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Abstract 

This thesis investigates the implications and expected performance of a 
Virtual Geometry Textures system, defined as a system that uses 
images to stream and render geometry similarly to Virtual Texturing. 
Most added knowledge has been obtained by investigating a fuse of 
two 3D engines, aimed at acquiring each of the desired properties of 
Virtual Texturing. The thesis provides insights on implications and 
obstacles discovered during that investigation. It also suggests possible 
solutions and further optimizations that can be made based on these 
insights. Further, a survey is presented which lead to Adaptive Quad 
Patches being the choice of system for further the investigation. It 
renders the geometry as subdivided patches with vertex-displacement 
maps. The investigation showed that Virtual Texturing is not yet 
beneficial when added to this type of patch based rendering in WebGL 
since (1.) patch seams must be pre-computed on the CPU, and (2.) 
rendering of pre-tessellated geometry patches is currently not effective 
enough to justify the use of a page cache.  
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1 Introduction 

In this chapter an overview will be given of the thesis and its main 
contributions. It provides a background for this work and the rationale 
behind it. After that, the problem formulation is given followed by the 
contributions and limitations of this thesis. It ends with an outline of 
the rest of the chapters of this thesis. 

1.1 Background 

The web has been under rapid development ever since it started 
become widely available in the early nineties. As the hardware and 
software improved, the bandwidth and the complexity of the delivered 
content increased. The first intents of rendering 3D content in the 
browser were taken as early as in 1994. The newly founded Web3D 
consortium developed a platform independent language called VRML 
(Virtual Reality Modeling Language) for defining 3D content in the 
browser, but due to lack of browser support without plugins it was 
discontinued. 

Its successor, X3D (Extensible 3D Graphics), an XML based file 

format, will not be included in HTML5 [BI10] but still strives, in 
competition with other formats, to become the 3D standard of the 
Web, circumventing the need for browser plugins through its proposed 
syntax model X3DOM in combination with WebGL and JavaScript 

[X3D11]. 

WebGL 1.0 was introduced in 2011 and is based on OpenGL ES 2.0 
which is aimed at embedded systems. It takes a different approach 
than e.g. X3D and uses the HTML5 standardized canvas element to 
render. No plugins are needed and an API for direct access to the 

powerful GPU through JavaScript in the browser is provided [BI10]. 

WebGL is already supported by most major browsers and, similar to 
audio/video and photo, 3D content creation is finally becoming 
cheaper in terms of time, user skills and economic investment. 
Consequently, 3D graphics over the Internet is expected to attract a 

lot of additional attention in the near future [GMR+12, CLCN10]. 

The ability to view 3D online in a browser, referred to as Web3D, 
introduces many new possibilities such as online 3D museums or 3D 
web shops, but also creates new demands on technology. As 3D 
scanning tools improve and 3D model mesh quality are refined more 
bandwidth, memory and processing power are needed to display them 

[GMR+12].  
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There are many additional approaches to tackle the problem of limited 
hardware. A vast amount of research has been dedicated mesh 

compression. MPEG4 is a reference work in that field [JPP08]. Mesh 
simplification is another large field, concerning different level of detail, 

often involving progressive meshes [Hop96]. Furthermore, different out-
of-core techniques have been developed to enable loading of only the 
needed parts of meshes that are too large to be fully loaded in memory 
at an instance of time. Several techniques are often combined to 
achieve even better performance and render even more complex 3D 
scenes. 

1.1.1 Mesh representations 

Although some paradigm shifting techniques for representing geometry 
meshes are currently being investigated, techniques such as ray traced 
Sparse Voxel Octrees still need more research and would most likely 
also need better hardware adaption to compete with conventional 

methods [Wil12]. Today, models are almost exclusively rendered by 
polygon rasterization and represented as polygon meshes that 

approximate the original shape of the model [May10].  

Polygonal meshes 
For distribution of polygonal meshes most work has been dedicated to 
compression. The MPEG-4 standard includes some of the state of the 

art techniques for that [JPP08]. Other approaches use view-dependent 

LOD based on techniques similar to [XV96, LE97]. These methods 
normally use CPU to compute the visible polygons and range from 
fine-grained refinement at triangle level that minimizes triangle 
amount, to coarser refinement at some cluster level that is less CPU 

intensive. [HSH10] introduced non-trivial data structures to enable 
computation of the visible polygons on the GPU. Though compact, 

[GMR+12] point out that decoding of such data structures introduces 
potential problems in a script-based web implementation. 

Geometry Images 
Geometry Images as presented by Huges Hoppe [GGH02a] consists of 

two-dimensional arrays of vertex position values (�, �, �) defining a 
mesh by the implicit regular-grid structure of the array. The geometry 
can be represented in the images both as regularly sampled charts 

[PCK04] allowing implicit parameterization, or irregular [SWG+03] 
resulting in less parameterization distortion but more complicated level 
of detail from mipmaps. Triangular-chart patches together with a 
spectral clustering method for feature detection can lead to a ten-fold 
improvement in fidelity compared to quad-chart geometry images 
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[FKY+10]. Depending on how the geometric structure is represented in 
the image, different compression methods can be borrowed from the 

field of image processing. [CLCN10] uses content aware image resizing 
saving more of detailed surfaces and less where there is less detail. 

[LHC07] uses JPEG2K for compression and delivery. There are also 
many alternative ways of storing geometry in images which will be 
covered in subsequent chapters of this thesis. 

1.2 Rationale 

As was stated in the previous section and similar to audio/video and 
photo, 3D content creation is finally becoming cheaper in terms of 

time, user skills and economic investment [GMR+12]. WebGL-enabled 
web browsers, leads to 3D graphics over the Internet being expected to 
attract a lot of additional attention as 3D scanning tools are becoming 
commodity components and an ever increasing complexity and file size 

of 3D models are seen [GMR+12, CLCN10]. 

Much research has been aimed towards online geometry transmission 
techniques, but most of them represent geometry as polygonal meshes 

[CLCN10]. Bridging the gap between image and geometry processing as 
research fields, representing a 3D model by a geometry image bring 
some benefits to compactness, ease to render, transmission and storage 

compared to many traditional mesh representation formats [CLCN10, 

HCW+09]. 

[LHC07], [GMR+12] and [HCW+09] all use geometry images aiming 
towards Web3D and underline the importance of having a progressive 
mesh streaming mechanism to decrease the waiting time. Still, 
progressiveness is not enough for rendering models exceeding the 
capacity of the GPU video memory. Several out-of-core techniques 
have been developed for conventional geometry but almost all of those 

that address geometry as images have been restricted to terrain “or at 

least planar scenes” [May10]. [NPC07] addressed any topology for 
geometry images but aimed towards offline environments. They 
achieved excellent results combining a number of innovations but did 
not describe their out-of-core paging algorithm thoroughly. Yet, a 
paging algorithm aimed towards WebGL would have to take other 
parameters and limitations into account. 

Virtual Texturing elegantly enables out-of-core paging for textures and 

has been successfully implemented for WebGL by [AG12]. However, as 
geometry textures are processed differently in the GPU, investigating 
the advantages of a similar out-of-core paging algorithm to Virtual 
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Texturing for large online mesh models represented as geometry 
images, hereby referred to as Virtual Geometry Textures, remain an 
interesting, non-trivial and unexplored research subject.  

