
DANF: Approximate Neighborhood Func-
tion on Large Dynamic Graphs
Continuously finding changes in node centrality

Master’s thesis in Computer Science

SIMON LINDHÈN
JOHAN NILSSON HANSEN

Computing Science division
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2016

Master’s thesis 2016:NN

DANF: Approximate Neighborhood Function on Large Dynamic Graphs

Master’s thesis in Computer Science

Continuously finding changes in node centrality

SIMON LINDHÈN
JOHAN NILSSON HANSEN

Department of Computer Science and Engineering
Computing Science division

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2016

DANF: Approximate Neighborhood Function on Large Dynamic Graphs
Continuously finding changes in node centrality
SIMON LINDHÈN
JOHAN NILSSON HANSEN

© SIMON LINDHÈN & JOHAN NILSSON HANSEN, 2016.

Company Supervisor: Tobias Ara Svensson, Meltwater
Chalmers Supervisor: Ashkan Panahi, Department of Computer Science and Engineering
Examiner: Peter Damaschke, Department of Computer Science and Engineering

Master’s Thesis 2016:NN
Department of Computer Science and Engineering
Division of Computing Science
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2016

iv

DANF: Approximate Neighborhood Function on Large Dynamic Graphs
Continuously finding changes in node centrality
SIMON LINDHÉN
JOHAN NILSSON HANSEN
Department of Computer Science and engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The neighborhood function measures node centrality in graphs by measuring how many
nodes a given node can reach in a certain number of steps. The neighborhood function can
for example be used to find central nodes or the degree of separation. The state-of-the-art
algorithm, called HyperANF (Hyper Approximate Neighborhood Function), can calculate
an approximate neighborhood function for graphs with billions of nodes within hours using
a standard workstation [P. Boldi, M. Rosa, and S. Vigna, “Hyperanf: Approximating the
neighbourhood function of very large graphs on a budget,” CoRR, vol. abs/1011.5599,
2010]. However, it only supports static graphs. If the neighborhood function should be
calculated on a dynamic graph, the algorithm has to be re-run at any change in the graph.

We develop a novel algorithm called Dynamic Approximate Neighborhood Function
(DANF) which extends HyperANF to support dynamic graphs. In our algorithm, all rele-
vant nodes are updated when new edges are added to the graph. This allows a constantly
updated neighborhood function for all nodes in large graphs. DANF will be used on a
real-time data stream supplied by the company Meltwater, where about 2 million news
articles are received per day.

Rapidly changing nodes and trends are detected by tracking the nodes whose centrality
change by an insertion. This is used to monitor which subjects are getting more or less
popular.

Keywords: HyperANF, HyperBall, DANF, node centrality, approximate neighborhood
function, neighborhood function, dynamic approximate neighborhood function

v

Acknowledgements
We want to thank Meltwater for providing us with real-world data, an interesting problem
and an opportunity to meet new people working in our area. In particular, we want to
thank our supervisor Tobias Ara Svensson, for his professional advice in working methods
and helping us to connect to the company systems, and Otto Frost for his valuable input.
We also want to thank our supervisor at Chalmers, Ashkan Panahi, for his support and
time. Lastly, we want to thank our examiner at Chalmers, Peter Damaschke, for the time
and effort to ensure the quality of the report.

Simon Lindhén & Johan Nilsson Hansen, Gothenburg, June, 2016

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Aim and background . 1
1.2 Problem formulation . 2
1.3 Limitations . 2

1.3.1 Entity disambiguating . 2
1.4 Mathematical preliminaries . 2

1.4.1 Graph transpose . 2
1.4.2 Maximal matching . 3
1.4.3 Approximation algorithms . 3
1.4.4 Minimum vertex cover . 3

2 Technical Background 5
2.1 Neighborhood function . 5
2.2 HyperANF . 5
2.3 HyperLogLog . 5

2.3.1 Multiple register . 6
2.3.2 Terminology . 6
2.3.3 Memory usage . 6
2.3.4 Harmonic means . 7
2.3.5 Precision . 7
2.3.6 Hashing function . 7

2.4 Webgraph . 8
2.4.1 HyperBall . 8
2.4.2 Graph compression in Webgraph . 8

2.5 Breadth-first search . 8
2.5.1 Multi source . 9

2.6 Approximate minimum vertex cover . 9
2.6.1 Dynamic approximate minimum vertex cover 9

3 Methods 11
3.1 Merging graphs . 11
3.2 Extending HyperANF to support dynamic graphs 11
3.3 Extending HyperLogLog to support deletions 11
3.4 Benchmarks . 12

ix

Contents

4 Development 13
4.1 Preliminaries . 13

4.1.1 Dynamic graphs . 13
4.1.2 HyperLogLog resizing . 14

4.2 DANF: The first attempt . 14
4.3 Optimized Breadth-first search . 16

4.3.1 Visitors . 16
4.3.2 Travelers . 16
4.3.3 Extended algorithm . 16

4.4 DANF: The final algorithm . 17
4.4.1 Node history . 17
4.4.2 Edge insertion . 19

5 Experiments 23
5.1 Benchmarks . 23

5.1.1 Comparison of graph structures . 23
5.1.2 Memory dependent merging . 23
5.1.3 Dynamic Vertex Cover . 24
5.1.4 Comparison of DANF and HyperANF 25

5.2 Experiments on a real-time data stream . 26
5.2.1 Graph layout . 27
5.2.2 Starting with an empty graph . 28
5.2.3 Starting with an arbitrary large graph 28
5.2.4 Data retrieval . 29

6 Discussion 31
6.1 Ethics . 31
6.2 Future work . 32

A Appendix A I
A.1 Benchmark equipment . I
A.2 Graphs . I

x

List of Figures

4.1 Visualization of the collect and propagate steps 15
4.2 Extended MS-BFS algorithm in pseudo-code 17
4.3 History propagation in pseudo-code . 20
4.4 History propagation traveler in pseudo-code 20

5.1 Benchmark of memory usage between high level structure and byte stream. 24
5.2 Benchmark of different union to stored memory ratio limits 25
5.3 Benchmark of sequential insertions in 2-approximate dynamic vertex cover . 26
5.8 Parallel-compatible pipeline layout . 26
5.4 Benchmark of sequential deletions in 2-approximate dynamic vertex cover . 27
5.5 Benchmark of DANF and the two-BFS implementation with h = 3 28
5.6 Benchmark of DANF and the two-BFS implementation with h = 8 29
5.7 Benchmark of the ratio of edges that can be added in the same time as a

HyperANF recalculation with h = 3 . 30
5.9 Graph layout used in the conducted experiment 30

xi

List of Tables

5.1 Benchmark of representing the graph as a byte stream and a high level data
structure . 23

6.1 Percentage of the algorithm space used by MS-BFS with h = 3 and 16
HyperLogLog registers per node . 31

xiii

1
Introduction

1.1 Aim and background

In the era of big data, mining graphs for information is getting increasingly more popular.
An example is to retrieve how central a given node is, which can be measured by node
reachability. Node centrality has plenty of real world applications. Consider a graph of
companies with edges representing some relations (for example whether they collaborate
or not). Node centrality can determine which companies are well established.

The neighborhood function (NF) is used for determining node reachability in graphs.
For each node v in a graph, the NF is used to determine how many other nodes v can reach
in a limited number of steps. Formally speaking, given a graph G = (V,E), NF (G, h) =
{|{v : v ∈ V, dist(u, v) ≤ h}| : u ∈ V }, where h is the specified maximum number of steps.
Due to the dependence on the value h, a variety of graph properties can be expressed by
the NF. For example, the diameter of a graph can be expressed as the smallest number d
where NF (G, d) = NF (G,∞). By setting h to a fixed value h < d the fraction of a graph
that a node can reach in h steps can be calculated.

The NF can be calculated exactly in either O(n2.38) operations and O(n2) space units
or O(nm) operations and O(m+n) space units, where n is the number of nodes and m is
the number of edges [1]. However, for very large graphs these polynomial bounds become
infeasible. Therefore, recent research has focused on the development of approximation
algorithms to calculate the NF for large graphs [1, 2, 3]. HyperANF is a state-of-the-
art algorithm, created by P.Boldi et al., that provides an approximation of the NF [2].
HyperANF uses HyperLogLog counters to approximate the number of nodes a given node
can reach. HyperLogLog counters are statistical counters that only require O(log logn)
bits to approximate the cardinality of a multiset up to size n [4]. In HyperANF, each node
is given a constant number of counters and hence requires O(n log logn) space. The time
complexity for HyperANF is not known but it is an extension to ANF which runs in O((n+
m)h) operations. A similar time complexity is expected of HyperANF. The authors of [2]
provide benchmarks on public data-sets that empirically show that HyperANF is much
faster than its predecessors, including ANF. Due to HyperANF’s low space complexity, it
works well on graphs with billions of nodes. Currently, the algorithm only support static
graphs. This paper aims to extend the existing algorithm to supports dynamic graphs.
We call our algorithm Dynamic Approximate Neighborhood Function (DANF).

