
Security Analysis of Machine
Monitoring Sensor Communication
A threat modeling process implementation and evaluation

Master’s thesis in Computer System and Networks

MARTIN LJUNGDAHL
MICHAEL NORDSTRÖM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016

Security Analysis of Machine
Monitoring Sensor Communication

A threat modeling process implementation and evaluation

MARTIN LJUNGDAHL
MICHAEL NORDSTRÖM

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2016

The Authors grants to Chalmers University of Technology and University of Gothen-
burg right to publish the Work electronically and to in a non commercial purpose
make it accessible on the Internet. The Author warrants that he/she is the author
to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Security Analysis of Machine Monitoring Sensor Communication
A threat modeling process implementation and evaluation

MARTIN LJUNGDAHL
MICHAEL NORDSTRÖM

© MARTIN LJUNGDAHL, 2016.
© MICHAEL NORDSTRÖM, 2016.

Supervisor: Riccardo Scandariato, Chalmers Univeristy
Supervisor: Viktor Lindström, Cybercom Sweden AB
Examiner: Erland Jonsson, Chalmers University

Master’s Thesis 2016
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Security Analysis of Machine Monitoring Sensor Communication
A threat modeling process implementation and evaluation
MARTIN LJUNGDAHL
MICHAEL NORDSTRÖM
Department of Computer and Engineering
Chalmers University of Technology

Abstract

The number of small devices that are connected to the Internet is increasing rapidly
and the system that controls them are becoming more and more complex. Using
these devices in products and system has the potential to lower costs, increase per-
formance and provide new functionality. A substantial amount of these devices are
used in "smart homes" or to monitor and control critical electro-mechanical systems.
When developing such system often functionally and performance is prioritized in
comparison to security and many systems have computer security and network se-
curity concerns.
To help the developers create secure systems it exist a practice named Threat Mod-
eling in which you work with the system through different stages to find its vulner-
abilities. There exist several threat models that are aimed for specific systems of a
certain type.
It exists limited research about threat models aimed for system consisting of small
devices connected to the Internet. In this project a threat modeling process will be
conducted and applied on a smartphone/IoT system developed by one of Cybercom’s
customer. In addition, the threat modeling process will be evaluated for correctness
and applicability when applying it to a smartphone/IoT system and how the process
might be improved. Platform specific threat libraries created by accredited sources
will be used to for both validation and improvements. Penetration testing will be
carried out with a subset of the threats generated by the threat modeling process
and from the threat libraries in order to validate the applicability of the threats.

Keywords: Threat model process, OWASP Mobile, IoT, STRIDE, DFD

v

Acknowledgements
We want to extend our thanks to our supervisors; Viktor Lindström at Cybercom
and Riccardo Scandariato at Chalmers University of Technology for their guidance
along the way. We would also like to thank Marcus Tannerfalk and Henrik Lundqvist
at Cybercom for the opportunity to carry out this thesis at Cybercom. Last but
not least we want to thank Erland Jonsson, at Chalmers University of Technology,
for being our examiner.

The Authors, Göteborg 31/5/16

vii

Preface
This thesis has been conducted at Cybercom Sweden AB. Cybercom is an IT con-
sulting company that assists leading companies and organizations to benefit from
the opportunities of the connected world. The company’s areas of expertise span the
entire ecosystem of communications services. Cybercom’s domestic market is the
Nordic region, and in addition the company offers global delivery capacity for local
and international business. The project has been conducted on a system developed
in collaboration between Cybercom and one of their customers.

ix

Glossary

Threat - Anything that can exploit a vulnerability, intentionally or accidentally,
and obtain, damage, or destroy an asset.

Vulnerability - Weaknesses or gaps in a security program that can be exploited by
threats to gain unauthorized access to an asset.

Risk - The potential for loss, damage or destruction of an asset as a result
of a threat exploiting a vulnerability.

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Research question . 2
1.2 Description of work . 2

1.2.1 Threat Modeling . 2
1.2.2 Penetration Testing . 2

1.3 Contribution . 2
1.4 System Overview . 3
1.5 Limitations . 4

1.5.1 Android . 4
1.5.2 Sensor Penetration Testing . 4
1.5.3 Risk Assessment . 5
1.5.4 Revised Copy . 5

1.6 Thesis Outline . 5

2 Background and Related Work 7
2.1 Threat Modeling . 7

2.1.1 Assets . 7
2.1.2 Entry Points . 7
2.1.3 Trust Levels . 8
2.1.4 Extended CIA Triad . 8
2.1.5 External Dependencies . 9
2.1.6 Data Flow Diagram . 9
2.1.7 STRIDE . 10
2.1.8 Attack Trees . 13
2.1.9 Risk Assessment . 14
2.1.10 Threat Modeling Process . 15

2.2 OWASP . 17
2.2.1 OWASP Mobile Security Project 18

2.3 Microsoft Threat Modeling Tool . 19
2.4 Android Basics . 19

2.4.1 Android Architecture . 19
2.4.2 Android Storage Options . 20

xiii

Contents

2.4.3 Interprocess Communication 21
2.4.4 Rooted Android Device . 22

2.5 Android Devices . 22
2.6 Penetration Testing . 22
2.7 Related Work . 23

2.7.1 Mobile Application . 23
2.7.2 Threat Modeling . 23
2.7.3 Penetration Testing . 24

3 Threat Modeling 25
3.1 Modeling . 25

3.1.1 Defined Assets . 25
3.1.2 Defined External Dependencies 25
3.1.3 Defined Trust Levels . 26
3.1.4 Defined Entry Points . 26

3.2 Defined Data Flow Diagram . 27
3.2.1 Level-1 Data Flow Diagram 28

3.3 Resulting Threat Model . 34
3.4 Evaluation of The Threat Modeling Process 34

4 Penetration testing 37
4.1 Insecure Authentication and Session Management 37
4.2 Cross-Site Scripting (XSS) . 38
4.3 Insecure Data . 40
4.4 Insufficient Cryptography . 40
4.5 SQL Injection . 41
4.6 Validation . 41

5 Discussion and Conclusion 43
5.1 Using STRIDE . 43
5.2 Future Work . 43

5.2.1 Communication Protocols for Sensors 43
5.3 Conclusion . 44

Bibliography 45

A Appendix I

B Appendix XV

xiv

List of Figures

1.1 Basic graphical overview of the system 4

2.1 Visual representation of the basic elements used to create data flow
diagrams . 10

2.2 Simple data flow diagram of an example system 13
2.3 Example of an attack tree listing the threats against a physical safe . 14
2.4 Generic process for threat modeling 17
2.5 Iterative process of threat modeling that should be conducted through-

out development of the system . 17

3.1 Conceptual level-0 data flow diagram of the system 28
3.2 Level-1 data flow diagram of the system 29

4.1 Screenshot of the first page in the web-interface with the fields for
input highlighted . 38

4.2 Screenshot of the subpage Group/Create new group in the web-interface
with the field for input highlighted 39

4.3 Screenshot of the results of HTML code insertion 39
4.4 Screenshot on part of the session cookie 39

xv

List of Tables

2.1 Example of different trust levels . 8
2.2 Description of the different elements used to create data flow diagrams 10
2.3 Description of the STRIDE mnemonic 11
2.4 Microsoft’s version of STRIDE-per-Element 12
2.5 STRIDE-per-Interaction: Threat applicability per interaction for each

element . 13
2.6 Description of different common mitigation strategies 16

3.1 Description of the defined assets . 26
3.2 Description of the defined trust levels 27
3.3 Description of the defined entry points 30
3.4 Summarization of all the processes and a subset of both the data

stores and interactors. Each entry describes their respective purpose
and how they interact with the rest of the system. 31

xvii

1
Introduction

The number of internet connected devices is becoming increasingly prevalent and
have become an essential tool in the modern world. Ranging from "smart homes" to
sensors that monitor and control electro-mechanical systems. Including computers
and network capabilities in products and systems gives the potential to lower cost,
increase performance and provide new functionality. As an example, in a "smart
home" today everything from the lights to the curtains and to the dishwasher can
be connected to the internet and controlled remotely.

A substantial amount of these devices are used to monitor and control electrome-
chanical systems. The spread of the domain of these devices have risen computer
security and network security concerns. Researchers have shown, in for example [1],
that there exist multiple security problems and vulnerabilities in these internet con-
nected device systems, also referred as Internet of Things (IoT). Similar problems
can with high probability be found in other areas, where internet connected devices
have been rapidly introduced and where security has not been considered a primary
factor in the design.

To aid developers develop secure systems already from the beginning, threat mod-
eling is often used. Threat modeling is a structured approach used to analyze the
security by systematically identify and rate all the threats that are applicable to
the developed systems. The core concept of the threat modeling process is typically
divided into three different stages. First, create an architectural overview of the sys-
tem in order gain an extensible amount of knowledge in how the system operates.
Second, utilize one or several different threat generation methodologies to generate
and rank all applicable threats to the developed system based on the architectural
overview. Lastly, determine the countermeasures and mitigation techniques that
will be used to address the applicable threats.

When analyzing the architectural overview it is important to know which platform
the system will run on. This is because it might exist platform specific threats that
will not show up among general system threats. For new systems it might not exist
a threat model that covers all its potential threats and the developers must look for
known threats against that kind of system.

1

1. Introduction

1.1 Research question
The research question of this thesis is how a threat model could be applied to a
smartphone/IoT system, since there exists limited research about threat models for
such systems. Further, it addresses how well a traditional threat modeling process
works and how it may be improved.

1.2 Description of work
Below is found a short description of the work split into two major components;
Threat Modeling and Penetration Testing.

1.2.1 Threat Modeling
In this project a threat modeling will be conducted and applied to an existing smart-
phone/IoT system which is developed by one of Cybercoms customers. The system
will be analyzed in all the different stages of the general threat modeling process:
decompose, identify and validate. The decomposition of the system will be done by
manually testing the system, reading the manual and having discussions with the
developers. In order to identify all the applicable threats to the system, common
threat generation techniques will be used. These results will then be compared and
complemented with lists of platform specific threats created by accredited sources
to be able to compare what the threat modeling process missed and also to create
a more complete threat model. In addition, the threat modeling process will be
evaluated for possible limitations and how it could be improved when applied to a
smartphone/IoT system.

1.2.2 Penetration Testing
In order to validate a subset of the threats found in the threat modeling process,
some penetration testing will be performed. The penetration testing will be carried
out by using existing tools recommended from accredited sources in conjunction
with performing some static code analysis. The penetration testing on the system
will not be exhaustive as only a subset of the different threats generated from the
threat modeling will be assessed.

