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Abstract

In this thesis the currency pairs USDCHF, EURUSD and EURSEK are examined. The
aim is to develop a model that describes the pairs in a gratifying way. This has been
done with an ARIMA model, the decision on this model was made after studying the
stationarity or lack there of, of the currency pairs.

Further more the model are used to develop strategies for trading the currencies,
when the signals to buy or sell should be fired. The model is also used to simulate
values of the currency pairs. The coefficients of the model are simulated via a copula
simulation.
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1
Introduction

I
n finance, currency pairs describes the relative value of a currency against an-
other currency in the foreign exchange market. This is a stochastic process in that
sense that it represents the evolution of a system of random values over time. The
aim of this project is to model the process for the purpose of understanding about

the behaviour of currency pairs.
Different combinations of autoregressive and moving average models will be investi-

gated to determine if there is one that can describe the currency pairs in a satisfactory
way. The models that will be investigated are the ARMA, autoregressive–moving-average
model for stationary processes, and the ARIMA, autoregressive-integrated-moving-average,
for non-stationary processes.

A practical use of a model for currency rates are the ability to predict future values
and from that make decision on whether to buy or sell the currency. And hence, making
a profit from exchanging between the currencies in the pair.

If a successful model is found this will be used to try to simulate a currency over
a longer period of time. This is an interesting application of the model since it can be
used to test out different strategies in buying and selling the currency without having
to collect real data.

1.1 Purpose and research questions

The main purpose of this work is to investigate the behaviour of the currency data by
finding a model that describes it in a proper way. The model will be used to mimic the
data for purposes such as simulation of the currency pairs. To achieve this, the following
points are to be investigated in this thesis:

1. Finding the model

2. Investigating the fit of the model

1



CHAPTER 1. INTRODUCTION

3. Forecasting future values

4. Simulating currency pairs

1.2 Thesis disposition

In Chapter two the background on the data sets used in this work are presented. Chapter
three contains the theoretical framework on which the thesis is based on, the method
used is presented in Chapter four. The results of the work are presented in Chapter five
and the conclusions are in Chapter six.
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2
The Data

T
he object of this thesis is to examine the behavior of the currency pairs
EURSEK, EURUSD and USDCHF. The data where collected from the the
web site FX street, The Forex Market on www.fxstreet.com [5].

The choice of the currency pairs USDCHF, that is United States Dollars as base
currency and Swiss Franc as second currency, and EURUSD, Euro as base and United
States Dollars as second, are based on that the pairs belong to the so called Majors.
That is two of the seven currency pairs that constitute about 85% of the foreign exchange
market. EURSEK, Euro as base and Swedish Krona as second, have been chosen for the
local connection.

The foreign exchange market begin trading 22:00 GMT on Sunday in Sydney and
cease at 22:00 GMT on Friday in New York. The data used in this thesis are from
22:00 GMT Sunday to 18:55 GMT Friday, so three hours are missing from the end of
the series. This is due to the limitations in the data that FX street makes available for
public download. The data have a period of five minutes, which gives us 1404 points of
data in one week.

The data downloaded from FX street are four values for each five minutes, the opening
and closing value, and the highest and lowest value of the five minute interval. In
this thesis just the closing values of the five minutes interval are used to represent the
behaviour of the currencies.

The data where collected for twelve consecutive weeks, in the period 23 of June 2014
to 12 of September 2014, that is week 26 to week 37.

Currency pairs are nice to analyse since there is a whole week of continuous data
instead of just one day, which is the case with for example stock prices. This is due to
that the same currencies are traded on different markets around the world and are not
bounded to a particular markets opening hours. Then data with a five minutes interval
one week can be sufficient amount of information to draw conclusions from.

From this the decision to treat the data as individual weeks has been made. Events
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CHAPTER 2. THE DATA

during the weekends, when the markets are closed, can influence the price. This can be
difficult to account for in a mathematical description of the data, and hence it seems
sufficient to treat the weeks individually.

The currency market are the most liquid market in the world, this is interesting from
a mathematical viewpoint. That is, the currency can be sold quickly without having
to reduce the price; there are always ready and willing buyers and sellers. The high
liquidity comes from the huge trade volumes; currencies represent the largest asset class
in the world.

The foreign exchange market is close to representing the ideal of perfect competition,
which makes for an interesting topic of study.

4



3
Theoretical Background

M
odelling time series can be done by many different methods. Some are
very simple and have the benefit of being fast and easy to use. Other models
are more complicated but might be more accurate. Which ones to use,
depend on the application of the time series. The models used, along side

with other theoretical background needed, in this project are presented in this chapter.
Further in this text X̌ will denote X − µ, the deviation of the process about its mean.

3.1 Lag operators

Lag operators are used to simplify the notation of time series. The backshift operator
operator B are defined as

Xt = BXt+1 for all t ≤ 1,

and eqvivalently the forward operatior, F

FXt = Xt+1 F = B−1.

A polynomial of lag operators are written as

φ(B) = 1 +
p∑

i=1

φiB
i,

where the power of the lag operator are

BkXt = Xt−k.

5



CHAPTER 3. THEORETICAL BACKGROUND

3.1.1 Difference operator

The difference operator is a special case of lag polynomials

∇Xt = (1−B)Xt = Xt −Xt−1,

and higher order differences

∇2Xt =∇(∇Xt) = ∇Xt −∇Xt−1

=Xt −Xt−1 − (Xt−1 −Xt−2)
=Xt − 2Xt−1 +Xt−2

={with lag operators}
=(1−B)2Xt,

and in general

∇iXt = (1−B)iXt =
i∑

m=0

(−1)m

(
i

m

)
Xt−m.

3.2 Stationary time series

3.2.1 Strictly stationary

A time series {Xt} is said to be strictly stationary if the distribution of the set {Xt1 , . . . , Xtk}
is identical to that of {Xt1+h, . . . ,Xtk+h} for all h, (k positive integer and t1, . . . , tk a
collection of positive integers) [6]. The joint distribution of {Xt1 , . . . , Xtk} is invariant
under time shift.

For a time series to be strictly stationary there can be no trends, neither in the mean
values of the Xt, in their variances or in the relation between successive terms of the
series.

3.2.2 Weak-sense stationary

A process {Xt} is called weak-sense stationary or wide-sense stationary (WSS) if the
expectations

E[Xs] and E[Xs+tXs],

are well-defined for all s and t and do not depend on the value of s [6].

6



3.3. MODELLING TIME SERIES

3.2.3 Stationary and invertibility conditions for a linear process

Considering a linear filter, whose input is white noise:

X̌t = at +
∞∑

j=1

ψjat−j

X̌t =

1 +
∞∑

j=1

ψjB
j

 at

X̌t = ψ(B)at.

This is equivalent to representing the time series as

X̌t =
∞∑

j=1

πjX̌t−j + at1−
∞∑

j=1

πjB
j

 X̌t = at

π(B)X̌t = at.

