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Increase Energy Efficiency with Deep Learning Methods
Optimising the Fuel Economy of a Plug-In Hybrid Vehicle for a Drive Cycle with
Deep Learning methods.
Anup Vasu Padaki
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Department of Electrical Engineering
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Abstract
Plug-in Hybrid Vehicles are complicated with many interacting sub-systems and
multiple energy sources. It is a challenging task to develop model based controllers
that fulfils the requirements and are optimal in energy consumption.

This thesis research focuses on deriving an AI controller by using tools from op-
timisation and Deep Machine Learning. An Artificial Neural Network is proposed
to control the gear shifting, power-splits and the PHEV modes. The parameters
of the network are learned by optimising the fuel consumption while satisfying the
constraints using simulations of the complete New European Drive Cycle. Valida-
tion tests for a simulated vehicle with a conservative plant model show that the AI
controller consumes less fuel than the baseline controller while satisfying the SoC
neutrality constraint.

Keywords: Neural Network (NN), Deep Learning, Optimisation, Loss function, SoC,
Fuel Economy, Genetic Algorithm, Plug-in Hybrid Vehicle (PHEV).
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1
Introduction

1.1 Background

P rotection of the environment and improvement of air quality is an important
objective of the different automotive markets. In the automotive industry,

legislation and standards aim to reduce the emission of CO2. In order to achieve
this goal, the automotive industry has developed throughout the years different so-
lutions such as electric vehicles and hybrid vehicles. During the last decade, Hybrid
Electrical Vehicles (HEVs) were introduced to the mass market as a means to im-
prove the fuel economy of conventional vehicles by adding an electric machine (EM)
and energy buffer to the powertrain. Compared to conventional vehicles, HEVs re-
duce the fuel consumption and emissions due to several reasons: downsized engine,
regeneration of the braking energy, and the higher efficiency gained from the extra
freedom in choosing the engine operating point. Plug-In Hybrid Vehicles (PHEVs)
are the next generation of HEVs. Unlike HEVs which only operate in charge sus-
taining mode, where the State of Charge (SoC) in the battery is fluctuating around
a fixed level. PHEVs can also, due to their high capacity storage, operate in charge
depletion mode where the vehicle drives a limited range on electricity from the grid.
However, this requires a controller to decide when to switch between different modes
while discharging the battery to a lower limit at the end of the driving cycle [7].

The PHEV technology requires new sets of power-train parallelisation and control
strategies which need to cover a wider design space due to the increased number
components and possible combinations. In such scenarios where there are a large
number of variables and a complex interaction between them, Machine Learning
(ML) and Deep Machine Learning (DML) methods have been used in industry with
high levels of success [8].

The Fuel Economy and Performance team at CAE Energy department at CEVT
AB is working on evaluating control strategies for a PHEV by running simulations
of controllers and plant models. The plant models and controllers are imported to
IPG CarMaker as Functional Mock-up Interfaces (FMUs) for running a simulation.
This loop involves a lot of tools and consumes a considerable amount of time.
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1. Introduction

1.2 Problem Description

PHEVs are complicated in nature due to many interacting systems and sub-systems.
The Engine Control Unit (ECU) and the Transmission Control Unit (TCU) are a
good example of complex systems with numerous signals to control that may inter-
act or overlap with one or many other signals. The TCU or the ECUs use model
based controllers or sometime may use shift maps from the tests carried out and are
not generally optimal in nature. The optimal control of these control systems can
significantly increase the energy efficiency by minimising the fuel consumption of the
automobile. The developed look-up table or model-based controllers are solved or
say simulated using IPG CarMaker. IPG CarMaker allows to use the models from
different tools like MATLAB/Simulink, Dymola, GT Suite etc. These models are
imported as FMUs. These process is usually tedious and consumes a lot of time.
The key objective is to investigate if it is feasible to increase the energy efficiency of
the PHEV using the DML techniques. An additional objective also is to develop a
much faster vehicle simulation platform using programming, where everything is de-
signed or developed on a common platform. DML or ML techniques have proved to
be quite efficient in non-linear and complicated problems[8]. The feasibility, design,
analysis and evaluation of Deep Machine Learning based controls is carried out and
is explained in the further sections of the dissertation. Therefore the need is to build
an AI machine that can learn the key parameters effecting the energy efficiency per
say Fuel consumption and optimise the fuel consumed over a specific drive cycle.
An additional objective of the thesis is to have a faster vehicle simulation platform
that runs a vehicle on a fixed drive cycle. The results could play an important role
in engineering later on.

The problem can simply be stated as:
Minimise the fuel consumption of a plug-in hybrid vehicle by having a smart (AI)
TCU with a better power management strategy for a complete New European Drive
Cycle (NEDC)

1.2.1 Aim

The aim of the thesis work is to optimise the Fuel Consumption of a PHEV consid-
ering the different operating modes and TCU actions over a complete drive cycle.

1.2.2 Research Questions

• What are the challenges involved in hierarchical control system of a PHEV?
• What are the input, output and feedback signals of control system that influ-

ence the Fuel Economy, can they be used as inputs and outputs?
• What type of Deep Learning or Machine Learning technique is suitable?
• What kind of loss function can be used? What parameters is the loss function

of?

2



1. Introduction

1.2.3 Scope
The scope of the thesis is develop an AI controller that replaces the TCU for simula-
tion purposes. The AI does not have practical system implications and replications
like drive-ability and other conditions as yet.

1.3 Disposition
First, theory relevant for understanding the problem and the proposed solutions is
presented in Chapter 2. Then the methods for implementing the theory and how
it leads to the solution is explained in Chapter 3. The results are visualised and
inferred in Chapter 4 and finally the main conclusions and discussions are given in
Chapter 5.

1.4 Contribution
In recent years, deep learning has garnered tremendous success in a variety of ap-
plication domains. This new field of machine learning has been growing rapidly,
and has been applied to most traditional application domains, as well as some new
areas that present more opportunities. Different methods have been proposed based
on different categories of learning, including supervised, semi-supervised, and un-
supervised learning. Experimental results show state-of-the-art performance using
deep learning when compared to traditional machine learning approaches in the
fields of image processing, computer vision, speech recognition, machine transla-
tion, art, medical imaging, medical information processing, robotics and control,
bio-informatics, natural language processing (NLP), cybersecurity, and many oth-
ers [9]. The dissertation investigates the feasibility on implementing the Function
Approximation techniques and Deep Learning models in automotive industry.

3
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2
Theory

This chapter briefly describes the theory behind PHEVs, Function Approximation,
Deep Learning Techniques and Optimisation implemented for a PHEV with different
modes. Energy optimisation in a PHEV is a fairly complicated task with a lot of
constraints and difficulties as two energy storage buffers and two power sources are
utilised to propel the vehicle.

2.1 Introduction to Plug in Hybrid Vehicles

2.1.1 Hybrid Electric Vehicles and their Configurations

Hybrid Electric vehicles (HEVs) are those where two or more energy sources are
combined to propel the vehicle. The most common energy sources are the Internal
Combustion Engine (ICE) and the Electric machine (EM). HEVs can be categorised
into different types based on their architecture of power sources. Parallel hybrid,
Series hybrid and Parallel-Series hybrid vehicles are well known types of HEVs. Plug-
in hybrid vehicles are another topology in which the external sources can be used
to charge the battery. The external source can be an ICE or an electric grid. These
vehicles are developed to get better fuel economy and less green house emissions.
These vehicles are taking over automotive market due to the electric range and their
impact on the environment.

Series HEV

In series hybrid vehicles only an electric machine propels the vehicle and ICE extends
the electrical range by converting mechanical energy into electrical energy. The
battery energy can be restored by charging from an ICE and from electric grid [10].
The combustion engine is connected to an electric generator (EG) which converts
the mechanical power to electrical power, to charge the battery or to propel the
vehicle. The Series hybrid energy flow diagram is shown in the Figure 2.1. The
strategy is to keep the engine running at its most efficient point and the EM drive
the vehicle.

5



2. Theory

Figure 2.1: Basic series hybrid configuration,(EG: electric generator, PB: power
link, BT: battery, EM: electric machine,GB: Gearbox , V: Vehicle). Double lines:
Mechanical link, Solid arrows: Electrical link [1].

Parallel HEV

The two power sources EM and ICE are connected to the wheels. Thus, both the
ICE and the EM can be used to propel the vehicle. The total traction power is a
combination of energy sources, the size of the machines can be set for a part of the
maximum required power. When the vehicle is propelled only with the EM, the
engine can be disconnected, whereas on the other hand, when the ICE is driving the
vehicle, the EM can be used as a electric generator to charge the battery conditioned
on SoC levels, electrical energy can also be restored by regenerative braking or ICE
can also be used to recharge the battery [10]. The energy flow diagram of Parallel
hybrid vehicle is shown in the Figure 2.2.

Figure 2.2: Basic Parallel hybrid configuration, ( PB: power link, BT: battery,
EM: electric machine, TC: torque coupler, V: vehicle). Double lines: Mechanical
link, Solid arrows: Electrical link [1].

Parallel-Series/Combined HEV

The series and parallel hybrids are the first developed hybrid architectures. These
architectures are combined to achieve the best of both HEVs in one design. Com-
bined HEVs consist of both setups of parallel and series hybrid vehicles. A parallel

6



2. Theory

hybrid has been acquainted with some series HEV features to achieve better effi-
ciency. The vehicle can operate in pure electric mode, in ICE mode or in a combined
mode. There are two distinct electric machines present in Combined HEVs, as in a
parallel hybrid configuration, one is used as a prime mover or for regenerative brak-
ing. The other machine acts like a electric generator in a series hybrid system. It is
used to charge the battery via the engine or for the stop-and-start operation. It can
also operate in series mode using the combustion engine only to power the electric
generator operation[1, 10]. The combined HEV energy flow diagram is shown in the
Figure 2.3.

Figure 2.3: Configuration of a combined hybrid, (EG: electric generator, PB: power
link, BT: battery, EM: electric machine, TC: torque coupler, V: vehicle). Double
lines: Mechanical link, Solid arrows: Electrical link [1].

Plug-in Hybrid (PHEV)

Plugin Hybrid vehicles give the advantages of both electric and hybrid vehicles.
Compared to HEVs, PHEVs have a larger battery capacity, longer driving range,
and a better fuel economy with reduced emissions.
In PHEVs the battery can be recharged from the grid, like in battery electric vehicles
(BEVs) and the ICE can be used when the vehicle is running. Therefore, the PHEVs
are not limited to charge-sustaining operation (CS) as are non rechargeable hybrids.
During driving, the battery can be continuously discharged until a lower limit of
battery SoC is attained [1]. The range covered in the charge-depleting (CD) mode
is the all-electric range (AER).
Degree of hybridisation(DoH) is the ratio between the maximum electric power(Pem,max)
and the total maximum power of engine Pice,max and electric machinePem,max . One
of the advantage of higher DoH is reduction in energy consumption and on the other
hand it comes with additional costs. The DoH is expressed as:

DoH = Pem,max

Pem,max + Pice,max

. (2.1)

7



2. Theory

2.1.2 Components of a PHEV

Internal Combustion Engine(ICE)
ICE is one of the energy source for HEVs. It converts fuel energy to mechanical
energy. The thermodynamic efficiency of ICE is defined by the Equation as:

ηice = ωice.τice

Pc

(2.2)

Where ωice is the engine regular speed, τice the engine torque and Pc is the enthalpy
flow associated with mass fuel flow rate ṁf . And mass fuel flow rate is expressed
as:

ṁf = Pc

Hl

, (2.3)

Where Hl is the fuels lower heating value. The thermodynamic efficiency ( ηice) of
ICE mainly depends on the engine speed and the engine torque.