1.3 Contribution
Since the area of threat modeling for smartphone/IoT systems is relatively new,
the scope of the work started from the beginning of a threat modeling process and
ended with a contribution to the on-going research on threat modeling for mobile
platforms. The contribution consists of how a working threat modeling process for
a smartphone/IoT systems could be improved by utilizing complementary threat
libraries from well accredited sources.
An investigation and evaluation of a methodological approach of an enhanced threat

2

1. Introduction

modeling process aimed towards smartphone/IoT system with focus on the An-
droid™ platform will be presented. The model could serve as a foundation for
future research aimed towards threat model for other platforms or a generic threat
model for all mobile platforms.

1.4 System Overview

The purpose of this system is to allow employees working in the industry to collect
and analyze the status of different industrial machines. The system utilizes different
types of small sensors to gather measurements such as temperature readings which
may be sent to expert analyst for further analysis. The goal is to make the main-
tenance procedure more efficient. The system consists of a central mobile device
running either the Android or Apple operating system having a special developed
system application installed. The application is communicating to a backend server
through either the device Wi-Fi or cellular connection. The system can, through
the mobile device, connect to several pre-authorized sensors that can provide the
application with measured data, via USB, Bluetooth or Wi-Fi.

The backend server hosts a web interface where the system administrators can up-
load and assign work orders. A work order is a set of instructions that a user should
perform when conducting maintenance. The work orders may include taking pic-
tures for documentation, retrieving sensor data or answering questions in text. Once
a user has fulfilled his work orders he can upload a report containing all the answers
to the backend server which automatically compiles the results and forwards it for
analysis.

The users have personal user credentials that they can use to login in the appli-
cation on the mobile device. When a user logs in to the application it checks the
server for new work orders assigned to that user, which can also be done manually
within the application. As long as the work order have been downloaded on the mo-
bile device the work of fulfilling it can be conducted offline. However, it is necessary
to go online to upload and synchronize the reports to the backend server. Figure
1.1 illustrates the system overview.

3

1. Introduction

Figure 1.1: Basic graphical overview of the system

1.5 Limitations
Below are the limitations made while conducting this thesis.

1.5.1 Android
The mobile application developed for this system is available for both Android and
iOS™. Both application are identical in functionality and features. This thesis will
however only cover the Android applications for several reasons. First, Android has
an easily accessible file system and it is fairly easy to acquire root privileges since it
is based on a Linux system. Second, compared to iOS, Android is an open platform
with more freedom for the programmers but also weaker against malicious attacks
[2]. Therefore, it is more likely to be targeted by an attack. Lastly, since Android
has a larger market share [3] and is more widely used on the commercial market it
is even more likely to be targeted by malicious behavior.

1.5.2 Sensor Penetration Testing
The interaction between the mobile application and the sensors will all be part of
the security analysis and threat modeling but will not be part of the penetration

4

1. Introduction

testing. This is because the configuration of the system application is to only estab-
lish a connection to known sensors and close the communication channel whenever
the desired data have been received. In addition, the system implements numer-
ous different types of communication channels when communicating with a sensor.
Therefore, conducting penetration testing on all the different channels are considered
to be out of scope for this thesis.

1.5.3 Risk Assessment
Risk assessment is an important part of any threat modeling process but in this
report only the theory behind it will be explained. This work will later be done by
the system owners since in this work it is not possible for us to classify the impact
that the threats and vulnerabilities could impose.

1.5.4 Revised Copy
This copy of the report has been revised by Cybercom’s customer, the system owner
who wishes to be anonymous, where part of the text and some of the figures have
been removed or changed due to confidential information.

1.6 Thesis Outline
The outline of the report is structured as follows; Chapter 2 consists of the back-
ground that is relevant for this project and the related work used. Chapter 3 de-
scribes the methodology and results of the threat modeling process. Then Chapter
4 discusses and presents the results of the penetration testing. Lastly, in Chapter
5 the results in general and their importance for future work are discussed. Finally
the thesis is concluded.

5

2
Background and Related Work

To get a better understanding of the thesis results, information related to the back-
ground and terminology of threat modeling, OWASP, Microsoft Threat Modeling
Tool, Android and penetration testing is presented. The chapter is finalized with a
section of related work.

2.1 Threat Modeling
Threat modeling is an approach used for analyzing the security of a computer system
or a software application. The process of threat modeling is a structured approach
used in order to identify, quantify and address all possible threats applicable to the
computer system or the software application [4]. First, this section will cover basic
concepts regarding threat modeling. Second, descriptions of the threat models and
threat generation related to this project will be given. Lastly, a description of the
general procedure of a threat modeling process will be described.

2.1.1 Assets
An asset is defined as a system/application resource which are inherently important
to the system/application design. In relation to threat modeling it is impossible to
have a threat without a corresponding asset, because assets are essentially threat
targets. An asset can be viewed as either a concrete or an abstract resource which
needs to be protected against being misused by an adversary [5]. A concrete asset
could be a specific process or data collection while an abstract asset could be data
consistency or organizational reputation [4]. However, a distinction regarding what
an asset is needs to be defined. An asset is a resource that needs to be protected and
not the mean used to protect that resource. Hence, a password is not necessarily
considered to be an asset as the purpose of the password is to protect other sensitive
data, but in some cases it might be considered an asset.

2.1.2 Entry Points
Entry points define the interfaces that an adversary can utilize to interact with the
system/application. Entry points can be divided into both external and internal
entry points [6]. An external entry point is used to provide access to external users
or components (e.g. open port for remote access). Whereas, internal entry points
may be used for intercommunication between different internal components in the

7

2. Background and Related Work

system/application, but have no interaction with external users (e.g. database access
for authentication). Even though internal entry points may not be as extensively
exposed as the external entry points, they still need to be well documented in the
case of an adversary that manages to bypass the first layer of defense and therefore
gets direct access to the internal entry points.

2.1.3 Trust Levels
Trust levels are assigned to the different entry points to define the level of privileges
an external user or component needs in order to access and interact with the system
[7]. Trust levels are categorized according to the privileges or access rights needed in
order for an external user or component to access and interact at each entry point,
as well as the requirements needed to interact with each asset. Table 2.1 shows an
example of different trust levels which then is used to cross-reference to different
entry points and assets.

Trust Levels
Name Description
Anonymous User User who has not provided valid user credentials
User with valid credentials User that has provided valid credentials
Administrator Application or system administrator

Table 2.1: Example of different trust levels

2.1.4 Extended CIA Triad
CIA in this case is a security model which stands for Confidentially, Integrity and
Availability. It is developed to help individuals when they look into important
aspects of IT security. A security measure is often developed to protect one, or
sometimes more, parts of the CIA triad [8]. It also exists an extended model of
the CIA triad since the original one is not considered sufficient and further security
measure needs to be included [9].

Below is the description of the extended model:
• Confidentiality: Confidentiality means protecting the information from unau-

thorized access and parties. This means that the information intended to be
kept secret, stays secret. Often this involves separating information into col-
lections based on who should have access (Authorization) and how sensitive
that information is. One example of confidentiality on an individual system is
the UNIX file system permissions.

• Integrity: To preserve integrity the information must be protected from unau-
thorized modifications or deletions and also allow for the authorized changes
to be logged (Authenticity) or reversed if it was a bad change that harmed the
system. Cryptography and hashmaps are normally used to ensure integrity.
An important part of integrity is Non-repudiation which implies that one
party of a transaction can never deny its involvement in that transaction.

8

2. Background and Related Work

• Availability: To be secure, the system, access channels and authentication
mechanisms must be available at all times when needed. Denied access to in-
formation is today one of the most common attacks, e.g. DDoS. A distributed
partly off-site system is a good practice to preserve availability.

• Authentication: Authentication is the process of verifying a claim of identity
and how that is proven. In computer system this is usually done by comparing
the provided credentials to those in an authentication server.

• Authorization: Authorization process is the process of giving someone per-
mission and access to do something that they are authorized to do. This is
often seen in the form of your privileges in a computer system.

2.1.5 External Dependencies
External dependencies are components that the system/application is interacting
with but will neither be included in the threat model as they are components that
the developers do not have any, or limited, control over. An example could be a
web server that interacts with a remote database not controlled by the server ad-
ministrator to retrieve or send data. It is important to model this communication to
analyze how the web server handles the incoming or outgoing data, but not necessar-
ily to model the database as the administrators do not have explicit control over the
database. Another type of external dependency is that a specific system/application
may be designed to run in a specified environment where certain requirements needs
to be fulfilled (e.g. communication only over a private network) [4]. Therefore, ex-
ternal dependencies are very important as they provide critical information about
the components that are being modeled and is also extensively used when creating
data flow diagrams which is covered in Section 2.1.6.

2.1.6 Data Flow Diagram
Data flow diagrams is a very common modeling tool when it comes to threat model-
ing [10]. The data flow diagrams allow a system designer or reviewer to gain a better
understanding of the system/application by providing a visual representation of how
the system/application processes data. The main purpose of data flow diagrams is
to show how data moves through the different system/application components and
how the data is affected during transit [4]. Data flow diagrams are structured in a
hierarchically way in order to allow the system/application to be decomposed into
one or several subsystems, each of them covering one specific part which allows for
a more detailed overview. The hierarchically structure is most commonly imple-
mented by creating multiple data flow diagrams. Each diagram contains increased
detail on certain parts of the system/application. These diagrams are commonly
labeled with the word "level" paired together with a numeric number to indicate
the level of detail in the diagram. Typically a level-0 data flow diagram is referred
as a conceptual diagram that gives an overview of the complete system but with
very limited information. In order to represent the different components of the
system/application, data flow diagrams utilizes basic building blocks referred to as

9

2. Background and Related Work

elements. Table 2.2 gives an overview of the basic elements used to create data flow
diagrams and Figure 2.1 gives a visual representation of how the elements may look
[4][10].

Data Flow Diagram Elements

Type Appearance Description Examples

Process Circle, rounded
rectangle or con-
centric circles

All running code Software written in
C, Python, Java etc

Data Flow Arrow Communication or
data flow between
different elements
(processes and data
stores or external
interactors)

HTTP, UDP, IPsec
etc

Data Store Two parallel lines Medium that stores
data

Files, databases,
Shared memory etc

External In-
teractor

Rectangle Human interactors,
processes/databases
with no control over

External DNS-
servers, databases
or remote users etc

Trust
Boundaries

Dotted lines Represent the change
of privilege levels as
the data flows between
different elements

Change in trust
levels etc

Table 2.2: Description of the different elements used to create data flow diagrams

Figure 2.1: Visual representation of the basic elements used to create data flow
diagrams

2.1.7 STRIDE
STRIDE is an acronym that stands for Spoofing, Tampering, Repudiation, Informa-
tion Disclosure, Denial of Service and Elevation of Privilege. The STRIDE approach
to threat modeling was invented by Loren Kohnfelder and Praerit Garg in 1999 for
use in Microsoft software development [10]. The STRIDE mnemonic was developed

10

2. Background and Related Work

with the purpose of helping developers to identify and understand the different
computer security threats and potential vulnerabilities through categorization. The
STRIDE model provides examples of typical vulnerabilities that may be exploited
by different attacks in order realize a threat [11]. Table 2.3 provides a description
of the mnemonic.

