
FPGA Implementation of Machine
Learning Based Nonlinear Equalizer
with On-Chip Training

Master’s thesis in Embedded Electronic System Design

KEREN LIU

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

FPGA Implementation of Machine Learning
Based Nonlinear Equalizer with On-Chip Training

KEREN LIU

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

FPGA Implementation of Machine Learning Based
Nonlinear Equalizer with On-Chip Training
KEREN LIU

© KEREN LIU, 2022.

Supervisors:
Christian Häger, Department of Electrical Engineering
Erik Börjesson, Department of Computer Science and Engineering

Examiner:
Per Larsson-Edefors, Department of Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Schematic of the proposed on-chip training.

Typeset in LATEX
Gothenburg, Sweden 2022

iv

FPGA Implementation of Machine Learning Based
Nonlinear Equalizer with On-Chip Training
KEREN LIU
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In fiber-optical communication, the linear polarization mode dispersion (PMD) effect
and the nonlinear optical Kerr effect have a combined detrimental effect on the trans-
mitted signal, and the time-varying nature of PMD also means that the PMD-Kerr
effect can change over time. Therefore, a nonlinear equalizer that compensates for
both PMD and Kerr effects and is adaptive to the time-varying PMD-Kerr channel
is needed at the receiver side. In recent years, machine learning algorithms, espe-
cially neural networks, have been introduced to the fiber-optical field and they offer
a promising way to construct a nonlinear equalizer in the digital signal processing
(DSP) part in the receiver. In this work, we have implemented an adaptive machine
learning based nonlinear equalizer on a field-programmable gate array (FPGA). A
model-based machine learning algorithm is adopted and modified for FPGA imple-
mentation, and the training of the equalizer is also implemented on the same chip.
The equalizer contains multiple layers, which has essentially the same structure as a
neural network. The on-chip training realizes the backward propagation to optimize
the weights in the equalizer, which allows the equalizer to adapt to the time-varying
PMD-Kerr channel in real-time. Logic simulations of a 3-layer equalizer show that
its static performance is very close to the ideal upper limit of the original 3-layer
software model, and that the 3-layer equalizer can remain stable until the varying
speed of each principal state of polarization (PSP) reaches above 1×105 rad/s in the
same rotation direction. Final FPGA implementation results show that a 3-layer
equalizer utilizes around 79.72% of the total DSP resources on a medium size FPGA,
and the DSP becomes the bottleneck of FPGA resources. The on-chip training con-
stitutes most of the used resources due to its complexity and intensive arithmetic
computation.

Keywords: fiber-optical communication, PMD effect, optical Kerr effect, machine
learning, adaptive nonlinear equalizer, FPGA, on-chip training

v

Acknowledgements
I would like to thank my thesis supervisors, Prof. Christian Häger, for providing
me with this thesis opportunity and giving me enlightening supervision and help-
ful guidance during the thesis; and Erik Börjesson, for his many suggestions and
our discussions about digital circuit design, Matlab and RTL coding, and exper-
iment setup. I would also like to thank Prof. Per Larsson-Edefors for his careful
examination of this thesis and for providing me with the working environment and
equipment.

Keren Liu, Gothenburg, October 2022

vii

Contents

Acronyms xiii

1 Introduction 1
1.1 Related Work . 1
1.2 Thesis Contributions . 2
1.3 Thesis Outline . 2

2 Technical Background 5
2.1 Fiber-Optical Communication System 5
2.2 Transmitter . 6

2.2.1 Digital Modulation Formats 6
2.2.2 Up-Sampling and Pulse Shaping 6

2.3 Channel . 7
2.3.1 SSFM Based Manakov-PMD Model 7
2.3.2 Simplified PMD-Kerr Model 8

2.4 Equalizer . 8
2.4.1 Deep Learning . 9

2.4.1.1 Artificial Neural Network 9
2.4.1.2 Batch-Based Training 10

2.4.2 Model-Based Neural Network 11
2.4.2.1 Lagrange Fractional Delay Filter 11
2.4.2.2 MIMO System . 12
2.4.2.3 MIMO-FIR Filter . 12
2.4.2.4 Kerr Model Activation Function 13
2.4.2.5 Matched Filter Linear Layer 13

2.5 Supporting Works . 13
2.5.1 FPGA-Based PMD Effect Emulator 13
2.5.2 FPGA-Based Optical Kerr Effect Emulator 13

3 Methods 15
3.1 Equalizer Design and Python Simulation 15
3.2 Matlab Simulation . 16
3.3 Model Modification and Matlab Simulation 16
3.4 VHDL-Matlab Co-Simulation . 16
3.5 FPGA Implementation . 17

4 Equalizer Model and Software Simulation 19

ix

Contents

4.1 Transmitter-Channel Setup and Simulation 19
4.2 Forward Propagation Model and Tensorflow Simulation 21
4.3 Backward Propagation Model and Matlab Simulation 24
4.4 Modified Equalizer Model and Matlab Simulation 29

5 Hardware Implementation 33
5.1 Batch-based Forward Propagation and Backward Propagation 35
5.2 Forward Propagation . 36

5.2.1 Linear FP Layer . 36
5.2.2 Kerr FP Layer . 37
5.2.3 MF FP Layer . 37

5.3 Backward Propagation . 38
5.3.1 Loss BP Layer . 38

5.3.1.1 Calculation . 39
5.3.1.2 Hardware Implementation 39

5.3.2 MF BP layer . 39
5.3.2.1 Calculation . 40
5.3.2.2 Basic Operators . 40
5.3.2.3 State Machine . 41

5.3.3 Linear BP Layer . 41
5.3.3.1 Calculation . 42
5.3.3.2 Basic Operators . 42
5.3.3.3 State Machine . 44

5.3.4 Kerr BP Layer . 44
5.3.4.1 Hardware Implementation 45

5.3.5 Gradient Layer . 45
5.3.5.1 Calculation . 46
5.3.5.2 Basic Operators . 46
5.3.5.3 State Machine . 48

5.3.6 Weight Update Block . 49
5.3.6.1 Hardware Implementation 49
5.3.6.2 Weight Update Pattern 50

6 Experiments and Results 51
6.1 Metrics . 51
6.2 Model Verification . 51
6.3 Batch Size and Transmission Power in Software Equalizers 52
6.4 Wordlengths in VHDL Hardware . 56
6.5 Batch Size and Transmission Power in VHDL Equalizer 58
6.6 Software Equalizer and Hardware Equalizer Comparison 59
6.7 Instantaneous PMD Change . 61
6.8 Time Varying Channel . 62
6.9 FPGA Implementation . 64

7 Discussion and Future Work 67
7.1 Batch Size and Number of Layers . 67

7.1.1 Hardware System Structure 67

x

Contents

7.1.2 MF BP Layer . 68
7.1.3 Linear BP Layer . 69
7.1.4 Gradient Layer . 70

7.2 Other Hyperparamters . 71
7.2.1 Wordlengths . 71
7.2.2 Learning Rate and Optimizer 71
7.2.3 RRC Filter . 72
7.2.4 MIMO-FIR Filter . 72