Electric Machine
Electric machines are used as starters and alternators in conventional vehicles.
Starters helps to boost the engine to reach its idle speed and to start delivering
torque. The alternators generate electricity in order to charge the small (i.e 12 V)
battery and to power the electric auxiliary loads. In electric vehicles and HEVs, the
electric machine is the main energy converter. The EM acts as a reversible machine
[1], which can be used as:

• Electric Mode: to convert the electrical power from the battery into mechanical
power to drive the vehicle.

• Generator mode: to convert the mechanical power from the engine into elec-
trical power to recharge the battery and also to recuperate mechanical power
available at the drive train to recharge the battery during deceleration (regen-
erative braking).

In parallel hybrid vehicles, PHEV’s and in electric vehicles traction and generation
can be done by the EM. In series hybrid vehicles and combined hybrid vehicles two
different machines are needed for generation and traction [1].

Battery
Electro-chemical batteries are a main part of both electric vehicles (EVs) and hybrid-
electric vehicles (HEVs). Batteries transform chemical energy into electrical energy
when propelling a vehicle and vice versa while charging. They act as a reversible
electrical energy storage system. Traction batteries are designed according to desired
power of the electric path, and nominal capacity in order to match the desired
driving range specifications. Nominal capacity is the integral of the current and
it could be delivered by a full battery when completely discharged under certain
circumstances. The state of charge (SoC), is the capacity remaining in the battery
to provide energy. SoC is a dimension less unit and is represented as a percentage of
its nominal capacity. The most important key parameters of batteries for EV and
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HEV applications are high specific energy, high specific power, long calendar and
cycle life, low initial and replacement costs, high reliability, wide range of operating
temperatures and high robustness. The specific energy is the energy that can be
stored in the battery per unit mass and its unit is Wh/kg [1].

Gear Box
The gear box is used to transform the mechanical power at speed ω1 and τ1 to
another speed and torque ω2 and τ2 and the relationship is shown below in the
Equations 2.4 and 2.5.

ω1 = ω2.ri (2.4)

τ1 = τ2

ri

(2.5)

Seven Dual Clutch Transmission for Hybrid - 7DCTH
In 7DCTs the two clutches are arranged concentrically, the larger outer clutch drives
the even numbered gears and the smaller inner clutch drives the odd numbered gears.
Gear shifting can be done without interfering torque distribution to the driven road
wheels. Alternate gear ratios can pre-select an odd gear on odd gear shaft while the
vehicle is being driven in an even gear on even shaft and vice versa. 7DCTs are the
fastest-shifting road car transmission and are able to shift faster than a professional
racing driver using a manual transmission. 7DCTs can shift more quickly than cars
equipped with single clutch automated manual transmissions (AMTs) also called
single clutch semi-automatics. The 7DCT offers faster gear shift times and a better
fuel economy improving the efficiency compared to the other transmission types [11].
7DCT is shown along with the PHEV architecture in the Figure 2.4.

Figure 2.4: The figure shows the PHEV architecture with 7 Dual Clutch Trans-
mission C1 and C2.
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C1 and C2 are the two clutches that are connected to odd and the even gear shafts
respectively. ICE is connected to both the gear shafts through both the clutches
while the electric machine is only connected through even gear shafts.

Drive Cycle
The drive cycles are the vehicle trajectories along a defined path. A drive cycle is
defined by a velocity profile across time for a specific road. A NEDC speed profile
is shown below in the Figure 2.5 that has been used extensively in the dissertation.

Figure 2.5: NEDC speed profile, where the maximum speed attained is 120 kmph
and the average speed is 33.35 kmph.

2.2 Function Approximation

Function Approximation or System Identification (SysID) deals with the problem of
building mathematical models of dynamical systems based on observed data from
the system [2]. The first IFAC Symposium on Identification started in 1967, which
more or less indicates the time that SysID became a mature research area [12].
The SysID has a widespread applications and implementations because of the abun-
dance of the dynamical systems present in the nature. The SysID procedures come
in handy when it is difficult to get all the dynamics into the mathematical model,
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sometimes SysID is also referred to as Data Driven Control or Model Free Con-
trol. SysID techniques can utilise both input and output data (e.g. eigen system
realisation algorithm) or can include only the output data (e.g. frequency domain
decomposition). Typically an input-output technique would be more accurate, but
the input data is not always available.

It is very difficult to get a mathematical model that captures the dynamics of the
various sub-systems of the PHEV like ICE [13], EM, Battery, 7DCTH [11]. The
mathematical models can be complicated considering the states, hidden sates, in-
puts and feedback and the hierarchy of the control system. Developing a controller
for these mathematical models that ensures the stability, robustness and optimal
behaviour can be extremely challenging [14].

2.2.1 The SysID Procedure

A mathematical model is a close replication that reflect the dynamics of the system.
In reality, the rapidly changing dynamics, non-linearities, disturbances, limited prior
knowledge and the incomplete availability of observed data prevent an exact math-
ematical model description of the system. The complexities involved in developing
and analysing the mathematical model makes it less desirable. SysID is an alterna-
tive that approximates a model for a specific application on the basis of knowledge
and data available [12]. The Figure 2.6 shows the SysID procedure for a problem.

2.2.2 A Priori, Knowledge and Objectives

A Priori

Model set selection is basically determined by the available information. The more
information is available the better model can be constructed and the more similarity
will be between the system and its model. Based on prior information we can speak
about white box, grey box or black box models [15, 2].

Knowledge

The data of input signals and the output estimates plays an vital role in the identi-
fication of the system. The selection of input-output signals are also dependent on
the prior knowledge of the system. Various constraints may be set on the data to
make the data maximally informative to identify the system [2].

Objectives

It is always important to know the estimates or the signal that the system ap-
proximates. Sometimes, the exact input-output labelled data can also be solved
using machine learning. The Approximation function can be selected based on the
objective or the goal of the system.
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Figure 2.6: The flowchart [2] that shows the SysID procedure. Having a prior
information of the data to a model that predicts the outputs from the priori.
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2.3 Deep Learning
DML is a class of machine learning algorithms that learns multiple levels of feature
representations that correspond to different levels of abstraction. DML has been
a been a buzz word since a decade and has been evolving very rapidly since then.
From the applications of classification to continuous regression it has a wide range
of applications. DML sometimes specifically is also referred to as AI. The first wave
of DML dates back to 1940s. The DML was referred to as different names like
Cybernetics in 1940s - 1960s and Connectionism in 1980s -1990s, and current resur-
gence known as Deep Machine Learning or Artificial Neural Networks (ANN)
[16]. The Figure 2.7 shows the evolution of how Deep Learning has evolved through
the course of time.

Figure 2.7: The figure shows the historical evolution of DML.

2.3.1 Artificial Neural Network
ANNs are biologically inspired computational models, but not identical to the biolog-
ical brain. Mathematically speaking ANNs are non-linear function approximators.
The corresponding DML models can be referred to as the engineered systems in-
spired by the biological brain. ANNs are functions of input (X), weights (w) and
biases (b). The simplest and the first implementation of an ANN dates back to 1958
[17]. The definition of the perceptron is as follows:

f(x) =
1 if wTx+ b > 0

0 otherwise
(2.6)

The below Figure 2.8 shows an illustration of a simple perceptron, the activation
function is a simple step response function. The perceptron is used to classify linear
objects. The predicted values are separated with a hyper-plane.
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Figure 2.8: The figure shows the illustration of a perceptron implemented as a
Linear Classifier.

ŷ = step(wTx+ b) (2.7)

The Equation 2.7 shows the implementation of a simple perceptron (as shown in
the Figure 2.8), the output predicted values(ŷ) are with input (X), weights (w) and
bias (b).

2.3.2 Activation Functions
The activation functions in the below Table 2.1 are some of the very common Non-
Linear functions implemented in the NNs.

Activation Functions Equations

Step f(x) =
1 if x > 0

0 otherwise

Sigmoid f(x) = 1
1+e−x

ReLU f(x) =
x if x > 0

0 otherwise

Leaku ReLU f(x) =
x if x > 0
αx otherwise

Tanh f(x) = 1−e−2x

1+e−2x

Table 2.1: The Table shows some of the most common activation functions used
in DML. Custom activation functions can also be used if the application demands
it.

A very basic and simple activation function is like a switch, any value of a input
which crosses a certain preset threshold is positive and the rest is zero. These
hard threshold or the hard conditioned activation functions like step functions are
generally not considered. The Step equation from the Table 2.1 says that the value
of f(x) is always 0 if x < 0, this implies the gradient of the function is mostly
zero, this also implies that the direction towards optimal is unknown since gradient
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is 0 [18]. Hence learning is difficult when gradient is 0. To avoid such problems,
more flexible and non-linear activation functions like Sigmoid, ReLU are used. DML
models today widely use ReLU as their activation functions. However, recent studies
has shown that the ReLU can be used for deeper networks considering the accuracy
and the complexity involved in the computation [19, 20]. The ReLU looks like a
linear function but exhibits non-linear behaviour, and in fact any function can be
approximated by the combination of one or more ReLUs [21]. The main advantage
using ReLU is that the output from the activation function becomes sparse if the
input is normalised (0 mean and unit variance). The normalisation say max-min
scaling normalisation restricts the inputs to be between 0 and 1. The normalised
inputs and ReLU as activation function can help the NN to be much faster and
lighter [19, 20, 21]. Unfortunately this can cause problems too. Since everything
less than zero will not get activated it can cause the gradient to vanish. Then there
will be no weight update during gradient descent and the network can end up in
sub-optimal or local optimal. This is often referred to as the dying ReLU problem
[22]. Today, there are a several extensions of the ReLU [20] that try to evade this
problem, one of them is the Leaky ReLU. The idea is to have a small gradient αx
where all the gradient goes to 0 [20, 21]. This helps in keeping the learning active.

2.3.3 Data
Data is the most integral part in implementing a NN. Data defines the type of DML
and NN architecture for solving the task. For example, supervised learning is most
suitable when you have input data and output labelled data. The Table 2.2 shows
the selection of a few types of NN architectures and type of DML to be implemented
to solve the defined problem considering the available data.

Input Data Output Data NN Architecture DML type
Real Numbers Real numbers Feed Forward Supervised Learning

Images Image Labels CNN Supervised Learning
Data function of time Varying size Data RNN Supervised Learning

Data(any type) - any Unsupervised Learning
Markorov Decicion

Process(MDP) - any Reinforcement Learning

Table 2.2: The Table shows the selection of type of DML and NN architecture
considering the input and output data and their format.