ψ(B) and π(B) can be regarded as the generating function of the ψ and π weights, with
B now treated simply as a variable whose jth power is the coefficient of ψ and π. The
weights are related as

π(B) = ψ−1(B).

Then the series is stationary if
∞∑

j=0

|ψj | <∞,

or embodied in the condition that the generating function ψ(B) must converge for |B| ≤
1, that is on ore within the unit circle. We shall also say that the series is invertible if
the weights πj are absolutely summable

∞∑
j=0

|πj | <∞.

3.3 Modelling time series

The methods used for modelling the time series of currency couples in this project are
presented below together with the methods for estimating the unknown parameters of
the models.

7



CHAPTER 3. THEORETICAL BACKGROUND

3.3.1 Autoregressive–moving-average model

The autoregressive-moving-average model, or ARMA for short, is a combination of two
simple models, the moving-average and autoregressive models. The following is an ex-
cerpt from Tsay [11]

Moving-average model

The notation MA(q) refers to the moving average model of order q:

Xt = µ+ at +
q∑

i=1

θiat−i,

written with lag polynomials

Xt = µ+
q∑

i=0

φiB
iat,

or eqvivalently
X̌ = θ(B)at.

Here µ is the mean of the series, θ1, . . . , θq are the parameters of the model and a1, . . . , at−q

are white noise error terms assumed to be at ∼ i.i.d N(0,σ2
a). This implies

1. E[at] = E[at|at−1, at−2, . . . ] = 0

2. E[atat−j ] = Cov(at, at−j) = 0

3. V ar(at) = V ar(at|at−1, at−2, . . . ) = σ2
a

Since the series
ψ(B) = θ(B) = 1− θ1B − θ2B2 − · · · − θqB

q,

is finite there are no restrictions on the parameters of the MA-process to ensure station-
arity. To ensure invertibility he conditions are obtained from

at = θ−1(B)X̌.

Expanding

θ(B) =
q∏

i=1

(1−HiB),

in partial fractions

π(B) = θ−1(B) =
q∑

i=1

(
Mi

1−HiB

)
,

shall then converge for the process to be invertible. Equivalently, the weights πj =
−
∑q

i=1MiH
j
i are absolutely summable if |Hi| < 1, for i = 1,2, . . . ,q Then since the

roots of θ(B) = 0 are H−1
i it follows that if the roots of

θ(B) = 1− θ1B − θ2B2 − · · · − θqB
q = 0,

lie outside the unit circle the process is invertible.

8



3.3. MODELLING TIME SERIES

Autoregressive model

Autoregressive model of order p, AR(p),

Xt = c+ at +
p∑

i=1

φiXt−i,

with lag operators

Xt = c+ at +
p∑

i=1

φiB
iXt,

or
φ(B)X̌t = at.

For the general AR(p) process written as X̌t = φ−1(B)at we have

φ(B) = (1−G1B)(1−G2B) · · · (1−GpB),

where G−1
i , . . . , G−1

p are the roots of φ(B) = 0. Expanding φ−1(B) in partial fractions

X̌t = φ−1(B)at =
p∑

i=1

Ki

1−GiB
at.

Then for the AR(p) to represent a stationary series ψ(B) = φ−1(B) has to be a con-
vergent series for |B| ≤ 1, that is, the weights ψj =

∑p
i=1KiG

j
i are to be absolutely

summable, |Gi| < 1 for i = 1,2, . . . , p. In conclusion the roots of φ(B) = 0 must lie
outside the unit circle.

Since the series

π(B) = φ(B) = 1− φiB − φ2B
2 − · · · − φpB

p,

is finite, no restrictions are required on the parameters of an AR-process to ensure
invertibility.

ARMA

Given this the ARMA(p,q)-model is given by a combination of the MA(q) and AR(p)
models

Xt = c+ at +
p∑

i=1

φiXt−i +
q∑

i=1

θiat−1

X̌t = φ1X̌t−1 + · · ·+ φpX̌t−p + at − θ1at−1 − · · · − θqat−q,

and with lag operators (
1−

p∑
i=1

φiB
i

)
Xt =

(
1 +

q∑
i=1

θiB
i

)
at,

9



CHAPTER 3. THEORETICAL BACKGROUND

or
φ(B)X̌t = θ(B)at.

This will define a stationary process if, following the reasoning in Section 3.3.1, the
characteristic equation φ(B) = 0 has all its roots lying outside the unit circle. Similary,
the roots of θ(B) = 0 must lie outside the unit circle if the process is to be invertible.

The stationary and invertible ARMA(p,q) process can be represented as an infinite
moving average process:

X̌t = ψ(B)at =
∞∑

j=0

ψjat−j , (3.1)

and an infinite autoregressive process

π(B)X̌t = X̌t −
∞∑

j=1

πjX̌t−j = at,

where ψ(B) = φ−1(B)θ(B) and π(B) = θ−1(B)ψ(B). The weights ψj and πi are deter-
mind from the relations φ(B)ψ(B) = θ(B) and θ(B)π(B) = φ(B)

ψj = φ1ψj−1 + φ2ψj−2 + · · ·+ φpψj−p − θj j > 0, (3.2)
πj = θ1πj−1 + θ2πj−2 + · · ·+ θqπj−q + φj j > 0,

with ψ0 = 1, π0 = −1 and θj = 0 for j > q, φj = 0 for j > p.

3.3.2 Autoregressive integrated moving average model

Data can behave as through they have no fixed mean but still shows signs of homogeneity,
in the sense that apart from local level and trend, one part of the series behaves much
like any other part. To form a model that describes such homogeneous non-stationary
behaviour can be obtained by an initial step of differencing can be applied to remove
the non-stationarity. This entire section is an excerpt from Box, Jenkins and Reinsel [2]
and Brockwell and Davis [4].

Definition

The definition of this process from [4]:

The ARIMA(p,d,q) Process 1. If d is a non-negative integer, then {Xt} is a said
to be an ARIMA( p,d,q) process if Yt = (1−B)dXt is a causal ARMA(p,q) process.

This means that the process {Xt} satisfies a difference equation of the form

φ∗(B)Xt = φ(B)(1−B)dXt = θ(B)at, {at} ∼ N(0,σ2),

where φ(z) and θ(z) are polynomials of degrees p and q respectively. Also φ(z) 6= 0 for
|z| ≤ 1 and φ∗(z) has a zero of order d at z = 1, since the corresponding ARMA process

10



3.3. MODELLING TIME SERIES

is stationary if the roots of φ(B) = 0 lie outside the unit circle, and exhibits explosive
non-stationary behaviour if the roots lie inside the unit circle.

The process {Xt} is stationary if and only if d = 0, which reduces to an ARMA(p,q)
process. The model can be written as

φ(B)∇dXt = θ(B)at. (3.3)

Or equivalently defined by these two equations

φ(B)wt = θ(B)at, (3.4)

and
wt = ∇dXt. (3.5)

Then we see that the process can be represented by a stationary, invertible ARIMA
process on the dth difference of the series. For d ≥ 1 inverting (3.5) gives

Xt = Sdwt, (3.6)

where

Sxt =
t∑

h=−∞
xh = (1 +B +B2 + . . . )xt

= (1−B)−1xt

= ∇−1xt.