7.3 Loss BP Layer . 72
7.4 Resource Utilization . 73
7.5 Evaluation Platform . 73

8 Conclusion 75

Bibliography 77

xi

Contents

xii

Acronyms

ANN Artificial neural network
ASIC Application specific integrated circuit
AWGN Additive white Gaussian noise
BER Bit error rate
BP Backward propagation
BRAM Block random access memory
DGD Differential group delay
DUT Design under test
FFT Fast Fourier transform
FIR Finite impulse response
FP Forward propagation
FPGA Field-programmable gate array
IC Integrated circuit
IFFT Inverse fast Fourier transform
ISI Intersymbol interference
LUT Look-up table
MF Matched filter
MIMO Multi-input multi-output
ML Machine learning
NN Neural network
QAM Quadrature amplitude modulation
QPSK Quadrature phase-shift keying
RNG Random number generator
RRC Root-raised-cosine
RTL Register-transfer level
SGD Stochastic gradient descent
SNR Signal-to-noise ratio
SR Shift register
SSFM Split-step Fourier method
STD State-transition diagram
VHDL Very high speed integrated circuit hardware description language

xiii

Acronyms

xiv

1
Introduction

In single-mode dual-polarization optical fiber there exist several impairment effects
in the waveguide resulting in bit error rate (BER) loss at the receiver. Among
all the impairment effects, polarization mode dispersion (PMD) [1] and optical Kerr
effect [2] are studied in this thesis project. PMD is a linear time-varying impairment
that requires adaptive equalization. The optical Kerr effect is nonlinear and together
with PMD it will have a combined detrimental effect on the transmitted signal [3, 4].
Thus, it is important to develop adaptive nonlinear equalizers to compensate for the
PMD-Kerr effect in receivers.
Various algorithms and corresponding nonlinear equalizer designs have been pro-
posed to compensate for the PMD-Kerr effect, and some of them are built as DSP
units in receivers. The DSP units are usually implemented on digital integrated
circuits (ICs) such as field-programmable gate arrays (FPGAs) and application spe-
cific integrated circuits (ASICs) [5]. Therefore, this thesis aims at implementing a
machine learning (ML) based nonlinear equalizer on an FPGA for the compensation
of the PMD-Kerr effect. A model-based neural network (NN) equalizer [6] originally
simulated only in software is chosen as the basis of our work and appropriately mod-
ified to facilitate an efficient FPGA implementation. The training of the equalizer is
also implemented on the same FPGA and the on-chip training can work in parallel
with the inference, which enables the equalizer to adapt to time-varying PMD-Kerr
channels in real-time.
Several experiments can be carried out on our proposed equalizer to assess its perfor-
mance and convergence speed. The experiments can be divided into two categories.
The first one aims to find the optimal hyperparameters of the equalizer in terms of
performance, convergence speed and hardware utilization using a grid search. The
second one aims at testing the implemented equalizer with a time-varying PMD-Kerr
channel.

1.1 Related Work
There is a large number of published papers that focus on the digital IC imple-
mentations of non-ML-based equalizers. The non-ML-based equalizers are usually
only linear equalizers. Some works adopt ASICs [7, 8, 9, 10, 11] and some adopt
FPGAs [12, 13, 14, 15] as the platforms to realize non-ML-based linear equalizers.
Machine learning can be used to construct equalizers and these equalizers usually
outperform traditional equalizers for their ability of simultaneous equalization of

1

1. Introduction

both linear and nonlinear impairments [16]. There are lots of previous works focusing
on the theoretical models of the ML-based equalizers [6, 17, 18, 19, 20, 21, 22].
Like non-ML-based linear equalizers, ML-based nonlinear equalizers can also be
implemented on ASICs [23, 24, 25] or FPGAs [26, 27, 28, 29, 30]. Unlike these
previous ML-based nonlinear equalizers implemented on FPGAs, this thesis firstly
implements an NN-based nonlinear equalizer for PMD-Kerr effect with gradient
backward propagation (BP) working in parallel on an FPGA.
Among all the published ML-based equalizer models for PMD-Kerr effect, the equal-
izer proposed in [6] is chosen as the original model in this thesis for its feasibility of
hardware implementation.

1.2 Thesis Contributions
This section briefly introduces what has been accomplished in this thesis and our
contributions. Overall, an adaptive ML-based equalizer for the PMD-Kerr effect
has been built on an FPGA with on-chip gradient BP, and the equalizer’s adaptive
function can work in real-time. The detailed contributions can be summarized as:

• The equalizer is able to compensate for both the PMD effect and the optical
Kerr effect in single-mode dual-polarization fiber-optical communication.

• The equalizer has an adaptive capability of compensating for time-varying
PMD effect in real-time.

• The inference and training of the original model-based NN equalizer in [6] has
been thoroughly studied and necessary modifications have been made on it for
FPGA implementation.

• Both the inference and training have been implemented on the same FPGA
chip and can work in parallel.

This thesis dedicates to answering the following research questions that arise in the
process of achieving the above results:

• How should the original equalizer model be modified to be mapped to FPGAs
while also keeping its real-time adaptive functionality?

• How should the general architecture be designed and the specific circuits be
built to realize the modified equalizer model?

• How should the performance and convergence speed of the FPGA-based equal-
izer be tested and compared against the original software model?

1.3 Thesis Outline
The contents of each chapter can be summarized as follows: Chapter 2 is an in-
troduction to the basics of fiber-optical communication systems, PMD and optical
Kerr effects, neural networks, and supporting works. Chapter 3 explains the general
methodology used in this thesis project. Chapter 4 describes the original equal-
izer model and the modified equalizer model for FPGA implementation. Chapter 5

2

1. Introduction

demonstrates the FPGA implementation of the proposed equalizer, and each hard-
ware component is explained in detail. Chapter 6 describes the design and setup
of the experiments performed on the proposed equalizer and presents the results of
each experiment. The FPGA synthesis and implementation results are also demon-
strated. Chapter 7 discusses possible future work to improve or extend the proposed
equalizer design. Chapter 8 summarizes the whole thesis including the main contri-
butions and the final results achieved.

3

1. Introduction

4

2
Technical Background

This chapter starts by introducing the general structure of fiber-optical communica-
tion systems. Then the transmitter, channel and equalizer are described separately.
In addition, two supporting works of this thesis are briefly introduced.

2.1 Fiber-Optical Communication System
Fig. 2.1 shows the general and simplified structure of fiber-optical communication
system including a transmitter, a channel, and a receiver. In the simplified structure,
all the optical and electronic components except for the fiber are ignored, and only
the DSP components that are relevant to this thesis are shown.

Up-

sampling Channel

(Fiber)
Equalizer Demodulator

X-Pol

Transmitter

I

Q

Y-Pol I

Q

Receiver

Up-

sampling

X-Pol

Y-Pol

Modulator

Modulator

Pulse

Shaping

Pulse

Shaping

Figure 2.1: The simplified structure of fiber-optical communication system.

The modulators in the transmitter modulate the x-polarization and y-polarization
symbols respectively to an in-phase (I) and a quadrature (Q) signals in some format,
such as quadrature phase-shift keying (QPSK). The modulated signals are then up-
sampled with an up-sampling factor. Two identical pulse-shaping filters are then
applied to each up-sampled signal. There are different kinds of pulse-shaping filters
and one commonly used is called root-raised cosine filter. The optical components
after the modulator convert the electrical signals into optical signals and the optical
signals are transmitted through optical fiber. The channel, i.e., the optical fiber,
introduces the PMD and the optical Kerr effects as well as other impairments to
the optical signals which degrade the quality of the transmitted signals. The optical
components after the channel and before the receiver converts the optical signals
back to two electrical signals, and following DSP components can be applied to
them. In the DSP receiver part, the channel impairments are compensated by the
equalizer, and the matched filters and down-sampling are usually part of the equal-
izer. The MFs restore the signals after pulse shaping and then the down-sampling

5

2. Technical Background

is applied. The down-sampled dual-polarization signals are finally demodulated by
demodulators.

2.2 Transmitter
The transmitter in Fig. 2.1 includes modulators, up-sampling components and pulse-
shaping filters. The basic principle of each component is introduced in this section.