2.3.4 Loss Function
It is of prominent importance to have a good loss function that can help the NN
capture the critical patterns in the data and learn the important features that affect
the performance of the NN. The loss function minimisation can be shown mathe-
matically as follows:

min L(f(X,w, b), y) (2.8)
L is some arbitrary loss function, where as w and b are weights matrix and biases
matrix respectively.
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Modular open source NN library Keras [23] developed on top of TensorFlow [24]
offers a wide range of loss functions like hinge, mean squared error, mean absolute
error, cross entropy, categorical cross entropy etc. Keras also offers a means to de-
velop a custom loss function. For the purpose of the thesis, a custom loss function is
developed that minimises the, fuel consumption and the battery energy of the PHEV
the details of the developed loss function are explained in Chapter 3 (Methods).

2.3.5 Optimisation
The orthodox way of optimising a function is to use gradient based methods. The
weights of the NN are updated by computing the gradient. Weights(w) are updated
each time the gradient is calculated as seen the in the Equation 2.9 below:

w := w − α5w L (2.9)

The parameter α is the learning rate, which controls the number of steps to con-
vergence. A small learning rate gives a better convergence but the time taken to
reach the minimum increases, consequently a large learning rate can yield a local
optimal soon. Thus the algorithms usually have an adaptive learning rate, where
the learning rate decreases as the learning progresses on. This process is known as
deterministic gradient descent. The deterministic gradient descent performs poorly
with bigger data sets as it can consume a lot of time for one iteration.
To overcome such problems gradients are computed for batches of data called as
mini-batches. A mini-batch consists of a smaller fixed number of data samples that
are drawn from the data set X. The weights(w) update procedure in the stochastic
gradient descent is as follows, The gradient used for the weights update is the average
of all individual gradients in the mini-batch as shown in the below Equations 2.10
and 2.11:

ĝ = 1
m

m∑
i

5wL(f(xi, w)) (2.10)

w := w − αĝ (2.11)

The 5w is the computed gradient of the loss function L and ĝ is the computed
average gradient for a mini-batch of length m. The method is called batch gradi-
ent descent. The stochastic gradient descent is the most widely used optimisation
algorithm in ML. It is called stochastic because the method uses randomly selected
(or shuffled) samples to compute the gradients, hence SGD can be considered as a
stochastic approximation of gradient descent optimisation.
Adam has also proved to be a better stochastic optimisation algorithm that consumes
very less memory and yields better results. Adam is also well suited when large
volumes of data is involved or for large NNs. Adam combines the advantages of
AdGrad, which helps in handling the sparse and RMSProp that helps in handling
the stationary parts of the function [25].
The weights(w) are recursively updated using the backpropagation algorithm. The
input data is first propagated through the network first, then the loss is calculated
and then back propagated through the network to update weights [18].
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Evolutionary Algorithms (EA) also have proved be equally good over the gradient
based methods. Population based Genitic Algorithms (GA) can be used to evolve
the weights of the deep NN. The GAs can also perform well on the head deep learning
problems like Atari games etc [26]. GAs also have proven to work in optimisation
of multi-objective function structures [27].
The GA with Elitism is implemented to train the NN implemented in this case.

Genetic Algorithm

This meta-heuristic method basically works like laws of genetics. GA is a search
heuristic inspired by Darwin’s theory of natural evolution [4]. This algorithm re-
sembles the natural selection process where the fittest individuals are selected for
reproduction to make a better future generation. This is a solution when it comes to
imperfect, missing input data and limited computational capacity. In this method,
first some random solutions (individuals) are generated each containing several prop-
erties (chromosomes). Based on the laws of genetics, cross-over and mutations chro-
mosomes produce a second generation of individuals with more diverse properties
[28].
Darwin theory is comprised of three basic principles of natural evolution [4]:

• Heredity: A process in which children receive the properties of their parents
in form of genes.

• Variation: A process to bring diversity in population.
• Selection: A mechanism which filters out the properties to be carried out in

the next generations from their parents. This process explains the survival of
the fittest generation.

GAs are also based on these evolution properties. The Figure 2.9 shows the optimisa-
tion process for GA, the two fundamental processes of GA are mating and mutation.
The GA combines the fittest individuals from previous generation through mating
in which off-springs get the properties of their parents in order to survive for the
future. The loss function decides the fitness value of the selected parameters of new
individuals and iterate over and over until the value of fitness function converges.
GA explores all the cost surface with the help of these properties and do not get
stuck in local minima like gradient methods. Then it exploits the best feature of
the last generation to converge to increasingly better parameters sets.
In order to get the better understanding the main phases of GA are discussed below:

• Initialisation of population: In the first step, N random elements are ini-
tialised which is referred to as population. Each element is a solution to the
given problem. An individual is comprised of set of parameters known as genes.
Genes form a Chromosome by joining in a form of string. After initialisation
each of the N chromosomes is decoded in order to form the corresponding next
individual. There are many procedures to get the variables from the chromo-
somes, one of them is to divide the chromosome of length m into n equal parts
consisting of k = m

n
[6]. Each part of the chromosome is a binary number

which then can be converted into decimal values. Accuracy of a variable is
determined by the number of bits used. The best depiction of population, gene
and chromosome is depicted in the Figure 2.10. The binary values are used
here in the formulation of population.
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Figure 2.9: Flowchart of optimisation with GA [3]. The steps are explained briefly
below the image.

Figure 2.10: Population, Gene and chromosome [4, 5].

For encoding purpose both real and binary numbers can be selected, there
is no systematic difference in the performance of GAs [6]. But it is worth
noticing that the real numbers carry more information than the binary ones.
On the other hand, the number of potential crossover points are reduced when
the real numbers are used. In case of real numbers, a generic variable x is
formed for genes g as giving a value range of [−d, d] [6] as

x = −d+ 2dg (2.12)

and in case of binary encoding, a generic variable is formed from genes g1, ...., gk

18



2. Theory

as giving a value in range of [−d, d] as follows:

x = −d+ 2d
1− 2−k

(2−1g1 + ...+ 2−kgk). (2.13)

• Formulation of fitness function: This function checks the fitness value
for each individual, that make sure the competence of one individual against
others. It assigns the fitness score to each individual. The fitness score decides
whether the individual would be selected for reproduction or not. The fitness
function aims for maximisation/minimisation of fitness scores. The procedure
of decoding the chromosomes, evaluation of their respective individuals and
assigning the fitness value scores will be repeated until all n individuals have
been evaluated in a generation. The next step is to make the next generation
with better individuals. And here comes the next step selection of individuals
from last generations [6].

• Selection of Parents: The selection process determines the fittest chromo-
somes from the previous generation based upon the fitness scores [4]. Fitness
scores can be both, maximisation and minimisation of the objective function.
The selection process is stochastic, it means the selection of some individuals
do not tend to have direct relationship with fitness scores. The selection of less
fit individual can be prior than the best fit individual. The reason is to avoid
the local minima, because it could happen that the best fit individual is far
from global optimal, while the other less fit individuals may give the global op-
tima after mating with other individual [6]. The two most common methods
for selecting the chromosomes for new individuals are roulette-wheel se-
lection and tournament selection [6]. In roulette-wheel selection process,
individuals are selected using a fitness proportional method. This procedure
carries out by forming the cumulative relative fitness value φj, as shown in the
Equation 2.14,

φj =
∑j

i=1 Fi∑N
i=1 Fi

, j = 1, ....N (2.14)

where Fi denotes the fitness of individual i. Then a random number r ∈ [0, 1] is
drawn and the selected individual is chosen by satisfying φ > r. After selection
new individuals are formed through reproduction. The method that creates
new off springs from their selective parents after reproduction is crossover.
The roulette wheel is not so feasible from biological point of view. An alter-
native approach is tournament selection. In this practice two individuals are
randomly selected and from population and then selecting the best individuals
of pair, i.e. the one with the higher fitness value with probability ptour. ptour

is tournament selection parameter [6].
• Crossover: This is the most important step in optimisation using GA. New

individuals are formed by exchanging the two parents genes. A crossover
point cuts the genes of parents at specific point. Both individuals exchange
their genes with each other from the crossover points in order to make an
offspring. These new individuals inherit their parents properties but also keep
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Figure 2.11: Crossover in binary genes [4]

the diversity to some extent. The crossover procedure is shown step by step in
the Figure 2.11. At first the crossover point is selected and then both parents
switch their genes with each other. Two new off springs adds in population
after reproduction process by parents [6].
Crossover can spread a successful individual in population very fast that re-
duces the diversity, therefore crossover bit too efficient method and it can
cause the population to get stuck in the local optima. It is a good practice to
carry out the crossover only with a certain probability pc, called as crossover
probability. There are multiple ways to develop the crossover function such
as single point crossover, uniform crossover, averaging crossover and length
preserving crossover. In the first one a single point is randomly chosen among
m− 1 possible points in a chromosome length of m. In uniform crossover the
number of crossover points are equal to m− 1 [6]. Averaging crossover can b
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applied to real valued individuals in which a gene g takes the value g1 and g2
in the two parents takes the values in the next individuals as in the Equations
2.15 and 2.16 and α ∈ [0, 1].

g1 ←− αg1 + (1− α)g2 (2.15)

g2 ←− (1− α)g1 + (1− α)g2 (2.16)

The length preserving crossover is used when the structure of the process being
optimised is known.

• Mutation: After crossover, some of off springs will go through mutation with
a low predefined random probability pmu [6]. The purpose of the mutation is to
maintain diversity in the population and prevent the premature convergence.
The mutation procedure is shown in the Figure 2.12.

Figure 2.12: Mutation in binary genes [4]

Usually, the pmu is set according to c
m

where c is a constant of order 1 and
m is the chromosome length. When mutation takes place in real numbers, it
changes the property of the individual a lot as compared to the binary ones.
Because real numbers contains more information. To avoid such situation real
number creep is frequently used [6]. In this mutation, the mutated value of
a gene is centred of the previous value. The formula for creep mutation is as
follows:

g′ ←− ψ(g) (2.17)

where ψ is a suitable distribution among the individuals, it can be normal or
uniform distribution.

• Replacement: The final step is replacement. After selection, crossover and
mutation there are two generations available, each with n individuals. In gen-
eral replacement the first generation individuals are discarded and the new n
individuals form the second generation are considered. The method continues
over all the generations until a reasonable solution is found. Replacement can
be characterised by its generational gap, that simply measures the fraction of
the population has been replaced in each cycle.
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• Elitism: For a given generation a best individual will be selected with best
fitness value but there is a chance that it would not survive in the next gener-
ation in selection process1. In order to keep best individual in population for
next generation, the best ones can be copied to the next generation without
alteration and reproduction [6]. The final individuals would be having a new
population formed by asexual reproduction, i.e. selection and mutation only.

Pseudo code of Genetic algorithm
A standard genetic algorithm is shown in the Figure 2.132 in order to make
the previous theory understandable [6].

