
Chapter 1 Introduction

Design and implementation of a decompression

engine for a Huffman-based compressed data cache

Master’s Thesis in Embedded Electronic System Design

LI KANG

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2014

2

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party

to let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Design and implementation of a decompression engine for a Huffman-based compressed

data cache

Li Kang

© Li Kang January 2014.

Supervisor & Examiner: Angelos Arelakis, Per Stenström

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

[Cover: Pipelined Huffman-based decompression engine, page 8.

 Source: A. Arelakis and P. Stenström, “A Case for a Value-Aware Cache”, IEEE

Computer Architecture Letters, September 2012.]

Department of Computer Science and Engineering

Göteborg, Sweden January 2014

i

Abstract

This master thesis studies the implementation of a decompression engine for Huffman

based compressed data cache. Decoding by traversing a Huffman tree bit by bit from the

root is straightforward but has many implications. In order to store a Huffman tree, it

requires too much memory resources, and the compressed memory content needs to be

decompressed and recompressed when encoding changes. Besides, it may be slow and

has varying decoding rate. The latter problem stems from that there is no specific

boundary for each Huffman codeword. Among Huffman coding variations, Canonical

Huffman coding has numerical features that facilitate the decoding process. Thus, by

employing Canonical Huffman coding and pipelining, the performance of the

decompression engine is promising. In this thesis, the specific design and implementation

of the decompression engine is elaborated. Furthermore, the post-synthesis verification,

time and power analyses are also described to show its validity and performance. Finally,

the decompression engine can operate at 2.63 GHz and the power consumption is 51.835

mW, which is synthesized with 28nm process technology with -40℃ and 1.30V.

ii

iii

Acknowledgements

I am very grateful for all the support and advices I have received. This project could not

have been realized were it not for the help and support of a great many people.

First and foremost, I would like to appreciate my advisors, PhD Candidate Angelos

Arelakis and Professor Per Stenström. They are very pleasant to work with and helped

me a lot with invaluable feedback.

I would like to acknowledge the helps of Professor Per Larsson-Edfors, Docent Lars

Svensson, Alen, Dmitry, Kasyab, Bhavishya, and Madhavan, who shared many technical

knowledge and experience with me. Also, I greatly appreciate many IT supports from

Peter Helander, Rune Ljungbjörn

A special thanks to my parents and girlfriend, who helped me out of many

difficulties in life and provided me with warm encouragement.

I highly appreciate for the effort that our thesis opponents, Roozbeh Soleimanifard

and Reza Zakernejad made. Their criticism and their questions opened our eyes for weak

points in our work that we had missed.

Li Kang, Gothenburg Jan, 2014

iv

v

Content

Abstract .. i

Acknowledgements .. iii

Content .. v

List of abbreviations .. ix

1 Introduction ... 1

2 Theory .. 3

2.1 Huffman coding.. 3

2.1.1 Information entropy .. 3

2.1.2 Huffman coding .. 3

2.1.3 Canonical Huffman coding ... 4

2.2 Design Process ... 5

2.3 Summary .. 6

3 Design .. 7

3.1 Related work .. 7

3.2 Huffman decompression engine ... 8

3.2.1 Algorithm .. 8

3.2.2 Impact of table sizes .. 9

3.2.3 An example ... 10

3.3 Summary .. 11

4 Implementation .. 13

4.1 Block diagram of the decompression engine ... 13

4.2 Decompression process .. 13

4.3 FIFO stage .. 14

4.4 CD stage ... 14

4.4.1 Address controller ... 15

4.4.2 Buffer unit ... 15

4.4.3 Barrel shifter ... 15

4.4.4 Comparator ... 17

vi

vii

4.5 VR stage ... 17

4.6 Summary .. 18

5 Synthesis and verification .. 19

5.1 RTL Synthesis .. 19

5.2 Verification Process ... 20

5.2.1 Testbench .. 20

5.2.2 Static timing analysis .. 21

5.2.3 Stimulus generation .. 21

5.2.4 Check the response ... 22

5.2.5 Configuration of the FIFO .. 24

5.3 Summary .. 24

6 Performance and Power Evaluation .. 25

6.1 Performance ... 25

6.1.1 Static timing analysis .. 25

6.1.2 Critical paths ... 25

6.1.3 Design Variation ... 26

6.2 Power Analysis ... 27

6.2.1 Power definition .. 27

6.2.2 Test vectors setup .. 28

6.2.3 Power analysis based real and corner cases .. 28

6.2.4 Power distribution among three stages ... 30

6.2.5 Power consumption for different DeLUT sizes .. 31

6.2.6 Design variation .. 32

6.3 Energy Analysis ... 32

6.4 Summary .. 33

7 Conclusion ... 35

Bibliography ... 37

viii

ix

List of abbreviations

CD code detection

CHC Canonical Huffman coding

CT codewords table

CW codeword

DeLUT decode look up table

DIT decode information table

DUT design under test

FCW first codeword

FIFO first in first out

HDL hardware description language

LUT look up table

RAM random access memory

ROM read only memory

RTL register transfer level

SDF standard delay format

STA static timing analysis

VFT value frequency table

VR value retrieve

1

1 Introduction

Computer system performance depends on the memory system as well as the

processor microarchitecture. Conventionally, the optimization of the memory hierarchy is

focused on the average memory access time. However, power is a design constraint with

growing importance. In the work stations, the high end computers use powerful multi-

core processors with on-chip cache on the order of 10MBs and large off-chip memory on

the order of dozens of GBs, consuming considerable power. The problem is more severe

for the processors in mobile devices, like smartphones and tablets. In these devices, CPUs

are less performance-oriented, while the battery life is equally important for the users‟

experience. In such cases, 25% to 50% of the total power is consumed by the cache [1].

Thus, more attention should be drawn on both performance and power trade-off.

The power dissipation can be reduced by keeping the memory resources in a small

size. One way to do this while the performance is little or not affected is to employ data

compression. Therefore, the cache data are compressed before being stored and

decompressed before being accessed. The former operation is executed by an encoder

and the latter by a decoder. Therefore, an encoder and a decoder are required to be

integrated in the cache. Since decompression is on the critical path (requested cache data

by the processor must be decompressed) and may affect the cache hit time, the decoder‟s

design is highly constrained in terms of speed. In addition, the power dissipation

overheads caused by the encoder and decoder must be kept in low levels. Thus, the

architectural support for cache compression is highly constrained in both terms of

performance and power dissipation.

Several cache compression approaches have been proposed in the past: 1) Pattern-

based approaches that replace common patterns with fixed-width encodings [2] and 2)

dictionary-based approaches that keep commonly appeared values in a dictionary and

instead save a pointer to the dictionary [3]. Both pattern-based and dictionary-based

approaches have the characteristics of a simple design, relatively low decompression

latency but mediocre compression efficiency.

On the other hand, statistical-based approaches [4][5], such as Huffman coding,

have high compression potential at the cost of more complex design and possibly higher

decompression latency. The Huffman coding algorithm replaces data symbols (also

referred as data values) by variable-length codewords: short codewords are assigned to

more frequent values and longer codewords to less frequent values. Huffman coding is

generated by building the Huffman tree based on the frequency of occurrence of the data

values.

Chapter 1 Introduction

2

This thesis project targets design and implementation of a decompressor for a

Huffman-based compressed cache approach because decompression is more complex and

designing a decompressor without significantly penalizing the cache hit time is

challenging.

Decoding is a reverse process of encoding which traverses the Huffman tree bit by

bit starting from the root using the compressed data stream. Unfortunately, it has many

implications. In order to store a Huffman tree, it requires much memory resource, and the

memory needs to be updated when encoding changes. Besides, it is slow and has varying

decoding rate. This inefficiency stems from the fact that there is no specific boundary for

each codeword (CW), due to the variable length codeword nature of Huffman coding.

The approach is the following. The decoding problem can be divided in two phases:

1) Codeword Detection: a valid codeword is detected; 2) Value Retrieve: Using the

detected codeword, the associated value is retrieved. Canonical Huffman coding, can be

utilized instead to facilitate this two-phase process, as the generated codewords have the

numerical sequence property and can be more efficiently detected in the first phase. In

addition, these two phases can run independently concluding that the decoding process

can be actually pipelined in at least two stages, each one of which runs one decoding

phase. Consequently, by employing Canonical Huffman coding and pipelining, the

performance of the decompression engine is promising.

The methodological approach taken in the project to evaluate the design is the

following. The logic simulation and post-synthesis verification tool is Modelsim. The

synthesis and timing and power analysis tool is Synopsys Design Compiler. The process

technology employed is 28nm, provided by STMicroelectronics.

In the project, the following main results are found. The decompression engine can

operate at 2.63 GHz and the power consumption is 51.835 mW. In other words, in each

380 ps, it can derive a 32-bit decompressed value from the decompression engine.