The rationale for conducting this thesis can be summarized as the 
combination of the following three observations: 

 Virtual Texturing provide an elegant out-of-core paging system 
for textures and has been successfully implemented for Web3D 
by [AG12].  

 Geometry can be represented as images, which in many cases 
can be advantageous to conventional geometry representations 
[GMR+12, CLCN10, HCW+09].  

 Combining Geometry Images and Virtual Texturing would be 
interesting since a similar system, although aimed towards an 
offline environment, has already been developed by [NPC07], 
achieving great results. If proven feasible for the web, similar 
web based systems might benefit from this combination. 

1.2.1 Definition of “Virtual Geometry Textures” used in this 
thesis 

Throughout this thesis the name Virtual Geometry Textures (VGT) 
refers to Virtual Texturing symbiotically combined with Geometry 
Textures, which, in its turn refers to any technique which involves 
streaming and rendering of geometry data stored in textures. The aim 
is not to limit this thesis to the use of any certain class of geometry 
textures, but rather to find the one that seems most suited for being 
used in combination with Virtual Texturing. 

1.3 Problem formulation 

Based on the rationale for and definition of Virtual Geometry Textures 
given in the previous section the main purpose of this study is to 
clarify the potential performance and implications of Virtual Geometry 
Textures for WebGL as a further development of previous similar 
methods to stream 3D progressively online. 

In other words, this thesis sets out to answer the question:  What are 
the implications and potential performance of a VGT system for the 
web? 

To answer this question, an introduction to Virtual Texturing and 
techniques using geometry stored as textures is given in the Chapter 3, 
followed by a survey of three interesting such techniques in Chapter 4, 
an analysis of this problem formulation and a method for how the 
question should be answered in Chapter 5. The outcome is then 
presented in Chapter 6. 
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1.4 Contributions 

This thesis is aimed at any software engineer interested in-, and is 
supposedly about to implement, a system for streaming large 
geometries and textures progressively. It sets out at investigating 
whether it is beneficial to stream geometry in textures together with 
Virtual Texturing in a WebGL environment. It aims to be an 
interesting contribution to Web3D by providing insights to an 
alternative out-of-core technique for loading large geometry meshes 
progressively. It provides a survey of three methods using textures to 
render geometry, and discusses their respective suitability for the 
proposed purpose. The third method is then evaluated deeper and 
investigated. An elaboration and discussion of implications, as well as 
pitfalls encountered during the investigation is presented. 

In addition, Chapter 3 provides an introduction to Virtual Texturing 
and the relevant investigated geometry carrying formats. It should be 
of use to anyone who wants an introduction to the topic. 

1.5 Limitations 

The thesis investigates whether VGT is at all feasible rather than 
implementing a complete prototype. Several preprocessing techniques 
would have to be linked together to realize a test implementation from 
which it would be possible to measure and extract hard data. This 
thesis does not cover these since, depending on the choice of technique, 
different preprocessing steps will have to be combined to achieve 
suitable geometry image formats. 

Two bottlenecks were found that prevents VGT from being 
implemented with full performance using the current state of the 
WebGL standard. Because of this, the VGT is system is said to be 
currently not feasible, but since that is based on this particular 
instance of the problem, that combines two particular 3D engines, it is 
naturally hard to leave any guaranties that a VGT system could not 
be effectively implemented. However, at least some of these insights 
should be of more general use. 

Because of the bottlenecks found, any further investigation that would 
have to be made having alleviated these was left out. 

1.6 Outline 

The outline of the remainder of this thesis looks as follows: 

Chapter 2 – Related Work: Briefly describes the related works of most 
interest. 
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Chapter 3 – Theory: Gives the theory of the main concepts treated in 
this thesis; Virtual Texturing, and per-vertex displacement mapping. 

Chapter 4 – Survey: Presents a survey of three techniques for storing 
and rendering geometry as images. This survey serves as background 
and motivation for choosing Adaptive Quad Patches as the technique 
to be used for further investigation in Chapter 6. 

Chapter 5 – Problem analysis: Analyses thesis question further and 
presents a method for answering it. 

Chapter 6 – Virtual Geometry Textures: System Investigation – 
Investigates and elaborates on the implications of combining Virtual 
Texturing with Adaptive Quad Patches (AQP). This is done by 
elaborating on how suited the architectural properties of the essential 
features of Virtual Texturing would be to be added to AQP. 

Chapter 7 – Future Work: Covers the two points considered most 
important to for future investigation and suggests solutions to them. 

Chapter 8 – Conclusion: Summarizes the main points of the thesis and 
what has been achieved. 
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2 Related work  

There are several works related to this thesis, many of them already 
mentioned in Chapter 1. This chapter further puts the thesis into its 
context. In the next chapter, a deeper description will follow for the 
theory of the main works for which the possibilities of a VGT system 
have been investigated. Other related works will be referenced 
throughout the paper as suited. 

2.1 Online streaming of geometry through images 

A number of progressive streaming techniques have been developed for 
the web enabling progressive geometry streaming and progressive 

refinement of level of detail (LOD). [SC12] implements fine-grained 
progressiveness at vertex level by streaming a reversed order of mesh 

splits achieved from the simplification of a mesh. [LCD13] achieves good 
results using a progressive decompression algorithm with several LODs 
but suffers from an intensive use of the CPU. A comprehensive work 
covering many aspects of general progressive streaming online is 

[Wei10]. 

Relatively few approaches so far use textures to deliver geometry 

online. Adaptive Quad Patches (AQP) [GMR+12] uses geometry vertex 
displacement textures to enable GPU rasterization and let the 
networking and LOD computing component rely on already existing 
and optimized libraries for compression and streaming of images. Their 
LOD is computed at a much coarser level as quadratic patches.  

While [GMR+12] does have the capability to load geometry in textures 
progressively, it does not make use of the GPU to evaluate which 
geometry textures are needed. Nor does it use a cache texture or an 
indirection table to address to address larger textures and cache these 
on the GPU. These are features of Virtual Texturing, an out-of-core 

technique proposed originally as “MegaTexture” by John Carmack 

[May10]. It has been extensively evaluated and investigated by [May10] 
and elegantly solves out-of-core paging for textures and has been 

successfully implemented for Web3D by [AG12]. [NPC07] is the only 
work found using geometry images combined with an out-of-core 

algorithm. Although investigated in an offline environment [FKY+10] 

refer to [NPC07] stating that a similar out-of-core algorithm could be a 
useful extension. This thesis investigates the combination of a similar 
patch based system, where the geometry is delivered as textures, and 
the out-of-core algorithm Virtual Texturing. The next chapter will 
cover the theory behind Virtual Texturing as well as the other 
techniques needed for understanding the rest of this thesis.  
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3 Theory 

In this chapter the theory of the main concepts treated in this thesis is 
presented. To begin with, Virtual Texturing is explained, followed by a 
recap of displacement mapping which is related to most geometry 
texturing techniques.  

3.1 Virtual Texturing 

This section contains a brief recap Virtual Texturing. While Virtual 
Texturing has its variations, generally the one referred to in this thesis 

is the implementation by [AG12]. 