1More on Optimisation with Elitism and without Elitism is explained in Appendix.
2Courtesy of WIT Press from the book [Wahde, M. (Mattias): Biologically inspired optimization

methods : An Introduction, 2008,page 56]
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Figure 2.13: A standard genetic algorithm applied to the case of function max-
imisation [6].

Note Fbest is the best fitness of the individual, and it refers to global maximum/min-
imum fitness value i.e. the best value found in any generation so far. The Figure
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2.143 is the result of a typical GA with elitism. It is seen the fitness value increases
rapidly in the beginning and then a slow improvement. A point is important to note
that is this figure is to maximise the fitness value function. For minimisation it will
be a decreasing graph with negative slope.

Figure 2.14: A standard genetic algorithm result for maximisation of fitness func-
tion over 500 generations, the upper curve shows the best fitness curve the below
one is the average fitness curve. The population size is 100 here. F represents the
fitness and g represents the generations [6].

2.3.6 Generalisation
A NN that has the ability to generalise makes it a powerful machine. This means
that a trained net could classify data from the same class as the learning data that
it has never seen before. In real world applications developers normally have only a
small part of all possible patterns for the generation of a neural net. Generalisation
is a term used to measure the performance of the NN on unseen data. Data sets are
often split into 3 different parts, training data (usually 80% of the total data), testing
data (usually 10% of the total data) and validation data (usually 10% of the total
data). The test sets and validation sets are used to check the performance of the
NN on unseen data. Biases in data set leads to bias in predictions and regressions.
The first model in the Figure 2.15 fails to generalise the data, this might give a
poor performance on unseen data. The right most model is too flexible or non-
linear enough to specifically capture the dynamics and classify each and every data

3Courtesy of WIT Press from the book [Wahde, M. (Mattias): Biologically inspired optimization
methods : An Introduction, 2008,page 57]

24



2. Theory

Figure 2.15: The figure shows the underfittind and overfitting of the training data.
The middle model best fits and generalises the data into two different classes.

sample. The problem with overfitting is that the model learns to just classify the
training data and fails to perform well on the test and validation sets or the unseen
data. The model in the middle fits the data very well classifying the two classes
of data. The middle model has a better ability to generalise than the other model
shown in the Figure 2.15.
There are several means to overcome the potential problem of overfitting by under-
fitting by using Regularisation and Dropouts.

2.3.7 Dropouts and Regularisation

Dropouts

The traditional methods of improving the predictions by improving generalisation
was to have multiple NN architectures to train on, and then by selecting the model
with best performance. Multiple models can also be trained on the same data and
the predictions of the average can be considered, such models or networks are known
as committees [29]. These methods are relatively expensive and consumes a lot of
time. The networks in the committee selected are of different architectures to get
the best results.
Dropout is a simple means to avoid committees and deal with the problem of over-
fitting. The NNs with numerous amount of parameters are often vulnerable to
problems like overfitting. Dropouts is a technique of dropping random units and
their connections while training the network. This will prevent the neurons from
co-adapting to the input data (training data) [30, 31].
The Figure 2.16 shows a fully connected network and a NN after applying dropout
with certain probability. After applying dropouts some neurons and their links are
randomly dropped during each step of training.
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Figure 2.16: The image a shows the graph of a traditional feed forward NN
and b shows the image of the same NN after implementing dropout with certain
probability.

Regularisation

A problem in deep learning is how to make an algorithm that will perform well not
just on the training data, but also on unseen inputs and data. Many strategies used
in ML are designed to reduce the test error, possibly at the expense of increased
training error. These strategies are known collectively as regularisation. There are
many forms of regularisation that are available to the deep learning practitioner.
Regularisation can be defined as any modification made to a learning algorithm
that is intended to reduce the generalisation error but not its training error [16, 18].

Norm Based Regularisation

Regularisation has been used even before DML. Many regularisation methods are
based on limiting the DML models. It is sometimes penalties and constraints are
necessary to make an under determined problem determined.

J̃(θ;x, y) = J(θ;X, y) + αΩ(θ) (2.18)

J is the objective function, X,y are the inputs and outputs respectively, θ is the
vector of weights(w) and regularisation parameters and α ∈ [0,∞) is the hyperpa-
rameter that weighs the relative contribution of the norm penalty term Ω, relative
to the standard objective function J [16]. To simplify the intuition, the bias term b
is ignored, this implies that θ is just w.

• L2 Regularisation

L2 regularisation norm penalty can be defined as,

Ω(θ) = 1
2‖w‖

2
2 (2.19)
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The penalty term is also known as weight decay, and the regularisation is also
called as Ridge Regression or Tikhonov regularisation. The Equation 2.18 now
reforms to:

J̃(w;X, y) = α

2w
Tw + J(w;X, y) (2.20)

The corresponding parameter gradient is computed as follows,

5wJ̃(w;X, y) = αw +5wJ(w;X, y) (2.21)

The single gradient update step to update the weights is done as,

w ← w − ε(αw +5wJ(w;X, y)) (2.22)

The Equations from 2.18 to 2.22 shows the implementation of the L2 regu-
larisation. The addition of weight decay term has modified the learning rule
to multiplicatively shrink the weight vector by a constant factor on each step,
before performing the usual gradient update step [16].

• L1 Regularisation

L1 regularisation on weights(w) can be defined as,

Ω(θ) = ‖w‖1 =
∑

i

| wi | (2.23)

The regularised objective function for L1 is defined as follows:

J̃(w;X, y) = α ‖w‖1 + J(w;X, y) (2.24)

The corresponding gradient is computed as follows,

5wJ̃(w;X, y) = αsign(w) +5wJ(w;X, y) (2.25)

where sign(w) is simply the sign of w applied element-wise. The Equations
from 2.18, 2.23 till 2.25 shows the implementation of the L1.
By inspection the Equation 2.25, the effect of L1 regularisation is quite dif-
ferent from that of L2 regularisation. Speaking specifically the regularisation
contribution to the gradient no longer scales linearly with each wi, instead it
is a constant factor with a sign equal to sign(wi). An important observation
is that wit is difficult to obtain the clean algebraic solutions to quadratic ap-
proximations of J(w;X,y) as obtained in case of L2 regularisation regularisation
[16].
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3
Methods

This chapter deals with the explanation and implementation of different methods
to answer the research questions asked in Chapter 1 and the theory to support in
Chapter 2. The first part of the chapter also explains about the implementation
platform and tools used to achieve the results.

3.1 Platform Introduction

The ideally suited general purpose programming language Python 3.6 [32] is used
as a platform to develop the DML algorithm and the GA optimiser. The open source
libraries like SciPy and Numpy [33] provides an edge to use python for implement-
ing complicated mathematical algorithms. The language has well implemented open
source libraries that makes the implementation of complicated algorithms easy and
handy. Jupyter Notebook is used to code python programs.

The most of the data CEVT AB is all available in .mat format. The .mat files
are read into pandas dataframes and then processed. The modular open-source NN
library keras [23] is used for the implementation of deep NN. The predictions are
the analysed and Matplotlib is used to plot the results.

3.2 Bench-Marking Methods

The goal of the thesis is dissolved into multiple simple problems and the complexities
are later introduced upon the solved simple problems to reach the final outcome.
Deep Learning is wide spread and offers multiple methods and models to tackle the
problem. The DML methods tried are explained below. The one with the best
efficiency is selected. To start simple, a pure ICE vehicle is considered for energy
optimisation. This can later be included into our final optimisation problem as pure
ICE is also a subsystem in a PHEV. The key idea is to improve the energy efficiency
in the TCU by shifting gear optimally with respect to the efficiency of the engine.
The method should deliver an optimal 2-dimensional shift map as a function of
engine speed (N) and Engine torque (τice). This is the problem to start with and
further developed towards the final problem which is explained in the sections below.
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3.2.1 Predicting Optimal Gears and Gear Shifts

Supervised Learning is a potential and most reliable means of DML. Supervised
Learning is most efficient and yet most uncommon in problems where system dy-
namics are involved. The optimal gear number is predicted assuming all the data is
available. The key ideas to start with supervised learning for gear shifting are:

• The efficiency can be compared against other DML methods.
• The size of the network can be estimated for the final problem by knowing

size of the network for this problem.
• This can help to understand the technicalities of the system in a better way.
• The gear shifting also can save some amount of fuel.

Data

In the setup, the current power demand is assumed and is randomly generated data.
This data is used and an optimal gear is predicted, that sets the engine speed and
engine torque that gives the better efficiency. All the data is randomly assumed or
say generated in this setup. The input data that is Power demand (Vehicle Speed,
Demand Torque) is denoted as X while the output label that is the output label
is denoted as (y). Each combination of an input data has an output label y. The
predicted data is denoted as ŷ. The Vehicle Speed, Demand Torque and Engine
Map are used to predict the optimal gear. The algorithm (1) listed in Appendix B
shows how to find the gear optimal (y). The engine speed and engine torque are
randomly generated uniform distribution of data as shown in the Figure 3.1.
The reason for starting with random data is that it is easily available and covers
all the points between upper and lower limits. This helps the network to learn all
the possible inputs in the space without any pattern. This can also help in transfer
learning by taking the weights of the last layer, if the same predictions are to be
expected later.

Network, Loss function and Optimisation

A fully connected feed forward NN is implemented with 4 hidden layers. Different
NNs of different size are tried and one with the best performance is selected. For
Case 1 all the neurons use relu as the activation function. The output layer is a
neuron with relu as activation function that predicts a real number as output. The
predicted number is rounded up to get the gear number. In Case 2 all the neurons
in the hidden layers are relu and the output layer is a neuron with tanh as the ac-
tivation function. Tanh is used in the output layer as the range of tanh predictions
extends from -1 to +1. The real numbered outputs are rounded to get values of -1,
0 or +1. Dropouts and Regularisation is also implemented to improve the perfor-
mance of the model. In this case the l2 regularisation with a penalising factor of
0.1 gave the best performance.

The minimum mean square is the loss and ADAM is the optimiser with a learning
rate of 0.01 is used to optimise the loss. The Equation 3.1 represents the loss function
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Figure 3.1: The Engine Speed along X axis and Engine Torque along Y axis in
this 2D plot. The figure shows the engine operating points covered by the input
Power demand to the NN.

that minimises the error in the prediction.

L = ‖ŷ − y‖2 (3.1)

Case 1: Predicting the Optimal Gear

The first case was to predict the optimal gear. This is the same as creating a 2D
look up table or a shift map. The shift maps are generally obtained from test results
and are not optimal with respect to fuel consumption in nature. The NN learns to
rightly predict the optimal gear that helps the engine to run in a relative sweet spot
for the power demand by learning the contours of Engine Map. The Block Diagram
3.2 shows the AI system for TCU.

Figure 3.2: NN is like a block box that takes some input X and predict an output
value ŷ.

The Figure 3.3a shows the predictions from the NN and the true output values. The
NN is used to learn the optimal gear numbers for the power demands. The Figures
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3.3b and 3.3c shows the comparison of engine efficiency points corresponding to
the optimal gear and a random gear that can be used at that power demand. The
Figure 3.3d shows the error in predictions from the network. The error is calculated
as hist(y − ŷ). The NN has a fair performance considering the amount of the data
used.