2.2.1 Digital Modulation Formats
The digital modulation converts the binary data stream into multi-bit symbols by
mapping the binary stream through an alphabet. There are several different al-
phabets and the constellation diagrams of two typical examples, QPSK and 16
quadrature amplitude modulation (QAM), are shown in Fig. 2.2. The Gray-coded
QPSK has 4 possible discrete symbols from “00” to “11”, while the 16QAM has 16
possible discrete symbols from “0000” to “1111”.

Figure 2.2: The constellation diagram of Gray-coded QPSK and 16QAM. The
average power is set to 1 W in both constellations.

2.2.2 Up-Sampling and Pulse Shaping
The pulse-shaping filter is a kind of low-pass filter proposed to reduce the intersymbol
interference (ISI) [31] to zero in the transmitter while also limiting the bandwidth
of the modulated signal. The root-raised cosine (RRC) filter is one typical kind of
pulse-shaping filter, and its impulse response h(t) is

h(t) = sin(πt/T)
πt

cos(πtβ/T)
1 − 4βn2t2/T 2 (2.1)

where t is the time, T is the symbol duration and β is the roll-off factor [32]. One
important feature of RRC is that its matched filter (MF) is itself. A finite impulse
response (FIR) approximation of the RRC filter can be derived from Eq. (2.1) if
given the number of samples per symbol and the filter span in number of symbols.

6

2. Technical Background

As shown in Fig. 2.1, the modulated signal should firstly be up-sampled with in-
terpolation of 0, and then a pulse-shaping filter can be applied to it. In an FIR
realization of RRC, the up-sampling and the RRC filter can usually be merged
into one component where the up-sampling and the pulse-shaping can be performed
at the same time. Assuming that the up-sampling factor is 2, the data stream is
changed from 1 sample per symbol to 2 samples per symbol after going through
up-sampling and RRC filter.

2.3 Channel
This thesis focuses on two impairments in the fiber-optical channel: the linear PMD
effect and the nonlinear optical Kerr effect. This section briefly introduces the split-
step Fourier method (SSFM) based Manakov-PMD model and also the simplified
PMD-Kerr model adopted in this thesis.

2.3.1 SSFM Based Manakov-PMD Model
Birefringent fibers can be described by the Manakov-PMD equation which does
not have any general analytic solutions [33]. The SSFM can be used to solve the
Manakov-PMD equation numerically and the solution is usually used to model and
simulate the PMD-Kerr effect [34]. In the solution to model first-order PMD com-
bined with optical Kerr effect, a fiber is divided into multiple concatenated sections
and each section is further divided into multiple steps, as shown in Fig. 2.3. There
are K sections and each section is divided into S steps noted as “St.”. Each section
has an equal length Lc, and each step has an equal length Lc/S. The differential
group delay (DGD) noted as τ (k) refers to the difference in propagation time between
the two polarizations in section k. The DGD in each step is thus τ (k)/S. There is
an ε block following each step which models the optical Kerr effect. The R(k) is the
rotation matrix of PSP following the last optical Kerr block in each section.

. . .

Section 0

τ(0)

u St.

0
ε

St.

1
ε

St.

S-1
ε R(0)

. . .

Section 1

τ(1)

St.

0
ε

St.

1
ε ε R(1)St.

S-1
. . . R(K-2)

. . .

Section K-1

τ(K-1)

St.

0
ε

St.

1
ε ε R(K-1)St.

S-1

Figure 2.3: The SSFM based Manakov-PMD model consisting of K sections with
S steps in each section.

In each step, the DGD is modeled as

J (k)(ω) =
[
exp(jω −τ (k)

2S
) 0

0 exp(jω τ (k)

2S
)

]
(2.2)

in which the DGD is realized in the frequency domain. The x-polarization and the
y-polarization are delayed by −τ (k)/(2S) and τ (k)/(2S) respectively, which leads to
a DGD of τ (k)/S in each step in section k. The u denotes the Jones vector and we

7

2. Technical Background

have u = [ux(t, z), uy(t, z)]⊤ where t is the propagation time, z is the propagation
distance, and ux and uy are the two polarizations. The optical Kerr effect after each
DGD step in every section can be modeled as

ε(u) = u exp(8
9j

Lc

S
γ ∥u∥2) (2.3)

where γ denotes the Kerr parameter and 8/9 is the averaging coefficient. The PSP
rotation after each section can be modeled as

R(k) =
[

m(k) n(k)

−(n(k))∗ (m(k))∗

]
m(k), n(k) ∈ C, |m(k)|2 + |n(k)|2 = 1 (2.4)

2.3.2 Simplified PMD-Kerr Model
To facilitate FPGA implementation, a simplified version of SSFM-based Manakov-
PMD model is adopted in this thesis. In this simplified model, there is only one
SSFM step and one ε component in each section, in other words, S = 1 is substituted
in Eq. (2.2) and Eq. (2.3) and we have

J (k)(ω) =
[
exp(jω −τ (k)

2) 0
0 exp(jω τ (k)

2)

]
(2.5)

and
ε(u) = u exp(jγ̄ ∥u∥2) (2.6)

where the symbol γ̄ is used to represent 8
9Lcγ for simplicity1. The PSP rotation

matrix R(k) is also simplified as

R(k) =
[

cos(θ(k)) sin(θ(k))
−sin(θ(k)) cos(θ(k))

]
θ(k) ∈ R (2.7)

which is actually a special case of Eq. (2.4). Fig. 2.4 shows the simplified PMD-
Kerr model. Another difference is that the simplified model has an individual input
rotation matrix while the SSFM-based model does not.

Section 0

u ε R(1) . . .

Section K-1

τ(0) R(0)

Section 1

ε R(2)

τ(1) R(K-1)

ε R(K)

τ(K-1)

Figure 2.4: The simplified PMD-Kerr model consisting of K sections.

2.4 Equalizer
This section focuses on the basic knowledge of our implemented equalizer including
deep learning and model-based neural network.

1The symbol γ̄ will also be referred as “Kerr parameter” in the following.

8

2. Technical Background

2.4.1 Deep Learning
This subsection briefly describes the basic principles behind deep learning, which
is the basis of the adopted adaptive model-based ML equalizer in this thesis. The
description includes two parts, the artificial neural network (ANN) and the batch-
based training.

2.4.1.1 Artificial Neural Network

An ANN can be described as a directed computational graph in which each node
contains a scalar function f (n)(x(n);Ψ(n)). The x(n) is the input vector and the Ψ(n)

is a set of tunable parameters. Such scalar function is usually a linear operation
and it is also followed by a nonlinear function in most cases, which is known as an
activation function. A typical example is the node used in the fully-connected layers
in feedforward ANN which can be described as

f (n)(x(n);Ψ(n)) = ε((w(n))⊤x(n) + b(n)) (2.8)

where ε is the activation function, w(n) is known as the weight vector, and b(n) is
called a bias. We also have the tunable parameter vector Ψ(n) = {w(n), b(n)}. A
group of nodes sharing the same inputs is defined as a layer l and each layer can be
viewed as a multi-input multi-output (MIMO) function:

g(l)(x(l);Ω(l)) = [f (0)(x(l);Ψ(0)), f (1)(x(l);Ψ(1)), . . . , f (N−1)(x(l);Ψ(N−1))] (2.9)

where the layer contains N nodes and we have Ω(l) = {Ψ(0),Ψ(1), . . . ,Ψ(N−1)}.

.
 .

 .
.

.

.

.
 .

 .

.
 .

 .

.
 .

 .x

.
.
. y

^

.
.
.

y

g(0)

g(1)

g(2)

g(3)

g(4)

Input

Layer

Hidden

Layers

Output

Layer

Data

Sample
Prediction Loss

Label

ANN

l

Figure 2.5: The structure of an example of ANN including the fully-connected
layers [6].