NF for dynamic graphs can be an efficient tool to continuously gather information
from very large graphs and see changes in centrality over time. In the above example
of companies, the NF can be used to calculate which companies are most central at the
moment. If the graph is updated in real time, it is interesting to see how the graph
evolves over time as this can give insight into the companies that are growing. Seeing this
information might be an advantage for a stock trader, for example. The NF can be used
repeatedly to monitor changes as well, but depending on the size of the graph, it can take

1

1. Introduction

hours to recalculate. The stock market might have already been closed for the day when
the recalculation is finished. Instead, a dynamic NF can provide a continuously updated
graph throughout the day with substantially less effort. Then the trader can get updates
anytime throughout the day with a very short delay.

1.2 Problem formulation

Let Gi be a directed graph Gi = (Vi, Ei) at time i = 1, 2, 3, Let Ai be the set of
added nodes in Gi and Di the set of deleted nodes. At each time step i > 1 Gi =
(Gi−1\Di−1) ∪ Ai−1 and G1 is the original graph. Given the NF for G1, our aim is
to continuously update the NF for Gi>1 without performing a complete recalculation of
NF (h,Gi). Additionally, the solution should work for very large graphs. Hence, it must
be scalable.

The algorithm will be used by Meltwater to find important entities in their data. A
graph will be initially built from the data collected by Meltwater. The data comes from
sources such as news papers and social networks. Whenever new information is collected,
the graph should be updated to maintain relevant information. There are roughly two
million new documents received each day and the number of existing documents are in the
scale of billions. To be able to handle these magnitudes, the time and space complexity
of the proposed algorithm are very limited.

The data stream fromMeltwater have some specific properties that should be accounted
for in the algorithm: The items are rarely removed from the data. Hence, insertions will be
much more common than deletions. The original graph is very large, and the data-stream
is relatively small compared to the original graph.

1.3 Limitations

1.3.1 Entity disambiguating

A notorious problem in graph construction is how to disambiguate the nodes. For example,
assume that there is a graph consisting of nodes representing individual identities. Suppose
that there exists a node with the label Anders Svensson. Next, an article regarding a
person with a similar name is added to the graph. Entity disambiguation is required to
determine if the article refers to the currently existing Anders or if a new node should be
created. Disambiguating entities is important in the construction of the graph, as false
results are likely to occur otherwise. Meltwater has an NLP-department which already
disambiguates entities with a good performance. Therefore, it is assumed that the entity
disambiguation, already in place by Meltwater, is correct.

1.4 Mathematical preliminaries

1.4.1 Graph transpose

The transpose of a graph is a graph with all of its edges flipped. A function T calculates
the transpose of a graph G in the following manner: T ((V,E)) = (V, {(u, v) : (v, u) ∈ E}).

2

1. Introduction

1.4.2 Maximal matching

Given a graph G = (V,E), a matching is a subset M ⊆ E such that all nodes are incident
to at most one edge in M . A maximal matching is a matching such that if another edge
is added to it, it is no longer a matching.

1.4.3 Approximation algorithms

Approximation algorithms are useful to calculate a non-optimal answer quickly where the
optimal solution would take too long to calculate. A C -approximation means that the
solution is in worst case C times the size of the optimal solution. For example, if you
calculate the minimal vertex cover with a 2-approximation, the solution can be at most
twice as large as the optimal solution. If you want to calculate the maximal matching
with a 1

2 -approximation the size of the solution can be no less than half of the optimal
solution.

1.4.4 Minimum vertex cover

Given an undirected graph G = (V,E), a vertex cover is a subset S ⊆ V such that for all
edges e = (u, v) ∈ E, u ∈ S ∨ v ∈ S. A minimum vertex cover is a set S of minimum size.
The problem of finding a minimum vertex cover is NP-complete [5].

3

2
Technical Background

2.1 Neighborhood function

The individual neighborhood function (IN) takes a directed and unweighted graph G =
(V,E), a node v ∈ V , and a number of steps h ∈ N, and returns the number of nodes
v can reach in h steps in the graph, that is, IN(G, v, h) = |{u|u ∈ V, dist(v, u) ≤ h}|,
where dist(v, u) is the length of the shortest path from v to u. A brute force algorithm
for computing IN(G, v, h) exactly is to perform a breadth-first search that saves every
encountered node within h levels. The cardinality of the resulting set will represent v’s
individual neighborhood.

The neighborhood function (NF) returns the individual neighborhood function for
all nodes in the graph. Formally speaking, the neighborhood function is defined as:
NF (G, h) = {IN(G, v, h)|v ∈ V }.

2.2 HyperANF

HyperANF is an algorithm which calculates the approximate neighborhood function for
a graph. The algorithm works in the following way: In the first iteration, let the set of
reachable nodes from each node v be R0(v) = {v}. Then, for 1 ≤ i ≤ h iterations, let
each node take the union of all its neighbors sets Ri(v) = Ri−1(v)

⋃
u∈s(v)

Ri−1(u) where

s(v) = {u|(v, u) ∈ E}. After h steps every node’s reachability set Rh(u) will contain the
nodes it can reach in h steps [6]. However, instead of keeping track of the set of reachable
nodes, HyperANF uses one HyperLogLog counter per node to approximately count the size
of the set of the reachable nodes. The benefit of calculating the set sizes approximately is
that it only requires O(n log logn) units, in contrast to the exact algorithm which requires
O(n2).

2.3 HyperLogLog

HyperLogLog [4] is the state-of-the-art cardinality estimator of the multisets that are
received as a data stream. A multisetM is an arbitrarily ordered set that allows duplicate
elements and the cardinality is the number of distinct elements. HyperLogLog takes a
multiset in the form of a data stream S and estimates the cardinality.

An intuitive algorithm for calculating cardinality exactly is to save each element re-
ceived in the data stream into a set S. Then, the cardinality will be |S|. With this intuitive
algorithm O(n) space is needed to calculate the cardinality of a set with size n. For var-
ious applications, this space complexity is not sufficiently low. Therefore, space saving
approximation algorithms, such as HyperLogLog, have been developed. HyperLogLog has
a space complexity of O(log logn). In theory, there exist an algorithm that achieves the

5

2. Technical Background

optimal asymptotic space and time usage of a cardinality estimator [7]. However, that
algorithm is complex and its implementation is impractical [8].

HyperLogLog works by hashing the elements seen in the data stream and storing the
maximum number of leading consecutive zeroes in the bits of the hash. The intuition of the
algorithm is that hashes with few leading zeroes are more likely to appear than hashes with
many leading zeroes. A crucial assumption of the algorithm is that the hashed elements
are evenly distributed across the target domain. Hence, every bit of the hash sequence has
an equal probability of being zero or one. The probability of only one consecutive zero is
1
2 , the probability of two zeroes is 1

2 ∗
1
2 and the probability of observing k zeroes is 1

2k .
Assume that p − 1 consecutive zeroes and a one have been seen. The probability of this
outcome is 1

2p . The expected number of tries for this probability to occur is 2p and it can
be concluded that approximately 2p unique elements exist in the multiset [4].

2.3.1 Multiple register

In HyperLogLog counters, registers are the locations where the number of trailing zeroes
is stored. If only one register is used, the precision is very bad. The precision can be
drastically improved by having several registers and later calculating the mean of the
estimates. As a single hash value may be observed multiple times, any given hash must
always use the same register so that a number that has been observed and added once
before does not affect the cardinality. To ensure this, the first b bits of the hash are used
as a register index. This means that the number of registers will be 2b. By using more
registers, a higher precision is achieved, but the time and space requirement is increased.
The space complexity is O(2b log logn) [4].

The algorithm with multiple registers works as follows: Given a number x as input;
Run the hash function on x so that xh = hash(x). Remove the b least significant bits from
xh and call them r. Let the number of consecutive trailing zeroes in the remaining bits of
xh be called c0. If the number in register r is less than c0 + 1: store c0 + 1 in register r [4].

2.3.2 Terminology

Added Adding an element to a HyperLogLog counter means to hash the element, deter-
mine the register r, count the consecutive leading zeroes and store that number in r if it
is larger than the existing value.

Included An element is said to be included in a HyperLogLog counter if it has been
added to it.

Union The union of two HyperLogLog counters is the same as including all elements
included in at least one of the two counters into one counter. This is simply performed by
taking the maximum of each saved value [2].

Subcounter A counter A is a subcounter of B if all elements included in A are in-
cluded in B. Subcounter is denoted by ⊆ and ⊂.

2.3.3 Memory usage

Given that the actual cardinality of the input is n, the hash function needs to target a
domain of size at least n. This reduces the number of hash collisions. Only the number of
leading consecutive zeroes in the hash is stored. The maximum number of zeroes in the

6

2. Technical Background

hash sequence is the number of bits required to represent a number n, which is equal to
log2(n). For example, if n = 64, the number to store is at most 6. To store a number of
size log2(n), log2 log2(n) bits are needed. If n = 64 and the max number to store is 6, only
3 bits are needed. If n = 109 only 5 bits are needed. This leads to the space complexity
of O(log logn) for this algorithm [4].

2.3.4 Harmonic means

The harmonic mean of all the registers is used to calculate the cardinality. An important
property of harmonic means is that extreme values have less leverage than small ones. This
property is mathematically written as min(x1, x2, ..) ≤ H(x1, x2, ..) ≤ n ∗ min(x1, x2, ..)
where n is number of elements. This prevents the mean to spike off when there are a few
extreme values. The harmonic mean is defined as: n

1
x1

+ 1
x2

+ ...+ 1
xn

2.3.5 Precision

HyperLogLog is a probabilistic algorithm and understanding its performance require a
deep analysis. Only the final conclusions are presented below. For a full proof see [4].