In Chapter 2, the thesis firstly describes the theory behind Huffman-based data

compression. That is vital for the understanding of the decompress engine‟s structure.

Then, Chapter 3 introduces the design of the decompression engine, including the details

of the decompression algorithm. In Chapter 4, the specific implementation of the

decompression engine is represented. After the implementation, its synthesis and

verification process will be illustrated in Chapter 5. In order to verify the performance

and power dissipation of the design, the timing and power analysis are elaborated in

Chapter 6. Finally, in Chapter 7, the findings and insights from the thesis work will be

reviewed.

3

2 Theory

This chapter will provide the theoretical background that is necessary to understand

the Huffman coding process. It first introduces the entropy theory to understand the

superiority of Huffman coding. Then, it explains the Huffman encoding and decoding

process and presents the properties of Canonical Huffman coding. Finally, it describes the

compression process and the structure of the compressed cache block.

2.1 Huffman coding

2.1.1 Information entropy

In information theory, the Entropy [6] is used to express the uncertainty of a random

variable U that takes values in the setu . It is defined as

supp(P)

(U) () log ()
U

U b U

u

H P u P u

 (2.1)

where ()UP denotes the probability mass function (PMF) of the U, b is only a unit

change, in this thesis, let it be 2, and where the support of ()UP is defined as

 supp() : () 0U UP u P uu .

Take a symbol sequence as an example.

{ , , , , , , , , , , , , }u v w w x x y y y z z z z

There are five different letters; so that 3 bits are needed to describe each letter

originally in a fixed-width representation. By using equation (2.1), we can get its

Shannon entropy.

2 2 2 2

1 1 2 2 3 3 4 4
() (1) (2 log 2 log log log) 2.4116

13 13 13 13 13 13 13 13
H u

It means at least 2.4116 bits are required for each letter to express such a sequence

without any loss. So the data compression ratio is 3 / 2.4116 = 1.244.

2.1.2 Huffman coding

Huffman coding is a lossless data compression algorithm with variable length codes

[7]. Given a set of data symbols and their occurrence frequency, the algorithm constructs

a set of variable length codewords (CW) with the shortest average length and assigns

them to the symbols. The shorter CWs are assigned to more frequent symbols, while

Chapter 2 Theory

4

longer CWs for less frequent symbols. Huffman coding is widely used in the multimedia

codec, like the MP3 and JPEG files.

Huffman coding is generated by building a Huffman tree according to the data

symbols‟ frequency distribution. Take the same symbol sequence in section 2.1.1 as an

example. The binary tree is constructed bottom-up and left-to-right. Firstly, the symbols

are sorted in ascending order of their probabilities. In every step, two leaves (symbols)

with the least probabilities are placed in the tree. Their parent node has the sum of the

probabilities of the two leaves. This step should be repeated until the root node, which

has the probability of 1. Figure 2.1 shows the process of the construction of Huffman tree

and its Huffman CWs.

u
1/13

1 0

1 0

1 0

2/13

5/13

00:

(b) Huffman tree (c) Huffman code

z

1 0

4/13

v
1/13

w
2/13

x
2/13

y
3/13

z
4/13

8/13

1 0

10:y

010:x

011:w

110:v

111:u

4/13:

(a) Probability

z

3/13:y

2/13:x

2/13:w

1/13:v

1/13:u

Figure 2.1 The construction of Huffman tree and Huffman codeword

After the tree is completed, ones and zeros are assigned to left and right branches

respectively. The ones and zeros can be assigned to right and left branches, respectively,

as well, but the assignment must be consistent. Then the coding for each value-symbol is

generated by traversing the tree from the root to the respective leaf. The CWs for the

symbols u, v, w, x, y and z are 1111, 1110, 110, 10, 0 respectively, as it is also depicted

in Figure 2.1(c). The average size of the code is 3 × 1 / 13 + 3 × 1 / 13 + 3 × 2 / 13 + 3 ×

2 / 13 + 2 × 3 / 13 + 2 × 4 / 13 = 2.4615 bit / symbol. It is close to the entropy.

Huffman coding generates prefix-free code words. That is to say, there is not any

CW is a prefix of another CW. The prefix property is crucial for the code detection, as it

would be impossible for the decompression engine to detect a valid codeword otherwise.

2.1.3 Canonical Huffman coding

Among many alternatives in Huffman coding, Canonical Huffman coding (CHC) is

a particular type with unique properties which facilitate both encoding and decoding

processes. Before generating the Canonical Huffman codewords, their length must be

first calculated. This information is provided by the Huffman tree by counting the number

of pointer jumps from the root to each leaf when traversing the Huffman tree [5]. Then

Chapter 2 Theory

5

the value-symbols are sorted in ascending order according to their code-length. The

Canonical Huffman codewords are generated in the following steps:

(1) The first value-symbol is assigned to codeword 0 (numerical value of the CW is

zero), represented by as many bits, as its code-length (say „len‟) determines.

(2) CWs with the same length are numerically consecutive.

(3) The first code word (FCW) of the length “len+1” can be calculated from the last

code word (LCW) of the previous length “len” by using the formula

FCW[len+1]=(LCW[len]+1)×2. If there is no valid codewords for this length, use

the formula FCW[len+1] = LCW[len]×2, and FCW[len+1] = LCW[len+1].

The CWs in Figure 2.1 can be transferred to be Canonical Huffman codewords by

following steps. The process is shown in Figure 2.2. The first value-symbol is z, its

length is 2 so its CW is “00” and the CW of y is “01”. Then the CW length increases by 1,

the FCW of length 3 is “100”, and it is assigned to x. Finally, w, v and u are assigned

with “101”, “110” and “111”.

00:

(a) Generic Huffman coding

z

10:y

010:x

011:w

110:v

111:u

00:

(b) Canonical Huffman coding

z

01:y

100:x

101:w

110:v

111:u

Figure 2.2 The transform from generic to Canonical Huffman code

2.2 Design Process

Architecture Behavior RTL Gate Place & Route

synthesis

Figure 2.3 Design levels for VLSI design

There are five levels in the digital integrated circuit design shown in Figure 2.3.

Firstly, architecture level determines the skeleton according to the demand analysis. At

this level, some structure parameters are defined, such as the number of stages will be

employed in the pipeline. Then, at the behavior level|, the design is prototyped to test its

feasibility. In order to accelerate this process, the behavior hardware description language

(HDL) is used in the prototype, without regard of the circuit. At the register transistor

level (RTL), structure HDL is used and it is synthesizable. From the RTL design

description, a synthesis tool is used to implement the design in the target process

Chapter 2 Theory

6

technology to generate a gate level netlist. The designs were iterated until functional,

performance, timing, area and power requirements were met. The final level is place and

route. It includes floor planning, power routing, clock tree synthesis routing and post-

route optimization and so on [8]. In this thesis, I will present the design at architecture

level, RTL level and gate level.

2.3 Summary

This chapter provided the essential background knowledge for the thesis.

(1) The Huffman code length is varying. No explicit CWs boundaries exist.

(2) The Canonical Huffman encoding will be used in the design.

(3) The design will be presented in architectural, RTL and gate level.

7

3 Design

This chapter will introduce the design of the decompression engine. Firstly, it

describes the related work about the Huffman decoder and discusses the algorithm used

in this thesis. Then, the algorithm is illustrated by an example of the codeword table and a

pipelined organization. Finally, the impact of the table size and the compression process

are presented.

3.1 Related work

The variable length decoding is more difficult to implement than the encoding

because the input to the decoder is a bit stream without explicit word boundaries.

Existing decoders can be classified into three approaches as follows:

(1) Serial Decoders: They traverse a Huffman tree to detect and retrieve each symbol.

This method has two problems. Firstly, since the input coded data stream is

compared to a binary tree bit by bit; the decoding rate is extremely low. Secondly,

Due to the variable CW lengths, the serial processing causes a variable output rate

[9].

(2) Parallel Decoders: For a constant output rate, the number of bits to be decoded at a

time should be equal to the longest CW length resulting in bit-parallel processing,

which guarantees that one CW is detected at each cycle. The variable length decoder

has to decode a codeword, determine its length, and shift the input data stream by a

specific number of bits that corresponds to the decoded code length, before decoding

the next CW. These are recursive operations that cannot be pipelined [10].

(3) Multiple-Symbol Decoders: Due to the variable CW length, a block of encoded data

stream may contain more than one code word. Multiple-symbol decoders employ

this property for short CWs [7]. However, the exponentially increasing control and

hardware complexity set constraints to implementations, especially, when large code

word tables are used [11].

In this thesis, we propose a decoder scheme which is (1) parallel and, (2) pipelined.

In addition, it deals with uncompressed codewords due to the fact that the symbol set (in

other words the number of possible cache values) is very large while the Value

Frequency Table (VFT) that establishes the frequency distribution of the values has

limited size, thus only a subset of values is actually compressible.

