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Abstract

The receiver’s carrier phase synchronization with the received signal is essential for coherent
detection, especially for those employing a high bandwidth-efficient modulation scheme such
as quadrature amplitude modulation (QAM). Traditionally, carrier synchronization has been
performed by a phase-locked loop (PLL) in the receiver. There are, however, two major disad-
vantages of this approach. The first is the sensitivity to propagation delay in the PLL feedback
path. The second disadvantage, equally important, is the fixed loop bandwidth of the PLL that
imposes a tradeoff between acquisition time and steady-state phase tracking performance. Par-
ticularly, a large loop bandwidth results in faster acquisition time or loop setting time, larger
steady-state phase variation and cleaner VCO phase noise. Feedforward (FF) carrier synchro-
nization technique, based on a two-stage iterative algorithm, overcomes this problem. The first
stage is a symbol by symbol phase detector of the phase noise. The second stage is a hard
decision phase estimator. The advantage of the FF synchronizer is that it uses both past and
future symbols to estimate the carrier phase. As a result, it can achieve better performance than
PLL which, as a feed back system, can only employ past symbols.

In the present Master’s thesis we estimate the phase noise on a symbol by symbol basis
using FF technique. In order to improve the obtained phase noise estimation, optimum digital
filters - including standard Kalman, Kalman smoother and Wiener filters - are considered. We
derive here the equation of the discrete-time Kalman filter step by step. We also derive the
Wiener transfer function W(z) and prove that the the optimal Wiener coefficients are two expo-
nential decaying sequences that are symmetric about the origin. We implement Kalman filter,
Kalman filter smoother and Wiener filter in MATLAB. Finally we demonstrate our approach
by analyzing the simulation results for a QAM modulation scheme which show that the use of
linear filters may significantly reduce the phase noise estimate in a FF carrier recovery schemes.
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Chapter 1

Introduction

1.1 Background

The commercialization in 2008 of the first 40 Gb/s coherent optical communication systems
employing polarization division multiplexing (PDM), quadrature phase-shift keying (QPSK)
and intradyne detection assisted by digital signal processing (DSP) marked a major milestone
in long-haul transmission [15]. At the core of this major breakthrough innovation there was the
coherent detection technique that took shape in the 1990s and high-speed DSP technology.

The origins of the modern communication technology, including coherent optical commu-
nication, reach back to research of the 1970s when the IMDD scheme became the mainstream
in the optical fiber communication system. Such IMDD scheme had a great advantage that
the receiver sensitivity was independent of the carrier phase and the state of the polarization
(SOP) of the incoming signal[9] . In the late 1980s and early 1990s coherent receiver system,
which forms the foundation of a digital coherent system, attracted a lot of attention as it was a
promising way to obtain larger bandwidth over long distance and higher receiving sensitivity
1. However, they were considered impractical at the time due to their high cost and complexity
as well as their vulnerability to phase-noise and polarization rotations [15]. But the reason why
the interest for employing coherent receivers for optical fiber communication faded in the early
1990s were the development of the erbium-doped filter amplifiers (EDFA) and the introduction
of the high-capacity wavelength division multiplexed (WDM) systems.

In 2005, the demonstration of the digital carrier-phase estimation in coherent receivers
stimulated a widespread interest in coherent communication again [8]. The revived interest
in coherent detection is largely due to the substitution of the previously proposed analog elec-
tronic and optoelectronic modules, which were bulky, slow, expensive and largely inefficient,
in coherent receivers with a relatively inexpensive, high-speed, application-specific integrated

1defined as the required signal power to achieve a given bit error rate
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circuits (ASICs)[15] . The main driver for coherent optical communication is the possibil-
ity to compensate for transmission by using DSP [22]. The ASICs enable adaptive electronic
equalization of linear impairments in fiber-optic transmission systems, i.e., chromatic disper-
sion (CD), polarization mode dispersion (PMD) and polarization-dependent loss and, to some
extent, of fiber nonlinearities in the digital domain. This is due to the fact that in the digital
coherent receivers the phase information is preserved after detection. The ASICs also allow for
adaptive electronic compensation of imperfections of the analog optical transmitter and receiver
front-ends such as time skew of quadrature components and polarization tributaries, quadrature
and polarization imbalance, etc. They perform all standard digital receiver functions such as
digital clock recovery, intermediate frequency offset [15]. Finally, in order to avoid the difficul-
ties associated with the PLL, carrier synchronization can be done in the DSP by digital phase
estimation techniques (allowing for a free running LO) avoiding being phase-locked by the PLL

However, using coherent receiver systems for optical communication systems came along
with laser phase noise that is one of the biggest obstacles to its realization. Laser phase noise,
defined as the phase-difference between the phase of the received carrier and the phase of
the LO to the receiver, may arise in the transmitter’s LO, in the receiver’s LO and/or from
environmental factors e.g transmission medium density variation due to temperature, pressure
gradients, etc. Consequently, the output of a practical LO is not a perfect sinusoid. Instead of
being an ideal pulse at the carrier frequency, the spectrum of a real LO output is spread and has
a Lorentzian shape i.e the shape of the squared magnitude of a one-pole lowpass filter (LPF)
transfer function [2, 1]. This effect is the major contributor to the undesired phenomena such as
interchannel interference leading to increased bit-error-rates BER in coherent communication
systems.

Clearly the combination of coherent detection and DSP provides new capabilities that were
not possible without detection of the phase of the optical signal. “The born again coherent
optical technology will renovate existing optical communication systems in the near future”
[8].

1.2 Previous works and future challenges

One of the first works dealing with FF carrier recovery after the revival of interest in coherent
detection was presented by Reinhold Noé [16]. He proposed a feedforward carrier recovery
scheme based on regenerative intradyne frequency divider i.e. the regenerative frequency di-
vider is extended to process baseband in-phase and quadrature (I and Q) signals. It’s worth
noting that no phase unwrapper is considered in [16]. A rigorous and theoretically comprehen-
sive work of FF carrier recovery has been that of Ezra Ip and Joseph Khan[6]. In this work FF
carrier recovery architecture is analyzed using Monte Carlo simulation for a single polarization
case. A thorough review of detection and modulation methods with emphasis on coherent de-

2
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tection and digital compensation of channel impairments was presented by Ezra Ip et al. in [4].
The analysis of the phase noise requirement is often performed without consideration of the
large chromatic dispersion. In reference [18], W. Shieh and Kean-Po Ho thoroughly evaluate
the electronic equalization phase noise (EEPN) from the interaction between LO phase noise
fluctuation and the fiber dispersion in coherent transmission systems. Chongjin Xie showed
in [23], for the first, time that the LO phase noise to amplitude noise conversion caused by
electronic CD compensation significantly degrades the performance of a DCM free high-speed
coherent system.

In particular, the digital coherent receiver systems for 100 Gb/s-class signals came to seem
possible thanks to the dramatically improvement of the digital signal processing capacity (num-
ber of gates and operating frequency) as well as higher bit rates addressing laser phase noise
which was one of the biggest obstacles to the realization of a coherent receiver system [21] .
With these factors in the background some test results have been reported. However the major-
ity of the reports are confined to so-called “offline tests” while the numbers of test reports on
real-time operation with an actual digital coherent receiver prototyped is relatively small. “For
that reason, there are no studies or reports available that delve into the challenges of having real
systems operate stably in reality and there are still problems remaining before the technology
can be put to practical use”[21].

1.3 Motivation

The primary purpose of the receiver is to generate an accurate replica of the sequence of the
transmitted data symbols. The receiver has to extract the synchronization information from
the received signal and then use this information to achieve demodulation and detection of the
transmitted data. In coherent detection accurate phase recovery is needed as the received signal
is demodulated by a LO that serves as an absolute phase reference.

Recent experiments have shown that Feedforward carrier recovery schemes are more tol-
erant to laser phase noise than PLL [6] . Furthermore, high spectral efficiency - that describes
how efficiently the given bandwidth is utilized or the ability of a modulation scheme to accom-
modate data within a limited bandwidth - and narrow power spectrum can be achieved with
QAM by setting a suitable constellation size limited only by the noise level and linearity of
communication systems.

The present Master’s thesis aims at investigating the way how to improve the phase noise
estimates in the Feedforward carrier recovery scheme for coherent communication for the de-
tection of quadrature amplitude modulation (QAM) transmission.

3
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1.4 Delimitation

The most important limitation of the current research lies on the fact that the it does not in-
clude the analysis of the cycle slips that if undetected can significantly degrade the filter’s
performance that can lead to abrupt changes of mean and variance values. Other limitations
are highlighted in the conclusion section as recommendations for further study which might
improve upon the present study.

1.5 Contribution

We have implemented the two-stage feedforward carrier phase estimation algorithm in a co-
herent system for single polarization. We have developed a common framework for the carrier
phase dynamic model that can be used by both Kalman and Wiener filters. The Kalman filter-
based phase estimator stage as well as the Wiener filter-based phase estimator for the two-stage
feedforward phase noise estimation algorithm has been designed, developed and presented in
detail. We have derived the Wiener transfer function corresponding to the Wiener coefficients
and proved that the Wiener coefficients consists of two exponential decaying sequences that
are symmetric about the origin whose decay rate depends only on the ratio between the phase
noise variance and additive noise variance.

The simulation results show that the phase noise estimation, crucial to perform before the
recovery of the transmitted symbol, could significantly be improved using minimum mean
square estimators.

1.6 Methodology

Although both Kalman and Wiener filters are based on the same method, namely least-squares
estimation procedures, they differ significantly from each other in the way they obtain the
optimal estimator. Thus, while Wiener filter involves an input-output signal model, the Kalman
filter requires a state-space model and operates recursively on the stream of noisy input data
to produce a statistically optimal estimate of the underlying system state. Consequently, the
main task is to develop a common framework within which both filters can be used to solve
the same least-squares estimation problem. Basically, it involves two steps. The first step deals
with generating the input-output signal model for the Wiener filter based on Wiener process
which is used for modeling of phase noise in semiconductor lasers. This latter result becomes
the linear-phase noise model for Kalman filtering which is also know as the model equation in
Kalman theory.

The second step becomes an estimation problem and is aimed at determining the observa-
tion linear-phase noise estimator model which is also called observation equation in the general
Kalman theory. The linear-phase noise estimator model is obtained from the phase estimation

4
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stage and phase unwrapping stage in sequence. Taken together these two stages make up the
first stage of the feedforward phase noise estimation algorithm. The second stage of the feed-
forward phase noise estimation algorithm is a linear filter optimal in the sense of the MMSE

The above mentioned signal models, namely the linear-phase noise model and the linear-
phase noise estimator model, form the linear state phase model for Kalman filter.

We consider that the receiver takes a vector rk = (rk,rk−1, ...,rk−L+1) of L received se-
quential symbols. The problem consists of computing the best estimates of the carrier phases
Θk = (θk,θk−1, ...,θk−L+1).