9

2. Technical Background

By implementing L layers and connecting their inputs and outputs, an ANN can be
constructed. The directed computational graph of the entire ANN can be abstracted
as y = f(x;Φ), where Φ = {Ω(0),Ω(1), . . . ,Ω(L−1)} is the vector of all tunable
parameters, x denotes the input vector to the whole ANN, and y denotes the output
vector of the ANN, i.e., the prediction. Fig. 2.5 shows an example ANN including the
fully-connected layers. The layers are divided into an input layer, multiple hidden
layers, and an output layer.

2.4.1.2 Batch-Based Training

In neural networks, the process of input samples propagating through the network
in the forward direction is called forward propagation (FP). By comparing the FP
outputs and the desired results, the tunable parameters in a neural network can be
optimized by updating them in an iterative fashion and this process is called learning
or training. The training is usually batch based, which means that more than one
input sample is used in each iteration and the set of input-output pairs (x,y) in an
iteration is called a batch. We use a set Bj to denote a batch and j is the iteration
index. For each input-output pair (x,y) ∈ Bj, the input sample x is propagated
through the ANN and a prediction y = f(x,Φ) is computed at the output. We also
have a desired output ŷ which is known as a label, and the difference between the
prediction y and the label ŷ can be quantified using a loss function ℓ(y, ŷ). Since
the batch is introduced, the batch-based loss function can be written as

L(Bj;Φ) = 1
b

∑
(x,y)∈Bj

ℓ(f(x,Φ), ŷ) (2.10)

where the b is the batch size in number of samples. The loss function is also depicted
in Fig. 2.5.

The target of training is to decrease the loss as much as possible. The gradients
of the loss with respect to all the tunable parameters, ∇ΦL(Bj;Φ), can be used
to optimize the loss function. In other words, the gradients are used to update
all the parameters at each iteration. There are a lot of methods for optimizing
the parameters using the gradients, and one typical approach is called stochastic
gradient descent (SGD) [35] which is shown as below:

Φj+1 = Φj − ξ∇Φj
L(Bj;Φj) (2.11)

where ξ is a scalar known as learning rate. In SGD, all the tunable parameters are
updated simply by subtracting the corresponding scaled gradients at each iteration.

The gradients can be calculated numerically by applying the chain rule to the local
derivatives of each node. In such process, the data flow is reversed compared to the
FP, and the outputs of nodes in each layer now become the local derivatives. The
calculation of the local derivatives need the derivatives from the previous layer as
inputs, and such process of propagating the derivatives backward to calculate the
gradients is called backward propagation (BP).

10

2. Technical Background

2.4.2 Model-Based Neural Network

Instead of using the feedforward ANN with fully-connected layers introduced in Sec-
tion 2.4.1.1, a type of NN called model-based neural network is adopted to construct
the equalizer in this thesis. As its name indicates, the model-based neural network
is based on the simulation model of the PMD-Kerr effect. In such NN, a component
called MIMO-FIR filter is adopted as the entire linear part in each layer and the
Kerr model introduced in Section 2.3.2 is used as the activation function in each
layer. The RRC filter shown in Section 2.2.2 is used as an additional linear layer in
this model-based NN.

Before introducing the MIMO-FIR filter, we need to first introduce the Lagrange
fractional delay filter and the MIMO system as the basis for the MIMO-FIR filter.

2.4.2.1 Lagrange Fractional Delay Filter

As introduced in Eq. (2.5), the DGD can be modeled in the frequency domain.
However, this frequency domain model is not suited to be directly used in a model-
based NN equalizer. This is because the digital signals received in the DSP part in
the receiver are defined in the discrete-time domain and the conversion between the
frequency domain and the time domain is thus needed. Usually, such conversion is
realized by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT)
in digital ICs. The problem is that the digital implementation of FFT/IFFT has
a significant overhead in terms of resource utilization. Therefore, the Lagrange
fractional delay filter is introduced since it can provide a way to directly realize
the DGD in the time domain. Then, instead of using the frequency domain model
directly, we can use the Lagrange fractional delay filter in our model-based NN
equalizer.

The Lagrange fractional delay filter is based on the Lagrange interpolation and can
delay a signal by a fraction of signal period [36]. It is an FIR filter working in the
time domain to approximate the fractional delay, which is also know as maximally-
flat FIR approximation. Since the filter is completely time-domain based and only
requires addition and multiplication operations, it is widely used in digital IC-based
DSPs. The FIR coefficients of the Lagrange fractional delay filter can be obtained
from Eq. (2.12), and D is the total delay that this filter realizes [36]. For a Lagrange
fractional delay filter with an odd number of taps, we have D = (N − 1)/2 + d in
which N is the number of FIR taps and d is the fractional delay.

h(n) =
N∏

k=0, k ̸=n

D − k

n − k
, n = 0, 1, 2, ..., N (2.12)

When the Lagrange fractional delay filter is adopted to realize the DGD, the filter
applied to the x-polarization and that on the y-polarization should have the same
N , and thus we have τ = ((N − 1)/2 + dx) − (N − 1)/2 + dy) = dx − dy in which dx

and dy are the fractional delays of the x-polarization and y-polarization respectively.

11

2. Technical Background

2.4.2.2 MIMO System

Like the DGD model, the PSP rotation model in Eq. (2.7) is also adopted in the
model-based NN equalizer and such model can be implemented as a MIMO system
in digital ICs. The MIMO system is a commonly used technique in digital IC-based
DSPs and the structure of a complex 2×2 MIMO is shown in Fig. 2.6 as an example,
where the H parameters and the xin and yin are all complex numbers. It can be
seen that the PSP rotation model in Eq. (2.4) is actually a complex 2 × 2 MIMO
system.

xin ·Hxx

·Hyyyin

xout

yout

H C

Figure 2.6: The structure of a complex 2 × 2 MIMO system as an example.

The simplified PSP rotation in Eq. (2.7) can be realized by two real 2 × 2 MIMO
systems, as shown in Fig. 2.7 where all the H parameters are real numbers. The
two MIMO systems are identical and in parallel.

Re(xin)

Re(yin) Re(yin)

Im(xin)

Re(xout)·Hxx

·Hyy

Im(xin)

Im(yin)

·Hxx

·Hyy Im(yin)

H R

H R

Figure 2.7: The structure of the simplified PSP rotation model implemented by
two real 2 × 2 MIMO systems.

2.4.2.3 MIMO-FIR Filter

It is straightforward to notice that the two real MIMO systems shown in Fig. 2.7 and
the Lagrange fraction delay filter can be combined into one component which can
be used to model both the DGD and the PSP rotation at the same time. In other
words, the PMD effect can be modeled by this combined component which is known

12

2. Technical Background

as the MIMO-FIR filter. Furthermore, the inverse of Eq. (2.7) can also be modeled
by the two real MIMO systems shown in Fig. 2.7 and the inverse of Eq. (2.5) can
be realized using the Lagrange fractional delay filter by simply substituting −τ for
τ . Therefore, the inverse of the PMD effect can also be realized by the MIMO-
FIR filter. The linear part in each layer in our model-based NN equalizer is thus
based on this MIMO-FIR filter to compensate for the PMD effect. The equation
and structure of the MIMO-FIR filter will be shown in Section 4.2 and Section 5.2.1
respectively.

2.4.2.4 Kerr Model Activation Function

The activation function in each layer in our NN equalizer is also model-based and the
model shown in Eq. (2.6) is adopted. By simply substituting −γ̄ for γ̄, the inverse
of the Kerr effect is realized in the NN equalizer. Therefore, the model-based NN
equalizer is able to compensate for the optical Kerr effect. Moreover, this Kerr model
is essentially a nonlinear function and thus can be used as the activation function
in an NN. The equation and structure of the Kerr model activation function will be
shown in Section 4.2 and Section 5.2.2 respectively.

