton for the AICC.

Both of the controllers handle this situation in a satisfactory way 
and collision is avoided.





Chapter 6  

Implementations

ERE THE IMPLEMENTATIONS done in the different 
Simulink models are presented and discussed. First  the 

offline version of the simulator model is considered. Thereafter 
the changes to the online version are presented.

H

6.1  Offline simulator 

THE MOST APPERENT disadvantage of the offline simulator is 
that there are not any other vehicles, so there is no leaders to 
follow. In order to do any meaningful simulations with an ACC 
a leader is required and must therefore be simulated. Such a 
simulated leader is shown in figure 6.1.

The velocity of the leader is here simulated with a signal 
builder block in which the velocity can be given any desirable 
characteristics. To the basic velocity is added a mixture of 
pseudo-random noise in form of both integrated noise (random-
walk noise) and a simple band limited white noise. 

55



56 Chapter 6  Implementations

figure 6.1: The block used for simulating the radar output when following a 
leading vehicle. Implemented in the offline version of the simulink model.

The input simulation shown in figure 6.1 is sufficient for 
simulating the single loop control approach (the normal PID 
controller). In the other control approaches the speed-output was 
also given a additative band limited white noise. The angle is 
not used for anything, but is still there since the radar algorithm 
uses it and outputs it.

In figure 6.2 the implementation of how the simulated leader 
from figure 6.1 connects with the controller can be seen. The 
distance signal is simply connected to the appropriate input 
(creates a negative feedback) while the speed signal is used to 
create the velocity difference between the leader and the 
simulator car. Thereafter the velocity difference signal is 
subtracted from the reference value, thereby creating the sought 
after negative feedback.
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figure 6.2: The simulink model of how the simulated leader is connected with 
the controller and how they are connected with the throttle and brake.

In figure 6.3 the Control-block from figure 6.2 can be seen. The 
structure is used in both the single and double loop controllers. 

figure 6.3: The simulink model of how the controller is implemented.  
Corresponds to the control block in  figure 6.2.
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6.2  Online simulator

IN THE ONLINE simulator there is a few other requirements that 
needs to be fulfilled, as compared with the offline version. There 
is obviously no need for any simulated leader, as it is in the 
offline version, instead the input from the radar sensor in the 
graphics environment needs to be received and filtered. The 
most obvious difference to the offline version is however that 
the ACC must be able to pick up from the previosly existing 
Cruise Control as soon as a leader vehicle is found.

In figure 6.4 the implementation of the ACC is shown. The 
most significant changes, as compared with the previously 
existing Cruise Control model, are marked in gray. The 
controllers are switched when a leader is found or lost, see 
variable Leader found in figure 6.6. The blocks ACC Logics and 
Cruise Control Logics are basicly the same block and the only 
difference between the boolean signals ACCActive and 
CruiseControlActive is that the latter is false when the velocity 
is to low.

figure 6.4: An overview of the simulink model of the ACC implementation.
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The reason for the regular Cruise Control to require that no 
leader is present, as opposed to use the ACC_Active input 
signal, is that the control switching should not be dependent of 
wether or not the cruise control or ACC is currently being used.

In figure 6.5 the contents of the block ACC logics from 
figure 6.4 can be seen. The block´s two outputs define the parts 
that make up the block: ACC Active and and Desired Distance. 
The state of the ACC Active signal is desided by a D-latch that 
only allows changes to the output if the brakes are active or if 
the cruise button is pressed and the brakes are not active at the 
same time. The D-latch updates the output with the logic 
complement to the brake active signal, thereby making sure that 
the brakes are not engaged when the ACC (same for Cruise 
Control) is activated.

The desired distance signal is computed as the reference 
value minus the velocity difference, see control approach with 
feedback of both velocity difference and distance on page 34. 
The reference value is set on the positive flank of an appropriate 
starting signal and can be modified by the blocks Incrementation 
and Decrementation of Desired Distance by pressing the plus 
and minus buttons on the steeringwheel.

figure 6.5: The simulink model of how the block ACC logics from figure 6.4 
is implemented.
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The behaviour of the incrementation and decrementation of the 
desired distance and speed (for ACC and Cruise Control 
respectively) is given according to: the first possitive flank 
increases / decreases the desired speed (only applied to the 
cruise control) with a predetermined amount (set to 1 m/s) after 
the signal has been held high for a period of time (0.5 second) 
the desired signal is ramped with a slope of 5 units (m and m/s) 
per second. Finally when a negative flank is encountered, the 
desired signal is set to the current value of the measured distance 
or speed. The implementation of the behaviour can be found in 
figure 6.9.

