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Abstract

Early detection significantly reduces deaths associated with melanoma, a skin can-
cer. Despite this information, 80% of skin cancer related deaths are attributed
to malignant melanoma. Melanomas are difficult to diagnose by a dermatologist
(skin doctor) therefore many patients undergo unnecessary surgeries to get a biopsy
that can confirm the disease. Minimizing unnecessary surgeries would leave more re-
sources that in turn could lead to a higher frequency of earlier diagnosed melanomas.
Machine learning algorithms have shown a great potential in the field of medicine
and could be deployed to help doctors diagnose melanomas. To obtain a high per-
forming model it is crucial to have a large and balanced dataset. The scarcity of
labeled publicly available medical images makes applying machine learning an ob-
stacle in this field, thus hindering development. A solution to this problem could
be to synthesize realistic looking images using deep neural networks. One such net-
work is Generative Adversarial Network (GAN), which has been shown successful
in producing images in the field of medicine. This thesis explores the generation of
synthetic image data for medical purposes and how such data can be evaluated. We
utilize StyleGAN2-ADA to generate synthetic images of melanoma lesions that we
evaluate using both qualitative and quantitative measures. A survey was made to
establish if experts can identify generated images in a mixed dataset. The expert
dermatologists found the images difficult to distinguish from real ones, accordingly
proving that we can synthesize realistically looking images of melanomas. Using
a classifier trained on synthetic melanoma and non-melanoma images we are also
able to reach a high accuracy when validating against real data. Our results show
that synthetic images are verifiably realistic looking. From our research we are
able to conclude that synthetic data can be the answer to further development of
classification algorithms in a clinical setting.
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1
Introduction

Melanoma skin cancer although an infrequent disease makes up about 80% of deaths
from skin cancer [5]. Linked to the fair skin of the population and not enough use
of skin protection this is a crucial issue in Sweden. Most skin lesions are diagnosed
through subjective visual examination, which is time consuming, often require sec-
ond opinions, and often lead to misdiagnosis. Waiting time at clinics are often
long, which in turn can lead to prolonged disease. Survival rates of patients can be
improved if detection and diagnosis can be reached earlier. This is an opportunity
where computer power could be employed to reduce the time from first appointment
to diagnosis along with improved accuracy.

Computer algorithms that use data to get better at classification tasks have seen
big improvements in recent years. With the release of powerful computer hardware,
computationally heavy tasks in image analysis can now be performed at higher
speeds. In this project our main focus is to implement a generative adversarial
network to generate images of melanoma. Having a large and balanced dataset is
crucial when developing a good classification algorithm.

In the following sections a brief background on the organization and a general de-
scription of the thesis work will be discussed.

1.1 Thesis Background

There are two aspects of the project that are important to understand. The medical
background will introduce the general markers of the disease and why this project
can prove useful. The other is the technical background that is a comprehensive
summary of the systems used in this project.
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1. Introduction

1.1.1 Medical Background

As mentioned previously malignant melanoma is a skin cancer and the prevalence
of the disease is steadily increasing. Most commonly the disease appears in an al-
ready existing birthmark where the symptoms conventionally are changes in the
birthmark’s appearance, in particular, color, shape, size, and/or bleeding [6]. The
only way to certainly establish if a skin lesion is melanoma is through a biopsy. A
dermatologist will investigate the mole using a dermascope, which can be thought of
as a magnifying glass with a light that also is capable of taking images. The derma-
tologist will remove the mole if there is any suspicion that it is malignant melanoma.
There are also different types of melanoma where a surface level melanoma is called a
in-situ melanoma and a melanoma that grows on the depth is an invasive melanoma
[7]. An invasive melanoma can get contact with lymph-system and veins which con-
sequentially can lead to the cancer metastasizing in other areas of the body.

Today melanoma account for 6.5% of cancer diagnosis and the 10 year survival rate
is 86% for men and 92.6% for women [6]. However the prognosis looks better when
patients are treated early when the tumor is in-situ. Melanoma appears on skin
that has been damaged through burns by the sun’s UV radiation [5]. Therefore the
tendency to burn in the sun is a risk factor, which is why the disease is prevalent
in Sweden with its large population of fair skin people. The sun damage intensifies
with time as well as the sun’s power. The melanocytes, the cells that makes your
skin tan is also what gives you melanoma when they turn cancerous. The best way
to avoid sun damage is through wearing clothes, sunscreen, or staying away from
the sunshine.

Biopsy is the only way to determine if a mole is melanoma, because of this many
people undergo unnecessary surgeries since in medicine it is better to be safe than
sorry. Because of this there are many resources that are used needlessly in terms of
dermatologists’ time and physical resources. Consequently the unnecessary use of
resources can lead to long waiting times. This leaves an opportunity to introduce
artificial intelligence (AI) in effort to improve the speed and accuracy of diagnosis,
the topic that we will explore in this thesis.

1.1.2 Technical Background

Machine learning (ML) is a part of artificial intelligence. Putting it simply, ML
is composed of algorithms whose performance improves with data. A sub branch
of ML is deep learning (DL), which uses artificial neural networks (ANNs) with
multiple processing layers to learn a function through training on a given dataset
[8]. The learned function can then be used to annotate new unconnected data that
are of similar characteristics.

Image classification with machine learning is not hard to achieve with current knowl-
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1. Introduction

edge and technology. A simple example would be the classification of images of dogs
and cats, where a convolutional neural network (CNN) is able to classify images into
one of the two categories with an accuracy of 97% [9], when trained on images of
cats and dogs. In the medical field ML have found its purposes in tasks where a
trained neural network can be used to reduce the workload on healthcare workers
or as a second opinion for a diagnosis for a doctor [10]. This could also be applied
to the images taken with the dermascope to assist in diagnosing melanomas. One
of the challenges of training ML models in the medical field is that one is dealing
with patient data and it is difficult to come across large sets of data. It is a problem
within the medical image category that many datasets are small. Classifiers trained
on a small dataset can lead to increased uncertainty in the model, as the model may
be unable to generalize to new data. One proposed approach to solve this problem
is to use ML to generate new data of similar distribution to the target data as a
way to expand datasets. These types of models that are trained to create new data
are called generative models.

In recent years different approaches to tackle generative modeling have been pub-
lished such as variational autoencoders, Boltzmann machines, etc. Among the pro-
posed methods, generative adversarial network (GAN) was the most promising, The
GAN framework was introduced by Ian Goodfellow in 2014 [11]. Generative adver-
sarial networks are based on two networks. The first is a discriminator, which is
trained as a classifier to differentiate real data from fake data. The second is a gen-
erator that trains to trick the discriminator by generating data that is too hard to
classify as fake. After getting enough feedback from the discriminator the generator
will be able to generate data that is good enough to trick the discriminator [12].
Hence this synthetic data will be good enough to substitute for real data.

Another issue that presents itself in generators trained on images is that anything
present in the dataset will likely be regenerated in the synthetic images. In view of
that fact it is reasonable to work with a diverse dataset in order to avoid having
biases regenerated. Biases are unwanted artifacts (noise) that may exist in a dataset.
Such artifacts may be a determining factor for the classifier’s ability to distinguish
between classes in a dataset.

1.2 Organization Background

Sahlgrenska is located in Gothenburg Sweden and is the largest hospital in Sweden
[13]. The hospital functions both as the University Hospital (SUH) as well as an
academic side. Sahlgrenska is where most research into life-sciences in the Nordic
countries takes place. The AI Competence Center was started at Sahlgrenska in
September of 2021, an investment that will make it possible for SU to increase
their competencies within AI. Their vision is to fully utilize artificial intelligence
in clinical work, research, education, development, and innovation. The belief is
that an increased knowledge and research in the AI fields could greatly benefit the

3



1. Introduction

patients.

1.2.1 Related Work

Training a good classification model requires a large and balanced dataset, these
requirements do not exist in every dataset. In the healthcare sector, acquiring
data is generally difficult. One has to go through long legal procedures to get the
permission needed to use patient data in training an algorithm [14]. One way to deal
with this issue is to use generative modeling to expand available training datasets.
Several studies have been conducted on using generative modeling for such this
purpose.

Zihwie Q et al [15] implemented a modified version of StyleGAN architecture to
generate synthesized images of melanoma. The changes were made to; (i) handle the
scarcity of the available dataset and (ii) reduce the style variation of the generated
images since skin lesions have significantly less features than complex images that
StyleGANs were built for. StyleGAN was primarily built to be used for images of
faces [4] and similar feature rich motifs. The authors stated that their modified
GAN architecture achieved the best quantitative metrics when compared to other
GAN frameworks. A classifier was then trained on generated images as a measure of
quality. Using synthetic images the trained classifier showed 1.6% improved accuracy
compared to one trained on real images. This motivates the use of the network
architecture StyleGAN for image generation.