2.4.2.5 Matched Filter Linear Layer

The MF of a pulse-shaping filter can restore the shaped pulses and the MF of
the RRC filter is itself, as described in Section 2.2.2. Therefore, our model-based
NN equalizer includes a linear layer which is based on the RRC filter model. The
equation and structure of this MF linear layer will be shown in Section 4.2 and
Section 5.2.3 respectively.

2.5 Supporting Works
This section introduces two supporting works of this thesis, and some components
in the final implemented equalizer are modified from the components in these works.

2.5.1 FPGA-Based PMD Effect Emulator
An FPGA-based PMD effect emulator is proposed in [37] in which a PMD model is
realized on an FPGA. The DGD model and the PSP rotation model are separately
implemented in [37], and the DGD is realized by the Lagrange fractional delay filter.
Thus, this thesis adopts the Lagrange fractional filter from [37] and modifies it by
adding two MIMO systems. Then the MIMO-FIR filters used in the equalizer in our
thesis project are constructed. Moreover, a transmitter is also implemented on an
FPGA in [37]. This thesis adopts the RRC filter from the transmitter and modifies
it to be used as the MF linear layer in our proposed equalizer.

2.5.2 FPGA-Based Optical Kerr Effect Emulator
An FPGA-based optical Kerr effect emulator is proposed in [38] using the Kerr
effect model described in Eq. (2.7), and the model is implemented on an FPGA.

13

2. Technical Background

The exact same Kerr effect emulator is directly adopted as the activation function
in the model-based NN equalizer implementation in this thesis project.

14

3
Methods

The development flow of this thesis project can be divided into five steps: equalizer
design and Python (Tensorflow) simulation, Matlab simulation, model modification
and its Matlab re-simulation, VHDL-Matlab co-simulation, and FPGA implemen-
tation. Fig. 3.1 shows the overall work flow of this thesis project.

FPGA

Matlab

PMD-Kerr

Simulator

Modified

Equalizer

Python

(Tensorflow) Matlab

VHDL Matlab

PMD-Kerr

Simulator
Equalizer

Equalizer
PMD-Kerr

Simulator
Equalizer

Matlab

PMD-Kerr

Simulator
Equalizer

Figure 3.1: The overall development flow of the thesis project.

3.1 Equalizer Design and Python Simulation
In the first step, an equalizer model is designed and it is implemented as software
simulation based on Python. More specifically, a widely-used Python-based ML
framework, Tensorflow [39], is used to construct the equalizer to provide a reference
for the next steps. Only the FP of the equalizer needs to be coded in Tensorflow,
while the BP can be generated automatically by the built-in functions without spec-
ifying any code about the model and computation of the BP. Besides the equalizer,
a PMD-Kerr simulator including a transmitter and a channel is also implemented
in Matlab. The simulation of PMD-Kerr effect is involved in the channel simula-
tion. The PMD-Kerr simulator is used to provide test data for the design under
test (DUT), i.e., the equalizer. The Matlab-based PMD-Kerr simulator is used for
providing test data for every step in this work flow.

15

3. Methods

3.2 Matlab Simulation

In the previous Tensorflow simulation, the BP is realized automatically, but the
full BP model still needs to be mathematically derived for being implemented on
an FPGA. In this step, each layer in the BP is explicitly and manually calculated,
and Matlab is still used to verify the correctness of the BP calculation. The same
equalizer as in the Tensorflow simulation is implemented in Matlab, except that
the BP is replaced with the manually derived one. The Matlab simulation results
should be compared against the Tensorflow results to verify the correctness of the
BP model calculation. If the same input data and equalizer hyperparameters are
provided, the results of the Tensorflow simulation should be identical to those of
the Matlab simulation. The same PMD-Kerr simulator as in the previous step is
implemented in Matlab to provide the same test data.

3.3 Model Modification and Matlab Simulation

Before implementing the equalizer on an FPGA, the original model of the equalizer
should be modified to make the FPGA implementation feasible. The modifications
are added to the Matlab implementation in the second step while all other com-
ponents are kept unchanged. Both the FP and BP are calculated and explicitly
implemented in the second step, which makes the modifications feasible. In order
to verify the impact of the modifications, the new simulation results are compared
against the results of the second-step Matlab results to quantify the resulting de-
creases in performance and convergence speed. Note that the same input data are
provided to the modified equalizer as in the previous two steps.

3.4 VHDL-Matlab Co-Simulation

The modified Matlab model is then implemented using very high speed integrated
circuit hardware description language (VHDL), and the new VHDL-based equalizer
should be verified and tested using VHDL logic simulations. We use ModelSim 10.7
to carry out the logic simulations. The VHDL-Matlab co-simulation means that
the Matlab simulation is for generating the test data and the VHDL simulation is
for testing the equalizer using the generated data from Matlab. The input data
to the VHDL-based equalizer are still the same as in steps and are stored as data
files. The data files are then read into Modelsim and thus the VHDL-Matlab co-
simulation is realized. Since the VHDL implementation further adds degradation in
performance and the convergence speed is also different, the test results from the
VHDL logic simulation are compared with the original model and the modified model
in Matlab, through which we can get values on the differences. Moreover, a new
data representation method and shorter wordlengths are used in VHDL simulations,
and thus tests should also be done about them.

16

3. Methods

3.5 FPGA Implementation
The last step in this thesis project is the implementation of our proposed equal-
izer on an FPGA, and the synthesis tool is Vivado Design Suite 2020.2. In this
step, the register-transfer level (RTL) VHDL design goes through the synthesis and
implementation steps in Vivado. A bitstream file is finally generated which can
be downloaded to the target FPGA. We mainly focus on the timing and resource
utilization information obtained after the implementation step in Vivado in this
step.

17

3. Methods

18

4
Equalizer Model and Software

Simulation

This chapter focuses on the model of the equalizer implemented in this thesis and
its software simulation in Tensorflow. This chapter draws the theoretical basis for
the hardware implementation which will be thoroughly discussed in Chapter 5. It
chapter starts with the channel setup and simulation in Matlab, as the equalizer is
based on the PMD-Kerr model. Then the overall structure of the original equalizer
model simulated in Tensorflow is proposed. After that, the equalizer model with
the calculation of every layer simulated in Matlab is introduced. Finally, a modified
model simulated in Matlab with Taylor expansion in the BP is proposed.

4.1 Transmitter-Channel Setup and Simulation
A channel and transmitter simulation should be implemented in Matlab to provide
test data for the equalizer. Table 4.1 shows the transmitter and channel parameters,
and such setup will be used throughout this thesis. In this setup, the symbol rate,
section length, PMD parameter and Kerr parameter are adopted from [6]. The
32 Gbaud symbol rate is up-sampled to 64 Gbaud before it goes through an RRC
pulse-shaping filter with a roll-off factor of 0.1. The channel contains 3 fiber sections
and each section has a length of 100 km, i.e., Lc=100 km.
Usually, an effective fiber simulation requires that the section be short enough to
assume that the PMD effect keeps constant over the short distance [40]. In this the-
sis, the 100 km section is much longer than a typical value such as 0.1 km and the 3
sections are also much fewer than a typical value of 1000 sections [41]. However, the
number of layers in the model-based equalizer should be the same as the number of
sections in the channel model, and an FPGA usually cannot host too many layers.
Using very few sections with a short length also does not make sense since the PMD-
Kerr effect would be very weak and equalization is not even needed under such a
scenario. Thus, this thesis adopts a small number of sections with a long length
in the channel simulation, which results in the same number of layers in the equal-
izer. Although such a setup does not necessarily simulate a realistic transmission
scenario, this paper aims to verify the feasibility of implementing a model-based NN
equalizer on an FPGA and investigate the design trade-offs throughout this process.
Moreover, this thesis aims at providing a hardware architecture of such an equalizer
and its corresponding digital circuit design, based on which future work can imple-

19

4. Equalizer Model and Software Simulation

ment the equalizer on more powerful platforms possible to host more layers, such as
ASICs.