Thus
S = (1−B)−1 = ∇−1.

The operator S2 is similarly defined as

S2xt =Sxt + Sxt−1 + Sxt−2 + . . .

=
t∑

i=−∞

i∑
h=−∞

xh

=(1 + 2B + 3B2 + . . . )xt,

and equivalently for higher-order d. Equation (3.6) implies that the process (3.3) can
be obtained by summing (or integrating) the stationary process (3.4) d times. That is
what the name of the model comes from.

Since the infinite summation operator S = (1 − B)−1 dose not converge it can not
be used to define the non-stationary ARIMA process. Instead we consider the finite
operator Sm, for any positive integer m,

Sm = (1 +B +B2 + · · ·+Bm−1) ≡ 1−Bm

1−B
,

11



CHAPTER 3. THEORETICAL BACKGROUND

and similary

S(2)
m =

m−1∑
j=0

m−1∑
i=j

Bi

=(1 + 2B + 3B2 + · · ·+mBm−1)

≡1−Bm −mBm(1−B)
(1−B)2

,

then (1 − B)S(2)
m = Sm − mBm, and so on. Then the relation between Xt and wt in

terms of values back to some origin k < t can be expressed as

Xt =
St−k

1−Bt−k
wt =

1
1−Bt−k

(wt + wt−1 + · · ·+ wk+1),

so that Xt = wt + wt−1 + · · · + wk+1 + Xk can be thought of as the sum of a finite
number of terms from the stationary process w plus an initializing value of the process
X at time k. Hence in the formal definition of the ARIMA process one would need to
specify initializing conditions for the process.

General Form of the Autoregressive Integrated Moving Average Process

In the general form of the ARIMA model a constant term is added

φ(B)∇dXt = θ0 + θ(B)at, (3.7)

where

φ(B) =1− φ1B − φ2B
2 − . . . φpB

p

θ(B) =1− θ1B − θ2B2 − · · · − θqB
q.

In what follows:

1. φ(B) is called the autoregressive operator ; assumed to be stationary.

2. φ(B)∇d is called the generalized autoregressive operator ; non-stationary operator
with d of the roots equal to unity.

3. θ(B) is called moving average operator ; assumed to be invertible.

In allowing the constant term θ0 to be nonzero the ARIMA process is capable of showing
deterministic polynomial trend, of degree d. Since

E[wt] = E[∇dXt] = µw =
θ0

1− φ1 − φ2 − · · · − φp
.

For example when d = 1 a nonzero θ0 allows for estimation of possible deterministic
linear trend.

12



3.4. DEGREE OF THE MODEL

3.4 Degree of the model

In deciding the degree of the model, that is the values of p, d and q, we have used two
different methods which are presented below. One for deciding the degree of differencing
and another for the number of autoregressive and moving average parameters used.

3.4.1 Autocorrelation function

To find the degree of differencing, d in our model, a close study of the autocorrelation
function, ACF, of the data can be used. Autocorrelation is the cross-correlation of a
signal with it self, the measure of how much a the value of a series at time t depends on
the values of the series at times before time t. The autocovariance at lag k, meaning the
covariance between Xt and Xt+k is defined as

γk = Cov(Xt,Xt+k) = E[(Xt − µ)(Xt+k − µ)].

Under the stationary assumption this must be the same for all t. The autocorrelation
at lag k, that is the correlation between Xt and Xt+k, is then

ρk =
E[(Xt − µ)(zt+k − µ)]√

E[(Xt − µ)2]E[(Xt+k − µ)2]
=

γk

σ2
X

.

Since for a stationary process, the variance σ2
X = γ0 is the same at time t as at time

t+ k we have that
ρk =

γk

γ0
, (3.8)

implying that ρ0 = 1, which corresponds with intuition.

Autocorrelation function of a mixed process

The ACF of a mixed autoregressive-moving average model written as

X̌t = φ1X̌t−1 + · · ·+ φpX̌ + at − θ1at−1 − · · · − θqat−q,

may be derived by multiplying by X̌t−k and taking expectation:

γk = φ1γk−1 + · · ·+ φpγk−p + γXa(k)− θ1γXa(k − 1)− · · · − θqγXa(k − q),

where γXa(k) = E[X̌t−kat], the cross-covariance function between X̌ and a. X̌t−k de-
pends only on shocks that have occurred up to time t − k, then we have from (3.1),
ψ(B)at−k =

∑∞
j=0 ψjat−k−j that

γXa(k) =

{
0 k > 0

ψ−kσ
2
a k ≤ 0

.

Hence the equation for γk may be expressed as

γk = φ1γk−1 + · · ·+ φpγk−p − σ2
a(θkψ0 + θk+1ψ1 + . . . θqψq−k),

13



CHAPTER 3. THEORETICAL BACKGROUND

with the convention that θ0 = 1. (3.2) implies that

γk = φ1γk−1 + · · ·+ φpγk−p k ≥ q + 1,

and hence
ρ = φ1ρk − 1 + · · ·+ φpρk − p k ≥ q + 1,

or
φ(B)ρk = 0.

3.4.2 Akaike information criterion

In model selection there is a trade off between adding more parameters to the model
to achieve a better fit to the data and longer calculation times due to a more complex
model. A measure of the relative quality of a statistical model in this sense is the Akaike
information criterion, AIC, defined as

AIC = 2k − 2 ln(L), (3.9)

from [1], where k is the number of parameters in the model and L is the maximized
value of the likelihood function for the model.

The AIC should be used as a measure for comparing a set of candidate models;
the model with the lowest AIC value should be the one preferred. Since increasing
the number of parameters in the model almost always improves the goodness of fit the
penalty for adding more parameters to be estimated is there to discourage over fitting.

3.5 Parameter estimation

Estimating the parameters in the model used for this thesis has been done by conditional
maximum likelihood. Let N = n + d original observations of a time series, where d is
the degree of differentiating in the ARIMA model. Then the generated series w of n
differences w1, w2, ..., wn, wt = ∇dXt transforms the problem from fitting the parameters
φ and θ of the ARIMA model to fitting the same parameters to the w’s in a stationary
invertible ARMA(p,q) model, written as

at =w̃t − φ1w̃t−1 − φ2w̃t−2 − · · · − φpw̃t−p

+ θ1at−1 + θ2at−2 + . . . θqat−q, (3.10)

where w̃t = wt − µ, with E[wt] = µ. µ can be estimated by w̄ =
∑n

t=1wt/n or if desired
(if the sample size is not big enough) µ may be included as an additional parameter to
be estimated. Because of the difficulty if starting up the difference equation in (3.10) p
starting values for the w’s, w∗, and q starting values for the a’s, a∗ must be given, hence
the conditional maximum likelihood estimate.