The STRIDE Acronym

Threat CIA Violation Definition Targets

Spoofing Authentication Spoofing is where an
entity successfully
manages to pretend
to be someone/some-
thing other than
itself

Processes, exter-
nal interactors,
users etc

Tampering Integrity Modifying data with-
out valid permission

Data stores,
Data flows,
processes etc

Repudiation Non-repudiation Unsuccessfully as-
sociating certain
malicious actions or
changes to a unique
individual

Processes

Information
Disclosure

Confidentiality Information leaked to
unauthorized parties

Processes, Data
stores, Data
flows

Denial of
Service

Availability Unable to provide
intended functionality
to intended users

Processes, Data
stores, Data
flows

Elevation of
privileges

Authorization Allow an entity to
perform certain ac-
tions that require
higher privileges be-
yond those initially
granted

Processes

Table 2.3: Description of the STRIDE mnemonic

According to A.Shostack [10], there exists two prominent variants of STRIDE;
STRIDE-per-Element and STRIDE-per-Interaction which can be used to further
enhance the efficiency and the level of detail of the threat generation.

11

2. Background and Related Work

STRIDE-per-Element

STRIDE-per-Element puts emphasis on observing which typical kind of threats are
more prevalent to the different elements of the data flow diagram. By focusing on
a specific set of threats applicable to each element it makes the process of finding
the threats easier. Table 2.4 shows how Microsoft applies the STRIDE-per-Element
variant. For example, when analyzing a system/application using this chart the focus
will be on Spoofing and Repudiation related threats when considering an external
interactor, while the other threats will not be considered in detail for that specific
element. This allows for an efficient process in generating applicable threats. Note,
Table 2.4 will not be a good representation of every system and should instead
be tailored to fit the specific system/application that is being modeled. However,
assigning more types of threats to each of the elements results in that the analysis
will be applying original STRIDE for each element. In terms of comprehensiveness,
this is favorable but the purpose of STRIDE-per-Element is lost.

Element S T R I D E

External Interactor X X

Process X X X X X X

Data Flow X X X

Data Store X X X X

Table 2.4: Microsoft’s version of STRIDE-per-Element

STRIDE-per-Interaction

STRIDE-per-Interaction puts emphasis on all the interactions between different el-
ements in the data flow diagram in order to enumerate possible threats. Tuples
consisting of origin, destination and interaction are taken into consideration when
enumerating possible threats for each interaction. This variant of STRIDE was de-
veloped by Larry Osterman and Douglas MacIver, both working for Microsoft at
that time. The purpose of this variant is to reduce the amount of information the
developers needs to consider when conducting threat modeling. However, this ap-
proach yields as many threats as STRIDE-per-Element and as stated by A.Shostack
in [10] the threats may be more easily understandable. In contrast to STRIDE-per-
Element the use of tables is essential when working with STRIDE-per-Interaction
due to the increased complexity and amount of information that needs to be docu-
mented. Commonly these tables consist of:

• Number: Number used for referencing to each line
• Element: The element of the data flow diagram which is being considered
• Interaction: What kind of interaction the element have, e.g. outgoing data

flow to a data store

12

2. Background and Related Work

• STRIDE mnemonic: What parts of the STRIDE mnemonic affect this par-
ticular interaction

Figure 2.2 shows a simple example of a data flow diagram of a system and Table 2.5
shows the corresponding table used for the STRIDE-per-Interaction process. Once
each interaction have been defined for each element the table is further improved.
Instead of only showing what threats that is applicable to the system it instead
gives a description of possible threats in detail. When comparing Table 2.4 to
Table 2.5 it shows that STRIDE-per-Interaction gives a higher level of detail and
is more structured during the threat generation process in comparison to STRIDE-
per-Element but instead have increased complexity.

Figure 2.2: Simple data flow diagram of an example system

Number Element Interaction S T R I D E

1 Process A Inbound data flow from User X X X

2 Inbound data flow from Data
Store

X X X X

3 Outbound data flow to Data
Store

X X

4 Data Store Outbound data flow to Process A X X X

5 Inbound data flow from Process
A

X X X X

6 User Outbound data flow to Process A X X X

Table 2.5: STRIDE-per-Interaction: Threat applicability per interaction for each
element

2.1.8 Attack Trees
An attack tree is a simple but methodical overview model of the security of a system.
It has a tree structure where the root is always the goal of the attacker and the
children are different ways of achieving that goal. You either need one child or more
combined to achieve the parent node, this is often noted with “AND” and “OR”

13

2. Background and Related Work

in the graphical overview where “AND” is written out otherwise “OR” is assumed.
Attack trees can be used to list attacks against any system, as the Figure 2.3 by
Bruce Schneier for a safe shows, but is today increasingly used in computer systems.

Figure 2.3: Example of an attack tree listing the threats against a physical safe

In addition, an attack tree can also be used to rate the different ways to achieve
the goal. By performing such analysis it is possible to determine which way is the
most probable to use in order to realize the root goal. Bruce Schneier gives a few
examples in [12] where he rates each children with possible and impossible to see
which ways that makes the goal achievable. In another example he calculates the
price of each step and can then easily see which way is the cheapest in order to
achieve the root goal. This also gives an overview of where to apply the mitigation
strategies.

2.1.9 Risk Assessment
Risks is assessed by first identifying all threats and vulnerabilities. Then determine
the impact of a specific vulnerability and the likelihood of it occurring [13]. Then
repeat the process for each known vulnerability applicable to the system/applica-
tion. There exist two main categories of risk assessment, namely, quantitative and
qualitative risk assessment.

Quantitative Risk Assessment

Quantitative risk assessment is the most exhaustive, costly and time consuming
approach of performing a risk assessment. It uses methodologies commonly used
by financial institutions and insurance companies when computing the risk factor.
However, the most prominent benefit is identification of your greatest risk based
on the financial impact of the organization. In short, quantitative risk assessment
assigns an economical cost associated with each vulnerability and threat realization.

14

2. Background and Related Work

Qualitative Risk Assessment

In Qualitative risk assessment, the assets are defined and reviewed for known vul-
nerabilities and then measured against relative scales to determine the probability
of a threat realization. Similarly to quantitative risk assessment, the definition of
impact and likelihood is essential and most often a very complex task. However,
instead of assigning an economical value to impact and likelihood, qualitative risk
assessment uses a predefined non-numerical value. Typically values used are Low,
Moderate and High.

2.1.10 Threat Modeling Process

Figure 2.4 represents how threat modeling can be decomposed into three general
steps, namely, Decompose the application, Determine and rank threats and Deter-
mine countermeasures and mitigations [4].

1. Decompose The Application: The first step in the threat modeling pro-
cess involves decomposing the application into its basic building blocks and
functionalities in order to define the Assets, Entry Points, Trust Levels and
External Dependencies. Lastly, data flow diagrams are created to express the
data flow and trust boundaries within the application.

2. Determine and Rank Threats: The second step in the threat modeling
process is to determine all possible threats applicable to the application and
then rank the threats in order of prioritization. Threat categorization models
such as STRIDE is commonly used in conjunction with the data flow dia-
gram created in step one to generate all possible threats. Second, threat trees
may be created to give further detail about the threats and corresponding
vulnerabilities. However, in certain scenarios the creation of attack trees is
not applicable due to the level of complexity of the system and thus is left
out. Lastly, each threat is assigned an appropriate risk factor which can be
estimated using either a qualitative or quantitative risk assessment model de-
pending on the organizational needs.

3. Determine Countermeasures and Mitigations: Third step in the threat
modeling process involves deciding upon appropriate countermeasures and
mitigation strategies to use based on the prioritization of threats conducted in
step two. Table 2.6 gives a description of common risk mitigation strategies
[10] [13]. Decision of what strategy to use depends on the impact of exploita-
tion and the likelihood of occurrence of the threat as well as the economic
impact of adopting a certain mitigation strategy. It is common to only mit-
igate the vulnerabilities for which the cost to avoid, transfer or address the
problem is less than the potential business impact derived by the exploitation
of the vulnerability.

15

2. Background and Related Work

Risk Mitigation Strategies

Mitigation Description

Avoiding Risks Avoiding a potential risk entirely by changing the
requirements or system design. Assess whether a
potential risk is greater than the potential reward

Addressing Risks By adding appropriate countermeasure to prevent
threat realization. E.g. adding cryptography over
an insecure data flow

Accepting Risks Threat is acceptable under the organization
boundaries. The organization accepts the risks
and takes full responsibility after a threat realiza-
tion. Accepting risks are common when the im-
pact is very minor or the likelihood of occurring is
minuscule

Transferring Risks Transferring risks is the process of allowing an-
other party to accept the risks on your behalf

Ignoring Risks Ignore the threat and risk entirely. Basically hop-
ing for the best. Used to be a traditional approach
before new regulations

Warn About Risks Send out warnings about risks and threats to the
intended users

Table 2.6: Description of different common mitigation
strategies

Threat modeling is designed to aid the developers to find possible threats in the
early stages of the development. However, this process should not be performed
only once but instead be considered an iterative process throughout the complete
development life cycle of the system/application (see Figure 2.5) [6]. In addition,
the documentation created by the threat modeling process allows both internal and
external security reviewers to get a greater understanding of the architectural design
which allows for better prioritization of which parts to review in detail.

16

2. Background and Related Work

Figure 2.4: Generic process for threat modeling

Figure 2.5: Iterative process of threat modeling that
should be conducted throughout development of the system

2.2 OWASP
The Open Web Application Security Project, OWASP, is a multinational non-profit
organization whose focus is to improve the security in software. Their main focus is
to make software security visible so that anyone can be up-to-date with the latest

17

2. Background and Related Work

flaws. Since 2003 they have published "Top 10 Security Risks" lists which in the
beginning consisted of attacks, vulnerabilities and countermeasures. In 2007 the
main focus was on vulnerabilities and since 2010 also security risks [14]. A new
version is released about every three years and the list for 2016 have not yet been
released so the OWASP Top Ten references in this report will we based on the 2013
report. OWASP has received a lot of attention and is among other recommended
by IBM [15] and CISSP[16].

2.2.1 OWASP Mobile Security Project
One branch of the OWASP project is their Mobile Security Project which is a cen-
tralized resource intended for developers and security experts to use both during
development and in security assessments of mobile applications [17]. The focus of
the project is to gather and maintain information, as well as classify mobile security
risks and provide developmental controls in order to reduce the consequences and
probability of exploitation of threats.