In the channel simulation, the DGD is set to be the same for each section. The
mean DGD τ̄ is used as the DGD of each section, and we have τ̄ = τ

√
3πLc/8 where

τ is the PMD parameter [41]. Each rotation angle θ(k) (k = 0, 1, 2, 3) is generated
randomly and uniformly on [−π, π].

Table 4.1: The channel and transmitter parameters.

Parameter Value
modulation Gray-coded QPSK
symbol rate 32 Gbaud
sample rate 64 Gbaud (2 samples/symbol)

pulse shaping 0.1 root-raised cosine (51 taps)
number of fiber sections (K) 3

section length (Lc) 100 km
PMD parameter (τ) 0.2 ps/

√
km

mean DGD (τ̄) 2.1708 ps
Kerr parameter (γ) 1.2 rad/W/km

γ̄ 106.6667 rad/W
rotation angle k (θ(k)) uniform distribution on [−π, π]

AWGN noise power (Pn) −14 dBm

Fig. 4.1 shows the structure of the transmitter-channel simulation in Matlab, which is
divided into two parts: the transmitter part and the channel part. In the transmitter
part, a random number generator (RNG) generates a sequence of data symbols over
two polarizations, denoted by thin arrows. The QPSK modulation is then applied
to the two polarizations. The QPSK modulation is only chosen for testing and
the modulation format can be easily changed to others, such as 16QAM. The two
polarizations are then up-sampled to 2 samples per cycle, denoted by thick arrows,
and the signals go through an RRC filter for pulse shaping after the up-sampling.

The channel part can be divided into several sections based on our proposed model
in Section 2.3.2. In this thesis, only an equalizer with 3 layers is studied and thus
the channel should also contain 3 sections. However, the number of sections can
be increased by duplicating the same section several times for testing the equalizers
with more layers. It can be seen that each section is further divided into three
components, namely Rotation, Delay and Kerr. The input parameters to each
section are also shown in Fig. 4.1. Note that there is an additional Output Rotation
component with the rotation angle θ(3) after all the 3 sections. After the Output
Rotation, there is an additive white Gaussian noise (AWGN) component which adds
the AWGN with the power Pn to the x and y polarization signals. The equalizer then
receives the final outputs from the channel. The equalizer can be either Tensorflow,
Matlab or VHDL based, as introduced in Chapter 3.

20

4. Equalizer Model and Software Simulation

X-Pol

RNG
QPSK

Modulator
Y-Pol

Transmitter

Output

Rotation

θ(0) τ γ-

Section

2

θ(3)

Rotation Delay Kerr

Section 0PMD

Upsampling

=2

Pn

Channel

EqualizerAWGN

X-Pol

Y-Pol

Section

1

RRC

Pulse Shaping

-

Figure 4.1: The structure of the transmitter and channel simulation in Matlab.

4.2 Forward Propagation Model and Tensorflow
Simulation

The original equalizer design in this thesis is based on the model-based nonlinear
equalizer proposed in [6]. The equalizer is model-based which means that it has a
correspondence with the channel model. The FP of the equalizer alternates linear
and nonlinear layers as the linear and nonlinear blocks in the channel model shown
in Fig. 4.1. The linear layers are implemented using MIMO-FIR filters which have
been briefly introduced in Section 2.4.2.3, and the nonlinear layers are based on the
Kerr effect model in Eq. (2.6). The equalizer has essentially the same structure as a
neural network, which means it is adaptive to channel variations due to its training.

Kerr FP 0 Linear FP 1 MF FPKerr FP 2 Linear FP 3

Loss FP

Automatically Generated

Backward Propagation

Kerr FP 4 Linear FP 5

Labels

(2b) (2b) (2b) (2b) (2b) (2b) (2b) (b)

(1)

(20)(20)(20)

Figure 4.2: The structure of the equalizer model in Tensorflow simulation. The
thick arrow represents 2b samples, the thin arrow represents b symbols, and the
dashed arrow represents 20 gradients.

The equalizer is firstly simulated in Tensorflow, and Fig. 4.2 shows the structure
of the equalizer model in Tensorflow simulation. It can be seen that the structure
is divided into two parts: the FP and the BP. The number in each block counts
the layer regardless of the type of the layer. Generally, a “layer” also refers to the
combination of one “Kerr FP” and one “Linear FP”, and thus the equalizer contains
3 layers and each layer corresponds to each section in the channel model in Fig. 4.1.
The Linear FP layer is a MIMO-FIR filter component, and the Linear FP layers
3 and 5 correspond to the PMD components in sections 1 and 0 in the channel
model. The Linear FP layer 1 corresponds to both the PMD component of Section
2 in the channel model and the Output Rotation component in the channel model,
and it can compensate for both components simultaneously. The Kerr FP layer is
a nonlinear activation layer that compensates for the Kerr effect, and the Kerr FP
layers 0, 2 up to 4 correspond to the Kerr components in sections from 2 down to 0
in the channel model. The “MF FP” is short for matched filter forward propagation

21

4. Equalizer Model and Software Simulation

which corresponds to the RRC filter in the transmitter in Fig. 4.1. The Loss FP
calculates the batch-based loss between the predictions and the labels.
The equalizer is pilot-based, which means that the equalizer is assumed to have
information about the labels during training. Moreover, all the Kerr FP layers
are assumed to have information about the Kerr parameter γ̄ in the channel. In
Tensorflow, all the BP layers need not be explicitly implemented since they are
automatically generated, as shown in Fig. 4.2. The entire flow including the FP and
the BP is executed in a loop, and one iteration includes the execution of 2b samples,
as the batch size is set to b symbols and each symbol is up-sampled to 2 samples per
cycle in the transmitter. Therefore, the input and output sizes in all the FP layers
except for the MF FP layer are 2b samples, denoted by thick arrows. The MF FP
layer includes the down-sampling and thus its output size should be b symbols, which
is denoted by a medium-sized arrow. The Loss FP layer calculates the differences
between the labels and the predictions. Since the loss function is batch-based, the
output of the Loss FP layer is a real number which is then forwarded to the BP.
A thin arrow is used to represent this real number. The outputs of the BP are no
longer data samples but gradients, and each output corresponds to a Linear FP layer
in the FP. Since there are 5 taps in each Linear FP layer and each tap contains 4
weights, namely Hxx, Hyx, Hxy and Hyy, there are 20 weights in each layer. Thus,
the size of each output of the BP should also be 20. In other words, each dashed
arrow from the BP contains 20 gradients. It should also be mentioned that all the
weights and gradients are real numbers, and the weights in the Linear FP layers
are updated by the corresponding gradients via SGD in each iteration. The sizes of
all ports are demonstrated in number of samples (gradients) within the parentheses
beside the solid arrows in Fig. 4.2.
Table 4.2 shows all the fixed hyperparameters of the equalizer that will be applied
throughout the thesis. Besides the listed hyperparameters, the batch size b and
the transmission power P are important and considered variable parameters which
will be further studied in Chapter 6. The initialization of the equalizer is shown in
Eq. (4.6).
The calculation in each Linear FP layer k in a batch can be written as

xi
(k+1)
j =

4∑
d=0

Hxx
(k,d)
i · xi

(k)
j−4+d +

4∑
d=0

Hyx
(k,d)
i · yi

(k)
j−4+d

xq
(k+1)
j =

4∑
d=0

Hxx
(k,d)
i · xq

(k)
j−4+d +

4∑
d=0

Hyx
(k,d)
i · yq

(k)
j−4+d

yi
(k+1)
j =

4∑
d=0

Hxy
(k,d)
i · xi

(k)
j−4+d +

4∑
d=0

Hyy
(k,d)
i · yi

(k)
j−4+d

yq
(k+1)
j =

4∑
d=0

Hxy
(k,d)
i · xq

(k)
j−4+d +

4∑
d=0

Hyy
(k,d)
i · yq

(k)
j−4+d

, 2ib ≤ j < 2(i + 1)b (4.1)

where the xi, xq, yi and yq denote the I and Q samples in the x and y polarizations.
The Hxx, Hyx, Hxy and Hyy are the trainable weights in the Linear FP layers,
and each weight contains 5 taps (items). The b is the batch size in number of
symbols, and we have 2 samples per symbol. In other words, each batch contains
2b samples. The i is the batch index which means that it is the i-th batch. For the

