

Autonomous Cruise Control for Chalmers
Vehicle Simulator
Design and Implementation

PÄR BERGGREN

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2008
Master Thesis: EX047/2008

MASTER THESIS: EX047/2008

Autonomous Cruise Control for Chalmers Vehicle Simulator
Design and Implementation

Author: Pär Berggren

Examiner: Senior Lecturer Jonas Fredriksson

Department of Signals and Systems
CHALMER UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2008.

Autonomous Cruise Control for Chalmers Vehicle Simulator
Design and Implementation
PÄR BERGGREN

© PÄR BERGGREN, 2008.

Master Thesis: EX047/2008
Department of Signals and Systems
Chalmers University of Technology
SE - 412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover:
A combination of a simulation model of the closed loop system when using the suggested control
approch, see page 34, together with an illustration of the accepting range of the virtual radar sensor
developed in this paper, see page 19.

Department of Signals and Systems
Göteborg, Sweden 2008.

Autonomous Cruise Control for Chalmers Vehicle Simulator
Design and Implementation

PÄR BERGGREN
Department of Signals and Systems
Chalmers University of Technology

ABSTRACT

In this thesis an Autonomous Cruise Control for a vehicle simulator is designed and implemented.
Autonomous Cruise Control is a type of cruise control based on distance keeping as opposed to
velocity keeping. In order to establish realtime communication over an existing CAN-bus the
program dealing with this was remodelled and changes to the program was implemented. In order to
allow feedback of the distance to and velocity of a leading vehicle, a plug-in to the vehicle
simulator´s graphics program was created. A cascaded PID controller was designed and compared
with a controller taken from litterature. Simulations suggest that these controllers are comparable in
certain simulated safety aspects.

Keywords: Autonomous Cruise Control, Chalmers Vehicle Simulator, radar, gray-box model, step
response, residual analysis, PID controller, emergency stopping, cut-in situations, CAN-bus,
realtime communication.

Table of Contents

Chapter 1 Introduction..1
1.1 Autonomous Cruise Control.. 1
1.2 Thesis goal .. 2
1.3 Thesis scope...3
1.4 Chalmers Vehicle Simulator..4

Chapter 2 CAN-bus communication... 9
2.1 A brief introduction to the CAN-bus... 9
2.2 Probem description.. 11
2.3 Current algorithm...11
2.4 Remodelled CAN communication...13

Chapter 3 Sensor development..17
3.1 The graphics environment... 17
3.2 The radar sensor ..19

Chapter 4 System modelling .. 23
4.1 Model synthesis... 23

4.1.1 Experiment and data collection..24
4.1.2 Modelling... 25

4.2 Model verification..28
4.2.1 Model benchmarking... 28

4.3 Model completion and noise sources...31

Chapter 5 Control Design..33
5.1 Control loop formulation... 33
5.2 Control synthesis and approach analysis... 36

5.2.1 Distance feedback.. 38
5.2.2 Distance and speed difference feedback.. 42
5.2.3 A benchmarking controller ... 48
5.2.4 Simulations of stopping and cut-ins ..51

Chapter 6 Implementations..55
6.1 Offline simulator ...55
6.2 Online simulator.. 58

Chapter 7 Discussion, future work and conclusions... 63
7.1 Discussion ...63

7.1.1 Future work.. 66
7.2 Conclusions..67

List of Symbols

k Sample index.
M Sample horizon.
N Number of samples.

 s Laplacian variable (Complex frequency).
t [s] Time.
τ [s] Time; variable.

 ω [s-1] Frequency.

Control:
 a(t) [m / s] Acceleration.
 Am Gain margin.
 b(ẋ , ẍ) The uncontrollable part of the acceleration dynamics of a

car.
 c Constant; Df over (KP KD).
 c(t) Designable part of the AICC controller.
 CP Feedback gain of distance for AICC.
 CV Feedback of vehicle velocity.
 d [m] Distance variable.
 Df Derivation filter time.
 dm(ẋ) [kg m / s2] Mechanical drag of car.
 e Control error.
 eD Distance error.
 eV Velocity error.
 Ka Feedback of vehicle acceleration.
 KD Derivation gain.
 kd [kg / m] Aerodynamic drag of car.
 KI Integration gain.
 KP Proportional gain.
 Kv Velocity gain.
 Kv Feedback gain of velocity (difference).
 m [kg] Mass of vehicle.
 N Number of circulations around minus one.
 P Number of poles in the right half-plane of the complex

plane.
 R Radius of halfcircle and refence value in Laplace plane.

 r [-] Radius of halfcircle and reference value.
 S0 [m] Minimum safe distance, used in AICC.
 t5% [s] Settling time.
 u(t) Control signal.
 v(t) [m / s] Velocity.
 vD [m / s] Velocity difference.
 vl [m / s] Velocity of leading vehicle.
 w Measurement noise.
 x [m] Position of your car.
ẋ [m / s] Velocity, time derivative of position.
ẍ [m / s2] Acceleration, second time derivative of position.

 Z Number of zero crossings in right half-plane of complex
plane.

  ẋ  [(kg s)-1] Function multiplied to throttle in AICC.

 δ(t) [m] The safety distance policy in AICC.
 θ [rad] Angle.
 λ [s-1] The gain of the velocity when added to the safety distance

policy from AICC.

  ẋ  [s] Time constant of engine.

 φm [°] Phase margin.

Transfer functions:
F The controller without integration.

 F The controller.
 G General process model.
 Gdu Model of the process d over u.
 Gdvl Model of the process d over vl.
 Gm Model of a “real” process.
 L The loop of a feedback control system.
 Ld The loop; broken up at the distance signal.
 Lu The loop; broken up at the control signal.

Modelling:
 Pr Variance of predicted crosscovariance function.
 Ru(k) Covariance function of input signal.
 Rε(k) Covariance function of predicted error.
Rεuτ  Predicted crosscovariance function.

 u(t) Input signal.
 y(t) Output signal.

yt∣θN  Prediction of system output signal.

 ε(t) Prediction error.
θN

Estimated model parameters.

Automata:
QP The finite set of state-names of automaton P.

P The alphabet of automaton P.

iP The initial state of automaton P.

P The transition function of automata P.

Table 1: Prefixes for Binary Mulitiples. According to (Nordling, Österman, 2004) in part CU, chapter 2.6 on page 23.
Factor Name Symbol
2^10 kibi Ki
2^20 mebi Mi
2^30 gibi Gi
2^40 tebi Ti
2^50 pebi Pi
2^60 exbi Ei

Chapter 1

Introduction

HE FIRST PART of this introductory chapter consists of a
short introduction to Autonomous Cruise Control and then

an introduction to the Chalmers Vehicle Simulator (CVS) itself
is presented. Finally the goal and scope of the thesis are
presented. The two next coming chapters deals with signal
routing (the CAN-bus) and sensor creation. The two thereafter
following chapters deals with modelling and control design. The
chapter coming after those presents and discusses the
implementations done in the Simulink model used in the vehicle
simulator and in the last chapter discussions, future work and
conclusions are brought up.

T

1.1 Autonomous Cruise Control

AUTONOMOUS CRUISE CONTROL or ACC for short is a term
used in this paper to describe a cruise control based on distance
keeping. In the litterature this has almost as many names and
variations as there are researchers in the field. Examples of the
variations of names can be Adaptive Cruise Control and
Autonomous Intelligent Cruise Control.

1

2 Chapter 1 Introduction

The name used here is chosen to minimize the confusion of the
reader and in order not imply that the ACC designed in this
paper is of adaptive type (no parameter is changed by the control
algorithm) or some type of machine intelligence.

An ACC is basically a Cruise Control taken a step further, so
that instead of using a velocity feedback (from the speedometer)
to maintain a preset speed, feedback of distance to and velocity
of a leading vehicle is created in order to maintain a safe
distance, see for instance (Iuanno, 1993). The feedback needed
for an ACC is usually created using a radar but other sensors can
also be used. For instance one can use GPS and communicate
information about velocity and position to other vehicles over a
wireless connection.

1.2 Thesis goal

THE GOAL OF this thesis is primarily to design an Autonomous
Cruise Control for use on the Chalmers Vehicle Simulator. The
purpose of which is to investigate a couple of control strategies.
More specific goals of the control design are: elimination of
persistent errors, the closed loop must be stable, the controller
needs to provide a comfortable ride (none or small overthrows)
it should be able to handle emergency stopping and cut-ins, and
it needs to be somewhat unsensitive against measurement noise.

In order to enable use of the ACC and cruise control from the
driving seat, some form of communication between the
steeringwheel key panel and the Control computer needs to be
established.

There is a need to have appropriate sensors mimicing the
behavior of existing senors used in determining distance and
velocity of vehicles in the proximity of a car.

There is an ongoing goal of increasing the realism of the
simulator, associated with all work on the CVS, this is
considered a secondary goal in this work.

1.3 Thesis scope 3

1.3 Thesis scope

THE WORK IS centered around the design and implementation
of an ACC on a vehicle simulator (more specifically Chalmers
Vehicle Simulator) and tools deemed necessary to use this in
conjunction with said simulator.

Realtime communication between the controls in the
simulator car and the software model needs to be assured. The
communication between the car body and the ACC is limited to
the existing CAN-bus.

A sensor providing feedback of distance and velocity of
appropriate leading vehicles needs to be developed and
implemented. The sensory equipment used is limited to a
software based radar sensor implemented using the plug-in
capabilities of the graphics program.

The ACC needs a control law in order to work and the design
and analysis of this requires a simple model of the controlled
process. The controllers investigated are limited to simple PID
controllers with different types of negative feedback and the
model is limited to maximally second order process models.

4 Chapter 1 Introduction

1.4 Chalmers Vehicle Simulator

THE SIMULATOR ITSELF consists of three PC computers: one
controling the simulation marked Control Computer on which
the user interface is launched, one running the model called
xPCTarget named after the operating system running on it and
one computer running the graphics program named Graphics
Computer. The Graphics computer has a program that handles
the graphical environment in which the simulated vehicle can be
driven in realistic traffic situations. This program has
capabilities to handle plug-in programs which are ment to send
information to the simulink model running on the xPCTarget
Computer. The plug-ins that are currently avaliable handles
things like measuring wheel positions.

Furthermore the simulator consists of a hexapodic platform
with parts of a car body attached to it. In order to display the
graphics a backprojector is also mounted on the platoform, as
can be seen in figure 1.1. The link between the car body and the
rest of the simulator is the car´s original CAN-bus, which has
been connected to the Control Computer. In order to use the
CAN-bus the computer has a program that handles the hardware
interface named CanCom.

1.4 Chalmers Vehicle Simulator 5

figure 1.1: An overview of Chalmers Vehicle Simulator, or at least the parts
that are mentioned in this paper. The lines represent different types of
communications, where the CAN-bus is dashed as it is the only one
considered in the paper.

6 Chapter 1 Introduction

The vehicle dyamics is modelled in Simulink and this model is
maintained on the Control Computer and at startup a
precompiled version of this is loaded into the xPCTarget
Computer and the model runs on that computer while the
simulator is being used. The Simulink model is organized
according to figure 1.2.

The block dealing with the vehicle dynamics is named Vehicle
in figure 1.2. The contents of this block can be seen in figure
1.3.

In figure 1.3 one can see how information is transmitted through
the model using one forward directional bus and one backward
directional. The most interesting block, at least in regards to this
paper, is the Vehcle Control block. The contents of this block
can be seen in figure 1.4.

figure 1.2: The top view of the Simulink model associated with the vehicle
dynamics. From left to right the blocks contain: all the inputs to the model
(from hardware-based like throttle and steeringwheel to software-based like
the wheel position generated in the graphics computer) , road irregularities
represented by adding noise, the vehicle dynamics is computed in the Vehicle
block, the motions of the platform is calculated in the Platform Washout
block and the outgoing signals are communicated to their recipients in the
Output block.

V e h i c l e

I n O u t

R o a d I r r e g u l a r i t i e s

F F I n O u t

P l a t f o r m W a s h o u t

I n O u t 1

O u t p u t

I n

I n p u t

O u t

figure 1.3: The block Vehicle from figure 1.2.

O u t

1

W h e e l s

F F i n

F B i n

F F o u t

F B o u t

V e h i c l e C o n t r o l

F F i n

F B i n

F F o u t

F B o u t

T e r m i n a t o r S u s p e n s i o n

F F i n

F B i n

F F o u t

F B o u t

S t e e r i n g G e o m e t r y

I n p u t s

F B i n

F F o u t

F B o u t

S i m u l a t i o n C o n t r o l

P o w e r t r a i n

F F i n

F B i n

F F o u t

F B o u t

G r o u n d

C h a s s i s

F F i n

F B i n

F F o u t

F B o u t

B r a k e s

F F i n

F B i n

F F o u t

F B o u t

I n

1
< I n p u t s >

1.4 Chalmers Vehicle Simulator 7

figure 1.4: The vehicle control block from figure 1.3. The linear reference
model is used in the ESP, which handles stability of the vehicle. The ABS
block prevents the brakes from locking up. The EPS & DSR block contains
both the force feedback calculation associated with the Electronic Power
Steering and a steeringwheel torque associated with a Driver Steering
Recommendation system implemented in a previous master thesis.

In figure 1.5 the implementation of the Cruise Control can be
seen. The Cruise Control is allowed to be enabled when the
longitudinal velocity is high enough. If the throttle or brake
signal is higher than what the controller dictates, the input
signal is taken as outputs.

figure 1.5: The Cruise Control block from figure 1.4 showing the
implementation of the previosly existing Cruise Control.