Similarly to the OWASP Top Ten security risk for regular web applications. The
OWASP mobile security project have created a list that focuses only on the top
mobile risks.

The list for 2015 contains the following threat categories:
1. Improper Platform Usage: This category covers non intended use of certain

platform specific features or failure to follow the platform security policy. It
might include misuse of the Android explicit and implicit intents, platform
permissions and misuse of the different storage options or other security control
that is part of the mobile operating system.

2. Insecure Data: This category covers insecure data storage and unintended
data leakage. This is very apparent on the Android platform since it is an
open platform based on Linux.

3. Insecure Communication: This category covers all aspects of insecurely
transferring data from A to B. It includes mobile to mobile communications,
application to backend communications or mobile to anything else communi-
cations. That includes all communications technologies and protocols that a
mobile device might use: TCP/IP, WiFi, Bluetooth, NFC/RFID, GSM, 3G,
SMS, etc.

4. Insecure Authentication: This category covers all notions of authenticating
the users and bad session management. This also includes authentication over
insecure channels.

5. Insufficient Cryptography: This category covers the implementation of
insufficient cryptography. Meaning when cryptography was attempted but for
some reason was not done correctly.

6. Insecure Authorization: This category covers any failures in authorization,
for example authorization decisions in the client side or forced browsing. A

18

2. Background and Related Work

common threat is to search for unlinked contents on a website
7. Client Code Quality Issues: This category covers code-level implementa-

tion problems in the mobile client, which is distinct from server-side coding
mistakes.

8. Code Tampering: This category covers code tempering such as binary patch-
ing and local resource modification. This means that when the application is
delivered to the mobile device the attack can modify the code, change memory
contents and replace or modify the system API.

9. Reverse Engineering: This category covers the reverse engineering of the
final core binary to determine its source code, libraries, algorithms and assets.

10. Extraneous Functionality: This category covers the fact that developers
sometimes include hidden backdoor functionality or other internal security
controls meant for development. These were never intended to be released
into the final product.

In addition, the mobile security project have created a checklist containing infor-
mation about the top relevant mobile threats including platform specific ones. This
checklist is aimed to be used as a foundation of any mobile application development
[18]. The checklist will serve as the complementary information used in conjunction
with the threat modeling process described in Section 2.1.10.

2.3 Microsoft Threat Modeling Tool
Microsoft Threat Modeling Tool is a tool used in the Microsoft Security Development
Lifecycle (SDL) which helps the developers to create an overview and analyze their
systems for vulnerability and threats. The tool supports the feature to allow the
developers to graphically create data flow diagrams by dragging elements from a
stencil and then connect how they interact. The tool can then analyze the model
for threats, using STRIDE-per-interaction, and return a report where all parts of
the model is analyzed and potential threats and vulnerabilities is listed for each
interaction [19].

2.4 Android Basics
This section will cover some fundamental concepts about the Android operating
system in regards to security which will be used and discussed throughout this
report.

2.4.1 Android Architecture
The Android operating system is built upon the Linux kernel and thereby inherits
its core principles of the UNIX process isolation, least designated privileges and user
permissions [20]. Android applications are commonly written in the Java program-
ming language and, together with other resource files, compiled into an Android

19

2. Background and Related Work

Package File (APK file) which is used in order to install the application on a device
running Android [21]. During compilation of the APK file, all the files containing
code is further compiled into Dalvik Executable Files (dex files) which is executed
during runtime by either the Dalvik Virtual Machine (VM) or the Android Runtime
(ART). The Dalvik VM is the predecessor to the ART and is used in all Android
versions up to and including version 4.4 while the ART is included in version 4.4
and will be the standard runtime environment in newer versions [22] [23].

In addition, Android utilizes a technique referred to as the Application Sandbox
for its process isolation where each application gets assigned a dedicated part of
the memory and file system. This restricts any access and results in isolation of
application data and code execution to any other user interaction and application
installed on the device [24].

2.4.2 Android Storage Options

Android provides numerous options when it comes to storing persistent data related
to the applications. Depending on the requirements and specific needs, such as pri-
vacy or space requirement, each option will be either more or less suitable [25].

The following options are available:

• Shared Preferences: The shared preferences options allows developers to
store and retrieve persistent key-value pairs of primitive data types, e.g. in-
tegers, strings, booleans. This information will be stored across user sessions
even if the application have been terminated in between. Shared preferences
will in addition not be publicly available but will be protected and contained
within the application sandbox and only be accessible to the application stor-
ing the data.

• Internal Storage: Similarly to shared preferences, the internal storage option
only allows access within the application sandbox and thus this option can be
considered private to the application. However, it is not restricted to primitive
data types and therefore allows storing of any file types, e.g. pictures, text
files, cache files.

• External Storage: The external storage will store the application data pub-
licly available to any user or application that wants to read this data. There-
fore, external storage is not suitable for storing sensitive data which needs to be
protected from both other applications as well as other user interactions, such
as accessing the data via computer interactions or file browsing applications.

• SQL Database: Android provides full support of SQL databases which is
ideal for storing structured data, such as contact and user information. The
SQL database is stored within the application sandbox and thus is not publicly
available to any other user or application interaction.

20

2. Background and Related Work

2.4.3 Interprocess Communication
Android provides several options for handling interprocess communication (IPC) in
order to allow the developers to share data and information between the processes
within an application or share data to an external application [24]. These IPC mech-
anisms allows the developers to both verify the identity of the destination process
as well as apply certain security policies on the IPC. In addition, it is possible to
define whether an IPC should be accessible outside of the Application Sandbox or
be contained within it.

The following common and suggested options available are:
• Intents: An intent is a messaging object which is used to initiate certain

actions within an application [26]. Even though intents may be used in several
ways for communication between specific application components there exists
three fundamental use cases. Namely, deliver a broadcast, start an activity
(an activity represents a single screen in an application) and start a service
(a service is a set of actions to be performed in the background without user
interaction):
– Deliver broadcast: By using intents applications are able to broadcast

information, such as alerting of an incoming SMS message or a change
in the network state, which other applications then can use and perform
specific actions, e.g. show the content of the incoming SMS message.

– Start an activity: Using intents is a common way of changing in be-
tween different activities within an application. Whenever a new activity
needs to be started (changing screen in an application) an intent is passed
as an argument and may contain extra information that will be required
in the new activity.

– Start a service: Similar to starting activities, intents are also commonly
used in order to start services. The services will run in the background
without a user interface and complete certain computations or tasks that
may be required by another activity, e.g. downloading a file.

There exist two types of intents with different characteristics and use cases:
– Explicit Intent: Explicit intents are used when the destination compo-

nent is specified, e.g. starting an activity within the application. This
results in that the communication will not be accessible by any compo-
nent other than the destination target.

– Implicit Intent: Implicit intents in contrast to explicit intents do not
specify the target destination component, but instead relies on a feature
called intent-filters. This type of intent is commonly used to perform
specific actions that have not been implemented within the application.
But instead outsources this functionality to another application. One
typical use case is to send out an implicit intent to find any application
with a matching intent-filter that, for example, implements a camera
functionality.

21

2. Background and Related Work

• Binders: Using binders is the preferred way of handling remote procedure
calls (RPC) in Android applications. They provide a well-defined interface
that implements mutual authentication if required. Binders are typically used
to invoke certain actions of different components, instead of just sharing data
between them.

2.4.4 Rooted Android Device
Rooting an Android device refers to the process of modifying the operating system
to allow the user and applications to gain elevated root privileges. This level of
privileges is similar to the Linux super user and allows both the user and application
to perform operations which would be prohibited. This results in full control of the
operating system [20]. In addition, by rooting a device, it allows the user to both
uninstall pre-installed system application and install applications that requires root
privileges, such as file browsing applications that can read and write private data
protected by the application sandbox.

2.5 Android Devices
During this project two different Android devices were used, one Samsung Galaxy
Tab Active (SM-T360) and one LG Nexus 5, which was rooted. The Samsung device
has Android 5.1.1 installed and the LG Nexus 5 Android 5.0.1. Both devices have
the same version of the application installed (2.5.1).

2.6 Penetration Testing
In addition to the OWASP Top Ten mobile risks described in Section 2.2.1 the
following two risk categories from the regular OWASP Top Ten security risks is
included and described below, as they are part of the penetration testing of the
backend server.

• Cross-site Scripting (XSS): XSS against web applications uses known vul-
nerabilities in the application itself, their servers, or the plug-in systems where
they insert scripts to activate these vulnerabilities. The two most common
types are reflected and persistent scripts. Reflected script uses vulnerabilities
in the web client, often in its HTTP query parameters where server-side scripts
immediately parse them and display the result. Persistent scripts is when the
script is saved by the server and can thus be executed on other user sessions.

• SQL Injection: SQL injection is a code injection technique used by malicious
users to inject SQL queries in data-driven applications, commonly in web
application input fields. A successful SQL injection can return sensitive data
from the database, modify the database or execute administration operations.
In OWASP Top Ten security risks for web applications, injection attacks are
ranked the number one threat to web applications.

22

2. Background and Related Work

The system has been checked with several OWASP recommended tools [27], includ-
ing but not limited to:

• Burp Suite Proxy [28]: Burp is a proxy that can intercept and modify all
HTTP and HTTPS traffic that goes in or out of the system.

• Hydra [29]: Hydra is a brute-force authentication tool supporting several
protocols.

• MITM Proxy [30]: Man-in-the-middle proxy that can intercept and change
HTTP and HTTPS messages and generate SSL certificates.

• SQL Map [31]: A tool that is used for detecting and exploiting SQL injection
flaws, resulting in compromise of database servers.

• The Browser Exploitation Framework [32]: BeEF is a penetration tool
that looks for vulnerabilities through the web browser and can launch directed
command modules in the browser context.

• Cross Site "Scripter" [33]: XSSer is an automatic tool for detecting and
exploiting Cross Side Scripting vulnerabilities

2.7 Related Work
In this section the related work for this project is presented. Because the project
consists of several parts this section has been divided into three subsections.

2.7.1 Mobile Application
Security in mobile applications has received focus in the latest year and much aca-
demic research has been done on the subject. A.Kesäniemi talks in [34] about if we
have enough protection in mobile applications, what data needs protection and the
importance of attack trees. The security company DataTheorem presents in [35]
threats towards the different mobile platforms, Android, iOS and Windows Mobile
™ and threats in their core programming languages.
L.Dua et al. in [36] a lot of confidential and sensitive information is stored in mobile
devices. The authors present that in 2013 98% of the mobile malware were tar-
geted and at Android and that there exist increasing amounts of greyware, mobile
applications that do not do any harm but instead collect information about you for
example marketing purposes.