22

4. Equalizer Model and Software Simulation

data samples, the superscript and subscript are the layer index and sample index,
respectively. E.g., the xi

(k+1)
j means that it is the j-th sample and the output from

the Linear FP layer k. The Hxx
(k,d)
i means that it is the d-th tap in the weight Hxx

in Linear FP layer k, and the i is still the batch index.

Table 4.2: The fixed equalizer hyperparameters.

Parameter Value
number of layers (K) 3

number of MIMO-FIR filter taps (N) 5
matched filter 0.1 RRC with 51 taps

Kerr parameter (γ̄) 106.6667 rad/W
learning rate (ξ) 32

optimizer SGD

The calculation in each Kerr FP layer k is the same as the Kerr model in Eq. (2.6)
except that the γ̄ is replaced by −γ̄. The expanded calculation is shown as below:

ϕ
(k)
j = γ̄((xi

(k)
j)2 + (xq

(k)
j)2 + (yi

(k)
j)2 + (yq

(k)
j)2)

xi
(k+1)
j = xi

(k)
j cos ϕ

(k)
j − xq

(k)
j sin ϕ

(k)
j

xq
(k+1)
j = xi

(k)
j sin ϕ

(k)
j + xq

(k)
j cos ϕ

(k)
j

yi
(k+1)
j = yi

(k)
j cos ϕ

(k)
j − yq

(k)
j sin ϕ

(k)
j

yq
(k+1)
j = yi

(k)
j sin ϕ

(k)
j + yq

(k)
j cos ϕ

(k)
j

(4.2)

where the ϕ is an intermediate value which will also be referred to as the “Kerr
angle” in the following. The superscript and subscript represent the sample index
and the layer index, independently.
The calculation in the MF FP layer in a batch can be written as

u
(7)
2j+1 =

50∑
d=0

M (d) · u
(6)
2j−49+d , ib ≤ j < (i + 1)b (4.3)

where the M represents the 51 RRC taps adopted in this thesis. The RRC taps are
generated by the FIR approximation derived from Eq. (2.1) since the RRC filter is
its own matched filter. The superscript in M denotes the tap index. The u can
be substituted by xi, xq, yi or yq. The superscript and subscript in u still denote
the the layer index and sample index, respectively. The subscript in u inherently
contains the down-sampling of 2. The i is still the batch index and b is still the
batch size in number of symbols.
The calculation of the Loss FP layer in the i-th batch is

Li =

(i+1)b−1∑
d=ib

((x̂id−xi
(7)
2d+1)2+(x̂qd−xq

(7)
2d+1)2+(ŷid−yi

(7)
2d+1)2+(ŷqd−yq

(7)
2d+1)2)

2b
(4.4)

23

4. Equalizer Model and Software Simulation

where the □̂ denotes the desired output symbol, i.e., the label. The subscript in
the loss L is the batch index. The subscript in the labels x̂i, x̂q, ŷi and ŷq is
the symbol index, not the sample index since the data stream has already been
down-sampled. The b is still the batch size in number of symbols. It can be seen
that the loss is not normalized since the normalization causes additional hardware
utilization when porting to an FPGA. The lack of normalization in the loss can
always be compensated by using a larger learning rate in the training, as shown in
Table 4.2.

Although the BP is automatically generated by Tensorflow, the updates of all the
weights in all Linear FP layers still need to be specified. This thesis adopts SGD as
the method of optimization, and the updates of weights in Linear FP layer k in the
i-th batch can be written as

H
(k,d)
i+1 = H

(k,d)
i − ξ∇

H
(k,d)
i

Li , 0 ≤ d < 5 (4.5)

where the ξ is the learning rate, and the ∇
H

(k,d)
i

Li denotes the gradient of Li with
respect to H

(k,d)
i . The (k, d) in the superscript represents that it is d-th tap in the

weight H in Linear FP layer k. The H can be replaced by Hxx, Hyx, Hxy or Hyy.
The gradients are automatically generated by Tensorflow, and the updates of all
Linear FP layers happen together in each batch.

The initialization scheme of the weights is

Hxx
(k)
0 = Hyy

(k)
0 = [0 0 0 0 0], ∀k ∈ {1, 3, 5}

Hyx
(k)
0 = Hxy

(k)
0 = [0 0 1 0 0], ∀k ∈ {1, 3, 5}

(4.6)

where the 0 in the subscript denotes that the weights are in the 0-th batch, and the
k in the superscript is still the layer index.

4.3 Backward Propagation Model and Matlab
Simulation

Although the BP can be automatically generated in Tensorflow, the calculation
in the BP should still be mathematically derived for VHDL implementation. We
use Matlab to simulate an identical equalizer model where the BP automatically
generated in Tensorflow in the past is manually rebuilt, layer by layer. Therefore,
we can use the Matlab equalizer to verify whether our BP model is correct by
comparing it against the Tensorflow reference. Moreover, it is hard to alter the
automatically generated BP in Tensorflow, while we can easily do that in the rebuilt
Matlab equalizer.

24

4. Equalizer Model and Software Simulation

Kerr FP 0 Linear FP 1 MF FPKerr FP 2 Linear FP 3

Loss BP

MF BPLinear BP 2Kerr BP 3

Gradient 2Gradient 4

Kerr FP 4 Linear FP 5

Linear BP 0Kerr BP 1

Gradient 0
Labels

(2b) (2b) (2b) (2b) (2b) (2b) (2b) (b)

(b)

(2b)(2b)(2b)(2b)(2b)

(20) (20) (20)

(2b+4) (2b+4)(2b+4)

Figure 4.3: The structure of the equalizer model in Matlab simulation. The thick
arrow represents 2b samples, the thin arrow represents b symbols, and the dashed
arrow represents 20 gradients.