We employ the temporal correlation in the carrier phase by modeling the phase noise as
a Wiener process as the phase at any symbol period is likely to have a value similar to the
phases at adjacent symbols thereby obtaining the linear phase noise model. NDA algorithm for
QAM modulation allows the phase noise θk to be estimated without any symbol decisions after
removing the data modulation by raising the received signal to the 4th power. The raw phase
noise thus obtained has the ambiguity by π

2 because we cannot know the absolute phase. The
unwrapping procedure is aimed at removing the π

2 giving rise to the soft phase noise estimate
ψk. It is worth noting that no temporal correlation is used in computing ψk. After unwrapping,
the linear-phase-estimator model appears naturally.

The second stage involves phase noise estimation that produces the phase noise estimate
θ̂k. Phase noise estimation is needed to reduce effect of additive noise in the previous stage.
The soft phase noise estimate ψk is passed through a FIR Wiener filter, with sufficient num-
ber of taps, whose output is the MMSE estimate θ̂k of the actual carrier phase θk. Another
way to obtain the MMSE estimate θ̂k is using Kalman filter which is also optimal in MMSE
sense. The phase noise estimate θ̂k can be determined by the Kalman recursion equation:
θ̂k+1=θ̂k+K(ψk− cθ̂k), where K is the Kalman gain. We can further improve the estimation of
θ̂k using a Kalman smoothing filter.

1.7 Outline

The thesis is structured as follows. In chapter 2, as a foundation for the feed forward carrier
recovery algorithm, the input signal to the carrier recovery unit as well as assumptions about
the receiver model are presented. The phase noise model, which gives rise to process equation
in the state space system and to the input signal to the Wiener filter, is also considered. Chapter
3 is mainly concerned with the two stage iterative carrier-phase estimator algorithm including
the soft phase estimator and phase noise filtering. The equations of the scalar Kalman filter and
Wiener filter are derived. Kalman smoother is presented without any proof and some theoretical
and practical results aspects of filtering are considered. In chapter 4 Kalman and Wiener filters,
based on the FF carrier recovery algorithm, are evaluated in MATLAB. Chapter 5 contains

5
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conclusions of the thesis and suggestions for future work as well as changes that can improve
the results.

6
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Chapter 2

System model

In coherent detection the best receiver sensitivity1 and higher bit rate signals are achieved when
homodyne receiver is used [22]. However, in this case a narrow linewidth transmitter laser as
well as a narrow linewidth LO laser are required. In addition, they should be phase-locked.
These two requirements make the realization of a homodyne receiver difficult to implement in
practice. Several receiver schemes employing high-speed signal processing has been proposed
to overcome this problem. These schemes maintain the advantages of the homodyne detection
without phase locking using instead digital Feedforward carrier recovery.

In this chapter we introduce the problem for a single polarization case. The phase noise
process is modeled as a Wiener process. It is assumed that the symbol synchronization has
been achieved and the received signal has low polarization crosstalk and are at one sample per
symbol.

2.1 Discrete-time receiver model

We consider a base-band frequency synchronized communication system over a AWGN chan-
nel. The modulation interval T is considered as perfectly known at the receiver side. We assume
also a constant channel phase model, then when phase noise and AWGN noise are the only im-
pairments in the digital coherent receiver, the input signal rk to the FF carrier synchronizer is
of the form:

rk = ak e jθk +nk, k = 0,1, ....,N−1 (2.1)

where k denotes the kth time interval, ak is the kth data complex-valued transmitted symbols
of π

2 rotational symmetry constellation of a unit average energy, E
{∥∥a2

k

∥∥} = 1. θk
2 stands

1lowest bit-error rate at a given optical signal-to-noise ratio (OSNR) [22]
2We will use the character θk to mean both the carrier phase of a transmitted symbol and the phase noise from

the Wiener process Θ.

7
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for the uncompensated carrier phase to be estimated by observing the received signal rk and
nk is a zero-mean circular complex-valued additive white Gaussian noise process, assumed
independent of the symbols ak and zero-mean circular (i.e. E{np

k}= 0 for all positive integers p,
[13] ) with variance No/2 in each component where N0 is the noise spectral density. N denotes
the observation window size. Furthermore the signal-to-noise ratio per symbol is defined as
follows:

SNR =
E
{∥∥a2

k

∥∥}
E
{∥∥n2

k

∥∥} =
1

N0
(2.2)

where E {.}denotes the expectation operator. In this project the SNR value is equal to 17.5 dB
and the level of reliability, measured by symbol error rate (SER), should be less than 10−3.

2.2 Phase noise model

In communication receivers, the output of a practical LO is not a perfect sinusoid. As a result,
instead of being an ideal impulse at the carrier frequency, the output spectrum of the a real
LO is spread and has a skirt shape. Therefore, the phase noise, which is the phase difference
between the phase of the carrier signal and the phase of the LO, should be accurately estimated
and compensated. For simplicity, and without loss of generality, the initial phase of the carrier
can be assumed to be zero.

In an ideal communication systems, the carrier frequency oscillators of the transmitter and
the receiver would be perfectly match in frequency and phase thereby permitting perfect coher-
ent demodulation of the modulated based signal. However, in the real world, the frequency of
the LO at the demodulator is not perfectly matched to the frequency of the carrier signal. The
mismatch between the carrier frequency and the local oscillator’s frequency is denoted here by
∆ν and is assumed to be much smaller than the symbol rate 1/T 3. The existence of ∆ν causes
the received signal to rotate at an angular speed of 2π∆ν for every T seconds [14]. Thus, the
strength of the phase noise will depend on the product ∆νT and a larger value of ∆νT means a
faster changing carrier phase.

When the oscillator is locked to the carrier phase with the aid of a phase-locked loop, phase
noise θk is modeled as a WSS process. However, when the LO is locked to the carrier frequency
only i.e when carrier synchronization can be done through digital phase estimation techniques
allowing for a free running LO, the time varying phase θk is satisfactorily modeled as a Wiener
process. Although Wiener phase noise θk is not stationary the LO output e jθk 4 can be assumed
stationary with a Lorentzian spectrum[24] .

3This assumption can be assured with practical oscillators [14]
4LO output in base-band complex form as a function of the time-varying phase noise can be expressed as e jθk
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In most semiconductor laser, phase noise can be modeled as Wiener process [6] :

θk =
k

∑
m=−∞

νm (2.3)

where νm are independently identically distributed Gaussian random variables with zero mean
and variance σ2

θ
= 2π4νT. 4ν is the sum of the 3-dB linewidths of the signal and LO lasers

and T is the symbol period. As we mentioned above, we will initially assume that the frequen-
cies of the signal and LO lasers are synchronized so that the time variation in θk is due to phase
noise only. Temporal correlation in the carrier phase at any symbol period is introduced by the
Wiener process as the phase at any symbol period is likely to have a value similar to the phases
at adjacent symbols.

The discrete-time Wiener phase noise can be expressed as [24]

θ(k) = θ(k−1)+ν(k) (2.4)

where ν(k) is a zero-mean white Gaussian with variance σ2
θ
= 2π4νT.

The phase noise model given by Equation 2.4, can be understood as the process equation
in the state space model for Kalman filtering given by Equation 3.19. Equation 2.4 is also
considered as input to the Wiener filter.

9
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Chapter 3

Feedforward carrier phase estimation
algorithm

In this chapter we begin by presenting the foundation for the Feedforward carrier phase al-
gorithm. We consider a coherent digital communication system employing linear modulation
format which uses a symmetric signal constellation, such as QAM, that lends itself to phase
ambiguity due to the quadrant symmetry of the constellation. We assume that carrier recovery
is performed separately so quantities such as power noise and symbol rate are referenced for
one polarization. As seen in the previous chapter, we will initially assume that the TX and LO
lasers are frequency-synchronized but not phase-synchronized so that the evolution of θk is due
to phase noise only.

3.1 Introduction.

Since the linewidth of the semiconductor DFB lasers used as the transmitter and LO typically
ranges from 100 kHz to 10 MHz, the true carrier phase varies much slowly than the phase noise
modulation [9]. Therefore, by averaging the carrier phase over a many symbols interval it is
possible to obtain an accurate phase noise estimate. [9]. As shown in Fig. 3.1, the FF carrier
recovery unit is performed in two stages. The first step is the soft phase estimator which com-
puted the symbol-by-symbol phase estimate ψk of the actual carrier phase θk. The soft phase
estimate ψk is the input to both Kalman and Wiener filters.

The second stage, called phase noise filtering is implemented by both Kalman and Wiener
filters. The phase noise filtering is aimed at improving the phase noise estimates obtained after
unwrapping. In the first case, the phase noise filtering consists of a linear filter W (z) whose
output θ̂k−∆ (∆ is the filter delay) is the MMSE of ψk. The primary limitation to the Wiener
filter is that both the desired signal θk and the observation signal ψk must be jointly white-
sense stationary (WSS). Since most processes encountered in practice are nonstationary, this
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constrains the usefulness of Wiener filters. In this regards, Kalman filter is a next step in the
evolution which drops the stationary constraint.

Figure 3.1: Two-stage Feedforward carrier phase estimator

A variety of methods are used to estimate carrier phase, each has its advantages and draw-
backs. In this project we will use the Fourth power phase estimator which is a special case of
the Viterbi and Viterbi (V&V) algorithm. A graphical view of the fourth power estimator is
given in Fig. 3.2. The V&V algorithm computes the rough phase noise estimation θ̂ r

k . It also
provides the linear phase estimator model which can be understood as the observation equa-
tion, Eq. 3.20, in the system state space for Kalman filtering. The variance σ2 for the AWGN
in the linear phase estimator model is numerically determined by the SNR which, in turn, is
determined by the received symbol error rate SER. The SER is the constrain that should be
fulfilled and in this particular case is set to 10−3. The final goal in this chapter is to estimate θk

using FF algorithms which will allow derotation of rk by multiplying it with e− jθ̂k .

Figure 3.2: Principle of the 4th power phase estimation. Taking the 4th power of the received
complex amplitude we can eliminate the phase modulation and measure the phase noise.
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Detailed description of each of stages of the FF carrier recovery algorithm is given in the
following sections. In addition, two important results used in the derivation of Wiener filter
equations are considered in this chapter. The derivation of these two results are presented in
the Appendix A and and Appendix B.

3.2 NDA soft-decision phase estimator.

The NDA soft-decision phase estimator is implemented using the V&V carrier recovery stage
followed by the unwrapping stage as shown in Fig. 3.3. The rotational symmetry of the trans-
mitted signal constellation allow us to rise the received signal rk to the fourth power to remove
the data modulation from the QAM signal.