2.7.2 Threat Modeling
There exists a lot of research in the area of threat modeling and the research is still
highly active. D.Dhillion conclude in [37] that data flow diagrams do not capture
all the details to efficiently preform a threat model. To perform STRIDE a signif-
icant amount of security knowledge is needed. For these reasons the authors have
developed a threat library with common weaknesses that can be identified early in

23

2. Background and Related Work

the design phase. R.Scandariato et.al is on the same track in [38], that traditional
threat models need to be complemented in order to achieve their full potential. By
presenting an evaluation of their privacy threat analysis methodology LINDDUN
which is inspired by STRIDE. Two e-health systems and one smart grid system at
which LINDDUN was applied to have shown high success rate and even beat the
author’s expectation.
J.Clark et al. [39] takes another approach in his paper about threat modeling for
sensor networks and Internet of Things and lists different threat types, sorted in
subcategories, and also how different threats to sensor networks might possess a
threat towards, for example, confidentiality, integrity, authentication and availabil-
ity. Instead of elaborating on STRIDE this paper elaborates on threats towards IoT
systems in general.

2.7.3 Penetration Testing
N. Anutes et al. in [40] writes about the importance of carrying out penetration
testing to ensure the security of your system and the constant threat of attacks
against web services. The author’s evaluates different testing tools while focusing
on SQL injection, a very substantial threat for web applications.
A. Austin presents in [41] several ways to carry out manual or automatic penetration
testing how many vulnerabilities each of them finds. The authors test the same
system in different ways and find that, for example, Cross Site Scripting systematic
manual penetration testing finds more vulnerabilities, but have a higher false positive
rate, while the automatic tools finds less vulnerabilities but have a perfect score.
R.Scandariato et.al [42] continues in this discussion by comparing static and dynamic
penetration testing and see which has the more favorable cost-to-benefit ratio. The
authors find that the static tests produce more true positives in the limited amount
of time the test was concluded in. It should also be mentioned that the persons
carrying out the testing in this paper were returning master students at an American
University.

24

3
Threat Modeling

This chapter contains the methodology and results of the threat modeling process
implementation, including the data flow diagram and the evaluation of this process.

3.1 Modeling

The base concept of doing a qualitative threat analysis is having a thorough under-
standing of the system and a good data flow diagram.
As mentioned in Section 2.1.10 the first step to help understand the system is to
decompose the system into it its basic components, assets, entry points, trust levels
and external dependencies. Several meetings were held early in the project with the
systems developers to discuss the functionality of the system and how the data flows
between processes. Due to lack of technical documentation the developers instead
performed live demos as well as providing a copy of the API specification and a user
manual. Based on this material all the assets, trust levels, entry points and external
dependencies were defined and later used to define the data flow diagram.

3.1.1 Defined Assets

After discussions with the system developers all the assets for the system was defined
and is summarized in Table 3.1. Even though the ticket can be seen as a password,
and thereby a mean of protection, it was decided to be defined as an asset because of
how it is implemented. If compromised, it would result in exposure of the company
and sensor data.

3.1.2 Defined External Dependencies

The system interacts with two type’s external dependencies, namely the sensors and
the system for data analysis. The interactions between these dependencies and the
system will be included in the threat model. However, the model will not include
the architectural and logical design of these dependencies as there exist numerous
types of sensors. The system for data analysis is not developed or maintained by
the developers of this system.

25

3. Threat Modeling

Assets

Name Description

Sensor Data Data collected from the sensors containing infor-
mation and status on different machines

Company Data Information regarding the company. E.g. Organi-
zation name, employees information, information
about company inventory and user information

Backend Servers Servers containing information about all compa-
nies and user information

Session Ticket Used as authentication to the backend servers for
the API requests when retrieving both company
and sensor data

Table 3.1: Description of the defined assets

3.1.3 Defined Trust Levels

The system only allows a user with valid login credentials to use and interact with the
system. However, a distinction needs to be made as depending on the entry points
the users will have different privileges even though using the same account. A user
with assigned administration privileges only have elevated privileges when accessing
the web interface. But when logging in via the mobile application, there is no
difference in privileges between a regular system user and a user with administrator
rights. Table 3.2 summarizes the different trust levels defined for the system.

3.1.4 Defined Entry Points

The system consists of both internal and external entry points. The external entry
points correspond to all the direct interactions with the users of both the mobile
application and the web interface. In addition, another external entry point is the
system interaction with the external sensors. The internal entry points corresponds
to the interprocess communication types within the mobile application described in
Section 2.4.3. Table 3.3 summarizes the defined entry points for the system.

26

3. Threat Modeling

Trust Levels

Number Name Description

1 User without
administrator
privileges

Regular system user that only have access
to the mobile application. This type of user
cannot access and login into the web interface

2 User with
administrator
privileges

User with administrator privileges can login
into the web interface to access additional
system functionality. No additional privi-
leges in the mobile application

3 User without
valid credentials

User without valid credentials which is not
allowed to utilize the system functionality

4 Backend Server
Administrator

Administrator with local access to the back-
end servers for configuration. E.g. via SSH

Table 3.2: Description of the defined trust levels

3.2 Defined Data Flow Diagram

As mentioned in Section 2.1.6 it is very common to create data flow diagrams when
conducting a threat analysis to get a visual representation of the system. In collab-
oration with the system developers a first conceptual level-0 data flow diagram was
created (Figure 3.1) based on the information described in Section 3.1.

In order for the threat model to include detailed information about possible threats
a higher level data flow diagram was created that provides a greater overview and
increased level of detail. It was decided that only one higher level diagram was
sufficient in order to perform an adequate analysis, which is shown in Figure 3.2
and is described in detail in Section 3.2.1.

27

3. Threat Modeling

Figure 3.1: Conceptual level-0 data flow diagram of the
system

3.2.1 Level-1 Data Flow Diagram
As the data flow diagram is the main building block when conducting a threat
modeling process it is essential that the diagram includes all the necessary details
and having these details documented as thoroughly as possible. Table 3.4 lists all of
the processes and a subset of both the data stores and external interactors. It also
gives an overview of their respective functionality and how each process interacts
with the rest of the system components. All the data stores, except the backend, was
left out of the table as they only have one outgoing interaction with the destination
being the Data Storage Process. Their functionality is only to store data for later
use whenever a process request the data.

28

3. Threat Modeling

Figure 3.2: Level-1 data flow diagram of the system

29

3. Threat Modeling

Entry Points

Name Description Trust Levels

Application login ac-
tivity

Login fragment used to authenticate le-
gitimate users

1) 2) 3)

Application main ac-
tivity

The core functionality of the applica-
tion where users can input data and an-
swer the forms related to different work
orders

1) 2)

Sensor pairing The mobile application connects to an
external sensor for measurements

1) 2)

Backend synchroniza-
tion

The application sends API requests in
order to synchronize data from the
backend servers. E.g. new work orders,
forms, change of API version etc

1) 2)

Web interface login
page

Login page for the web interface used
to define forms, work orders, users and
user groups etc

1) 2) 3)

Backend server config-
uration

Remote or physical access to the servers
used for configurations

4)

External Storage Publicly available data for the device
user used by the application

1) 2) 3)

Implicit intent for
camera application

Implicit intent used to start a camera
application to use in order to answer
certain work orders

1) 2)

Broadcast receiver One broadcast receiver listening on
change in network states

1) 2) 3)

Table 3.3: Description of the defined entry points

30

3. Threat Modeling

Table 3.4: Summarization of all the processes and a subset of both the data stores
and interactors. Each entry describes their respective purpose and how they interact
with the rest of the system.

Level-1 Data Flow Diagram Description

Process/
Data store/
Interactor

Description Outgoing
Interactions

Target
Process/
Data
Store

Description

Main Process

The process which is
connecting all the
components together.
Its main purpose is to
propagate the
requests received from
the other processes

RC
Process

Sends what type of API
request RC process should
perform. E.g. validate cre-
dentials or synchronize data

Commands
Data
Storage
Process

Sends what data RC pro-
cess will need for synchro-
nization

Sensor
Frame-
work

Sends what type of sensor to
request specified data from.
E.g. sensor measuring tem-
perature data

Authentication
Response

Auth
Process

Propagate the response re-
ceived from RC process
based on previous authenti-
cation request

RC Process

Process handling all
the API requests to
the backend servers.
E.g. credentials
validation,
synchronization of
company and sensor
data

API Request Backend Sending appropriate API
request

Response Main
Process

Response containing infor-
mation about previous re-
quests. E.g. credential vali-
dation

Ticket, company &
sensor data

Data
Storage
Process

Data received from backend
sent for storage

Sensor
Framework

Process handling all
the sending and
receiving data from
the sensors

Request Sensor
Requesting the data that
was specified by the main
process

Request of Establish-
ment

Comm.
Establish-
ment

Request sent in order to es-
tablish a connection to the
specified sensor as specified
by the main process

31

3. Threat Modeling

Continuation of Level-1 Data Flow Diagram Description

Process/
Data store/
Interactor

Description Outgoing
Interactions Target Description

Response Main
Process

Sensor data sent as response
based on previous request

Auth Process

Process handling the
authentication
requests of user
requesting login to
the application

Status of login request Human
User

User gets a response with
the status of the login re-
quest

Authentication
Request

Main
Process

Request sent for authenti-
cation to main process for
propagation to RC Process

User Credentials
Data
Storage
Process

User credentials sent for
storage

Process handling all
the reading and
writing data to the
different types of data
stores available to the
application

Ticket, Company &
Sensor Data

RC
Process

Data sent for synchroniza-
tion to the backend

User Credentials &
Ticket

Shared
Prefer-
ences

User credentials and ticket
is sent for local storage on
the mobile device

Data Storage
Process

Application Data Internal
Storage

Storing data used during
runtime of the application.
E.g. logging files

Company & Sensor
Data

External
Storage

Storing sensor data and user
input used to complete work
orders

User & work order
Information

SQL
Database

Storing user and work order
information. What user an-
swered which form and also
list the answers

Web Interface
Process running the
web interface where
the administrator can
configure the user
privileges and create
and modify work
orders

Write Data Backend

Writing to backend storage
with updated information
on user privileges and work
orders

Data for analysis
Data
Analysis
System

Data received from the sen-
sors may be sent for fur-
ther analysis conducted by
experts. E.g. temperature
data

32

3. Threat Modeling

Continuation of Level-1 Data Flow Diagram Description

Process/
Data store/
Interactor

Description Outgoing
Interactions Target Description

Comm. Esthb.
Process handling all
the establishing of
connections between
the sensor and the
application. E.g.
completing the
pairing process when
using Bluetooth or
setting up the USB
communication

Protocol Data Sensor

Protocol data used to es-
tablish a connection. E.g.
session key generated after
Bluetooth pairing is com-
pleted

Information about
connection

Sensor
Frame-
work

Sending information about
established connection with
a sensor to sensor frame-
work in order for it to send
and receive data from the
sensor

Human User
User interacting with
the mobile
application

User input to answer
the forms

Main
Process

User provide input in order
to complete the work orders

User Credentials Auth
Process

User provide credentials for
login

Sensor
External sensor used
to gather specific
measurement data.
E.g. temperature
data

Protocol Data Comm.
Esthb.