L a s t m o d i f i e d : 2 0 0 5 _ 1 0 _ 3 1
B y : H e n r i k N i l s s o n & G u i l l e r m o B e n i t o

I n p u t s : A c c e l e r a t o r , b r a k e p o s i t i o n .
v e h i c l e v e l o c i t y

O u t p u t : M o d i f i e d a c c e l e r a t o r a n d b r a k e
D e s c r i p t i o n : C o n t r o l l s t h e v e h i c l e s p e e d t o t h e d e s i r e d v a l u e

B r a k e

2

A c c e l e r a t o r

1

T h r e s h o l d

0 . 1

R e l a t i o n a l
O p e r a t o r 1

<

R e l a t i o n a l
O p e r a t o r

<

P r o d u c t 1

P r o d u c t

M i n M a x 1

m a x

M i n M a x

m a x

G a i n

1 / 3 . 6

D e s i r e d S p e e d

C r u i s e . V d e s i r e d

C o n t r o l

R e q _ V

V

A c c

B r k

V e l o c i t y

3

P s _ B r k P d l

2

P s _ A P d l

1

< V _ V e h L o n g >

< P s _ A P d l >

< P s _ B r k P d l >

L a s t m o d i f i e d : 2 0 0 5 _ 1 0 _ 2 5
B y : H e n r i k N i l s s o n & G u i l l e r m o B e n i t o

I n p u t s : V a r i o u s d a t a u s e d i n t h e c o n t r o l a l g o r i t m s
O u t p u t s : E n g i n e L o a d

R e q u e s t e d b r a k e p r e s s u r e x 4 [f N m] .
R e q u e s t e d S t e e r i n g w h e e l t o r q u e [N m]

D e s c r i p c t i o n :

F B o u t

2

F F o u t
1

L i n e a r R e f e r e n c e M o d e l

A n _ W h l

V _ V e h L o n g

R e f _ D a t a B u s

E S P

P _ B r k P d l

R e f _ D a t a _ B u s

M s _ P o s V e l B u s

P _ R e q B r k W h l B u s

E P S & D S R

S e n s o r s F B

S e n s o r s F F

T q _ S t W h l

C r u i s e C o n t r o l

P s _ A P d l

P s _ B r k P d l

V e l o c i t y

A c c e l e r a t o r

B r a k e

A B S

P _ E S P R e q W h l B r k B u s

M s _ P o s V e l B u s

P _ A B S R e q W h l B r k B u s

F B i n

2

F F i n
1

E n g i n e L o a d

V e h i c l e c o n t r o l

< I n p u t s >

< S t e e r i n g g e o m e t r y >

< V _ V e h L o n g >

< P s _ B r k P d l >

< P s _ A P d l >

P _ E S P R e q W h l B r k B u s

P _ A B S R e q W h l B r k B u s

8 Chapter 1 Introduction

The Control block from figure 1.5 can be seen in figure 1.6
where the PI-contoller used for Cruise Control is shown. The
lower speed limitation and the activation signal are also
implemented here.

There is completely software based version of the simulator that
in this work is called offline simulator. The offline simulator
only consist of a Simulink model which has the same layout as
the online version.

figure 1.6: The block named Control in figure 1.5 showing how the PI-
controller is implemented.

L a s t m o d i f i e d : 2 0 0 5 _ 1 0 _ 3 1
B y : H e n r i k N i l s s o n & G u i l l e r m o B e n i t o

I n p u t s : R e q u e s t e d a n d c u r r e n t v e h i c l e v e l o c i t y
O u t p u t : M o d i f i e d a c c e l e r a t o r a n d b r a k e

D e s c r i p t i o n : A P I - C o n t r o l l e r c o n t r o l l s t h e v e h i c l e s p e e d t o t h e d e s i r e d v a l u e

B r k

2

A c c

1

V e l o c i t y t h r e s h o l d

C r u i s e . V T h r e s h o l d / 3 . 6

S a t u r a t i o n 2

S a t u r a t i o n 1

S a t u r a t i o n

R e l a t i o n a l
O p e r a t o r

> =

P r o d u c t 1

P r o d u c t

P

C r u i d e . P

I n t e g r a t o r

1
s

I

C r u i d e . I

F r o m v e h i c l e c o n t r o l

[C r u i s e C o n t r o l]

V

2

R e q _ V
1

Chapter 2

CAN-bus communication

HE PRESENTLY USED program for communication over the
CAN-bus already has all of the features that is required for

using it with the current applications. Features that allows usage
of the existing driving information system and warning
messages. It has however one distinct disadvantage in regards to
some of the applications presented in this paper; a complete lack
of realtime processing of incoming CAN-messages.

T

Little or no attention has previously been given to the
realtime problem. Only a single incoming CAN-message is
considered in the current application: the position of the ignition
key. As one of the objectives of this work was to enable use of
the existing keyboards associated with Cruise Control, which at
least to some degree increases the realism of the simulator.
Increasing the realtime capabilities of the CAN-bus
communication program was given high priority.

2.1 A brief introduction to the CAN-bus

THE CONTROLLER AREA network or CAN for short, is a serial
communications protocol mainly used within the automotive
industries. Due to the cost effectiveness and security of the
CAN-bus it has become commonplace in modern cars. Cars
equiped with such a bus use them in a wide range of
applications, from engine control units to anti-skid systems.

9

10 Chapter 2 CAN-bus communication

The CAN-bus protocol built into the simulator car is of type
2.0B, see (Robert Bosch, 1991), allowing for multiple messages
with the same priority and longer message identifiers. The car
also has two separate CAN-buses with differing bandwidths
(125 [Kibit/s] and 250 [Kibit/s]).

The CAN-bus basically consists of a wire pair connecting
two or more computers. These wires can either have the same
electric potential or have different ones, corresponding to the
bus communicating a binary zero or one. The wires have, if left
unaffected differing potentials and has to be “written to” in
order to be given the same potential. This allows the bus to
prioritize between different messages in accordance with low
number – high priority.

Every connected unit has one writing unit and one reading
unit, these are capable of running simultaneous. The reading unit
is usualy always active, in order to keep track of transmitted
messages and to know when the bus is occupied. The writing
unit only needs to be active when outputing a binary zero.

The original idea with the CAN protocol is that every
message to be sent has a unique identification code
corresponding to the message´s priority. Every message sent
begins with writing the corresponding identification code.
During this the bus is monitored by the reading unit and as soon
as one of the readings differ from the written output; the bus is
assumed to be required by a higher priority message and the
output is stopped for a period of time corresponding to the
length of a message. This is repeated until the message has been
sent. Since the bus needs to be free in order to write a one; the
messege with the lowest identification code (the highest
priority) is the first to be transmitted.

2.2 Probem description 11

2.2 Probem description

THE FIRST PROBLEM encountered with the CAN-bus was
associated with wire routing. The contact mechanism that was
originally placed inside the steering-wheel to allow electrical
contact between the keys placed on the steering-wheel and the
rest of the car, was broken and had to be repaired.

Once the contacts had been repaired, it became obvious that
there was a problem with the software handling the CAN-bus
communication. The problem appered as an almost twenty
seconds long time delay when using the keypad associated with
Cruise Control as opposed to the radio controls wich were also
placed on the steering-wheel but was unaffected by any
noticable time delay.

2.3 Current algorithm

IN ORDER TO analyse the software related problem, an
algorithm describing the behaviour of the source code was
written. The existing software solution was designed with the
main goal of allowing the use of outgoing CAN messaging
capabilities sending commands to the vehicle. Little attention
has been given to the opposite directional data traffic, messages
received from the vehicle. This meant that the software needed
to be remodelled in order to allow the realtime communication
required to use the cruise control keypad.

The software problem described in the section above is not
exacly a design flaw, since no critical process is dependent on
realtime information from the car´s CAN-bus. The usage of the
cruise control keyboard however changes that; if the signals can
not be received fast enough, then the use of the original
keyboard would be an obstacle to the realism of the simulation.

In figure 2.1 the discussed algorithm is shown as a flow
chart, together with the algorithm for the main program thread,
wich mostly displays the simulated velocity and engine speed.
The algorithm is based on the framesAndSignals object called
fas which is a database that describe the state of all signals
transmitted over the CAN-bus.

12 Chapter 2 CAN-bus communication

figure 2.1: Algorithm currently used in handling CAN-bus messages in the
program CanCom.exe. The object of type framesAndSignals called fas seen
in the second square in the CAN thread handles the current messages, both
read from the CAN-bus and to be written to the same. The thread called
“Main” displayed on the left is the programs main thread.

The fas object consists of all the messages that can be sent,
together with timing intervals and all the messages that can be
read from the CAN-bus and their last received status. The idea
with the object fas is to organize the messages so that a picture
of the current status of the car is easily avaliable. Creating the
CAN messages is also simplified by the use of the fas, since the
program only needs to cycle through it and given the time
intervals, create new messages to be sent.

The CAN thread seen in figure 2.1, works very well in
sending messages, since this is totally deterministic and
everything associated with that is time based. However that is
not the case with receiving messages from the CAN-bus, here
everyting is more or less random, at least event based, and even
if the messages were to be renewed on specific time intervals by
an external source, they would be delayed by messages of higher
priority on the CAN-bus.

Initializing, create
database fas

Wait for new CAN
message

Display velocity

Display engine
speed

Main

Is ESC pressed?

End program

CAN thread

Make changes to
fas

Create appropriate
CAN messages

Output CAN
messages to Bus

yes

no

2.4 Remodelled CAN communication 13

2.4 Remodelled CAN communication

THE BEST SULUTION to the problem of insufficent realtime
communication was deemed to be remodelling the excisting
software. In order to distribute the processor time more evenly
the CAN communication thread is divided into two threads. In
figure 2.2 an illustration of how the remodelled program will
transport information to and from the CAN-bus is shown.

The type of system shown in figure 2.2 is known as a Discrete
Event System (DES) and is easily modelled using Automata in
for instance Supremica, which is a program that is used to work
with DES. For a formal definition of Automata see (Fabian,
2006) page 14, here it is sufficient to know that a Automaton is
a 4-tuple given by equation (2.1).

P = 〈QP ,  P , iP , P 〉 (2.1)
where:
QP Is the finite set of state-names.
P Is a finite set of event-labels called the alphabet of the

automata.
iP Is the initial state that the automaton occupies from start

(belongs to the set QP).
P Is the transition function which, for a specific event and a

specific occupied state, describes which state the
automaton is in after the event has taken place.

figure 2.2: Illustration of how the reader and writer threads allocates
information. The fas, a framesAndSignals object, is a database of all, or at
least most, signals and their last known status.

14 Chapter 2 CAN-bus communication

In figure 2.3 on page 15 the processes called reader and writer
are shown as automata modelled as consumer and producer
processes in Supremica. The reader starts at the RestRead state
and when a message is received, which is marked as an
uncontrollable event, it enters a state called Read in wich the fas
can be updated by the event named updFas, which is a
controllable event and when no more messages occupies the
incoming message queue (the event queueEmpty occurs) the
reader goes back into the resting state. The automata
correspoding to the Reader is shown below.

Reader = 〈QR , R , iR , R〉

QR = 〈RestRead , Read 〉
R = 〈msgRcvd , queueEmpty , updFas 〉
iR = RestRead
R = 〈 〈〈RestRead , msgRcvd 〉 , Read 〉

〈〈Read , updFas〉 , Read 〉
〈〈Read , qeueuEmpty 〉 , RestRead 〉 〉

(2.2)

The writer is modelled in a similar way. It starts in a resting
state in which the event named updFas, which is the same event
as in the reader, is allowed to occur and the controllable event
srcCAN, in which the fas database is searched for messages to
output on the CAN-bus, can occur. Most messages needs to be
output with individual time intervals. When srcCAN occur, the
writer changes to the Write state where the uncontrollable events
outputMsg and srcCpl may occur.

Writer = 〈QW , W , iW , W 〉

QW = 〈RestWrite , Write〉
W = 〈outputMsg , srcCAN , srcCpl , updFas 〉
iW = RestWrite
W = 〈〈 〈RestWrite , updFas 〉 , RestWrite〉

〈〈RestWrite , srcCAN 〉 , Write 〉
〈〈Write , srcCpl〉 , RestWrite〉
〈〈Write , outputMsg 〉 , Write 〉〉

(2.3)

2.4 Remodelled CAN communication 15

In order to see what happens when the reader and writer
automata work in pseudo-parallel with each other, the automata
are synchronized. The synchronous compostition for automaton
A and B is denotet A || B and is defined by equation (2.4). The
result from when synchronization was done on the reader and
writer automata can be seen in figure 2.4 and equation (2.7).

A∥B = 〈Qa×Qb ,A∪B , 〈 i A , iB 〉 , A∥B 〉 (2.4)
where:

A∥B 〈qA ,qB 〉 , = {{AqA ,}×{B qB ,} ∈A∪B

{AqA ,}×{qB} ∈ A−B

{qA}×{BqB ,} ∈B− A

(2.5)

C×D = {c ,d ;c∈C∧d∈D }
Cartesian product (Råde et al., 1998) p. 16

(2.6)

Writer || Reader = 〈QW||R , W||R , iW||R , W||R 〉

QW||R = 〈RR.RW , RR.W R.RW , R.W〉
W||R = 〈outputMsg , srcCAN , msgRcvd ,

queueEmpty , scCpl , updFas 〉
iW||R = RR.RW
W||R = 〈〈〈R.RW , queueEmpty〉 , RR.RW 〉

〈 〈R.RW , srcCAN 〉 , R.W 〉
〈 〈R.RW , updFas〉 , R.RW 〉
〈 〈R.W , outputMsg 〉 , R.W 〉
〈 〈R.W , queueEmpty〉 , RR.W 〉
〈 〈R.W , srcCpl 〉 , R.RW 〉
〈 〈RR.RW , msgRcvd 〉 , R.RW 〉
〈 〈RR.RW , srcCAN〉 , RR.W 〉
〈 〈RR.W , msgRcvd〉 , R.W 〉
〈 〈RR.W , outputMsg 〉 , RR.W 〉
〈 〈RR.W , srcCpl〉 , RR.RW 〉〉

(2.7)

figure 2.3: The reader and writer from figure 2.2, modelled as Automata. It
is important to know that they have separate alphabets. The “!” character
means that the event is uncontrollable.