Let E be the estimate produced by the mean of all the registers, En(E) be the expec-
tation of E with an unknown cardinality n, and m be the number of registers used per
counter. Assuming m ≥ 16 , the relation 1

n ∗En(E) = 1 + δ1(n) + o(1) holds. δ1 is a small
oscillating function with |δ1(n)| < 5 ∗ 10−5, and has no significant impact on the expected
value. This indicates that E is an asymptotically almost unbiased estimator.

Flajolet et al. also provides the standard error [4]. Let Vn(E) be the variance of E
with an unknown cardinality n. Assuming m ≥ 16, 1

n ∗
√
Vn(E) = βm√

m
+ δ2(n) + o(1). δ2

is an oscillating function with |δ2(n)| < 5 ∗ 10−4, and βm is a constant only depending on
m. For m = 16, βm = 1.106 and for increasing m, βm decreases asymptotically toward
1.03896. It follows that the precision of each sample of the counter depends on the number
of registers in the counter. By choosing a large number of registers a better precision is
achieved. Chassaing and Gérin proved a lower bound for this approximation problem to
be 1√

m
. This shows that this algorithm is nearly optimal [9]. Flajolet et al. compares the

precision of HyperLogLog and exact measures to confirm that the standard error is low
[4].

2.3.6 Hashing function

For the HyperLogLog algorithm to work, it is necessary that every bit in the hash value
have equal probability of occurring [4]. This can be achieved by a hashing function with
good avalanche property. The avalanche effect is when changing a single bit in the input
leads to a very different output. In addition, for HyperLogLog to be useful for data
streams with very large cardinality the hashing function must also be fast. HyperBall,
an implementation of HyperANF, uses the hashing function Jenkins [10]. Experimental
results show that the Jenkins hash exhibits a good avalanche property. It is also very fast
to compute as it only uses a few clock cycles for start up and about one clock cycle per
three bytes of input.

7

2. Technical Background

2.4 Webgraph

Webgraph is a framework for compressing and analyzing very large graphs [10]. It is
developed by Boldi and Vigna, two of the developers of the HyperANF algorithm.

2.4.1 HyperBall

HyperBall is an open-source framework that utilizes the HyperANF algorithm for per-
forming computations related to the neighborhood function. It is a part of the webgraph
framework.

2.4.2 Graph compression in Webgraph

The webgraph framework [10] uses many different ways to compress a graph but its prin-
cipal method is the format BVGraph [11]. It exploits common relational properties of the
websites when sorted in lexicographic order and given an index based on their position in
the order. A relation from page A to page B exists if there is a hyperlink from page A to
B. One common property is that most hyperlinks on websites are navigational, i.e. leads
to a different page on the same website. So, if the links are sorted in lexicographic order,
many node indices will be close to each other. This property is called locality. Another
common pattern is that, as most links are navigational, many nodes close to each other
have many common neighbors. This property is called similarity. The navigational links
often refer to pages far down in the site hierarchy and all of these pages will be right beside
each other because of the long mutual address prefix. Hence, many of the neighbors form
long consecutive sequences of one-increasing indices, a property called consecutivity.

To take advantage of locality, the neighbors are encoded as the difference from the
neighbors preceding them in the neighbor list. This makes the encoded numbers signifi-
cantly smaller and can take up less space. Another compression method called copy-blocks
exploits the similarity property and copies neighbors from a node nearby. This saves a
lot of space if two nodes have almost the same neighbors. The consecutivity property is
used by representing large portions of intervals by two numbers: the start node and the
interval length [11].

2.4.2.1 Layered Label Propagation

While the properties mentioned above are trivially achieved in a graph of hyperlinks, they
might be harder to find in other types of graphs. To be able to use the compression
techniques in other types of graphs P. Boldie et al. have developed a method called
LLP (Layered Label Propagation) [12] to reorder the node indices to use the compression
techniques more efficiently.

2.5 Breadth-first search

Breadth-first search (BFS) is an algorithm which traverses a graph from a given origin
node v. It starts by adding the node v to a queue. Then, while the queue is not empty,
the algorithm takes the first node u from the queue and adds the previously not seen
neighbors of u to the queue. In the first step, v will be visited. In the second step the
neighbors of v will be visited, and so on until all reachable nodes are traversed.

8

2. Technical Background

2.5.1 Multi source

There exist algorithms that optimize the calculation of several BFS’s simultaneously.
These optimizations mainly target the ability of the different searches to use each others’
computations. The state-of-the-art algorithm for running multiple breadth-first searches
on the CPU is called Multi Source Breadth-First Search (MS-BFS) [13].

MS-BFS works by propagating a set of BFSs that have reached the same node at the
same time. To begin with, one set is created for every BFS at their respective source node.
Each sets contains only the BFS that starts at its corresponding source node. In the next
iterations, all sets are propagated to the neighbors of the node they were previously on.
If several sets reach a node, the sets are merged. Additionally, the nodes that the BFSs
have already reached are tracked and any BFS that reaches a node it has already seen is
ignored.

This means that once two breadth first searches meet, they can be considered as one.
This decreases the amount of necessary propagations compared to the individual BFS
case. The sets of BFSs are lists of bits where the indices of the bits represent the id of the
BFSs [13].

2.6 Approximate minimum vertex cover
As minimum vertex cover is NP-complete there have been studies of polynomial time
approximation algorithms. The state-of-the-art algorithms give 2-approximations. For
general graphs it is hard to achieve a (2 − ε)-approximation for any ε > 0 [14]. Hence, 2
can be the best constant approximation factor achievable.

A simple greedy 2-approximation algorithm maintains a maximal matching M to cal-
culate a minimal vertex cover V . By the definition of maximal matching it is certain that
every edge is either in the maximal matching or shares a node with one in it. For all
edges e = (u, v) ∈ M , pick both u and v for the vertex cover, and all edges are guaran-
teed to be covered. For an optimal minimum vertex cover Vopt, it holds that for all edges
e = (u, v) ∈M,u ∈ Vopt∨v ∈ Vopt. This can be proved by a simple contradiction. Assume
u, v /∈ V . This implies that e is not covered by any node, hence V is not a vertex cover �.
Therefore, by picking both nodes for all edges in the maximal matching, a 2-approximation
algorithm is achieved.

2.6.1 Dynamic approximate minimum vertex cover

There exists several different algorithms for maintaining a fully dynamic approximate
vertex cover [15, 16, 17]. A fully dynamic algorithm supports both insertions and deletions.
The main difference between the algorithms is the trade off between the time complexity
for insertions and deletions. The state-of-the-art fully dynamic approximate minimum
vertex cover algorithms can achieve 2-approximations.

9

3
Methods

The approximate neighborhood function has been studied by P. Boldi et al. in the web-
graph framework [10]. As this framework only supports static graphs, we made extensions
to support dynamic ones and an evolving approximate neighborhood function. Our re-
search was mainly focused on the compression techniques of webgraph graphs [11], the
HyperANF algorithm [2] and the HyperANF implementation HyperBall [6], including
HyperLogLog counters [4]. We also studied general dynamic algorithms.

3.1 Merging graphs

The existing compression methods in webgraph are very sensitive to change. Nodes can
copy neighbors from other nodes so that if the neighbors of a node change, all nodes that
refer to the modified node have to be found and updated as well. Moreover, the graph
is either stored in a file or in a byte buffer. None of these methods support insertion
of data at an arbitrary position without expensive reallocation and repositioning of the
data succeeding that position. As dynamic graphs are required, we investigated optimal
methods of merging two graphs.

3.2 Extending HyperANF to support dynamic graphs

The proposed algorithm is divided into two phases. In the first phase, the proposed
algorithm runs the HyperANF on the initial state of the graph. The second phase is the
dynamic part, which starts immediately after the HyperANF is completed. In the second
phase, the algorithm takes the information produced by the HyperANF and modifies it
when new nodes and edges are added or deleted. To be able to share computations, the
algorithm is optimized to handle several edge insertions in a bulk.

3.3 Extending HyperLogLog to support deletions

Support for deleting nodes and edges is desired, but requires a method to remove elements
from the HyperLogLog counters. We studied methods to delete elements from Hyper-
LogLog counters. However, we observed that a satisfactory result required a more careful
analysis, which was deemed out of scope. This seems like a drastic choice to make, but
many data-streams are of the type "append-only", in which the resulting graph only allows
node and edge additions.

An alternative way of supporting deletions by making some recalculations was investi-
gated. Due to limited time it has not been implemented. The method is mentioned as a
suggestion for future study in section 6.2.

11

3. Methods

3.4 Benchmarks
Several benchmarks on different parts of the algorithm have been performed to ensure that
the methods most suitable to our needs are used. The benchmarks included comparing
both time and memory usage. On several occasions, a trade-off between memory and
computation speed had to be chosen. Speed is the first priority in this study, although
the storage has to be kept reasonable.

The proposed algorithm was compared to HyperANF. The comparison was done by
inserting different amounts of edges into DANF, while recalculating HyperANF. Different
sized graphs are tested to analyze how the comparison scales. For better accessibility, the
data-sets used to perform the benchmarks will be publicly available.