Virtual Texturing is a rather advanced system combining several 
techniques to alleviate many of the difficulties commonly related to 
texturing. As shown by [AG12] Virtual Texturing also has many 
advantages in online applications. Virtual Texturing combines the 
advantages of the following, briefly explained, techniques: 

 Mipmaping [Wil83] is a technique used for increasing 
efficiency in texture filtering. A mipmap is a pre-calculated 

“pyramid” of a texture image containing copies of itself at 
different sizes, one for each different level of detail. At each 

level the size is reduced to ¼ of the level above, resulting in 

~33% total extra space needed. Using a mipmap, the image 
can be sampled directly at a sufficient level of detail, or at a 
blending distance between two levels. This reduces the 
number of samples needed. 

 Clipmapping [TMJ98] is a technique for loading only needed 
parts of a mipmap. This is more memory effective and 
crucial for cases when the mipmap texture is too large to fit 

into memory – as in the case of Virtual Texturing, where 
the texture atlas used is commonly very large. 

 Texture atlases [Wlo05] are used for performance reasons to 
reduce render state changes by placing all textures in one 
large texture. This way no extra calls have to be made to 
the GL for binding other textures when switching between 
the objects that are currently drawn. 

 Texture streaming [VW06] is used to load the lowest 
resolution mipmap level first and later stream higher 
resolutions on demand. As streaming is often inefficient at 
higher data rates the textures are normally compressed 
during streaming. 
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[AG12] combined these techniques and achieved Virtual Texturing in 
WebGL basing the implementation mostly on Sparse Virtual Textures 
by Sean Barret [Bar08] . This led to a system having the characteristics 
described in the following sub-sections. 

3.1.1 Pre-processing step 

A pre-processing step generates the virtual texture from the textures of 
all objects in the scene. The result is a large clipmap comprising of 
thousands of equally sized page images on disk, stored in directories by 
mipmap level and systematically named for easy access and streaming. 

3.1.2 Page determination 

The page-determination step is used to evaluate which texture pages 
need to be fetched and loaded. This step renders a pre-frame, reads out 
pixel data, processes pixel data and requests needed pages. The pre-

frame rendering uses a specialized fragment shader that calculates �� 
coordinates, mipmap level, and alpha blending information which it 
stores in the RGBA color channels for every pixel. 

During this step the pixels are rendered to a frame buffer object 
instead of the screen buffer, and are then read back to memory so that 
they can be analyzed for a correct page fetch. The pixel read back 
stalls the GPU. Therefore it is important to reduce read back time as 
much as possible. This is done by minimizing the frame buffer. As 

shown by [May10], its minimal size can be to 1/8 of the view buffer 
while still giving a correct page determination.  Also, the read back is 
not necessarily done for every frame. Depending on camera movement 
for example, it can be done more or less frequently. 

3.1.3 Page streaming 

Page streaming is used for downloading needed pages asynchronously 
through Web Workers (extensive tests was performed by [AG12] 
comparing page streaming performance of loading through Web 
Workers, Web Sockets, and simple Javascript). When using Web 
Workers for fetching images, only raw image data can be passed back 
to the main thread. Luckily, data can be loaded directly into WebGL 
without creating any Javascript image objects. [AG12] realized that 
this was important since image objects will normally be cached by the 
browser, causing the memory to fill up and eventually a page crash 
due to the thousands of page requests that are done in Virtual 
Texturing. 
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3.1.4 Page cache 

The page cache is a large texture that holds the active texture pages 
on the GPU and is regionally updated every time a new page is loaded. 
It reduces the number of state switches needed by the renderer by 
being bound only once and being continuously updated with pages 
uploaded by texSubImage2D. It is mipmapped but contains pages from 
any of all mipmap levels. The cache has a CPU side representation: an 
array of JavaScript objects is kept and updated containing state 
information about each page currently in the cache. The state 
information comprises of the cell position in the cache, page index, 
mipmap information and a counter, indicating the last frame in which 
the page was referenced. When the cache is full it uses a pseudo least-
recently-used (LRU) page replacement scheme, placing the new page 
at the position of the first found page that has the highest current 
frame count. 

3.1.5 Indirection table 

After each page replacement an indirection table is updated 
accordingly. It is used in the fragment shader as a translator between 

�� coordinates virtual textures and their locations in the page cache 
allowing the Virtual Texturing fragment shader to address individual 
texture fragments from the physical page cache as if they resided 
locally in the GPU memory. The indirection table is uploaded as a 
texture to the fragment shader where its data is used to translate the 

virtual texture’s �� coordinates to physical cache texture �� 
coordinates. Since it is normally the case that the virtual texture used 
is larger than the cache texture (otherwise the cache texture would per 
definition redundant), and due to the latency in page loading, 
eventually some page faults will occur. When that happens, the 
translation gives the physical cache coordinates to a lower resolution 
mipmap level of the requested page. At least the lowest quality 
mipmap level will always be available in the cache. 

3.2 Per-vertex displacement mapping 

Displacement mapping [SKU08] is a collecting term for techniques 
mapping a texture to geometry in some way to enhance the 
appearance of its geometrical surface. These techniques are can be 
classified as per-vertex and per-pixel displacement mapping. Depending 
on whether they are performed in the vertex shader or fragment shader 
respectively. 

Common per-pixel techniques are normal maps, bump-maps and 
parallax mapping. All these are handled in the fragment shader stage 
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of the rendering pipeline and can only give an illusion of a 
displacement, but no real geometry displacement is performed. Thus, 
flat model silhouettes will reveal the illusion. 

The other class; per-vertex displacement mapping is discussed 
extensively in this thesis and will hereafter simply be referred to as 
displacement mapping. 

One such displacement mapping technique commonly used is height 
mapping, in which a surface of vertexes is displaced up or down along 
the surface normal according to scalar values sampled from a gray 
scale displacement map. This kind of displacement is commonly used 
for terrain, but can also be implemented for general objects. 

Another per-vertex technique is vector displacement which instead 
uses a color texture as displacement map storing displacements as 

vectors, making it possible to displace the vertices in any direction – 

even overlapping each other [Hil13]. 

One problem with displacement maps is the intense use of the vertex 
shader, which must invest an equal amount of processing for every 
vertex, while generally suffering from far less performance than the 
fragment shader. Another problem is that vertex shaders have longer 
texture access times (Vertex Texture Fetch). 

3.3 Instanced tessellation 

Performing real displacements to geometry requires its surface to be 
sufficiently tessellated. In recent hardware this is done a fixed pipeline 
step called tessellator. A tessellator takes as input a geometric model 
at a certain polygon density, subdivides its faces and outputs it with a 
higher polygon density. Unlike the vertex shader, the tessellator 
creates vertices so that subdivisions can be effectively calculated in a 
fully dynamic manner directly on the GPU. This can save a lot of 
bandwidth and memory and enables view-dependent continuous level 

of detail (LOD) to be computed on the fly [mso]. However, this feature 
is not likely to be supported by WebGL in the near future since it has 
only started appear in advanced hardware. So to achieve real-time 
tessellation some other approach is needed.  