Assuming that the a’s in (3.3) are normally distributed, their probability density is

p(a1,a2, . . . ,an) ∝ σ−n
a exp

[
−

(
n∑

t=1

a2
t

2σ2
a

)]
,

14
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then the log-likelihood associated with the parameter values (φ,θ,σa), conditional on the
choice of (w∗,a∗), would be

l∗(φ,θ, σa) = −n ln(σa)− S∗(φ,θ)
2σ2

a

,

the sum of squares function

S∗(φ,θ) =
n∑

t=1

a2
t (φ,θ|w∗,a∗,w),

from [2]

3.6 Godness of fit

When accessing how well the estimated model fits the data one useful approach is to
examine the residuals of the model:

ât = θ̂−1(B)φ̂(B)w̃t,

where (φ̂,θ̂) are the maximum likelihood estimates of (φ,θ). The residuals can be com-
puted recursively as

ât = w̃t −
p∑

j=1

φ̂jw̃t−j +
q∑

j=1

θ̂j ât−j t = 1,2, . . . ,n,

using either zero initial values (conditional method) or back-forecasted initial values
(exact method), then if the model is adequate

ât = at +O

(
1√
n

)
.

3.6.1 Portmanteau lack-of-fit test

If the fitted model is appropriate if the modified Ljung-Box-Pierce statistic:

Q̃ = n(n+ 2)
K∑

k=1

r2k(â)
n− k

,

from [3], is approximately distributed as χ2(K − p− q). Where rk(â) are the estimated
autocorrelations of â.

15



CHAPTER 3. THEORETICAL BACKGROUND

3.7 Forecasting

This section is an excerpt from Box, Jenkins and Reinsel [2]. Forecasting l, l ≥ 1 time
steps into the future when standing at time t will be represented by Xt+l. That is said
to be an forecast at orgin t for lead-time l. The generalized ARIMA process (3.7) will
be represented as an infinite weighted sum of current and previous shocks

Xt+l =
∞∑

j=0

ψjat+l−j , (3.11)

where ψ0 = 1 and the weights may be obtained by

φ(B)(1 + ψ1B + ψ2B
2 + . . . ) = θ(B).

The forecast of Xt+l is denoted X̂t(l). Suppose the best forecast is

X̂t(l) = ψ∗l at + ψ∗l+1at−1 + ψ∗l+2at−2 + . . . ,

where ψ∗l , ψ
∗
l+1, ψ

∗
l+2, . . . are to be determined. Then together with (3.11) the mean

square error of the forecast is

E[Xt+l − X̂t(l)]2 = (1 + ψ2
1 + · · ·+ ψ2

l−1)σ2
a +

∞∑
j=0

(ψl+j − ψ2
l+j)

2σ2
a,

which is then minimized by ψ∗l+j = ψl+j . We then have

Xt+l =(at+l + ψ1at+l+1 + · · ·+ ψl−1at+1) + (ψlat + ψl+1at−1 + . . . )

=et(l) + X̂t(l),

where et(l) is the error function of the forecast X̂t(l) at lead time l. Assuming that the
{at} are a sequence of independent random variables an thus E[at+j |Xt,Xt−1, . . . ] = 0
for j > 0 a few conclusions are made:

1.
X̂t(l) = ψlat + ψl+1at−1 + · · · = E[Xt+l].

Thus the minimum mean square error forecast at origin t, for lead-time l, is the
conditional expectation of Xt+l at time t.

2. Since
E[et(l)|Xt,Xt−1, . . . ] = 0,

the forecast is unbiased. Also the variance of the forecast error is

V (l) = Var(et(l)) = (1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
l−1)σ2

a.
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3. The one-step-ahead forcast error is

e1(l) = Xt+1 − X̂t(1) = at+1.

In conclusion, denoting E[Xt+l|Xt,Xt−1, . . . ] as [Xt+l] and E[at+l|Xt,Xt−1, . . . ] as [at+l],
the forecast for orgin t with lead time l is

[Xt+l] = X̂t(l) = [at+l] + ψ1[at+ l − 1] + . . . ,

and on form we are use to

[Xt+l] = X̂t(l) = φ1[Xt+l−1] + · · ·+φp+d[Xt+l−p−q]− θ1[at+l−1]−· · ·− θq[at+l−q] + [at+l].

3.7.1 RMSD and MPE

To evaluate the forecast error of the model two calculation methods where used, the
root-mean-square deviation, RMSD, and the mean percentage error, MPE. The RMDS
are calculated as

RMSD =

√∑T
i=1(X̂t −Xt)2

n
.

The MPE is average of percentage errors:

MPE =
100%
n

T∑
t=1

X̂t −Xt

Xt
.

3.8 Simulation

When real world data is hard to find or time consuming to gather, a simulation of the
process is useful to test theories and understand behaviour. This is done in this thesis
by the means of copula simulation.

3.8.1 Copula simulation

Copula 1. [9] Let {X1,X2, . . . ,Xd} be a random vector with continuous margins: Fi(x) =
P[Xi ≤ x].
{U1, U2, . . . , Ud} = {F1(X1), F2(X2), . . . , Fd(Xd)} has then by the probability inte-

gral transformation, uniformly distributed margins.
The copula of {X1,X2, . . . ,Xd} is then defined as the joint cumulative distribution

function of (U1, U2, . . . , Ud), which is

C(u1,u2, . . . , ud) = P[U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud].

17



CHAPTER 3. THEORETICAL BACKGROUND

3.8.2 Multivariate normality test

Checking the simulated data for similarity to the multivariate normal distribution can
be done by the means of the Mardia’s test [8] which is based on multivariate extensions
of skewness and kurtosis measures. For a sample of {x1,x2, . . . ,xn} of k-dimensional
vectors

Σ̂ =
1
k

k∑
j=1

(xj − x̄) (xj − x̄)T

A =
1
6k

k∑
i=1

k∑
j=1

[
(xi − x̄)T Σ̂−1(xj − x̄)

]3
B =

√
n

8n(n+ 2)

{
1
k

k∑
i=1

[
(xi − x̄)T Σ̂−1(xi − x̄)

]2
− n(n+ 2)

}
.

With the null hypothesis of multivariate normality, A a∼ χ2 with 1
6n(n+1)(n+2) degrees

of freedom, and B
a∼ N(0,1).
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4
Method

T
his chapter describes the study approach used in this thesis. First an ap-
propriate model for the data is found, this is done by investigate whether the
data behaves like a stationary or non-stationary process and then looking at
the AIC for different degrees of either ARMA or ARIMA models. The coeffi-

cients are estimated by the maximum likelihood method. A goodness-of-fit test is used
to make a final decision on the degree of the model with the estimated coefficients. The
finished model is then used for forecasting and simulation. The forecasting is used in
one of the buy and sell strategies which are some what of a test of the usability of the
model.