Chapter 3 Design

8

3.2 Huffman decompression engine

3.2.1 Algorithm

Figure 3.1 shows the pipelined organization of the decompression engine [4]. It

consists of two stages: Code Detection (CD) and Value Retrieve (VR).

In the CD part, a First Codeword Table (FCW) is used to detect a valid CW. The

numerical property defines that a CW of a specific length is valid, if it has a larger or

equal numerical value than the FCW of that length and smaller than the FCWs of any

larger length. This is done in the comparators while the priority encoder outputs the

matched length.

On the other hand, in the VR part, the valid CW is subtracted by a corresponding

item in Decompression Information Table (DIT). The result of the subtraction is used as

an index to derive the associated value from the Decompression Look Up Table (DeLUT).

≥

≥

≥

…...

…...
FCW(3)

FCW(2)

FCW(1)
Matched

Codeword

Priority

Encoder

Barrel

Shifter

Matched

Length

Decompression

Information

Table(DIT)

Value

Matching

Code Reg
De-LUT

+
+

-

Figure 3.1 Pipelined organization of the decompression engine

The values are saved in consecutive locations of the DeLUT in code-length

ascending order and the detected CW is used to retrieve the value. The CWs are listed in

a codeword table (CT) with relevant lengths to indicate the FCW and DIT items. CT is

used during compression while all those tables (CT, FCW and DIT) are generated during

encoding generation. The generation of these tables is out of the scope of this thesis.

Table 3.1 shows an example of the DeLUT and CT. The DeLUT is on the left side, and

the CT is on the right side. The CWs in CT are not always listed with length ascending

orders.

Chapter 3 Design

9

Table 3.1 A small part of DeLUT and CT

Value Address Value
CT

FCW DIT
Codeword Length

A 000 A 0 1 0 0

B 001 B 10 2 10 01

C 010 C 110000 6 110000 101110

D 011 D 110001 6 110000 101110

E 100 E 110010 6 110000 101110

F 101 F 1100110 7 1100110 1100001

G 110 G 1100111 7 1100110 1100001

For example, there is a sequence 1100010…. The first valid CW is 1100012 because

it holds that 12>02, 112>102, 1100012 >1100002, 11000012<11001102. The matched CW

is 1100012, but 1100012 cannot be used as an index to retrieve the value. Since in the

DeLUT, the symbol D is stored in location 0112(3), the corresponding DIT item 1011102

(46) should be subtracted from 1100012 (49). Since the consecutive binaries are assigned

to the CWs with the same length, the same offset is subtracted from the CW with the

same length. The offsets are calculated during code generation and saved in the DIT.

Therefore, for Canonical Huffman codes, in addition to a DeLUT, a FCW table and a

DIT are required in decompression.

3.2.2 Impact of table sizes

Because the Huffman coding is based on occurrence frequency, a value frequency

table (VFT) is needed to keep record of the frequency of values in the cache. In the study

of Arelakis and Stenström[4], the optimum size for the VFT is obtained by comparing the

compression factor and the VFT size. From the results, the compression starts to degrade

when using a VFT of 16 KB or more. It means that the overhead to keep the values with

low frequencies in VFT is larger than the gain in compression. The Geometric-mean

curve shows that the VFT of 4 KB can achieve the highest compression rate. Therefore,

A VFT of 4KB is used in my design. Accordingly, the DeLUT is also 4KB. So the data

with low frequency will not be compressed. For the uncompressed data, a unique code

will be added as a prefix to be different from the encoded data. The unique code should

be short enough to decrease the overhead of the uncompressed data and prefix-free to

promise the correct decoding. This is the reason why this unique code is also generated

by the Huffman tree.

Chapter 3 Design

10

3.2.3 An example

0,0,0,0,0,0,2289,0,5695728,0,17276160,0,324,0,17241840,0

0 0
2289 1110111101

5695728 1110110010
17276160 uncompressed

324 1100110
17241840 11111011101010

1110111101 0 1110110010 1001

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0

0

0 1 1 0 0 1 1 0 0 11111011101010 0 0 0 0 0 0 00

0 0 00 0 0

value codewords

(a)

(b)

(c)

Figure 3.2 The compression process of a cache block

Figure 3.2 illustrates coding generation and compression of a compressed cache

block. Part (a) is the 16 values in a cache block. Part (b) is the mapping from the original

values to Huffman encoded data. The values of (a) are replaced by the codewords of part

(b) and are concatenated to form part (c). Emphasis must be given in two points: 1) “1001”

at the end of first line in (c) is the unique code, indicating the next value is

uncompressed,(i.e. 17276160); 2) Zero filling is used at the end of the third line, “000000”

to specify boundaries between compressed blocks. Figure 3.3 shows the decompression

process of the compressed cache block.

00000011101111010111011001001001 00000001000001111001110100000000

00000011101111010111011001001001 00000001000001111001110100000000

00000011101111010111011001001001 00000001000001111001110100000000

00000011101111010111011001001001 00000001000001111001110100000000

00000011101111010111011001001001 00000001000001111001110100000000

00000011101111010111011001001001 00000001000001111001110100000000

00000011101111010111011001001001 00000001000001111001110100000000

00000011101111010111011001001001 00000001000001111001110100000000

00000011101111010111011001001001 00000001000001111001110100000000

Barrel-Shifter

Output

matched length = 1

matched length = 1

matched length = 1

matched length = 1

matched length = 1

matched length = 1

matched length = 10

matched length = 1

00000011101111010111011001001001 00000001000001111001110100000000

00000011101111010111011001001001 00000001000001111001110100000000

00000001000001111001110100000000

matched length = 10

matched length = 1

matched length = 32 01100110011111011101010000000000

D0 D1

New data is filled in D1Transfer D1 to D0

00000011101111010111011001001001 00000001000001111001110100000000unique code

Figure 3.3 Example of the decompression operations

Chapter 3 Design

11

At least two registers, D0 and D1 are required to store the input data. Then, the input

data are used by the barrel shifter. The number of bits for the barrel shifter is dependent

on the previous matched length. So the first output of the shifter is the D0. The matched

length on the left side belongs to the barrel shifter output in the diagram on the right side.

When a unique code is detected, the consecutive 32-bit is an uncompressed CW. When

D0 is used up, the data in D1 is transferred to D0, and a new data line is loaded in D1.

3.3 Summary

(1) Three tables are required for the decompression, FCW, DIT and DeLUT.

(2) Both of the FCW and DIT are 512 bytes, and the DeLUT is 4KB.

(3) Decompression is divided in two phases: code detection and value retrieve.

Chapter 3 Design

12

13

4 Implementation

This chapter elaborates the design and implementation of the decompression engine

in details. The example in the previous chapter (section3.2.3) is used to illustrate the

principles. Figure 4.1 shows the decompression engine which employs a three-stage

pipeline, i.e. FIFO, Code Detection (CD) and Value Retrieve (VR). Among there stages,

the CD is most important.

dataout

validre validwr

datain

re we

dataout datain

validre validwr

length length

dataoutdatain

we

clk
rst

FI/CD CD/VR

Register in

pipeline

datain

wen

dataout

lineend lineend

validre validre

U1

FIFO

 U2

 CD

 U3

 VR

Figure 4.1 Pipelined design of the decompression engine

4.1 Block diagram of the decompression engine

The FIFO stage is actually a buffer that saves compressed bit sequence and controls

the transmission rate to the CD stage so that it will always has input and never suffers

from starvation due to different input and output rate. In the CD stage, a valid CW in the

encoded data from the FIFO stage is detected. Then, the matched length is given into the

VR. The VR uses the length and encoded data to retrieve the original value. During the

retrieve process, the FCW, DIT and DeLUT are employed, which have been explained in

Chapter 3. Between two consecutive stages, there are pipeline registers named by the two

stages. All ports for data transmission, like datain and dataout are 32-bit, the length is 5-

bit, and other flags are 1-bit.

4.2 Decompression process

Figure 4.2 shows a compressed cache block stored in a buffer with 32-bit rows.

1110111101 0 1110110010 1001

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0

0

0 1 1 0 0 1 1 0 0 11111011101010 0 0 0 0 0 0 00

0 0 00 0 0

Figure 4.2 One compressed cache block for decompress

Chapter 4 Implementation

14

At the beginning, the upper line of the compressed cache block (see Figure 4.2) is

stored in the FIFO buffer, and then it is sent to the CD stage. In the CD stage, the first

step is to detect the valid CW. The first bit „0‟ is a valid CW and its length is 1. The

second step is to use the matched length to get offset and calculate the index. By using

the index, the original value can be retrieved. Then the rest 31 bits in the upper line

should be concatenated with the first bit in the second line to construct a new line and be

decoded. When it encounters the unique code, (can be any code of any length but “1001”

is the unique code assumed in all the examples of this thesis), the unique code should be

discarded, and the consecutive 32 bits constitute the uncompressed value. The process

continues until the cache block is decoded completely. Then the rest bits of the

compressed cache block will be discarded. In this example, the discarded bit sequence is

“0000000”. Afterwards, the decompression engine can start decompressing another cache

block. The three cases mentioned are marked with gray color, and they will be

specifically demonstrated in following parts.