16 Chapter 2 CAN-bus communication

The automaton in figure 2.4 describes the desired behaviour of
the reader and writer threads. There are no reachable places that
are forbidden and it is easy to make sure that the threads will not
get stuck in either deadlocking or livelocking using built in
functions in Supremica.

The reader and writer threads were implemented under the
names CANCom_thread and CANWrite_thread and can be seen
in Appendix A. These threads also handles other tasks but these
do not affect the CAN-bus communication. The implementation
is done using a critical section which is a synchronization
primitive that stops the switching of threads within the process.
This is used around the events updFAS and srcCAN in figure
2.3 which are controllable events. This ensures mutual exclusion
the same way as in figure 2.4.

figure 2.4: The syncronization between the reader and writer found in figure
2.3. Mutual exclusion is achieved by not allowing updFAS to occur when the
automaton is in the Write.Read state.

Chapter 3

Sensor development

N THIS CHAPTER a way of sensing the simulated vehicles in
the graphics environment is developed. This is done in the

graphics program using the plug-in capabilities of the program.
First the graphics environment is introduced, then the algorithm
used is presented. Finally the idea behind the algorithm is
discussed.

I

3.1 The graphics environment

CHALMERS VEHICLE SIMULATOR has a graphics program
developed by thesis workers. It has been equiped with plugin
capabilities, which allows for measurements and computations
done in the graphics program to be sent to the other computers
using the UDP protocol. The graphics program is based on Open
Scean Graph, (OSG Community, 2007) which is an open source
graphics engine. The advantages of OSG is mainly economical
(it is free to use) but also that it has extensive, easily accessed
online documentation.

The online documentation of OSG has, in some manner of
speaking, made it possible to work with the program since the
documentation of the graphics program left much to be desired.
Due to that more than one source code exists and few people
know which one is actualy in use, focus was put on creating
plugins to the program, instead of changing the program itself.

17

18 Chapter 3 Sensor development

The existing plug-ins provide the model running on the
xPCTarget computer with the position of the tires of the
simulated car. The basic structure of this plug-in was used in the
creation of the radar plug-in. Changes was however necessary
regarding the information flow to the plug-in. In the existing
plug-ins, the only apparent information accessable to the plug-in
is a few variables sent from the core program. Fortunately there
are no restrictions to the direct access of most objects in the
program, which allows the plug-in to gather all information
necessary to compute for instance the distance to, speed of and
angle to any vehicle displayed by the graphics environment.

3.2 The radar sensor 19

3.2 The radar sensor

ONE WAY TO sense a leading vehicle is to use a radar mounted
to the front of your car. Such a sensor can give you both the
distance and the velocity of a detected object. A radar sensor
was implemented using the plug-in capabilities of the graphics
program. An illustation of how a real radar find leading vehicles
is shown in figure 3.1.

figure 3.1: Traffic situation illustrating how a radar selects leading vehicle.
If a car appears within the dashed area it will be discovered by the radar
and its distance and velocity is measured. If no car is present within the
dashed area the maximum range and zero velocity are returned. The
illustration is done off-scale.

The radar sensor implemented works in a very different way as
compared to a real radar. The leading vehicle is selected using a
quadratic criterion expressed in the angle and distance relative to
the simulated car. The angle is calculated as the angle from a
line going through both the simulated car and the leading
vehicle, to a plane defined by the global z-axis and the
simulated car´s direction. Thereby the angle is limited to
positive values below 90º, which is acceptable since only cars in
front of the simulated car, are considered and the selection is
only sensitive to the angle squared. The quadratic criterion is
shown in figure 3.2.

20 Chapter 3 Sensor development

figure 3.2: The quardratic criterion used when selecting a leading vehicle.
The criterion is mirrored in the plane where the angle is zero and centered
around an assumed reference distance of 50 meters (150 feet).

The realism of this criterion is questionable since vehicles
appearing between the leader and the simulated car recieves a
lower value than the vehicle being followed. A possible solution
to this problem could be to use a criterion that is cubic in the
distance variable. Such a criterion would however be more
sensitive to measurement noise, since the leading vehicle would
not be close to a minimum. Therefore a quadratic criterion was
deemed sufficiently realistic and was implemented in the source
code of the radar sensor, which can be found in Appendix B.

A measurement series was taken in order to find out how
much noise the signal is exposed to and the resulting noise is
shown in figure 3.3. The distance noise shown would probably
not be much of a problem, especially if low-pass filtered.
However, the noise of the measured velocity of the simulated
cars are equal to the noise of the numerical derivation of this
signal, which is shown in figure 3.4.

3.2 The radar sensor 21

figure 3.3: The noise of the distance signal measured with the software based
radar. The reason for the periodicy of the noise comes from the source of the
noise, which is the pixelation of the position of the car.

figure 3.4: The numerical derivation of the signal shown in figure 3.3.
Illustrates the noise of the measured velocity signal.

A reasonable way of increasing the realism of the sensor would
be to add noise to the measurements. It could for instance be
more realistic to add noise with a variance of half a car length to
the distance measurement, thereby simulating different
reflective surfaces, see the implementation done for the offline
version of the simulator in figure 6.1 on page 56.

Chapter 4

System modelling

N ORDER TO perform and analyse the control design a simple
model describing the linear parts of the simulator is required.

Therefore a collection of mathematical models representing the
process: car velocity over level of acceleration requested, were
created using a step response. Thereafter the models were
evaluated against each other, in order to find the best
approximation of the simulation result. Finally the model is
modified to represent the distance between a leading vehicle and
the simulated car, thereby creating a grey-box model suitable for
control design and analysis.

I

4.1 Model synthesis

THE GOAL OF this modelling is not to create a “perfect” model,
just to create a model good enough to design a controller from.
Therefore and for other reasons, like computational efficiency
and to keep the model generally applicable, no model with order
higher than second will be considered. Moreover the process is
initially assumed not to need any zeros in order to accurately
describe the model.

23

24 Chapter 4 System modelling

4.1.1 Experiment and data collection

IN ORDER TO allow experiments outside of the simulator, there
is an offline version of the simulink model which was used to
carry out the above mentioned step response. The main
difference between the offline and the online versions is that all
external communication blocks have been replaced with signal
builders and constants for all inputs and scopes for all outputs.

The experiment was designed with a step in the signal builder
representing the throttle, at 25 seconds after start, when the
throtte was set to full. All the rest of the signal builders was set
to appropriate values and a switch was added to allow use of the
automatic gearbox. After the experiment was completed, the
result was recorded in an iddata object as displayed in figure 4.1.

figure 4.1: An oveview of the data stored in an iddata object containing the
resulting velocity (and throttle) from a step in throttle level. Experiment
carried out on the offline version of the simulink model, using the same
automatic gearbox as used in the online version.

4.1.2 Modelling 25

4.1.2 Modelling

TWO DIFFERENT MODELLING techniques were used in the
model design. Mostly to benchmark the best model, but also to
make sure the selected technique is better then at least one other.
The techniques used was: Matlab´s System Identification
Toolbox, or SIT for short, and step response identification for
processes with two time constants, as presented in (Thomas,
2001), or BT for short.

SIT is a toolbox in Matlab which uses an itterative
identification process to identify models. It is easy to use and
offers a wide range of model types, such as Box-Jenkins type
parametric models and process models. SIT is designed with the
intent to allow evaluation of different model types, however the
only models considered here is of process type, so only a part of
SIT´s capabilities are used. The models estimated in SIT is
presented in equations (4.1) and (4.2).

GSIT ,2nd order =
65.07

2.364 s219.05 s1
(4.1)

 GSIT ,1st order =
65.07

31.07 s1 (4.2)

The BT modelling technique is based on manual calculations
and measurements in two graphs. This requires a little bit more
work than SIT and do not offer as much in the way of evaluation
tools, so this has to be done manually. The BT method however
has the advantage of not requiring any software licence.

The BT method consists of the four steps:
1. The first step in the method is to divide the final value

with the step size to achieve the static gain, called K, of
the system.

2. The next step is to measure the t1/3 and the t2/3 times, the
times at which one third and two thirds of the final value
is achieved.

26 Chapter 4 System modelling

3. The ratio t2/3 over t1/3 is then computed and given the
name Q. The constant Q is then used to aquire valus for
the constants P and a from two graphs presented in
figure 4.2.

figure 4.2: The graphs used to measure the constants a and P.
See (Thomas, 2001), on page 113.

4. The final step is to calculate the largest time constant T
using equation (4.3) and to put all the calculated
constants (K, a and T) into equation (4.4) which then
becomes the model.

 T =
t2 /3

P1 a 
(4.3)

 G = K
1 Ts1  aTs (4.4)

Table 4.1: Measured and calculated constants related to the BT modelling
process. the constants a and P is taken as extreme values (due to high Q)
from figure 4.2.

Constant Measured value

K 65.08
t⅓ 7.28
t⅔ 23.66
Q 3.25
a 0
P 1.096
T 10.33

4.1.2 Modelling 27

Due to the low constant “a”, the model estimated with the BT
method becomes a first order model, which is presented in
equation (4.5).

GBT =
65.08

21.59s1
(4.5)

In figure 4.3 a collection of step responses on the designed
models given by equations (4.1), (4.2) and (4.5) is shown
together with the data collected from the experiment. This figure
suggests that either the model represented by the dashed black
line, equation (4.1), or by the dotted red line, equation (4.5),
gives the the best approximation of the real system based on the
step response, here represented by a solid blue line.

figure 4.3: Step responses of the different models designed with the data
shown in figure 4.1. It is hard to tell which model is the best one from this
graph, so the choise of model will be decided in the verification section.

28 Chapter 4 System modelling

4.2 Model verification

IN ORDER TO get a measurement on the quality of the model, it
is important to verify the model. This is best preformed on a
different set of data than that which the model is designed on.
This is very important especially true if model order selection is
considered. However the specific model quality is of little
importance here and the model order is fixed to max two, while
the verification of the choise between models is more important.

The verification is therefore focused primarily on
benchmarking the models and it is preformed on the same data
set as the models was constructed from. This is mostly for
practical reasons, since there is a high degree of non-linearity in
the process, a different step may indiacte that a generally good
model is insufficient to describe the system and a frequency
experiment will not likely work due to non-linearities.

4.2.1 Model benchmarking

THE VERIFICATION DONE here consists of residual analysis as
presented in (Ljung, 2004), on page 367, the residuals are the
predition errors of the model output, see equaiton (4.6). This
consists of investigating the correlation between the model
prediction error and the input signal, see equation (4.7). Ideally
these signals are totally uncorrelated, in which case the
correlation would consist of normally distributed values with a
mean of zero and a variance given by equation (4.8).

 ε t  = ε t , θN  = yt  − yt∣θN  (4.6)

Rεuτ  =
1
N
∑
t = 1

N

ε t − τ u t  , ∣τ∣≤ M (4.7)

 Pr =
1
N
∑

k =−∞

∞

R k Ru k  (4.8)

4.2.1 Model benchmarking 29

In figure 4.4 the residuals for the models are plotted in a
comparative way. This figure supports what was suggested in
figure 4.3. However, the residuals are supposed to be normally
distributed with a mean of zero, which implies that the second
order model designed in System identification toolbox is the one
producing best results, at least with reguards to the data used in
the modelling process.

figure 4.4: The residuals of the designed models. The closer they are to zero
the better the model prediction is. The residuals are taken from the same
data set as the models are design from.

Usually the residuals are plotted together with the allowable
variance limits, given by three times the square root of equation
(4.8), in order to show a measure of acceptable deviation from
zero. In figure 4.5 the second order SIT model is plotted in such
a fashion. According to (Ljung, 2004) page 367, high deviation
from zero for negative τ (tau in figure 4.5) indicates that data
was collected under feedback and not that the model is unable to
capture the system dynamics.

30 Chapter 4 System modelling

figure 4.5: Residuals of the second order model designed with SIT, plotted
together with the lines +/- 3 * √(Pr). where Pr is given by equation (4.8). The
high level of deviation for negative tau comes from that the data was
collected under feedback.

4.3 Model completion and noise sources 31

4.3 Model completion and noise sources

SINCE THE MODEL only describes the velocity dynamics of the
simulated vehicle, the model now needs to be put into proper
physical context. Then it will instead descride the distance to a
leading vehicle. In order to achieve this, the velocity of a leading
vehicle also needs to be included.

To describe the change of distance between two points, the
difference between the speed of the farthest point and the speed
of the closest is computed and integrated. This is applied to the
models as shown in figure 4.6.

figure 4.6: Block diagram representation of the extension of the velocity
model. Implementation done in Matlab/Simulink.

The model now becomes a two input, two output grey-box
model, described with the transfer-functions given in equations
(4.9) to (4.12).