4.1 Treating the data

The data spans from 22:00 GMT Sundays to 18:55 GMT Fridays with a frequency of 5
minutes this gives us 1404 data points in a week. In this thesis the weeks are chosen to
be treated separately. That is at the start of every week new coefficients are estimated
and only after the initial estimation trading can start. Since the data have a period of
five minutes it is possible to re-estimate the coefficients of the model before every new
data point is collected. It has been found by trial and error that 400 data point is enough
to estimate the model. This gives us about three and a half days left each week to trade.

4.2 Stationary or non-stationery?

The first thing to do when answering the question if a time series is stationary on non-
stationary is to inspect the plot of the data, to see if a trend is present or not. It is
always good to plot the raw data to get an idea of the behaviour of the process. A more
general approach is to investigate the autocorrelation function of the process, how to
estimate the ACF is shown in Section 4.2.1. In Section 3.4.1 it is shown that for an
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ARMA(p,q) model the autocorrelation function satisfies

φ(B)ρk = 0 k > q.

Writing φ(B) =
∏p

i=1(1 − GiB) the solution to this differencing equation, assuming
distinct roots, take the form

ρk = A1G
k
i +A2G

k
2 + · · ·+ApG

k
p k > q − p,

the stationary requirements from Section 3.2.3 that the zeros of φ(B) lie outside the
unit circle implies that the roots G1,G2, . . . ,Gp lie inside the unit circle. If the process
in question is stationary the autocorrelation function will then ”die out” quickly for
moderate and large k. If a single root, say G1, approaches unity, G1 = 1− δ, δ > 0, the
for large k

ρk ' A1(1− kδ),

the autocorrelation function will fall of slowly. A similar argument may be applied if
more then one of the roots approaches unity. The estimated ACF tends to behave in the
same way as the theoretical autocorrelation function so a failure of the estimated ACF
to die out rapidly will suggest a non-stationary process in Xt, but possibly as stationary
in ∇Xt, or some higher difference. According to Box, et al. [2] in practice the degree of
differencing is normally either 0, 1, or 2, and it is usually sufficient to inspect the first
20 or so estimated autocorrelations.

4.2.1 Estimating the ACF

Based on the data one can estimate the autocorrelation function, ρk (3.8) by

rk =
ck
c0

ck =
1
N

N−k∑
t=1

(Xt − X̄)(Xt−k − X̄).

4.3 Determining the number of autoregressive and moving
average terms

If the data shows signs of non-stationary the ARIMA model will be chosen to represent
the data. Then the decision of the order of the model, have to be made. The goal is
to have one model for the three different currency pairs and a model that is complex
enough to represent the currencies over a long time period. The model has been fitted
for three consecutive weeks for the three different currency pairs.
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4.4. PARAMETER ESTIMATION

4.3.1 Algorithm for choosing the degree of the model

Deciding the degree of the model, that is determine the values of p and q in (3.7), is
done by the means of finding the minimum AIC, defined in (3.9), for different models.
Since the model is re-estimated about 1000 times in the length of a week and a total of
nine weeks where used to fit the model it was necessary to use a different technique then
just estimating the model for all the different combinations of p and q. The algorithm
used are formed by Hyndman and Khandakar [7] and are presented below:

Step 1. Start with four possible models:

– ARIMA(2,d,2)

– ARIMA(0,d,0)

– ARIMA(1,d,0)

– ARIMA(0,d,1)

If d ≤ 1 then the model are fitted with θ0 6= 0, otherwise θ0 = 0. The model with
the smallest AIC value is the chosen and called the ”current” model.

Step 2. Now consider a few variations from the current model.

– p or q is allowed to vary by ±1 from the current model.

– p and q both vary by ±1 from the current model.

– the constant θ0 is included if the current model has θ0 = 0 or excluded if the
current model has θ0 6= 0.

Whenever a model with a lower AIC is found it becomes the new ”current” model
and step 2 is repeated. This process terminates when no new model has a lower
AIC then the current model.

4.4 Parameter estimation

In tandem with the search for the values of p and q, the coefficients of the model will
have to be estimated. This is done by the means of the maximum likelihood approach
laid out in Section 3.5. This is done with the R function arima in the stats package.
Where the exact likelihood is computed via a state-space representation of the ARIMA
process. The innovations and their variance is found by the means of a Kalman filter.
The complete algorithm can be found in An Algorithm for the Exact Likelihood of a
High-Order Autoregressive- Moving Average Process, by J. G. Pearlman [10].

4.4.1 Godness of fit

The Lack-of-fit test from Section 3.6.1 is preformed for every set of estimated coefficients,
that is about 1000 times for one week. The model with the most test statistic that point
to that the null hypothesis will not be rejected, will be regarded as the best model.
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4.5 Forecasting

When the model is complete it will be used to forecast the future behaviour of the
currency pair. Since five minutes are enough time to re-estimate the coefficients and
forecast the next value the one-step ahead forecast have been used in this thesis. Then
the process is as described in Section 3.7:

X̂(1) = φ1[Xt] + · · ·+ φp+d[Xt+1−p−d]− θ1[at]− · · · − θq[at+1−q] + [at+1],

where the brackets denote the conditional expectation at time t. Then assuming that
data are available starting from time s = 1, the necessary as’s are computed recursively
from

as = Xs − X̂s−1(1) = Xs −

p+q∑
j=1

φjXs−j −
q∑

j=1

θjas−j

 s = p+ d+ 1, . . . , t,

setting initial as’s equal to zero, for s < p+ d+ 1.

4.6 Simulation

Since data for currency couples are some what hard to collect it has been another focus
of this work to try to use our ARIMA model to simulate data. To do this we need to
simulated the, in previous Section estimated, coefficients in the ARIMA model, this is
done by the means of a Copula simulation. We have n = p+ q coefficients dependent on
time: {X1(t), X2(t), . . . ,Xn(t)}. Then for each Xi(t) decide the empirical distribution

F̃ (x) =
#xi < x

#xi
.

By definition 3.8.1 we then have that

Yi(t) = Φ−1(F̃i(Xi(t))) i = 1,2, . . . , n,

have a Gaussian distribution. Then we can model {Ỹ1(t), Ỹ2(t), . . . , Ỹn(t)} as a Gaussian
process with covariance matrix R, with dimension T × n. The covariance matrix is
estimated from {Y1(t), Y2(t), . . . , Yn(t)}, as

Rij = Cov(Yi,Yj) =
1
T

T∑
k=1

(yi,k − µ̂i)(yj,k − µ̂j).

With µ̂i the sample mean. Our model for the coefficients is then X̃i(t) = Φ(F̃−1
i (Ỹi(t)))

with i = 1,2, . . . n.
To do the simulation, coefficients from all 12 weeks of data, from each currency pair

separately, will be estimated and the covariance matrices calculated from the Yi. The Ỹi

will then be simulated from a Gaussian process with an average from all R.
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4.7. BUY AND SELL STRATIGIES

The simulated coefficients are checked that they met the stability and invertibility
conditions and those that do not are discarded. The remaining coefficients are then used
to simulate an ARIMA(p,d,q) model with the last week of the data as starting values.
The simulation is done with the innovations distributed as N(0,σ2), where σ is estimated
from an average of the maximum likelihood estimated standard deviations of the data.