In figure 6.6 the block Leader Logics is presented. This block 
keeps track of when an appropriate leading vehicle is aviable 
and filters the measured distance to this vehicle.

figure 6.6: Leader Logics

In figure 6.7 the ACC controller implementation is shown. It 
requires the ACC_Active signal to have been high for a period 
of time (0.5 seconds) before allowing the ACC to activate. This 
time delay prevents the abnormaly high derivative output 
associated with leaps in the reference value that often occurs 
with the activation of the ACC.
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figure 6.7: ACC Controller

In figure 6.8 the Cruise Control Logics block found in figure 6.4 
is shown.this block handles the activation of the cruise control 
and connects the desired velocity with the external CAN-bus 
controls.

figure 6.8: Cruise Control Logics

The decrementation / incrementation of desired velocity blocks 
that can be seen in figure 6.8 and  decrementation / 
incrementation of desired distance in figure 6.5 are all illustrated 
by figure 6.9.
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figure 6.9: The block Decrementation of desired distance. All of the 
decrementation and incrementation blocks have this layout.

The contents of the cruise controller block, see Control in figure
6.4, is shown in figure 6.10. The only difference from the 
previously existing block is that the integratory state has been 
given reseting capabilities.

figure 6.10: Cruise Controller
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Chapter 7  

Discussion, future work and 
conclusions

HIS CHAPTER STARTS with a discussion of the results and 
other issues related to the paper followed by a presentation 

of a few ideas regarding future work. Finally some conclusions 
drawn from the results are brought up.

T

7.1  Discussion 

THE CONTROL APPROACHES have no capabilities to handle low 
frequency measurement noise, which is a common problem with 
PID controllers. Fortunately the graphics application of the 
simulator produces little or no such low frequency noise, so this 
is not really much of a problem here. The noise that is produced 
by the graphics program comes from the process of 
discretization of the cars position as they are being propagated 
through the environment and this mostly contain high frequency 
components.

63



64 Chapter 7  Discussion, future work and conclusions

Since the CAN-bus communication program suggested uses 
what is known as a critical section and some implementations of 
those may affect the realtime clock, it is important to clarify that 
the type used here is a kind of synchronization primitive 
associated with the operating system running on the control 
computer. This synchronization primitive is local and only 
blocks the switching of threads within the process, thereby  not 
affecting the realtime clock. It would be unfortunate If that 
occurred in the discussed application, since the messages sent 
needs to be updated within a certain time span or the heads-up 
display would light up with warning messages.

The model of the throttle to velocity process is designed on a 
step response that during most of the time desribes the highest 
gear. The ACC however almost never actually uses the highest 
gear, so if the simulation that created the step response had been 
formed in such a way that the top gear had not been allowed to 
engage, the resulting model may have described the actual 
process better. The only difference between gears however is 
that they change the gain of the closed loop system, by changing 
the equivalent mass of the car. Therefore the model errors 
introduced by higher gears should be countered by the high gain 
margins produced by the suggested controller. 

The intuitive contol design used in selecting the parameters 
of the PID controller has the drawback of being suboptimal. 
However, the controller do take into account the stationary 
nonlinearities in the limitations on the control signal. 

The distance plot in figure 5.14 provides information about 
the rise time, settling time and overthrows. The rise time seams 
furthermore to have an indicator in the maximum distance in the 
plot. The settling time is however the most relevant indicator of 
the controller´s quickness. The overthrows in the plot gives the 
first failed requirement of a controller as the PID controller with 
only distance feedback has several large overthrows.

The emergency stopping simulation gives information about 
minimum stopping distance under different maximum allowed 
braking levels, as can be seen in table 5.4. That the maximum 
braking level has such an impact on the stopping distance 
suggests that a separate system for emergency braking might be 
a good idea, as the controllers can be considered more 
comfortable if they cannot use full brake under normal 
conditions. 