4.3 FIFO stage

Since the length of the Huffman codes are varying, that is to say, in each cycle, the

matched length derived from the CD stage is less than or equal to 32 bits. So a FIFO

stage is needed to adjust the data imbalance.

The FIFO stage contains 8 rows and 32 bits for each row. The reason why 8 rows

are chosen will be explained in section 5.2.5. Among those interfaces, U1/validre

indicates the validity of the data in the FI/CD, and U1/re is the read request from the CD

to the FIFO. The data transition from FIFO to CD depends both on the FIFO and the

CD‟s states. The FIFO should have valid data stored in buffer rows, and the CD should

have the data request for further process. Otherwise, U1/validre becomes „0‟.

4.4 CD stage

The CD stage generates the matched length for a valid CW from the input data. Both

the CD and the VR stages are dependent on such length. Figure 4.3 shows the block

diagram of the CD stage.

Comparator

(FCW)

Address Controller

datain

dataout

length

validrewe

Buffer

Unit

(4×32)

Barrel

Shifter

Unique

Code

Detector

Figure 4.3 Block diagram of the CD stage

Chapter 4 Implementation

15

The CD stage works according to the following steps.

(1) After initialization, check buffer unit. If it is not full, the input data is written in it.

(2) The buffer unit should have at least two valid rows before it is readable. Then,

according to the read address, by using two rows in buffer unit and the previous

matched length, a new row is constructed in the barrel shifter.

(3) Check the constructed data row from barrel shifter, if it does not contain the unique

code, the row is used by the comparator to derive the matched length, and also be

sent out to the VR stage. If the unique code is found, the prefix will be discarded,

and the consecutive 32 bits become the new row and bypass the comparator. In this

case, the matched length is 32.

(4) Finally, the write, read address of buffer unit and shift length are adjusted according

to the matched length. If the buffer unit is not full, „U2/we‟ becomes „1‟, indicating

the buffer unit can accept more rows from FIFO stage. Otherwise, it is „0‟. If there is

a valid row offered to VR stage, „U2/validre’ is „1‟. Otherwise, it is „0‟.

4.4.1 Address controller

In the CD stage, the number of bits consumed is varying at each cycle. One row in

the buffer unit may be used for many cycles or used for only one cycle before the read of

next row. By using the matched length of the previous cycle, the address controller is to

coordinate the write and read address of buffer unit, and to calculate the shift length.

After each decoding process, it determines the status of the buffer unit.

4.4.2 Buffer unit

Since the length of the Huffman codes are varying, in each cycle, the length of bits

used by the decompression ranges from 1 to 36 (width of uncompressed value + 4-bit

unique code). Therefore a buffer unit is needed to adjust the data imbalance.

In Figure 3.3, two registers, D0 and D1 are used to store the input data. In the worst

case scenario, i.e. a series of uncompressed value, a 36-bit is parsed at each cycle. In

order to avoid buffer starvation, more than two register are used. It was found that a FIFO

structure with 4 registers is suitable. Besides, at least two rows in the buffer unit, in other

word, two registers should be valid before the decompression.

4.4.3 Barrel shifter

The FIFO and barrel shifter are used to construct a data row for unique code

detection and comparison. The shifter operation consists of one right shift, one left shift

and an OR logic.

(1) A variable named bitsadd is used to indicate the number of bits the row should be

shifted. It is calculated from the previous matched lengths.

(2) The radd indicates the read address. The shifter takes the row radd and radd + 1.The

row radd shifts left by bitsadd, and the row radd + 1 shifts right by 32 – bitsadd.

Chapter 4 Implementation

16

(3) Then these two rows are combined with OR logic. Figure 4.4 ~ Figure 4.7 show the

operations of the FIFO and the barrel shifter. The data in the Figure 4.2 is used here.

wadd
 radd 00000011101111010111011001001001radd

bitsadd=0

wadd

Initial 1
st
 cycle

bitsadd=0

Figure 4.4 Initial status of the FIFO

Initially, the buffer unit is empty, and all addresses are zeros. At the first cycle, one

buffer row is written in the buffer unit, hence the write address wadd increases by 1.

00000011101111010111011001001001

00000001000001111001110100000000

radd

bitsadd=0

wadd

0

0000001000001111001110100000000

01100110011111011101010000000000

radd

bitsadd=1

wadd

0000011101111010111011001001001

0

3
rd

 cycle

dataout =

length = 12
nd

 cycle

dataout =

length = 1

00000011101111010111011001000101 00000011101111010111011001000101

Figure 4.5 2
nd

 and 3
rd

 cycle status of the FIFO

At the second cycle, the wadd continues increasing by 1, but the radd depends on

the result of the comparison. Since the bitsadd is 0, the barrel shift has no effect. The first

entire row is used by the comparator. After comparison, the matched length is 1. The

output is the first row, which is marked by gray color.

At the third cycle, the wadd continues increasing by 1 and the radd does not change.

The bitsadd increases by the matched length of the previous cycle, so it is 1. The first row

shifts left by 1 bit, and the second row shifts right by 31 bits. The gray color indicates the

barrel shifter‟s and CD‟s output. The matched length is still 1.

000000111011110101110110010

000000010000011110011101000

01100110011111011101010000000000

11010110000110000011011001001010

radd

bitsadd=27

wadd

11
th

 cycle

00000011101111010111011001001001

00000001000001111001110100000000

01100110011111011101010000000000

11010110000110000011011001001010

radd

bitsadd=0

wadd01001

00000

dataout =

length = 1 12
th

 cycle

dataout =

length = 32

0000000100000111100111010000000000000001000001111001110100000101

Figure 4.6 11th and 12th cycle status of the FIFO

Chapter 4 Implementation

17

At the 11
th

 cycle, wadd and radd keeps constant, the bitsadd is 27. The matched

length is 1. At the 12
th

 cycle, the bits address is 28. But a unique code “1001” is detected,

and it should be discarded. The consecutive 32 bits are the output and the matched length

is 32. In this case, the radd increases by 1, the bitsadd is 0.

00010001100101100000110100100000

11111100111010100101000001000001

01100110011111011101010

11010110000110000011011
radd

bitsadd=23

wadd

17
th

 cycle

01100110011111011101010000000000

radd

bitsadd=0

wadd

18
th

 cycle

000000000

11010110000110000011011001001010

00010001100101100000110100100000

11111100111010100101000001000001

001001010

dataout = dataout =

length = 1

11010110000110000011011000000000 11010110000110000011011001001010

length = 8

Figure 4.7 17
th

 and 18
th

 cycle status of the FIFO

At the 17
th

 cycle, the last CW in the first cache block is 0. The rest of that row is

discarded, the radd increases by 1 and bitsadd is reset to be 0. At the 18
th

 cycle, the

decompression process starts from the fourth row of the buffer unit.

4.4.4 Comparator

The comparator executes a series of comparisons between the constructed data row

from barrel shifter and the FCWs. Figure 4.8 shows the comparison process at 8
th

 cycle.

In the figure, only effective bits are listed, where the MSB are zero-padded and omitted.

In fact, all of the FCWs and comparisons are 32-bit. Firstly, the left MSB compares with

FCW[1]. If it is larger than or equal to FCW[1], the most significant two bits will be

compared with FCW[2]. The comparison continues until the input is less than

FCW[len+1] and the length of valid CW is defined as len. In Figure 4.8, the matched

length is 10.

8th Cycle

110110100

1110100100

11110001100

FCW[9]

FCW[10]

FCW[11]

111011110

1110111101

11101111010

>

>

<

FCW[9]

FCW[10]

FCW[11]

…… ……

0

10

FCW[1]

FCW[2]

1

11

>

>

FCW[1]

FCW[2]

dataout = 11101111010111011001000101000000

Figure 4.8 Comparison process at 8
th

 cycle

4.5 VR stage

From the CD stage, VR obtained the matched length and constructed data row to

retrieve the original value from a LUT. Figure 4.9 shows the structure of the VR stage.

Chapter 4 Implementation

18

LUT

(DIT)

LUT

(DeLUT)
+

-

+

length

datain

M

U

X

dataout
Right

Shifter

Counter lineend

Figure 4.9 Block diagram of VR stage.

At the beginning, it detects the length. If the length is 32, the VR directly transfer

the input data to output. Otherwise, the length is used by the right shifter and the DIT.

The length indicates the valid CW from the input data. After right shifting, where the

count is 32 – length, a valid CW with zero-padding MSB is generated, as it shown in

Figure 4.10. Besides, the length is used to get the offset from DIT. Then, the offset is

subtracted from the shifted data to obtain the index. Finally, the index is used to retrieve

the value from a LUT. The counter increases by 1 for each output. Each valid output will

set the validre to be „1‟. When it reaches 16, the lineend become 1 to indicate one cache

block has been decoded.