Protocol data used to es-
tablish a connection. E.g.
session key generated after
Bluetooth pairing is com-
pleted

Response
Sensor
Frame-
work

Sending measured data af-
ter specified request from
sensor framework

Backend
Backend servers
which store all
information regarding
work orders and user
privileges. Provides
the API framework

Retrieve Data Web Inter-
face

User and work order in-
formation sent to the web
interface

API Response RC
Process

Sending data that was spec-
ified by the RC process
in a previous API request.
E.g. authentication valida-
tion, user ticket

End of Table

33

3. Threat Modeling

3.3 Resulting Threat Model

With the completion of the data flow diagram the next step was to conduct the
actual threat generation process in order to find the applicable threats to the sys-
tem. The threat generation process was divided into two parts. First, the data
flow diagram was modeled in the Microsoft Threat Modeling Tool which later also
was used to generate a comprehensive list of numerous possible threats. As the
Microsoft Threat Modeling Tool applies the STRIDE-per-interaction methodology
when generating threats, and does not take into consideration what platform the
application is built on, it resulted in that numerous threats were considered to not
be applicable. The resulting threat model generated by the Microsoft Threat Mod-
eling Tool is presented in Appendix A. As can be seen from the report only a subset
of the interactions is included and that the majority of threats all corresponds to
interactions between components which interact over a trust boundary. In addition,
a relation can be seen between the types of threats generated and the OWASP Top
Ten mobile risks described in Section 2.2.1, where the majority of the threats di-
rectly corresponds to one or numerous of the different risk categories. For example,
the interactions between the different storage options and the data storage process
all have threats related to information disclosure and elevation of privileges which
relates to Insecure Data, Improper Platform Usage and Insufficient Cryptography.

Second, the information acquired during the first step of the threat modeling process
was used when conducting the threat generation based on the OWASP threat list,
which is presented in Appendix B. The threat generation process was conducted
in collaboration with the system developers in order to gain as much insight as
possible. The threat list comprises of numerous platform specific threats and their
applicability to the system. As can be seen from the list, there exist threats which
are considered to not be applicable to the system. For example, threat number
eleven, Attacker Can Bypass Second Level Authentication, is one threat in the list,
which is not applicable as there currently does not exist any implementation of
second level authentication. However, for the majority of the threats it was possible
to determine their compliance with the system.

3.4 Evaluation of The Threat Modeling Process

As stated by Adam Shostack, the process of threat modeling is like learning to play
the violin [10]. Threat modeling should be considered a skill which requires a lot
of practice and learning to accumulate and gather enough experience in order to
be able to conduct quality threat modeling. When enough experience is acquired
the threat modeling can be applied to increasingly complex systems with good re-
sults. However, by following a methodological approach when conducting a threat
modeling process it aids with both improved structures as well as finding applicable
threats which may not have been discovered otherwise.

By evaluating the methodological approach, used throughout this project, when ap-

34

3. Threat Modeling

plying the threat modeling process, described in Section 2.1.10, to our type of system
it was made apparent that the process has certain limitations. During the first step,
Decomposing the Application, when the assets, entry points, trust levels and external
dependencies was defined, it showed that the process of determining these compo-
nents for a mobile application in comparison to a traditional web application was
very similar. Also the same approach could be used with high accuracy. However,
certain caution had to be taken when defining the entry points to the system as they
directly corresponds to what platform the application is built upon. Depending on
the underlying architecture there exist differences in how a user can interact with
the system and supply it with data. In the case of an Android application, it is
possible for that application to rely on data received from another application. This
is possible via the use of sending an implicit intent and allowing another application
with the corresponding intent-filter to perform some action where the results of the
action is later sent in response.

For the second step, where the data flow diagram was created and then would form
the foundation for the threat generation process using STRIDE. This showed that
the approach of defining a data flow diagram and use it to model a mobile appli-
cation deemed to be a successful approach. As can be seen in Appendix A and
described in Section 3.3 the threat generation process successfully generated numer-
ous different threats that were considered applicable to the system and thus needed
further investigation. In addition, several of the threats also had a direct relation to
the OWASP Top Ten mobile risks which further strengthens the argument that this
approach is applicable and usable when modeling mobile applications. However,
as the resulting threat model included numerous threats, which was considered to
not be applicable to our system further analysis was performed to determine the
cause and reason as to why this was the case. It showed that the reoccurring factor
that generated these non applicable threats was due to inadequate specification of
the different types of data flows as well as storage options that was present in the
system. All data flows in the system was modeled as generic data flows and only
explicitly expressed what type of information these flows consisted of but did not
take into consideration of what communication type being used. Thereby, resulting
in numerous threats related to, for example, tampering and spoofing was gener-
ated and due to the underlying communication type was considered non applicable.
Therefore, by including specification about the different communication types being
used, such as the Android IPC, the efficiency and accuracy of the threat generation
process could be increased as less resources would be required to evaluate the non
applicable threats.

Even though the process of conducting a threat modeling process on our type of
system was deemed successful and resulted in several applicable threats it is not
an exhaustive list consisting of all possible threats. By comparing the threats pro-
duced by following the threat modeling process and the threats listed in Appendix
B, which was determined by applying the checklist given from OWASP it is clear
that there exist differences in the two approaches. Both approaches results in nu-
merous applicable threats and even though there exists threats that is mutual to

35

3. Threat Modeling

both approaches, it exists threats that are unique to one or the other. For example,
the threat number 15, Debug is set to true, from Appendix B is a platform specific
threat to Android specifically and there exists no corresponding threat generated
from the threat modeling process. Therefore, by utilizing both approaches when
conducting threat modeling of a system, it will likely generate in a more efficient
process as well as better coverage.

Thus, we propose that the methodological approach for threat modeling aimed to-
wards mobile systems should consist of both utilizing a threat modeling process
that uses STRIDE in the threat generation, as well as using platform specific threat
libraries designed by accredited sources, such as the ones from OWASP.

36

4
Penetration testing

In this chapter the top results of the penetration testing will be presented. The
results were then used to validate the implementation of the threat model.

4.1 Insecure Authentication and Session Manage-
ment

The username to access the system is normally a cooperate email, which at many
companies uses the following policy: ’firstname.lastname@company.com’. This means
that the usernames can easily be guessed if one knows who is a privileged user or if
it is known that the company uses this system and then for example publish their
email addresses on their website.

The passwords have a weak password structure policy as it only needs five charac-
ters and they can for example be all lowercase letters. Both Microsoft [43] and the
Online Trust Alliance [44] recommend to have at least eight characters with a mix
of lowercase and uppercase letters, numbers and special characters. The tool Hydra
was used in conjunction with a list containing the one million most common pass-
words [45] in order to launch a brute-force attack against the system. Hydra was
configured to seize execution upon the first valid match. Resulting in that a user
with administrator privileges used a password comprised of five lower case letters.

When logging in the user receives a session-ticket which later is attached to the
messages to authenticate the user towards the backend servers. But the session
ticket does not have an expiration time, after testing this for almost two months it
has been confirmed by the system developers. Neither does it time out when the
user actively logs out. By using MITM proxy to catch messages it was possible to
impersonate another user with higher privileges. This was done by changing the
session-ticket to the session ticket of another user in the HTTP header before send-
ing the messages. The system responded by sending back work orders, collections
and media belonging to the user which was impersonated.

It does also seem that the system does not check the session ticket when sending
links for media (e.g. images, videos, recordings), all media was still downloaded on

37

4. Penetration testing

the Android device when the ticket was changed or removed completely. The direct
media URLs can be accessed by anyone who has the URL.

4.2 Cross-Site Scripting (XSS)

Shown in Figure 4.1 is the first page that is shown after a valid login for a user
with administrator privileges. The highlighting shows the three fields of user input
available, all potentially vulnerable to reflected or persistent cross cite scripting.
But neither the recommended scripts from OWASP[46], The Browser Exploitation
Framework[32] or XSSer[33]] gave any results on this page. None of the field executed
any of the scripts entered.

Figure 4.1: Screenshot of the first page in the
web-interface with the fields for input highlighted

Then the same attacks were tried against the ’Group Name’ input field on the next
page, as shown in Figure 4.2. It was found that it was vulnerable against some
persistent XSS scripts. As shown in Figure 4.3 it was possible to insert HTML code
between ’Group Name’ and ’Description’ which was saved on the server site on that
group. A script inserted also returned part of the session cookie, as shown in in
Figure 4.4. The cookie returned was not complete due to the maximum size of the
alert box that used to present it in.

38

4. Penetration testing

Figure 4.2: Screenshot of the subpage Group/Create new
group in the web-interface with the field for input

highlighted

Figure 4.3: Screenshot of the results of HTML code
insertion

Figure 4.4: Screenshot on part of the session cookie

39

4. Penetration testing

The system seems to be using black listing as a protection mechanism on the ’Group’
page since <script> worked while %3c script %3e did not work, allowing XSS vari-
ants to succeed. (%3c and %3e is the hexadecimal representation of < and >).

4.3 Insecure Data
Analysis of the data that is associated and created by the application was per-
formed in order to check whether the application stores any sensitive data exposed
on the device. This test was carried out by manually using different applications
to read the content on the local storage of the device. The first test checked
the data storage folder according to the Android storage policy, storage/emulat-
ed/0/Android/data/’application name’/, with the use of a file explorer. The results
showed that numerous different types of media, collections, work orders and xml
files containing information about which user that was assigned which work order
and who assigned it, all in clear text.

The second test checked the internal storage by utilizing a file explorer on the rooted
Android device. Android storage policy for internal storage is /data/data/’application
name’ and that folder contained data stored in shared preferences which included
xml files with company ID, user ID, encrypted username and encrypted session
ticket. By putting the Android device into debugging mode and used Android De-
bug Bridge (Adb), which is a versatile command line tool for Android, the database
files from internal storage could be extracted. One database contained information
about the user ID, username, company ID name and the email address for the cur-
rent logged in user, all in clear text. This means that the encryption of these user
credentials in shared preferences did not leave this data protected.

When a user signed of/log out, it was shown that only the shared preference content
is changed. All media is left on the device and if a new user logs in, their user
preferences are just appended in the database.