12

4
Development

To extend the HyperANF algorithm, we will use the HyperANF implementation in Hyper-
Ball. Initially, the algorithm takes an existing non-empty directed graph as input. This
graph can be seen as static and therefore HyperANF can perform a complete calculation
on it. After HyperANF is complete, the calculated counters can be used as the initial
counters for the dynamic algorithm. For every insertion and deletion in the dynamic
graph, these counters are manipulated. If an edge is added, nodes might reach more nodes
and their counters should be raised. Similarly for deletions, if an edge is deleted, nodes
might reach fewer nodes and their counters should be decreased.

4.1 Preliminaries

4.1.1 Dynamic graphs

To achieve a dynamic graph, the ability to insert new nodes and edges (called entries in
this section) to an existing graph is needed. The graph files used by HyperANF are tightly
compressed in a byte stream, which makes it an expensive operation to modify the graph
at an arbitrary point. This makes it infeasible to insert every additional entry directly
into the graph file. Instead, new entries can be stored in some other data structure.

The additional entries can either be stored in a high-level data structure or a byte
stream. Keeping them in a high-level data structure will consume a significant amount
of storage already at a low number of extra entries. A high-level data structure takes up
more memory as each number is always the same size, no matter what the value is. For
example, the value 3 can be expressed by two bits but a high level integer always take a
fixed amount of bits to express it. Additionally, if each node has a structure containing the
neighbors, a significant amount of space will be used by the pointers to those structures.

If a byte stream is used, the same problem as the original one occurs. Even though this
byte stream will be smaller, there will be a point where it is unreasonable to resize the
stream and reposition the existing entries at each new entry. Regardless of which method
is used, the extra entries and the original graph eventually have to be merged.

4.1.1.1 Merging two graphs with webgraph

The webgraph framework has a method for creating a new graph G by taking the union
of two subgraphs G1 and G2. The graph G works by simultaneously reading from both
streams G1 and G2 to produce the nodes and their neighbors. The sub graphs can be
unions of other graphs as well. This means that an arbitrary number of graphs can be
joined using this method. However, having lots of recursive unions create a large overhead
in time when fetching nodes and edges [10].

The framework also supports storing a union-graph to disk. This removes the overhead
of any union. As the graph express some arcs by references to previous arcs, storing is

13

4. Development

slow. Ignoring the references makes the graphs larger but it increases the running time of
the storeing step.

4.1.1.2 Memory dependent merging

To leverage the benefits of both high level structures and byte streams, we use a mixture
of both to achieve dynamic graphs. The original graph is kept as a byte buffer and the
additional entries are saved in a high level structure. The high level structure was chosen
as additions are faster than in a byte stream graph. We prioritize fast edge additions as
the addition time has a larger impact on the overall performance than the iteration time
(see Section 5.1.1). Each new bulk of edges is inserted into the high level structure. The
union method of webgraph can then be used to union the high level structure and the
original graph, creating a dynamic graph.

The overhead of recursive unions can be avoided by limiting the number of unions to
one. By inserting each bulk insertion into the same high level structure, and keeping the
original graph separated, the current union can be replaced by a new one. However, the
problem of high memory overhead when using a high level structure still remains. Our
solution is to merge the graphs when the additional entries’ memory usage, compared to
the byte stream graph, reaches a certain ratio. At this time, the unioned graph is stored
to disk. The graph is then loaded as a byte stream and the additional edges become part
of the original graph. This resets the memory overhead of the high level data structure.
Both the time and memory usage of this technique are nearly optimal (see Section 5.1.2).

4.1.2 HyperLogLog resizing

After new nodes are added to the graph, new counters have to be created for them. The
initial counters retrieved by HyperANF are represented as an array of 64-bit numbers.
This representation is kept unchanged as it minimizes the amount of wasted space usage.
It also minimizes the number of objects created on the heap. However, as new counters
are needed, the array must be resized. We use a geometric expansion which gives O(1)
amortized time per insertion [18]. Amortized time is the average time spent on each
operation. Geometric expansion means that when an element cannot fit the array, the
length of the array is increased by a factor. This is how the standard implementation
of ArrayList in Java performs dynamic increase. A larger factor implies a small average
number of copies per inserted element, but a high amount of unused space. The amortized
number of copies per inserted element for a factor r is roughly 1

(r−1) and the average unused
space is log(r) ∗ r

(r−1) − 1 [18].
Under the assumption that the graph expands slowly relative to its size, resizing events

will be sparse and a large factor implies a large amount of unused memory. Therefore, it
is more beneficial to let the array increase by a small factor. With the factor r = 1.1, an
average of 4.8% space is unused and every element will on average be copied 10 times.

4.2 DANF: The first attempt
The following non-optimized version of DANF is the intuition of the algorithm. It will be
refered to as the two-BFS algorithm. The two main phases of our algorithm, the collecting
BFS and the propagation BFS, are introduced.

After an edge is added to the graph, we update the HyperLogLog counters of all nodes
affected by insertion. Figure 4.1 is used as an example. The thin arrows are the edges.
The circles are the nodes included in the counters produced by the collection step. The

14

4. Development

bold arrows represent the propagation step. Let e = (2, 4) be an edge added to the graph.
The data with all the nodes reachable from 4 has to be propagated to the nodes that can
now reach 4 via 2. This is performed in two phases: collecting BFS and propagating BFS.

The collecting BFS is responsible for creating a HyperLogLog counter for each level in
the search and add all nodes in the frontier to the counter. The collecting BFS is performed
from the to node of the added edge. The nodes included in each level’s HyperLogLog
counter are visualized as the circles in Figure 4.1. These counters represents all nodes
that 4 reaches in l4 steps. The collecting BFS stops at level h − 1 and returns an h-long
list of counters. The h’th step is not needed as not even 2 can reach level h.

The propagating BFS is responsible for updating the counters of all nodes that now
reach 4, as they might have been changed by the insertion. To find all nodes that can
reach 4, a BFS is performed from 2 in the transpose of the graph. For every level l2 in the
BFS, the frontier of nodes in the BFS can reach all nodes that the collecting BFS reached
in h− 1− l2 steps. To update the counters of the nodes at level l2, the current counters of
the nodes are merged with the counters from collecting steps l4 ≤ h − 1 − l2 retrieved in
the collecting BFS. The propagation BFS stops after h − 1 steps, when all affected node
counters are updated.

After the two-BFS algorithm has completed an update in the graph, the collected
counters are thrown away as they might be different in the next update.

We will now prove the correctness of the two-BFS algorithm:

Figure 4.1: Visualization of the collect and propagate steps

Theorem 4.2.1. Given that the two-BFS algorithm and HyperANF use the same hashing
function, the two-BFS algorithm yields node counters identical to a HyperANF recalcula-
tion.

Proof. Let Salg(v)i for alg ∈ {2bfs,hanf} be the set of nodes that the algorithm "alg" in-
cludes in the counter of v after i edges have been inserted. LetNalg(v)i = Salg(v)i\Salg(v)i−1.

Base case: i = 0) As the algorithm uses HyperANF to calculate the initial counters,

15

4. Development

S2bfs(v)0 = Shanf(v)0.

Inductive hypothesis: ∀i ≤ n : S2bfs(v)i = Shanf(v)i.

Inductive case: n + 1) Shanf(v)n+1 = {u : dist(v, u) ≤ h} and S2bfs(v)n+1 = S2bfs(v)n ∪
N2bfs(v)n+1. Let the added edge be e = (v, u). In the propagation step at a node z of depth
dist(z, v) all counters from the collecting step of depth ≤ h−1−dist(z, v) will be unioned
with the counter of z. As z is dist(z, v) steps away from v, dist(z, u) = dist(z, v)+1. This
means that z can reach h − (1 + dist(z, v)) steps into the newly reachable nodes. So z
will get all new nodes ≤ h steps away, hence N2bfs(v)n+1 = Nhanf(v)n+1. By the inductive
hypothesis: S2bfs(v)n+1 = S2bfs(v)n∪N2bfs(v)n+1 = Shanf(v)n∪Nhanf(v)n+1 = Shanf(v)n+1.
As both algorithms use the same hashing function, and the same nodes are included in
the counters, the resulting node counters will be identical.

�

4.3 Optimized Breadth-first search

A problem with the two-BFS algorithm described above is that it only supports single
insertions at a time. By bulking the edges, several BFS’s can be performed at the same
time to speed up the insertion time.

The algorithm MS-BFS [13] does several BFSs at the same time very effectively. MS-
BFS is magnitudes faster than a parallel standard BFS implementation and hence will be
used in the algorithm.

4.3.1 Visitors

In order to prune paths in the BFS, there needs to be a way to stop the individual BFSs.
We developed a method to pass to the MS-BFS a visitor function (not related to the
common Visitor design pattern). The visitor will be called every time a group of BFSs
reach a node. The group of BFSs reaching the visited node is represented by a list of bits
and is passed to the visitor. If the visitor wants to stop the propagation of a BFS from
this node it can clear the corresponding bit. No modifications to the algorithm needs to
be done, other than adding the visitors, as MS-BFS already use a list of bits to propagate
the BFSs.

4.3.2 Travelers

We developed a new concept called travelers. The purpose of the traveler is to bring data
along with BFSs which is passed to the visitors. This removes the need to loop through
which source nodes reached the visited node. Travelers have to be able to merge when
several BFSs reach a node to avoid increasing the space complexity of the algorithm.