7.1  Discussion 65

An almost identical simulation was carried out on the AICC in 
(Ioannou, 1993), in which five vehicles were considdered, but 
no noise was added to the measurements. The results obtained in 
that simulation was more based on the platoon dynamics that 
occur when several vehicles are considdered and state that all 
vehicles had stopped within ten seconds and that no collision 
occurred. However the stopping distance can be measured in 
graphs and seam to be between ten and twelve meters, which 
cuts the ones obtained in the simulations here in half. These 
differences can most likely be explained with that the 
simulations done here are slightly more realistic (since more 
effort has been put into the design of the simulated vehicle) and 
that the AICC used is of the exact same design (in a simulated 
vehicle very different from what it was designed for) and the 
added noise.

The cut-in simulations done give additional information 
about the collision avoidance capabilities of the controller. 
However, it may be argued the simulations are done with large 
reference values, which produce large errors and thereby 
simplifies the control situations. The distance by itself however 
do not offer a complete view of the control situation. It needs to 
be viewed as a time headway in order to give relevant 
information about the choise of reference value. The reference 
value is chosen as 30 m, which at a velocity of 20 m/s gives a 
time headway of 1.5 seconds. The AICC was submitted to cut-in 
simulations under various conditions in (Ioannou, 1993) in 
which the results was werther collision did or did not occur. The 
simulations done in this paper only results in werther or not the 
two compared  control approaches are comparable with 
eachother.
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7.1.1  Future work

IMPROVE THE REALISM of the radar sensor by, for instance, 
creating a better criteria for the selection of a leading vehicle, so 
that vehicles appearing between the simulated car and the 
leading vehicle are detected.

Create driving situations (in the graphical environment) that 
tests the capabilities of the control algorithm in “real” situations. 
For instance, emergency stopping and cut-in situations or even 
more interesting, an evasive action test. This may however be a 
bit challanging since the development tool seams to be broken.

Implement a sensor based on image analysis. Several 
interesting algorithms exists, for instance using the characteristic 
vertical edges of cars easily identified with sobel operators or 
using the chromatics of the cars.

Since the system have varying gain, due to the gearbox and 
brakes, it may be motivated to test adaptive control strategies or 
gain scheduling. It may also be motivated to test any and all 
control algorithms more thoroughly regarding different safety 
situation.

Add high frequency moiton feedback to the simulator. For 
instance by installing electrical vibration actuators in the driving 
seat.
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7.2  Conclusions

IN THE WORK done the best overall control performance was 
found when using the  control approach with feedback of 
distance and velocity difference (see figure 5.2 on page 34 for 
the structure of the controller). The suggested controller is 
shown to eliminate persistent errors. The closed loop system 
(with the linear model) is stable when using the suggested 
controller, with good stability margins and the comfort provided 
is high due to the low amplitude of overthrows. It is insensitive 
to high frequency measurement noise and the control signal 
activity is limited.

The suggested changes to the CAN-bus communication 
program will provide the simulator with the bidirectional 
realtime communication necessary to provide driver interaction.

The controller is provided with feedback signals from the 
software based radar plug-in program suggested. However, these 
signals are noisy in themselves due to discretization effects in 
the graphics program and the numerical derivation of this effect.

The suggested control approach has safety capabilities 
regarding emergency stopping and cut-in situations that are 
deemed acceptable since no collision occurs in the considdered 
situations. 
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Appendix A:  Source code for 
proposed CAN application changes
The major changes to the CAN communication program suggested in this 
paper, can be found here. Most of the source code has few and outspread 
changes and was determined to be far to volumous to present here, therefore 
everything but the threads dealing with the CAN-bus communication is 
omitted.

void CANCom_thread(void *dummy){

//Local variables:
int i = 0; //Index varable.
Vstatus vErr; //Variable for status management in CAN 

communication.
Vevent *pEvent; //Event containing the current message.
DWORD CCount = 0; //Variable for time-keeping.

threadRuning = 1;
while (threadRuning) {

      WaitForSingleObject(gEventHandle,10);

for (i = 1; i <= numEvents; i++) { //Update CAN-list loop.
vErr = ncdReceive1(gPortHandle,&pEvent);
//Deal with possible errors.
if (vErr&&vErr!=VERR_QUEUE_IS_EMPTY) goto ncdError;
if (vErr==VERR_QUEUE_IS_EMPTY) break;
if (LogEvents)

printf("%s\n",ncdGetEventString(pEvent));

CCount = GetTickCount(); //Get time.
EnterCriticalSection(&cs); //Use critical section
FaS->canMsgframeList->CheckCan(*pEvent);

LeaveCriticalSection(&cs);
} //End for-loop.

outData[0] = (char) FaS->CANUpdateReadSignals(KeyAutoStart);

FaS->CANUpdateCC(CCArray);
outData[1] = CCArray[0]; //CC_On
outData[2] = CCArray[1]; //CC_Inc.
outData[3] = CCArray[2]; //CC_dec.