One obvious way to gain more displacement points is by using 
subdivision surfaces which are popular for representing curved surfaces 
or refining geometry and are usually combined with displacement 
mapping to add surface details.  
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Figure 3.1: Catmull-Clark subdivided surface. 

The most popular method is the Catmull-Clark subdivision scheme. It 
follows a set of simple rules to subdivide a mesh and can be performed 
adaptively or uniformly. An adaptive subdivision scheme use more 
processing power but places vertices smarter. A uniform subdivision 
scheme is faster but places vertices isometrically over the mesh. This 
leads to some regions being under-tessellated and others over-
tessellated. While under-tessellation makes polygons visible, over-

tessellation can severely affect rendering performance [Bun05]. 

[DRS09] presents an instanced tessellation approach for subdivision 
surfaces which after some modifications can be used in WebGL as it 
does not rely on hardware support for tessellation. This approach pre-
calculates a set of tessellated triangle patches of different LOD, which 
are uploaded once to the GPU and rendered at multiple positions 
using instancing. Adaptive Quad Patches, explained in the survey in 
the next chapter, uses a modified version of this approach to render 
square patches instead of triangles. One downside is that it does not 
use hardware-instancing as this is not widely supported in WebGL yet. 
This method will be explained in greater detail in the next section. 
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4 Survey 

Given an online Virtual Texturing system, this chapter presents a 
survey of three alternative techniques for storing its geometry in 
images. They are described and discussed here from the aspects of 
their compatibility with Virtual Texturing. Even though they were 
finally not selected for further investigation in this thesis they are still 
interesting enough to be included. For a deeper study of each of these 
techniques, refer to their respective sources. 

4.1 Geometry Images 

This section describes the “original definition” of Geometry Images 

introduced by [GGH02a] in 2002. Since then, many variations have been 
developed building on that same idea. 

Rendering traditional polygonal meshes is an inherently complex task 
in regards to collecting and grouping together incoherent connectivity 

information and attribute data that 3D models consist of. Primitives’ 
vertices must be accessed by hardware in random order, and their 
associated texture coordinates must be fetched. Next, the pixels of 

each primitive’s corresponding area in the texture domain must be 

fetched [HCW+09]. While the costs of these steps are mitigated through 

vertex and page caches, it has been noted that “the fact that this 

pipeline has been made efficient is a remarkable engineering feat” 

[GGH02b]. 

Geometry Images is a fundamentally different shape representation 
that solves several of the problems inherent to polygonal meshes. They 

consist of two-dimensional arrays of vertex position values [�, �, �] 
defining a mesh by the implicit regular-grid structure of the array. 
Neighboring pixels in the image are stored as neighboring nodes in the 
mesh. This makes them completely regular and with connectivity 
information being represented implicitly by the pixels in the image. 
Model textures and normal maps can be coded in the same fashion and 

use the same parameterization [HCW+09]. 
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Figure 4.1: Face converted to GIM. 

4.1.1 Geometry Image creation 

The creation process involves many advanced algorithms but can be 
made fully automatic. Geometry images are created by re-sampling a 
mesh onto a flat square domain - an image. The goal is to re-sample 
the mesh as evenly as possible to avoid artifacts and performance 
waste due to some regions being under-, or oversampled. 

The first step involved in creating a geometry image introduces a cut 
in the mesh, changing its topology so that it can be mapped to a flat 

surface [GGH02a]. Thus, if the mesh has higher genus than 0, i.e. it has 
more than 0 holes; the cut must be introduced in such a way that 
these holes are cut open before the resulting mesh can be mapped to a 
flat surface. 

The second step involves iterating a cut-improvement algorithm that 
introduces additional cuts to improve the quality of the 
parameterization and minimize stretch. Extremities in meshes produce 
areas of tightly packed primitives in the flat surface domain, which 
leads to undersampling. By cutting through these extremes, a more 
isometric parameterization is achieved and undersampling reduced. 
Several different algorithms can be chosen for this step. 

The third step maps the mesh to the square domain. The cuts are 
found at borders of the square, each being related to one other 

corresponding “cut-side” (resulting from duplication of vertices and 
edges in each cut) having the same length at the border to ensure a 
correct mapping at rendering time to avoid cracks. 

Having transformed the mesh into a 2D square domain, it is overlaid 
by a uniform sampling grid used for mapping sampling positions in 

space [�, �, �] of the original mesh to pixels [�, �, �] in the geometry 
image. Vertices and attributes, such as colors and normals can then be 
sampled together, resulting in an implicit parameterization that 
eliminates the need for indexes and texture coordinates. It is also 
possible to sample for example the normal map to a higher resolution 
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since it tends to contain more details. �� coordinates for it can then be 
calculated directly in the shader program. The renderer then simply 
traverses the geometry image in a raster-scan order by spanning each 

2x2 quad of samples from the image with two triangles [GGH02a]. 

 
Figure 4.2: Illustration of how GIMs are processed into vertex 

triangles. 

Nothing is stated in [GGH02a] about how vertices for the geometry 
images are sent to the graphics hardware for rendering. But the 
implementation of the library OpenGI (Open Geomertry Images), 

created by Christian Rau [Rau11], which was investigated for this 
thesis, creates a geometry mesh patch of vertices that matches the size 
of the geometry image. It is sent to the GPU and the geometry image 
is rendered to its vertices using vertex texture fetch in a simple vertex 

shader [GGH02a]. 

4.1.2 Evaluation 

Thanks to the regularity of how the geometric structure is represented 
in the images, different processing and compression methods can be 

borrowed from the field of image processing [GGH02a]. [CLCN10] uses 
content aware image resizing saving more of detailed surfaces and less 

where there is less detail. [LHC07] compresses geometry images using 

JPEG2K. [HCW+09] combines spectral analysis with geometry images 
to achieve more visually pleasing shapes at high compression rates. 

Geometry Images can be trivially up- and downsampled to achieve 
different level of detail representations in mipmapping, although 
straightforward lossy compression may introduce visible seams. In 

[GGH02a], this problem is eliminated by encoding a cut fusing into a 
small data sideband. The geometry can be represented in the images 

both as regularly sampled charts [PCK04] allowing implicit 

parameterization, or irregular [SWG+03] resulting in less 
parameterization distortion but more complicated level of detail from 
mipmaps. Triangular-chart patches together with a spectral clustering 
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method for feature detection can lead to a ten-fold improvement in 

fidelity compared to quad-chart geometry images [FKY+10].  

Geometry Images that encodes a full model per image may be less 
suited for Virtual Texturing. This is because Virtual Texturing uses a 
page cache to load desired pages from a virtual texture progressively, 
demanding more flexibility than the original Geometry Image method. 
Currently, pages used in the virtual texture clipmap must be of the 
same size. Thus, geometry models of different sizes must be up or 
downsampled accordingly, inevitably leading to some models being 
coarser than others. 

Splitting Geometry Images into patches could be an interesting 
solution this, and could also save memory by providing a cage for each 
patch.  This would reduce the need for precision as vertices store 
positions relative to the cage. Otherwise, Geometry Images generally 

need at least 12 bits per channel [BJFS12] which is more than the 8 bits 

being the current limitation in all common web browsers. 