A running average is used over a predefined number of symbols of rk. Thus, for an 2N +1
symbol carrier phase estimation, the N forerunner and the N after-runner symbols are consid-
ered. The argument then gives the raw phase estimate θ̂ r

k . Since θ̂ r
k fall in the range [0, π

2 ), they
need to be unwrapped to remove discontinuity in the raw estimates from the previous stage.
The soft phase estimate ψu

k , obtained after unwrapping, is then fed into the phase noise filtering
stage. Notice that for simplicity, throughout this thesis, the output for unwrapping stage ψu

k

will be denoted by ψk.

Figure 3.3: NDA soft-decision phase estimator

3.2.1 Viterbi and Viterbi Estimator

The Viterbi and Viterbi estimator is a carrier phase estimator designed for π

2 rotational symmet-
ric constellations such as QAM. The set of complex-valued transmitted symbols ak in Equation
2.1 , can be written as
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ak = e
jmπ

M (3.1)

where m = 1, ..,M and M is the order of the rotational symmetry in Equation 2.1. From 3.1, it
follows that ak can only take on values from the finite set given by

ak = {1,−1,− j, j} (3.2)

the forth power applied to ak always gives 1. Raising rk to the 4-th power we get

r4
k =

(
ake jθk +nk

)4
(3.3)

As a result, the modulated signal is removed by the 4-th power calculation and the white noise
is suppressed by the averaging so the received signal is determined as

r4
k = e j4θk +mk (3.4)

where mk is the sum of the unwanted cross terms between the signal and AWGN [6]. Now
taking the argument of r4

k and scaling by 4 we get the raw phase noise estimate θ̂ r
k .

The V&V estimator is in fact a kind of block window estimator as the received signal rk is
processed in blocks of length Ms. In practice, the phase estimate in the kth block is determined
by [5] .

θ̂
r
k =

1
4
]

(
sk+Ms−1

∑
l=sk

r4
l

)
(3.5)

where the argument function ](·) returns phase estimation values between
[
0, π

2

]
and sk is the

index of the first symbol in the kth block. As mentioned previously, the removal of the additive
Gaussian noise is accomplished by taking the average over an observation period. Therefore a
large value of Ms minimizes the effect of the noise while, on the other hand, a small value of
Ms is required to accurately track variation in the carrier phase.

A good insight into the tradeoff between the tap numbers Ms and the variance can be ob-
tained if assuming that the carrier phase is slowly varying so that it is considered constant over a
series of consecutive symbols. The variance of the phase estimation error due to additive noise
is then reduced by a factor equal the symbol sequence length Ms . The process itself introduces
an error in phase estimation as the carrier phase is actually not constant due to the finite beat
linewidth of transmitter and LO lasers . This error thus increases with Ms [10]. A trade off
between these two effects suggests that the tap number for the additive noise estimator must be
optimized. The MATLAB code of V&V is found in Appendix E.
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3.2.2 Phase Unwrapping

A close look at Equation 3.5 shows that the θ̂ r
k is computed by multiplying by the factor of 1

4

the results gathered withing an observation period. Consequently, the raw phase noise estimate
sequence θ̂ r

k can only take wrapped values in the range from 0 to π

2 whereas the carrier model,
described by Equation 2.3 , assumes θk to be an unwrap angle extending from −∞ to +∞.

The underlying idea behind phase unwrapping procedure consists in choosing the nearest
phase noise that is less than ±π

2 rad. It is obtained by adding multiples of ±π

2 rad to the carrier
phase prior to unwrapping, that is to the raw phase estimate θ̂ r

k−1 , thus ensuring that the mag-
nitude of the phase difference between two adjacent elements in the unwrap estimated phase
noise sequence θ̂ u

k − θ̂ u
k−1 is the smallest . This is obtained using the floor operator f loor (x)=

bxc which returns the largest integer not greater than x. In [6] two ways for numerically com-
puting phase unwrapping are presented. In this project we will used what the author considered
the most robust variation given by

θ̂
r
k = θ̂

r
k−1 + p

π

2
(3.6)

where p is obtained using the floor operator

p =

⌊
1
2
+

((
ψ

u
k−1 +ψ

u
k−2 +ψ

u
k−3
) 1

3
−ψ

u
k

)
/

π

2

⌋
(3.7)

In Eq. 3.7, the three first unwrap phase noise values, ψu
k−1, ψu

k−2 and ψu
k−2 are computed by

p =

⌊
1
2
+
(
ψ

u
k−1− θ̂

r
k
)
/

π

2

⌋
(3.8)

Once the π

2 jumps, that are present in the wrapped phase noise estimate sequence due to the
constrain on θ̂ r

k , have been removed the raw-wrapped phase noise estimate sequence becomes
a unwrap phase noise estimate sequence ψu

k of continuous form, free from π

2 jumps and hence
making the phase noise estimates ψu

k usable in further processing.

Since mk in Eq. 3.4 contains high-order terms, it is clear that it is not exactly a Gaussian
noise process. Now taking the argument of r4

k 3.4 and scaling by 4 and assuming that the
additive noise mk is small, ψk can be expanded using a small angle approximation

ψk = θk +n′k (3.9)

Where n′k is the Gaussian measurement noise. At high SNR it can be shown that n′k is
approximately i.i.d. with zero mean and σ2 = η(M,γ)1

γ
where γ is the SNR per symbol, M is

the order of the rotational symmetry and η is a function depending on γ and M [6]. Notice that
for simplicity’s sake, the superscript ′u′, used to denote the unwrapped phase has been dropped
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in the Equation 3.9 . The MATLAB script for both V&V and phase unwrapping can be found
in Appendix E.

3.3 Phase noise filtering.

First, we need to establish a common framework for the carrier phase dynamic model that can
be used by both Kalman and Wiener filters. So, we begin by considering θk, that was modeled
as a discrete-time Wiener noise, defined by the Equation 2.4, as the state parameter recursively
updated by Kalman filter. Consequently, the Equation 2.4 becomes the state transition equation
of the discrete state-space model. Moreover, the true phase noise θk, modeled by the Equation
2.4 as the running sum of the input frequency noisy vk , will be considered the desired signal to
be recovered from the noisy observation ψk by the discrete Wiener filter, see Fig. 3.4.

On the other hand, Equation 3.9 is considered as the observation equation or measurement
equation of the discrete state-space model which gives the observed value ψk as a function
of θk corrupted by the Gaussian measurement noise n′k. It is worth noting that Kalman and
Wiener filter are equivalent in steady state [17]. They also depend upon the same process and
measurement covariances. When the delay in the Wiener filter output is reduced to zero, the
Kalman filter, which is a generalization of the Wiener filter, can be used to estimate θk instead
[11, 12] . Improved phase noise estimation can be achieved using Kalman filter smoothing.
In what follows, we will consider θk and θ (k) to be interchangeable as they both represent
samples taken at the symbol centers.

3.3.1 Wiener Filtering.

Traditionally, filters are designed for a desired frequency response. However, in case of the
Wiener filter, its design takes a different approach which consists in reducing the amount of
noise present in a signal by comparison with an estimation of the desired noiseless signal.

Consider the Fig. 3.4 that depicts the linear phase estimator model determined by the obser-
vation Eq. 3.9 . The input frequency noise vk is a white Gaussian process whose running sum
is θk. At the output of the soft phase estimator, θk is corrupted by the noise n′k to produce ψk.
The best linear estimate of θk that can be made is applying a Wiener filter to ψk [7] . Thus, we
pass ψk through a Wiener Filter W (z) whose output is the MMSE estimate θ̂k−∆ of the carrier
phase θk where ∆ is the filter delay. Put simply, the task of making a phase estimate that we
address is to estimate θk from the observable ψk .

The phase noise model and the linear phase estimator model given by Equation 2.4 and
Equation 3.9 respectively, give rise to the following system of equations:
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Figure 3.4: Carrier-phase estimator for Wiener’s signal model

θ (k) = θ (k−1)+ v(k) , v(k)∼ N
(
0,σ2

θ

)
(3.10)

ψ (k) = θ (k)+n′ (k) , n′ (k)∼ N
(
0,σ2) (3.11)

With ψk as the input to the filter, the MMSE Wiener-filtered phase noise estimate θ̂ (k) is
evaluate by the convolution of the Wiener filter coefficients w(k) and ψ(k) ,

θ̂ (k) =
+∞

∑
l=∞

w(l)ψ (k− l) (3.12)

So the problem considered here is as follows: Given the system obtained from the estimation
model in Fig. 3.4, find the optimum filter coefficients w(l) that minimize

E
{
|θ̂ (k)−θ (k) |2

}
(3.13)

3.3.1.1 Wiener Transfer Function

It can be shown that the Wiener filter W (z) is given by [6]

W (z) =
r z−1

−1+(2+ r)z−1− z−2 (3.14)

where

r =
σ2

θ

σ2 > 0 (3.15)

r is the ratio between the magnitude of the phase noise variance σ2
θ

and the additive noise
variance σ2. The derivation of the Wiener transfer function is presented in Appendix C.

3.3.1.2 Wiener Coefficients. Inverse Transform of W (z)

The Wiener filter given by Equation 3.14 has two poles at:

α1,α2 =
(

1+
r
2

)
±
√(

1+ r
2

)2

−1 (3.16)
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These two poles are inverse of each other with α1 inside the unit circle mapping to a causal
sequence and α2 outside the unit circle mapping to an anticausal sequence. It can be shown
that the MMSE filter for ∆ = 0 has coefficients:

wk =

 αr
1−α2 αk, k ≥ 0

αr
1−α2 α−k, k < 0

(3.17)

The usual way to derive the Wiener coefficients wk from W (z) is using the contour inversion
formula but since we are not dealing with numerical values the computation might be a bit
cumbersome. In Appendix D, using fraction expansion and some math tricks, we provide a
simple way to obtain the Wiener coefficients wk.

We note that the Wiener filter coefficients in Equation 3.17 consists of two exponentially
decaying sequences that are symmetric about k = 0. The decay rate of the Wiener filter coeffi-
cients depends only on the ratio between the magnitude of the additive noise variance σ2 and
the phase noise variance σ2

θ
. In the limit of the low phase noise, i.e. when σ2�σ2

θ
, we have

α → 1. The decay rate is slow because of the long coherence time of the phase noise process.
Conversely, in the limit of high phase noise, when σ2�σ2

θ
, soft decision phases on either side

of symbol k rapidly become poor estimator of θk , so α→ 0, and the Wiener coefficients decay
rapidly.