LUT

(DIT)

+

Right

Shifter

-

+

111011110101110110010001010000002

1010 88610

7110 LUT

(DeLUT)

……

71). 2289

72). 2003

……

228910

11101111010000000000000000000000 2=95710
32-1010

1010

Figure 4.10 Operation of VR stage at 8th cycle

4.6 Summary

(1) The design is implemented in a three-stage pipeline, FIFO, CD and VR.

(2) FIFO is used to adjust the data imbalance caused by the varying codeword length.

(3) The most complex stage is CD, which includes a buffer unit, a barrel shift, a unique

code detector and a comparator. The output is the matched length.

(4) VR takes the matched length and the input data to retrieve the original value.

19

5 Synthesis and verification

This chapter firstly introduces the general ideas about synthesis and verification. It

describes the verification process at different levels and the major steps. Then, the

verification of my design is illustrated, including the stimulus generation, testbench

flowchart and response checking.

5.1 RTL Synthesis

The verification process includes logic simulation and post-synthesis verification.

The former one is to verify the logical design described in the source files. After the logic

simulation, the design must be synthesized. Otherwise, the source files should be refined

until they are synthesizable. Synthesis transfers the logic design in source files to real

circuits. In Figure 5.1, it consists of translation, logic optimization and gate mapping [12].

set_max_area …

create_clock …

set_input_delay ...

Constraints

...

sum = a xor b

cout = a and b

...

RTL source

1. Translate (read_vhdl)

3. Optimize + Map

(compile)

2. Constrain
Generic Boolean Gates

(GTECH or Unmapped ddc format)

a

b
xor

coutand

sum

a

b
xor

coutand

sum

C12T32_LLS_XOR2X6

C12T32_LL_NAND2X7

Figure 5.1 Synthesis process

The translation is to map the RTL source code to generic technology. Then, based

on the constraints, the synthesis tool optimizes the logic and maps it to the target process

technology. After synthesis, a netlist file and a standard delay format (SDF) file are

generated. The netlist file describes logic by using the components in the target process

technology. The SDF file contains path delays, time constraints, interconnect delays, high

level technology parameters and etc. Besides the netlist file and SDF file, simulation

model files and testbench should be prepared.

During the thesis work, the 28nm process technology is used and the time constraint

is set to 380 ps (initially to 250 ps). Generally, there are three major kinds of libraries,

best, nominal and worst. The main variables are environment temperature and supply

Chapter 5 Synthesis and Verification

20

voltage. The best case has highest voltage and lowest temperature (1.30V, -40℃). The

worst case has the opposite (0.9V, 125℃) and the nominal has the medium (1.05V, 25℃)

configuration. I started synthesizing using the best case and continue through the nominal

and worst cases to explore the impacts of the voltage and temperature scaling in

performance and power.

5.2 Verification Process

5.2.1 Testbench

After RTL synthesis and static timing analysis, the produced netlist should be

verified to accomplish that task successfully, that is, the design meets the specifications

[13]. There are three levels for the verification.

 Block level. Test each block to make sure each of them works according to the

specification separately.

 Interface level. Test the neighboring blocks with the interface to look into the

interaction between blocks.

 System level. Test the entire system.

Figure 5.2 shows the verification process, which begins with the stimulus generation,

or in other words the test-vector generation. Then, the stimulus is applied to the design

under test (DUT). After the execution of the DUT, the response is captured to check for

correctness. During the test, two kinds of test vectors are used. Firstly, a cache snapshot

is used as real cases. It is produced while running some benchmarks. Secondly, some

corner cases are manually made to work as extreme situations.

Design

Under

Test

Input Output

Testbench

(Stimulus) (Response)

Figure 5.2 Testbench

Real cases are created using L3 cache snapshots [5], while running omnetpp

SPECINT2006 benchmark. The CT, FCW, DIT, DeLUT and unique code were generated

based on the provided cache snapshots. Cache blocks are extracted from the cache

snapshot and are compressed using the generated CT. Since the code length of a

compressed data value is between 1-bit and 16-bit, both FCW and DIT are calculated to

be 32 × 16 = 512 bits. Figure 3.2 shows the process to compress a cache block.

In the used test cases, the unique code is always 4 bits and was found that a unique

one for all of them is ”1001” Therefore, it is expanded to 36 bits when a value is saved

uncompressed. In different cases, the unique code should be changed correspondingly.

Chapter 5 Synthesis and Verification

21

5.2.2 Static timing analysis

This section introduces the concept of timing path, which is from one flip-flop to

another flip-flop [14]. There are many time checks for a flip-flop, such as setup time,

hold time, clock skew, recovery time, and so on.

tsetup thold

Stable

clock

data

Figure 5.3 Setup and hold time

In Figure 5.3, the setup time is the time interval in which input data must be stable

before the clock edge. The hold time is the time interval in which input data must be

stable after the clock edge [14]. In the simulation model files, they are expressed in the

following way.

 $setup (t_data_event, t_ reference_event, limit);

//Violation when t_reference_event – t_data_event < limit

 $hold (t_reference_event, t_data_event, limit);

//Violation when t_data_event – t_reference_event < limit

The setup and hold time constraints are the fundamental ones. It can have effects on

the stimulus generation, which is discussed in latter section.

5.2.3 Stimulus generation

The post-synthesis verification aims to verify that the circuit performs according to

the timing specifications. Therefore, the stimulus signals, including clock, reset signals,

and the test vectors, should be present appropriately. Firstly, the clock and reset signals

should be defined. According to the time constraints, the time period is 380 ps. Assume

the clock signal begins with low level, and the reset begins with low level, which is active,

enough time should be reserved for flip-flops to setup. There are three cases in Figure 5.4.

clk

rst

clk

rst

clk

rst

t2 t3t1

(a) (b) (c)

Figure 5.4 The configurations of clock and setup signals

Where clk represents clock signal, rst represents reset. The gray area represents the setup

time before the clock‟s rising edge.

Chapter 5 Synthesis and Verification

22

In case (a), the reset signal becomes inactive at ¼ period. The input data should be

stable before the setup time at the clock‟s rising edge. But t1 is not enough and cause

some setup violation. The setup time of the violated flip-flop is about 48 ps. The setup

violation is shown as below.

$setup(negedge D:190 ps, posedge CP &&& AND_RNTEX:190 ps, 48 ps);

In case (b), the reset signal become inactive at ¾ period. The time interval for input

data to be stable, t2, is enough. In case (c), the clock signal begins with high level, and

the reset signal becomes inactive at ¼ period. The time interval t3 is also enough for

input data to be stable. Therefore, the clock and reset signals are configured as case (c).

Secondly, the compressed cache lines are constructed as the Figure 4.2. Then, at

each cycle, one line is offered as the input. When the U2/re indicates the buffer unit in

CD is full, it stops feeding out new lines to the DUT.

5.2.4 Check the response

Before verification, the expectation should be discussed. It takes 6 cycles to derive

the first output, which is shown in Figure 5.5. U1/datain is an input port. The first cycle

is spent to wait for the input data to be stable before the rising edge of the 2
nd

 cycle.

U1/dataout is a 32-bit register and serves as the pipeline register, whereas U2/datain is an

input port. Similarly, U2/dataout is a 32-bit register and U3/datain is an input port. One

cycle is consumed, since at least two valid rows should be in the buffer unit. The first

output of U2/dataout is data1, but the next is data2’. The apostrophe means that it is

different from the data2. Because the data2’ is the output after shift according to the

previous matched length, and the process is shown in Figure 4.4 ~ Figure 4.7.

data1 data2 data3 data4 data5 data6 data7

clk

U1/datain

U1/FIFO[0]~[7] data2 data3 data4 data5 data6 data7data1

U1/dataout

U2/datain

U2/BUF[0]~[3]

data1

1 2 3 4 5 6 7 8

data8

U2/dataout

U3/datain

U3/dataout

data2 data3 data4 data5 data6

data1 data2 data3 data4 data5 data6

data1 data2 data3 data4 data5

data1 data2'

output1

data1

output2

data2'

data3'

data3'

U2/length length1 length2 length3

* data2 ≠ data2'

Figure 5.5 Cycles for the first output

Chapter 5 Synthesis and Verification

23

The specific operations for each cycle are explained in Table 5.1. After the first

output, it generated one uncompressed value for each cycle. It takes 22 cycles to

decompress the first compressed cache block.