4.3.3 Extended algorithm

The extended algorithm is presented in Figure 4.2. It has only slight modifications com-
pared to the algorithm in section 4.1.1 from [13]. The visitor is called on line 16. The
neighbors are not inspected if the visitor returns an empty set. The travelers are merged
at lines 19 to 22. If the neighbor will be visited from other nodes, i.e. the visitNext bits
are not empty, the neighbor’s traveler is merged with the traveler from the current node.

16

4. Development

1 Input: G = (N,E) a graph containing N nodes with edges E
2 S = BFS source nodes
3 V = Visitor function
4 T = Travelers
5 for each si ∈ S
6 seen[si]← 1 << i
7 visit[si]← 1 << i
8 for each ti ∈ T
9 travelers[si]← ti

10 reset visitNext
11 reset travelersNext
12

13 while visit 6= ∅
14 for i = 1, ..., N
15 if visit[i] = ∅, skip
16 visit[i]← V (i, visit[i], travelers[i])
17 if visit[i] = ∅, skip
18 for each n where (i, n) ∈ E
19 traveler ← travelers[i]
20 if visitNext[n] 6= ∅
21 traveler ← traveler.merge(travelersNext[n])
22 travelersNext[n]← traveler
23 visitNext[n]← visitNext[n] | visit[i]
24

25 for i = 1, ..., N
26 if visitNext[i] = ∅, skip
27 visitNext[i]← visitNext[i] & ∼ seen[i]
28 seen[i]← seen[i] | visitNext[i]
29 visit← visitNext
30 reset visitNext
31 travelers← travelersNext
32 reset travelersNext

Figure 4.2: Extended MS-BFS algorithm in pseudo-code

4.4 DANF: The final algorithm

4.4.1 Node history

MS-BFS speeds up the algorithm significantly, but further optimizations can be done to
the individual BFSs. To update a counter, the algorithm has to do two BFSs for every
edge added. A large portion of the time spent by the algorithm will be consumed by these
BFSs. Therefore, the ability to prune BFSs early implies significant time improvement.
So far, the collecting BFS must traverse the graph h steps to gather all data needed. This
is because every node only keeps track of its registers, resulted by a search in h steps. If
all nodes also keep track of their registers in h− 1 steps, then the collecting BFS need to
traverse h − 1 steps. This as in the h − 1’st step, the collecting BFS can use the h − 1
history of all nodes to calculate the h’th step. For every extra history level added, the
collecting BFS can stop one step earlier. By saving every history level of all nodes, the
collecting BFS only needs to visit the immediate neighbors of a new node v to be able to
calculate the HyperLogLog counter of v.

17

4. Development

During the HyperANF phase of the algorithm, the intermediate counters in HyperANF
can be used to calculate all history levels of all nodes. HyperANF works in iterations.
During the i’th synchronization, the counters will represent the i’th level of all nodes’
history. So, instead of only using the last level from HyperANF, we save all levels. The
h’th level we refer to as the top counter and level 0 to (h − 1) as history counters. All
levels combined will be referred to as counter collection.

Now, every node has its history which has to be updated with every edge update. For
an edge e = (u, v) inserted, the collecting BFS has to gather the node history from all
neighbors of v and union them into one. Then, the propagation BFS has to propagate
this history in the transpose of the graph.

With node history, the algorithm has O(hn log logn) space complexity, as the top
counter uses O(n log logn) and the history counters use O((h − 1)n log logn). To insert
an edge e = (u, v), the two previous BFSs use O(2m) operations but with node history
the collecting BFS uses O(hd+(v)) operations, where d+(v) is the out degree of node
v. It is dependent on h as it has to take the union of each history counter. The time
complexity of the node history version is then O(m + hd+(v)). In practice, this means a
large improvement as it often holds that hd+(v) << m.

Node history speeds up the algorithm but also uses extra space that, for large graphs,
can be quite extensive. To create an algorithm that balances the gained speed versus the
extra memory usage, the history can be saved for only a subset of nodes. These nodes
should be chosen so that as few nodes as possible need to save their history while keeping
the BFS distance as short as possible. The algorithm to determine these nodes has to be
very fast to avoid affecting the running time of the overall algorithm. Moreover, it has to
be dynamic in order to continuously determine the nodes included in the set.

4.4.1.1 Vertex cover

We realized that saving the history of the nodes that are in a vertex cover (V C) can
significantly improve space usage, yet the BFS can still be bounded by at most two steps.

The top counter still needs to contain counters for all nodes, so that the space com-
plexity of the top counter remains O(n log logn). As the history counters only con-
sist of counters of nodes in the V C, the history counters’ space complexity is reduced
from O((h − 1)n log logn) to O((h − 1)|V C| log logn). In total, the node history uses
O(((h− 1)|V C|+ n) log logn) space.

The trick here is that for all nodes u, it holds that: u ∈ V C ∨ ∀e = (u, v) : v ∈ V C.
Then, when the collecting BFS searches from a node v it will take at most one step for
nodes not in the vertex cover and two steps for nodes in the vertex cover until they reach
a frontier of only nodes in the vertex cover. From this frontier, the collecting BFS can
calculate v’s history and counter by merging the frontier’s node histories. The collecting
BFS is now bounded by two steps, resulting in O(d+(v)+

∑
u∈s(v) d

+(u)) operations, where
s(v) is the set of neighbors of v.

Dynamic minimum vertex cover
At all times, we need to keep track of which nodes are in the vertex cover. This requires
a fully dynamic minimum vertex cover algorithm. However, as the minimum vertex cover
problem is NP-complete, approximation algorithms must be used. The choice of fully
dynamic approximate minimum vertex cover algorithm depends on the ratio between
the number of insertions and deletions. A simple greedy algorithm can maintain a 2-
approximation in O(1) time per insertion and O(n) time per deletion [15], while another
algorithm that partitions the nodes can maintain the same approximation in O(logn)

18

4. Development

amortized time per insertion and deletion [16]. In our case, deletions will be very sparse
in the data stream, which is why we chose greedy algorithm. The greedy algorithm also
have the property that if a deleted edge was not in the maximal matching previously, it
deletes the edge in O(1) operations. For dense graphs, only a small amount of the edges
will be in the maximal matching, which makes the greedy algorithm perform quickly in
deletions as well. In practice, the greedy algorithm performs 30, 000, 000 edge insertions
per second and 5, 000, 000 edge deletions per second (see Section 5.1.3).

Directed graphs
As the standard minimum vertex cover problem is defined for undirected graphs we have to
slightly modify the problem for directed ones. The new problem description is as follows;
given a directed graph G = (V,E), select a minimum cardinality subset V ′ ⊆ V such
that for all edges e = (u, v) ∈ E, u ∈ V ′ ∨ v ∈ V ′. The problem is still NP-complete as
undirected graphs are a special case of directed graphs.

By the same reasoning as in the undirected case, a maximal matching is a 2-approximation
of the generalized problem. The greedy algorithm needs to be modified to support directed
edges. The only case affected is when an edge in the maximal matching is deleted. Let
e = (u, v) be a deleted edge. Previously, the algorithm removed both u and v from the
vertex cover and then scanned the outgoing edges from u and v for edges uncovered due
to the removal. With directed edges, both incoming and outgoing edges must be verified.
This is solved by scanning the outgoing edges of u and v in both the original graph and
the transpose of it. The original graph will give the outgoing edges of u and v and its
transpose the incoming ones.

4.4.2 Edge insertion

Edge insertion in DANF is now divided into four steps. The first step is checking if a new
edge contains any new nodes. New nodes are added to the graph and the top counter is, if
necessary, resized to fit new counters of the new nodes. The second step is to check if any
new node needs to be added into the vertex cover. For all new nodes in the vertex cover,
memory is allocated in the history counters. The third step is calculating the history of
the nodes added to the vertex cover. Lastly, the new history is propagated with a BFS
in the transpose of the graph to update the counters of the nodes affected by insertion.
After these four steps all nodes will have an approximate neighborhood function in their
top counters and all nodes in the vertex cover will have their history counters updated.

4.4.2.1 Partial history calculation

When a bulk of edges is inserted, the vertex cover needs to be modified and the history
counters updated. Using a maximal matching [15], which does not delete any nodes upon
insertion, the collecting BFS can generate the partial history by searching at most one
level. For every node added to the vertex cover, the collecting BFS only needs to retrieve
the history of the node before the current bulk insertion. The remaining of the node
history will be propagated by the propagating BFS.

The collecting BFS of node v looks through all its neighbors that are in the vertex
cover and adds their history to its own. For this, only O(d+(v)) operations are needed,
which is an improvement to the time complexity stated in 4.4.1.1.

19

4. Development

4.4.2.2 History propagation

When a new edge e = (u, v) is added to the graph, many nodes that have a path to
u will contain outdated history. The algorithm works by propagating the history of v
through the transpose of the graph. If v is not in the vertex cover, the history needs to
be calculated from the neighbor nodes. The algorithm is presented in pseudo code (see
Figure 4.3).