Bauer et al [16] did a comparative study between 3 GAN frameworks where the goal
was to generate high quality melanoma images and validate the images qualitatively
on expert dermatologists. The images used had a resolution of 256×256. The study
concluded that the synthetic samples generated using progressive GANs were highly
realistic looking. The synthetic images however were difficult for dermatologists to
distinguish from real ones. In addition, Gonçalves [17] did a comparative study on
data augmentation techniques for image classification. One of the conclusions they
made was that training a classifier on synthetic data generated using the StyleGAN2-
ADA model yield a 2.1% accuracy improvement. This percentage improvement was
in comparison to a CNN model that did not incorporate augmented data in the
training set.
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1. Introduction

1.3 Aim

The aim of the thesis is to investigate the problems mentioned in the background:

• Using GANs, can we generate images that are realistic enough to deceive
dermatologists into thinking they are real?

• Can we train a CNN on generated data to classify different images into ma-
lignant melanoma vs not melanoma?

In this project we intend to work with a conditional GAN model and use it to
generate new images with corresponding labels from a dataset in the context of
dermatology. The datasets that will be used contain images of melanomas from
patient cases. We will tune the hyperparameters, preprocessing, and play with
network configuration to optimize the artificial image generation. We strive for
the generated images to be good enough to deceive a dermatologist into believing
that the images are from real patients. The quality of the generated data will be
scrutinized through training a CNN on synthetic data and validating the trained
model on real images with two classes (malignant melanoma and not-melanoma).
Achieved performance will be compared to results obtained with model trained only
on real cases. Our hope is that we will achieve comparable accuracy of classification
into the two classes. We will try to explore characteristics of generated data and
look into possible methods for bias removal from generated images as well as real
images.

1.4 Scope

The main focus of this thesis is to train a GAN model that can generate realistic
looking images of melanoma. Additionally, we evaluate the validity of generated
images by showing them to experts in the fields of both dermatology and AI.

Building a model from scratch can be time consuming since there are many parame-
ters to be taken into account to increase the model’s performance. StyleGAN2-ADA
is the framework the we will utilize for our study. This have shown to generate di-
verse and high-quality images of melanoma, while being trained on several thousand
images [15]. Although this model is capable of generating high resolution images,
the project will mainly look into generating images with a 256 × 256 resolution.
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2
Theory

This section of the thesis focuses on the theoretical framework that the project was
built on. The chapter is divided as follows: A short recap on what artificial neural
networks are, the related theory on how ANN can be applied for image classification.
An introduction to generative modeling. A description of how GANs work, as well as
to different GAN extensions. In addition, some metrics on how results from GANs
can be quantified and how they work will be discussed. The theory related to how
the output of trained generative models can be manipulated will be discussed as
well.

2.1 Artificial Neural Networks

Using biologically inspired algorithms to solve computer problems have shown to
yield near-optimal solutions when applied to large-scale complex problems [18]. One
such biological system is the brain, the center of thinking for mammals. The brain
consists of billions of neurons that receives input from connected neurons that for-
ward the information throughout the body. This is what takes place when we
interact with the surrounding environment. ANNs are designed as a way for com-
puters to mimic the process of how neurons in the brain interact. In ANNs, nodes
have the function of the neurons in a biological brain. Nodes can be thought of as
light bulbs that are represented by an activation function σ that takes in an input
signal (numerical value) and in turn switches on (activates) the node when its value
is higher than some threshold. The value of the threshold depends on how the ac-
tivation function is defined. ANNs understands the data it is fed by changing the
strength of the connections between the nodes in accordance to what gives a correct
interpretation of the input data. A simple example of an ANN is a feed forward
neural network (FFNN).
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2. Theory

2.1.1 Feed Forward Neural Networks

Putting it simply FFNNs work as a black box that maps an input vector x⃗ to its
corresponding output vector y⃗ by learning an arbitrary function f . The connection
strength between the nodes are determined by the the weight matrix W and the
value that controls when the node activates is determined by the bias b⃗, as seen in
Figure 2.1. In detail this network type consists of layers of nodes that are connected
sequentially. Each layer consists of nodes that get their value from the nodes in the
previous layer. The nodes h⃗ in the network obtain their value via a pre-specified
activation function σ in the form of σ(WT h⃗ + b⃗).

Figure 2.1: Feed forward neural network. The connection strength between the
nodes is given by a weight matrix W for two each connected layers. The calculated
error of the difference between the output of the network and the real output is used
to update the weights of the network using backpropagation [1].

The network learns to map given inputs to desired outputs through adjusting the
weights and biases of the network’s node connections. This is commonly done using
backpropagation; an algorithm that adjusts the value of the weights and biases based
on the difference between what the network outputs and the real output. This
difference can be modeled by using some error function, which has to be minimized
in order to obtain a correct mapping function.

FFNNs can be used for different applications such as regression, classification or
prediction problems. However, they mainly perform poorly in tasks where the input
data are grid-shaped. To this end one make use of CNNs.

2.1.2 Convolutional Neural Networks

CNNs work well with position dependent input like time series, images or graphs.
This variant of networks mainly rely on a set of operations with the purpose of
extracting features and downsample an input image. These operations are done
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repeatedly until we obtain an implicit (latent) representation of the input image.
The representation obtained is in the form of a vector that is later fed into a FFNN,
which learns the function that correctly maps the input image to the correct output,
as seen in Figure 2.2. Image processing is done by using convolution operations of
a number of filters over an image with the aim to extract the most representative
features of that image. A filter is passed over the image obtaining a feature map;
an image that highlights the parts where a target feature exists in an input image.
The convolution process is also useful for upsampling an image in a process called
transposed convolution. Furthermore, pooling layers are a part of the network that
works as a feature extraction tool as well as for dimensionality reduction. There are
no weights or biases accompanied by using pooling layers.

Figure 2.2: A schematic of a CNN architecture. Note that convolution layers con-
tains the feature maps that aim to extract the most prominent features in an in-
put image. Pooling layers reduce the dimensionality of the feature maps for faster
computations. The fully connected layer learns the latent representation that the
repeated convolutional operations produce [2].

2.2 Generative Modeling

Generative models aim to learn the inherent features of a given dataset by learning
how it is distributed. This concept has been rapidly advancing in recent years, and
it has found application in different areas such as image generation [19] [20], video
generation [21] [22] as well as audio synthesis [23]. These applications, among other,
shows that there are potential uses for generative modeling for data manipulation or
data generation. One of the most successful frameworks in generating high resolution
and detailed images are GANs.
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Figure 2.3: General scheme of a generative model. The generative model (yellow)
is a function that adjusts the parameters θ as a way to map the input Gaussian
vectors (red) to images that matches the true data distribution [3].

2.2.1 Generative Adversarial Networks

In rough terms, GANs map input noise or latent code to an output that has the
same characteristics as a given training set. This is done by making two networks
compete against each other, where the generator network, G aims to create indistin-
guishable replicas of the input training set. What G generates is validated in with
the discriminator network D, which trains to get better at distinguishing real data
from the fake one.

In this framework, the generator tries to trick the discriminator by generating real-
istic looking data, while the discriminator learns to improve at distinguishing fake
data while being presented with both real and fake. This in turn make the generator
strive to generate data that has the same characteristics as the input data. A con-
verged network is obtained when the discriminator’s accuracy reaches 50%, which
corresponds to random guessing by the discriminator’s side.

GANs are useful when we have a dataset x with the distribution pdata and we want
to learn a function G that maps input noise z to the data space of x. The resulting
output of the function G will have a distribution pG that is close to that of pdata.
It is the discriminator’s job to distinguish between data coming from pdata or pG

by giving a probability of how certain it is that the input is real [11]. G and D
competes against each other through the value function V in a way such that

min
G

max
D

V (D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log (1 − D(G(z)))] (2.1)

where G trains to minimize V by minimizing log (1 − D(G(z))) and D trains to
maximize V by maximizing log (D(x)). Here 0 < D < 1 and it trains in order to
yield D(x) = 1 and D(G(z)) = 0, while the generator trains to create data that
yield D(G(z)) = 1.
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2.2.1.1 GAN types

There are two setups for training GANs, (i) conditional and (ii) unconditional. In
the conditional setup, the dataset that the networks train on contain contain data
with multiple classes. The class labels are concatenated with the latent vector to
the input layer of the GAN. With the resulting model, one is able to generate data
that has a certain class label. With the unconditional setting input data belongs to
one class only [24].

2.2.2 GAN Extensions

GANs can be used to generate different types of data such as images, time-series or
tabular data. However, for our application for image generation, we will make use
of the StyleGAN framework [4] for its ability to generate high quality images as well
as make use of augmentation techniques that are applied on smaller dataset, which
suits our case. In the following section, a walkthrough of how StyleGANs work is
discussed.