Table 5.1 Operations for the first output

Cycles Operations

1 Input compressed data is available and stable at U1/datain, i.e. data1.

2 Data1 is stored in the first row of U1/FIFO, i.e. U1/FIFO[0].

3 Data1 is read from the U1/FIFO[0], and present at U1/dataout and U2/datain..

4 Data1 is stored in the first row of U2/BUF, i.e. U2/BUF[0].

5 Data2 is stored in the second row of U2/BUF. i.e. U2/BUF[1].

6 Matched length and data1 are present at U2/dataout and U3/datain.

7 The value is retrieved from DeLUT and present at U3/dataout.

Figure 5.6 and Figure 5.7 show the verification waveforms from the beginning to

21
st
 cycle. It takes 7 cycles to produce the first decoded value. It is 0. At that moment, the

sig_validre becomes „1‟ to indicate the validity of output. Since then, there is one

decompressed value in each cycle. At each cycle the output data is compared with the

original value. If there is a difference, a warning will be alerted.

Figure 5.6 Verification waveform from 1
st
 to 11

th
 cycle

Figure 5.7 Verification waveform from 11
th

 to 21
st
 cycle

Chapter 5 Synthesis and Verification

24

5.2.5 Configuration of the FIFO

As mentioned before, in order to avoid buffer starvation, a FIFO structure with 4

registers is suitable. The total sizes of the FIFO stage and buffer unit are 12 rows.

According to Figure 5.5, if the decompression engine does not work, the 12 rows should

be full at the 13
th

 cycle. However, the decompression engine begins to decompress after

the 6
th

 cycle. At the 13
th

 cycle, it will already have decoded 7 values, while the rest 9

compressed CWs are stored in the FIFO stage and the buffer unit. In the worst case, the 9

values can be uncompressed requiring 32 bits plus unique code. It was experimentally

found that the unique code never exceeds 9 bits (41 bits per uncompressed value), while

the analysis of the thesis assumes 4 bits for it, as the generated unique code has always a

length of 4 for the benchmark omnetpp. Therefore, 12 rows are enough to hold one

compressed cache block. However, if the unique code is as long as the longest CWs, i.e.,

16 bits, 2 more FIFO rows (10 rows in total) are required in the FIFO stage. The two

extra FIFO rows extend the delay of the FIFO stage by approximately 5ps, without

affecting the overall performance, as the critical paths are in CD and VR stages.

Sometimes, a series of uncompressed values appear consecutively. In such cases, the

number of bits consumed per cycle is more than 32 bits due to the unique code that

precedes an uncompressed value. This could cause a 1-cycle wait in the decompression

process, as the buffer unit must have at least two valid rows.

5.3 Summary

(1) The implementation is successfully verified under 380 ps.

(2) The library used to synthesize the implementation is 1.30V, -40℃.

(3) The first decoded value is available at the 7
th

 cycle.

(4) When a series of uncompressed values occur consecutively, it could cause a 1-cycle

wait in the decompression process.

25

6 Performance and Power Evaluation

This chapter firstly introduces the background knowledge of performance and power

analysis for VLSI design. Then, it evaluates the decompressor in terms of performance

and power dissipation/energy consumption varying the voltage thresholds, the

environment temperature as well as the DeLUT size.

6.1 Performance

6.1.1 Static timing analysis

After synthesis, an actual cycle time has to be met by a particular set of gates. A

timing analyzer is used to verify the timing [16]. Static timing analysis is a method to

verify the timing of a design by testing all possible paths for timing violations. It

considers the worst possible delay, but not the logical validity of the circuit [14].

Each path in the design has a timing slack, which is the result of data arrived time

subtract from data required time. It is a time value that can be positive, zero, or negative.

The positive value means the signal arrives earlier than necessary and the timing

constraint is met, where the zero slack means the timing constraint is barely fulfilled, and

the timing constraint is violated for negative slack. The path having the worst slack,

which means the longest latency, is called the critical path.

6.1.2 Critical paths

After static timing analysis, the critical paths are generated in a timing report. In my

design, there are two critical paths exist in CD and VR, respectively. In the CD stage, the

path from the read address of buffer unit (U2/radd[0]) to itself (U2/radd[0]) is the most

time consuming, whereas the path from the input length (U3/length[4]) to the output data

(U3/dataout_reg[12]) takes the longest time in VR stage.

The critical path in the CD stage indicates the logic for read address controller is

very complicated. The modification of the read address is triggered by clock rising edge,

so U2/radd[0] is synthesized to be a register. The read address depends on the matched

length of the previous cycle. After read, a new data row is produced by the barrel shifter

for the unique code detection and comparison. The detected and/or compared results are

used for next cycle. So the path for the read address control includes both the unique code

detection and comparison circuits. Besides, the comparison circuit is implemented with

priorities in a synchronized process. In the worst case, for a 16-bit compressed codeword,

it should execute 16 times comparison operations, hence increasing the path length.

Chapter 6 Performance and Power Analysis

26

In the VR stage, the input matched length is synchronized. After a subtraction and a

look-up operation, the decompressed value is available on the output port. So the critical

path in VR stage means the read speed of ROM is very slow.

6.1.3 Design Variation

There are two major design variations in the thesis, supply voltage and environment

temperature. Simply, the delay of a transistor can be defined as [16]

 2

DD DSAT DD DD t/ / ()t C V I k C V V V (6.1)

where, C is the load capacitance, VDD is the supply voltage, IDSAT is saturation current, k is

the gain factor, Vt is the threshold voltage. So the frequency is proportional to the supply

voltage. At the same voltage, frequency is proportional to the saturation current, which

can be influenced by temperature.

Temperature can affect transistor characteristics very much. With the increase of

temperature, Carrier mobility drops and may be approximated by [16]

 μ() μ()

k

r

r

T
T T

T

 (6.2)

where T is the absolute temperature, Tr is room temperature, and k is a fitting parameter

with a typical value of 1.5.

Besides, with the increase of temperature, the magnitude of the threshold voltage

decreases nearly linearly. An approximate relation is

 () () ()t t r vt rV T V T k T T (6.3)

where a typical value of kvt is about 1-2 mV/K.

To conclude the temperature effects, with the increase of temperature, the saturation

current decreases, but the junction leakage increases exponentially [16]. Therefore, as the

environment temperature increases, the circuit‟s operational frequency drops and the

static power increase exponentially. The effects of temperature on power consumption

will be discussed in next section. By running a large number of experiments, the

maximum delay of each design variation for the synthesized circuits, which is also called

period, is shown in Table 6.1, where NA means the library (1.30V, 0℃) does not exist.

Table 6.1 Period of each design variation (Unit ps)

 1.30V 1.15V 1.10V

-40℃ 380 444 467

0℃ NA 451 472

125℃ 399 465 477

Chapter 6 Performance and Power Analysis

27

In the power analysis described below, the VR stage is most power hungry. The

main task in VR stage is the looking-up operation to retrieve the value in DeLUT, so the

size of DeLUT may influence the performance and power. Further analysis of

performance and power with different sizes of DeLUT is elaborated in section 6.2.5.

6.2 Power Analysis

6.2.1 Power definition

Power consumption in CMOS circuits comes from two components, dynamic and

static consumption [16].

 dynamic staticP P P (6.4)

Dynamic power consists of switching power and internal power. The switching

power is caused by charging load capacitance. The internal power is caused by charging

internal capacitance and short circuits.

 load

2
sw swDDP C V f (6.5)

21

2int int DD sw DD scP C V f V I (6.6)

Where is the activity factor indicating the probability that circuit node transitions from

0 to 1, Cload is the load capacitance, Cint is the internal capacitance, VDD is the supply

voltage, fsw is the switching frequency, Isc is the short circuit current.

Static power is caused when a transistor is not switching. It comes from

subthreshold, gate, and junction leakage currents [16]. In nanometer processes with low

threshold voltages and thin gate oxides, leakage power is comparable to dynamic power.

In some cases, it may even dominate the overall power consumption.

There are two ways for switching power analysis, simulation-based techniques and

probabilistic techniques [17]. In simulation-based power analysis, input test vectors

should be prepared. The idea behind the probabilistic technique is to derive switching

probabilities of all internal nodes by propagating the input signal switching activities. It is

just used in early development phases, when test vectors are not available. The designer

must understand the functionality deeply to predict the input signal probability. Since I

have already obtained the test vectors in previous chapters, the simulation-based

techniques will be used.

There are two ways to perform the statistical analysis. Either a value change dump

(VCD) or a switching activity interchange file (SAIF) file is generated. A VCD file

contains information of all signals that toggle, for every clock cycle. As a result, VCD

files can grow huge. In contrast, the SAIF file contains only the average switching

activity of all nodes.

Chapter 6 Performance and Power Analysis

28

6.2.2 Test vectors setup

Two power models are used to estimate the power:

(1) Real case, where a cache snapshot, with 16384 compressed cache blocks, is obtained

using architectural simulation of a system running particular benchmarks. The

modeled cache is a last-level cache (L3).

(2) Corner cases, cache blocks are built artificially to estimate power dissipation, which

may not appear in the cache snapshot. Table 6.2 summarizes all the test cases.