Gdu =
distance
thottle

= −
Gm

s
(4.9)

Gdvl =
distance

velocityof leader
= 1

s
(4.10)

Gdvl =
velocitydifference

throttle
= −Gm (4.11)

Gdvl =
velocitydifference
velocityof leader

= 1 (4.12)

velocity of
leader 1

distanceThrottle

1

Integrator

1
s

Gm

65.0785

12.3636 s +19.0475 s+12 v d

32 Chapter 4 System modelling

This model only describe the linear distance and velocity and do
not takes into account the effects of horizontal direction or
velocity of the cars, see figure 4.7. The sensor presented in
chapter three measures the norm of the vector vl when returning
the velocity of the leading vehicle. That velocity is not always
equal to ḋ . The difference between vl and ḋ (below called
measurement error) depends on the curvature of the road, which
is deterministic (given by the road) but unkown and therefore
treated as stochastic. The curvature is assumed to be a random-
walk process, meaning that low frequencies will dominate the
measurement error caused by the curvature of the road.

figure 4.7: An illustration of how the road curvature impact the measured
velocity with what is assumed to be random-walk noise. Here d is the scalar
distance to the leading vehicle, y always points in the direction of the leading
vehicle, vl is a vector representing th e speed of the leading car.

The same type of measurement error occurs when the curvature
of the road becomes three-dimensional, which happens when the
simulated environment has a hilly characteristics.

Chapter 5

Control Design

N THIS CHAPTER the ACC controller is to be computed and
analysed. The controllers considered are of PID compensator

type with feedback of distance or a combination of distance and
velocity difference. First the control loops are formulated, after
which the controllers are computed and tested, both on the
model and on the offline simulator. Finally a controller taken
from litterature is presented and compared with one of the
designed controllers.

I

5.1 Control loop formulation

WHEN FORMULATING A control loop it is important to
consider the physical model. In the considered case this is
presented in figure 4.6 on page 31. In formulating the control
error, it was deemed logical to use negative feedback with a
positive reference value, see figure 5.1.

The distance reacts with opposite sign to the speed of a
following car. For a case of equal initial velocity between leader
and follower, an incrementation of the velocity of the follower
will, naturally, decrease the distance. This means that in order to
have negative feedback , the contoller needs to react with
opposite sign to the formulated distance error.

33

34 Chapter 5 Control Design

One limiting factor to the controller is that in reality, the vehicle
has a very small control range, from minus one to plus one. This
comes from that the velocity of the modelled vehicle is
controlled using brake and throttle levels respectively. Since no
model of the braking process has been done and it is known that
the braking is a much faster process than accelerating, this was
simulated by simply muliplying negative parts of the control
signal by ten.

figure 5.1: Simulink model used for simulations of simple PID controllers.
Braking simulated by taking negative part of control signal and multiplying it
by ten. Limits to brake and throttle signals are set to 0.3 and 0.7 respectively
in order to achieve comfort.

One way to add dynamics and increase stability is to add
feeback of the velocity difference between the leading vehicle
and the simulated car. Thereby making the de facto reference
value sensitive to velocity in accordence with equation (5.1).
This is simulated with the simulink model shown in figure 5.2.

rv = r − K v vD (5.1)

figure 5.2: Simulink model of the control loop using external feedback to
make the reference value sensitive to the speed difference.

The closed loop system in figure 5.2 is a simplification (where
the noise is ignored) of equation (5.3) below. The controller, the
PID block in the figure, is assigned to the transfer function F and
the system model is assigned to G.

u

throttle

r

30

distance

brake Velocity of
leader 20

PID

-[Kp*(Kd+Df) Kp*(1+Ki*Df) Kp*Ki]

Df.s +s2
Integrator

1
s

Gm

65.0785

12.3636 s +19.0475 s+12

Gain

10

v d

u2

u1u

throttle

r

30

distance

brake
Velocity of

leader 20

PID

-[Kp*(Kd+Df) Kp*(1+Ki*Df) Kp*Ki]

Df.s +s2
Integrator

1
s

Gm

65.0785

12.3636 s +19.0475 s+12

Gain 1

Kv

Gain

10

v d

5.1 Control loop formulation 35

V D = sD (5.2)

D = 1
s
V l GF R − D − V D −W  (5.3)

(5.2) in (5.3) ⇒ :

D1  GF
s
1 s = 1

s
V l GF R −W  (5.4)

⇔

D = 1
s GF 1 s

V l 
GF

s GF 1  s 
R−W  (5.5)

In equation (5.5) the transfer-functions corresponding to the
sensitivity and the complementary sensitivity functions are
visible. They decide the performance of the control system but
they do not have the same simple connection to stability in this
controller as they do in one with a single feedback loop. This
comes from that the loop is no longer a single expression, see
equations (5.20) and (5.22) on page 45.

There is a few requirements that needs to be fulfilled for the
closed loop system: The closed loop needs to be stable, which
will be checked after the control synthesis using the Nyquist
criterion. The ride also needs to be comfortable for the
passengers, in order to allow for user confidence in the ACC,
which will also be investigated after the control synthesis, by the
use of simulations.

The goal of persistent error elimination is centered around
elimination of the distance error, defined in equation (5.6).

ED = R − D (5.6)

F =
F
s

where: F≠0 when s 0 (5.7)

(5.6) in (5.3) with W = 0 ⇒ :

D = 1
s
V l−GF E D−V D  (5.8)

(5.2) and (5.7) in (5.8) ⇒ :

ED =
1
GF

V l −
s
GF

D  V D =

= s
G F

V l  s
G F − s
G F

D (5.9)

36 Chapter 5 Control Design

In order to calculate the persistent error the final value theorem,
see (Lennartson, 2002) p. 40, is used.

lim
t∞

eD t  = lim
s0

sED =

= lim
s0

s s
G F

V l  s
G F − s
G F

D = 0 (5.10)

The presistent distance error is, according to equation (5.10)
eliminated by the controller used in figure 5.2 on page 34.

5.2 Control synthesis and approach analysis

THE CONTROL SYNTHESIS is of intuitive type, based on the
control signal limits, first formed for a single feedback PID
controller and then for a PID controller with feedback of both
distance and difference of velocity. This controller approach will
have the advantage of actually considering the limits of the
simulator (the non-linear, simulated “reality”), but it may not be
as good (regarding performance, robustness etc.) as a controller
designed from a frequency based approach. The algorithm is
exemplified with a distance feedback controller.

The algorithm of the intuitive PID approach
1. Using the physical control signal limit (plus one to

minus one) to decide on how big the control range of a
proportional controller should be. An appropriate
maximum error was chosen to 12 meters, see figure 5.3,
corresponding to a KP = 1/12 ≈ 0.08. This is by no means
a hard limit, only a theoretical limit to were full throttle
will be applied without regards to integratory and
derivatory outputs. The throttle and brake limitations are
tightened further in order to achieve a more comfortable
ride.

5.2 Control synthesis and approach analysis 37

figure 5.3: Illustration of how the proportional control parameter was
selected. At an error of minus 12 meters, a control signal of minus one (full
brake) is chosen. Because of the negative feedback, the error increases in the
opposite direction of the vehicles. (units in meter)

2. Now a derivative gain is to be selected, generally this is
done in order to achieve desired control speed. However
since this is to be filtered, a filter time constant is also to
be selected or more precisely a factor c according to: Df

= c * KD*KP is to be selected (a filter with a filter time
expressed as a factor of the total derivative gain). I order
to select the gain a simulation of the model in figure 5.1
with initial leader velocity of 20 m/s and initial distance
of 60 m, was executed. An appropriate derivative gain
was selected from the simulation to: KD = 2. The
constant c is chosen to be 0.5 thereby achieving a filter
cutoff frequency of (Kp)-1 = 12.5 rad/s.

3. Finally, the Integration gain KI is selected as small as
possible, to suppress the magnitude of overthrows, while
till having acceptable t5% . The choise of KI = 0.0015
gives a simulated t5% = 35 s (under brake and throttle
limits of 0.1 and 0.7 respectively and under the same
initial conditions as the simulation in step 2).

38 Chapter 5 Control Design

5.2.1 Distance feedback

WHEN FOLLOWING THE above presented algorithm in creating
a controller with negative feedback of the distance, a controller
of PID structure was synthesied. The resulting controller will
have the apperence of equation (5.11) and the nummerical
approximation of equation (5.12):

F PID s = K P1 K I

s


K D s

D f s  1 ≈ (5.11)

≈
0.1664 s20.08001 s0.00012

0.08 s2s
(5.12)

This controller gives a loop expression according to equation
(5.13):

L s = F s Gm  s
1
s
≈ (5.13)

≈
10.83 s25.207 s0.007809

0.1891 s53.887 s419.13 s3s2 (5.14)

In order to investigate the closed loop stability, the loop
expression is to be checked against the Nyquist criterion. Due to
the fact that the loop is subject to more than one integration, the
simplified criterion can not be used. Instead the complete
criterion is to be applied.

According to the Nyquist criterion, see (Lennartson, 2002) on
page 240, a system is stable if equation (5.15) is fulfilled.

Z = P  N = 0 (5.15)
Where:
Z = number of transmission zeros in right half of the

complex plane for 1 + L(s).
P = number of poles in right half of the complex plane for

L(s).
N = number of clockwise rotations around the point (-1, 0) in

the complex plane for the depiction of L(s) when s is
assigned the Nyquist contour.

5.2.1 Distance feedback 39

The Nyquist criterion requires the Nyquist contour to be applied
to the process. The contour is defined in four sections: the
positive complex axis from zero to complex infinity, see
equation (5.16), a half circle infintly far away from complex
infinity to minus complex infinity (5.17), the negative complex
axis from minus complex infinity to zero (5.18) and finaly a
half circle infinitly close to zero from negative (complex) zero
to positive (complex) zero (5.19) , see (Lennartson, 2002) page
239.

The contour is applied to a process by letting the Laplacian
operator s be replaced with equation (5.16) to (5.19) and plot the
results in a Nyquist diagram.

s = j , 0 ∞ (5.16)

s = Re j , clockwise rotation

2
≥  ≥−


2
, R∞

(5.17)

s = j , −∞  0 (5.18)

s = r e j  , counterclockwise rotation

−

2
≤ ≤


2
, r0

(5.19)

This was done in Matlab and in figure 5.4 the resulting Nyquist
diagram can be viewed. Equation (5.16) is represented by the
bottom line, going towards zero. Equation (5.17) becomes an
infinitly small circle (two integrations) around zero. Equation
(5.18) is shown as the top line, growing towards minus infinity
and plus complex infinity. Equation (5.19) is not possible to see,
since it becomes an infinitly large circle from the “end-point” of
the top line, to the “start-point” of the bottom line in the
clockwise direction (due to integration).

40 Chapter 5 Control Design

figure 5.4: The Nyquist diagram of the circuit loop of the control loop, in a
general overview.

In figure 5.5 the Nyquist diagram in close up around the minus
one point is shown. In this figure it can clearly be seen that no
small scale rotations around the minus one point occurs.

figure 5.5: The Nyquist diagram in close-up around minus one

In Table 5.1 the data needed to chek the citerion is presented. Z
and P are both given by equation (5.14) and computed in
Matlab. N is given by figure 5.4 and (5.5), following the text
explaining them. Since the collected data satisfy equation (5.15)
the linear approximation of the system is concluded to be stable
and some of the sulutions to the nonlinear system is therefore
assumed to be stable as well.

5.2.1 Distance feedback 41

Table 5.1: The constants used in the Nyquist criterion. They obviously satisfy
equation (5.15)

Constant value

Z 0
P 0
N 0

This controller was tested in the Simulink model in figure 5.1
which produced the results shown in figure 5.6. The plot
suggests that the controller is most likely fast enough, but it also
shows a “slinky” effect around 30 seconds into the simulation
which is not acceptable under the comfort requirement. No one
would use an ACC unless it provides a more comfortable ride
than what is suggested.

figure 5.6: Plot of the distance response to a leading vehicle speed of 20 m/s
with an initial distance of 60 m. The simulated car starts with initial speed of
0 m/s.

42 Chapter 5 Control Design

5.2.2 Distance and speed difference
feedback

IN ORDER TO eliminate the “slinky” effect, the control loop is
complemented with a negative feedback of the velocity
difference in accordance with the structure in figure 5.2. The
three steps of the intuitive control design above is only changed
in the first step. This step is complemented with the choise of an
appropriate KV. The new controller constants are shown in Table
5.2.

Table 5.2: Control constants selected with step 1-3 of the algorithm on pages
36 to 37. With the KV selected as unity.

Constant Assigned value

KV 1
KP 0.08
KI 0.0015
KD 3.59
c 1.2

Using this controller gives the experiment presented in figure
5.7 a t5% of approximately 35 seconds, wich is the same settling
time as with the controller without the extra feedback. The
reason that the “slinky” behavior is avoided with this controller
is that the complex poles otherwise experienced by the closed
loop system, are damped.

5.2.2 Distance and speed difference feedback 43

figure 5.7: Plot of the distance response to a leading vehicle speed of 20 m/s
with an initial distance of 60 m. The simulated car starts with initial speed of
0 m/s and has a reference value of 30 m. Simulation of the Simulink model in
figure 5.2.

The control signal activity is an important factor in control
engineering, especially in the case of sensitive actuators that are
subject to wear or when a economically or environmentally
expensive fuel is used. In the studied case with a software based
simulator this is not as important, but may still be worth looking
at since it is closely connected with sensitivity to measurement
noise. In figure 5.8 the control signal activity of a simulation in
the offline version of the simulator with noisy, but filtered
measurements. The controller has damped the high frequency
part of the added measurement noise, but is unable to damp the
low frequency part. If the derivative filter time constant is
increased, the control signal activity is reduced at the cost of a
slower system.

44 Chapter 5 Control Design

figure 5.8: The control signal activity of the discussed controller under a
simulation with a leader starting with 0 m/s and accelerating to 20 m/s (72
km/h) in 16 s and holding that velocity then on. The simulated car is first
accelerated to 16.67 m/s (60 km/h) whereafter the ACC is engaged.