1 e = (u,v) // Edge to add
2 if(isInVertexCover (v))
3 Hv = H(v);
4 else
5 Hv = union of the history of the neighbor nodes;
6 In BFS; source : u, current node: z, at depth: d{
7 d = d+1; // The BFS is performed from u so the actual depth
8 // (from v) is one higher
9 if(isInVertexCover (z)){

10 for each 0 ≤ i < h+1-d{
11 H(z,i+d).union(Hv (i));
12 }
13 }else{
14 H(z,h).union(Hv (h-d));
15 }
16 }

Figure 4.3: History propagation in pseudo-code

To speed up the algorithm, it needs to be modified to handle several edges at once. In
this case, the traveler support of the MS-BFS algorithm can be used. This means that the
data provided by the traveler can be used instead of looping through all the source nodes.
The travelers will contain the counter registers of their respective source node. When the
travelers merge they can take the union of their registers. Also They only need to keep
the h + 1 − depth top-most counters as the others will not reach further anyway. In the
visitor the data from the traveler is joined with the existing counters of the visited nodes.
The merge function for the traveler is constructed as in Figure 4.4.

1 Input: t1 ,t2 = travelers to merge (HyperLogLog counters)
2 d = depth of the BFS
3 Output : a new traveler
4 tOut = t1.clone
5 for each 0 ≤ i < h+1-d{
6 tOuti = tOuti∪t2i

7 }
8 return tOut

Figure 4.4: History propagation traveler in pseudo-code

The visitors have to be slightly modified to make use of this traveler. The only difference
is that a visitor uses the counter history from a traveler data instead of taking it from the

20

4. Development

source nodes.
Given that the partial history calculation makes sure that all nodes in the vertex cover

have the history they had before the current insertion, we prove that all nodes have the
correct history after the propagation step:

Theorem 4.4.1. Given that HyperANF and DANF uses the same hashing function; after
every bulk insertion, all nodes have had all reachable nodes added to their counters.

To prove this we first need to establish two lemmas:

Lemma 4.4.2. Assume that the history of all the nodes in the vertex cover in bulk inser-
tion p have had all reachable nodes added to their counters after bulk insertion p. Then,
during bulk insertion p + 1, only one BFS step is needed to collect the history that any
node v would have after bulk insertion p.

Proof. Given a node v whose history should be calculated for bulk insertion p+ 1:

Fact: It holds that v ∈ V C ∨ ∀e = (v, u) : u ∈ V C.
Let Np(v, h) = {v}

⋃
u∈sp(v)

Np(u, h − 1) be the reachable nodes of v between insertion p

and p + 1, where sp(v) is the set of successors of v in step p. Let Hp(v, h) = {v} ∪⋃
u∈sp(v)

Np−1(u, h − 1) be the nodes included in the calculated counter. Let np(v) =

sp(v)\sp−1(v).

As no edges are removed: sp(v) ⊆ sp+1(v).
Hp+1(v, h) = {v}

⋃
u∈sp+1(v)

Np(u, h−1) = {v}
⋃

u∈sp(v)
(Np(u, h−1))

⋃
u∈np+1(v)

(Np(u, h−1)) ⊇

{v}
⋃

u∈sp(v)
N(u, h− 1) = Np(v, h).

As Np(v, h) is a subset of Hp+1(v, h), Hp+1(v, h) must contain all elements in Np(v, h). As
Hp+1(v, h) only uses the history of its neighbors, only one BFS step is needed.

�

Lemma 4.4.3. Assume that the history of the nodes in the vertex cover in bulk insertion
p+ 1 have the history they would have after bulk insertion p. Then, after a bulk insertion
p+ 1 all nodes have had all reachable nodes added to their counters.

Proof. Take any two nodes u and v where u reach v in at most h steps. In bulk insertion
p+ 1 there are two cases.

u reached v in insertion p) As u reached v after the previous insertion, combined with
the assumption, v has been added to the counters of u.

u did not reach v in insertion p) As u reach v in insertion p+1, there must be a path P
from u to v where an edge has been added. Let e = (a, b) ∈ P be the new edge of greatest
distance from u. As u reach v in at most h steps it holds that |P | ≤ h. As there are no
more new edges between b and v, combined with the assumption, b will contain v. By the
algorithm, the propagation step will traverse h steps from b and as |Pu→b| ≤ |P | ≤ h the
propagation from b will reach u and added v to its counter.

21

4. Development

�

We are now ready to give the full proof of Theorem 4.4.1:

Proof. This will be proved by induction. Let p be the number of edge bulk insertions.

Base case: p = 0) The initial state is produced by HyperANF which has been proven to
be correct.

Induction Hypothesis: The history of all nodes are correct after p bulk insertions.

Induction case: Running the partial history calculation is allowed, as the assumption is
fulfilled by the induction hypothesis Lemma 4.4.2. The history propagation may then be
run as the partial history calculation fulfills the assumption in Lemma 4.4.3. This means
that all nodes have had all reachable nodes added to their counter.

�

22

5
Experiments

5.1 Benchmarks

5.1.1 Comparison of graph structures

A benchmark was performed to compare the performance of a high level data structure
and a byte stream (see Table 5.1 and Figure 5.1). The graph in-2004 was used (see
Appendix A). If all edges are added in one bulk, the performance measured will only
reflect the complexity based on the input. By inserting the edges in bulks of 5000 both
the complexity based on input and the existing structure are accounted for. The add time
in Table 5.1 is the time it takes to insert edges in bulks of 5000. The iteration time is the
time it takes to iterate over all edges in the graph once.

In Figure 5.1 the memory difference can be seen. The high level data structure and
the byte stream have the same space complexity, but the difference can be explained by
the memory overhead used by the high level data structure.

Add time (s) Iteration time (s)
edges High level Byte stream High level Byte stream
106 1.1 14.0 0.15 0.03
2× 106 2.3 47.4 0.29 0.04
3× 106 3.5 100.1 0.40 0.05

Table 5.1: Benchmark of representing the graph as a byte stream and a high level data
structure

5.1.2 Memory dependent merging

To find a suitable ratio r between the memory used by the graph part saved as a byte
stream and the part saved as a high level data structure, a benchmark was performed to
compare the time and the space usage (see Figure 5.2). The benchmark was performed
on the in-2004 graph (see Appendix A). 1,000,000 edges were randomly generated and
inserted into the graph in bulks of 5,000. The measured time is the time to insert the
edges into the dynamic graph and then to perform a complete edge scan. The measured
memory is the graph’s heap size. The plotted time values are the average of ten bulk
insertions.

For reference, the benchmark compares a certain ratio r with the extremes, r = 0 and
r = ∞. With r = ∞ the additional entries are never merged with the original graph.
This represents the optimal elapsed time. With r = 0, the graphs are always merged after
each bulk insertion. This represents the optimal memory usage. By choosing r = 8, the
benchmark shows that near optimality in both time and memory usage can be achieved.
The plots were made to visualize near optimality rather than trends.

23

5. Experiments

0 0.5 1 1.5 2 2.5 3
Edges (Millions)

0

0.1

0.2

0.3

0.4

0.5
M

em
or

y
us

ag
e

(G
B

)

High level
Byte stream

Figure 5.1: Benchmark of memory usage between high level structure and byte stream.

5.1.3 Dynamic Vertex Cover

The selected greedy algorithm was benchmarked with the it-2004 graph (see Appendix
A). Starting with an empty graph, every edge was sequentially inserted from it-2004 into
the dynamic vertex cover. Both the time and heap size were measured over the number of
inserted edges (see Figure 5.3). This shows roughly 29.5 million inserted edges per second.
The memory used mainly depends on the number of nodes. The heap size increased to
0.33GB implying an average of 8 bytes per node.

To test the performance of sequentially deleting edges, the it-2004 graph was used (see
Appendix A). The test was performed by first inserting all edges into the dynamic vertex
cover and then sequentially deleting them (see Figure 5.4). All 1,150,725,436 edges were
deleted in 220 seconds, giving a performance of 5,000,000 deleted edges per second. The
heap usage is not plotted in the figure, as the algorithm is not designed to downsize the
allocated memory for the vertex cover after deletions.

5.1.3.1 Comparison of unoptimized and final DANF

A comparison between the two-BFS algorithm and DANF was performed by adding edges
of different bulk sizes (see Figure 5.5 and 5.6). The benchmark was performed on the graph
in-2004 (see Appendix A) with 16 HyperLogLog registers per node for h = 3 and h = 8.
The time measured was the time to insert random edges and update the counters. The
memory usage of DANF was divided into the four main components while the two-BFS
memory usage is for the complete algorithm. The figure shows that DANF scales with
the edge insertions bulk size while the two-BFS algorithm’s performance is constant. For
large h-values DANF is up to 60 times faster than the two-BFS algorithm, but also uses

24

5. Experiments

0 100 200
#Bulk insertions

0

1

2

3

4

5
A

ve
ra

ge
 e

la
ps

ed
 ti

m
e

(s
)

r = 1
r = 8.0
r = 0.0

0 100 200
#Bulk insertions

0

50

100

150

200

M
em

or
y

us
ag

e
(M

B
)

r = 1
r = 8.0
r = 0.0

Figure 5.2: Benchmark of different union to stored memory ratio limits

up to 45 times more memory. For small h-values the gained speed of DANF is smaller but
so is also the space consumption. Almost all of the memory used by DANF is used by
MS-BFS. The vertex cover and graph space usage is almost too small to be seen in Figure
5.6.