4.4 Insufficient Cryptography
The process of testing whether the application was susceptible to the insufficient
cryptography risk was conducted in two steps. First, reverse engineering of the ap-
plication was conducted where the APK file was decomposed in order to gain access
to the dex file. Reverse engineering was conducted to get access to the source code of
the application. This was performed by using the tool APKtool [47] which is a tool
designed for decoding any binary APK file in order to gain access to its contents.
Once the dex files were retrieved, it was further decomposed by the tool dex2jar [48]
which is a tool designed to recreate the class files containing the original java code.

40

4. Penetration testing

Second, static code analysis was conducted on the extracted class-files in order to
determine the implementation of the cryptographic scheme. It showed that the
implementation used in the application uses a weak cryptographic scheme, namely
the Data Encryption Standard (DES). DES is widely considered to be an insecure
cryptographic scheme as it has been proven that it is possible to break via brute-
force due to its short key length [49][50]. In addition to using a weak scheme,
the application also improperly handles storing of the cryptographic keys. Once
generated, the keys are split into two equal parts and then appended to each side of
the cipher which is then stored in the shared preferences. Therefore, even though
the extra step of implementing another layer of security by using cryptography was
taken, it showed that it does not increase the security of the application.

4.5 SQL Injection
By using Burp Suite Proxy it was possible to catch a HTTP header for both a
valid and an invalid login attempt towards the web and the Android application
interface. The headers could then be used by SQLMap to automatically scan the
login page for any SQL injection vulnerabilities. But a full SQLMap scan could
not find any vulnerabilities in the login interface for either the web interface or the
Android application.

4.6 Validation
In this chapter it was shown that vulnerabilities in several areas could be found
where the threat model reported potential threats. It is also found that several
defense mechanisms are implemented but not all of them are implemented correctly.
The penetration testing has not been exhaustive and it has been performed by two
master students with limited prior practical experience. But it was mainly carried
out to validate that the threats that the threat modeling process found was actual
threats and not false positives.

41

5
Discussion and Conclusion

This chapter contains a small discussion about working with STRIDE when conduct-
ing threat modeling. Then future work is discussed before the thesis is concluded in
the conclusion.

5.1 Using STRIDE
While doing this thesis we have realized that D.Dhillion in [37] has a point when he
states out that to use STRIDE efficiently you need, at least, some attack knowledge.
Otherwise it will be very difficult and time consuming trying to analyze all parts
against Spoofing, Tampering, Repudiation, Information disclosure, Denial of service
and Elevation of privilege. We can neither assume that all software developers have
security knowledge or that all development teams contains at least one security
expert. Instead we need well aimed threat models that can help them find potential
threats already from the start since that gives them a better chance to fix them
appropriately. It is also necessary to sponsor non-profit charitable organizations like
OWASP so that they can continue their work of improving the security in software
by making threat top lists and updated articles that are free for all.

5.2 Future Work
This report has shown that traditional threat models might not cover all threats
on smartphone/IoT systems. New, or updates to old, threat models needed to be
developed to help developers develop more secure systems already from the start.
With the wide spread of ’smart homes’ and monitoring of electro mechanical systems
this becomes an important issue that needs more future research. Many software
developers are ignorant or inexperienced when it comes to security so the tools
available must be up to date and work with different platforms to making it easy to
secure new systems.

5.2.1 Communication Protocols for Sensors
As mentioned in Section 1.5.2 the different communication channels were not covered
in the penetration testing and validation. However, when considering other systems
in the future it may be essential to include validation and penetration testing of
these components. Especially with the inclusion of low energy devices that have
limited computational power and relies on battery power. For these kind of systems,

43

5. Discussion and Conclusion

communication technologies that allow for low energy consumption is essential, such
as Bluetooth Low Energy. But the developers must be aware which protocols they
use and how they implement them. As an example it does exist severe threats
against Bluetooth, one is Bluebugging that exploit some permission in the Bluetooth
backbone and make it possible for the attacker to use most of the phones features.
Another attack is Bluesnarfing which is a kind of ’brute pair’ and the attacker can
then read out most of the data saved on the paired device.
Therefore, for future work on other smartphone/IoT systems this must be taken into
account and analyzed. The choice of communication protocol must be thoroughly
analyzed, maybe protocols like WiFi-direct or LoRa have less vulnerabilities and are
easier to monitor.

5.3 Conclusion
Hopefully the thesis goals has been made clear and proven useful; that the threat
modeling process successfully have been implemented on a smartphone/IoT system
using complementary information from OWASP. The report made from the data
flow diagram was good, but it needs to be complemented with the OWASP Top
list, since it does not yet have the option of choosing which platform that is being
analyzed.

44

Bibliography

[1] M.Asplund and S.Nadjm-Tehrani. “Attitudes and perceptions of IoT security
in critical societal services”. In: IEEE Access PP.99 (2016). issn: 2169-3536.

[2] D.M.Ahmad and P.Javed. “Security Comparison of Android and IOS and Im-
plementationof User Approved Security (UAS) for Android”. In: Indian Jour-
nal of Science and Technology 9.14 (2016).

[3] IDC. Smartphone OS Market Share. url: http://www.idc.com/prodserv/
smartphone-os-market-share (visited on 05/10/2016).

[4] OWASP. Application Threat Modeling. url: https : / / www . owasp . org /
index.php/Application_Threat_Modeling (visited on 02/26/2016).

[5] B.Larcom P.Saitta and M.Eddington. Trike v.1 Methodology Document [Draft].
July 2005.

[6] Microsoft. Threat Modeling. url: https://msdn.microsoft.com/en-us/
library/ff648644.aspx (visited on 03/01/2016).

[7] SANS. Threat Modeling: A Process To Ensure Application Security. url: https:
/ / www . sans . org / reading - room / whitepapers / securecode / threat -
modeling-process-ensure-application-security-1646 (visited on 03/01/2016).

[8] K.Fenrich. “Securing Your Control System”. In: Power Engineering 112.2
(2008), pp. 44–51.

[9] Bel G Raggad. Information security management: Concepts and practice. CRC
Press, 2010.

[10] A.Shostack. Threat modeling : designing for security. John Wiley and Sons,
2014. isbn: 9781118809990.

[11] L.Kohnfelder and G.Praerit. “The threats to our products”. In: Microsoft In-
terface, Microsoft Corporation (1999).

[12] Bruce Schneier. Attack Trees - Modeling security threats. Dec. 1999. url:
https://www.schneier.com/cryptography/archives/1999/12/attack_
trees.html.

[13] SANS. An Introduction to Information System Risk Management. url: https:
//www.sans.org/reading-room/whitepapers/auditing/introduction-
information-system-risk-management-1204 (visited on 03/07/2016).

[14] C. Warren Axelrod. Engineering Safe and Secure Software Systems (Artech
House Information Security and Privacy). Artech House, 2012. isbn: 1608074722.

[15] IBM Developer Works. OWASP top 10 vulnerabilities. url: https://www.
ibm.com/developerworks/library/se-owasptop10/ (visited on 05/07/2016).

[16] S.Harris. CISSP Certification All-in-One Exam Guide, Fourth Edition (Cissp
All-In-One Exam Guide). McGraw-Hill Osborne Media, 2007. isbn: 0071497870.

45

http://www.idc.com/prodserv/smartphone-os-market-share
http://www.idc.com/prodserv/smartphone-os-market-share
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling
https://msdn.microsoft.com/en-us/library/ff648644.aspx
https://msdn.microsoft.com/en-us/library/ff648644.aspx
https://www.sans.org/reading-room/whitepapers/securecode/threat-modeling-process-ensure-application-security-1646
https://www.sans.org/reading-room/whitepapers/securecode/threat-modeling-process-ensure-application-security-1646
https://www.sans.org/reading-room/whitepapers/securecode/threat-modeling-process-ensure-application-security-1646
https://www.schneier.com/cryptography/archives/1999/12/attack_trees.html
https://www.schneier.com/cryptography/archives/1999/12/attack_trees.html
https://www.sans.org/reading-room/whitepapers/auditing/introduction-information-system-risk-management-1204
https://www.sans.org/reading-room/whitepapers/auditing/introduction-information-system-risk-management-1204
https://www.sans.org/reading-room/whitepapers/auditing/introduction-information-system-risk-management-1204
https://www.ibm.com/developerworks/library/se-owasptop10/
https://www.ibm.com/developerworks/library/se-owasptop10/

Bibliography

[17] OWASP. OWASP Mobile Security Project. url: https://www.owasp.org/
index.php/OWASP_Mobile_Security_Project (visited on 05/15/2016).

[18] OWASP. OWASP Mobile Checklist Final 2016. url: https://drive.google.
com/file/d/0BxOPagp1jPHWYmg3Y3BfLVhMcmc (visited on 05/15/2016).

[19] Microsoft. SDL Threat Modeling Tool. url: https://www.microsoft.com/
en-us/sdl/adopt/threatmodeling.aspx (visited on 05/13/2016).

[20] J.J.Drake et al. Android Hacker’s Handbook. Wiley, 2014. isbn: 111860864X.
[21] Android Developers. Application Fundamentals. url: https://developer.

android.com/guide/components/fundamentals.html (visited on 05/13/2016).
[22] Android Developers. Verifying App Behavior on the Android Runtime (ART).

url: https://developer.android.com/guide/practices/verifying-
apps-art.html (visited on 05/14/2016).

[23] Android Open Source Project. ART and Dalvik. url: http : / / source .
android.com/devices/tech/dalvik/index.html (visited on 05/14/2016).

[24] Android Developers. Security Tips. url: https://developer.android.com/
training/articles/security-tips.html (visited on 05/14/2016).

[25] Android Developers. Storage Options. url: https://developer.android.
com/guide/topics/data/data-storage.html#netw (visited on 05/14/2016).

[26] Android Developers. Intents and Intent Filters. url: https://developer.
android . com / guide / components / intents - filters . html (visited on
05/14/2016).

[27] OWASP. Testing Tools - OWASP. url: https://www.owasp.org/index.
php/Appendix_A:_Testing_Tools (visited on 05/14/2016).

[28] Portswigger. Burp Suite. url: https://portswigger.net/Burp/ (visited on
05/14/2016).

[29] THC. Hydra. url: www.thc.org/thc-hydra (visited on 05/14/2016).
[30] mimproxy.MITM-Proxy. url: https://mitmproxy.org/ (visited on 05/14/2016).
[31] sqlmap. sqlmap: Automatic SQL injection and database takeover tool. url:

http://sqlmap.org/ (visited on 05/14/2016).
[32] BeEF. The Browser Exploitation Framework. url: http://beefproject.

com/ (visited on 05/07/2016).
[33] XSSer. Cross Site "Scripter". url: https://xsser.03c8.net/ (visited on

05/07/2016).
[34] A.Kesäniemi. Mobile Application Threat Analysis. The Owasp foundation,

2012. (Visited on 05/15/2016).
[35] DataTheorem. “Threat Model for Mobile Applications Security and Privacy”.