In figure 5.9 the control signal from the same simulation but
without the added noise, is presented. The signal in that figure
seams to be a good approximation to the mean of figure 5.8. The
most important difference is the Brake signal (the negative part).

figure 5.9: The same simulation as in figure 5.8 but without the added
measurement noise. This illustrates the controllers sensitivity to
measurement noise. In general the mean value of the noisy signal in figure
5.8 seams not to deviate much from the signal in this figure.

5.2.2 Distance and speed difference feedback 45

In figure 5.10 the Bode diagram of the controller can be seen. It
has a characteristic PID apperence with the infinite low-
frequency response and two fairly constant gain levels.

figure 5.10: The Bode diagram of the controller given by Table 5.2.

As can be seen in figure 5.10 the controller has a high-frequency
gain of just below one (zero dB) which limits the control signal
activity and the sensitivity against high frequency measurement
noise, at least for singel loop PID controllers according to
(Lennartson, 2002) on page 285.

This controller has two controlled variables, velocity
difference as well as distance, and therefore it has no single
circuit loop expression. Instead it has two circuit loops,
depending on where the circuit is broken up. Equation (5.20)
describe the circuit loop if the loop is broken at the control
signal u and (5.22) if it is broken at the primary controlled
variable d.

Lu = F 
1
s
GmGm  =

F Gm

s
1s ≈ (5.20)

≈ 25.15s331.54s26.404 s0.009587
s510.96s423.81s31.228s2 (5.21)

46 Chapter 5 Control Design

Ld =
1
s FGm

1  FGm
 ≈ (5.22)

≈ 25.15s26.395s0.009587
s510.96s448.95 s37.622s20.009587s

(5.23)

In order for this system to be stable, both Lu and Ld must
represent stable systems. Ld can is this case be proven to be
stable using the simplified Nyquist criterion (only one
integration and no poles with positive real part), while Lu

requires the non-simplified Nyquist criterion to be fulfilled. In
figure 5.11 the Nyquist diagram for Lu is presented. Since Lu is
integratory (equation (5.19) changes direction) the curve does
not circulate the point minus one and since all poles and zero
crossings have negative real part, the system represented by Lu is
stable. The Lu expression is studied in conjunction with
robustness against model errors and Ld in the sensitivity against
measurement noise. They naturally have different margins and
these are given in Table 5.3.

Table 5.3: The gain and phase margins of the loop expressions.

Margin Lu Ld

Am, [-] -inf. 19.8364
φm, [°] 99.5752 74.2905

figure 5.11: Nyquist diagram of the Lu circuit loop according to equation
(5.21).

5.2.2 Distance and speed difference feedback 47

The simplfied Nyquist criterion say that a feedbacked system is
stable if the point (-1,0) is to the left of (and below) the curve
L(jω) for all ω. In figure 5.12 the Nyquist diagram of Ld is
shown. As can be seen in the figure, the system represted by Ld

is stable according to the simplified Nyquist criterion.

figure 5.12: Nyquist diagram of the Ld circuit loop, according to equation
(5.23).

48 Chapter 5 Control Design

5.2.3 A benchmarking controller

AS A COMPARATIVE with existing controllers the Autonomous
Intelligent Cruise Control, AICC, from (Ioannou, 1993) is
introduced. This is based on a safety distance policy and will
therefore not have formal error elimination. However the
stationary “error” will come from the mentioned safety distance
policy and allow for closer spacing between cars and thereby a
higher traffic flow. The safety distance policy is given according
to equation (5.24).

t  = d − L  S o vt  (5.24)

Here d stands for distance, L is the car length, So is the minimum
safe distance (a reference variable), λ is the slope of the velocity
dependent part and v is the cars velocity. The δ(t) is the policy
deviation, which should be zero under stationary conditions. The
control law presented in the article is given by equation (5.25)
and is based on feedback linearization.

u t = 1
 ẋ 

c t  − b ẋ , ẍ  (5.25)

Where α, c and b are given by equations (5.26), (5.27) and
(5.29) and comes from the feedback linerization technique.

 ẋ  = 1
m ẋ  (5.26)

c t  = C pt   C v ̇ t   K vvt   K aa t  (5.27)

The design constants in equation (5.27) are given in (Ioannou,
1993), as Cp = 4, Cv = 28, Kv = 0, Kd = -0.04 and ̇t  is taken
as the time derivative of equation (5.24) which becomes
equation (5.28), where vd means the velocity difference.

̇t  = vd − a t  (5.28)

b ẋ , ẍ  = −2
k d

m
ẋ ẍ −

1
 ẋ  ẍ  kd

m
ẋ 2

dm  ẋ 
m  (5.29)

5.2.3 A benchmarking controller 49

Where m is the vehicle mass, kd is the aerodynamic drag
coefficient,  ẋ  is the engine time constant and dm  ẋ  is
the mechanical drag. An implementation of this controller can
be seen in figure 5.13.

figure 5.13: An implementation of the AICC discussed in the text. Note the
derivative block necessary in the controller.

This controller is more complex than the two previously
considered and with increased model accuracy the complexity of
the AICC will increase further. It requires the model to provide
data about the distance to the leading vehicle, the velocity
difference, the simulated car´s velocity and acceleration. Since
the model, Gm, does not provide the car´s acceleration, the
model needs to take the derivative of the velocity which
increases the computation time.

In figure 5.14 the results of a simulation of the different
control system is presented. The difference is that the AICC do
not have any proper reference value, instead the minimum safety
distance L + S0, see figure 5.13, is set to 24 m, which gives a
total distance of approximetly 30 m.

v

u

throttle

lambda 2

.3

lambda 2

.3

distance

brake

b

f(u)

alpha

1/(2000 *.25)

Velocity of
leader 20

L+So24

Integrator

1
s

Gm

65.0785

12.3636 s +19.0475 s+12

Gain

10

Derivative

du/dt

Control law f(u)

C

f(u)

v

v d

a

a

delta

delta dot

50 Chapter 5 Control Design

figure 5.14: A simulation of the different controllers.

This controller gives a t5% of approximately 40 seconds and it
completely eliminates the slinky behaviour of the simpler
controllers considered.

An interesting control property is the control signal activity
especially when the measurement signal is subject to noise. A
simulation in the off-line simulator with noise added to the
simulated leader was carried out and the resulting control signal
is presented in figure 5.15. The control signal activity in this
simulation is very high and it is likely that the high activity is
rooted in the controller´s built-in model flaws, since the same
simulation with the noise removed was done and the high
activity remained. If the physical modelling done is improved
less constant approximations and so forth, it is likely that the
controller will preform better in all aspects including control
signal activity.

 51

figure 5.15: The resulting control signal from a simulation with a simulated
leader and carried out with the same conditions as the simulation in figure
5.8.

5.2.4 Simulations of stopping and cut-ins

TWO IMPORTANT TRAFFIC situations that can occur in reality,
outside of the simulators otherwise considered in this paper, is if
the leading vehicle has to preform an emergency stop and if a
third vehicle overtakes your car and cut-in directly in front of
you. First a simulation of the emergency stopping capabilities of
the controller with feedback of distance and velocity (PID) is
compared with that of the AICC, from (Ioannou, 1993).

The simulation starts with the leading vehicle at a distance of
100 m at standstill. Then the leader is accelerated to 20 m/s with
a maximum acceleration of 0.4 g. After 100 s the leader is
deccelerated back to standstill with a maximum acceleration of
0.8 g. The stopping distance is noted with full braking allowed
and with braking limited to maximum 30 %. The results of the
simulation can be found in table 5.4 on page 52.

52 Chapter 5 Control Design

Table 5.4: Results of a simulation of emergency stopping with two different
controllers. S0 + l is the minimum safe distance of the AICC and the λ is
chosen to 0.4. The reduced distance is the initial distance minus the distance
directly after the emergency stopping is completed, when both vehicles are at
standstill.

Controller Initial
distance, [m]

Braking level,
[-]

Reduced
distance, [m]

PID 30 0.3 26
PID 30 1 10
PID 10 1 9
AICC 38 (S0+ l = 30) 0.3 29
AICC 38 1 20
AICC 18 (S0+ l = 10) 1 20

The PID controller seams to out-preform the AICC but this is
most likely only an effect of the modelling of the AICC not
corresponding very well with the simulated vehicle. However
the controllers have at least comparable performance in their
emergency stopping capabilities.

The cut-in simulations is done with an initial distance to the
leading vehicle of 100 m and at standstill. The leading vehicle is
thereafter accelerated to 20 m/s and after 100 s a negative step
that brings the distance to 2 m is executed. This does not affect
the velocity of the leading vehicle, which is assumed to have
already adjusted its speed. During this simulation, the
controllers are both allowed to use full brake. The results of the
simulations are presented in figure 5.16 and figure 5.17

5.2.4 Simulations of stopping and cut-ins 53

figure 5.16: The cut-in simulation for the PID controller.

figure 5.17: The simulation of a cut-in situaiton for the AICC.

Both of the controllers handle this situation in a satisfactory way
and collision is avoided.

Chapter 6

Implementations

ERE THE IMPLEMENTATIONS done in the different
Simulink models are presented and discussed. First the

offline version of the simulator model is considered. Thereafter
the changes to the online version are presented.

H

6.1 Offline simulator

THE MOST APPERENT disadvantage of the offline simulator is
that there are not any other vehicles, so there is no leaders to
follow. In order to do any meaningful simulations with an ACC
a leader is required and must therefore be simulated. Such a
simulated leader is shown in figure 6.1.

The velocity of the leader is here simulated with a signal
builder block in which the velocity can be given any desirable
characteristics. To the basic velocity is added a mixture of
pseudo-random noise in form of both integrated noise (random-
walk noise) and a simple band limited white noise.

55

56 Chapter 6 Implementations

figure 6.1: The block used for simulating the radar output when following a
leading vehicle. Implemented in the offline version of the simulink model.

The input simulation shown in figure 6.1 is sufficient for
simulating the single loop control approach (the normal PID
controller). In the other control approaches the speed-output was
also given a additative band limited white noise. The angle is
not used for anything, but is still there since the radar algorithm
uses it and outputs it.

In figure 6.2 the implementation of how the simulated leader
from figure 6.1 connects with the controller can be seen. The
distance signal is simply connected to the appropriate input
(creates a negative feedback) while the speed signal is used to
create the velocity difference between the leader and the
simulator car. Thereafter the velocity difference signal is
subtracted from the reference value, thereby creating the sought
after negative feedback.

a n g l e

3

d i s t a n c e
2

s p e e d

1

d i f f
b a s e ve l .

S i g n a l 1

S c o p e 1

S c o p e

R a t e T r a n s i t i o n 3
C o p y

R a t e T r a n s i t i o n 2
C o p y

R a t e T r a n s i t i o n 1

C o p y

In t e g r a t o r 2

1
s

In t e g r a t o r 1

1
s

In t e g r a t o r

1
s

B a n d - L i m i t e d
W h i t e N o i s e 2

B a n d - L i m i t e d
W h i t e N o i s e 1

B a n d - L i m i t e d
W h i t e N o i s e

ve l1

6.1 Offline simulator 57

figure 6.2: The simulink model of how the simulated leader is connected with
the controller and how they are connected with the throttle and brake.

In figure 6.3 the Control-block from figure 6.2 can be seen. The
structure is used in both the single and double loop controllers.

figure 6.3: The simulink model of how the controller is implemented.
Corresponds to the control block in figure 6.2.

B r a k e

2

A c c e l e r a t o r
1

T h r e s h o l d

0 . 1

T e r m i n a t o r

S i m u l a t e d l e a d e r

v e l

s p e e d

d i s t a n c e

a n g l e
S c o p e 2

R e l a t i o n a l
O p e r a t o r 1

<

R e l a t i o n a l
O p e r a t o r

<

P r o d u c t 1

P r o d u c t

M i n M a x 1

m a x

M i n M a x

m a x

F r o m 1V e h _ l o n g i

F r o m

V e h _ l o n g i

D e s i r e d d i s t .

3 0

C o n t r o l

R e q _ D

D i s t

A c c

B r k

A d d 1

A d d

P s _ B r k P d l

2

P s _ A P d l
1

< P s _ B r k P d l >

< P s _ A P d l >

B r k
2

A c c
1

S c o p e 2

S c o p e 1

S a t u r a t i o n 2

S a t u r a t i o n 1

S a t u r a t i o n

P r o d u c t

P

P

N e g .

- 1

I n t e g r a t o r

1
s

I

I

D - f i l t e r

D . s

D f . s + 1

A c t i v a t i o n f r o m
v e h i c l e c o n t r o l

C r u i s e C o n t r o l

A b s

| u |
D i s t

2

R e q _ D
1

58 Chapter 6 Implementations

6.2 Online simulator

IN THE ONLINE simulator there is a few other requirements that
needs to be fulfilled, as compared with the offline version. There
is obviously no need for any simulated leader, as it is in the
offline version, instead the input from the radar sensor in the
graphics environment needs to be received and filtered. The
most obvious difference to the offline version is however that
the ACC must be able to pick up from the previosly existing
Cruise Control as soon as a leader vehicle is found.

In figure 6.4 the implementation of the ACC is shown. The
most significant changes, as compared with the previously
existing Cruise Control model, are marked in gray. The
controllers are switched when a leader is found or lost, see
variable Leader found in figure 6.6. The blocks ACC Logics and
Cruise Control Logics are basicly the same block and the only
difference between the boolean signals ACCActive and
CruiseControlActive is that the latter is false when the velocity
is to low.

figure 6.4: An overview of the simulink model of the ACC implementation.