3.3.1.3 FIR Wiener Filter

Since the Wiener filter coefficients are non causal with two exponentially decaying tails toward
the past and the future, it cannot be implemented. In practice, one can truncate Equation 3.12
to L significant coefficients and implement it as an FIR filter with delay ∆ without significant
performance degradation. Hence, the best estimates of the carrier phase at symbol k−∆ is the
output θ̂k−∆ determined as the convolution of its input ψ = ψk, ψk−1 , ...., ψk−L+1 with the
Wiener coefficients wk,

θ̂k−∆ =
L−1

∑
l=0

wlψk−l (3.18)

In Fig 3.5, the coefficients of FIR Wiener filter are shown for different values of r = σ2
θ

σ2 and
delay ∆. Intuitively, the lowest MSE is obtained when the delay ∆ is equal to the half the filter
length i.e. ∆ = [L−1

2 ] which results in the same number of soft phases used from either side
of the symbol period k−∆ for estimating θ̂k−∆ . Fig. 3.6 shows the MATLAB simulation of
FIR Wiener filter for a delay ∆ =

⌊L−1
2

⌋
. The true phase noise θk and its corresponding noisy

measurement or soft phase noise estimate ψk are depicted in Fig. 3.6. From this figure, we
can also see that the FIR Wiener filter resulted in significant noise reduction as shown by the
Wiener-filtered phase noise.
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Figure 3.5: MATLAB simulation of FIR Wiener coefficients for parameters: Wiener filter

length L , delay ∆ and ratio r = σ2
θ

σ2

3.3.2 Kalman filtering

In this section we will consider the well-known discrete time linear Kalman filter and the dis-
crete time fixed interval Rauch-Tung-Striebel (RTS) smoother or Kalman smoother for short,
which is an extension to the standard Kalman filter, based on the carrier phase dynamic model.
The difference between Kalman filter and Kalman smoother lies in their analyzed time interval.
Kalman smoother uses all the measured data before and after the time of estimation which does
not fulfill the causality condition. On the other hand, Kalman filter estimates the state at the
present time in a way that the measurement data used not object the causality for filtering. In
what follows, the discrete standard Kalman filter is referred to as Kalman filter and the RTS
smoother as Kalman smoother

In the following section the discrete scalar Kalman filter theory will be presented in a clear
and and practical way. Kalman equations are derived step by step. The derived equations are
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Figure 3.6: Wiener filter simulation

used for simulation in MATLAB. The Rauch-Tung-Striebel formula for Kalman fixed interval
smoother is presented without proof. The performance of Kalman filter and Kalman smoother
are evaluated for different values for the phase noise and additive noise variances. The MAT-
LAB code are included in the Appendix E.

3.3.2.1 Discrete time Kalman filter.

Discrete Kalman filter is based on linear dynamic systems in the discrete time domain, hence
it is capable of dealing with potentially time varying signal as opposed to Wiener filter. The
Kalman filter is essentially a set of equations that implement a predictor-corrector type estima-
tor that is optimal in the sense that it minimizes the estimated error covariance based on linear
minimum mean square error (LMMSE) 1 criterion for problems in which the system can be
described through a linear model and in which system and measurement noises are white and
Gaussian. The whiteness of the noise implies that the noise value is uncorrelated in time. It also
implies that the noise has equal power at all frequencies which results in a noise with infinite
power that cannot really exist in real life. However, since any physical system of interest has a
certain frequency bandpass, replacing it with a white noise, which has a bandpass above sys-

1LMMSE, as well as MMSE , is an estimator which seeks to minimize the MSE but, unlike MMSE, LMMSE
constrains the estimator to be linear.

19



Phase noise filtering for coherent optical communications

Master’s thesis Pedro Fernandez Acuna

3.3. PHASE NOISE FILTERING.CHAPTER 3. FEEDFORWARD CARRIER PHASE ESTIMATION ALGORITHM

tem’s frequency bandpass, make the mathematics involved in the filer computation simplified
and more tractable. Gaussianness implies that the noise is assumed to be normal distributed,
that is, at any single point in time, the probability density of the Gaussian noise amplitude takes
on the shape of a normal bell-shape curve. When these three conditions are met, namely lin-
earity of the system, whiteness and Gaussianness, the Kalman filter can be shown to be the best
linear filter over the class of all linear filters.

One fact worth mentioning is the difference between Kalman and Wiener filter. While the
causal Wiener and the Kalman filter are in general different, if we apply the Kalman filter to an
stationary process arising from an LTI system over an infinite time horizon, the corresponding
steady-state Kalman filter reduces to the causal Wiener filter. This result makes perfect sense
since in this case they are both solving the same problem. In this case, the causal Wiener filter
is a frequency domain solution while the Kalman filter is a time domain solution.

Kalman filter Causal Wiener filter
Recursive algorithm Close form solution

Nonstationary or stationary process in discrete time Stationary process in continuous time
Time varying filter, i.e. K(k) changes with k LTI filter

Finite observation interval Infinite observation interval

Table 3.1: Comparison of the Kalman filter and causal Wiener filter

The Table 3.1 displays a briefly comparison of the Kalman and Wiener filters. From it, we
can deduce that Kalman filter presents some advantages over Wiener filter. In fact, the Wiener
filter itself has a serious limitation: it applies only to stationary processes i.e. systems whose
dynamics are constant. Kalman filter solves this problem as it applies to both stationary and
nonstationary processes. Another limitation is that Wiener filter must be carried out by convo-
lution making it extremely slow to execute. Moreover, Kalman describes his filter using state
space model models, which, unlike Wiener filter, enables the filter to be used as either a filter, a
smoother or a predictor. Finally, defining the filter in terms of state space model also simplifies
the implementation of the filter in the discrete domain. All these reasons have contributed to
the widespread use of Kalman filter.

The Kalman filter equations can be derived in several ways, our approach is to keep things
simple and straightforward. The basic idea is considering only first order difference equations
and perform optimal updates step by step. A brief presentation of the Kalman filter when the
input is a vector quantity is also considered. The derived equations are being used in MATLAB
simulation. The MATLAB code of Kalman and Wiener filters are presented in Appendix E.
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3.3.2.2 The formulation of the Kalman filtering approach

Because of the time delay in the PLL, its time loop cannot be modeled as a standard Kalman
filter 2 . Feedforward carrier recovery scheme, that can be implemented in digital hardware
without PLL, can be advantageously used along with discrete standard Kalman filter for de-
modulating coherent optical signals. To that end, the phase noise estimation will be modeled
as a Kalman filtering problem and the process and measurement variances, established in the
preceding sections, will be incorporated in the Kalman algorithm.

3.3.2.3 Notation

In order to make the derivation of Kalman equations understandable and easy to follow we
introduced the notation used in the derivation and explain its usage to the reader.

Notation meaning
θ̂ (1|0) predicted state estimate
θ̂ (1|1) updated state estimate

θ̃ (1|0) = θ (1)− θ̂ (1|0) predicted estimation error
θ̃ (1|1) = θ (1) - θ̂ (1|1) updated estimation error

P(1|0) = E
(
θ̃ (1|0) θ̃ T (1|0)

)
predicted error covariance

P(1|1) = E
(
θ̃ (1|1) θ̃ T (1|1)

)
updated error covariance.

Table 3.2: Notation for derivation of scalar Kalman filter

remark 1. The predicted state estimate θ̂ (1|0) is a priori state estimate at step k= 1 given
knowledge of the process prior to step k= 1.

remark 2. The update state estimate θ̂ (1|1) is a posteriori state estimate at step k= 1 given
the measurement ψ (1)

remark 3. The predicted error covariance P(1|0) is the mean squared error in the estimate
θ̂(1|0)

remark 4. The updated error covariance P(1|1) is the mean squared error in the estimate
θ̂ (1|1), after including the first measurement ψ(1).

remark 5. For convenience, we change the notation in Equation 3.20 by replacing θ̂ (k)

with ψ(k) as the notation θ̂ (k)will be used for the Kalman predicted state estimate in the text.

2It is however possible to model the time loop as a modified Kalman filter
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The measurement process is central in Kalman filter. The random variable θ (k) can be in
either predicted or updated state. Before a single measurement ψ (k) is included θ (k) should
be predicted. After including ψ (k), the random variable θ (k)should be updated with the new
information.

3.3.2.4 State-space phase-noise model

Instead of considering a random process as the output of a linear time-invariant system with
a white noise input (e.g. ARMA, AR, MA processes), the state-space models can be used for
signal estimation from noisy measurement. Together, the phase noise model given by Equation
3.19 and the linear phase noise estimator given by Equation 3.20 make up the state space phase
noise model:

θ(k) = aθ(k−1)+ v(k) (3.19)

ψ(k) = cθ(k)+n′(k) (3.20)

Equation 3.19 models the dynamic of the state variable θ(k) and Equation 3.20 models the
observed ψ(k). In the standard Kalman filter terms they are known as state equation and ob-
servation equation respectively. Fig. 3.7 shows the signal model for the discrete scalar Kalman
filter.

Figure 3.7: Signal model for scalar Kalman filter

3.3.2.5 Problem Statement

The task of the the Kalman filter is the following: “Given the state-space model that includes
the state equation 3.19 and the observation equation 3.20 , how can we filter ψ(k) so as to
estimate the phase noise θ(k) at time k while minimizing the effects of v(k) and n′ (k)?.
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In our development of the scalar Kalman filter we will let θ̂(k|k) denote the best linear
estimate of θ(k) at time k given the observations θ̂(i) for i = 1, ...,k, and we will let θ̂(k|k−1)
denote the best estimate of θ (k) given the observations up to time k−1.

3.3.2.6 Derivation step by step

The Kalman filter algorithm works in two steps. In the prediction step, the Kalman filter algo-
rithm produces the estimate of the current true phase noise along with its related variance. Once
the outcome of the next measurement, corrupted with some among of error, becomes available,
this estimate is updated using a weighted average with more weight being given to estimates
with higher certainty.

Before deriving of the discrete scalar Kalman filter equations, we need to make the follow-
ing assumptions:

• The Gaussian system noise v(k) and Gaussian measurement noise n′ (k) are additive
white Gaussian noises with

E [v(k)] = 0, E [n′ (k)] = 0

Var[v(k)]= σ2
θ

, Var[n′(k)] = σ2.

The two noise sources are independent of each other and independent of the input.

• We assume that the system starts at k = 0 . Hence it is necessary to specify an initial
system state θ (0) which is independent of v(k) and n′(k).

• For the random variable θ (0) the following apriori information should be provided:

E[θ(0)] = θ0 (3.21)

Var[θ(0)] = P0 (3.22)

Let k = 0 be the initial time. Clearly, when no measurement is available, the LMMSE(Linear
Minimum Mean Square Error) estimator of θ(0) is equal to the initial guess θ0

θ̂(0|0) = θ0

and its related error variance is

Var
[
θ̃ (0|0)

]
= E

[
(θ(0|0)−θ0)

2
]
= P0

In addition, θ(0) is unbiased because E[θ(0)] =θ̂(0|0).