2.2.2.1 StyleGAN

The authors of StyleGAN mainly focused on reconstructing the generator in their
framework. These changes were done to obtain a generator with image controlling
properties. In this architecture, the generator’s input starts from a Gaussian latent
vector z ∈ Z, and then is mapped to another vector w ∈ W . This is done by learning
a mapping function f such that f : Z → W . Image controlling properties of the
StyleGAN architecture are exploited when each element in the w-vector controls a
feature in the output image. In contrast, one element in the Gaussian z-vector may
change multiple features in the output image at once. In such case, the space from
which the latent vectors are sampled is said to be entangled. This may also be the
case with W space depending on the training set of the model.

Another feature that the network has is Adaptive Instance Normalization (Ada-IN)
as a way to incorporate the style of target images into the generated images. Ada-IN
for one image (instance) i can be formulated as

AdaIN(xi, y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i (2.2)

where xi is a feature map and y = (ys, yb) contains the scale and the bias vectors,
respectively. The normalization is obtained by inserting the vector w to the mapping
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network A. Before Ada-IN operation, a Gaussian noise is inserted to the network’s
layers at different points and scaled with the parameter B, see Figure 2.4.

Figure 2.4: StyleGAN generator unlike traditional generators that map a Gaussian
distributed latent input to an image, StyleGAN generator learns the input to the
generator. The elements from the resulting vectors from the W-space are each
supposed to correspond to a feature in the output image. This makes it easier to
edit the image through changing the input w-vector [4].

As a demonstration of the generative quality of StyleGAN, readers are encouraged
to try distinguishing real images from fake by checking out this website; https:
//www.whichfaceisreal.com/index.php.

2.2.2.2 StyleGAN2-ADA

When training GAN models on a small dataset, there is a chance that the discrim-
inator overfit to the training set, which leads the model to diverge in training. A
different variant of the StyleGAN framework was built to tackle this issue by ap-
plying augmentations to images that are fed to the network effectively increasing
the data sample size. The newer version, StyleGAN2 with adaptive discriminator
augmentations (ADA), provides a framework that is capable of generating more re-
alistic looking images when trained on a dataset that is small in sample size. This is
possible due to the use of the image augmentation techniques [25]. These augmen-
tations are applied to all the images that passes thorough the discriminator network
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(real or generated) with a probability that dynamically changes in order to avoid
overfitting of the model. This adjustment is done by the model where it uses a part
of the training set of the model as a validation set as well. When training, the model
overfits when it treats the validation set as generated images, this triggers the model
to increase the probability of augmenting the images.

2.3 GAN Metrics

To test how a GAN training performs, qualitative evaluation of GAN generated
images on a large scale is hard to perform given that the model is capable of gener-
ating an infinite number of images, in theory. To this end, one make use of metrics
that return values of how good the resulting generated images are. The meaning of
these values is put into context when comparing them. To quantitatively evaluate
the synthetic data we make use of two metrics, namely Fréchet Inception Distance
(FID) and Perceptual Path Length (PPL).

2.3.1 Fréchet Inception Distance

Fréchet inception distance (FID) score provides a measure of similarity between
generated images and real images. This metrics is accomplished using the encoder
of InceptionV3 model that is trained on the Imagenet dataset. The encoder takes real
images and generated images and encodes these into embeddings. The embeddings
are then fitted into multivariate normal distributions and the distance between these
distributions are calculated. This means that a lower FID score value implies that
the generated images’ features are closer to those of the real images [26].

2.3.2 Perceptual Path Length

Since the StyleGAN framework has a learnable latent space that is linearly separable
in terms of controlling separate factors of variation in the output image. Measuring
this separability will tell us how disentangled the features are. To this end, we make
use of perceptual path length which is a metric used to measure how separate the
features are when interpolating a vector in the latent space. This is done by taking
two end points in the latent space, then choose a random point that lies on the line
between the end points as well as another point in its neighborhood. The images
that correspond to these points are generated and the perceptual distance of the
images can be calculated. This is done by acquiring the embeddings of these images
through the VGG16 network whose weights are fit to match those of the human
perceptual judgment [4]. PPL score can then be obtained by taking the expected
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value of repeatedly doing this process multiple times. A lower PPL score means a
more linearly separable latent space.

2.4 Classification Metrics

To evaluate the performance of classification algorithms, many different approaches
can be used. Relevant metrics that were considered in this project will be addressed
in this section.

2.4.1 Confusion Matrix

Figure 2.5: A demonstration of the confusion matrix. The abbreviations represent;
true positive (TP), true negative (TN), false positive (FP), and false negative (FN).

The confusion matrix as seen in Figure 2.5 can be used to describe the performance
of classification. Answers are compared to what is known to be the truth to visualize
the error. In this example there are two labels or classes, however a confusion matrix
can be used for multiple classes as well. This is a good metric that can be used for
evaluate the performance of an algorithm [27]. The different labels are as follows,
true positive: the positive class was correctly labeled as the positive class. True
negative is when the negative classes are correctly labeled. False positive is when
the the class is incorrectly predicted to be positive, and false negative is the opposite
of that.
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2.4.2 Other Classification Metrics

Many metrics build on the understanding of the confusion matrix as discussed above.
The following four are some of these:

Accuracy = TP + TN

TP + TN + FP + FN
(2.3)

Sensitivity = TP

TP + FN
(2.4)

Specificity = TN

TN + FP
(2.5)

Precision = TP

TP + FP
(2.6)

In equation 2.3 accuracy is defined. Accuracy is the rate of correctly predicted classes
compared to all classifications. Sensitivity seen in equation 2.4 is sometimes referred
to the true positive rate (TPR). This compares the correctly predicted positive
answers compared to all actual positive labels. Equation 2.5 defines the specificity
which is the true negative rate (TNR), same as for sensitivity but for negative classes.
Lastly equation 2.6 is how many of the positively predicted labels were true positives.
These metrics are valuable when evaluating the performance of CNN [15].
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3
Materials & Methods

This chapter goes through the process of which the thesis project was executed.
We demonstrate exploratory data analysis (EDA), going through the content of the
used datasets and their limitations, we then describe the experimentation that was
done using the StyleGAN2-ADA framework. A part of our project was doing some
exploratory work in image editing using generative modeling, which is also described
in this chapter. Figure 3.1 shows the large process steps involved in executing the
project.

Figure 3.1: These graphics represent the general work flow of the project.

3.1 Data

This section explores the datasets that were used to train our generative models, we
showcase image examples as well as class and bias distribution of the given datasets.
When taking images of melanomas doctors use what is called a Dermascope, a
camera which has a circular lens that makes sure that the distance from the subject
is where it is supposed to be.

3.1.1 Datasets

Two datasets were utilized in this project, reference examples of the images in the
dataset are visualized in figure 3.2. One of the datasets is from a collaboration
between Society for Imaging Informatics in Medicine and International Skin Imaging
(SIIM-ISIC) Melanoma Classification [28]. The second one is a dataset collected by
MD PhD Sam Polesie at Sahlgrenska University Hospital [7]. Both of these datasets
contain images of skin lesions.
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(a) (b) (c)

Figure 3.2: (a) Examples of malignant melanoma in the SIIM-ISIC dataset. (b)
Images of non-melanoma cases from the SIIM-ISIC dataset. (c) Visual of images
with both labels (invasive and in-situ) from the Sahlgrenska dataset.

The SIIM-ISIC dataset is open source and publicly available and is the larger out
of the two, contains around 37k images. Along with the images follows a metadata
file that identifies features of the individual images. Information for each image
includes; labels stating melanomas or benign skin lesions as well as other diagnosis
if applicable along with data of gender, age, the lesions location on the body, as
well as an anonymous patient identifier. As seen in Figure 3.3a the large majority
of images are benign skin lesions, with the imbalance in the dataset, about 13.5%
are malignant melanomas. In addition to the main dataset, SIIM-ISIC, there are
also extensions that we utilized [29]. This extended set has additional images from
3 datasets representing melanomas and therefore the total dataset is more balanced
between the labels.

The datatset collected at Sahlgrenska University hospital is balanced and contains
around 1, 300 images. The labels in the Sahlgrenska dataset have some more infor-
mation related to each image in addition to the ones mentioned for SIIM-ISIC. This
dataset only contains images of melanomas and therefore list if the moles are in-situ
or invasive melanomas. The class distribution of this dataset is a lot more balanced
as seen in figure 3.3b.
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(a) (b)

Figure 3.3: (a) class distribution in the SIIM-ISIC dataset. The total dataset has
37648 images of various skin lesions where 5106 of them are malignant melanomas.
Note that the used dataset contained extra images of melanoma from external
datasets as well. (b) distribution of classes in the smaller Sahlgrenska dataset with
632 invasive melanomas and 683 in-situ melanomas.

(a) Hair (b) Frame (c) Ruler (d) Other

Figure 3.4: Example images with the common biases in the datasets.