5.1.4 Comparison of DANF and HyperANF

A comparison between DANF and HyperANF was made by inserting different amounts of
edges into DANF. The maximum number of added edges that was used as the limit was
when the time of inserting the edges was the same as recalculating HyperANF. The graph
in Figure 5.7 shows the amount of edges added compared to the initial amount of edges.
When the initial graph has 70.000 edges, DANF can add more than the existing edges
before HyperANF finishes the recalculation on the new graph which is the sample right
above 100 in Figure 5.7. However, when the initial number of edges increases the ratio of
the total number of edges that can be added decreases. When the number of edges grows,
DANF converges toward being able to add 0.01% of the initial edges before a recalculation
is completed. The ratio of added edges to initial ones decreases as h increases.

5.1.4.1 MS-BFS tuning

The MS-BFS article [13] mentions that if several MS-BFSs are to be performed, the
sources should be sorted and partitioned by out-degree. This increases the speed as when
the sources have a higher out-degree, more BFSs meet and can join. When the number
of edges added to DANF reaches a certain threshold, the edges to be inserted are divided
into partitions. Sorting by out-degree improved the performance in the graph in-2004 (see

25

5. Experiments

0 200 400 600 800 1000
Inserted edges (Millions)

0

10

20

30

40

50
E

la
ps

ed
 ti

m
e

(s
)

0

50

100

150

200

250

300

350

M
em

or
y

us
ag

e
(M

B
)

Time
Memory

Figure 5.3: Benchmark of sequential insertions in 2-approximate dynamic vertex cover

Appendix A) by up to 37.2% compared to no sorting. As it is preferable to make as many
BFSs as possible to meet, sorting by the ANF value improves the performance even more.
Sorting by the ANF value improved performance by up to 45% compared to no sorting.

5.2 Experiments on a real-time data stream

Figure 5.8: Parallel-compatible
pipeline layout

To do real-time experiments on a data stream, there
are a few more tasks that need to be performed. The
three main tasks are: fetch data, produce graph
edges and update DANF. To efficiently perform
these tasks they are run in parallel. They are imple-
mented as components of a pipeline as seen in Figure
5.8. A component stores its results in a buffer which
can be read by the next component in the pipeline.
The writing component has write-only access and
the reading component has read-only access. Note
that Edge producer can be a writer to a DANF up-
dater using another coupling handler. This makes
it possible to create a theoretically infinite pipeline
with very low coupling between components and al-
lows every component to run in their own threads.

As all nodes and edges are handled as plain numbers, a mapping needs to be stored
from node index to the data. To avoid the data manager competing with the algorithm
for CPU and memory, the data should preferably be stored in a database by a completely

26

5. Experiments

0 200 400 600 800 1000
Deleted edges (Millions)

0

50

100

150

200

250
E

la
ps

ed
 ti

m
e

(s
)

Figure 5.4: Benchmark of sequential deletions in 2-approximate dynamic vertex cover

different machine. As the only data that needs to be saved on the same machine is a
mapping from node indices to data indices, which can be saved on disk.

A list A of the calculated value for each node is kept. Another list B keeps track of the
value of the nodes that change. After a given amount of time, the difference of the changed
nodes is checked and nodes with significant changes are marked as rapidly changing. The
elements in B are added to A and B is cleared. This allows the detection of upcoming
trends.

Another useful feature is to keep track of the top nodes, sorted in descending order
according to their DANF values. Initially, all nodes were tracked. However, this turned
out to be unsustainable on a graph with only a few million nodes. Instead, only the top X
nodes were tracked. This leads to a drastic speed increase while still allowing to identify
the most central nodes.

5.2.1 Graph layout

When performing experiments on the data stream, we used a certain graph structure. The
structure was designed to enable us to detect popular subjects, authors and sources. This
was achieved by creating three different graph models which, for simplicity, were combined
into one (see Figure 5.9). The common node for all models is Document.

The first model is the concept to document part. This model identifies popular subjects
by retrieving all concepts that are mentioned in a document and then adding an edge from
the concept to the document. The DANF value represents how many mentions a concept
have.

The second model is the location to document line in the middle of 5.9. This model can

27

5. Experiments

0 3200 6400
Bulk size

0

1000

2000

3000

4000

5000

6000

E
P

S

DANF
Two-BFS

0 3200 6400
Bulk size

0

0.2

0.4

0.6

0.8

1

1.2

M
em

or
y

U
sa

ge
 (

G
B

)

Graph
Counters
VC
MS-BFS
Two-BFS

Figure 5.5: Benchmark of DANF and the two-BFS implementation with h = 3

identify which locations, sources (news) and authors that publishes the most documents.
The last model is the named entity part to the right in Figure 5.9. The named entities

are general things mentioned in articles; such as countries, people or companies. Each
entity has a sentiment. The sentiment specifies if the entity is mentioned in a positive (P),
neutral (N) or negative (V) manner. Using the visualized structure for the named entities
in Figure 5.9 enables detection of both the number of mentions and trends of how entities
are referenced.

5.2.2 Starting with an empty graph

The first experiment performed was done by creating an initially empty graph and setting
up DANF to track the neighborhood function on it. A connection was established to the
company live stream. The algorithm had no trouble keeping up with the stream of about
11 documents per second (two million documents per day) where about 30 edges were
generated per document.

5.2.3 Starting with an arbitrary large graph

Building a large graph from the existing data takes a long time. The data have to be parsed
and analyzed to generate edges. Instead of spending a large amount of time to generate
the graph, the it-2004 graph (see Appendix A) was used. DANF managed ten documents
per second, which means that it could not keep up with the stream. This indicates that
roughly one billion edges is the limit of the current implementation. However, the it-
2004 graph is denser than the constructed graph. Hence, DANF would have a higher

28

5. Experiments

0 3200 6400
Bulk size

0

50

100

150

200

250
E

P
S

DANF
Two-BFS

0 3200 6400
Bulk size

0

0.5

1

1.5

2

2.5

M
em

or
y

U
sa

ge
 (

G
B

)

Graph
Counters
VC
MS-BFS
Two-BFS

Figure 5.6: Benchmark of DANF and the two-BFS implementation with h = 8

performance if the graph was made from scratch. More optimizations are required to
prevent buffer build up in the long run.

5.2.4 Data retrieval

From the experiment, it was evident that both the United States and China were central
nodes in the constructed graph. The United States was one of the most central nodes in
all of the three models.

In the experiment, a trend concerning North Korea was detected. Short after North
Korea released information concerning further nuclear tests, the DANF value of the North
Korean concept node increased rapidly. Such trends can easily be detected by tracking
rapidly changing nodes.

29

5. Experiments

0 200 400 600 800 1000 1200
Graph edges (Millions)

10 -6

10 -4

10 -2

10 0

10 2

A
dd

ed
 /

T
ot

al
 e

dg
es

Figure 5.7: Benchmark of the ratio of edges that can be added in the same time as a
HyperANF recalculation with h = 3

Figure 5.9: Graph layout used in the conducted experiment

30

6
Discussion

With the DANF algorithm, it is now possible to continuously maintain an approximate
neighborhood function for all nodes in a graph that supports insertions. As node central-
ities now can be tracked over time, graphs can be further mined for data and trends can
be detected.

DANF is more efficient than a HyperBall recalculation when the edge insertions’ bulk
size is small compared to the total size of the graph. However, DANF uses more memory
than HyperBall. So a HyperBall recalculation might be proved to be able to handle larger
graphs given a certain amount of RAM. When h is large (approaching 10) DANF becomes
significantly slower compared to HyperBall.

An unexpected drawback in the algorithm is the space used by MS-BFS. It has a space
complexity of O(ns), where s is the number of sources, and in practice it used a lot more
storage than anticipated. The percentage of storage used by MS-BFS is presented in
Table 6.1. See Appendix A for graph details. The extra memory means that DANF may
use 3 times more space than HyperBall. However, the MS-BFS space percentage tends
to decrease as the graph size increases. The MS-BFS, vertex cover and HyperLogLog
counters are included in the total algorithm space.

edges uk-2007-05@100000 in-2004 it-2004
640 56.1% 40.3% 23.5%
2560 72.3% 65.8% 29.1%
4480 75.6% 71.7% 37.8%

Table 6.1: Percentage of the algorithm space used by MS-BFS with h = 3 and 16
HyperLogLog registers per node

6.1 Ethics

Internet can be represented as an undirected graph. Routers can be represented as nodes
and connections between routers as edges. Applying the neighborhood function to this
graph can help identifying the most central routers. Assume a hacker gets hold of this data.
The hacker can then target attacks on only these routers to disrupt the maximum amount
of people, with minimal effort. Applying the neighborhood function to the Internet graph
can also be used to simulate an attack. This can be achieved by first running ANF, then
deleting some nodes or edges and then running ANF again. The difference in ANF values
give insight of how the deletions affected the graph. With this approach the Internet graph
predicts the efficiency of targeting certain routers.

The exact same information above can be used by safety companies to prevent at-
tacks. By identifying critical routers extra precautions can be taken at these routers. The

31

6. Discussion

information provided by the neighborhood function can be used for both good and bad
purposes, depending on who gets hold of it.

The information retrieved from the neighborhood function may also have ethical issues
when applied to a graph that includes personal data. Assume a graph where the nodes
are journalists and articles. In this graph an edge represents that a journalist have written
a certain article or that an article is referenced by another article. By applying the
neighborhood function to this graph central journalists and articles can be identified. A
central article is referenced in many other articles and a central journalist is a journalist
that has written many central articles. This can be a great help when evaluating the
credibility of a journalist. It can also be used to retrieve the most influential articles in
the graph. The ability to find the most influential journalists must be used with caution.
If the graph only consist of articles that are critical to a certain view, the neighborhood
function can identify what journalists to target to silence the criticism. If the influence
score is made public, or possible to be bought, it could also affect the career of a journalist.
If the score is not perfect, an influential journalist could be incorrectly marked as non-
influential which might decrease the chance of getting good stories.