PREDICTION STEP
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Before collecting a sample ψ(1) we need to predict θ(1). So lets θ̂(1|0) be the one-step-ahead
predictor of θ(1). θ̂ (1|0) can be determined as a function of the old θ̂(0|0) by the following
linear equation:

θ̂(1|0) = αθ̂(0|0)+β (3.23)

Now taking expectations of both sides of the Equation 3.19 for time instance k = 1 we get
E[θ(1)] = E[aθ(0)+ v(1)] = aθ̂(0|0) (3.24)

The next step is to choose α and β so that the LMMSE E[(θ(1)− θ̂(1|0))2] is minimized.
Comparing Equation 3.23 with Equation 3.24 we see that for unbiasedness we should choose
α = a and β = 0. Thus the best prediction of θ(1) is given by:

θ̂(1|0) = aθ̂(0|0) (3.25)

We can verify LMMSE property using orthogonality principle a.k.a projection theorem.
Consider the Fig 3.8. We are looking along the vector θ̂ (0|0) for a point closest to θ (1) .
From the geometric interpretation it is intuitive that the smallest error vector θ̃(1|0) is the
orthogonal to the vector θ̂ (0|0).

Figure 3.8: Orthogonality principle

From Fig. 3.8 we can see that vector error θ̃(1|0) is simply the difference between θ(1) and
θ̂(1|0) that is,

θ̃(1|0) = θ(1)− θ̂(1|0) (3.26)

and the error variance Var[θ̂(1|0)] is minimized if the vector θ̃ (1|0) is perpendicular to the
vector θ̂ (0|0). Now in order to determine the predicted estimation error θ̃ (1|0) we should first
determined θ (1) . Equation 3.19 for k = 1 yields

θ (1) = aθ (0)+ v(1) (3.27)

Replacing Equation 3.25 and Equation 3.27 into Equation 3.26 gives
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θ̃ (1|0) =aθ (0)+v(1)−aθ̂ (0|0) = a
(
θ (0)− θ̂ (0|0)

)
+w(1)

Thus the predicted estimation error is given by:

θ̃ (1|0) = aθ̃ (0|0)+ v(1) (3.28)

where θ̃(0|0)= θ(0) − θ̂(0|0).
The next step is to compute the predicted error covariance P(1|0)

P(1|0) =Var
(
θ̃ (1|0)

)
= E

[(
aθ̃ (0|0)+ v(1)

)(
θ̃ T (0|0)aT + vT (1)

)]
Using the fact that v(k) is white Gaussian with covariance σ2

θ
we finally obtain the prediction

error covariance,

P(1|0) = aP(0|0)aT +σ
2
θ (3.29)

UPDATE STEP

Having found the predicted state estimate θ̂ (1|0) and the predicted error covariance P(1|0),
in order to update θ̂ (1|0), we can now incorporate the first sample ψ(1) corrupted with some
amount of error . Here we either assume that the updated state estimate θ̂(1|1) is a linear
weighted sum of the prediction and the new observation Kψ (1) or assume that the linearity of
the linear phase estimator model, Equation 3.20, implies that we can add any linear combination
of Kψ (1) to Equation 3.30 since this is a zero mean stochastic variable. Thus

θ̂ (1|1) = αθ̂ (1|0)+Kψ (1) (3.30)

Note that for notational simplicity we sometimes denote the Kalman gain K(k) by K. The
updated estimation error is given by

θ̃ (1|1)= θ (1)−θ̂ (1|1)= θ (1)−αθ̂ (1|0)−K (cθ (1)+n′ (1))

θ̃ (1|1) = (1−K c)θ (1)−αθ̂ (1|0)−K n′ (1) (3.31)

Again we are looking for E
[
θ̃ (1|1)

]
= 0. So after taking expected value of the Equation 3.31

and setting it to zero we get:

(1−K c)E [θ (1)] = αθ̂ (1|0) (3.32)

Clearly Equation 3.32 holds if
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α = 1−K c

Replacing α = 1−K c into Equation 3.31

θ̃ (1|1) = (1−K c)θ (1)−(1−K c) θ̂ (1|0)−K n′ (1)

= (1−K c)
(
θ (1)− θ̂ (1|0)

)
−K n′ (1)

Now expressing θ̃ (1|1) as a function of θ̃ (1|0) we have

θ̃ (1|1) = (1−Kc) θ̃ (1|0)−Kn′ (1) (3.33)

Now our problem is reduced to finding the optimal Kalman coefficient or blending factor K in
Equation 3.33 that minimizes the predicted error covariance P(1|1) =Var

(
θ̃ (1|1)

)
with K(k)

as decision variable. We could do it using orthogonal principle but this time we do it using the
completing-of-squares method.

E
[
θ̃ (1|1) θ̃ (1|1)

]
= E

[{
(1−K c) θ̃ (1|0)−K n′ (1)

}{
θ̃ (1|0)(1−K c)−n′ (1) K

}T
]

=(1−K c)P(1|0)(1−K c)T +Kσ2K

Since the transpose of a scalar is the same scalar, the transpose operator can be ignored , thus

=P(1|0)−K cP(1|0)−P(1|0)cK +K cP(1|0)cK +K σ2 K

= P(1|0)−KcP(1|0)−P(1|0)cK +K [cP(1|0)c+σ2]K

= P(1|0)−KcP(1|0)−P(1|0)cK +K SK

where S is the innovation covariance, which is defined as

S = cP(1|0)c+σ
2 (3.34)

Now we are looking for a square structure, rearranging the above equation we get:

= K SK−P(1|0)cK−K cP(1|0)+P(1|0)

P(1|1) = (K−P(1|0)cS−1)S(K−S−1cP(1|0))+P(1|0)−P(1|0)cS−1cP(1|0)≥P(1|0)−P(1|0)cS−1cP(1|0)

P(1|1) = (K−P(1|0)cS−1)S(K−S−1cP(1|0))+P(1|0)−P(1|0)cS−1cP(1|0)≥P(1|0)−P(1|0)cS−1cP(1|0)
(3.35)
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P(1|1) = (K−P(1|0)cS−1)S(K−S−1cP(1|0))+P(1|0)−P(1|0)cS−1cP(1|0)≥

P(1|0)−P(1|0)cS−1cP(1|0) (3.36)

Where the Equation 3.36 follows by completing the square. We need to find K(k) such that
P(1|1) becomes as small as possible which can be done by choosing K(k)) so that P(1|1)
decreases by the maximum amount possible at each instant in time. This is accomplish by
setting in Equation 3.36

K = P(1|0) c
(
cP(1|0) c+σ

2)−1
(3.37)

From Equation 3.34 and Equation 3.37 a very simple relation between Kalman gain K and the
innovation covarianceS can be established as follows

K = P(1|0) cS−1 (3.38)

Once the Kalman gain K(k) has been determined it is straightforward to obtained the up-
dated estimate covariance P(1|1) =Var(θ̃(1|1)), from Equation 3.36

P(1|1) = P(1|0)−P(1|0)c
(
cP(1|0)c+σ

2)−1
cP(1|0) (3.39)

Equation 3.39 can be written in a more compact form as

P(1|1) = P(1|0)(1−K c) (3.40)

We use Equation 3.40 in our MATLAB simulation.

Having determined the Kalman gain K(k) we can now incorporate the first measurement
ψ (1). Replacing K and α = 1−K c into the equation Equation 3.30 we obtain the updated
state estimate as

θ̂ (1|1) = (1−Kc) θ̂ (1|0)+Kψ (1) (3.41)

θ̂ (1|1) = θ̂ (1|0)+K
(
cθ (1)− cθ̂ (1|0)

)
(3.42)

where the first term θ̂ (1|0) in Equation 3.42 is the old information and the difference between
ψ (1) = cθ(1) and cθ̂ (1|0) is the new information which is called innovation or the residual.
The innovation reflects the discrepancy between the predicted measurement cθ̂ (1|0) and the
actual measurement ψ (1) = cθ (1).

We can now proceed with θ̂ (2|1), θ̂ (2|2) , ... using ψ (1), ψ (2), ... respectively. The
above derivation contains the essence of the scalar Kalman filter, the only change required for
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the more general case being the replacement of the scalar θ(k) by a vector state and with the
covariance becoming matrices whose reciprocals are inverses and one must keep track of the
order of operations.

3.3.3 Kalman filter smoother

There are basically three types of smoothing filtering which need to be distinguished: Fixed
point smoothing, Fixed-lag smoothing and Fixed interval smoothing which in turn has two main
recursive approaches namely Forward-backward algorithm and the Two-pass smoother also
known as RTS (Rauch-Tung-Striebel) smoother. It was decided that the best type of smoothing
filtering for this research was RTS smoother because of its proven accuracy.

The Fixed interval smoothing algorithm recalculates each estimate generated by its associ-
ated Kalman filter based on information obtained over the entire interval of data being analyzed.
In this sense, it is useful only as a post data analysis tool, since the entire set of data over the
given interval must be known and Kalman filter estimates and variances of error between esti-
mates and observations must be generate previously. In Fixed interval smoothing, k is available
and N is fixed. This corresponds to the situation where one collects some experimental data
and then derives estimates of the state subsequent to the data collection.

Problem statement: the fixed-interval smoothing problem consists of estimating

θ̂ (k|T ) = E [θ (k) |z(1)....z(N)] (3.43)

for fixed N and for all k in the interval 1≤ k ≤ N .
The smoothed estimate improves the standard estimates by adding future measurements. It

is relevant for off-line estimation problems. In a recursive context, Fixed-interval smoothing is
concerned with the smoothing of a finite set of data i.e. with obtaining θ̂k|N for fixed N and all k

in the interval k = 0, ...N. In this off-line filtering situation, we have access to N measurements
and want to find the best possible state estimate θ̂k|N .

The Two-pass smoother or RTS smoother approach requires the standard Kalman estimate
and covariance to be computed in a forward pass and the smoothed quantities are then computed
in the backward pass. The equations for the Fixed-interval smoothing algorithm used in this
applications where obtained from [20] . Several sources where beneficial in understanding
these equations . An excellent derivation of it can be found in [19] . Here the equations are
given without proof. The RTS algorithm is the following:

Given the available observation y(k) = 0, ...,N , run the standard Kalman filter and store
both the time and measurement updates, θ̂ (k|k), θ̂ (k|k−1) , P(k|k), P(k|k−1) . Then apply
the following time recursion backwards in time:

Gain for Kalman smoothing filtering,
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Ksmooth = P(k−1|k−1)ak−1P−1 (k|k−1) (3.44)

θ̂ (k−1|N) = θ̂ (k−1|k−1)+Ksmooth
(
θ̂ (k|N)− θ̂ (k|k−1)

)
(3.45)

The covariance matrix of the estimation error P(k|N) is

P(k−1|N)=P(k−1|k−1)+Ksmooth
(
P(k|N)−P(k|k−1)P−1 (k|k−1)P−1 (k|k−1)ak−1P(k−1|k−1)

)
(3.46)

This algorithm is simple to implement in MATLAB but it requires that all the states and
covariances for both the prediction and filter errors are stored. The MATLAB implementation
of both Kalman filter and Kalman smoother are available in Appendix E.