Table 6.2 Cache block cases used in power estimation

Cases Construction

1 Real cases from snapshot

2 12 uncompressed + 4 compressed (16-bit)

3 14 uncompressed + 2 compressed (1-bit)

4 8 uncompressed + 8 compressed(1-bit)

5 16 compressed (16-bit)

6 16 compressed (1-bit)

7 compressed CW with evenly distributed length

Case 1 is the real case, so the power dissipation should approximate a real value.

Cases 2 and 3 are lines that are compressed by a relatively small compression factor.

Their lengths are 496 bits and 506 bits respectively, while an original cache block has

512 bits but is not needed to be decompressed. Case 4 is a similar combination, but with

more values that are compressed by the highest factor (32/1). In case 5, the values are

compressed by a compression factor of 32/16 while in case 6, they are all compressed by

a factor of 32/1. Finally, case 7 has compressed CWs with evenly distributed length,

close to the real case.

The power analysis begins with post synthesis verification, where the switching

activity of the decompressor circuit is recorded in a VCD file. In the experiment of this

study, the VCD contains the circuit‟s switching activity for 1607 cycles, while

decompressing 100 cache blocks, where the cycle 380 ps.

6.2.3 Power analysis based real and corner cases

After a series of experiments, their power consumptions (in mW) are listed in Table

6.2. Since the library “1.30V, -40℃” is used, the static power dissipation of all cases are

kept in low levels.

Chapter 6 Performance and Power Analysis

29

Table 6.3 Power consumption of different cases for each power part (Unit: mW)

Cases Switching Internal Static Total

1 19.049 32.667 0.119 51.835

2 16.403 30.819 0.118 47.340

3 16.199 30.509 0.118 46.825

4 23.460 37.315 0.119 60.894

5 15.987 29.677 0.118 45.783

6 1.031 12.196 0.118 13.346

7 21.070 34.974 0.119 56.162

The different cache block configurations have effects on different parts of the

decompression engine. For example, more dynamic power is dissipated when more

comparators are used. So case 2 should dissipate more power than case 3 and similarly,

case 5 dissipates more than case 6. Case 6 has the lowest power dissipation, since it uses

a small part of the comparator part. The case 7 is very close to the case 1. It indicates that

the real case has the similar CW length distribution, on average, as case 7. Figure 6.1

shows the power dissipation estimated for the seven cache block cases.

Figure 6.1 Power analysis for seven cases

Surprisingly, the case 4 has the highest power dissipation. With the same supply

voltage, operation frequency and capacitance, the high power dissipation should be

caused by the activity factor. The combination of test vectors has four variations for case

4, which are shown in Figure 6.2. The power estimation of case 4 is generated by using

the case 4-1. The compressed CW, 1bit, and the uncompressed, 36 bits, are concatenated

alternatively. Then, the combination of test vectors is changed to combine two

compressed CWs together and two uncompressed CW together, which is shown the

second line, named as case 4-2. Similarly, the case 4-3 and case 4-4 are constructed.

0

10

20

30

40

50

60

70

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Power Estimation (Unit: mW)

Switching Internal Static Total

Chapter 6 Performance and Power Analysis

30

1bit + 36bits +1bit + 36bits + 1bit + 36bits +……

1bit + 1bit + 36bits + 36bits +1bit + 1bit + ……

1bit + … + 1bit + 36bits + …… + 36bits +1bit +...

1bit + … + 1bit + 36bits + …… + 36bits

1

2

1

2

4 4

8 8

case 4-1

case 4-2

case 4-3

case 4-4

Figure 6.2 The different structure of test vectors

After analysis, their power dissipations are shown in Table 6.4. Since the case 4-1

always alternates between compressed and uncompressed CW, it increases the switching

probability and the glitch in the circuits, thus largely increasing the switching power. The

case 4-4 only alternates once per compressed cache block, so it consumes least power.

From case 4-1 to case 4-4, the dynamic power consumptions decrease gradually. Because

in case 2 and case 3 the alternation between compressed and uncompressed parts occur

once per cache block, case 4-4 is more representative therefore it is used in the following

comparisons.

Table 6.4 Power dissipation for different test vector structures (Unit: mW)

 Switching Internal Static Total

Case 4-1 23.460 37.315 0.119 60.894

Case 4-2 20.298 34.051 0.118 54.468

Case 4-3 17.305 30.993 0.118 48.416

Case 4-4 15.408 29.017 0.118 44.543

6.2.4 Power distribution among three stages

In the previous analysis, the power distributions among three kinds of power are

described. It makes clear how the switching activity depends on the different cases, and

the combinations of test vectors. Another interesting topic is how the power consumption

is distributed among the three stages. From this analysis, the further optimization on

power is more accurately targeted. shows power consumption for each stage.

The power consumption of the FIFO is very stable, and it fluctuates between 6.520

mW to 9.110 mW. In the case 6, all of the compressed CW is „0‟, which uses only 1 bit in

the FIFO buffer row. 32 bits „0‟ constitute one FIFO buffer row which represent 32

values 010. Therefore, only one buffer row is read from the FIFO in the decompression of

each cache block, hence decrease the power dissipation. The case2 and case3 have the

comparatively low compression factor, so the read frequency of them is higher than other

cases, which cause the high power dissipation in FIFO stage.

Chapter 6 Performance and Power Analysis

31

Table 6.5 Power dissipation of different cases in each stage (Unit: mW)

Cases FIFO CD VR Total

1 8.015 11.051 32.769 51.835

2 9.110 11.630 26.600 47.340

3 8.935 11.282 26.608 46.825

4-4 7.979 10.913 25.654 44.543

5 8.359 10.859 26.565 45.783

6 6.520 5.769 1.056 13.346

7 8.352 12.226 35.585 56.162

In the CD stage, the power dissipation is also stable, except for the case 6. In the

comparator of the CD stage, there is a priority encoder and the length 1 has the highest

priority. In the case 6, all compressed CWs are „0‟s with length 1. So it uses the least

power. Other cases show that the normal range of the power dissipation in the CD stage

is from 10.913 mW to 12.226 mW.

The VR stage is the most power consuming. The major parts in the VR stage are two

LUTs, i.e. DIT, DeLUT, and a multiplex. A LUT is implemented by a couple of

multiplexers and a 2-input multiplexer consists of four transistors. The DIT is a 5-

inputand the DeLUT is a 10-input multiplexer. So the power dissipated in looking-up

operation dominates. According to the definition of dynamic power, the less switch

activity, the less power dissipation. The value 010 is located at the beginning of the

DeLUT. In the case 6, the value it looked up is fixed, so it contains the least switch

activity and least power dissipation. In the case 7, the compressed CWs are evenly

distributed, the switch activity is the highest hence the highest power dissipation. In the

case 1, there are some uncompressed values, so the power dissipation is lower than case 7.

According to the power analysis above, the VR stage should be optimized for power.

6.2.5 Power consumption for different DeLUT sizes

Since the VR stage is the power hungry, it is interesting to investigate how the

performance and power dissipation depends on the DeLUT size. As mentioned before,

the DeLUT is 4KB in the thesis, which is the baseline in this section‟s analysis. In order

to maintain the generality, the power consumptions with different VFT sizes, in other

words, different DeLUT sizes are shown in Table 6.6. The performance is represented by

the period the circuits can achieve, which is the reciprocal of the frequency. With the

increase of the DeLUT size the performance degrades, power dissipation and area

consumption increase.

Chapter 6 Performance and Power Analysis

32

Table 6.6 Performance, power and area varying with DeLUT size

 1KB 2KB 4KB 8KB 16KB

Time (ps) 358 367 380 395 413

Power (mW) 44.821 46.578 51.835 84.932 118.511

Area (cell) 7807 8324 9223 14666 20955

6.2.6 Design variation

The effects of supply voltage and environment temperature have been analyzed in

section 6.1.3. By running the same testbench, with corresponding period, the power

consumption of each library are obtained and listed in Table 6.7

Table 6.7 Power consumptions of each design variation (Unit mW)

 1.30V 1.15V 1.10V

-40℃

Switch Internal Static Switch Internal Static Switch Internal Static

19.049 32.667 0.119 11.921 20.186 0.056 10.746 17.856 0.046

51.835 32.162 28.648

0℃

Switch Internal Static Switch Internal Static Switch Internal Static

NA NA NA 12.306 21.178 0.336 11.311 18.504 0.296

NA 33.820 30.111

125℃

Switch Internal Static Switch Internal Static Switch Internal Static

18.476 36.101 11.898 11.942 23.625 6.921 10.523 20.914 6.760

66.475 42.488 38.198

The dynamic power, including the switching and internal power, mainly relies on

the supply voltage. On the other side, the static power is strongly dependent the

environment temperature. With the same temperature, the static power of each design

variation is in the same magnitude level. The high supply voltage, 1.30V, can increase the

static power for the same temperature.