3.1.2 Bias

A pretrained Multiclassifier with a measured accuracy of 98% was used to evaluate
existing biases in the dataset [30]. Essential biases and their frequency in the images
can be seen in figure 3.5. The biases include; frames from the dermascope lens which
is a residue in the image, different types of hair (coarse, fine, short, and long), and
rulers that are put on the skin so that the provider can know the size of the lesion.
Along with other biases such as; markings made with pens or dust particles. A
representation of example images that have biases can be viewed in image (3.5).
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Figure 3.5: Distribution of biases in the malignant melanoma cases in the SIIM-
ISIC dataset. Clarification of the biases; hair is in regard to any body hair and
black frames are from the dermascope lens.

3.2 Data Preprocessing

Preprocessing of data is very important in machine learning as the quality of the
data highly relates to the quality of the models that can be trained with it. Using
the mentioned datasets, we have tried some methods to remove biases such as hair
and frames. The reason for this approach was to get rid of biases that would affect
classification accuracy per class.

3.2.1 Bias Removal

Training models using biased data can lead to influence performance and result in
classification inaccuracies. For this reason we try to remove the biased images from
the datasets. We used a classifier which is trained on the SIIM-ISIC dataset to
determine if an image has any one of the known large biases in the dataset. Some of
these features are; hair, frames, and rulers. The Dermascope used for capturing and
diagnosing the melanomas leaves a frame on images as a black circular surrounding
per image, see figure 3.4b. This is a residue from the design of the device. Since this
device is only used when documenting melanomas, it creates a significant bias in the
dataset where a trained network would classify any image with this suggested frame
as a melanoma. In addition to the frame feature many of the images also contain
hairs due to the nature of human skin as well as rulers. Rulers are used when taking
these images to show the singular size of the lesions.

A couple different approaches were applied to the images with the aim to remove the
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frames. The results from the different techniques were compared to see what gave
the best result in terms of qualitatively looking at the images. The comparison of
the results is discussed in the results section 4.1. Firstly we created an in-painting
algorithm that found the RGB values of the skin area in the image while disregarding
the melanoma. These colors were then randomly in-painted in the area where the
highly contrasted frames are in the original data. Secondly we tried another type of
in-painting, Frequency Selective Reconstruction [31] where the frames were used as a
mask for where this in-painting should be. The masks served as an edge between the
non-biased part of the images and the biased frames. A nearest neighbor approach
was then used when in-painting the masked part of the images. Another approach
used to remove the frames from the images was to crop the images without removing
the content of the image. Lastly, images were also cropped to remove the majority
of the frame bias. The performance of these approaches were evaluated visually
through output inspection.

In addition, we have looked into image editing methods that were applied post-
training. These were done by doing changes in the latent input vector of a trained
generator.

Furthermore we also removed other biases such as the hair and rulers from the im-
ages. As seen in Figure 3.5 about another 40% of the SIIM-ISIC dataset contains
these biases. This process was more straight forward where any highly contrasted
thin features in the images was assumed to be these biases and were therefore re-
moved. Inpainting was done using the nearest neighbor technique.

3.2.2 Image Resizing

To work with the desired GAN architectures the dimensions of the images are con-
strained to {64, 128, 256, 512, 1024} pixels with a 1 : 1 ratio. In the datasets there
were multiple different sized images. There is a trade-off between the quality of
images that needs to be good enough to see details in the melanomas and the speed
of training the networks. The decision was to use 256 × 256 pixels for the images
to achieve the mentioned result. To downsize the images, the Python library Open
CV was used and method INTER LANCZOS4 that interpolates over the nearest
8 by 8 neighbors.

3.3 StyleGAN Training and Experimentation

The StyleGAN2-ADA framework [25] was employed to learn from the datasets.
Transfer learning was utilized to improve model performance given that the number
of targeted image to generate was limited to learn from scratch, this may affect the
color tone of the resulting images.

21



3. Materials & Methods

3.3.1 Computational Power

GANs are computationally hungry models [32] that takes a long time to obtain fully
trained generator. To this end we made use of NVidia DGX A100 workstation to
train our generative models. These resources, among others were provided to us by
AI Sweden’s Data Factory.

3.3.2 Hyperparameters

In order to train a GAN there are hyperparameters that need refining in order to
get the best performing generator model. One of these are the choice of uncon-
ditional and conditional StyleGAN where the conditional GAN uses labels during
the training process. This in turn gives the final model the alternative to generate
images of each label. On the contrary an unconditional GAN has no relation and
takes no consideration to the labels in the dataset. Another hyperparameter that is
taken into consideration is the duration of training which is measured in kimg. This
is referring to the number of real images that are passed through the discrimina-
tor during training. This parameter should be around 20000 kimg for a converged
model, according to StyleGAN2-ADA developers [33].

3.3.3 Manipulating the Latent Input

To be able to adjust the output images, the latent space was altered. Using the same
set of seeds data was generated using the generator. The same multiclassification
algorithm as previously mentioned was used to find what biases were present in each
image. From this we knew which seeds resulted in what biases. Our main objective
is to remove the frames from the bias in the datasets. A first approach was to find
the regression hyperplane between the data latent vectors that generated frames and
the ones that did not. In the first experiments we evaluated each latent vector to
see where it was within the space. If the image would be generated with a frame,
we avoided that latent vector and continued with the next seed and so forth.

We also tried many experiments when it came to the best way to alter the images we
found through the use of a frame-classifier which classifies which images that should
have frames. We investigated which direction in the latent space that affected the
frames in the images and altered the vector to minimize this effect. In order to
find what direction to alter in the latent space we tried different methods. The
proficiency of the latent space manipulation was assessed through visual inspection.

While the described methods in above section aimed to make the data more pre-
sentable for before training, we have also looked into processing the output data of
the generator by training our generator on raw data without any sort of preprocess-
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ing. This was done by making changes in the latent point input of the generator
which resulted in bias removal while minimally affecting the content of the overall
image. One problem with this approach is that it was hard to qualitatively evaluate
the overall quality of the image after performing latent shifts on input vectors, so
we did this part of the thesis as an exploratory work without focusing much on
large scale similarity measures of the images. The proficiency of the latent space
manipulation was assessed through visual inspection.

3.3.3.1 Latent Vector Manipulation Using a Binary Classifier

Figure 3.6: Algorithmic chart showcasing the approach with bias removal using a
binary classifier. Note that the used vectors here are ones sampled from the learned
W space.

Here, we looked into image editing using a binary classifier as a way to draw a
decision boundary between latent inputs that represent images with a specific bias
and images without that bias. The goal is achieved by (i) generating a large sample
size of images with their corresponding latent code, (ii) use a multiclassifier to label
generated images that contain the unwanted bias and (iii) use the acquired labels
along with latent code to train a binary classifier that draws a linear boundary
between classes, e.g. support vector machine (SVM). With the obtained binary
classifier, we can shift latent points representing images with biases along the plane
normal of SVM to reduce the influence of the unwanted bias.

The downside of this method is that a large sample size of images is needed along
with a pre-trained classifier on that specific bias, which is done in a supervised man-
ner. To this end, we have also looked into another method which has an unsupervised
approach.

3.3.3.2 Latent Vector Manipulation Using PCA

In this presented method, we projected the sampled latent code on the principal
directions where maximum variance can be obtained, using principal component
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analysis (PCA). The result is a covariance matrix containing the eigenvectors (prin-
cipal components) which we experimented with by shifting the latent points along
different principal direction and observe different changes in the input image [34].

3.3.3.3 Latent Vector Manipulation Using Semantic Factorization (SeFa)

Contrary to image editing by moving latent points in different principal directions,
it is possible to obtain similar results to those using PCA by decomposing the weight
matrix of a trained generator. The result is a matrix containing eigenvectors ranked
from the ones with highest noticeable change in an image to the lowest [35].

3.4 Synthetic Data Evaluation

Two evaluation methods were used to establish the quality of the generated images.
The first method included qualitative input from experts in both fields of derma-
tology and deep learning. This test was set up to conclude how realistic the images
are visually. The second method is a metric version where the images generated are
used in various constellations to train a classifier. The classifiers are then assessed
on their classification accuracy of real images from the SIIM-ISIC dataset.

3.4.1 Visual Evaluation - Fool the Doctor

A survey was constructed to give the participants that evaluated our images a simple
interface to use. The survey was constructed with 200 images where they were
divided up in 50% real images from the SIIM-ISIC dataset and 50% generated
synthetic images from a model that was trained on SIIM-ISIC images as well. Out
of these sets each was made up of 50% malignant melanoma images and 50% benign
melanoma images. The real images were picked from the dataset. The reason they
were not randomized was because we wanted to remove certain biases, therefore
images with rulers were left out of the set. We want the classification to be based
on the quality of the melanomas and not given away by the byproducts from the
images such as the rulers. For the synthetic set we followed the same procedure as
for the real images however we also picked images that were outliers. These outliers
were not in the clusters that were visible when projecting classified images using
embedding projector ; the latent representation of input images in the final layer of
a classifier before being returning a label for the class. Each class had their own
cluster, see figure 3.7. With an embedding projector we can get a good visualization
of our high dimensional data points using clustering methods.