3.3.4 Summary of key equations for Kalman filter

At this point it is worth summarizing the equations which underlay the Kalman filter algorithm
for scalar case. They will be useful when analyzing the simulation results.

STATE SPACE MODEL

θ (k) = aθ (k−1)+w(k) (3.47)

ψ (k) = cθ (k)+ v(k) (3.48)

E [v(k)] = 0, E [n′ (k)] = 0

Var[v(k)]= σ2
θ

, Var[n′(k)] = σ2.

Initial

θ̂(0|0) = θ0 and P(0|0) = P0

PREDICTION STEP: This step predicts the state and variance at time k dependent on the
information at time k−1

θ̂(k|k−1) = aθ (k−1|k−1) (3.49)

P(k||k−1) = aP(k−1|k−1)aT +σ
2
θ (3.50)
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KALMAN GAIN

K (k) = P(k|k−1)cT (cP(k|k−1)cT +σ
2)−1 (3.51)

UPDATE STEP

θ̂(k|k) = θ̂(k|k−1)+K(k)(ψ(k)− cθ̂(k|k−1)) (3.52)

P(k|k) = P(k|k−1)−P(k|k−1)cT (cP(k|k−1)cT +σ
2)−1cP(k|k−1) (3.53)

In compact form

P(k|k) = P(k|k−1)(1−K(k)cP(k|k−1)) (3.54)

3.3.5 Tuning scalar Kalman filter for performance

The performance of the Kalman filter is uniquely determined by the values of the phase noise
variance σ2

θ
and additive noise variance σ2 which are the required inputs to the Kalman filter.

As we can see from Equation 3.50 and Equation 3.51 , the Kalman gain increases with σ2
θ

and
decreases with σ2, thus the convergence properties are dependent on the relative magnitudes
of the phase noise variance and the additive noise variance. An intuitive understanding of the
importance of these quantities may be acquired by the following argument. Looking at Kalman
gain Equation 3.51 we see that as the additive noise variance σ2 approaches zero, the Kalman
gain K(k) approaches c−1, specifically

limσ2→0K(k) = c−1 (3.55)

Consequently, the Kalman gain weights the residual ψ(k)− cθ̂(k|k−1) , that reflects the dis-
crepancy between the predicted measurement cθ̂(k|k−1) and the actual measurement ψ(k), in
Equation 3.52 more heavily. Next, let us consider the case when σ2 becomes infinity. As σ2

approaches infinity , Kalman gain K(k) approaches 0 and θ̂(k|k)= θ̂(k|k−1), specifically

limσ2→∞K(k) = 0 (3.56)

and the updated state estimate θ̂(k|k) becomes equal to the predicted state estimate θ̂(k|k−1).
On the other hand, from Equation 3.51, as the predicted error covariance P(k|k−1) approaches
zero, the Kalman gain K(k) weights the residual less heavily, specifically

limP(k|k−1)→0K(k) = 0 (3.57)
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Now we will use the above results to make a key observation about the weighting by Kalman
coefficient that give insight in applications. Let’s rearrange the Equation 3.52, we get

θ̂(k|k) = θ̂(k|k−1)(1−K(k)c)+K(k)ψ(k) (3.58)

Next, as σ2 approaches zero then K(k) = c−1 , according to 3.55, and the term inside the
parentheses in Equation 3.58 vanishes. Thus, we obtain the conclusion: as σ2 approaches
zero the actual observation ψ(k) is trusted more and more and the predicted measurement
cx̂(k|k−1) is trusted less and less.

On the other hand, as the prediction error covariance P(k|k−1), which decreases with σ2
θ

according to Equation 3.50, approaches zero, the Kalman gain K(k) will go to zero according
to the result 3.57 and the actual measurement ψ (k) is trusted less and less while the predicted
measurement cx̂(k|k−1)is trusted more and more .

The discussion on Kalman filter tuning can be summarized as follows:

• Large variation of the noise in the process model i.e. high σ2
θ

means that the prediction,
according to the process model, is likely to be less accurate and the new measurement
should be weighted heavier.

• Large variation in the measurement noise i.e. high σ2 means that the new measurement
is likely to be less accurate and the prediction should be weighted heavier. The other
way around, less uncertainty in the observations i.e low σ2 means we rely more on the
observations.

For the purpose of simulation it is worth mentioning here a couple of key properties of the
Kalman filter related to its performance. At some time the Kalman filter has to be given an
initial value θ(0). The best θ(0) is probably the one equal to the unknown θ(k) of the system
being filtered. However one must reckon with the possibility that an inappropriate initial θ(0)
for the Kalman filter is selected. The point is that any damage caused by the inappropriate
selection is forgotten exponentially fast. Another property is that the best estimate of θ(k) at
the particular time k depends in an exponentially decaying fashion on prior measurements [3].

There is a final point worth mentioning on Kalman smoother related to its practical imple-
mentation. In [24] a new approach allowing the phase noise to be estimated by both prediction
and smoothing filter that optimally estimate the phase noise in the minimum mean-squared er-
ror MMSE sense is proposed. It consists in modifying the receiver analog front-end by adding
an additional signal path directly from the oscillator so as to provide a nondata modulated ob-
servation of the phase noise. The hardware overhead of introducing this additional path in the
analog front-end, according to [24] , is modest, especially in the integrated circuit.
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3.3.6 Kalman filter simulation

Typically Kalman filter assumes that the phase noise variance σ2
θ

is known in advance. However
this is usually not the case. Since we don’t know the actual noise variance, it must be set by
the user before the Kalman filter starts. The principle of selection is that a small σ2

θ
should

be chosen in order to obtain relatively small variances in the estimate state variables after the
algorithm converges. However, this also implies that the algorithm will take a longer time to
converge as compared with that of using a larger σ2

θ
.

The simulation of both scalar Kalman filter and Kalman filter smoother was performed
in MATLAB environment for the following initial values: phase noise variance σ2

θ
= 10−6 ,

additive noise variance σ2 = 10−2 , the initial condition on the state θ0 i.e initial value for true
θ (k) was set to 1.2 , the initial guess for θ (k) , labeled θ−0 , is random and in this particular
case θ−0=1.3147 and initial guess for covariance P−0 = 0.01 .

Fig. 3.9 shows the effect of filtering the data. Note that the Kalman filtered signal θ̂(k)

(green solid line) and the smoothed signal θ̂smooth(k) (black solid line) follow the true value
θ(k) quite closely. Consequently, we make the following observation: the updated state esti-
mate θ̂(k+1|k+1) tends to follow the true value θ(k) quite closely.

The plot of the Kalman filter gain is shown in Fig. 3.11, it drops as the updated estimate is
trusted more. Fig. 3.12 shows the covariance associated with the Kalman smoothing algorithm
(black solid line) together with the covariance achieved by the standard Kalman filter (read
solid line). From the plot, it can be seen that their initial values are large but they quickly drop
as the length of simulation k gets larger . As expected, the value of the smoothed variance is a
definite improvement over the standard Kalman filter result. We note the steady state behavior
in the middle of the plot. This happen often when the data span is large and the process is
stationary [20]. In the steady state region, the gains of the filter and the smoother and the error
variance are constant .

Finally, a couple of interesting observations can be made about the length of simulation k.

From the Fig. 3.11 , as the number of trials k gets larger, the Kalman gain K(k) tends to a steady
state and so does the updated error covariance P(k|k) as shown in Fig. 3.12. Consequently, the
following conclusion can be drawn: As k→∞, Kalman filter reaches steady state and becomes
a linear time-invariant filter i.e K(k) constant and P(k|k)constant.
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Figure 3.9: Kalman filter simulation, true signal θk , observed signal ψk, Kalman-filtered signal
θ̂k, Kalman-filtered smooth signal θ̂k−smooth

3.3.7 Performance evaluation of Kalman filter

In this section a simple consistency check between the Kalman smoother estimate versus and
unfiltered estimate is provided. It can be used not only as a verification procedure for the
filtering correctness, but also as a approach for making trade-off in designing a suitable Kalman
filter.

We begin by defining the quality of the filtered estimate Vk as the mean squared error of
the Kalman smoother phase noise θ̂k with respect to the true phase noise θk as given by the
equation 3.59.

Vk = E
[(

θ̂k−θk
)2
]

(3.59)

We also define the quality of the unfiltered estimated Sk as the mean squared error of the soft
phase estimate ψk with respect to the true phase noise θk as given by the Eq. 3.60

Sk = E
[
(ψk−θk)

2
]

(3.60)

Parameters Vk and Sk are of the direct interest because they provide a simple relationship that
ensure us the correctness of the Kalman filter design by verifying the following inequality
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Figure 3.10: Kalman filter simulation. This is a zoomed in version of the Fig. 3.9

Sk >Vk (3.61)

Fig. 3.13 plots vector Vk and vector Sk against nine different values for the phase noise
variance σ2

θ
and channel noise variance σ2 denoted in MATLAB by Q and R respectively. The

length of the simulation was set equal to 10000. All vectors in the simulation namely Vk, Sk,
σ2

k and σ2 are 1x9 row vectors whose values are increasing by a factor of 100.

There is a striking feature of the bottom two panels of Fig. 3.13. As shown in the bottom
right plot, no matter how accurate the process model may be (i.e whether σ2

θ
is small or large),

the value of the quality of the unfiltered estimates in Sk can only be changed by varying the
value of σ2. Similarly, in the bottom left plot the value of Sk is independent of σ2

θ
and its value

changes by varying σ2. That make a lot of sense since the effect of varying the variance mea-
surement process or channel noise variance σ2 effect primarily on the spread of measurement
from the real value as they show up in the Kalman filter formulas.

The bottom two plots of Fig. 3.13 depict Q and R versus the quality of the filtered estimate
V . From both graphs, we can clearly see that the quality of the filtered estimates deteriorates
as the statics of the process noises and measurement noises increase and vice verse, which is
consistent with the theory. It is immediately apparent that the inequality 3.61is fulfilled and
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Figure 3.11: Kalman gain.

thereby the filtering correctness after comparing the two top graphs with the two bottom graphs
of the Fig. 3.13.
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Figure 3.12: Standard Kalman filter and Kalman filter smoother covariances. Notice the reduc-
tion of the covariance by smoothing
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Figure 3.13: Kalman filter, tradeoff analysis. Quality of the filtered estimate, Vk= E{(θ̂k−θk)}
. Quality of the unfiltered estimate, Sk = E{(ψk − θk)

2}. R, row vector of channel noise
variances σ2 . Q, row vector of phase noise variances σ2

θ
.
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Chapter 4

Experimental results and performance
evaluation

This chapter focus on analyzing the FF carrier phase estimation algorithm developed in chapter
3. The estimator’s performance is simulated and evaluated for a QAM modulation scheme. The
mean square error MSE between the filtered estimates of both filters and the true phase noise
was computed for comparison purpose in a similar way to those presenting in subsection 3.3.7,
for performance evaluation of the Kalman filter.