(a) The figure shows the plot of opti-
mal gears and the predicted optimal gear
from the network.

(b) The figure shows the comparison of
Engine Efficiency for NN predicted gear
to the engine efficiency of the inputs.

(c) The figure shows the efficiency of
Engine for optimal gear and engine ef-
ficiency for other gears.

(d) The figures shows the performance
of the predictions from the neural net-
work. The error is calculated as hist(y−
ŷ).

Figure 3.3: The figures shows the predictions and the performance from the neural
network.

Case 2: Predicting the shift signal to reach the Optimal Gear

The inputs are the same as in case 1. The output in this case is the shift signal
the shift signal takes the current gear (gi) in the direction of the optimal. This
is considered to be an extension of the first case. The first case predicts the op-
timal and second case considers the steps to reach the optimal. The first case is
not practically feasible as it just says the optimal gear and may even jump the
gears in between, which is not true practically speaking. While the second case says
weather up shifting, down shifting or holding is better for the efficiency of the engine.
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The Figure 3.4a shows the plot of the predicted shift signal versus the actual values.
+1, 0,−1 says to up shift, hold and down shift respectively. The Figure 3.4b shows
the error histogram of the network. The performance of the network is shown in the
Figure 3.4. The error is computed as hist(y − ŷ).

(a) The figure shows the plot of shift
signal predictions.

(b) The figure shows the error histogram
for the NN. The error is computed as
hist(y − ŷ).

Figure 3.4: The figures shows the performance and the predictions from the neural
network. The predictions from the network are plotted against the true values.

However, there are certain problems associated with the implementation of this
method even though the results are promising.

• Usually the optimal is unknown.
• This is too simple to resemble a practical TCU as no losses are considered and

PHEVs are much more complicated with dual clutch transmission.
• Randomly generated data is easy and was used to just prove the working of

the methods.
• The component and system losses are not considered in this methods.
• PHEVs are much more complicated than this.

3.2.2 Predicting the shift signal with GA

This is the same case as case 2 discussed above with Genetic Algorithm as the
optimiser. Here the parameters of the NN are optimised using GA. The procedure
is more like exploring the feature space and trying out different options until a
convergence criteria is met. The GA does not end up in the local optimal while
other gradient descent methods might end up in local optimal. The GA was multi-
threaded for faster execution and convergence of the optimisation.
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3.3 Energy Optimisation in a PHEV

PHEV is a complicated system with many sub-systems interacting with one an-
other. The approach to energy optimisation follows the same as a traditional con-
trol system. Firstly, the components and the sub-systems are modelled, and then
are integrated to equations for vehicle dynamics. The controller in this case is the
NN that gives input signals to the plant (the vehicle model) and receives vehicle
fuel consumption and SoC level after completing the drive cycle as feedback. The
NN model and training is addressed in the section The Neural Network model after
PHEV Modelling.

3.3.1 PHEV Modelling

ICE Model

Engine models can be complicated when modelled with a microscopic view and that
itself could be an interesting topic for a thesis. The fuel flow factors and its equation
is of vital importance, and the other factors are neglected as they are not within
the scope of the thesis. The efficiency of an engine or the best working point for
an engine is decided by the engine efficiency map that is a function of engine speed
and engine torque. The engine map also has the efficiency and fuel consumption
contours that says the efficiency and fuel consumption for a given set of engine speed
(N) and engine torque (τice), shown in the Figure 3.5. The fuel flow rate formula is
shown in the Equation 3.2 [34],

ṁf = Nτice

ηiceHlv

(3.2)

and the fuel consumption is expressed as litres per 100 km and can be calculated
as:

FC =
∫ t

0 ṁf .103.102

xtotal

(3.3)

where xtotal is total distance travelled. The emissions from the engine are not con-
sidered during the optimisation process. The above equation shows that engine
speed (N) and engine torque (τice) directly affect the fuel consumption of the en-
gine. Therefore by optimising engine speed and engine torque in better points on
the engine map a certain amount of fuel can be saved.
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Figure 3.5: Engine Efficiency Map. The colour bar indicate engine efficiencies.

Electric Machine Model

The detailed electric machine model is ignored to reduce complications, and a task
of the AI is to run the electric machine or the engine in its optimum points. Hence a
specific controller or an equation that governs the motion of the electric machine is
unnecessary. The negative torque means that the electric machine is being used as
the electric generator. The below zero part of the graph corresponds to the electric
machine being used as a electric generator and the above zero corresponds to the
electric machine. EM and EG efficiency map is shown in the Figure 3.6. The electric
machine map acts the same like engine map, a 2-dimensional look up table. Given
the electric machine speed and torque it returns the efficiency of the electric machine
at that point [34] as shown in the Figure 3.7. The efficiency is important as to not
to loose more electrical energy while discharging and to gain more while charging.
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Figure 3.6: Electric Machine Map. The colour bar indicate electric machine/elec-
tric generator efficiencies.

Figure 3.7: The figure shows the block diagram of the EM map. The electric
machine map is a function of electric machine speed and electric machine torque
and returns the efficiency of the corresponding speed and torque.

When the electric machine operates on a demand of positive torque, the electrical
energy from the battery is used and while on negative torque demand, charges
the battery by converting the mechanical energy to electrical energy, the power
consumption of electric machine is given by:

Pem = τem.ωem

ηem

. (3.4)
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While the electric machine generates electrical energy, this implies that the power
flows from the electric machine to the battery, the generated power can be calculated
as:

Peg = τeg.ωeg.ηeg (3.5)

The Equations 3.4 and 3.5 are very crucial in calculating SoC level in battery.
Battery charge is dependent upon the electric machine operation. If electric machine
is used for propulsion then battery charge will be continuously decreasing and if it
is acting as the electric generator then the battery charge will be increasing because
the energy will be restored in the battery.

Battery Model
A 51 Ah battery is used in the PHEV model development. The energy stored in
battery is calculated as :

Ebatt = Cbatt ∗ no. of battery cells ∗ 3600 (3.6)

The battery state of charge (SoC) varies as the vehicle moves, the battery SoC is a
function of open circuit voltage VOC as shown in Equation 3.7:

SoC = F (VOC) (3.7)

The SoC and VOC relation depends on the temperature, the temperature is assumed
to be constant i.e 0 degree Celsius in this case. The VOC is calculated for all the cells
in the battery. Battery power demand depends on the operation between electric
machine Pem and electric generator Peg. The Equations 3.4 and 3.5 describe the EM
system in terms of power. The current going out from the battery is described by
the equation as:

Ibatt = Pem/eg

VOC

(3.8)

Change in SoC(∆SoC) is the ratio of present battery energy at time t to the total
battery energy. Battery SoC and delta SoC calculations are as follows:

∆SoC = Pem/eg ∗ t+ Pbattloss ∗ t
Ebatt

(3.9)

where

Pbatteryloss =
∫ t−1

0 I2dt ∗Rint

VOC

+ Lossaux.load (3.10)

SoC is a dimension less unit, current (I) is measured in amperes, Pem/eg is in kW ,
Rint in ohms (Ω), battery capacity is in Ampere-hour (Ah), Pbatteryenergy is in Joules
J. And then the current SoC is updated as:

SoCt = SoCt−1 −∆SoC. (3.11)

An auxiliary load of 354 Watts and a temperature resistance loss of 0.17Ω for a cell
is considered.
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Transmission Model

A 7DCTH system is used in the PHEV model. ICE is connected to both even and
odd gear shafts through two clutches C1 and C2, while EM is connected only the to
shaft with even gears.
As Explained earlier electric machine can operate only on even gears only and engine
can operate on all gears, in order to make them synchronised there is a physical
rule that governs the system, the electric machine gear should always be one up
or one down with respect to the engine gear. The power-train system equations
are dependent on the PHEV architecture and configurations. The three kind of
equations are torque, angular speed and power flow equations. And these parameters
are influenced by gear ratios. The equations are listed below:

• Torque Equations:

τice = τdem

gice

(3.12)

τem = τdem

gem

(3.13)

Where τice < τice,max and τem < τem,max. Where τice is engine torque, gice

are the engine gear ratios, τdem is torque demand from the wheels, gem is the
electric machine gear ratios and τem is electric machine torque.

• Angular speed equations:

ωice = ωwheel ∗ gice (3.14)

ωem = ωwheel ∗ gem (3.15)

Where ωice < ωice,max and ωem < ωem,max. Where ωice is the engine speed, gice

is the engine gear ratios, ωwheel is the wheel speed, gem is the electric machine
gear ratios and ωem is the electric machine speed.

• Power equations:
Pice = ωice ∗ τice (3.16)

Pem = ωem ∗ τem (3.17)

Where Pice < Pice,max and Pem < Pem,max. Where Pice is the engine power,
Pem is the power of the electric machine.

PHEV Operating modes

The four different modes that are considered in this work are the pure electric mode,
the hybrid mode, pure engine mode and the power mode, the respective modes are
explained below. The other operating modes for PHEV are ignored for simplicity.

• Pure EV Mode: In pure electric mode, only electric machine is used to
propel the vehicle. Both clutches are open, and the ICE is isolated from the
drive shaft. Regenerative braking can be used to charge the battery. The
energy flow diagram is shown in the Figure 3.8a.
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• Hybrid mode: In the hybrid mode the battery can be charged through ICE
when demanded. In this mode the ICE is connected to all gears through both
clutches. When the engine is operating on the odd shaft gear it act as in
pure engine mode which means neither regeneration can take place nor engine
can charge the battery. When the engine operates on the even shaft, the ICE
operates on the best efficiency points, and provides the energy for propulsion
and the remaining energy is used to charge the battery. The electric machine
acts as the electric generator when the operating gears are even. The main
purpose of this mode to consume less fuel by operating in optimum point for
both operations, battery charging and vehicle propulsion. The power flow
diagram of this mode is shown in the Figure 3.8b.

• Engine mode: In this mode only Clutch 1 is open and the battery does
not charge from any source. PHEV in this mode behaves as a conventional
ICE. Assumption: An assumption is made that both the clutches are closed
and engine can operate on all gears. The power flow diagram of this mode is
shown in the Figure 3.8c.

• Power mode: In this mode both the engine and the electric machine propel
the vehicle in conjuncture. Both the clutches are closed. Battery energy can
be restore by regenerative braking. The power flow diagram of this mode is
shown in the Figure 3.8d.
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(a) The working of EV mode is depicted
in the figure. The red filled lines show
the flow of energy. This mode is also
referred to as Charge Depletion mode.

(b) The hybrid working mode is shown
in the figure. The engine powers the
vehicle simultaneously charging the bat-
tery, the machine in this mode acts as
electric generator.

(c) The engine drives the vehicle. The
working of this mode is the same as a
conventional vehicle working.

(d) The power mode uses both sources
to propel the vehicle. This mode is en-
gaged when the power demand is high
for a single power source.

Figure 3.8: The figure shows the four modes considered for the purpose of the
thesis. The sub-figures also show the flow of energy from different power sources.