}// End While

DeleteCriticalSection(&cs);
_endthread();

    
ncdError:

DeleteCriticalSection(&cs);
printf("ERROR: %s\n",ncdGetErrorString(vErr));
_endthread();

} // End thread.
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//////////////////////////////////////////////////////////////////////
// CANWrite_thread()
//---------------------------------------------------------------------
// Thread for writing to the CAN-bus.
void CANWrite_thread(void *dummy){

//Local variables:
double *pFloat = (double *) &inData[4]; //Pointer for use with 

communicating the global variable VehicleSpeed.
int *pInt = (int *) &inData[0]; //-"- EngineRPM. 
DWORD CCount = 0; //Varable used for time-keeping.

threadRuning = 1;
while (threadRuning) {

EngineRPM = (float) *pInt;
VehicleSpeed = (float) *pFloat;

CCount = GetTickCount(); //Get time.
EnterCriticalSection(&cs); //Enter critical section.
FaS->CANUpdateWriteSignals(VehicleSpeed, EngineRPM);
FaS->canMsgframeList->UpdateWrites(CCount, gPortHandle, 

gChannelMaskLS, gChannelMaskHS);
LeaveCriticalSection(&cs);
Sleep(1); //Release processor from thread. Unit is in 

millisec.
}
DeleteCriticalSection(&cs);
_endthread();

} // End thread.
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Appendix B: Source code for the 
suggested “radar” sensor

Here source code for the so called radar sensor, developed in the context of 
this paper, is presented. The plug-in stucture was inspired by the existing 
plugins, but represents a very different use of plug-ins than the previously 
existing ones.

#include <stdio.h>
#include <communication/TransmitterPool.h>
#include <Environment/objectnodes/car.h>
#include <Environment/objects.h>
#include <Environment/SimCar.h>
#include <osg/group>
#include <Environment/world.h>
#include <math.h>

extern "C"
{

__declspec(dllexport) 
bool update(float carPos[3], Communication::TransmitterPool& 
transmitterPool, float output[4])
{

memset(output, 0, sizeof(float)*4);
//Constants
const double l = 305; //305ft is how far this "radar" can see.
const int P = 200;
const int Q = 8000;
const double maxAng = 90;
const double PI = 3.141592685358979;
const osg::Group &fwdVehicles = Environment::World::get()->getObjects()-

>getFwdDirVehicles(); //First part of all cars.
const osg::Group &bwdVehicles = Environment::World::get()->getObjects()-

>getBwdDirVehicles(); //The other part of all cars.

//Global variables
double theta; //Angle to leader.
double optTemp; //Optimization variable.
double opt = 1e20; //Maximum optimization value
double tempL; //Temporary length.
unsigned int  i = 0; //For-loop iteration variable.
double direction = 0; //Outgoing direction.
double lOut = l; //Outgoing distance to leader. 
float phyCarVel = 0; //Outgoing Velocity of leader.
osg::Node * node; //Temporary variable for extracting vehicles 

from database.
osg::Vec3 dirVec; //Vector from your car to leader.
osg::Vec3 phyCarPos; //Position of vehicles in 3D.
osg::Vec3 phyCarDir; //Rotation of the car's local to the global 

coordinate system.
osg::Vec3 carPosVec = ((Environment::ObjectNodes::PhyCar *) 

Environment::SimCar::get())->getPosition(); //Your position vector.
osg::Vec3 eX; //Unit vector along x-axis.
osg::Vec3 eZ; //Unit vector along z-axis.
osg::Vec3 planeNormal; //Normal to plane.
osg::Quat carRot = ((Environment::ObjectNodes::PhyCar *) 

Environment::SimCar::get())->getRotation(); //Rotation from simulated car's 
local to global coordinate system.

osg::Vec3 carDir; //Direction of simulated car in global 
coordinate system..

osg::Group * vehicles = new osg::Group; //To handle all cars.
FILE *  tDist = fopen("DistCase.txt","a");

Environment::ObjectNodes::PhyCar *phyCar;//Pointer to vehicle.