M o d i f i e d o n : 2 0 0 7 _ 1 2 _ 1 3
B y : P ä r B e r g g r e n

A d d e d C r u i s e C o n t r o l L o g i c s . I t a l l o w s u s e
o f t h e s t e e r i n g w h e e l k e y b o a r d . A C C a d d e d .

L a s t m o d i f i e d : 2 0 0 5 _ 1 0 _ 3 1
B y : H e n r i k N i l s s o n & G u i l l e r m o B e n i t o

I n p u t s : A c c e l e r a t o r , b r a k e p o s i t i o n .
v e h i c l e v e l o c i t y

O u t p u t : M o d i f i e d a c c e l e r a t o r a n d b r a k e
D e s c r i p t i o n : C o n t r o l l s t h e v e h i c l e s p e e d t o t h e d e s i r e d v a l u e .

B r a k e
2

A c c e l e r a t o r

1

m / s t o K m / h

3 . 6

T h r e s h o l d0 . 1

S w i t c h

S w i t c h

R e l a t i o n a l
O p e r a t o r

<

R e l a t i o n a l
O p e r a t o r

<

P r o d u c t

P r o d u c t

N O T N O T

M i n M a x

m a x

M i n M a x

m a x

L o g i c a l
O p e r a t o r

A N D

L e a d e r L o g i c s

L e a d e r f o u n d

D i s t a n c e t o L e a d e r

G o t o 2 L _ f o u n d

C r u i s e C o n t r o l L o g i c s

C u r r e n t V e l o c i t y

D e s i r e d V e l o c i t y

C r u i s e C o n t r o l A c t i v e

C o n t r o l

R e q _ V

C C _ A c t i v e

V

A c c

B r kA N D

A N D

A C C L o g i c s

C u r r e n t D i s t a n c e

D e s i r e d D i s t a n c e

A C C A c t i v e

A C C C o n t r o l

R e q _ D

A C C _ A c t i v e

D

A c c

B r k

V e l o c i t y
3

P s _ B r k P d l
2

P s _ A P d l

1

< P s _ B r k P d l >

< P s _ A P d l >

< V _ V e h L o n g >

A c c

B r k

< A c c >

< B r k >

A c c

B r k

< A c c >

< B r k >

6.2 Online simulator 59

The reason for the regular Cruise Control to require that no
leader is present, as opposed to use the ACC_Active input
signal, is that the control switching should not be dependent of
wether or not the cruise control or ACC is currently being used.

In figure 6.5 the contents of the block ACC logics from
figure 6.4 can be seen. The block´s two outputs define the parts
that make up the block: ACC Active and and Desired Distance.
The state of the ACC Active signal is desided by a D-latch that
only allows changes to the output if the brakes are active or if
the cruise button is pressed and the brakes are not active at the
same time. The D-latch updates the output with the logic
complement to the brake active signal, thereby making sure that
the brakes are not engaged when the ACC (same for Cruise
Control) is activated.

The desired distance signal is computed as the reference
value minus the velocity difference, see control approach with
feedback of both velocity difference and distance on page 34.
The reference value is set on the positive flank of an appropriate
starting signal and can be modified by the blocks Incrementation
and Decrementation of Desired Distance by pressing the plus
and minus buttons on the steeringwheel.

figure 6.5: The simulink model of how the block ACC logics from figure 6.4
is implemented.

C r e a t e d o n : 2 0 0 7 _ 1 0 _ 0 1
B y : P ä r B e r g g r e n

H a n d l e s a c t i v a t i o n / d e a c t i v a t i o n o f
A C C a n d s e t t i n g o f

D e s i r e d D i s t a n c e u s i n g s i g n a l s
a q u i r e d f r o m t h e C A N - b u s .

A C C A c t i v e

2

D e s i r e d D i s t a n c e

1

T e r m i n a t o r

S e t D e s i r e d
D i s t a n c e

P l u s
A N D
L e a d e r _ f l a g

A N D

P e d a l B r a k e
R e l a t i o n

< =

O l d D e s i r e d
d i s t a n c e

N o t b r a k e s
A N D

C r u i s e o n .

A N D
N o t

N O T

M i n u s
A N D
L e a d e r _ f l a g

A N D

M e m o r y

M a x . b r a k e w . C r u i s e C o n t r o l 0 . 0 5

I n i t i a l D e s i r e d D i s t a n c e

- C -

I n c r e m e n t a t i o n
o f f D e s i r e d D i s t a n c e

D e s i r e d D i s t a n c e

P l u s

C u r r e n t D i s t a n c e

D e s i r e d D i s t a n c e

H a n d B r a k e
R e l a t i o n

< =

G o t o 3

D e s _ d i s t

G o t o 2

B r a k e _ a c t i v e

G o t o 1

C h a n g e _ C C _ a c t i v e

G o t o

C h a n g e _ C C _ a c t i v e _ t o

F r o m S e n s o r s

[B r a k e _ P a d e l _ p e r c e n t a g e]

F r o m S e n s o r s

[H a n d _ B r a k e _ p e r c e n t a g e]

F r o m C A N 1

S p e e d _ D i f f e r a n c e]

F r o m C A N [C r u i s e _ D e c r e a s e] F r o m C A N [C r u i s e _ I n c r e a s e]

F r o m C A N

[C r u i s e _ O n]

F r o m

[L _ f o u n d]

D e t e c t i n c r e a s e

U > U / z

D e c r e m e n t a t i o n
o f f D e s i r e d D i s t a n c e

D e s i r e d D i s t a n c e

M i n u s

C u r r e n t D i s t a n c e

D e s i r e d D i s t a n c e

D a t a T y p e C o n v e r s i o n C o n v e r t

D L a t c h

D

C

Q

! Q

B r a k e
O R

a c t i v a t e C C

O R

B r a k e
a c t i v e

O R

C u r r e n t D i s t a n c e

1

A c t i v a t e a n d s e t
C r u i s e C o n t r o l

B r a k e s n o t a c t i v e

60 Chapter 6 Implementations

The behaviour of the incrementation and decrementation of the
desired distance and speed (for ACC and Cruise Control
respectively) is given according to: the first possitive flank
increases / decreases the desired speed (only applied to the
cruise control) with a predetermined amount (set to 1 m/s) after
the signal has been held high for a period of time (0.5 second)
the desired signal is ramped with a slope of 5 units (m and m/s)
per second. Finally when a negative flank is encountered, the
desired signal is set to the current value of the measured distance
or speed. The implementation of the behaviour can be found in
figure 6.9.

In figure 6.6 the block Leader Logics is presented. This block
keeps track of when an appropriate leading vehicle is aviable
and filters the measured distance to this vehicle.

figure 6.6: Leader Logics

In figure 6.7 the ACC controller implementation is shown. It
requires the ACC_Active signal to have been high for a period
of time (0.5 seconds) before allowing the ACC to activate. This
time delay prevents the abnormaly high derivative output
associated with leaps in the reference value that often occurs
with the activation of the ACC.

Distance to Leader
2

Leader found
1

max. distance

Time out

>=

Time Stamp

Switch5

Switch on timeout
to zero

Sensitive when
no leader detected

Reset

Memory 2

Memory

Low-pass filter

num (s)

den (s)

From2

[Distance _to_leader]

From1

[Distance _to_leader]

From

[Leader _flag]

Exact switch

Digital Clock

12:34

Delay time

0.1

Data Type Conversion 2Convert

Constant 50

Constant 4

0

Constant 3-1

Constant

1

6.2 Online simulator 61

figure 6.7: ACC Controller

In figure 6.8 the Cruise Control Logics block found in figure 6.4
is shown.this block handles the activation of the cruise control
and connects the desired velocity with the external CAN-bus
controls.

figure 6.8: Cruise Control Logics

The decrementation / incrementation of desired velocity blocks
that can be seen in figure 6.8 and decrementation /
incrementation of desired distance in figure 6.5 are all illustrated
by figure 6.9.

C r e a t e d o n : 2 0 0 7 _ 1 0 _ 0 1
B y : P ä r B e r g g r e n

E x t e r n a l l o g i c s a d d e d t o a c c o m o d a t e
u s e o f C C f r o m s t e e r i n g w h e e l k e y s .

L o g i c s i n b l o c k :
A C C L o g i c s .

N e w i n p u t : C C _ A c t i v e

B r k
2

A c c
1

n e g .

- 1

T i m e s t a m p

S w i t c h

S a t u r a t i o n

S a t u r a t i o n

S a t u r a t i o n

R e l a t i o n a l
O p e r a t o r

> =

P r o d u c t

P

A C C _ C o n t r o l l e r _ P

L o g i c a l
O p e r a t o r

A N D

I n t e g r a t o r

1
s

I

A C C _ C o n t r o l l e r _ I

H o l d t i m e

- C -

G o t o 1

C o n t r o l _ s i g n a l

G o t o

A C C _ E r r o r

D i g i t a l C l o c k

1 2 : 3 4

D e t e c t
I n c r e a s e

U > U / z

D a t a T y p e C o n v e r s i o n 1C o n v e r t
D a t a T y p e C o n v e r s i o n C o n v e r t D - f i l t e r

A C C _ C o n t r o l l e r _ D . s

A C C _ C o n t r o l l e r _ D f . s + 1

A b s

| u |

D
3

A C C _ A c t i v e

2

R e q _ D
1

e

e

u

C r e a t e d o n : 2 0 0 7 _ 1 0 _ 0 1
B y : P ä r B e r g g r e n

H a n d l e s a c t i v a t i o n / d e a c t i v a t i o n o f
C r u i s e C o n t r o l a n d s e t t i n g o f

D e s i r e d V e l o c i t y u s i n g s i g n a l s
a q u i r e d f r o m t h e C A N - b u s .

C r u i s e C o n t r o l A c t i v e

2

D e s i r e d V e l o c i t y

1

V e l o c i t y h i g h
e n o u g h

< =

T e r m i n a t o r

S e t D e s i r e d
V e l o c i t y

P e d a l B r a k e
R e l a t i o n

< =

O l d D e s i r e d
v e l o c i t y

N o t b r a k e s
A N D

C r u i s e o n
A N D

A b o v e M i n .
v e l o c i t y

A N D
N o t

N O T

M i n i m u m v e l o c i t y

- C -

M e m o r y

M a x . b r a k e w . C r u i s e C o n t r o l 0 . 0 2

L o g i c a l
O p e r a t o r

N O T

I n c r e m e n t a t i o n
o f f d e s i r e d v e l o c i t y

D e s i r e d v e l o c i t y

P l u s

C u r r e n t V e l o c i t y

D e s i r e d v e l o c i t y

H a n d B r a k e
R e l a t i o n

< =

G o t o 3

D e s i r e d _ v e l

F r o m S e n s o r s

[B r a k e _ P a d e l _ p e r c e n t a g e]

F r o m S e n s o r s

[H a n d _ B r a k e _ p e r c e n t a g e]

F r o m C A N [C r u i s e _ D e c r e a s e] F r o m C A N [C r u i s e _ I n c r e a s e]

F r o m C A N

[C r u i s e _ O n]

F r o m

[L _ f o u n d]

D e t e c t i n c r e a s e

U > U / z

D e c r e m e n t a t i o n
o f f d e s i r e d v e l o c i t y

D e s i r e d v e l o c i t y

M i n u s

C u r r e n t V e l o c i t y

D e s i r e d v e l o c i t y

D a t a T y p e C o n v e r s i o n C o n v e r t

D L a t c h

D

C

Q

! Q

C C _ I n c r e a s e
A N D
L e a d e r _ f l a g

A N D
C C _ D e c r e a s e
A N D
L e a d e r _ f l a g

A N D

B r a k e
O R

a c t i v a t e C C

O R

B r a k e
a c t i v e

O R

C u r r e n t V e l o c i t y

1

A c t i v a t e a n d s e t
C r u i s e C o n t r o l

N o t B r a k e s a c t i v e

62 Chapter 6 Implementations

figure 6.9: The block Decrementation of desired distance. All of the
decrementation and incrementation blocks have this layout.

The contents of the cruise controller block, see Control in figure
6.4, is shown in figure 6.10. The only difference from the
previously existing block is that the integratory state has been
given reseting capabilities.

figure 6.10: Cruise Controller

C r e a t e d o n : 2 0 0 7 _ 1 0 _ 0 1
B y : P ä r B e r g g r e n

H a n d l e s d e c r e m e n t a t i o n o f
d e s i r e d d i s t a n c e .

D e s i r e d D i s t a n c e

1

T i m e s t a m p

S e t m e m o r y
s w i t c h

S e t T i m e s t a m p

S e t D e s i r e d D i s t a n c e
t o C u r r e n t D i s t a n c e

R e s e t v a l u e1

R e s e t m e m o r y
 s w i t c h

R a m p- C -

M i n u s n o t h e l d
c o n s t a n t l y

0

M i n u s h e l d
l o n g e r t h a n

h o l d t i m e

> =

M i n u s h a s n o t
b e e n r e l e a s e d

M i n u s b e i n g h e l d
A N D

h o l d t i m e h a s e l a p s e d
A N D

M i n u s h a s n o t b e e n
 r e l e a s e d

A N D

H o l d t i m e

- C -

E n a b l e / D i s a b l e
r a m p

D i g i t a l C l o c k

1 2 : 3 4

D e t e c t
I n c r e a s e

U > U / z

D e t e c t
D e c r e a s e

U < U / z

C u r r e n t
D i s t a n c e

3

M i n u s

2

D e s i r e d D i s t a n c e

1

D e s i r e d D i s t a n c e

M o d i f i e d o n : 2 0 0 7 _ 1 0 _ 0 1
B y : P ä r B e r g g r e n

N e w i n p u t : C C _ A c t i v e

L a s t m o d i f i e d : 2 0 0 5 _ 1 0 _ 3 1
B y : H e n r i k N i l s s o n & G u i l l e r m o B e n i t o

I n p u t s : R e q u e s t e d a n d c u r r e n t v e h i c l e v e l o c i t y
O u t p u t : M o d i f i e d a c c e l e r a t o r a n d b r a k e

D e s c r i p t i o n : A P I - C o n t r o l l e r c o n t r o l l s t h e v e h i c l e s p e e d t o t h e d e s i r e d v a l u e .