4.6.1 Checking for normality

Before modelling the X̃i(t), a test that shows if the simulated {Ỹ1(t), Ỹ2(t), . . . , Ỹn(t)}
really are from a Gaussian distribution have to be carried out. This are done with the
Mardia’s test for normality described in Section 3.8.2.

4.7 Buy and sell stratigies

We will implement two different buy and sell strategies to investigate the models suit-
ability.

4.7.1 Strategy 1

This strategy is the most intuitive way of using our model to set up a buy and sell
algorithm. Just looking at the next forecasted value and from that deciding on whether
to buy or sell. Looking at the EURSEK pair:

• If X̂(1) = {up from the current value}: Buy EUR

• If X̂(1) = {down from the current value}: Buy SEK

4.7.2 Strategy 2

The second strategy builds on the theory of Bollinger Bands, that comparing the observed
data with three bands:

• a middle band of a n-periodic simple moving average SMA

• an upper band of k times a n-periodic standard deviation, σ, above our middle
band: SMA+ kσ

• a lower band of k times a n-periodic standard deviation, σ, bellow our middle
band: SMA+ kσ

The simple moving average of period n is calculated as

SMA =
Xt +Xt−1 + . . . Xt−(n−1)

n
.

This strategy dose not use our ARIMA model but is there to have another strategy to
evaluate our modelled data, that is based on the ARIMA model. The bands can be

23



CHAPTER 4. METHOD

used as indicators of overbought and oversold levels, the strategy would then be, in the
example of EURSEK, to sell SEK (eq. buy EUR) when the price cross the upper band
and sell SEK when the price cross the lower band.
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5
Results

T
he result of the investigation made in this thesis are presented in this Chap-
ter. The model found that represents the behaviour of the different currency
pairs; the implementations of the model in buy and sell strategies, and the
simulation of the currencies. The initial three weeks of the three currency

pairs are use for to found the model, and then the rest of the data are used for the buy
and sell part. The simulation is on the other hand based on all the data. Some of the
calculations are made in MatLab but fore the most part the programming language R
have been used to produce the results.

5.1 Investigating stationarity and the level of differencing

The plots for the data from week 26, 27, and 28 are shown in Figures A.1 and A.2 in
the appendix. Over the course of one week there might be a trend present. To make
sure that the process is non-stationary the ACF of the data are plotted in Figures 5.1,
5.2 and 5.3.

That the ACF dose not die out quickly is a sign of non-stationary. Hence the data
are differentiated once and the ACF are calculated for the differentiated data, this is
shown in Figures 5.4, 5.5 and 5.6. This looks a lot better, the currency pairs shows signs
of non-stationarity on a week to week basis but this is redeemed by differencing once,
thus an ARIMA(p,d,q) model with d = 1 will be used to represent the process.

5.2 Finding p and q

Following the algorithm in Section 4.3.1 to find the values for p and q such that the
ARIMA(p,1,q) model gives minimum values for the AIC criteria. The result is presented
in Table 5.1. We will investigate three different models, to see which one was the best
result in the goodness-of-fit test. The models are: the combined result for USDCHF,
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Figure 5.1: The ACF of USDCHF, undifferentiated
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Figure 5.2: The ACF of EURUSD, undifferentiated
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ACF for EURSEK
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Figure 5.3: The ACF of EURSEK, undifferentiated
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ACF for USDCHF, d = 1
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Figure 5.4: The ACF of USDCHF differentiated once.
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Figure 5.5: The ACF of EURUSD differentiated once.
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Figure 5.6: The ACF of EURSEK differentiated once.
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p = 10 and q = 6. A combination of the combined result for EURUSD and EURSEK,
p = 8 and q = 7. And a total combination of all the results, p = 10 and q = 7.

USDCHF EURUSD EURSEK

wk. 26 p = 6, q = 4 p = 5, q = 4 p = 6, q = 7

wk. 27 p = 10, q = 6 p = 8, q = 6 p = 5, q = 5

wk. 28 p = 6, q = 6 p = 6, q = 3 p = 6, q = 6

combined result p = 10, q = 6 p = 8, q = 6 p = 6, q = 7

Table 5.1: The p and q values with the lowest AIC value

5.2.1 Godness of fit

Deciding on the degree of the model from the three alternatives from the algorithm have
been done by the goodness-of-fit test from Section 3.6. This will also be a measure of
which model will result in the best estimation of the coefficients. Since the coefficients
are re-estimated at every time step the Ljung-Box-Pierce statistic is recalculated at each
time step after the initial estimation period of 400 data points, this gives about 1000
values of the statistic. Tables of the interval of these statistics are presented in 5.2, 5.3
and 5.4.

Histograms of the values of the Ljung-Box-Price statistic for the different models with
different p and q values are presented in the appendix in Figures A.3, A.4, A.5, A.6, A.7
and A.8. To evaluate which model is the better we will se how many of the p-values of
the statistics will fall in the 10% to 90% range of the χ2-distribution, how many will give
support for the null hypothesis that the residuals are independently distributed. This
is shown in Table 5.5, the average values of these results are 58.5% for ARIMA(10,1,6),
60.0% for ARIMA(8,1,7) and 57.3% for ARIMA(10,1,7). The best results are then for

USDCHF EURUSD EURSEK

wk. 26 [2.4608, 29.606] [2.1951, 27.640] [2.8186, 34.732]

median: 8.2556 median: 8.5524 median: 12.053

wk. 27 [3.072261, 30.01377] [2.009874, 26.7828] [1.194141, 37.85046]

median: 11.31192 median: 10.2 median: 5.345968

wk. 28 [1.532838, 27.08716] [3.049808, 29.38023], [1.758518, 37.15711]

median: 10.74051 median: 11.13324 median: 7.67111

Table 5.2: Test statistic interval for ARIMA(10,1,6)
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USDCHF EURUSD EURSEK

wk. 26 [3.734831, 29.95651] [2.613274, 31.88653] [1.795583, 48.06473]

median: 9.191576 median: 9.528291 median: 14.47148

wk. 27 [4.162933, 30.06187] [2.191619, 42.33729] [0.6669133, 39.96872]

median: 12.01964 median: 11.18065 median: 5.663984

wk. 28 [3.356739, 32.76843] [4.152267, 31.1317] [1.947663, 37.62582]

median: 12.69303 median: 12.65702 median: 9.332463

Table 5.3: Test statistic interval for ARIMA(8,1,7)

USDCHF EURUSD EURSEK

wk. 26 [2.119914, 24.73587] [1.731562, 30.08485] [1.710631, 35.61219]

median: 8.281466 median: 8.856522 median: 11.43474

wk. 27 [3.15774, 32.27852] [2.041602, 27.35932] [0.9923357, 39.92604]

median: 12.0743 median: 10.08781 median: 5.496606

wk. 28 [3.493696, 28.90537] [2.709189, 37.53186] [1.310781, 33.33295]

median: 10.31406 median: 11.10408 median: 7.31651

Table 5.4: Test statistic interval for ARIMA(10,1,7)

ARIMA(8,1,7) and this model are chosen.