//Initialize variables
eX.set(1,0,0);
eZ.set(0,0,1);
carDir.set(1,0,0);
carDir = carRot*(carDir);
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//Unite vehicles in a single database.
for(i = 0; i < bwdVehicles.getNumChildren(); i++) {
//Put first part of all cars in Group vehicles.

node = const_cast<osg::Node *>(bwdVehicles.getChild(i));
if (!vehicles->insertChild(i, node)) {

fprintf(tDist,"Error 1: error while inserting bwdVehicles.");
}

}
for(unsigned int ii = 0; ii < fwdVehicles.getNumChildren(); ii++) {

//Put the other part of all cars in Group vehicles.
node = (osg::Node *)(fwdVehicles.getChild(ii));
if (!vehicles->insertChild(i, node)) {

fprintf(tDist,"Error 2: error while inserting fwdVehicles.");
}
i=i+1;

}

//Search Group of all vehicles for appropriate leader car.
for (i = 0; i < vehicles->getNumChildren(); i++) {

node = (osg::Node *) (vehicles->getChild(i));
phyCar = (Environment::ObjectNodes::PhyCar *) (node);
//Car to be examined.
phyCarDir.set(1,0,0);

if (phyCar != Environment::SimCar::get()){
phyCarDir = (phyCar->getRotation()) *(phyCarDir);
if (carDir.operator *(phyCarDir) <= 0) { //Check if going in 

opposite direction.
continue;

}else {
phyCarPos = phyCar->getPosition();
dirVec = phyCarPos.operator -(carPosVec);//Calculate a 

directional vector from simulated car to 
leading vehicle.

planeNormal = carDir.operator ^(eZ); //Calculate normal to 
plane.

theta = PI/2 - acos(dirVec.operator *(planeNormal) / 
(dirVec.length() * planeNormal.length())); //Calculate angle to plane.

tempL = dirVec.length(); //Distance to simulated vehicle.
optTemp = P * pow(tempL-160,2) + Q * pow((abs(theta)/PI)*180,2);

//Quadratic criteria with the penalties P and Q.
if (optTemp <= opt && (dirVec.operator *(carDir)) > 0) {

//Minimization of the criteria and check that 
leader is in front of you.

if (tempL <= l && tempL > 10) { //Check for acceptable 
ranges.

lOut = tempL;
direction = (abs(theta)/PI)*180;
phyCarVel = phyCar->getSpeedMeterPerSec();
opt = optTemp;

}
}

}
}

}
output[0] = lOut;
output[1] = direction;
output[2] = phyCarVel;

if (lOut >= l) {//No cars fulfill requirements. 
output[3] = 0;//flag, 0 = no leader found.

}else {
output[3] = 1;//flag, 1 = leader found.

}

fclose(tDist);
vehicles->unref();
return true;

}
__declspec(dllexport) 
const char* name()
{

return "Radar Sensor";
}
__declspec(dllexport) 
const char* description()
{

return "Distance, direction and velocity of the closest vehicle";
}

}
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Appendix C: Simulated Vehicle 

The Chalmers Vehicle Simulator runs a mathematical model of a Volvo 
XC90. The simulator has a setting that changes the engine model from a 
physicaly modeled simulation (basicly a Simulink model of an engine) to a 
2 dimensional mapping, which outputs torque based on the engine speed 
(revolutions per minute) and throttle level. The mapping is presented in 
figure C.1.

figure C.1: Mapping of an engine´s torque output. Torque based on the engine speed and 
throttle level. The mapping is a possible choise in the CVS that requires less computation 
time than the modeled engine.

Another important component that affects preformance is the gearbox. The 
gearbox implemented in the simulator is of automatic type and the shifting 
mechanism is modelled in Simulink and as appears in figure C.2 the 
behavior of the mechanism introduces a complicated nonlinearity.
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figure C.2: The Simulink model of the automatic gear shifting mechanism. At a specific rpm 
rate (5000) the mechanism shifts up and at another (2300) it shifts down, unless the 
gearbox is in neutral.
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