24



3. Materials & Methods

Figure 3.7: This image shows projected synthetic images that have been classified
by a pretrained classifier that was trained on real images. The cluster on the left
are the benign melanomas and the cluster to the right in the figure are malignant
melanomas. The high dimensional data was clustered and represented in 3D using
PCA.

Furthermore, the survey included edited images using SeFa to qualitatively assess
how good the resulting images were. These images initially contained frames but
we manually changed the value of their input to obtain unbiased images.

To setup the survey, Google Forms was chosen for the survey due to its simplicity.
The email address of the participants was collected to ensure no two responses were
the same. We also asked the persons’ background to know their expected proficiency
of the task. The answers in question read as follows:

Medical Background:

□ Dermatologist

□ Deep Learning Expert
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Each image was showed separately to the professionals, they had to answer the same
three questions in regards to every image. These questions were the following:

1. Diagnosis of lesion:

□ Malignant Melanoma
□ Not Melanoma

2. Is this image synthetic?

□ Yes
□ No

3. Level of certainty:
□ 1 □ 2 □ 3 □ 4 □ 5

Level of certainty is in regards to the answer to question 2, how certain are you
that you knew if the image was real or fake. The scale is from 1 to 5 where;
,1=not at all certain, 5=very certain (how certain are you that you knew if the
image was fake or real).

The dermatologists that participated in the survey were recruited from Sahlgrenska
University Hospital with the assistance of Dr Sam Polesie We reached out to people
with experience in generated data to receive expert opinions from them. It is worth
mentioning that the data collected from the deep learning experts were not in regards
to what type of melanoma they observed as that is not part of their competence. As
the participants were taking the survey they did not find out the correct answers.
The answers to the survey were compiled and analyzed to find the proficiency of our
images.

3.4.2 Classification Model

The second evaluation method used on the generated images was testing using clas-
sification accuracy. A number of classifiers were trained using EfficientNetB2 and
the same general set of synthetic images to label melanomas and not melanomas.
EfficientNet was chosen as it outperform other CNNs with higher accuracy and fewer
trainable parameters, as Tan describes [36]. The classifiers were also all validated
and tested using real images of the same 256 × 256 resolution from the same SIIM-
ISIC dataset. Five different setups of the training images were tried to see how the
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Classifiers
Classifier Type Description

1 Real Baseline No processing except 256 resolution
2 Synthetic Baseline No processing except 256 resolution
3 Synthetic No bias Remove all images that have biases
4 Synthetic No frames Remove all images with frames
5 Mixed Baseline 40% real and 60% synthetic

Table 3.1: Training setups for different data processing methods.

biases could be handled. The training setups were per table 3.1. The test accu-
racy was compared to see how well the classifiers comprised of different datasets
performed on classification tasks.

Seen in table 3.1 are the specifics of the limitations to the images used when training
the different classifiers. 10, 000 images of each label, malignant melanoma and not
melanoma were used to train the classifiers composed of synthetic data. For the
validation 1, 500 images of real skin lesions from the SIIM-ISIC dataset were used,
these are divided equally between both labels. Another 1883 images were used for
the test set, which was unbalanced with 255 images of melanoma. Note that a
separate set of images was used to train the generator and hence the classifiers,
these were not a part of the validation and test set.

These classifiers listed above (3.1) will also be compared to a classifier trained only
on real images to see the accuracy lost when generating images. The real classifier
due to the lack of diversity in the SIMM-ISIC dataset will be trained on 4, 000
images of each class.
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4
Results & Discussion

In this chapter we will discuss and present the results achieved with using the meth-
ods mentioned in the previous chapter.

4.1 Data Preprocessing

The focus of preprocessing was to remove the frames resulting from the Dermascope
device as 38% of melanoma images in the SIIM-ISIC dataset have frames, while
there are no images containing this artifact in the not melanoma data. We do not
want a trained classifier to associate frames with melanoma labels and therefore
classify every image with frames as melanomas, this is not a relevant real metric for
diagnosis.

In our efforts to remove the frame bias from the images in the dataset, we tried
different preprocessing approaches. See Figure 4.2 for the results of the experimen-
tation. As can be viewed in the figure the purpose of this preprocessing step was
to remove the black frame that is a residue from using the dermascopic lens to take
the photos. We found that 38% (Figure 3.5) of the malignant melanoma cases have
this frame bias which from earlier research has proved to cause a prejudice in the
classifier to connect the occurrence of frames to malignant melanoma labels [30].

The first approach was to cut the image so that the frames would disappear. In
order to cut all the dark pixels we lost some of the data of the melanomas. As can
be viewed in the second and third picture in the second row in the figure 4.2 much of
the melanomas have been lost in the cropping of the image. This happens since the
information in the image is round while we need a square resolution when working
with GANs. When removing all pixels from the dermascope we also have to remove
some information when the melanomas are larger and take up a larger proportion
of the picture. See figure 4.1 for a representation of how the cropping takes place.
Because of the loss of information we decided to explore other alternatives.

The second alternative that we tried was to find where the dark pixels from the
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Figure 4.1: This graphic illustrates how the images were cropped to remove all the
frames from the dermascope.

dermascope were and then use an algorithm to ”paint over them”. The rest of the
pixels in the image were evaluated for color and a normal distribution was fitted to
the data. This was assumed to be the skin colors as the samples in the dataset are
from fair-skinned people. These colors were then randomly sampled and replaced the
dark dermascope images. This worked well in terms of removing the frames as well
as not having the same issue as the cropping technique did since all information in
the melanomas remained. However, we found that when we trained GANs on these
images it learned the preprocessing method and regenerated the inpainted random
pixels. For this reason we kept exploring other alternatives as these fragments were
undesirable in the efforts to fool a human into thinking that the images are real. See
the third row in figure 4.2 for examples of the resulting images from this technique.

As seen in figure, 4.2 above, we tried an additional third technique as mentioned
in the method section (3.2.1). This preprocessing technique was using a frequency
selective reconstruction (FSR) algorithm. This used a similar idea as the random
inpainting above. Seen in the last row in figure 4.2 the result is also very similar to
that of the row above.

All of the preprocessing methods tested succeeded at removing the frame bias. How-
ever, the desired result is an image that a professional dermatologist would believe
to be real. After analyzing the images created using the discussed techniques we
did not believe that they looked realistic. Since the images’ realism was not con-
vincing to us, we do not believe that they would look convincing to an expert. Due
to this discrepancy between preprocessed and original images, we decided to move
away from preprocessing. Different options were considered with the prospect of re-
moving the frames. Alternatives for manipulation and variation of the latent space
vector was chosen as a viable solution. These experiments involving latent space are
discussed in section 4.2.2.

In Figure 4.3 the bottom row shows the images that had hair removed using the
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Figure 4.2: shows 3 of the different preprocessing techniques we tried to remove the
dermascopic frames. The top row shows the original photos from the dataset. The
following rows below show the removal techniques applied on the same images.

Figure 4.3: Example showing images before and after algorithm described in section
3.2.1 was applied.

technique described in methods (3.2.1). As seen in the images the algorithm worked
fairly well. Although, images with more dark features in addition to hair or rulers
also lost some of the definition in the features. We decided to keep training with
data containing hair as both labels in the dataset had hairs so it was not considered
a bias that could skew the behavior of a classifier.
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4.2 StyleGAN2-ADA Experimentation

This section exhibits the experiments done to optimize the synthetic images. We
will also discuss the methods that were evaluated to edit the features of the output.

4.2.1 StyleGAN2-ADA Training Results

The generators of our StyleGAN models were trained using the ISIC dataset as well
as the SUH dataset. In this section we present the results obtained by both models
qualitatively and quantitatively.

4.2.1.1 Training Results on ISIC Dataset

Per table 4.1 different GAN models were trained. This was done using either condi-
tional or unconditional type StyleGAN2-ADA, hence the data that the models were
trained on also varied as listed in the table.

Model Description Training set
benGAN Uncond. model generating data of benign skin lesions 32k
melGAN Uncond. model generating data of melanoma images 5k
cGAN Cond. model generating both classes 37k

Table 4.1: lists the separate models trained and their abbreviated name. Training
set refers to the total number of real images that was used to train each GAN. The
type of GAN that was used to train them is also specified; unconditional (uncond.)
and conditional (cond.).