4.2 Sequential Image geometry 

In addition to the pre-processing steps for Geometry Images being 
extremely complicated, also, not all types of meshes can be handled 
without modifications. To avoid these problems, X3DOM utilizes what 

they call Sequential Image Geometry (SIG) [BJFS12] which simply codes 
vertex data, as-is, in a fixed sequential order to texture [r, g, b]-
channels.  

Image files are used to carry the data but merely as containers storing 
unlinked vertex data. Vertex- and normal coordinates are simply coded 
into texture channels. Mesh coordinates are linearly normalized in 
accordance with their respective bounding boxes, converting all values 
to the interval [0:1].  Bounding boxes are kept directly in the HTML / 
X3D document and can be used for culling calculations to avoid 
loading of unnecessary data. 

Noting that all common image formats supported by web browsers 
today are limited to 8 bits per color channel and that this gives 32 bits 
per texel in RGBA textures, SIG takes the approach of splitting the 
encoding of normals, texture coordinates, and positions into separate 
images. 

While 2D texture coordinates and normals can fit in one 32 bit RGBA 
texture each, vertex xyz-coordinates need more space and are instead 
coded in several RGB textures in accordance with a coarse-to-finer 
precision strategy: The first texture contains the first 8 higher 
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significance bits of each respective RGB channel. The next texture 
contains the next 8 respective significant bits and so on. 

A valid model can be rendered already from the first image, and later 
be refined to any level of bit depth by streaming more geometry 
precision through additional textures. This can be used as a kind of 
level of detail (LOD) technique. By using the bounding boxes which 
are stored in HTML, the LOD can be calculated to prioritize geometry 
precision for meshes that, for example, are closer to the camera. Note 
that this LOD technique does not involve any change in the number of 
vertices that has to be drawn but solely concerns the precision at 
which they are drawn. 

 
Figure 4.3: Illustration of how SIG displacement textures are processed 

into vertex strips. 

Geometry patches are created on the CPU using a simple triangle 
striping algorithm. Vertices are displaced in a simple vertex shader 
according to positions sampled from the Image Geometry textures. 

4.2.1 Evaluation 

SIGs are advantageous in that complicated pre-processing steps are 
avoided and rendering made simple and effective. As seen in Listing 1 
below, the final position is simply sampled from the texture and 
adjusted to the bounding box. 

uniform sampler2D IG_coordinateTexture; 
… 
vec3 pos = texture2D( IG_coordinateTexture, IG_texCoord ).rgb; 
pos = pos * (IG_bboxMax - IG_bboxMin) + IG_bboxMin; 
… 
gl_Position = modelViewProjectionMatrix * vec4(pos, 1.0);  

Listing 1: SIG’s vertex shader samples the vertex positions directly 
from the texture. 

SIGs main disadvantage, however, is that simply packing vertex data 
in images results in pixel values with almost no local coherence. 
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Therefore SIGs loses many interesting 2D image compression 
possibilities, such as the ability for up and down sampling of images to 
higher or lower resolutions such as used in mipmapping. Although the 
ability of having different LODs is possible through the way vertex 
coordinates are handled in the images as explained above, one misses 
the desirable feature of using other than lossless image compression. 

Another disadvantage with this method is that it does not include any 
handling of seams. Cracks between patches easily appear if only one of 
the 8 bit precision images is streamed. At least two images for each 
patch, or a vertex precision of 16 bits per channel, are generally needed 
to avoid these cracks showing up. Still, in the demo of Happy Buddha, 
it appears that this is not enough. 

 
Figure 4.4: No handling of seams may result in visible seams. Here 

using in 8 bits per channel. 

4.3 Adaptive Quad Patches  

Adaptive Quad Patches (AQP) has been chosen for this thesis as the 
system to combine with Virtual Texturing. It uses a complete 
automatic pipeline for converting, compactly store, effectively stream, 
and render geometry models. It takes the approach of splitting the 
geometry into quadratic patches which can then be streamed and 
rendered at different fidelity depending on the view and demand of 
detail. 

AQP has been developed for both OpenGL and WebGL so it is worth 
noting that this thesis will only cover the WebGL version, which has 
some disadvantages arising from the gap of features between these 
standards. Although the WebGL version performance is lower, it 
makes better relative use of for example the streaming facilities.  
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Motivation for use of AQP in this thesis 

AQP builds on many of the techniques similar to those considered in 
the survey and seems to find a good balance between these. Although 
AQP is a unique system, the fact that it makes use of many existing 
techniques increases the generality of this thesis. The main reasons for 
using it in this thesis are as follows below. 

 Apart from patching, its approach to store geometry is similar 
to vector displacement maps which are increasingly supported 
in 3D modeling software such as ZBrush. 

 It implements instanced tessellation using subdivided meshes 
which has been proposed by for instance in [Tat08] as a 
substitute for hardware tessellation when such are not available.  

 It is a fully functioning 3D engine allowing for side-by-side 
comparison with a Virtual Texturing engine. 

 It is well suited for meshes that define closed objects with large 
components (without many finer topological details). These are 
normally features of scanned 3D objects, which is likely one of 
the more interesting targets for web 3D in the near future.  

Patch based meshes 

As mentioned in the AQP paper, different approaches to using patch 

based rendering such a [HSH10] have proven very effective in terms of 
rendering speed. But since these approaches often require coding of 
non-trivial data structures and techniques for decompression, they 
could be problematic to implement in a script-based web environment. 
Instead, AQP adapts and makes use of Semi-Uniform Adaptive 

Tessellation [DRS09] pre-calculating mesh grids at different level of 
detail on the CPU side. These patches of vertices are then uploaded to 
the GPU before being instanced and displaced by a displacement 
texture. 

An interesting property of AQP is that all geometry is stored in 
textures. Images are generally easy to handle in a web environment, 
and textures can, unlike geometry buffers, be partially updated 
without having to re-bind them in the GL-context using 

“texSubImage2D”. Compared to geometry images which are normally 
concerned with re-parameterizing the whole mesh into one image, AQP 
achieves a tighter texture packing by re-parameterizing the mesh into 
multiple smaller squares based on the mesh topology. The splitting of 
the mesh into smaller squares instead of larger irregular charts such as 

in [KLS03] or [PH03] leads to simpler handling of chart boundaries 
without need for specialized transition functions between patches. 
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4.3.1 Adaptive quad patch creation 

The square patches are achieved by first minifying the mesh so that it 
becomes a coarse grained root mesh. This base mesh is then then re-

parameterized. The re-parameterization takes the approach of [PTC10] 
replacing each triangle in the mesh by three edges originating from the 
triangle center point where a new vertex is created (see figure).  

 
Figure 4.6: Simplified mesh and quadratic patches re-parameterization 

pattern. 

Geometry displacement images are then created by sampling values 
from an overlay of the original mesh with respect to each patch in the 
root mesh. A tightly packed geometry texture atlas is then created by 
storing these images side by side. Also, color textures and normal maps 
atlases are created similarly. The amount of patches in the texture 
atlas can be set to a maximum value to bring down the download 
sizes. 512 patches is the maximum value used in the AQP 
implementation. If more patches are created, these will be stored in 
another texture atlas. 