Vehicle Free Body Dynamics

There are many forces acting on the vehicle while driving and a vehicle can move
forward if driving force is greater than all of the resistant forces. The vehicle model
with all the exerted forces is shown in the Figure 3.9.
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Figure 3.9: Vehicle Model

The important drag forces [34] that can be seen in the above Figure 3.9:
• Fad aerodynamics forces ,
• Fg slope and
• FR rolling friction.

These forces are shown below in the Equations 3.19, 3.20 and 3.21 respectively. The
total force Ft exerted on vehicle can be calculated through the Equation 3.18 [35].

Ft = ma+ Fad + Fg + FR (3.18)

Fad = 0.5ρCdAFv
2 (3.19)

Fg = mg sin θ (3.20)

FR = mg cos θ.CR (3.21)
Where m, a, ρ, Cd, Af , v, θ and CR are mass of the vehicle, acceleration, air density,
air drag coefficient, vehicle front cross-sectional area, velocity, slope and the rolling
resistance coefficient, respectively.

Road Load Curve (RLC)

Road-load is the force acting upon vehicle while driving at a speed v. These forces
are the summation of tire rolling resistance, drive line losses, and aerodynamic drag.
RLC is described as follows:

Ft = RLC +ma (3.22)
Where RLC is defined as:

RLC = 140.15 + 0.4135v + 0.03826v2 (3.23)
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RLC is a function of vehicle speed (km/h). And the torque demand (τdem) and
wheel speed (ωwheel) is updated using the equations:

τdem = Ftr (3.24)

ωwheel = v

2nπr (3.25)

Where r is the wheel radius.

PHEV Configuration and specifications

The electrical specifications of PHEV is listed in the Table 3.1. The mechanical
specifications are represented in the Table 3.2. Basic vehicle design parameters are
listed in the Table 3.3.

Description values Units
Max torque of electric machine 255 Nm
Max Power of electric machine 55 kW

SoCinit [95, 15] CD mode,CS mode
SoCtarget [55, 15] CD mode,CS mode
SoClimit [12, 12] CD mode,CS mode

Battery capacity 51 Amh
Battery energy 17 kWh

EM fix ratio 1.59375 −
No of battery cells 96 −
Nominal Voltage 3.6 V/cell

Table 3.1: Electrical specifications.

Description values Units
Max Torque of engine 265 @1350-3900 RPM Nm
Max Power of engine 132@5700 RPM kW

Q heat of fuel 41 MJ
kg

fuel density 0.748 kg
m3

odd shaft gear ratios [ 16.041, 6.697, 3.729, 2.492 ] −
even shaft gear ratios [ 9.65, 4.836, 2.95] −

Table 3.2: Mechanical specifications.

Description values Units
Official Curb Weight 1930 kg

cd 0.36 m
cross section area 2.53 m2

Radius 0.35814 m

Table 3.3: Vehicle Attributes
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Powertrain systems type
EM AC Synchronous PM
Fuel Gasoline 95 RON

Engine Turbo charged
Gear box 7DCT

Table 3.4: Models specifications.

3.3.2 The Neural Network Model

A feed forward NN model is implemented as the controller for the modelled plant in
the thesis. The Table 3.5 shows the architecture of the NN implemented. The NN
model is a sequential feed forward network with 3 hidden layers, a input layer and a
output layer. The output layer has 3 neurons with tanh as activation function that
predicts shift signal for electric machine gear, engine gear and modes respectively.
1 neuron with relu as activation function for predicting the value of α, the power
distribution factor between engine and electric machine in hybrid mode. The value
of α dictates the power to be generated from the engine in Hybrid mode. Quoting
an example say if the predicted value of α is 0.2, then 0.2 kW is generated from ICE,
that can be used either for propulsion or for charging the battery depending on the
Power demand and battery SoC levels. 1 neuron with expit or sigmoid is used as
an activation function, because the value of β ∈ (0, 1). The β is used as the power
distribution factor in the power mode that says the percentage of power demand to
be delivered by the engine. The Table 3.7 defines the parameters α and β. The NN
is non-linear function approximator that predicts the outputs with the given inputs.
The NN predicts the shift signal for the electric machine gear, engine gear, modes,
α and β. The Table 3.6 shows the type of activation function implemented, and the
range of the omitted output prediction.

Figure 3.10: The figure shows the input to the NN. The input data is a numpy
array and stored also as a pandas dataframe for visualisation.

43



3. Methods

Layer(type) Output Shape Param#
dense 1 (None,8) 56
dense 2 (None,6) 54
dense 3 (None,5) 35
dense 4 (None,5) 30

Total params : 175
Trainable params : 175

Table 3.5: The table shows the summary of the NN model implemented.

Activation function # Neurons Range Output
Tanh 3 (-1,1) gem, gice,modes
Relu 1 (1,∞] α

Sigmoid 1 (0,1) β

Table 3.6: The table shows the purpose and type of neurons implemented in the
output layer.

Variable Definition

α
Power split factor that decides the power to be generated from the engine in

hybrid mode. α ∈ (0,∞]

β

Power split factor that sets the ratio to split the power between
EM and engine. Any value of β is the power demand
multiplied β to be provided by the engine. β ∈ (0, 1)

Table 3.7: The table shows the definition and the value range of power split factors.

3.3.3 Loss Function
The loss function forms the most integral part of the system. The loss function
is not a part of the NN. The loss function is used to find the parameters of the
NN during training. The code included in appendix B (1) shows the loss function
implemented. The loss function is divided into individual losses as lossDistance,
lossFuel and lossSoC. The losses are defined as follows:

lossDistance = 1000−
∫ t+1

t ẋ

11000 (3.26)

(3.27)

lossFuel =
∫ t+1

t ṁf ∗ 100 ∗ 1000∫ t+1
t ẋ

(3.28)

(3.29)
lossSoC = argmax(SoCtarget − SoC[−1], 0) ∗ 1 (3.30)

(3.31)
L = min(lossDistance+ lossFuel + lossSoC) (3.32)
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Note: The summation(∑) can also be used instead of integration(
∫

), if the inter-
vals are discrete and equally timed or spaced. Summation is used in the thesis for
simplicity and faster execution.

• lossDistance: The most important thing while training is that the NN learns
to make such predictions that the complete NEDC is run or simulated. loss-
Distance expression takes care that the entire drive cycle is simulated or the
NN is penalised for the unfinished distance if the simulation is incomplete.
The Equation 3.26 shows the implementation, where ẋ is the speed integrated
between the two time steps to get the distance travelled for a complete cycle,
that is t=0 till t=1186 seconds. The NEDC cycle is approximated to cover
10,932 meters, hence the distance travelled is normalised by a factor of 11000.
The constant 1000 is used to keep all the losses on the same numerical scale.
The algorithm tends to get greedy with smaller numbers as they indicate the
loss is minimum.

• lossFuel: The lossFuel function is used to minimise the fuel consumed by
the PHEV for a NEDC. This Expression 3.28 trains the NN to operate in
engine points with minimum fuel consumption. The cumulative sum of fuel
consumed at each time step returns the total fuel consumed at the end of the
cycle. The fuel consumption decreases as the number of generations in the
GA progresses on. The Equation 3.28 shows the implementation, ṁf is the
fuel consumed at the time t, the integration of ṁf gives us the cumulative fuel
consumed for the cycle. The fuel consumed is multiplied by 100 and then 1000
and then normalised with the total distance covered to convert the fuel flow
rate to litres/100 Kms.

• lossSoC: SoC levels play an important role in PHEVs. Ending up in the
desired target SoC level is important in a PHEV, if not the difference electrical
energy is charged from the electric grid and can cost some amount of money
or it comes at the expense of some fuel energy by consuming additional fuel.
The Equation 3.30 shows the implementation, SoC[-1] gives the SoC final SoC
when the simulation is complete or stopped. Here the difference in SoC is
accounted for and the SoC[-1] is expected to be very close to the SoCtarget

when the model is completely trained.
The Equation 3.32 shows the complete loss function L. The loss is minimised as the
training progresses.

3.3.4 Training

The feature space of the NN is R6, implies that feature space is spread across 6
dimensions. This also means that the input to the NN is an array of size (n,6),
where n represents the length of the input data. The input data to the network
is vertically stacked vectors of Normalised SoC, Normalised SoCtarget, Normalised
Wheel Speed ωwheel, Normalised Demand Torque τdem, initial engine gear and initial
electric machine gear. The Figure 3.10 shows the inputs to the NN. The initial SoC
and the target SoC are set before the training is initialised. The NN is trained by
simulating a complete NEDC and the demand torque for the NEDC is obtained
from the RLC. The NN is trained is using the GA as optimiser, and as said above
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the loss function helps to set the parameters of the NN during training. This means
that the output predictions are made during the execution of a NEDC and each
time the NEDC is run, the NN parameters are consequently updated. The training
or optimisation can also be based on certain convergence criterion. In this case the
NN was trained for 700 generations with 100 genes population and 2 elite copies1.
The loss function was developed for optimising the fuel consumption, the attributes
of the loss function like convexity, smoothness or others are unknown. Gradients
are difficult to be found in these type of loss functions. Hence the gradient free
Genetic Algorithm is selected for optimisation or training. The GA also helps with
the missing values and is robust with the loss function.

3.3.5 The Optimisation

The GA is used as an optimiser, the stochastic GA algorithm optimises the param-
eters of the NN by using a suitable variable space for the parameters.

• The objective function is the NN and and the simulation environment for the
NEDC cycle.

• The variable space ∈ [−1, 1]. This means that the NN parameters can take
any arbitrary values ranging from -1 to 1.

• The weights and biases are randomly initialised from the variable space for
every individual in a generation.

• The optimisation is run for fixed number of generations and individuals or it
can also be run until a convergence criteria is satisfied.

• The assigned set of weights array is called is an individual. The L is computed
for every individual in the generation. The one with least value of L is saved
as an elite copy, so that the best individual that returns the best performance
is not lost in the stochastic process. It should also be noted that as the number
of elite copies are increased the exploration of the variable space is restricted
because the mutation mostly happens around the elite copies.

• The individual with the least loss L gives the best performance of the NN.
That individual returns the best set of weights and biases for the NN seen so
far.

• The process is repeated until all the generations are evaluated or a certain
convergence criteria is fulfilled.

The Algorithm 2.13 shows the detailed and step-by-step optimisation process of a
GA.

The implemented code for the objective function that is to be minimised or optimised
is listed in appendix B(2). The weights of the NN are optimised here, by computing
individual losses. The function returns the optimised NN parameters array after the
optimisation or training is completed.

1 Training is visualised in Appendix.
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3.3.6 Model Validation

The model is now coded and implemented in python. The model is validated by
comparing the model inputs and signals with the controllers and plant models used
for simulations in the FEoP team at CEVT AB.

Figure 3.11: The figure shows the acceleration comparison between plant models
used at CEVT and the one implemented here.

Figure 3.12: The figure shows the demand torque comparison between plant mod-
els used at CEVT and the one implemented here.
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Figure 3.13: The figure shows the electric machine speed comparison between
plant models used at CEVT and the one implemented here.