4.1 Simulation model

The main design objective of this project is to implement and validate a phase noise estimator
using linear filters to reduce the error variance of the phase noise obtained after the unwrapping
stage. To achieve this objective, FIR Wiener filter, standard Kalman and Kalman smoother
were designed. The detailed setup block diagram of the stages of the algorithm for the carrier
phase estimator is illustrated in Fig. 4.1.

The phase noise variance σ2
θ

and the additive noise variance σ2 are two design parameters
used to tune both Wiener and Kalman filter. In addition to that, Wiener filtering requires two
extra inputs, namely L and delta. The phase noise variance σ2

θ
is unknown as we typically do

not have the ability to directly observe the process we are estimating. Sometimes a relatively
poor process model can produce acceptable results if one injects enough uncertainty into the
process via the selection of σ2

θ
. Certainly in this case one would hope that the process mea-

surements are reliable. For this project the level of reliability, measured by SER, should be less
than 10−3. It is achieved by choosing σ2 = 0.021 in the SER versus SNR diagram. Here we
set the phase noise covariance σ2

θ
to a value of 1e−5.

In MATLAB simulation, the Kalman filter is initialized to a suitable random value by guess-
ing the initial true phase noise and its variance. To make sure that the estimates converges
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quickly and the influence of the initial guess soon will be negligible, we make the value of he
variance of the initial true phase noise large enough.

Greek variable names used in the text and their correspondent representation in MATLAB
environment are presented in Table 4.1.

Greek character variable name Variable name in MATLAB meaning
σ2

θ
sigma2_theta Phase noise variance

σ2 sigma2 Additive noise variance
θk theta_true True phase noise
θ̂ r

k theta_hat_raw Raw phase noise estimate
θ̂ u

k theta_hat_unwrapped Unwrapped phase noise estimate
ψk psi Soft phase estimate
θ̂k theta_hat Kalman-filtered phase noise
θ̂k theta_Hat Wiener-filtered phase noise
∆ delay Wiener filter delay

Table 4.1: Greek characters and their variable names in MATLAB

During this project, several MATLAB m.files were written, they all are available in the
Appendix E. To make the description of the block diagram in Fig. 4.1 more understandable,
the block names has the same name as the function name in MATLAB. A brief explanation of
all MATLAB scripts is provided below.

1. main_program_4QAM.m. This is the main program of the project which calls below
functions as needed.

2. generating_4QAM.m, generates a series of randomly picked-up QAM symbols.
input arguments: N: length of the transmitted symbol sequence , Es_No_dB: SNR, M:
number of symbols, M = 2 for 4-QAM, M = 4 for 16-QAM
output arguments: a: transmitted QAM symbols, n: additive noise variance, σ2

3. true_theta.m , returns theta true θk

input arguments: N: length of the transmitted symbol sequence, phase noise variance σ2
θ

output argument: θk.

4. viterbi.m, generates the raw phase noise estimate θ̂ r
k

input arguments: r: received signal, Ms: length of the block
output argument: θ̂ r

k

5. unwrapping.m, generates the unwrapped phase noise estimate , θ̂k

inputs argument: θ̂ r
k : raw phase noise estimate

output argument: θ̂k
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6. kalman_filter.m, produces the Kalman-filtered phase noise θ̂k using Kalman filter smoother
input arguments: ψk, σ2

θ
, σ2, N: length of the transmitted symbols

output argument: θ̂k

7. wiener_filter.m, produces the Wiener-filtered phase noise θ̂k.
input arguments: ψk, σ2

θ
, σ2, L: number of taps: , ∆: filter delay

output argument: θ̂k.

The big picture of the feedforward carrier phase estimation algorithm is shown in Fig. 4.1. Note
that Kalman initial condition is not considered in the picture. A main goal of the simulation
is to obtain the filtered estimate of the phase noise using Kalman smoother and FIR Wiener
filters. A comparative assessment of the performance of Kalman smoother and Wiener filters
can be achieved by comparing the quality of the filtered estimate with the quality of unfiltered
estimates of both filters. Thus, the performance of Kalman and Wiener filters is evaluated by
the quality of their phase noise estimation which is determined by the steady-state variance
given by the Eq. 4.1

Vk = E
[(

θ̂k−θk
)2
]

(4.1)

where θ̂k is the filtered output of either Kalman or Wiener filter and θk is the true phase noise.
The quality of the unfiltered estimate is in turn calculated by Eq. 4.2

Sk = E
[
(ψk−θk)

2
]

(4.2)

where ψk soft phase estimate and θk is the true phase noise.

The actual simulation was carried out in MATLAB. Except for the block with no label on
it, shown at the upper right side of the block diagram in the Figure 4.1, each block has a label
indicating the name of the block which is also the MATLAB function name in the simulation.
The inputs to a block that influence its functioning can be a parameter or input data.

From Fig. 4.1 the parameters M , Es−No−dB and N are applied directly to the block gen-
erating_4QAM which in turn generates a series of randomly picked-up 4-QAM transmitted
symbols labeled a. The block generating_4QAM returns also the additive noise variance σ2

or sigma2 in MATLAB, which is calculated considering the SER constraint that should be less
than 10−3 , it also returns the channel noise n. The block true_theta with inputs phase noise
variance σ2

θ
and N , outputs true theta θk that is theta_true in MATLAB simulation. The ad-

ditive noise variance σ2 along with a and n and the true theta θk are feed into the block in the
upper right part of the Figure 4.1 which generates the received signal r. This input as well as θk

are directly feed into the block viterbi that returns the raw phase noise estimate θ̂ r
k . The block
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unwrapping takes θ̂ r
k and produces the unwrapped output ψk . The last step in the simulation

process is the optimal filter taking the form of FIR Wiener filter or Kalman smoother. The
inputs σ2, σ2

θ
and ψk are common to both FIR Wiener and Kalman smoother. Wiener filter re-

quired additionally two inputs, the number of taps L and the filter delay ∆. The output obtained
from both filters can be compared in Table 4.3 . For simplicity, in Fig. 4.1, the argument N,
length of the transmitted sequence has been ignored.

Table 4.2 presents the parameter setting for the simulation of the FF carrier phase estima-
tion.

Figure 4.1: Diagram of the MATLAB simulation setup for FF carrier phase estimation algo-
rithm. Note the initialization of the Kalman filter is not considered in this picture.

We compare the performance of both Kalman smoother and Wiener filter and their results
are shown in Table 4.3. The results presented in the Table 4.3 display eight outcomes from their
respective simulation runs, carried out for identical parameter settings as presented in Table 4.2.

We cutoff the first 50 indexes of ψk in Kalman and Wiener simulation respectively, to avoid
the initial condition problem that shows up when comparing the performance of two different
filters. As can be seen from the data in Table 4.3. Wiener-filtered estimates are slightly smaller
than Kalman-filtered estimates and the unfiltered phase estimates respectively. Surprisingly,
there is no significant differences between Kalman-filtered and unfiltered estimates as can be
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Parameter Value Notation
N 10000 Length of the transmitted symbol sequence
Ns 32 Length of the block of the Viterbi and Viterbi estimator
M 4 Number of symbols for 16-QAM

Es−No−dB 17.5 SNR
BER 1e-3 Bit error rate
σ2

θ
1e-5 Phase noise covariance

σ2 0.0178 Additive noise covariance
L 51 Wiener filter length
∆ 20 Wiener filter delay

Table 4.2: Parameter setting simulation. The additive noise covariance σ2 is determined by
SER

observed from the first and third columns. This is counter to analytical expectations as we
would expect that the filtered estimates to be much less than unfiltered estimates

Kalman-filtered estimateVk Wiener-filtered estimateVk Quality of the unfiltered estimate Sk

0.6151 1.084 0.6203
0.6127 0.3221 0.6290
0.6166 0.2756 0.6230
0.6072 0.1973 0.6227
5.5274 3.9221 2.2283
0.6176 0.9021 0.6151
5.5516 5.1108 5.5603
5.5378 5.6562 5.5577

Table 4.3: Quality of the Kalman and Wiener filter estimates

MATLAB plot simulations from phase noise estimation are shown in Fig. 4.2. From the
top-left plot, it can be seen that the discontinuity of θ r

k appears when an extreme value π

2 is
reached, the raw phase estimate θ r

k then jumps to the other end of the interval −π

2 and vice
verse. As explained above, reconstructing the physically continuous phase noise can be done
by adding or subtracting multiples of π

2 and thereby suppressing the phase noise jumps as can
be observed in the top-right plot in Fig. 4.2. However, difficulties arise in MATLAB simulation
due to cycle slips arising from ambiguities in phase unwrapping. The occurrence of cycle slips,
refers to jumps by ±π/2 , breaks the continuity of ψk as can be observed at index 1800. So,
the right way to compute the quality of the unfiltered estimate is to detect the position of the
cycle slips and then compute the MSE of the data set determined by two contiguous cycle slips
without considering them.

The bottom-left plot shows for comparison purpose the true phase noise θk and soft or un-
wrapped phase noise ψk. The most important simulation result is shown in the next plot, from
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Figure 4.2: MATLAB simulation results of phase noise estimation.

which it is apparent that, in this particular run simulation, Kalman filter will produce a bit better
estimate than Wiener filter.

From the simulation results, we can see that the unfiltered phase noise ψk is too noisy.
Usually it is necessary to fine-tune the Kalman filter by tuning σ2

θ
to avoid noisy estimates

(the larger σ2
θ

the larger the Kalman gain K(k) and the stronger the updating of the estimates).
However, since both σ2

θ
and σ2 are considered fixed input parameters in this project, we should

consider another way to obtained a more accurate unfiltered phase noise. A possible solution
is to use a better Viterbi and Viterbi phase estimator that could generate a more accurate rough
phase estimate θ̂ r

k of the carrier phase as the quality of the filtered estimate depend on the ac-
curacy of the first stage estimator which can be significantly lower than the symmetry angle of
the QAM constellation. Further proposals to improve it can be founded in Chapter 5.
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Chapter 5

Concluding comments and suggestions for
further work

The work described in this thesis was motivated by the desire of improving the feedforward
phase noise estimates obtained after unwrapping for a QAM modulation scheme by reducing
their MSE . Linear filters optimal in the MSE sense such as Kalman filter, Kalman smoother and
Wiener filter were designed and tested for this purpose. Simulation results were carried out in
MATLAB for a 4-QAM modulation scheme which can be easily modify and use for16-QAM.

The MSE was the criterion used to assess the quality of the filtered estimates. Surprisingly,
Wiener filter was found to produce a bit better phase noise filtering results than Kalman filter
which appears inconsistent with those of the Kalman and Wiener simulation results obtained
in Chapter 3. Moreover, there was no significant difference between Kalman-filtered and un-
filtered estimates. These results suggest that a more accurate estimation of the phase noise
previous filtering, which could produce a more accurate estimate, need to be implemented.