Generally, conditional cGAN achieved better melanoma image quality than uncon-
ditional melGAN, see Figure 4.4 and Figure 4.6. Note how the conditional model
is able to generate artifacts like hair and frames with attention to details while the
unconditional model had more synthetic looking biases. Through acquiring metrics
for both conditional and unconditional GANs shown in table 4.2 we can also see that
the unconditional melGAN images were worse in comparison to the cGAN images.
Seen in the table, lower PPL score means that the W-space is more regularized, in-
dicating a more linearly separable space for image editing. The results also indicates
that the low FID metric for the conditional cGAN model is prone to generating more
realistic looking melanoma images than the unconditional melGAN model. This is
a result of having trained the unconditional model on a dataset with low sample
size. Overall, the training for both benGAN and cGAN were started from scratch,
whereas the training for the unconditional melGAN model was obtained by finetun-
ing benGAN on only melanoma images. This was done to offset the implications of
having a small sample size of melanomas overall.
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FID PPL
benGAN 7.5 59.0
melGAN 14.4 59.3
cGAN 7.2 77.2

Table 4.2: FID and PPL metrics derived from the trained models using SIIM-ISIC
dataset.

Note the low FID score for conditional GAN in table 4.2, this suggest a better model,
which in turn makes it more suitable for qualitative analysis. The low PPL score for
unconditional models indicates a more disentangled feature space allowing for easier
feature manipulation. Although the quality of the unconditional melGAN images
were worse in comparison to cGAN, image editing through changing the generator’s
input was easier applied to unconditional GANs.

Figure 4.4: Example of synthetic melanoma images generated through unconditional
GAN (melGAN). The training for this model was resumed from a benign skin lesion
generating model.

The generated images from unconditional GAN succeeded at capturing a variety of
features from the dataset. However, finer details such as hair and the dermascope
frame were not entirely captured by the model at the same quality as the original
images. This may be related to the fact that even though transfer learning was used
as a starting point for the model the number of images that the model resumed
training with was not large enough to achieve desired results, as displayed in Figure
4.4.

Figure 4.5: Example of synthetic non-melanoma skin lesion images generated
through unconditional GAN (benGAN). The training for this model was started
from scratch as the training set used was significantly larger than the melanoma
skin lesion set.

Compared to images generated using melGAN, the benGAN model yielded images
that generally looked better in quality than the ones trained on melanoma skin
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lesions. The model was able to generate images with finer more realistic details, like
hair strands and dermascope ruler, see Figure 4.5.

Figure 4.6: Example of synthetic skin lesions generated using the conditional GAN
model (cGAN). Here, we see the per image quality for both benign skin lesions (top
row) as well as for melanoma (bottom row).

The details in the images are more realistic looking in Figure 4.6. Qualitatively
the images are hard to distinguish from the real images of the training set. These
images are from the trained conditional model, that had the largest training set ( 30k
images) in comparison with the unconditional models, this yielded more detailed
images, see table 4.1.

4.2.1.2 Training Results on SUH Dataset

As a consequence of having a small sample size in SUH dataset (1, 300 images), we
trained a conditional model that was resumed from the trained conditional cGAN
model in an effort to get a more generalized model. The trained model had a FID
score of 22.5, which is relatively high when compared to the models trained to
generate ISIC dataset images. As seen in Figure 4.7, the images generated through
this model weren’t able to synthesize artifacts like hair, ruler or melanoma in a
qualitatively convincing way, see figure 4.7.

Since the quality of the trained GANs depend on the size of the training dataset,
models trained on the SUH dataset to generate images of invasive and in-situ
melanoma did not yield realistic looking results. Subsequently we made the de-
cision to focus on the images we generated using only the SIIM-ISIC dataset so that
we could focus on acquiring answers to our research questions. Furthermore, we
chose to continue the project using the cGAN, because it had the lowest FID score
as discussed above as well as when visually evaluated, they looked the best. The
cGAN model was used to generate images for the survey as well as the training sets
for the classifiers.
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Figure 4.7: Synthetic skin lesions generated using a conditional GAN model. Note
how some hair patterns are repeated among the the images. This was due to the
small number of images the model was trained on. The dataset used here was from
SUH and had a sample size of 1.3k images.

4.2.2 Manipulating the Generator’s Input for Bias Removal

In this section we demonstrate the executed experiments done in order to remove
biases through manipulation of the latent input vector for the generator. This was
carried out in a systematic way to obtain interpretable outputs. Our goal was to
remove unwanted biases from the images without changing the overall information
in the image. We present examples of edited images using the different methods.

4.2.2.1 Image Editing Using a SVM

The first technique explored followed the steps discussed by the authors of StyleGAN
[4]; separate biased and un-biased images. This was done through training a binary
classifier on a sample size of 20k latent codes sampled from W-space. The classifier
defines a boundary (decision boundary) between images that contain frames from
the Dermascope and images that do not, see figure 4.8b for an illustration. Utilizing
the network model Multiclassifier for bias labeling along with the large sample size
of latent codes, we obtained a binary classifier with an accuracy of 94.5%. The
classifier is able to predict if a generated image is going to have that bias or not
from the corresponding latent code of said image.
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(a) (b)

Figure 4.8: (a) An illustration of moving an image perpendicularly towards the de-
cision boundary of a trained SVM. Note that while the frame is gradually removed
from the image, the melanoma gradually changes its form as well, making it hard
to know if the resulting frameless image remains a melanoma.
(b) Simplified illustration of how the binary classifier separate images with labeled
biases. Here, the circle represents the learned style space W and each image corre-
spond to a latent input w-vector.

As 38% of the images in the dataset have the frame bias, we were concerned about
the distribution of the images if we choose to not consider images with frames
for generator training purposes. Therefor we tried using SVM to edit the images
instead of just removing them from the sample. The image editing was done using
the normal plane of the trained SVM classifier. We explored the effects of shifting
a w-vector that corresponds to a biased image along the normal plane. This was
attempted as another technique to remove the bias of that image, see figure 4.8b
for resulting images. This method of image editing may not be optimal since it
depends on how accurate the Multiclassifier is at labeling biases compounded with
how accurate the SVM model is.

4.2.2.2 Image Editing Using PCA

Instead of relying on the Multiclassifier to label biases, we explored our trained
generator to obtain the principal directions for a large sample size of latent codes
sampled from the W space. This in turn yields the directions where maximum
variance in the latent code occurs. We took an input vector w that corresponded
to an image with bias and aimed to remove the bias by shifting the vector along the
principal directions. The resulting data are shown in figure 4.9.
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Figure 4.9: Results from shifting the latent vector w along the 3 first principal
directions, along with the unwanted frame bias being removed. The center image
is the original, the images to the right and left represent opposite and constant
directions. Other features in the image, such as the mole’s shape and size change as
well, and now we begin to question if this image still represents a melanoma.

For this technique we also see feature entanglement, a result from shifting the vector
as visualized in Figure 4.9. This way of image editing is prone to changing other not
targeted features in the original image. As a consequence, this affects the certainty
of this image still having the features of a melanoma skin cancer after editing.

4.2.2.3 Image Editing Using SeFa

The performance of SVM and PCA based image editing is dependent on a large
sample sizes. We decided to explore the effect of a method that does not require a
sample size of latent code, namely, semantic factorization. The corresponding latent
w-vector to the image in Figure 4.10 was shifted along the second, forth and sixth
eigenvectors. These were obtained using the SeFa framework [35]. Looking at the
figure we see that applying SeFa image editing suggests less entangled features from
visual inspection of the images of different directions. The eigenvectors displayed
are chosen from a larger qualitative evaluation of multiple images and directions.
The second, fourth, and sixth eigenvectors showed the best result in removing the
frames while leaving the other features intact. We observe a better result using this
method of image editing compared to the other tested methods.

For the purpose of this project many images were evaluated using each method
(in addition to the example figures) and SeFa was determined the most reliable to
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Figure 4.10: Examples of image editing using the SeFa framework. The image in the
middle in all three rows is the original image. The rows correspond to the w-vector
being moved along different eigenvectors. Left and right of the original image are
positive and negative eigenvectors.

remove the unwanted frames while leaving the other information intact. We therefore
moved forward with this method and edited images using the 6th eigenvector. These
images were then used in a training set for a classifier discussed in section 4.3.2. We
noted that different w-vectors correspond to different places in the latent space,
meaning that the same eigenvector does not affect every image the same way. We
may not always obtain an image that still looks like a malignant melanoma after
editing.

4.3 Synthetic Data Evaluation

As discussed in Methods (section 3.4), generated data was evaluated using two meth-
ods; (i) showing it to people that have experience in synthetic data or in melanomas,
and (ii) training classifiers using synthetic images and evaluating them on real data.
This section presents and discusses the results using mentioned methods.

4.3.1 Survey Evaluation

We received 4 answers to the survey, the answers were provided by two doctors with
expertise in the field of dermatology (ED) as well as two experts in deep learning
(DLE). The results in regards to the visual quality of the synthetic data can be
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viewed in table 4.3. Our main objective from this visual test is to find out how
many synthetic images (positives) were classified as real images (negatives).