6.3 Energy Analysis

In the VLSI design, the trade-off between performance and power is an important

consideration. If a library with lower voltage threshold, such as the (1.10V, -40℃), is

used to synthesize the implementation, the maximum frequency can be reached should be

lower. Besides, the power will be lower due to the lower supply voltage. The energy

consumed to decompress the certain quantity of cache blocks is used to assess the energy

efficiency. By using the results in Table 6.1 and Table 6.7, the energy consumption to

decompress one cache block is calculated in the corresponding position in Table 6.8 and

shown in Figure 6.3. The library of 1.10V and -40℃ has the lowest energy consumption

to derive one decompressed cache block.

DeLUT

Chapter 6 Performance and Power Analysis

33

Table 6.8 Energy of each design variation (Unit J)

 1.30V 1.15V 1.10V

-40℃ 315.2 228.5 214.1

0℃ NA 244.0 235.0

125℃ 424.4 316.1 291.5

Figure 6.3 Energy of each design variation to decompress one cache block

6.4 Summary

(1) The power consumption includes dynamic power and static power.

(2) For the same circuit, it is the switch activity that affects the dynamic power, hence the

power consumption. The power estimation indicates that the real case has evenly

distributed CW length with uncompressed values

(3) The dynamic power mainly depends on the switch activity and supply voltage. The

different test vectors, even the different combinations of test vectors can have effects

on the dynamic power.

(4) The static power mainly depends on the environment temperature. Besides, the

increase of supply voltage can increase the static power a little for the same

temperature.

(5) The circuit frequency is proportional to the supply voltage. At the same voltage,

frequency is proportional to the saturation current, which can be influenced by

temperature.

(6) The library of 1.10V and -40℃ has the lowest energy consumption to derive one

decompressed cache block.

0

50

100

150

200

250

300

350

400

450

1.30V 1.15V 1.10V

Energy of each design variation

 (Unit: pJ)

-40 C 0 C 125 C

Chapter 6 Performance and Power Analysis

34

35

7 Conclusion

In order to make full use of the smaller cache and therefore saving the consumed

power, a Huffman-based decompression engine is proposed by Arelakis and Stenström.

The thesis describes a detailed design and implementation of the decompression engine.

After design and implementation, the decompression engine has been synthesized and

verified and it fulfills the specifications. Finally, the power consumption of the engine

has been analyzed.

The decompression engine is implemented in a 3-stage pipeline structure, which

comprises FIFO buffer, Code Detection (CD) and Value Retrieve (VR). It takes 6 cycles

to obtain the first decompressed value. After that, it can derive one 32-bit uncompressed

value per cycle. It is successfully synthesized when the time constraint is 380 ps. In the

power analysis, firstly, 7 different cases, i.e. sets of test vectors, are used. Even in one

case, i.e. the case 4, which contains 8 uncompressed value and 8 compressed CWs with

length of 1-bit, the power consumption of 4 different test vectors‟ combinations are

compared. In this part, it is the switch activity that affects the dynamic power, hence the

power consumption. Secondly, by using the real case as the test vectors, the power

consumptions of different design variations are compared to investigate the influence of

the supply voltage and environment temperature.

The design is synthesized by the best library, 1.30 V and -40℃, of 28 nm process

technology. However, it should be synthesized and verified by using the worst library

before manufacture. Performance can be further improved in the future, taking into

consideration the following observations: firstly, the delay of the Code detection stage

can be improved, adjusting the sequential logic and combinational logic proportion to

make use of the parallelism. Secondly, more standard components in DesignWare IP

solutions provided by Synopsys should be inferred to reuse these optimized components.

Thirdly, the DIT and DeLUT in VR stage should be implemented by static RAM instead

of ROM to improve the performance further. Fourthly, the place and route should be

achieved to increase the accuracy of the timing.

In conclusion, the timing and power analyses of the implementation of this

Huffman-based decompressor have shown that the design can be clocked at 2.63 GHz

and dissipates maximum 51.835 mW, on average, while further enhancements are

possible. This thesis shows that the design of this Huffman decompressor is a strong

candidate among other decompression mechanisms targeting to statistical-based

Chapter 7 Conclusion

36

compressed cache/memories, thanks to its design simplicity and high efficiency in terms

of performance and power.

37

Bibliography

[1] John L. Hennessy, David A. Patterson. “Memory Hierarchy Design”, Computer

Architecture -- A quantitative approach, Morgan Kaufmann, 2011, pp.74.

[2] Alameldeen, A.R.; Wood, D.A., "Adaptive cache compression for high-

performance processors," Computer Architecture, 2004. Proceedings. 31st Annual

International Symposium on , vol., no., pp.212,223, 19-23 June 2004

[3] Xi Chen; Lei Yang; Dick, R.P.; Li Shang; Lekatsas, H., "C-Pack: A High-

Performance Microprocessor Cache Compression Algorithm," Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on , vol.18, no.8, pp.1196,1208,

Aug. 2010

[4] A. Arelakis and P. Stenström, “A Case for a Value-Aware Cache”, IEEE Computer

Architecture Letters, September 2012.

[5] A. Arelakis, “Design Considerations of Value-aware Cache”, Licentiate degree

thesis, September 2013.

[6] Stefan M. Moser. “Shannon‟s Measure of Information”, Information Theory,

Lecture Notes. pp 6.

[7] Salomon, D. “Huffman Coding”, A concise introduction to Data compression,

Springer 2008,pp 63~64,75.

[8] L. Stok, D. Hathaway, K. Keutzer, D. Chinnery. “Design Flows”, EDA for IC

Implementation Circuit Design and Process Technology, CRC Press Taylor &

Francis Group, New York, 2006,pp. 1-1~3.

[9] R. Hashemian, “Design and hardware implementation of memory efficient

Huffman decoding,” IEEE Trans. Consumer Electron., vol. 40, pp. 345-352,

Aug.1994.

[10] S. M. Lei and M. T. Sun, “An Entropy Coding System for Digital HDTV

Applications,” IEEE Trans. Circuits and System For Video Technology, vol.1,

No.1, pp147-155, March.1991.

[11] J. Nikara, S. Vassiliadis, J. Takala and P. Liuha. ”Multiple-Symbol Parallel

Decoding for Variable Length Codes,” IEEE Trans. Very Large Scale Integration

(VLSI) Systems, vol.12, No.7, pp676-685, July 2004.

[12] Synopsys, Design Compiler User Guide, Ver. D-2010.03-SP2, June 2010

Bibliography

38

[13] C. Spear, SystemVerilog for Verification, A guide to learning the testbench

language features Springer, 2006

[14] Synopsys, Timing Constraints and Optimization User Guide, Ver. F-2011.09. Sept.

2011

[15] M. Arora, The Art of Hardware, Design Methods and Techniques for Digital

Circuits. 2011

[16] N. H.E. Weste, D. M. Harris, Integrated circuit design, 4th edition, Pearson,

2011,pp. 85, 142~143, 598.

[17] J. Monteiro, R. Patel, V. Tiwari. “Power Analysis and Optimization from Circuit to

Register-Transfer Levels”, EDA for IC Implementation Circuit Design and Process

Technology, CRC Press Taylor & Francis Group, New York, 2006,pp. 3-6~8.

	Abstract
	Acknowledgements
	Content
	List of abbreviations
	1 Introduction
	2 Theory
	2.1 Huffman coding
	2.1.1 Information entropy
	2.1.2 Huffman coding
	2.1.3 Canonical Huffman coding

	2.2 Design Process
	2.3 Summary

	3 Design
	3.1 Related work
	3.2 Huffman decompression engine
	3.2.1 Algorithm
	3.2.2 Impact of table sizes
	3.2.3 An example

	3.3 Summary

	4 Implementation
	4.1 Block diagram of the decompression engine
	4.2 Decompression process
	4.3 FIFO stage
	4.4 CD stage
	4.4.1 Address controller
	4.4.2 Buffer unit
	4.4.3 Barrel shifter
	4.4.4 Comparator

	4.5 VR stage
	4.6 Summary

	5 Synthesis and verification
	5.1 RTL Synthesis
	5.2 Verification Process
	5.2.1 Testbench
	5.2.2 Static timing analysis
	5.2.3 Stimulus generation
	5.2.4 Check the response
	5.2.5 Configuration of the FIFO

	5.3 Summary

	6 Performance and Power Evaluation
	6.1 Performance
	6.1.1 Static timing analysis
	6.1.2 Critical paths
	6.1.3 Design Variation

	6.2 Power Analysis
	6.2.1 Power definition
	6.2.2 Test vectors setup
	6.2.3 Power analysis based real and corner cases
	6.2.4 Power distribution among three stages
	6.2.5 Power consumption for different DeLUT sizes
	6.2.6 Design variation

	6.3 Energy Analysis
	6.4 Summary

	7 Conclusion
	Bibliography