The texture atlas is mipmapped to create different levels of detail 
(LOD). When downsampling is made for the texture atlas, for the 
coarser mipmap layers, inner samples and border samples are handled 
differently. While inner samples are simply the average of 4 samples 
from the finer mipmap level, border samples are averaged only on the 
2 samples which are part of the boundary, creating continuity across 
patch borders. For the same reason, corner samples use pure sub-
sampling and stay unchanged through all mip layers. 
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Figure 4.7: Patch border pixels are kept down the mipmap chain to 

ensure continuity across borders. 

The corners of the root mesh are stored as raw vertex positions. 
Similar to the rest of the mesh these are stored in image format, but as 
absolute positions using 16 bits, which is double to the bit precision 
normally supported by images in web browsers. Therefore two images 
are used, one containing the high- and the other containing the low 
precision bits of the coordinates. Also, two more images are used 
storing individual displacement quantization ranges for each vertex in 
the mesh. These ranges are used to avoid discretization artifacts by 

adapting the quantization level of each vertex’s displacement. 

For a more detailed description of the pre-processing steps refer to the 
original paper Adaptive Quad Patches: an Adaptive Regular Structure 
for Web Distribution and Adaptive Rendering of 3D Models.  

4.3.2 Rendering adaptive quad patches 

Pre-tessellated geometry grids (patches) are created at the 
initialization of the engine, one per each mipmap level of the texture 
tiles. Texture mipmap levels are downloaded and streamed 
asynchronously on demand using Web Workers.  

As illustrated in Figure 4.8, the following steps are taken when 
drawing a model using the AQP engine: 

1. Commit new tiles - new tiles are uploaded to the textures 
already bound to the GPU using WebGL call texSubImage2D. 

2. Edges LOD Evaluation (ELE) - the screen projected length of 
the edges of each patch is evaluated and a LOD is set for every 
edge. The patch LOD is then set as the maximum of these 
LODs. This step affects the performance and will be elaborated 
on more deeply in Chapter 6. 

3. Update edges LOD texture - simply updates the edge LODs 
texture using texSubImage2D. 
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4. Draw patches - draws every patch after having set the correct 
sampler textures and uniforms. Each patch is drawn in a 
separated draw call with uniforms and samplers updated in 
between. 

 
Figure 4.8 Control flow of the rendering steps in the AQP engine. 

Dotted lines showing data flow. 

The most relevant parts of this system will be covered more deeply in 
the elaborations.  
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5 Problem analysis 

The problem description stated a question that is the main purpose of 
this thesis to answer:  

“What are the implications and potential performance of a VGT 

system for the web? ” 

The definition used for Virtual Geometry Textures in this thesis states 
that the aim is not to use any certain class of geometry images but 
rather to use the one most sufficient to combine with Virtual 
Texturing. Having presented the theory and survey, one should now 
have enough background to imagine how the VGT system can be 
realized. The question can then be reformulated into a less general 
form that can constitute an instance of this problem. If VGT in this 
formulation is replaced by a system where the essential features of 
Virtual Texturing come into use also for its geometry rendering, then 
that would be a valid instance of this problem. The survey pointed at 
Adaptive Quad Patches (AQP) as a system that seemed most suited 
for this purpose, and was selected for further investigation. 

5.1 Method 

A demo of the AQP system has been achieved for this thesis from 

CRS4, as well as the Virtual Texturing engine Porcupine Engine© 
developed at Mindary. Thus a deeper investigation of the systems at 
hand is made in an attempt to fuse them and realize a VGT system. 
Each essential part of the Virtual Texturing technique is studied to 
gain understanding of how it could be incorporated with AQP to 
stream and render large meshes through textures.  

As stated in the limitations section, this thesis set off at investigating 
implications and potential performance rather than leaving any 
guarantees that it would result in a complete prototype. If it would 
have, that implementation would still be very basic, considering the 
time span of the thesis, and the performance measure would not be 
very useful since it would be lacking many possible optimizations for 
its rendering pipe. The aim of this thesis is rather to discuss the 
architectural choices, bottlenecks and possible solutions and 
optimizations for it. Further research is then made depending on what 
is found, to be able to discuss these findings.  
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6 Virtual Geometry Textures - System 
investigation 

This chapter describes the investigation on the implications of 
combining Virtual Texturing with Adaptive Quad Patches (AQP). 
Since there are many potentially useful choices of technique for 
rendering geometry through images, some of those that are most 
interesting were discussed in the survey of Chapter 4.  Then, following 
the general solution in the problem in Chapter 5 this chapter will 
investigate each part of the Virtual Texturing technique alongside with 
AQP and elaborate whether each feature of Virtual Texturing could be 
implemented for AQP. This is done by elaborating on architectural 
properties of the essential features that must be included in such an 
implementation. 

The essential features of Virtual Texturing are discussed in Chapter 3. 
Of these, the two main features that had to be added to AQP is Page 
Determination for geometry patches and a Page Cache for a virtual 
texture of geometry patches. 

The approach taken at the beginning of this investigation was to 
extend Virtual Texturing with patch based rendering such as the one 
used in AQP. It was soon realized that AQP engine would be better 
off left mostly unchanged; thus, the approach was reversed to adding 
Virtual Texturing to AQP. The rest of this chapter describes the two 
main findings of this investigation. 

6.1 Page Determination pass 

This section elaborates on whether the page determination pass used in 

Virtual Texturing by [AG12] should be used to determine what 
geometry displacement pages should be streamed.  It explains why the 
use of geometry patches currently implies CPU side pre-calculations of 
LODs, and why that would make the page determination pass used by 
this Virtual Texturing system redundant. It continues by explaining 
why VT page determination can be completely replaced by the Edge 
LOD Evaluation (ELE) step when using a system like AQP, and ends 
with an investigation of how large meshes can be used without needing 
an ELE step. 

6.1.1 Virtual Texturing page determination 

[AG12] uses a page determination pass to determine what pages to fetch 

and from which level of detail. A “pre-frame” is rendered at low 
resolution using a special fragment shader. It is rendered to an off-
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screen Frame Buffer Object and then read-back from the GPU to be 
analyzed on the CPU. 

The pixels rendered by this page determination fragment shader 
contain coordinate-, LOD-, and blending information coded into the 
RGBA color channels. OpenGL implementations normally 
approximate the LOD of each fragment based on the partial 

derivatives of the primitive’s mapping of texture coordinates to 
window coordinates.  

[AG12] used the extension GL_OES_standard_derivatives to access 

derivative functions dFdx()/dFdy() for LOD calculation. However, 
some browsers did not support this, so for these browsers a fallback 
was necessary. The workaround for having to calculate the mipmap-

level analytically was suggested by [Pha04] and uses a mipmap look-up 
texture where the pixels in each mipmap-level store the mipmap-level 
number. Sampling from this texture in a fragment shader gives an 
interpolated value between the different mipmap layers which can be 
rounded down (floored) to represent the desired mipmap-level. 

6.1.2 Elaboration 

Provided is the goal to use geometry stored in textures together with 
Virtual Texturing. The survey concluded that displacement maps with 
pre-tessellated surfaces seem most interesting for this. As explained, 
streaming the geometry through textures allows for progressive 
updates of its precision, similar to what is being done for textures in 
Virtual Texturing. However, as will be derived below, using the same 

page determination method as in [AG12] turns out unnecessary for 
systems patch based WebGL currently lacks some important features 
that would make this set-up really effective.  