5.3 Forecasting

When settling on a model, the future values of the currency pairs can be forecasted. The
coefficients of the model are re-estimated every five minutes and after that the process
are forecasted one step ahead. An example of the forecasted values of USDCHF week
29 are found in Figure 5.7a, a more detailed view of the first half of the 14 of July are
shown in Figure 5.7b. In Table 5.6 and 5.7 the results for the root-mean-square deviation
and the mean percentage error are presented. These all show low values which suggest
a good accuracy of the forecast. Wk. 31 for the EURSEK pair has a bit higher values
for the RMSD and the MPE the other weeks, a visual inspection of the plots of the data
and the forecast are found in 5.8b. Here we can see that when a sharp jump in value of
the currency the forecast method is not as good as one would have wanted, but this is
an extreme event and dose not effect the overall fit of the model.
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USDCHF EURUSD EURSEK

wk. 26

ARIMA(10,1,6) 62.3% 58.4% 45.1%

ARIMA(8,1,7) 61.8% 55.2% 52.3%

ARIMA(10,1,7) 55.8% 57.4% 49.6%

wk. 27

ARIMA(10,1,6) 60.6% 83.3% 13.3%

ARIMA(8,1,7) 77.3% 83.3% 19.8%

ARIMA(10,1,7) 65.1% 81.6% 11.1%

wk. 28

ARIMA(10,1,6) 63.6% 65.3% 75.0%

ARIMA(8,1,7) 56.7% 62.3% 71.7%

ARIMA(10,1,7) 59.5% 62.9% 72.7%

Table 5.5: Precent of the Ljung-Box-Price statistic that fall in the 10% to 90% range of
the χ2-distribution
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USDCHF EURUSD EURSEK

wk. 29 5.09 · 10−5 6.63 · 10−5 8.43 · 10−4

wk. 30 4.79 · 10−5 7.46 · 10−5 5.11 · 10−4

wk. 31 6.87 · 10−5 9.52 · 10−5 0.0258

wk. 32 5.20 · 10−5 6.34 · 10−5 6.95 · 10−4

wk. 33 5.70 · 10−5 6.78 · 10−5 4.95 · 10−4

wk. 34 4.56 · 10−5 6.62 · 10−5 5.51 · 10−4

wk. 35 8.55 · 10−5 7.90 · 10−5 7.38 · 10−4

wk. 36 1.91 · 10−4 3.39 · 10−4 8.68 · 10−4

wk. 37 7.01 · 10−5 8.62 · 10−5 6.28 · 10−4

Table 5.6: Root-mean-square deviation of the forcasted values

USDCHF EURUSD EURSEK

wk. 29 5.38 · 10−5% −2.26 · 10−5% 4.15 · 10−4%

wk. 30 −1.26 · 10−4% 2.63 · 10−4% 1.42 · 10−4%

wk. 31 1.28 · 10−5% 2.64 · 10−5% 8.79 · 10−3%

wk. 32 2.72 · 10−4% 2.88 · 10−5% −4.50 · 10−5%

wk. 33 6.84 · 10−5% −1.44 · 10−4% 2.80 · 10−4%

wk. 34 −8.18 · 10−5% 1.74 · 10−4% 2.31 · 10−4%

wk. 35 −4.73 · 10−4% 1.09 · 10−4% −2.40 · 10−4%

wk. 36 1.68 · 10−4% −7.15 · 10−4% −792 · 10−6%

wk. 37 3.44 · 10−4% −1.43 · 10−4% −4.21 · 10−4%

Table 5.7: The mean percentage error of the forcasted values
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Figure 5.8: The values of EURSEK, week 31, and the forecasted values of that same week.

5.4 Buy and sell strategies

The buy and sell strategies outlined in Section 4.7 have been implemented using the
ARIMA(8,1,7) model. For both of the strategies 1000 USD or 1000 EUR are ”invested”
at the start of the week after the initial estimation of the coefficients, which is after 400
data points.

5.4.1 Strategy 1

The results for the first strategy involving the forecasted values from the ARIMA(8,1,7)
model are presented in Table 5.8. The method used are: for the USDCHF pair 1000
USD are used as starting value and when the strategy gives a signal for selling the USD
and buying CHF this is done. The process are continued through out and evaluated at
the end of the week. If the process ends with a value in CHF this is compared with the
value of 1000 USD in CHF at the start of the buy and sell period.

5.4.2 Strategy 2

For strategy 2 the values used for calculating the SMA and the upper and lower band
are n = 20, k = 2. These values are chosen to produce bands that are not to far away
from the data values so that the strategy never is executed but not to close so that the
effect of the strategy is to low. The bands and the data for USDCHF week 29 are plotted
in Figure 5.9. The results, that is the closing values from an 1000 USD or 1000 EUR
investment with strategy 2, are found in Table 5.9.
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USDCHF EURUSD EURSEK

wk. 29 1052.03 USD 1425.60 USD 9920.20 SEK

+5.20% +5.40% +7.22%

wk. 30 1046.36 USD 1407.85 USD 1064.25 EUR

+4.64% +4.81% +6.43%

wk. 31 1054.53 USD 1046.65 EUR 9785.03 SEK

+5.45% +4.66% +6.25%

wk. 32 965.85 CHF 1058.71 EUR 1065.25 EUR

+6.68% +5.87% +6.52%

wk. 33 1067.13 USD 1413.82 USD 1051.47 EUR

+6.71% +5.53% +5.15%

wk. 34 1058.95 USD 1401.32 USD 9627.09 SEK

+5.90% +5.78% +5.08%

wk. 35 1065.75 USD 1065.71 EUR 1046.39 EUR

+6.58% +6.57% +4.64%

wk. 36 990.79 CHF 1386.65 USD 1073.73 EUR

+6.45% +7.00% +7.37%

wk. 37 1099.00 USD 1083.55 EUR 1059.78 EUR

+9.90% +8.36% +5.98%

Table 5.8: The gain from investing 1000 USD or 1000 EUR with buy and sell strategy 1.