Figure 3.14: The figure shows the electric machine torque comparison between
plant models used at CEVT and the one implemented here.
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Figure 3.15: The figure shows the SoC comparison between plant models used at
CEVT and the one implemented here.

Figure 3.16: The figure shows the velocity profile comparison between plant models
used at CEVT and the one implemented here.

Lets assume that Plant A is the plant model implemented in the thesis and Plant
B is the plant model used by the FEoP team at CEVT AB. The plant A is con-
servative with respect to plant B as the electric range obtained was 6km less and
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the electrical power consumption in terms of SoC as seen in the Figure 3.15. The
electric range for Plant A is 89.5 kms while the electric range for Plant B is 95 kms.
The initial SoC limit considered was from 95%. A heating temperature loss for the
battery was assumed to 0.17Ω for one cell and an auxiliary load of 354 watts. The
acceleration of Plant B has peaks when compared to the acceleration of Plant A as
shown in the Figure 3.11. The peaks are due to the clutch signals while shifting
gears. The clutch signals are neglected in Plant A for simplicity. The demand torque
in Plant B is due to the consideration of acceleration pedal position, while the de-
mand torque in Plant A is obtained from the road load curve (RLC) as depicted in
the Figure 3.12. The small offset in the demand torque of Plant A is due to the RLC
factor. The RLC gives a very small yet negligible amount of torque demand even at
zero velocity. The electric machine torque and electric machine RPM are decided
from the RLC curve in Plant A while the same is decided in Plant B using pedal
shift maps, The Figure 3.14 and the Figure 3.13 shows the comparison in electric
machine torque and electric machine RPM signals respectively. The plant A model
is simulated in Python 3 while the plant B is simulated in IPG CarMaker.

The peaks in the velocity profile of Plant B are due to the Drivers behaviour that is
an attribute to be selected in the CarMaker. While the velocity profile for the Plant
A is smooth as shown in the Figure 3.16.

The Plant A was tested against the Plant B with same inputs. The idea is to be on
the same page as the behaviour of the Plant A is considered with Plant B.

3.4 The AI System: A short summary
The below Figure 3.17 shows the AI system implemented for the fuel economy
optimisation in the dissertation. The system acts as a traditional control system
with a plant and a controller. The NN is the AI controller here and gives optimised
inputs to the plant model. The shift signal updates the current gear (giem , giice

) for
both the Electric Machine and Internal Combustion Engine, the current gear and
the SoC is used as the feedback feedback signals to set the Engine Speed, Engine
Torque, Electric Machine Speed and the Electric Machine Torque are continuously
updated. The plant model on receiving the inputs from the NN runs the simulation
for a NEDC.

Figure 3.17: The block diagram shows the implemented AI control system for
minimising fuel consumption.
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The results are discussed in the next chapter while the recommendations and future
discussions are talked further on in the paper.
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4
Results

In the first half of the chapter the results are visualised and analysed. Later the
future recommendations to continue the work is spoken about.

4.1 Results and Inferences

Gear Predictions

Figure 4.1: The figure shows the gear shift pattern predicted by the NN for both
ICE and EM for a NEDC in a charge sustaining mode.

The Figure 4.1 shows the gear shifting pattern for the NEDC produced by the NN.
As explained earlier the EM can only operate on even gears while the power from
ICE can be transferred using both even and odd gear numbers. The NEDC has
repetitive patterns of velocity (160s-800s on x axis) in it before there is a larger
acceleration at the end of the cycle. The velocity patterns are also reflected in the
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gear shift pattern as shown in the Figure 4.1. The predictions from the NN gets kind
of messy between 1130s-1160s. The EM gear can take a gear above or below the
gear number of the ICE gear, the NN also learns to predict in the similar manner.
This is probably due to the fact that the loss function is similar for both gears. This
can be avoided by adding a cost each time a gear shift is made.

SoC Neutrality

Figure 4.2: The figure shows the plot of SoC level for the NEDC in charge sus-
taining mode.

The Image 4.2 shows the consumption and recharging of electrical energy for a
NEDC. The initial SoC is 15% and the SOoC at the end of the cycle is 14.967%.
The SoC neutrality is satisfied with 99.76% accuracy. The NN has learnt to consume
and restore the electrical energy to sustain the SoC levels for a NEDC. The plot
also follows the similar pattern as a NEDC while loosing SoC while accelerating and
gaining SoC while decelerating.
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Modes

Figure 4.3: The figure shows the modes predicted by the NN for a NEDC.

Predictions Modes
0 Pure Electric Mode
1 Pure ICE mode
2 Hybrid Mode
3 Power Mode

Table 4.1: The table shows the predicted real numbers corresponding to the actual
modes as implemented in the thesis.

The Figure 4.3 shows the optimal modes to be used for the NEDC in charge sus-
taining mode. The Table 4.1 shows the integer numbers corresponding to the modes
implemented in the PHEV. The NN learns that when the power demand is high
or say when there is an acceleration demand the power demanded cannot be solely
given by electrical energy as the initial SoC is 15% and the minimum is 12%. It also
makes sense that the used electrical energy cannot be regenerated to that extent in
the very near future. Hence the NN decides to operate the PHEV in power mode,
where a very small fraction of power demand is fulfilled by electric energy and the
remaining is supplied by the ICE. Thus the NN predicts Power mode (m=3) when
there is an acceleration demand from the drive cycle. Sometimes the NN predicts
that it might be wise to use hybrid mode to charge the battery during acceleration
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or more importantly while cruising as observed between 800s-1100s in the Figure
4.3.

Power Distribution Factors(α, β)

Figure 4.4: The plot shows the usage of power split factors of α, β for charge
sustaining mode for a NEDC.

The Figure 4.4 shows the plot of the power distribution factors during the hybrid
mode and the power mode. The definitions of power distribution factors are shown
in the Table 3.7. The β values stay zero as they only get predictions in power mode.
The β value remains zero for all other modes. The β value shoots up when there is
an acceleration demand and the battery SoC levels are close to the minimum. The
β ∗Pdem will the power supplied from the engine and (1−β)∗Pdem will be the power
supplied from the EM. While the α is the power decided to be generated from the
engine in the hybrid mode to charge the battery. The α predictions occur only when
the vehicle is running in the hybrid mode.
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Fuel Consumption

Figure 4.5: The images shows the fuel consumed by the PHEV for a NEDC in
Charge Sustaining mode.

The Figure 4.5 shows the fuel consumed by the PHEV for a NEDC in a charge
sustaining mode. The plot shows the similarity in the NEDC. When there is an
acceleration demand there is a fuel consumed. The bigger the acceleration the
bigger spike in the fuel consumed. The fuel consumed at the end of the NEDC for
charge sustaining mode is 5.3 liters for every 100 kms.

4.2 The AI controller vs Traditional Controller

For simplicity in understanding, lets call the implemented AI controller as Con-
troller A and the traditional controller as Controller B.

Transmission Control Unit Performance

The Gear Shifting pattern of both the controllers are discussed and visualised here.
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Figure 4.6: The figure shows the EM gear shifting comparison of Controller A and
Controller B.

The Figure 4.6 shows the comparison between the predictions of Controller A and
the behaviour of Controller B for EM gear shifting. The Controller A learns to come
down, and goes to neutral whenever the velocity of the vehicle is zero. This results
in a lot of transitions in gear shifting. The added advantage to this is that the
Controller A uses lower gears to recharge while decelerating this means that with
a larger gear ratio higher the torque and the better the EM efficiency this helps
to regenerate better than Controller B. The transitions may also result due to the
sudden change in operation modes. While the Controller B is very smooth and goes
to top gear only when the acceleration demand is high and remains in the lowest
possible gear (second gear) even when the vehicle velocity is zero.
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Figure 4.7: The figure shows the behaviour in Gear shifting pattern for engine
gears.

The Figure 4.7 shows the comparison between the predictions of Controller A and
the behaviour of Controller B for engine gear shifting. The Controller A operates
at higher gears than that of Controller B. The reason is because of the lower fuel
consumption and better engine points. The pattern between of both the controllers
are more or less the same, but the Controller B behaves in a bit conservative manner
and could take up higher gears when there is an acceleration demand. The most
interesting fact is that Controller A increments step by step considering even the
EM gear number into consideration. The behaviour of Controller A resembles the
practical situation, every time the vehicle is at rest, the gear shifting happens from
neutral or say gear 0 and increments linearly. The gear jumping in Controller B
might be mostly due to the usage of different combinations of operating modes.

Electric Machine and Generator Performance
The Figure 4.8 shows the EM and EG operating points on the EM efficiency map
for the modes when the EM or generator is being used. The figure shows that the
majority of the EM points are in the sweet spot region of the EM where the efficiency
of the EM is high. The EM operating points of the Controller A is better than the
operating points in the Controller B. The NN has successfully learnt to operate the
EM at the higher efficiency points where the electric energy losses are minimal. The
regeneration points are fairly better in controller A than controller B.
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Figure 4.8: The figure shows the performance of the Electric Machine by plotting
the operating points on the EM efficiency map.
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Engine Performance

Figure 4.9: The figure shows the performance of the engine by plotting the oper-
ating points on the engine map.

The Figure 4.9 shows the engine operating points on the engine efficiency map for
the modes when the engine is switched on. The figure shows that the majority of
the engine points are in the sweet spot region of the engine where the efficiency of
the engine is the highest. The engine operating points of Controller A are better
than that of Controller B. The NN has successfully learnt to operate the engine at
higher efficiency points where the cost of fuel consumed is minimum.
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Fuel Consumption Comparison

Figure 4.10: The figure shows the fuel consumed in both the controllers.

The Figure 4.10 shows the fuel consumed by the Controller A and Controller B.
The fuel consumed by Controller A is 6.9% less than that of Controller B in Charge
Sustaining mode for a NEDC. The image shows that the Controller A uses the
engine more than that of Controller B, but the Controller A uses the engine wisely
by running in points where the fuel consumed is relatively less. The Controller B has
accounted for cold start losses and idle engine losses. The optimal fuel consumption
for the Controller B is 5.7 l/100km. Hence the Controller A has 11.6% less fuel
consumption than Controller B.

4.3 Future Recommendations and Discussions
The results achieved during the study has been satisfactory. A few future recom-
mendations have been discussed here that can be considered to improve the results
further.