In: (2013).
[36] L.Dua and D.Bansal. “Review on Mobile Threats and Detection Techniques”.

In: International Journal of Distributed and Parallel systems 5 (2014), pp. 21–
29.

[37] D.Dhillon. “Developer Driven Threat Modeling: Lessons Learned in the Trenches”.
In: IEEE Security Privacy (2011).

[38] R.Scandariato K.Wuyts and W.Joosen. “Empirical evaluation of a privacy-
focused threat modeling methodology”. In: Journal of Systems and Software
96 (2014), pp. 122–138.

46

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://drive.google.com/file/d/0BxOPagp1jPHWYmg3Y3BfLVhMcmc
https://drive.google.com/file/d/0BxOPagp1jPHWYmg3Y3BfLVhMcmc
https://www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx
https://www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/practices/verifying-apps-art.html
https://developer.android.com/guide/practices/verifying-apps-art.html
http://source.android.com/devices/tech/dalvik/index.html
http://source.android.com/devices/tech/dalvik/index.html
https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/guide/topics/data/data-storage.html#netw
https://developer.android.com/guide/topics/data/data-storage.html#netw
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://www.owasp.org/index.php/Appendix_A:_Testing_Tools
https://www.owasp.org/index.php/Appendix_A:_Testing_Tools
https://portswigger.net/Burp/
www.thc.org/thc-hydra
https://mitmproxy.org/
http://sqlmap.org/
http://beefproject.com/
http://beefproject.com/
https://xsser.03c8.net/

Bibliography

[39] J.A.Clark et al. “Threat modeling for mobile ad hoc and sensor networks”. In:
(2007), pp. 25–27.

[40] N.Antunes and M.Vieira. “Comparing the Effectiveness of Penetration Testing
and Static Code Analysis on the Detection of SQL Injection Vulnerabilities in
Web Services”. In: (2009), pp. 301–306.

[41] A.Austin and L.Williams. “One Technique is Not Enough: A Comparison of
Vulnerability Discovery Techniques”. In: (2011), pp. 97–106.

[42] J.Walden R.Scandariato and W.Joosen. “Static analysis versus penetration
testing: A controlled experiment”. In: (2013), pp. 451–460.

[43] Microsoft Technet Magazine. Best Practices for Enforcing Password Policies.
url: https://technet.microsoft.com/en-us/magazine/ff741764.aspx
(visited on 05/07/2016).

[44] Online Trust Alliance. Security & Privacy Best Practices. url: https: //
otalliance.org/resources/security-privacy-best-practices (visited
on 05/07/2016).

[45] danielmiessler/SecLists. url: https://github.com/danielmiessler/SecLists.
[46] OWASP. XSS Filter Evasion Cheat Sheet. url: https://www.owasp.org/

index.php/XSS_Filter_Evasion_Cheat_Sheet (visited on 05/07/2016).
[47] R.Wiśniewski. Apktool - A tool for reverse engineering Android apk files. url:

http://ibotpeaches.github.io/Apktool/ (visited on 05/18/2016).
[48] dex2jar. url: https://github.com/pxb1988/dex2jar (visited on 05/18/2016).
[49] B.Schneier. The Legacy of DES. url: https://www.schneier.com/blog/

archives/2004/10/the_legacy_of_d.html (visited on 05/18/2016).
[50] OWASP. Guide to Cryptography. url: https://www.owasp.org/index.php/

Guide_to_Cryptography (visited on 05/18/2016).

47

https://technet.microsoft.com/en-us/magazine/ff741764.aspx
https://otalliance.org/resources/security-privacy-best-practices
https://otalliance.org/resources/security-privacy-best-practices
https://github.com/danielmiessler/SecLists
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://ibotpeaches.github.io/Apktool/
https://github.com/pxb1988/dex2jar
https://www.schneier.com/blog/archives/2004/10/the_legacy_of_d.html
https://www.schneier.com/blog/archives/2004/10/the_legacy_of_d.html
https://www.owasp.org/index.php/Guide_to_Cryptography
https://www.owasp.org/index.php/Guide_to_Cryptography

A
Appendix

I

B
Appendix

XV

Nr
Vulnerability Name Platform

Compliant: Yes/No/

Not Applicable/- Classification

1 Application is Vulnerable to Reverse Engineering Attack/Lack of Code ALL Yes Static Checks

2 Account Lockout not Implemented ALL Yes Dynamic Checks

3 Application is Vulnerable to XSS ALL No Dynamic + Static Checks

4 Authentication bypassed ALL Yes Dynamic Checks

5 Hard coded sensitive information in Application Code (including Crypt) ALL No Static Checks

6 Malicious File Upload ALL No Dynamic Checks

7 Session Fixation ALL No Dynamic Checks

9 Privilege Escalation ALL Yes Dynamic Checks

10 SQL Injection ALL No Dynamic + Static Checks

11 Attacker can bypass Second Level Authentication ALL Not Applicable Dynamic Checks

12 Application is vulnerable to LDAP Injection ALL Not Applicable Dynamic Checks

13 Application is vulnerable to OS Command Injection ALL No Dynamic Checks

15 Debug is set to TRUE Android No Static Checks

16 Application makes use of Weak Cryptography ALL Yes Static Checks

17 Cleartext information under SSL Tunnel ALL Yes Dynamic Checks

18 Client Side Validation can be bypassed ALL Yes Dynamic Checks

19 Invalid SSL Certificate ALL No Static Checks

20 Sensitive Information is sent as Clear Text over network/Lack of Data ALL No Dynamic Checks

21 CAPTCHA is not implemented on Public Pages/Login Pages ALL Yes Dynamic Checks

22 Improper or NO implementation of Change Password Page ALL No Dynamic Checks

23 Application does not have Logout Functionality ALL No Dynamic Checks

24 Sensitive information in Application Log Files ALL Yes Dynamic Checks

25 Sensitive information sent as a querystring parameter ALL No Dynamic Checks

26 URL Modification ALL Not Applicable Dynamic Checks

27 Sensitive information in Memory Dump ALL No Dynamic Checks

28 Weak Password Policy ALL Yes Dynamic Checks

29 Autocomplete is not set to OFF ALL No Static Checks

30 Application is accessible on Rooted Device ALL Yes Static Checks

31 Back-and-Refresh attack ALL Not Applicable Dynamic Checks

32 Directory Browsing ALL Not Applicable Dynamic + Static Checks

33 Usage of Persistent Cookies ALL Yes Dynamic Checks

34 Open URL Redirects are possible ALL No Dynamic Checks

35 Improper exception Handling: In code ALL - Static Checks

36 Insecure Application Permissions ALL No Static Checks

37 Application build contains Obsolete Files ALL - Static Checks

38 Certificate Chain is not Validated ALL yes Dynamic Checks

39 Last Login information is not displayed ALL No Dynamic Checks

40 Private IP Disclosure ALL No Static Checks

41 UI Impersonation through RMS file modification [1] JAVA - Dynamic Checks

42 UI Impersonation through JAR file modification Android - Dynamic Checks

43 Operation on a resource after expiration or release All Not Applicable Dynamic Checks

44 No Certificate Pinning All Yes Dynamic Checks

45 Cached Cookies or information not cleaned after application removal All No Dynamic Checks

46 Clipboard is not disabled All No Dynamic Checks

48 Android Backup Vulnerability Android No Static Checks

49 Unencrypted Credentials in Databases (sqlite db) ALL Yes Dynamic Checks

50 Store sensitive information outside App Sandbox (on SDCard) ALL Yes Dynamic Checks

51 Allow Global File Permission on App Data Android No Dynamic Checks

52 Store Encryption Key Locally/Store Sensitive Data in ClearText All Yes Dynamic Checks

53 Bypass Certificate Pinning All Not Applicable Dynamic Checks

54 Third-party Data Transit on Unencrypted Channel All No Dynamic Checks

55 Failure to Implement Trusted Issuers Android No Static Checks

56 Allow All Hostname Verifier Android - Static Checks

57 Ignore SSL Certificate Error All - Static Checks

58 Weak Custom Hostname Verifier Android - Static Checks

59 App/Web Caches Sensitive Data Leak All Yes Dynamic Checks

60 Leaking Content Provider Android No Dynamic Checks

61 Redundancy Permission Granted Android No Static Checks

62 Use Spoof-able Values for Authenticating User (IMEI, UDID) ALL No Dynamic Checks

63 Use of Insecure and/or Deprecated Algorithms All - Static Checks

64 Local File Inclusion (might be through XSS Vulnerability) ALL Not Applicable Dynamic + Static Checks

65 Activity Hijacking Android Yes Static Checks

66 Service Hijacking Android No Static Checks

67 Broadcast Thief Android No Static Checks

68 Malicious Broadcast Injection Android No Static Checks

69 Malicious Activity/Service Launch Android No Static Checks

70 Using Device Identifier as Session All No Dynamic Checks

72 Lack of Check-sum Controls/Altered Detection Android No Dynamic Checks

73 Insecure permissions on Unix domain sockets Android - Static Checks

74 Insecure use of network sockets Android - Static Checks

	List of Figures
	List of Tables
	Introduction
	Research question
	Description of work
	Threat Modeling
	Penetration Testing

	Contribution
	System Overview
	Limitations
	Android
	Sensor Penetration Testing
	Risk Assessment
	Revised Copy

	Thesis Outline

	Background and Related Work
	Threat Modeling
	Assets
	Entry Points
	Trust Levels
	Extended CIA Triad
	External Dependencies
	Data Flow Diagram
	STRIDE
	Attack Trees
	Risk Assessment
	Threat Modeling Process

	OWASP
	OWASP Mobile Security Project

	Microsoft Threat Modeling Tool
	Android Basics
	Android Architecture
	Android Storage Options
	Interprocess Communication
	Rooted Android Device

	Android Devices
	Penetration Testing
	Related Work
	Mobile Application
	Threat Modeling
	Penetration Testing

	Threat Modeling
	Modeling
	Defined Assets
	Defined External Dependencies
	Defined Trust Levels
	Defined Entry Points

	Defined Data Flow Diagram
	Level-1 Data Flow Diagram

	Resulting Threat Model
	Evaluation of The Threat Modeling Process

	Penetration testing
	Insecure Authentication and Session Management
	Cross-Site Scripting (XSS)
	Insecure Data
	Insufficient Cryptography
	SQL Injection
	Validation

	Discussion and Conclusion
	Using STRIDE
	Future Work
	Communication Protocols for Sensors

	Conclusion

	Bibliography
	Appendix
	Appendix