Pre-tessellated patch systems like AQP must adapt the tessellation per 
patch to avoid over and under tessellation. Normally patches are 
rendered by separate draw calls and will make up separated patches of 

primitives. If the vertices of these patches’ edges are not aligned 
perfectly, visible seams or cracks may appear between them. Therefore, 
especially edge vertices of patches of different LOD need to be handled 
properly. 

Edge Level of detail Evaluation 
Vertices are snapped to edges according to a snap-function presented 

in the paper Semi-Uniform Adaptive Patch Tessellation [DRS09]. The 
information needed for doing this is sampled from the edge LOD 
texture calculated in the ELE step on the CPU-side. Patch position in 
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space is calculated from merging the higher and lower significant bit 
values from the root textures. These values are passed as uniforms 
with each patch. 

ELE cannot be done in a vertex shader 
AQP uses a vertex-snap function that snaps together the edge vertices 
between patches of different LODs. A vertex is snapped depending on 
the different tessellation factors between two adjacent patches. Due to 
the vertex shader only being able to process one vertex at a time 

[KBR14], it normally has no information about the neighboring vertices. 
Thus, to snap an edge vertex correctly, the vertex shader must be 
provided with this extra information.  

 
Figure 6.1: The vertex-snap function. 

This information is calculated per tile by examining the length of a 

patch’s four edges projected to the screen and selecting the LOD to be 
as coarse as the coarsest one of these edges. AQP then store the each 

respective edge’s LOD in a texture. This texture is then bound to the 
GPU so that the vertex shader can sample the correct LOD 
information depending on which patch it renders (which it will know 
from a shader variable that is set before each draw call).  

ELE replaces VT page determination 
Since calculating the patches LODs is a sub step of calculating the 
edges LODs; for all patches, their needed LODs will be known and 
easily requested after this step. In AQP there is a 1-to-1 mapping 
between geometry-, and color pages. Thus, having calculated which 
geometry pages are needed means that the corresponding color texture 
pages are already known. This makes the page determination pass 
superfluous, which means the AQP edge LODs determination step 
fully replaces the Virtual Texturing page determination pass. 

No GPU based ELE alternatives for WebGL 
Since the ELE step is based on a calculation using multiple vertices, it 
cannot be done using a vertex shader. Either it has to be done 
completely on the CPU side, or ideally, using GPGPU computing such 
as OpenCL or CUDA. Unfortunately only experimental 
implementations of GPGPU libraries are available for a general online 
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setting. While there are more alternatives to how this can be done, 
none that does not use the CPU or some GPGPU computing was 
found during the research for this thesis. Seemingly, there is no such 
solution known to be suited for WebGL. 

6.2 Page cache 

The cache allows the paging system to store exactly the pages that are 
needed on the GPU at every instance of time. This enables the use of 
virtual textures which are larger than would be possible to load into 
the physical memory. A second advantage of using a page cache is that 
it can reduce the number of state switches which occur when using 
multiple textures. The page cache is an essential part of Virtual 
Texturing and this section elaborates on the implications of adding it 
as a feature to AQP or similar patch based systems. 

6.2.1 Page cache’s raison d’etre in general 

Here two statements are made, upon which the reasoning in this 
section is relies. First, it is important to point out that it is only useful 
to implement a page cache if (1.) the virtual texture representing the 
scene is larger than the maximum supported texture size, or if (2.) 
texture switches use a considerable amount of the total rendering time. 
If (1.) is not true i.e. if the amount of pages does not exceed the 
texture limit, then each streamed pages could simply be stored and 
addressed directly to a GPU representation of the virtual texture. If 
(2.) is not true, it is not the bottleneck and very likely not enough 
reason for implementing a page cache. 

6.2.2 Page cache’s raison d’etre in AQP 

The current AQP implementation does not suffer from (2.) so to know 
if a page cache would make sense to be implemented for AQP this 
section investigates if (1.) is true. This is done by calculating the 
amount of possible patches stored in the page cache implemented by 

[AG12] and estimating whether this amount of patches is feasible to be 
rendered at a reasonable frame rate. 

The size of the cache texture is only limited by how many pages the 
indirect table can address and the largest texture size allowed being 
stored on the GPU video memory by the specific WebGL 
implementation. The texture size limits are also bound by the WebGL 
standard which is set with cross-platform compatibility in mind, often 
to comply with devices having the lowest common denominator GPU 
processing power, such as mobile phones or tablets. To further reduce 
the amount of state switches between different textures, preferably a 
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cubemap texture is used as the cache since it is allowed to hold 6 times 
more texture data (one texture per side of a cube). According to 

webglstats.com [Boe14] which collects visitor browser statistics from a 
range of different websites, almost 90 % of the browsers of February 

2014 could handle 4096� pixel cubemaps and almost 70 % could 

handle cubemap sizes of up to 8192� pixels. About 20 % could handle 
cubemaps of double that size.  

[AG12] utilizes a cubemap of size 4096� pixels, which means it holds 

4096� ∗ 6 pixels in total. The amount of pages that the cache can store 

is directly related to the page size [AG12]. For the AQP demo used in 

this thesis the largest patches are relatively small; only 32� pixels. If 
patch sizes are increased in relation to the model, the granularity of 
the mesh gets coarser, making it more difficult to represent topological 
details. Larger patches can also introduce stretch artifacts in some 
regions. The sensitivity heavily depends on the mesh topology, but 
based on the demo model used in this thesis, it can be assumed that 
patch sizes in relation to model size should not be increased much 
more since some regions are already showing stretch artifacts. Thus, to 
calculate the amount of patches the current patch size settings will be 

used. This amounts to 
�����∗�

��� =  98304 =  2��  ∗ 6 patches that can be 

stored locally on the GPU and could be addressed directly without the 
need for a page cache indirection table. If we consider that each patch 

will also store its mipmap representations this results in 
�

�
∗  2��  ∗ 6 =

 73728 = 2�� ∗ 9  unique patches. Also, assuming that only 1 texture 
cube cache is used to store each attribute texture; geometry, normal, 

and color, reduces the amount by 1/3 to 24576 = 2�� ∗ 3 being total 
amount of patches that a model can contain before a page cache is 
needed. 

Finding the bottleneck 
The larger the mesh, the more patches it will contain and each will 
have to be evaluated to determine its correct edge LOD. Likewise, the 
patch rendering time will increase linearly by the amount of patches 
rendered. Thus, the overall performance will be increasingly dependent 
on the speed of these two steps.  

As stated in (1.) earlier, a page cache with indirection is only necessary 
for textures larger than would fit in the GPU memory. As calculated 

above, in this setting models can contain up to 3 ∗ 2�� patches before a 
page cache is needed since models less than that size would fit fully in 
GPU memory. In the horse model, the amount of patches is 300. This 
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means that a scene containing �
�∗���

���
� =  81 such models could be 

rendered without the need for a page cache. 