ED1 ED2 DLE1 DLE2
TP 70 36 38 64
FP 33 31 45 48
FN 35 69 67 41
TN 62 64 50 47

Table 4.3: Results from survey evaluation of synthetic data. Each participant’s
confusion matrix answers are listed in this table.

With the small number of participants in the survey we can not draw any statistical
conclusions, however, we can analyze the trends and get an overall impression of the
quality of the data and responses. Looking at the results found in Baur’s research
[16] where they used PGANs (a different older framework) to generate melanoma
images we can compare our results. Baur also tested the subjective quality of the
images through input from dermatologists and deep learning experts. The average
accuracy in Baur’s study was 0.58% compared to our 0.54%. This indicates that
the images generated by our StyleGAN2-ADA may be the better option compared
to PGAN.

Accuracy Sensitivity Specificity Precision
ED1 0.66 0.67 0.65 0.68
ED2 0.50 0.34 0.67 0.54

DLE1 0.44 0.36 0.53 0.46
DLE2 0.56 0.61 0.49 0.57

Table 4.4: Survey related metrics. Listed is the accuracy, sensitivity, specificity, and
precision in relation to each participants answers.

Analyzing the accuracy (table 4.4) of the survey participants responses there is
no obvious trend that lead us to believe that the quality of the synthetic data
is unsatisfactory. The synthetic data does pass for real as per the precision of the
participants answers. As seen in figure 4.11b there were seven generated images that
were classified as reals by the experts but were actually synthetic. These images are
displayed in figure 4.12.

An important metric for the project is to know if there are any obvious synthetic
images. A qualitative analysis help us understand if there are features of the gener-
ated images that the experts picked up on. Looking at figure 4.11b we see that the
distribution of how many of the experts that guessed true positive on each image is
dispersed. As mentioned there were seven images that none of the experts assigned
correctly, nonetheless there were also five images that all experts classified as true
positives, see figure 4.13. The top four images in figure 4.12 are images that had
been edited to remove the frames. This shows us that even when manipulating the
image, the integrity remains and it still looks like a realistic lesion.
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(a) (b)

Figure 4.11: Ability to distinguish real images from fake images. (a) Metrics visual-
ization of the rates for the individual participants in the survey. The abbreviations
here are; true positive rate (TPR), false positive rate (FPR), and accuracy (ACC).
(b) Showing the number of correct guesses per synthetic image.

Figure 4.12: This figure displays all images that were incorrectly classified as false
negatives by all survey participants.

Figure 4.13: The images in this figure were all the images that the participants
correctly classified as true positives.

Looking at the images in figure 4.12 we see that the majority of them have one or
more of the biases discussed in section 3.1.2. It could be the case that people are
predisposed to put more emphasis on these features when evaluating an image. With
this hypothesis we want to say that a ruler in an image could skew the believability
of said image as it is perceived to be realistic. Although looking at the images in
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figure 4.13 hair does not seem to bias the evaluators as they classified images with
visible body hair as both real and synthetic. These two figures (4.12 and 4.13) are
representations of what are both the most successful and least successful generated
images of our synthetic data set. Qualitatively there is no obvious resemblance of
the lesions. Because of this we can not draw a conclusion that there are specific
traits of generated images that would give them away to either medical or technical
expert. We also received some comments regarding how convincing the synthetic
images were. These comments are displayed below:

”I would say they were very convincing. Hair structures can sometimes
help in the assessment. I found this task really challenging. ”

(Dermatologist 1)

”Some pretty convincing, some clearly fake” (Dermatologist 2)

”Hard to say when you don’t have the correct answers yet! But overall
it was hard to tell them apart. ” (Deep Learning Expert 1)

”very convincing! well done! I was mainly focusing on the skin around
the mole, hairs and the centering of the mole in the image but was still
very unsure how it went” (Deep Learning Expert 2)

There is a clear correlation between the comments made and the result from the
survey. Most of the comments are in agreement that the images are convincing.
Recall, the participants did not find out which answers they got right or wrong so
these comments are all based on how they perceived they performed. Hairs in the
images was something they mention as bias that gave the synthetic images away.
The hair removal algorithm as mentioned in section 4.1 could be improved further
and used to eliminate this bias. This being said, as mentioned and displayed in
figure 4.12 this is not the case for every image. Overall, the participants believed the
experiment to be successful as they had a difficult time telling the real and generated
images apart, this is consistent with the result from their evaluation (table: 4.4).

In figure 4.14 are real images that all participants agreed on. In these cases there
are no specific biases in the images that were correctly identified as real patient data
per the figure 4.12. This might suggest that the bias also affects the experts’ ability
to classify lesions, as all but one false negative image had some sort of bias. The
images with a bias could suggest some false notion of realism to the experts.

Another measurement that was collected through the survey was how confident
the participants were with their answer regarding if the image is generated or not.
This is a subjective measurement and will inherently have more variation between
persons. The resulting average certainty for all images and all participants was 3.0.
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(a) (b)

Figure 4.14: (a) displays 9 out of 14 images that were classified as true negatives by
all survey participants. (b) displays all images that participants classified as false
positives.

Knowing the average certainty and looking at graph 4.15, the certainty distribution
is not uniform. From this data, the labels assigned to the images were not obvious
choices.

Figure 4.15: Participants average certainty per each image. The certainty is in
regards to how sure they were that they labeled the image correctly (synthetic or
not).

Another question on the survey was for the experts to diagnose the lesions. The
only answers taken into considerations were the ones made by the dermatologists.
The result from this is shown in a confusion matrices, see figure 4.16. As seen, the
lesions in the survey were not easy to diagnose and the average accuracy between
the two doctors was 74%. There is not a large variation between the answers to the
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real melanomas and the answers to the synthetic melanomas.

(a) Real (b) Synthetic

Figure 4.16: (a) is a confusion matrix of the diagnosis answers to the survey where
they choose from malignant melanoma and not melanoma. These images are the
dermatologist diagnosis of the real patient data. (b) displays a confusion matrix of
the diagnosis of the synthetic data for the two dermatologists.

For the experiment we chose synthetic images that were outliers, as discussed in
section 3.4.1. A point of concern arose when generating a specific class, would the
generated image represent that class with reasonable fidelity. To evaluate this we
chose to use images that fell close to images of the other label. We chose images
that were difficult to classify. We wanted to assess if the label they were suppose
to represent was definite. From the results of the survey it appears that the perfor-
mance of the classifying doctors was representative for both types of data (real and
synthetic). There is some uncertainty as the doctors’ accuracy was rather low at
74% and the precision is quite low. Though the distribution of the confusion matrix
being very similar between real and synthetic suggests accurate labeling or similar
label distribution. This result is nevertheless an indication that the synthesized
images actually represent the class that they are supposed to.

4.3.2 Classification Model

The second part of synthetic data evaluation was to use synthetic data to train a
classifier to classify either melanoma or not melanoma. To compare the different
ways of training classifiers introduced in section 3.4.2 they were evaluated on the
same balanced dataset from the SIIM-ISIC set. The result from the evaluation is
arranged in the table 4.5.

All datasets but the real image baseline were of 10, 000 images from each class. There
are only about 5, 000 melanoma images in the SIIM-ISIC set and 20% of them were
used for test and validation. The small number of test images is a limitation in this
research. We had around 4k images remaining to use when training the classifiers.
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The last column in the table 3.4.2 is for the performance of a model that was
expanded using synthetic data. Expanding the dataset to get a larger and balanced
one resulted in a higher accuracy when predicting melanomas.

Figure 4.17: ROC curves comparing the sensitivity (true positive rate) to the false
positive rate at varying thresholds for each of the different classifiers.

The Receiver Operating Characteristics (ROC) curves as visualized in Figure 4.17
helps us understand how well the models can distinguish between the classes. We
can get a sense of which classifier is better through the Area Under the Curve AUC,
listed for each classifier in Table 4.5. In our experiments the classifier that performed
the best was the mixed dataset. The mixed dataset contains the images in the real
image baseline, however, complemented by synthetic data so that the training set
could be expanded.

The results from the adjusted datasets show a lower AUC overall compared to the
baselines. One plausible reason for this is the earlier mention of bias in the dataset.
The frame bias as discussed is only present in the melanoma images. When removing
these images from the training set we assure that when the classifier is presented
with an image with frame from the test set, it will not classify it as melanoma due to
it being associated with the frame. The result suggests that the baseline classifiers
may have a bias to classify any image with frame as a melanoma. Images with
frames would either have to be added to the non melanoma class to offset this or as
discussed throughout this thesis, the frames would have to be removed.