Recurrent Neural Networks
RNNs are a super set of feed forward NNs. RNNs can be seen as or visualised as
computational graphs. The RNNs are mostly used for text classification, Neural
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Machine Translation, Sentiment Analysis etc. The RNNs have the ability to store
the previous state of the input and use that information to predict some useful
outputs.
The state update equation in an RNN cell is defined as:

ht = fw(ht−1, xt) (4.1)
yt = Whyht (4.2)

The fw can be any non-linear function, ht−1 is the previous state and the xt is the
input at the time stamp t. The current state is updated using the previous state of
the input and the current input.
The state update with a tanh as the non-linear activation function is defined as
follows:

ht = tanh(Whhht−1,Wxhxt) (4.3)
yt = Whyht (4.4)

Where Whh is the weight matrix that updates the internal states of the RNN and
the weight matrix Wxh is multiplied with the input. The weight matrix Why extracts
this hidden state and transforms it to a meaningful predictions at eact time step t.
This is the general working of a RNN. Where the tanh function can be replaced by
more complicated cells or functions, like LSTM, GRU etc.
The RNNs provide an advantage of storing some valuable pieces or patterns from
the inputs that can be used as an advantage to improve the quality of predictions.
In this case a simple means could be that RNNs can store the time stamps where
there are sudden accelerations and deceleration. RNNs can provide an edge in gear
shifting by remembering the previous state or previous predictions before predicting
the current value. The information of previous states can be important in predicting
the next values. This could be used as an advantage to regenerate in a better way
and consume fuel minimally. However RNNs comes up with challenges like training,
back-propagation with time, vanishing gradients to name a few.

Different Drive Cycles
The input can be any drive cycles or a combination of drive cycles. This helps the
NN to observe patterns and actually learn to simulate to physical resemblances.
Different drive cycle has different patterns or they are made up for different driving
styles. This can help the NN to learn different driving styles like driving in cities,
highways, stop & go etc. This can also help the NN to generalise better and perform
better on unseen data.

Test Data from Vehicles
The data can be collected from the sensors or from the control units in the PHEV.
This data can be noisy and also can correspond to the actual and practical driving
scenarios in the world. This can help the NN to be robust to missing values, noisy
and corrupt data.
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Multi-Agent Reinforcement Learning
The Multi-Agent Reinforcement learning can be a very good option if computational
complexity and resources are neglected. The multi-agent reinforcement learning
explores the complete state space by trying different actions and collecting rewards
or penalties for the action. The method can take you to the local optimal, while
different means could be tried out to reach the global optimal solution. The multi-
agent reinforcement learning can be very expensive and could take some time to
develop and days to train the model.

Reducing time stamp in Drive Cycle
The timestamp reduction between two points in the drive cycle can help to improve
the results. The NEDC used is for 1186s where data is logged at each second.
By reducing the time stamp to say about 1

10s or 1
5s the data logged is more and

precise. This can help the NN to focus on the tiniest details and therefore improve
the results.
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Conclusion

To answer the main research questions, the hierarchical control system was under-
stood and an AI controller was implemented for the developed PHEV model. It
was a bit tricky to set up the inputs, outputs and the feedback signals. The perfor-
mance of the AI controller is dependent on the number of inputs used and various
other factors. The signals affecting the fuel consumption were studied carefully and
classified them into inputs, outputs and feedback signals. Initially different Deep
Learning Methods were studied and then were bench-marked and the one the one
with best results was implemented. The most integral part of the project, the loss
function that optimises the fuel consumption satisfying various physical constraints
was developed. The optimal sized NN, the normalised input signals, the output pre-
dictions of the NN (input signals to the plant) and the loss function makes the AI
controller complete. The system was trained and the results found were satisfactory.

5.1 Key Findings
The section sums up the key results achieved in the thesis:

• Fuel Consumption is minimised.
• A Python platform for vehicle simulation was also developed.
• SoC neutrality is achieved with 99.67% accuracy.
• The NN has learnt to operate the power sources within its mechanical or

physical limits meaning the all the predictions made are valid for either of the
power sources.

• The NN has successfully learnt to operate both the engine and the electric
machine in better points.

• The NN has successfully learnt to simulate a PHEV in a NEDC by selecting
appropriate modes and shifting gears.

• GAs can also be a potential means to train the NN.
• Energy Efficiency of the PHEV is increased with a more conservative plant

model.
• The NN model was explicitly coded in NumPy to parallelise the training pro-

cess.

65



5. Conclusion

66



Bibliography

[1] Lino Guzzella and Antonio Sciarretta. Vehicle propulsion systems : introduction
to modeling and optimization. Springer, 2005.

[2] Lennart Ljung, editor. System Identification (2Nd Ed.): Theory for the User.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[3] Sue Haupt. Introduction to Genetic Algorithms, pages 103–125. 01 2009.
[4] Vijini Mallawaarachchi. Introduction to genetic algorithms-

including example code. https://towardsdatascience.com/
introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3,
07 2017.

[5] Shubham Jain. Introduction to genetic algorithm their applica-
tion in data science. https://www.analyticsvidhya.com/blog/2017/07/
introduction-to-genetic-algorithm/, 07 2017.

[6] M. (Mattias) Wahde. Biologically inspired optimization methods : an introduc-
tion. Southampton, UK ; Boston, MA : WIT Press, 2008. Formerly CIP.

[7] Viktor Larsson Bo Egardt Mitra Pourabdollah, Lars Johannesson. Phev energy
management: a comparison of two levels of trip information. Technical report,
Chalmers University of Technology, Gothenburg, Sweden.

[8] Yujia Zhai. Advanced neural network based control for automotive engines.
Technical report, Liverpool John Moores University, Liverpool, United King-
dom, 2009.

[9] Md. Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg,
Mahmudul Hasan, Brian C. Van Esesn, Abdul A. S. Awwal, and Vijayan K.
Asari. The history began from alexnet: A comprehensive survey on deep learn-
ing approaches. CoRR, 1803.01164, 2018.

[10] David Cid Fernandez. Model Building and Energy Efficient Control of a Series-
Parallel Plug-in Hybrid Electric Vehicle. Master’s thesis, Chalmers University
of Technology, Gothenburg, Sweden, 2016.

[11] Muddassar Zahid Piracha. Improving gear shift quality in a phev dct with in-
tegrated pmsm. Technical report, Chalmers University of Technology, Gothen-
burg, Sweden., 2017.

[12] Karel J. Keesman. System Identification. Springer, 2011.
[13] Christian Winge Vigild. The internal combustion engine modelling, estimation

and control issues. Technical report, TECHNICAL UNIVERSITY OF DEN-
MARK, LYNGBY, DENMARK, 2001.
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A
Definitions

A.1 Definitions

A.1.1 Mathematical Model
The Mathematical models are usually classified between a band of colours. White
Box models being completely descriptive to Black Box being a model which is as-
sumed or randomly chosen.
White Box Models - The mathematical models developed based on the first prin-
ciple or the Newton’s equations of motion are called as White Box Models. These
type of models are called as White Box models because of the access to the control
parameters. When both the structure and the parameters of the model are com-
pletely known – complete physical knowledge is available - it is a white box model.
White box models can be constructed from the prior information without the need
of any observations[15].

Black Box Models - The model development is dependent on the input-output
data. The input-output model if often known to as empirical model or Black Box
model. The black box model does not replicate the structure of the physical system.
The model structure is usually flexible enough to represent a large class of systems.
The Black Box Models and White Box models usually represent the two extremes
of modelling the system[15].

A.2 Stochastic Optimisation with GA
The section explains and visualises the training of NN with GA’s. The section also
highlights the difference between the usage of Elitism and without the usage of
Elitism.

A.2.1 GA with Elitism
The below Figure A.1 visualises the training process of the NN or say the optimi-
sation of the loss function. The Elitism helps the objective function to be strictly
increasing or strictly decreasing during the optimisation process. As the Figures
A.1a to A.1f shows the strictly decreasing optimisation progress. The x-axis shows
the generation as the optimisation progresses and the y-axis says the value of the
optimisation function. The mean indicated in the plot title represents the number of
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individuals survived during the optimisation process. More specifically speaking, the
mean indicates the set of NN parameters that completed the vehicle simulation for
a NEDC. For example in the Figure A.1a there are 781 individuals with respective
NN parameter arrays that completes the simulation. The individual with the least
loss is the Elite Copy.

(a) The objective function optimisation
for 10 generations with 1 elite copy.

(b) The objective function optimisation
for 20 generations with 1 elite copy.

(c) The objective function optimisation
for 30 generations with 1 elite copy.

(d) The objective function optimisation
for 40 generations with 1 elite copy.

(e) The objective function optimisation
for 50 generations with 1 elite copy.

(f) The objective function optimisation
for 60 generations with 1 elite copy.

Figure A.1: The figure shows the optimisation of the loss function or par say the
training of the NN using GA with Elitism.
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A.2.2 GA without Elitism
The below Figure A.2 visualises the training process of the NN or say the optimi-
sation of the loss function. The optimisation without elitism will not be strictly
increasing or strictly decreasing during the optimisation. The stochastic optimisa-
tion can some time hover up and down during the optimisation. It is recommenced
to have a convergence criterion while using GA’s without elitism. By comparing the
Figures A.1 and A.2, having elite copies results in a much smooth optimisation while
having no elite copies at all. The best individuals which guarantees less loss are not
lost in the stochastic process, while having no elite copies the best individuals can
be lost in mutation or while crossing over or in any other stochastic process.
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(a) The objective function optimisation
for 10 generations with no elite copies.

(b) The objective function optimisation
for 20 generations with no elite copies.

(c) The objective function optimisation
for 30 generations with no elite copies.

(d) The objective function optimisation
for 40 generations with no elite copies.

(e) The objective function optimisation
for 50 generations with no elite copies.

(f) The objective function optimisation
for 60 generations with no elite copies.

Figure A.2: The figure shows the optimisation of the loss function or par say the
training of the NN using GA without Elitism.
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B
Utilities

B.1 Methods
The section deals with the methods that are needed to support the optimisation
problems. The block of python method is inserted and explained below. And in
some parts the algorithms are listed and explained.

The below algorithm takes the wheel speed, demand torque, current engine speed,
engine torque and the current gear to find the optimal gear with knowledge of gear
ratios and engine map.

Algorithm 1: Algorithm to calculate gear optimal
Result: Gear Optimal y
x ∈ {ω, τdem};
i = 0 ;
while i != len(τdem) do

Nnew = ω ∗ gr;
τnew = τdem/gr;
eff = EngineMap(Nnew, τnew) ;
ŷ = argmax(eff) ;
return y

end
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B. Utilities

1 def LossFunction(vehicle):
2 lossDistance = 1000 - vehicle.x[-1]/11000
3 lossFuel = vehicle.fuelFlow.sum()*100*1000/vehicle.x[-1]
4 lossSOC = np.maximum(vehicle.SOC_target - vehicle.soc[-1],0)*1
5 if vehicle.completed:
6 extraLoss = 0
7 if vehicle.emRPM.max() > 12e3:
8 extraLoss += vehicle.emRPM.max()/12e3
9 loss = lossSOC + lossFuel + extraLoss

10 else:
11 loss = lossDistance
12 return loss

Listing 1: The loss function implemented that optimises the fuel consumption of
the PHEV.

1 def VehicleToOptimizeForGA(vehicle):
2 def OptimizeFunction(wPopulation):
3 lossList = []
4 for wNN in wPopulation:
5 vehicle.ControllerNN = SetWeightsIntoNN(wNN,vehicle.ControllerNN)
6 vehicle.RunSimulation()
7 lossList.append(LossFunction(vehicle))
8 loss = np.array(lossList)
9 return loss

10 return OptimizeFunction

Listing 2: The complete loss function that optimises the weights of the NN by
optimising the loss function (1) recursively.
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