5.5 Simulation

To preform the multivariate normality test, {Ỹ1, . . . , Ỹ17} are simulated with n = 10000.
The result of the Mardia’s test are shown in Table 5.10. On a 5% significance level none
of the test statistics show a rejection of the null hypothesis, that {Ỹ1, . . . , Ỹ17} belong
to the multivariate normal distribution. The Q-Q plots of the values of the skewness
statistic, A, versus the χ2

680-distribution are shown in Figure 5.10.
One can also see that the Ỹi are individually normal distributed in de histogram

plots in appendix, Figures A.9, A.10 and A.11 for USDCHF, Figures A.12, A.13 and
A.14 for EURUSD and Figures A.15, A.16 and A.17 for EURSEK. The result of the
simulation of described in the method chapter, Section 4.6, are presented in Figure 5.11.
This simulation is about one year, that is around 70 000 data point, to achieve this after
the simulated coefficients who do not fulfil the stationary and invertible conditions, the
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USDCHF EURUSD EURSEK

wk. 29 895.00 CHF 1000.37 EUR 992.58 EUR

+0.30% +0.04% -0.74%

wk. 30 992.16 USD 1004.53 EUR 999.45 EUR

-0.78% +0.45% -0.06%

wk. 31 999.458 USD 1339.29 USD 9142.96 SEK

-0.054% -0.30% -0.50%

wk. 32 998.02 USD 1340.70 USD 9227.57 SEK

-0.20% -0.11% +0.08%

wk. 33 900.02 CHF 999.11 EUR 1001.77 EUR

-0.85 -0.09% +0.18%

wk. 34 910.58 CHF 1008.23 EUR 994.22 EUR

+0.37% +0.82% -0.58%

wk. 35 996.84 USD 1311.92 USD 990.72 EUR

-0.32% -0.66% -0.93%

wk. 36 996.97 USD 1007.71 EUR 9135.15 SEK

-0.30% +0.77% -0.64%

wk. 37 1000.00 USD 1293.99 USD 991.77 EUR

0.00% +0.51% -0.82%

Table 5.9: Gains and losses from investing 1000 USD or 1000 EUR with strategy 2

A df p-value for A B p-value for B

USDCHF 705.5740 680 0.2410 0.1416 0.8874

EURUSD 659.1540 680 0.7099 0.4762 0.6339

EURSEK 648.5997 680 0.8014 -0.9282 0.3533

Table 5.10: The result from the Mardia’s test
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Figure 5.9: The SMA, the upper and lower band used in buy and sell strategy 2

USDCHF EURUSD EURSEK

Strategy 1 435724.8 CHF 137 514.00 EUR 418 150.00 EUR

+46556.87% +13 651.40% +41 715%

Strategy 2 833.61 USD 1 goodness-of-fit233.31 USD 7 528.25 SEK

-16.64% -4.76% -18.56%

Table 5.11: Results from buy and sell strategies 1 and 2 for the simulated values

simulation starts with 500 000 points. The standard deviation used for the innovations
in the simulation are: USDCHF; σ = 1.614 ·10−4, EURUSD; σ = 1.977 ·10−4, EURSEK;
σ = 1.811 · 10−3.

5.5.1 Buy and sell strategies of the simulated data

We preform the same buy and sell strategies on the simulated values as we did on the
real data. The results are presented in Table 5.11.
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Figure 5.10: Q-Q plots of the Mardia test statisic, A, v.s. the χ2
680-distribution.
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Figure 5.11: One year of simulated values of the tree different currency pairs
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6
Conclusion

T
he general aim of this thesis that is, the search for a model that can describe
the currency pairs, have been fruitful. The process shows clear signs of non-
stationarity on a weekly basis so the ARIMA model is appropriate, and the
results for the ARIMA(8,1,7) show a good fit.

The fact that the smaller model of the three that where tested for their goodness-
of-fit had the best fit probably depends on the relative volatility of the currency pairs.
A shorter ”memory” of the model can better take care of the fickleness of the currency.
There is one more autoregressive part then moving-average part in the model, so the
current value of the currency is a bit more dependent on past values of the currency then
the past values of the white noise. On the other hand, according to this model the value
of a currency in one of these pairs only depends on the previous values of that currency
back to 45 minutes before the current time.

The behaviour of the EURSEK pair is a bit different from the other pairs due to
that it has much smaller trade volumes then the others. From looking at the plots of the
data, Figure A.1 and A.2, one can see that the EURSEK pair has more sharp jumps and
more calm periods then the USDCHF and EURUSD pairs. In the goodness-of-fit result,
table 5.5, one can see a some what inferior result for EURSEK then for the others.

The forecasting of the currency pairs with the ARIMA model are quick enough to be
able to preform the re-estimation and forecasting in the five minutes period of the data.

The result of the buy and sell strategy 1 are interesting, the result are very good.
This must be an indication on the fact that the model represents the currency well. If
this model can be implemented on a real world situation there is potential for real profit.

Buy and sell strategy 2 is not satisfactory, it dose not seem to be better then chance.
There need to be more criteria then just the upper and lower bands for when to buy and
sell.

The simulation of the currency values worked quite well. The test for normality
where positive, which is a sign that the Copula simulation was successful. This result
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can be used to improve the second buy and sell strategy. The result from strategy one,
used on the simulated values, might not be entirely trusted, the data is generated with
the same model which is used to forecast the values. The forecast is probably to good
to be realistic.

6.1 Future Research

Investigating if the currency pairs show any signs of seasonality might improve the model.
That is are there any seasonal trends that can be accounted for in the model. This can
be the both in the short term, smaller currencies could be traded less during the night
for that currency, and the long term, any trends over the year for example. This can
be done with a seasonal ARIMA model, finding the trends will probably be a bit more
difficult, but an interesting topic of study.

Another thing that will improve the model is to have separate models for the different
currency pairs. One might also think of re-estimating the whole model, not just the
coefficients, before each forecasting is done. If doing this the time might be an issue, it
might take more time to re-estimate the entire model then five minutes. If that is the
case an evaluation if the better model is worth the extra time.

The behaviour of the EURSEK should be interesting to study more, an interesting
question to ask is if the EURSEK is representative for other ”small” currency pairs.
Maybe there is one model that fits the major currency pairs and one for the rest.
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Figure A.1: Plots of the data
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Figure A.2: Plots of the data
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Figure A.3: Histograms of the Ljung-Box-Price statistic frot USDCHF
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Figure A.4: Histograms of the Ljung-Box-Price statistic frot USDCHF
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Figure A.5: Histograms of the Ljung-Box-Price statistic frot EURUSD
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Figure A.7: Histograms of the Ljung-Box-Price statistic frot EURSEK
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Figure A.8: Histograms of the Ljung-Box-Price statistic frot EURSEK
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(f) Histogram of Ỹ6

Figure A.9: The histogram plots of Ỹ1 − Ỹ6 for USDCHF
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Figure A.10: The histogram plots of Ỹ6 − Ỹ12 for USDCHF
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Figure A.11: The histogram plots of Ỹ13 − Ỹ15 for USDCHF
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Figure A.12: The histogram plots, together with the normal curve, of Ỹ1−Ỹ6 for EURUSD
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(f) Histogram of Ỹ12

Figure A.13: The histogram plots, together with the normal curve, of Ỹ7−Ỹ12 for EURUSD
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(c) Histogram of Ỹ15

Figure A.14: The histogram plots, together with the normal curve, of Ỹ13 − Ỹ15 for EU-
RUSD
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Figure A.15: The histogram plots of Ỹ1 − Ỹ6 for EURSEK
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Figure A.16: The histogram plots of Ỹ7 − Ỹ12 for EURSEK
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(c) Histogram of Ỹ15

Figure A.17: The histogram plots of Ỹ13 − Ỹ15 for EURSEK
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