The classifier trained on the edited images resulted in the lowest AUC. This might
be because of the entangled latent space. The StyleGAN framework was developed
for feature rich images such as faces, as there are many more details in these types
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Real Synthetic Mixed
Baseline Baseline No Bias No Frames Edited Baseline

TP 227 209 186 212 167 226
FP 50 75 13 77 155 21
FN 28 46 69 43 88 29
TN 1578 1553 242 1551 1473 1607

ACC 0.958 0.935 0.911 0.936 0.871 0.973
TPR 0.891 0.820 0.700 0.831 0.655 0.886
TNR 0.970 0.954 0.945 0.952 0.905 0.987
AUC 0.982 0.960 0.920 0.954 0.870 0.986

Table 4.5: Test results from trained classifiers. The first 4 rows are the results from
the confusion matrix. ACC is the test accuracy of the classifiers. True positive rate
or sensitivity is the TPR and TNR is the specificity. AUC is the area under the
ROC curve.

of images that are all related, the latent space will also be entangled. We found
no systematic way of editing the images using latent directions that only directly
implicated one feature while leaving the other ones intact. This makes sense in
faces as a smile does not only stem from the mouth, but the eyes and many muscles
in the face are involved in this expression. Therefore an entangled latent space
is helpful for manipulating facial expression, although when removing a bias in a
dataset it implicates more than just the one feature. Qualitatively when inspecting
the edited images we thought they looked less like melanomas. 38% of the melanoma
images have frames which could be the reason why the edited images look less like
melanomas. Hence, the classifier is trained on fewer severe looking melanoma image
samples. This suggests that the severeness of melanoma is entangled to the presence
of frames in the images. We may have been training the classifier on non-melanoma
looking images that were labeled as melanomas, that could be the reason for the
low accuracy.

As it is important in a medical field to not send someone home that has a disease. We
might wish to increase the sensitivity at the expense of having more false positive.
This would in practice lead to more unnecessary surgeries to establish definite clinical
diagnosis of lesions. Even so less people would go home being misdiagnosed as
healthy. As discussed in the introduction the prognosis for the patients is better
when the disease is discovered early [5]. Therefore it is crucial that we lower the
threshold to increase sensitivity. Increasing the number of false positives does also
come with a trade-off. We discussed the need for more accessible resources in the
introduction, more false positives would lead to more biopsies and with that tied up
resources.

The performance in our testing comparing the real and mixed result we see that the
AUC is similar. Although looking at the ROC curve (Figure 4.17) we see that the
mixed classifier performs with higher sensitivity at lower false positive rate. This
result aligns with our initial statement in the introduction of classifiers being most
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successful when trained on a large and balanced dataset [37]. Our results suggest
that small patient datasets can be expanded with synthetic images generated from
GANs trained on said small dataset. This leads to the expanded dataset improving
the classifier achievement.
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5
Conclusion

The aim of this research was to evaluate if we could generate data of skin lesions that
qualitatively looked realistic enough to trick an expert into thinking they are real.
As discussed in the previous section, this was accomplished as both dermatologists
and deep learning experts were unable to reliably distinguish the synthetic data
from that of real patients. The second question we were wanting to answer was
if it is possible to train a CNN to classify melanomas. We know that a large and
balanced dataset is important when training a CNN. Our results suggest that using
synthetic data to expand a smaller dataset will improve the accuracy and sensitivity
of the classifier. These discoveries led us to be confident that synthetic data is a
good response to a lack of balanced data and data scarcity in a medical setting.
We are left with one uncertainty and that is the reliability of the labeling. More
experiments need to be performed as the experts’ survey verdict did not have a high
enough accuracy to conclude that the labels are representative.

StyleGAN2-ADA has proven to be a good framework when reaching for generation
of realistic looking skin images for small datasets. What we discovered in our project
is that the latent space is entangled. More work would need to be put into exploring
and experimenting with the latent space in order to see if it may be possible to alter
one feature while leaving the rest of the data in the image intact.

The threshold for the classifiers can be altered so that the algorithm acts with higher
sensitivity in a ”better safe than sorry manner” so that no melanomas are missed.
With this implementation a next step could be to test the algorithm in clinic as a
second opinion to the dermatologist’s initial diagnosis. Eventually such algorithm
could be deployed as a product, although this might come with some regulatory and
technical difficulties. An important thing to contemplate is the unconscious bias
that the algorithm has, since the dataset mostly consists of people with fair skin.
The performance would have to be evaluated on all skin types before being launched
as a product.
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6
Appendix

6.1 StyleGAN2-ADA Network Architectures

6.1.1 Generator

Generator Parameters Buffers Output shape
--- --- --- ---
mapping.fc0 262656 - [16, 512]
mapping.fc1 262656 - [16, 512]
mapping - 512 [16, 14, 512]
synthesis.b4.conv1 2622465 32 [16, 512, 4, 4]
synthesis.b4.torgb 264195 - [16, 3, 4, 4]
synthesis.b4:0 8192 16 [16, 512, 4, 4]
synthesis.b4:1 - - [16, 512, 4, 4]
synthesis.b8.conv0 2622465 80 [16, 512, 8, 8]
synthesis.b8.conv1 2622465 80 [16, 512, 8, 8]
synthesis.b8.torgb 264195 - [16, 3, 8, 8]
synthesis.b8:0 - 16 [16, 512, 8, 8]
synthesis.b8:1 - - [16, 512, 8, 8]
synthesis.b16.conv0 2622465 272 [16, 512, 16, 16]
synthesis.b16.conv1 2622465 272 [16, 512, 16, 16]
synthesis.b16.torgb 264195 - [16, 3, 16, 16]
synthesis.b16:0 - 16 [16, 512, 16, 16]
synthesis.b16:1 - - [16, 512, 16, 16]
synthesis.b32.conv0 2622465 1040 [16, 512, 32, 32]
synthesis.b32.conv1 2622465 1040 [16, 512, 32, 32]
synthesis.b32.torgb 264195 - [16, 3, 32, 32]
synthesis.b32:0 - 16 [16, 512, 32, 32]
synthesis.b32:1 - - [16, 512, 32, 32]
synthesis.b64.conv0 1442561 4112 [16, 256, 64, 64]
synthesis.b64.conv1 721409 4112 [16, 256, 64, 64]
synthesis.b64.torgb 132099 - [16, 3, 64, 64]
synthesis.b64:0 - 16 [16, 256, 64, 64]
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synthesis.b64:1 - - [16, 256, 64, 64]
synthesis.b128.conv0 426369 16400 [16, 128, 128, 128]
synthesis.b128.conv1 213249 16400 [16, 128, 128, 128]
synthesis.b128.torgb 66051 - [16, 3, 128, 128]
synthesis.b128:0 - 16 [16, 128, 128, 128]
synthesis.b128:1 - - [16, 128, 128, 128]
synthesis.b256.conv0 139457 65552 [16, 64, 256, 256]
synthesis.b256.conv1 69761 65552 [16, 64, 256, 256]
synthesis.b256.torgb 33027 - [16, 3, 256, 256]
synthesis.b256:0 - 16 [16, 64, 256, 256]
synthesis.b256:1 - - [16, 64, 256, 256]
--- --- --- ---
Total 23191522 175568 -
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6.1.2 Discriminator

Discriminator Parameters Buffers Output shape
--- --- --- ---
b256.fromrgb 256 16 [16, 64, 256, 256]
b256.skip 8192 16 [16, 128, 128, 128]
b256.conv0 36928 16 [16, 64, 256, 256]
b256.conv1 73856 16 [16, 128, 128, 128]
b256 - 16 [16, 128, 128, 128]
b128.skip 32768 16 [16, 256, 64, 64]
b128.conv0 147584 16 [16, 128, 128, 128]
b128.conv1 295168 16 [16, 256, 64, 64]
b128 - 16 [16, 256, 64, 64]
b64.skip 131072 16 [16, 512, 32, 32]
b64.conv0 590080 16 [16, 256, 64, 64]
b64.conv1 1180160 16 [16, 512, 32, 32]
b64 - 16 [16, 512, 32, 32]
b32.skip 262144 16 [16, 512, 16, 16]
b32.conv0 2359808 16 [16, 512, 32, 32]
b32.conv1 2359808 16 [16, 512, 16, 16]
b32 - 16 [16, 512, 16, 16]
b16.skip 262144 16 [16, 512, 8, 8]
b16.conv0 2359808 16 [16, 512, 16, 16]
b16.conv1 2359808 16 [16, 512, 8, 8]
b16 - 16 [16, 512, 8, 8]
b8.skip 262144 16 [16, 512, 4, 4]
b8.conv0 2359808 16 [16, 512, 8, 8]
b8.conv1 2359808 16 [16, 512, 4, 4]
b8 - 16 [16, 512, 4, 4]
b4.mbstd - - [16, 513, 4, 4]
b4.conv 2364416 16 [16, 512, 4, 4]
b4.fc 4194816 - [16, 512]
b4.out 513 - [16, 1]
--- --- --- ---
Total 24001089 416 -
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6.2 Survey

6.2.1 Survey Layout

Figure 6.1

56



6. Appendix

Figure 6.2
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Figure 6.3
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Figure 6.4
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Figure 6.5
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Figure 6.6
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Figure 6.7
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