The ability to identify central and influential nodes can be useful in many different
situations. When the information is used for realisations that benefits the humanity as
a whole, it should always be acceptable. An example of this is when the algorithm is
applied to find information for medical purposes, perhaps by finding out central genes that
are involved in the development of cancer. This is helpful for all of humanity. Using the
information for selfish purposes requires more investigation to determine if it is acceptable.
Retrieving personal data may be fine in some cases, but in many other cases should be
strictly forbidden. In general, if everyone benefits from the information from the NF, it is
fine to use.

6.2 Future work

DANF is currently not a fully dynamic algorithm as deletions in the graph are not fully
supported. As this is a part of the problem description, the next natural step is to
implement deletions. There are two missing parts to achieve deletions: removing edges
from a graph file and decreasing HyperLogLog counters affected by a deletion. Deleting
edges from a graph file can be performed by re-storing the graph, but a better solution
may be to temporarily keep track of which edges are deleted and ignore these until a
store is performed. Decreasing HyperLogLog counters can be implemented by a two step
algorithm. First, perform a BFS in the transpose of the graph to find all nodes that
are possibly affected by the deletion. Then, each possibly affected node can be treated
as a new node which will recalculate the node counters. This can be implemented in
O(m2) time, where m is the number of edges. Another way to decrease the counters is
to probabilistically decrease the counters of all affected nodes. This would speed up the
algorithm but can affect the precision of the counters.

DANF also have to be further optimized. Due to time limitations there exist bot-
tlenecks. An improvement is to make the program execute more in parallel. With the
exception of the MS-BFS, the current program is run sequentially. Another improvement
is to separate responsibilities among machines. Currently, a single machine will update
and save the graph, calculate node counters and keep track of top counters. These tasks
can be divided among several machines, hence speeding up the algorithm and making it
more scalable. Also, the main part of the algorithm, the MS-BFS, can be distributed.
Making the MS-BFS scale with the number of machines greatly increases the potential of

32

6. Discussion

the algorithm. There are already implementations of standard BFS on several machines.
Adapting those implementations to handle MS-BFS should be possible. One tool that
can be used is Giraph [19]. Giraph is an open-source implementation of a vertex-centric
distributed graph processing system.

33

Bibliography

[1] C. R. Palmer, P. B. Gibbons, and C. Faloutsos, “A fast approximation of the neigh-
bourhood function for massive graphs,” tech. rep., f, 2001.

[2] P. Boldi, M. Rosa, and S. Vigna, “Hyperanf: Approximating the neighbourhood
function of very large graphs on a budget,” CoRR, vol. abs/1011.5599, 2010.

[3] C. R. Palmer, P. B. Gibbons, and C. Faloutsos, “Anf: A fast and scalable tool for data
mining in massive graphs,” in Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’02, (New York, NY,
USA), pp. 81–90, ACM, 2002.

[4] P. Flajolet, Éric Fusy, O. Gandouet, and et al., “Hyperloglog: The analysis of a near-
optimal cardinality estimation algorithm,” in IN AOFA ’07: Proceedings of the 2007
international conference on analysis of algorithms, 2007.

[5] R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer
Computations (R. Miller and J. Thatcher, eds.), pp. 85–103, Plenum Press, 1972.

[6] P. Boldi and S. Vigna, “In-core computation of geometric centralities with hyperball:
A hundred billion nodes and beyond,” in Data Mining Workshops (ICDMW), 2013
IEEE 13th International Conference on, (Dallas, TX, USA), pp. 621–628, IEEE, 2013.

[7] D. M. Kane, J. Nelson, and D. P. Woodruff, “An optimal algorithm for the distinct
elements problem,” in Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’10, (New York, NY,
USA), pp. 41–52, ACM, 2010.

[8] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: Algorithmic engi-
neering of a state of the art cardinality estimation algorithm,” in Proceedings of the
EDBT 2013 Conference, (Genoa, Italy), 2013.

[9] P. Chassaing and L. Gérin, “Efficient estimation of the cardinality of large data sets,”
in Proceedings of the 4th Colloquium on Mathematics and Computer Science, pp. 419–
422, 2006.

[10] S. Vigna, “Webgraph.” [Online]. Available: http://webgraph.di.unimi.it/. [Accessed:
2016-03-29].

[11] P. Boldi and S. Vigna, “The webgraph framework i: Compression techniques,” in
Proceedings of the 13th International Conference on World Wide Web, WWW ’04,
(New York, NY, USA), pp. 595–602, ACM, 2004.

[12] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A multires-
olution coordinate-free ordering for compressing social networks,” in Proceedings of
the 20th International Conference on World Wide Web, WWW ’11, (New York, NY,
USA), pp. 587–596, ACM, 2011.

[13] M. Then, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham, A. Kemper, T. Neu-
mann, and H. T. Vo, “The more the merrier: Efficient multi-source graph traversal,”
Proc. VLDB Endow., vol. 8, pp. 449–460, Dec. 2014.

35

Bibliography

[14] S. Khot and O. Regev, “Vertex cover might be hard to approximate to within 2-ε,”
J. Comput. Syst. Sci., vol. 74, pp. 335–349, May 2008.

[15] Z. Ivkovic and E. L. Lloyd, “Fully dynamic maintenance of vertex cover,” in Proceed-
ings of the 19th International Workshop on Graph-Theoretic Concepts in Computer
Science, WG ’93, (London, UK, UK), pp. 99–111, Springer-Verlag, 1994.

[16] S. Baswana, M. Gupta, and S. Sen, “Fully dynamic maximal matching in o(log n)
update time,” CoRR, vol. abs/1103.1109, 2011.

[17] S. Bhattacharya, M. Henzinger, and G. F. Italiano, “Deterministic fully dynamic
data structures for vertex cover and matching,” in Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, pp. 785–804,
SIAM, 2015.

[18] D. W. Harder, “Array resizing.” [Online]. Available: https://ece.uwaterloo.ca/
∼dwharder/aads/Algorithms/Array_resizing/. [Accessed: 2016-03-04].

[19] “Apache giraph.” http://giraph.apache.org/. Accessed: 2016-05-23.
[20] “It-2004 graph.” http://law.di.unimi.it/webdata/it-2004/. Accessed: 2016-04-

12.
[21] “In-2004 graph.” http://law.di.unimi.it/webdata/in-2004/. Accessed: 2016-04-

12.
[22] “uk-2007-05@100000 graph.” http://law.di.unimi.it/webdata/uk-2007-05@

100000/. Accessed: 2016-05-16.

36

http://giraph.apache.org/
http://law.di.unimi.it/webdata/it-2004/
http://law.di.unimi.it/webdata/in-2004/
http://law.di.unimi.it/webdata/uk-2007-05@100000/
http://law.di.unimi.it/webdata/uk-2007-05@100000/

A
Appendix A

A.1 Benchmark equipment
The benchmarks have all been performed on a MSI GE70 laptop. The CPU used is
an Intel(R) Core(TM) i7-4700HQ CPU @ 2.40GHz. The RAM used are 2x Kingston
SODIMM DDR3 Synchronous 1600 MHz MSI16D3LS1KFG/8G, total 16GB RAM. The
disk used is a Hitachi HGST HTS721010A9, 1TB 7200RPM.

A.2 Graphs

Graph #Nodes #Edges Avg. Degree Source Thanks
it-2004 41,291,594 1,150,725,436 28 [20] [11, 12]
in-2004 1,382,908 16,917,053 12 [21] [11, 12]
uk-2007-05@100000 100,000 3,050,615 30.506 [22] [11, 12]

I

	List of Figures
	List of Tables
	Introduction
	Aim and background
	Problem formulation
	Limitations
	Entity disambiguating

	Mathematical preliminaries
	Graph transpose
	Maximal matching
	Approximation algorithms
	Minimum vertex cover

	Technical Background
	Neighborhood function
	HyperANF
	HyperLogLog
	Multiple register
	Terminology
	Memory usage
	Harmonic means
	Precision
	Hashing function

	Webgraph
	HyperBall
	Graph compression in Webgraph

	Breadth-first search
	Multi source

	Approximate minimum vertex cover
	Dynamic approximate minimum vertex cover

	Methods
	Merging graphs
	Extending HyperANF to support dynamic graphs
	Extending HyperLogLog to support deletions
	Benchmarks

	Development
	Preliminaries
	Dynamic graphs
	HyperLogLog resizing

	DANF: The first attempt
	Optimized Breadth-first search
	Visitors
	Travelers
	Extended algorithm

	DANF: The final algorithm
	Node history
	Edge insertion

	Experiments
	Benchmarks
	Comparison of graph structures
	Memory dependent merging
	Dynamic Vertex Cover
	Comparison of DANF and HyperANF

	Experiments on a real-time data stream
	Graph layout
	Starting with an empty graph
	Starting with an arbitrary large graph
	Data retrieval

	Discussion
	Ethics
	Future work

	Appendix A
	Benchmark equipment
	Graphs