However, as concluded earlier, the total time for the ELE step grows 
linearly with the amount of patches it must evaluate. Using the 
profiler tool in Chrome DevTools, the ELE currently takes never less 
than 2 ms, evaluated on an Intel Core i7 Q 720. Thus, only the ELE 

step would take at least 81 ∗ 2 =  162 ms at the point at which the 
number of patches are so many that a cache is needed. With patch 
renderings included the frame rate would drop to less than 3 fps, which 
is far less than acceptable. 

a)  

b)  

Figure 6.2 showing profiling in Chrome Development Tools. 
a) Showing 1000 ms of Javascript functions when rendering the 

original horse model, and b) showing the same period of time when 
rendering 81 times more patches (only slightly more than 2 frames are 

rendered here during the same time period). 

It should be noted that culling algorithms could be included, 
alleviating some processing, but that being very dependent on the 
scene to be rendered. 

The ELE algorithm was originally presented in [DRS09] which did some 

extensive testing, finding that “for meshes with more than about 1000 
patches, render queue generation appears to be faster on the GPU 
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than on the CPU”. However, as noted before, until GPGPU libs such 
as WebCL become widely supported this will have to be calculated in 
Javascript on the CPU side which will be considerably slower.  

If some lag in the LOD state switches could be acceptable, then a 
compromise could be to only do ELE at some pre-set interval of 
frames, but this also stalls the rendering. A better solution would be to 
move the ELE execution into an asynchronous thread using the 
Javascript web worker technology. This is should probably be easy and 
would save much rendering time in terms of ELE. 

However, the next possible bottleneck should be investigated before. It 
concerns the rendering of the large amount of patches. The mesh is 
rendered using one draw call per patch. Between each patch draw call 
the 4 corner coordinates of the patch are extracted from the root 

texture. Also, information about patch � and � coordinates, color-, 
normal-, and geometry LOD is updated. All this information is passed 
to the shader program as uniforms which are updated before the draw 
call is made. This result in a considerable amount of expensive native 
Javascript calls: uniform updates as well as draw calls. 

The renderer’s patch drawing performance was profiled using the same 
test setup; rendering the horse model which consist of 300 patches 
using a laptop with an Intel Core i7 Q 720 CPU and an AMD Radeon 
HD 6500M GPU. 

It was found that a considerable amount of rendering time was spent 
on updating uniforms between drawing each patch and that this 
information most of the times remained unchanged since the last patch 
was drawn. After inserting a simple test for whether uniforms had been 
changed, most of the redundant uniform updates could be removed, 
reducing the complete patch rendering time by almost 20 % when 

rendering 81 ∗  300 patches. 

However, the frame rate is still below 10 FPS which is far from 
acceptable. Therefore, rendering that amount of patches with AQP can 
be considered unnecessary, which implies that according to (1.); 
implementing a page cache for AQP is currently not feasible. This 
temporarily overthrows the idea of implementing Virtual Geometry 
Textures in WebGL. But having found the bottlenecks, the next 
chapter discusses how they can be overcome in the future reviving the 
idea of VGT. 
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7 Future work 

This section covers the two points considered most important for 
future investigation. Solutions to the two major bottlenecks that were 
found and discussed in Chapter 6 are presented. 

7.1 Hardware instancing of patches 

As made clear in the last section, the main bottleneck is the efficiency 
at which WebGL renders the patches. Thus the most interesting area 
for future investigation when it comes to AQP with Virtual Texturing 
is the rendering of patches. Currently, most rendering time is spent on 
setting uniforms and making draw calls. It would therefore be 
interesting to investigate whether hardware instancing would make 
AQP patch rendering fast enough to make use of a Virtual Texturing 
style texture cache. 

While there was no support for hardware instancing in any WebGL 
implementation at the commencement of this thesis, according to 
webglstats.com, its support has since raised by over 50 percentages. 

By moving the uniforms used in the current implementation into attri-
bute buffers, these can be instanced using a drawElementsInstanced 
call, eliminating both the need to set uniforms between every draw 
call, and the need to make separate draw calls per patch.  Most 
probably this would have high impact on the rendering and hopefully 
it would make it worthwhile to implement a Virtual Texturing cache 
as well. 

7.2 GPGPU support - WebCL for ELE  

As elaborated in Chapter 6 the Edge LOD Evaluation (ELE) step as a 
bottleneck could probably be much alleviated by moving its execution 
to a separate thread using WebWorkers. This would result in a lag in 

the LOD switches. [DRS09] used GPGPU techniques to make this step 
faster. A Khronos WebCL working group was formed in 2011 to 
defined Javscript bidnings to the Khronos OpenCL and some test 

implementations have already been made [Khr14]. Hopefully this will 
soon become supported in major browsers, as it would likely allow a 
great speed up of the ELE step and remove the last bottleneck that 
currently prevents VGT from being appropriate for a web 
implementation. 
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8 Conclusion 

With the aim to be an interesting contribution to Web3D by providing 
insights in an alternative way of loading large geometry meshes 
progressively, this thesis set out to answer the question of what the 
implications and potential performance of a Virtual Geometry 
Textures (VGT) system for the web would have. VGT was defined 
here as Virtual Texturing combined with Geometry Textures, and 
Geometry Textures was in its turn defined as any technique that 
involves streaming and rendering of geometry data stored in textures. 

Section 1.2 in Chapter 1 summarized the rationale for this 
investigation and the survey in Chapter 4 showed why this is a non-
trivial problem to solve. To answer the thesis question, first, the 
survey presented and evaluated three potential techniques. Then, an 
analysis of the problem formulation was made in Chapter 5, and a 
method for answering the question was presented. The method used 
was to elaborate on architectural properties of two 3D engines; one 
implementing Virtual Texturing, and the other Adaptive Quad 
Patches (AQP) implementing Geometry Textures (as vertex 
displacement maps). The essential features needed from each of the 
two techniques were investigated in an attempt to extend AQP with 
Virtual Texturing to accomplish VGT. However, the attempt showed 
that two of the essential features of Virtual Texturing were 
incompatible with AQP.  

Firstly, the page determination method used in Virtual Texturing by 

[AG12] was found to be completely replaceable (but not the other way 
around) with the corresponding method used in AQP. The AQP 
engine must do its edge LOD evaluations (ELE) to avoid cracks 
between the patches in the mesh, but for this calculation each required 

page must be calculated as well as the desired LOD for it. No uv 
coordinates are needed in AQP since geometry-, and texture pages are 
directly linked to each other. This means that knowing which 
geometry pages to use in a frame, implies knowing what texture pages 
should be loaded as well.  

Secondly, considering that a page cache, which is one of Virtual 

Texturing’s essential features, would be of little use if textures never 
exceeded the GPU texture size limit, the patch rendering efficiency 
was examined. After this elaboration it could be concluded that the 
patch rendering method, using separate draw calls per patch, was too 
ineffective at rendering the amount of patches that would exceed this 
limit. Using a patch based system like AQP; the bottle neck is 
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currently not the texture limit but the efficiency at which these 
patches can be rendered. 

The main purpose was not to implement VGT but rather to 
investigate whether it was at all feasible. Since two major bottlenecks 
were found owing to the current state of the WebGL standard, instead 
solutions to these were presented in Chapter 7 and suggested as future 
work that can potentially solve these problems. 
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