B r k

2

A c c

1

S a t u r a t i o n

S a t u r a t i o n

S a t u r a t i o n

P r o d u c t

P

C C _ C o n t r o l l e r _ P

I n t e g r a t o r
w . l i m i t s

1
s

I

C C _ C o n t r o l l e r _ I

D a t a T y p e C o n v e r s i o n

C o n v e r t

A b s

| u |

V

3

C C _ A c t i v e

2

R e q _ V

1

ue

Chapter 7

Discussion, future work and
conclusions

HIS CHAPTER STARTS with a discussion of the results and
other issues related to the paper followed by a presentation

of a few ideas regarding future work. Finally some conclusions
drawn from the results are brought up.

T

7.1 Discussion

THE CONTROL APPROACHES have no capabilities to handle low
frequency measurement noise, which is a common problem with
PID controllers. Fortunately the graphics application of the
simulator produces little or no such low frequency noise, so this
is not really much of a problem here. The noise that is produced
by the graphics program comes from the process of
discretization of the cars position as they are being propagated
through the environment and this mostly contain high frequency
components.

63

64 Chapter 7 Discussion, future work and conclusions

Since the CAN-bus communication program suggested uses
what is known as a critical section and some implementations of
those may affect the realtime clock, it is important to clarify that
the type used here is a kind of synchronization primitive
associated with the operating system running on the control
computer. This synchronization primitive is local and only
blocks the switching of threads within the process, thereby not
affecting the realtime clock. It would be unfortunate If that
occurred in the discussed application, since the messages sent
needs to be updated within a certain time span or the heads-up
display would light up with warning messages.

The model of the throttle to velocity process is designed on a
step response that during most of the time desribes the highest
gear. The ACC however almost never actually uses the highest
gear, so if the simulation that created the step response had been
formed in such a way that the top gear had not been allowed to
engage, the resulting model may have described the actual
process better. The only difference between gears however is
that they change the gain of the closed loop system, by changing
the equivalent mass of the car. Therefore the model errors
introduced by higher gears should be countered by the high gain
margins produced by the suggested controller.

The intuitive contol design used in selecting the parameters
of the PID controller has the drawback of being suboptimal.
However, the controller do take into account the stationary
nonlinearities in the limitations on the control signal.

The distance plot in figure 5.14 provides information about
the rise time, settling time and overthrows. The rise time seams
furthermore to have an indicator in the maximum distance in the
plot. The settling time is however the most relevant indicator of
the controller´s quickness. The overthrows in the plot gives the
first failed requirement of a controller as the PID controller with
only distance feedback has several large overthrows.

The emergency stopping simulation gives information about
minimum stopping distance under different maximum allowed
braking levels, as can be seen in table 5.4. That the maximum
braking level has such an impact on the stopping distance
suggests that a separate system for emergency braking might be
a good idea, as the controllers can be considered more
comfortable if they cannot use full brake under normal
conditions.

7.1 Discussion 65

An almost identical simulation was carried out on the AICC in
(Ioannou, 1993), in which five vehicles were considdered, but
no noise was added to the measurements. The results obtained in
that simulation was more based on the platoon dynamics that
occur when several vehicles are considdered and state that all
vehicles had stopped within ten seconds and that no collision
occurred. However the stopping distance can be measured in
graphs and seam to be between ten and twelve meters, which
cuts the ones obtained in the simulations here in half. These
differences can most likely be explained with that the
simulations done here are slightly more realistic (since more
effort has been put into the design of the simulated vehicle) and
that the AICC used is of the exact same design (in a simulated
vehicle very different from what it was designed for) and the
added noise.

The cut-in simulations done give additional information
about the collision avoidance capabilities of the controller.
However, it may be argued the simulations are done with large
reference values, which produce large errors and thereby
simplifies the control situations. The distance by itself however
do not offer a complete view of the control situation. It needs to
be viewed as a time headway in order to give relevant
information about the choise of reference value. The reference
value is chosen as 30 m, which at a velocity of 20 m/s gives a
time headway of 1.5 seconds. The AICC was submitted to cut-in
simulations under various conditions in (Ioannou, 1993) in
which the results was werther collision did or did not occur. The
simulations done in this paper only results in werther or not the
two compared control approaches are comparable with
eachother.

66 Chapter 7 Discussion, future work and conclusions

7.1.1 Future work

IMPROVE THE REALISM of the radar sensor by, for instance,
creating a better criteria for the selection of a leading vehicle, so
that vehicles appearing between the simulated car and the
leading vehicle are detected.

Create driving situations (in the graphical environment) that
tests the capabilities of the control algorithm in “real” situations.
For instance, emergency stopping and cut-in situations or even
more interesting, an evasive action test. This may however be a
bit challanging since the development tool seams to be broken.

Implement a sensor based on image analysis. Several
interesting algorithms exists, for instance using the characteristic
vertical edges of cars easily identified with sobel operators or
using the chromatics of the cars.

Since the system have varying gain, due to the gearbox and
brakes, it may be motivated to test adaptive control strategies or
gain scheduling. It may also be motivated to test any and all
control algorithms more thoroughly regarding different safety
situation.

Add high frequency moiton feedback to the simulator. For
instance by installing electrical vibration actuators in the driving
seat.

7.2 Conclusions 67

7.2 Conclusions

IN THE WORK done the best overall control performance was
found when using the control approach with feedback of
distance and velocity difference (see figure 5.2 on page 34 for
the structure of the controller). The suggested controller is
shown to eliminate persistent errors. The closed loop system
(with the linear model) is stable when using the suggested
controller, with good stability margins and the comfort provided
is high due to the low amplitude of overthrows. It is insensitive
to high frequency measurement noise and the control signal
activity is limited.

The suggested changes to the CAN-bus communication
program will provide the simulator with the bidirectional
realtime communication necessary to provide driver interaction.

The controller is provided with feedback signals from the
software based radar plug-in program suggested. However, these
signals are noisy in themselves due to discretization effects in
the graphics program and the numerical derivation of this effect.

The suggested control approach has safety capabilities
regarding emergency stopping and cut-in situations that are
deemed acceptable since no collision occurs in the considdered
situations.

Bibliography

Fabian, M. (2006) Discrete Event Systems, Lecture Notes (ESS 200).
Göteborg: Chalmers University of Technology. (R 004/2004) ISSN 1403-
266X

Ioannou, P. A. & Chien, C. C. (1993) Autonomous Intelligent Cruise
Control. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. p. 657
– 672. Vol. 42, No. 4, November 1993

Lennartson, B. (2002) Reglerteknikens grunder. (Fourth edition)
Lund:Studentlitteratur. ISBN 91-44-02416-9

Ljung, L. and Glad, T. (2004) Modellbygge och Simulering. (Second
edition) Lund: Studentlitteratur. ISBN 91-44-02443-6

Nordling, C. and Österman, J. (2004) Physics Handbook for Science and
Engineering. (Seventh edition) Lund: Studentlitteratur. ISBN 91-44-03152-
1

OSG Community (2007) OpenSceneGraph. http://www.openscenegraph.org
(2007-11-20)

Robert Bosch GmbH. (1991) CAN Specification. (Version 2.0) Stuttgart:
Bosch. www.bosch.com (2007-10-01)

Thomas, B. (2001) Modern Reglerteknik. (Third edition) Stockholm: Liber.
ISBN 91-47-05085-3

Vector Informatik GmbH. CAN Driver Library for CANcardXL /
CANcardX / CAN-AC2-PCI: User Interface Description. (Version 3.4)
Stuttgart: Vector Informatik GmbH.

Table of figures
figure 1.1: An overview of Chalmers Vehicle Simulator, or at least the parts that are mentioned in this
paper. The lines represent different types of communications, where the CAN-bus is dashed as it is the
only one considered in the paper... 3
figure 1.2: The top view of the Simulink model associated with the vehicle dynamics. From left to right
the blocks are: all the inputs to the model (from hardware-based like throttle and steeringwheel to
software-based like the wheel position generated in the graphics computer) , noise is added to represent
road irregularities, the vehicle dynamics is computed in the Vehicle block, the motions of the platform is
calculated in the Platform Washout block and the outgoing signals are communicated to their recipients in
the Output block...4
figure 1.3: The block Vehicle from figure 1.2... 4
figure 1.4: The vehicle control block from figure 1.3. The linear reference model is used in the ESP,
which handles stability of the vehicle. The ABS block prevents the brakes from locking up. The EPS &
DSR block contains both the force feedback calculation associated with the Electronic Power Steering
and a steeringwheel torque associated with a Driver Steering Recommendation system implemented in a
previous master thesis.. 5
figure 1.5: The Cruise Control block from figure 1.4 showing the implementation of the previosly existing
Cruise Control..5
figure 1.6: The block named Control in figure 1.5 showing how the PI-controller is implemented.............6
figure 2.1: Algorithm currently used in handling CAN-bus messages in the program CanCom.exe. The
object of type framesAndSignals called fas seen in the second square in the CAN thread handles the
current messages, both read from the CAN-bus and to be written to the same. The thread called “Main”
displayed on the left is the programs main thread... 12
figure 2.2: Illustration of how the reader and writer threads allocates information. The fas, a
framesAndSignals object, is a database of all, or at least most, signals and their last known status...........13
figure 2.3: The reader and writer from figure 2.2, modelled as Automata. It is important to know that they
have separate alphabets. The “!” character means that the event is uncontrollable.14
figure 2.4: The syncronization between the reader and writer found in figure 2.3. Mutual exclusion is
achieved by not allowing updFAS to occur when the automaton is in the Write.Read state. 15
figure 3.1: A flow-chart illustrating the algorithm used to create a radar sensor plug-in to the graphics
program.. 19
figure 3.2: Traffic situation illustrating how the software based radar sensor works. If one or more cars
driving in your direction has its centerpoint within the dashed area, the closest one will be selected and its
distance angle and velocity is returned. If no car is present within the dashed area the maximum range,
the center angle (zero) and zero velocity are returned. The cake slice (dashed) has infinite height and is
independent of the simulated car´s angle around y and x-axis. The illustration is done off-scale.............. 20
figure 3.3: The noise of the distance signal measured with the software based radar. The reason for the
periodicy of the noise comes from the source of the noise, which is the pixelation of the position of the
car...21
figure 3.4: The numerical derivation of the signal shown in figure 3.3. Illustrates the noise of the
measured velocity signal..22
figure 4.1: An oveview of the data stored in an iddata object containing the resulting velocity (and
throttle) from a step in throttle level. Experiment carried out on the offline version of the simulink model,
using the same automatic gearbox as used in the online version...24
figure 4.2: The graphs used to measure the constants a and P...26
figure 4.3: Step responses of the different models designed with the data shown in figure 4.1. It is hard to
tell which model is the best one from this graph, so the choise of model will be decided in the verification
section.. 27
figure 4.4: The residuals of the designed models. The closer they are to zero the better the model
prediction is. The residuals are taken from the same data set as the models are design from.....................30
figure 4.5: Residuals of the second order model designed with SIT, plotted together with the lines +/- 3 *

√(Pr). where Pr is given by equation (4.8). The high level of deviation for negative tau comes from that
the data was collected under feedback...30
figure 4.6: Block diagram representation of the extension of the velocity model. Implementation done in
Matlab/Simulink.. 31
figure 4.7: An illustration of how the road curvature impact the measured velocity with what is assumed
to be random-walk noise. Here d is the scalar distance to the leading vehicle, y always points in the
direction of the leading vehicle, vl is the vectoral speed of the leading car. .. 32
figure 5.1: Simulink model used for simulations of simple PID controllers. Braking simulated by taking
negative part of control signal and multiplying it by ten. Limits to brake and throttle signals are set to 0.3
and 0.7 respectively in order to achieve comfort...34
figure 5.2: Simulink model of the control loop using external feedback to make the reference value
sensitive to the speed difference.. 34
figure 5.3: Illustration of how the proportional control parameter was selected. At an error of minus 12
meters, a control signal of minus one (full brake) is chosen. Because of the negative feedback, the error
increases in the opposite direction of the vehicles. (units in meter).. 37
figure 5.4: The Nyquist diagram of the circuit loop of the control loop, in a general overview................. 40
figure 5.5: The Nyquist diagram in close-up around minus one..40
figure 5.6: Plot of the distance response to a leading vehicle speed of 20 m/s with an initial distance of 60
m. The simulated car starts with initial speed of 0 m/s..41
figure 5.7: Plot of the distance response to a leading vehicle speed of 20 m/s with an initial distance of 60
m. The simulated car starts with initial speed of 0 m/s and has a reference value of 30 m. Simulation of
the Simulink model in figure 5.2... 43
figure 5.8: The control signal activity of the discussed controller under a simulation with a leader starting
with 0 m/s and accelerating to 20 m/s (72 km/h) in 16 s and holding that velocity then on. The simulated
car is first accelerated to 16.67 m/s (60 km/h) whereafter the ACC is engaged..44
figure 5.9: The same simulation as in figure 5.8 but without the added measurement noise. This illustrates
the controllers sensitivity to measurement noise. In general the mean value of the noisy signal in figure
5.8 seams not to deviate much from the signal in this figure.. 44
figure 5.10: The Bode diagram of the controller given by Table 5.2.. 45
figure 5.11: Nyquist diagram of the Lu circuit loop according to equation (5.21)......................................46
figure 5.12: Nyquist diagram of the Ld circuit loop, according to equation (5.23).....................................47
figure 5.13: An implementation of the AICC discussed in the text. Note the derivative block necessary in
the controller.. 49
figure 5.14: A simulation of the different controllers.. 50
figure 5.15: The resulting control signal from a simulation with a simulated leader and carried out with
the same conditions as the simulation in figure 5.8. ... 51
figure 5.16: The cut-in simulation for the PID controller..53
figure 5.17: The simulation of a cut-in situaiton for the AICC... 53
figure 6.1: The block used for simulating the radar output when following a leading vehicle. Implemented
in the offline version of the simulink model..56
figure 6.2: The simulink model of how the simulated leader is connected with the controller and how they
are connected with the throttle and brake.. 57
figure 6.3: The simulink model of how the controller is implemented. Corresponds to the control block in
figure 6.2.. 57
figure 6.4: An overview of the simulink model of the ACC implementation... 58
figure 6.5: The simulink model of how the block ACC logics from figure 6.4 is implemented................. 59
figure 6.6: Leader Logics...60
figure 6.7: ACC Controller.. 61
figure 6.8: Cruise Control Logics.. 61
figure 6.9: The block Decrementation of desired distance. All of the decrementation and incrementation
blocks have this layout...62
figure 6.10: Cruise Controller.. 62