Finally, it is recommended that future work, that may lead to an improved simulation result,
should include the following:

• Include the effect of cycle slips,

• Consider new estimators,

• Extension to dual polarization

• Initialization of the Kalman filter
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Appendix A

The input-output PSD relation in linear
systems with random signals.

Consider a stationary process y(k) which by the Wold’s decomposition theorem can be ex-
pressed as

y(k) = hk(θ)∗n(k) (A.1)

for some linear filter hk (θ) where θ are the unknown parameters in hk and n(k) is a white noise
process with spectrum Power spectral densityΦuu (ω). We know that if n(k) is a discrete time
white noise SSP thenΦuu (ω) =σ2

n where σ2
n is the covariance of n(k). Since white noise n(k)

is stationary then

rY (k) =
∞

∑
l=−∞

∞

∑
p=−∞

h(l)h(p)rN(k+ p− l) (A.2)

Equation A.2 may seem to lead to very complicated computations. But fortunately Equation
A.2 gives a very simple relation between power spectrum of input and output signal. Thus PSD
or its popular name power spectrum of Equation A.2 is given by its Fourier transform,

Φyy (ω) = F

[
∞

∑
l=−∞

∞

∑
p=−∞

h(l)h(p)rN(k+ p− l)

]
(A.3)

=
∞

∑
l=−∞

∞

∑
p=−∞

h(l)h(p)F [rN(k+ p− l)] (A.4)

time shifting in autocorrelation domain corresponds to rotation in frequency domain, hence

Φyy (ω) =
∞

∑
l=−∞

∞

∑
p=−∞

h(l)h(p)Φnn(ω)e jω(p−l) (A.5)

rearranging the Equation A.5 gives
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APPENDIX A. THE INPUT-OUTPUT PSD RELATION IN LINEAR SYSTEMS WITH
RANDOM SIGNALS.

Φyy (ω) = Φnn(ω)
∞

∑
l=−∞

h(l)e− jωl
∞

∑
p=−∞

h(p)e jω p (A.6)

Φyy (ω) = Φnn (ω)H
(
e jω)H∗

(
e jω) (A.7)

From Eq A.7 it follows the output-input relation

Φyy (ω) = Φnn (ω) |H
(
e jω) |2 (A.8)

Thus, the frequency response completely determines the shape of the output PSD. This result
also shows that any PSD must be non negative. Equation A.8 is a powerful result used in
filtering and system identification.
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Appendix B

Frequency response for noncausal Wiener
filter

Suppose we have observed the signal ψ (k) ,k = 0,1,2, ....N− 1, over a fine time interval and
we have a signal and noise model given by

ψ (k) = θ (k)+n(k) (B.1)

We want to apply the filter H (q)

θ̂ (k) = H (q)ψ (k) = H (θ (k)+n(k)) (B.2)

that attenuate the noise n(k) and keep the signal as intact as possible. We want to minimize

ε (k) = θ̂ (k)−θ (k) (B.3)

The DTFT of this difference can be written as

ε
(
e jω)= Θ̂

(
e jω)−Θ

(
e jω)= H

(
e jω)

Ψ
(
e jω)−Θ

(
e jω) (B.4)

ε
(
e jω)=

(
H
(
e jω)−1

)
Θ
(
e jω)+H

(
e jω)N

(
e jω) (B.5)

where Ψ, Θ and N denote the DTFT of ψ, θ and n respectively and H is the transfer function
of the filter. Now applying Parseval’s formula,

∞

∑
k=0

ε
2 (k) =

1
2π

∫
π

−π

|ε
(
e jω) |2dω (B.6)

=
1

2π

∫
π

−π

|H
(
e jω)−1|2Φθθ (ω)+ |H

(
e jω) |2Φnn (w)dω (B.7)
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APPENDIX B. FREQUENCY RESPONSE FOR NONCAUSAL WIENER FILTER

Consider the Equation B.7, in order to minimize ε (k) we should design the filter H (z) such
that

• |H
(
e jω)−1| is small for ω where |Θ

(
e jω) | is large

• |H
(
e jω) | is small for ω where |N(e jω)| is large

If the spectraΦθθ (ω) and Φnn (ω) are both known, the optimal filter that minimized the Equa-
tion B.7 can be derived by optimizing H

(
e jω) for each frequency. It can be shown that the filter

must be real (all other functions are real and symmetric). For each frequency we are facing the
optimization problem

minHV (H) = minH (H−1)2
Φθθ +H2

Φnn (B.8)

that has the optimal solution

Hopt =
Φθθ

Φθθ +Φnn
(B.9)

consequently, B.9 in B.8 gives

V
(
Hopt)= Φ2

θθ
Φnn +Φθθ Φ2

vv

(Φθθ +Φnn)
2 =

Φθθ Φnn

Φθθ +Φnn
(B.10)

The frequency response H
(
e jω) of the filter is obtained straightforward. This is a very impor-

tant result that we will use in the derivation of Wiener filter solution W (z)

H
(
e jω)= Φθθ (ω)

Φθθ (ω)+Φnn (ω)
(B.11)

Notice that the filter defined by Eq. B.11 defines a non-causal filter, meaning that the output
depends on future values of the input as well as the past i.e h(τ)6= 0 for some τ ≤ 0. To generate
a causal filter, we need to define a filter such that it depends on the past and current values of
the input, thus h(τ) = 0 for all τ ≤ 0.
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Appendix C

Derivation of the Wiener transfer function

The derivation of the Wiener transfer function in subsection 3.3.1.1 given by Equation 3.14
requires the used of the Wolf decomposition theorem as well as the equation A.8, derived in
Appendix A. The Wolf decomposition theorem says that every stationary stochastic process
can be realize as the convolution

θ (k) = ∑
l

v(l)h(k− l) (C.1)

for some deterministic sequence h(k) (filter), where v(k) is white noise. The transfer function
of the phase noise model is given by

Hθ (z) =
1

1− z−1 (C.2)

We rewrite the Equation A.8 for convenience. Thus

Φθθ (ω) =
∣∣H (e jω)∣∣2 Φvv (ω) (C.3)

Plugging Φvv(ω)= σ2
θ

into the Equation C.3 and expanding |H
(
e jω) |2 we get

Φθθ (ω) = |H
(
eiω)2 |σ2

θ =
σ2

θ

(1− e− jω)(1− e jω)
, (C.4)

replacing z = eiω in C.4 gives

Φθθ (z) =
σ2

θ

(z−1−1)(z−1)
(C.5)

Spectral factorization of the observation θ̂ (k) is determine by

Φ
θ̂ θ̂

(ω) = Φθθ (ω)+Φnn (ω) (C.6)

Replacing Equation C.6 and the value for Φnn (ω) into Equation C.7
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APPENDIX C. DERIVATION OF THE WIENER TRANSFER FUNCTION

Φ
θ̂ θ̂

(z) =
σ2

θ

(z−1−1)(z−1)
+σ

2 =
σ2

θ
+σ2 (z−1−1

)
(z−1)

(z−1−1)(z−1)
(C.7)

Having found Φ
θ̂ θ̂

(z) and Φθθ (z) we are now able to use the result given by the Equation B.11
in Appendix B. The relation between the frequency function H(e jω) and the transfer function
W (z) is established by the relation between the DTFT and the Z-transform1 . Now since the
Wiener filter coefficients w(n) assure a stable sequence, obtaining W (z) is straightforward. By
definition, the transfer function W (z) is determined by the ratio of Φθθ (z) to Φ

θ̂ θ̂
(z),

W (z) =
Φθθ (z)
Φ

θ̂ θ̂
(z)

(C.8)

Replacing Equation C.5 into Equation C.7 into Equation C.8

W (z) =
Φθθ (z)
Φ

θ̂ θ̂
(z)

=

σ2
θ

(z−1−1)(z−1)

σ2
θ
+σ2(z−1−1)(z−1)

(z−1−1)(z−1)

=
σ2

θ

σ2
θ
+σ2 (z−1−1)(z−1)

(C.9)

Now pulling out σ2 in the denominator in the above equation we get

W (z) =
σ2

θ

σ2
(

σ2
θ

σ2 +(z−1−1)(z−1)
) . (C.10)

replacing σ2
θ

σ2 by r gives

W (z) =
r

r+(z−1−1)(z−1)
=

r
r+(1− z−1− z+1)

=
r

r+(2− z−1− z)
(C.11)

W (z) =
r

r+ z−1

z−1 (2− z−1− z)
=

r z−1

r z−1 +2z−1−2z−2−1
(C.12)

which leads to the Wiener transfer function given by the Equation 3.14 given in section 3

W (z) =
r z−1

−1+(2+ r)z−1− z−2 (C.13)

1The DTFT can be interpreted as the Z-transform evaluated on the unit circle z = e jω
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Appendix D

Derivation of Wiener coefficients

The coefficients w(k) are obtained by taking the inverse Z-transform of Equation C.13. The
first step is to find the poles in W (z). Let α1and α2 be the poles, then it follows that

W (z) =
r z

(z−α1)(z−α2)
=

r z
α1−α2

(
1

z−α1
− 1

z−α2

)
(D.1)

Now since α1 and α2 are inverse of each other we can make α1 =
1
α

and α2=α, this math trick
gives

W (z) =
αr

1−α2

(
z

z− 1
α

− z
z−α

)
(D.2)

W (z) =
αr

1−α2

(
1

1− z−1

α

)
+

αr
1−α2

( −z
α− z

)
(D.3)

the radius of convergence ROC of the first term is:

ROC |αz |< 1 or |α|< |z|

and the ROC of the second term is

ROC | z
α
|< or |z|<|α|

Thus

=
αr

1−α2

(
1

1− α

z

)
+

αr
1−α2

(
1− α

α− z

)
(D.4)

=
αr

1−α2

(
1

1− α

z

)
+

αr
1−α2

(
1− 1

1− z
α

)
(D.5)

Finally
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W (z) =
αr

1−α2

∞

∑
k=0

α
kz−k +

αr
1−α2

−1

∑
−∞

α
kz−k (D.6)

By inspection we can clearly see that the first term is a Right sided exponential sequence and
the second term is a Left sided exponential sequence. Therefore both sequences may be written
as

w(k) =
αr

1−α2 α
k, k ≥ 0 (D.7)

and

w(k) =
αr

1−α2 α
−k, k < 0 (D.8)

where

α =
(

1+
r
2

)
−
√(

1+
r
2

)2
−1 (D.9)

or written in compact form

w(k) =

 αr
1−α2 αk, n≥ 0

αr
1−α2 α−k, n< 0

(D.10)

We can conclude from Equation D.10 that the optimum decay rate depends on the ratio between
phase noise variance σ2

θ
and additive noise variance σ2.
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Appendix E

MATLAB codes for simulation

This appendix contains the MATLAB code for each simulation block in Fig. 4.1.
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