Appendix A: Source code for proposed CAN application changes A - I

Appendix A: Source code for
proposed CAN application changes
The major changes to the CAN communication program suggested in this
paper, can be found here. Most of the source code has few and outspread
changes and was determined to be far to volumous to present here, therefore
everything but the threads dealing with the CAN-bus communication is
omitted.

void CANCom_thread(void *dummy){

//Local variables:
int i = 0; //Index varable.
Vstatus vErr; //Variable for status management in CAN

communication.
Vevent *pEvent; //Event containing the current message.
DWORD CCount = 0; //Variable for time-keeping.

threadRuning = 1;
while (threadRuning) {

 WaitForSingleObject(gEventHandle,10);

for (i = 1; i <= numEvents; i++) { //Update CAN-list loop.
vErr = ncdReceive1(gPortHandle,&pEvent);
//Deal with possible errors.
if (vErr&&vErr!=VERR_QUEUE_IS_EMPTY) goto ncdError;
if (vErr==VERR_QUEUE_IS_EMPTY) break;
if (LogEvents)

printf("%s\n",ncdGetEventString(pEvent));

CCount = GetTickCount(); //Get time.
EnterCriticalSection(&cs); //Use critical section
FaS->canMsgframeList->CheckCan(*pEvent);

LeaveCriticalSection(&cs);
} //End for-loop.

outData[0] = (char) FaS->CANUpdateReadSignals(KeyAutoStart);

FaS->CANUpdateCC(CCArray);
outData[1] = CCArray[0]; //CC_On
outData[2] = CCArray[1]; //CC_Inc.
outData[3] = CCArray[2]; //CC_dec.

}// End While

DeleteCriticalSection(&cs);
_endthread();

ncdError:

DeleteCriticalSection(&cs);
printf("ERROR: %s\n",ncdGetErrorString(vErr));
_endthread();

} // End thread.

A - II Appendix A: Source code for proposed CAN application changes

//
// CANWrite_thread()
//---
// Thread for writing to the CAN-bus.
void CANWrite_thread(void *dummy){

//Local variables:
double *pFloat = (double *) &inData[4]; //Pointer for use with

communicating the global variable VehicleSpeed.
int *pInt = (int *) &inData[0]; //-"- EngineRPM.
DWORD CCount = 0; //Varable used for time-keeping.

threadRuning = 1;
while (threadRuning) {

EngineRPM = (float) *pInt;
VehicleSpeed = (float) *pFloat;

CCount = GetTickCount(); //Get time.
EnterCriticalSection(&cs); //Enter critical section.
FaS->CANUpdateWriteSignals(VehicleSpeed, EngineRPM);
FaS->canMsgframeList->UpdateWrites(CCount, gPortHandle,

gChannelMaskLS, gChannelMaskHS);
LeaveCriticalSection(&cs);
Sleep(1); //Release processor from thread. Unit is in

millisec.
}
DeleteCriticalSection(&cs);
_endthread();

} // End thread.

Appendix B:Source code for the suggested “radar” sensor B - I

Appendix B: Source code for the
suggested “radar” sensor

Here source code for the so called radar sensor, developed in the context of
this paper, is presented. The plug-in stucture was inspired by the existing
plugins, but represents a very different use of plug-ins than the previously
existing ones.

#include <stdio.h>
#include <communication/TransmitterPool.h>
#include <Environment/objectnodes/car.h>
#include <Environment/objects.h>
#include <Environment/SimCar.h>
#include <osg/group>
#include <Environment/world.h>
#include <math.h>

extern "C"
{

__declspec(dllexport)
bool update(float carPos[3], Communication::TransmitterPool&
transmitterPool, float output[4])
{

memset(output, 0, sizeof(float)*4);
//Constants
const double l = 305; //305ft is how far this "radar" can see.
const int P = 200;
const int Q = 8000;
const double maxAng = 90;
const double PI = 3.141592685358979;
const osg::Group &fwdVehicles = Environment::World::get()->getObjects()-

>getFwdDirVehicles(); //First part of all cars.
const osg::Group &bwdVehicles = Environment::World::get()->getObjects()-

>getBwdDirVehicles(); //The other part of all cars.

//Global variables
double theta; //Angle to leader.
double optTemp; //Optimization variable.
double opt = 1e20; //Maximum optimization value
double tempL; //Temporary length.
unsigned int i = 0; //For-loop iteration variable.
double direction = 0; //Outgoing direction.
double lOut = l; //Outgoing distance to leader.
float phyCarVel = 0; //Outgoing Velocity of leader.
osg::Node * node; //Temporary variable for extracting vehicles

from database.
osg::Vec3 dirVec; //Vector from your car to leader.
osg::Vec3 phyCarPos; //Position of vehicles in 3D.
osg::Vec3 phyCarDir; //Rotation of the car's local to the global

coordinate system.
osg::Vec3 carPosVec = ((Environment::ObjectNodes::PhyCar *)

Environment::SimCar::get())->getPosition(); //Your position vector.
osg::Vec3 eX; //Unit vector along x-axis.
osg::Vec3 eZ; //Unit vector along z-axis.
osg::Vec3 planeNormal; //Normal to plane.
osg::Quat carRot = ((Environment::ObjectNodes::PhyCar *)

Environment::SimCar::get())->getRotation(); //Rotation from simulated car's
local to global coordinate system.

osg::Vec3 carDir; //Direction of simulated car in global
coordinate system..

osg::Group * vehicles = new osg::Group; //To handle all cars.
FILE * tDist = fopen("DistCase.txt","a");

Environment::ObjectNodes::PhyCar *phyCar;//Pointer to vehicle.

//Initialize variables
eX.set(1,0,0);
eZ.set(0,0,1);
carDir.set(1,0,0);
carDir = carRot*(carDir);

B - II Appendix B:Source code for the suggested “radar” sensor

//Unite vehicles in a single database.
for(i = 0; i < bwdVehicles.getNumChildren(); i++) {
//Put first part of all cars in Group vehicles.

node = const_cast<osg::Node *>(bwdVehicles.getChild(i));
if (!vehicles->insertChild(i, node)) {

fprintf(tDist,"Error 1: error while inserting bwdVehicles.");
}

}
for(unsigned int ii = 0; ii < fwdVehicles.getNumChildren(); ii++) {

//Put the other part of all cars in Group vehicles.
node = (osg::Node *)(fwdVehicles.getChild(ii));
if (!vehicles->insertChild(i, node)) {

fprintf(tDist,"Error 2: error while inserting fwdVehicles.");
}
i=i+1;

}

//Search Group of all vehicles for appropriate leader car.
for (i = 0; i < vehicles->getNumChildren(); i++) {

node = (osg::Node *) (vehicles->getChild(i));
phyCar = (Environment::ObjectNodes::PhyCar *) (node);
//Car to be examined.
phyCarDir.set(1,0,0);

if (phyCar != Environment::SimCar::get()){
phyCarDir = (phyCar->getRotation()) *(phyCarDir);
if (carDir.operator *(phyCarDir) <= 0) { //Check if going in

opposite direction.
continue;

}else {
phyCarPos = phyCar->getPosition();
dirVec = phyCarPos.operator -(carPosVec);//Calculate a

directional vector from simulated car to
leading vehicle.

planeNormal = carDir.operator ^(eZ); //Calculate normal to
plane.

theta = PI/2 - acos(dirVec.operator *(planeNormal) /
(dirVec.length() * planeNormal.length())); //Calculate angle to plane.

tempL = dirVec.length(); //Distance to simulated vehicle.
optTemp = P * pow(tempL-160,2) + Q * pow((abs(theta)/PI)*180,2);

//Quadratic criteria with the penalties P and Q.
if (optTemp <= opt && (dirVec.operator *(carDir)) > 0) {

//Minimization of the criteria and check that
leader is in front of you.

if (tempL <= l && tempL > 10) { //Check for acceptable
ranges.

lOut = tempL;
direction = (abs(theta)/PI)*180;
phyCarVel = phyCar->getSpeedMeterPerSec();
opt = optTemp;

}
}

}
}

}
output[0] = lOut;
output[1] = direction;
output[2] = phyCarVel;

if (lOut >= l) {//No cars fulfill requirements.
output[3] = 0;//flag, 0 = no leader found.

}else {
output[3] = 1;//flag, 1 = leader found.

}

fclose(tDist);
vehicles->unref();
return true;

}
__declspec(dllexport)
const char* name()
{

return "Radar Sensor";
}
__declspec(dllexport)
const char* description()
{

return "Distance, direction and velocity of the closest vehicle";
}

}

Appendix C:Simulated Vehicle C - I

Appendix C: Simulated Vehicle

The Chalmers Vehicle Simulator runs a mathematical model of a Volvo
XC90. The simulator has a setting that changes the engine model from a
physicaly modeled simulation (basicly a Simulink model of an engine) to a
2 dimensional mapping, which outputs torque based on the engine speed
(revolutions per minute) and throttle level. The mapping is presented in
figure C.1.

figure C.1: Mapping of an engine´s torque output. Torque based on the engine speed and
throttle level. The mapping is a possible choise in the CVS that requires less computation
time than the modeled engine.

Another important component that affects preformance is the gearbox. The
gearbox implemented in the simulator is of automatic type and the shifting
mechanism is modelled in Simulink and as appears in figure C.2 the
behavior of the mechanism introduces a complicated nonlinearity.

C - II Appendix C:Simulated Vehicle

figure C.2: The Simulink model of the automatic gear shifting mechanism. At a specific rpm
rate (5000) the mechanism shifts up and at another (2300) it shifts down, unless the
gearbox is in neutral.

L a s t m o d i f i e d : 2 0 0 6 _ 0 3 _ 0 9
B y : H e n r i k N i l s s o n & G u i l l e r m o B e n i t o

I n p u t s : E n g i n e s p e e d [r p m] .
O u t p u t s : g e a r [1 - 6] .

D e s c r i p c t i o n : W h e n t h e e n g i n e s p e e d i s a b o v e / b e l o w S h i f t U p R p m / S h i f t D o w n R p m t h e g e a r i n c r e a s e s / d e c r e a s e s . M e m o r y 1 i s p r e v e n t i n g a n a l g e b r a i c l o o p s .
T u n a b l e P a r a m e t e r s : S h i f t U p R p m , S h i f t D o w n R p m

G e a r

1

T u r n o f f a u t o m a t i c
 t r a n s m i s s i o n w h e n r e v e r s i n g

0

S w i t c h 1

S w i t c h

S u m 2

S a t u r a t i o n 1

R e v e r s e g e a r

- 1

R e l a t i o n a l
O p e r a t o r

~ =

P r o d u c t

N e u t r a l g e a r

T r o t t l e

W _ W h l

N e u t r a l

M e m o r y 1

M e m o r y

H i t

H i t

W _ E n g i n e _ r p m

4

W _ W h l

3

G e a r S t i c k

2

t h r o t t l e

1

G e a r

	List of Symbols
	Chapter 1 	Introduction
	1.1 Autonomous Cruise Control
	1.2 Thesis goal
	1.3 Thesis scope
	1.4 Chalmers Vehicle Simulator

	Chapter 2 	CAN-bus communication
	2.1 A brief introduction to the CAN-bus
	2.2 Probem description
	2.3 Current algorithm
	2.4 Remodelled CAN communication

	Chapter 3 	Sensor development
	3.1 The graphics environment
	3.2 The radar sensor

	Chapter 4 	System modelling
	4.1 Model synthesis
	4.1.1 Experiment and data collection
	4.1.2 Modelling

	4.2 Model verification
	4.2.1 Model benchmarking

	4.3 Model completion and noise sources

	Chapter 5 	Control Design
	5.1 Control loop formulation
	5.2 Control synthesis and approach analysis
	5.2.1 Distance feedback
	5.2.2 Distance and speed difference feedback
	5.2.3 A benchmarking controller
	
	5.2.4 Simulations of stopping and cut-ins

	Chapter 6 	Implementations
	6.1 Offline simulator
	6.2 Online simulator

	Chapter 7 	Discussion, future work and conclusions
	7.1 Discussion
	7.1.1 Future work

	7.2 Conclusions

	Appendix A: Source code for proposed CAN application changes
	Appendix B:Source code for the suggested “radar” sensor
	Appendix C:Simulated Vehicle