Fig. 4.3 shows the structure of the equalizer model in the Matlab simulation. The
FP is the same as in Fig. 4.2 except that the Loss FP layer is no longer needed.
Both the input and output sizes of the Loss BP layer are b samples, in 1 sample
per symbol. The MF BP layer then converts the data stream back to 2 samples per
symbol, and the output size becomes 2b samples. The input size and the output
size are both 2b in the Linear BP layers. There are two inputs and both have the
size of 2b samples in the Kerr BP layers, where one input is from the input of the
corresponding Kerr FP layer and the other is from the output of the previous Linear
BP layer. In the Gradient layers, the input from the previous Kerr BP layer still has
a size of 2b samples while the other input from the input of the corresponding Linear
FP layer has a size of 2b + 4. In the 2b + 4 samples, the 2b samples are directly
from the input of the Linear FP layer while the 4 more samples are the samples
stored in the MIMO-FIR filter in the Linear FP layer. The outputs of the Gradient
layers are no longer data samples but gradients, and the output size is 20 gradients
in each Gradient layer. In the corresponding Linear FP layer, there are 4 weights
Hxx, Hyx, Hxy and Hyy, and each contains 5 taps. Thus, each Gradient layer has
an output size of 20 gradients. The port sizes are also noted in the parentheses next
to the arrows in Fig. 4.3.
It should be noted that the Loss FP layer is no longer needed in the Matlab equalizer
since the loss is not part of the output of the equalizer. The information of the loss
function is already involved in the Loss BP layer since the Loss BP layer is essentially
the derivative of the loss function. The loss function is needed only in the Tensorflow
equalizer since Tensorflow needs the loss function as an input to its built-in functions
to generate the BP automatically. It should also be noted that the input and output
size are both b symbols in the Loss BP layer, unlike the 1 loss output in the Loss
FP layer.
In the Matlab model, the calculation in the Loss BP layer is

L̄u,j =
u

(7)
2j+1 − ûj

b
, ib ≤ j < (i + 1)b (4.7)

where the □̄ represents the outputs of the Loss BP layer, MF BP layer, Linear BP
layers and Kerr BP layers. The subscript j in L̄ is the symbol index, not the sample
index since the data stream has already been down-sampled. The u can be either

25

4. Equalizer Model and Software Simulation

xi, xq, yi or yq. The superscript and subscript in u are the layer index and sample
(symbol) index, respectively. The i is still the batch index and b is still the batch
size in number of symbols.
The calculation in the MF BP layer depends on the value of the batch size b. When
the number of matched filter taps is 51 and b < 26, the calculation is

ū
(0)
2j+1 =

25∑
d=26−(i+1)b+j

M (2d) · L̄u,25−d+j

ū
(0)
2j =

25∑
d=26−(i+1)b+j

M (2d−1) · L̄u,25−d+j

, ib ≤ j < (i + 1)b, b < 26 (4.8)

and when the batch size b ≥ 26, the calculation becomes
ū

(0)
2j+1 =

25∑
d=0

M (2d) · L̄u,25−d+j

ū
(0)
2j =

25∑
d=1

M (2d−1) · L̄u,25−d+j

, ib ≤ j < (i + 1)b − 25, b ≥ 26 (4.9)

ū
(0)
2j+1 =

25∑
d=26−(i+1)b+j

M (2d) · L̄u,25−d+j

ū
(0)
2j =

25∑
d=26−(i+1)b+j

M (2d−1) · L̄u,25−d+j

, (i+1)b−25 ≤ j < (i+1)b, b ≥ 26 (4.10)

where the j is the symbol index and i is the batch index. The superscript in the
output u is reset to 0, which denotes the layer index in the BP. The subscript in u
is the sample index. The u can be either xi, xq, yi or yq. The subscript in L̄ is the
sample index in the output of the previos Loss BP layer. It can be seen that the
data stream is restored to two samples per symbol and the output size is 2b samples.
The calculation in the Linear BP layer k can be divided into two parts in a batch:

x̄ij
(k+1) =

4∑
d=0

Hxx
(5−k,4−d)
i · x̄i

(k)
j+d +

4∑
d=0

Hxy
(5−k,4−d)
i · ȳi

(k)
j+d

x̄qj
(k+1) =

4∑
d=0

Hxx
(5−k,4−d)
i · x̄q

(k)
j+d +

4∑
d=0

Hxy
(5−k,4−d)
i · ȳq

(k)
j+d

ȳij
(k+1) =

4∑
d=0

Hyx
(5−k,4−d)
i · x̄i

(k)
j+d +

4∑
d=0

Hyy
(5−k,4−d)
i · ȳi

(k)
j+d

¯yqj
(k+1) =

4∑
d=0

Hyx
(5−k,4−d)
i · x̄q

(k)
j+d +

4∑
d=0

Hyy
(5−k,4−d)
i · ȳq

(k)
j+d

, 2ib ≤ j < 2(i + 1)b − 4 (4.11)

x̄ij
(k+1) =

2(i+1)b−j−1∑
d=0

Hxx
(5−k,4−d)
i · x̄i

(k)
j+d +

2(i+1)b−j−1∑
d=0

Hxy
(5−k,4−d)
i · ȳi

(k)
j+d

x̄qj
(k+1) =

2(i+1)b−j−1∑
d=0

Hxx
(5−k,4−d)
i · x̄q

(k)
j+d +

2(i+1)b−j−1∑
d=0

Hxy
(5−k,4−d)
i · ȳq

(k)
j+d

ȳij
(k+1) =

2(i+1)b−j−1∑
d=0

Hyx
(5−k,4−d)
i · x̄i

(k)
j+d +

2(i+1)b−j−1∑
d=0

Hyy
(5−k,4−d)
i · ȳi

(k)
j+d

¯yqj
(k+1) =

2(i+1)b−j−1∑
d=0

Hyx
(5−k,4−d)
i · x̄q

(k)
j+d +

2(i+1)b−j−1∑
d=0

Hyy
(5−k,4−d)
i · ȳq

(k)
j+d

, 2(i + 1)b − 4 ≤ j < 2(i + 1)b (4.12)

26

4. Equalizer Model and Software Simulation

The subscript in x̄i, x̄q, ȳi and ȳq now becomes the sample index. The superscript
in x̄i, x̄q, ȳi and ȳq is the layer index in the BP, while the superscripts in Hxx,
Hyx, Hxy and Hyy are the layer index in the FP and the tap index. The subscript
in Hxx, Hyx, Hxy and Hyy is the batch index.

The calculation in the Kerr BP layer k is complicated and can be written in two
steps. The first step contains Eq. (4.13) to Eq. (4.17):

R
(5−k)
j = γ̄ · cos(γ̄((xi

(5−k)
j)2 + (xq

(5−k)
j)2 + (yi

(5−k)
j)2 + (yq

(5−k)
j)2))

S
(5−k)
j = γ̄ · sin(γ̄((xi

(5−k)
j)2 + (xq

(5−k)
j)2 + (yi

(5−k)
j)2 + (yq

(5−k)
j)2))

(4.13)

∂xi
(6−k)
j

∂xi
(5−k)
j

= −2S
(5−k)
j · xi

(5−k)
j · xi

(5−k)
j + R

(5−k)
j + 2R

(5−k)
j · xi

(5−k)
j · xq

(5−k)
j

∂xq
(6−k)
j

∂xi
(5−k)
j

= −2S
(5−k)
j · xi

(5−k)
j · xq

(5−k)
j − S

(5−k)
j − 2R

(5−k)
j · xi

(5−k)
j · xi

(5−k)
j

∂yi
(6−k)
j

∂xi
(5−k)
j

= −2S
(5−k)
j · xi

(5−k)
j · yi

(5−k)
j + 2R

(5−k)
j · xi

(5−k)
j · yq

(5−k)
j

∂yq
(6−k)
j

∂xi
(5−k)
j

= −2S
(5−k)
j · xi

(5−k)
j · yq

(5−k)
j − 2R

(5−k)
j · xi

(5−k)
j · yi

(5−k)
j

(4.14)

∂xi
(6−k)
j

∂xq
(5−k)
j

= −2S
(5−k)
j · xq

(5−k)
j · xi

(5−k)
j + S

(5−k)
j + 2R

(5−k)
j · xq

(5−k)
j · xq

(5−k)
j

∂xq
(6−k)
j

∂xq
(5−k)
j

= −2S
(5−k)
j · xq

(5−k)
j · xq

(5−k)
j + R

(5−k)
j − 2R

(5−k)
j · xq

(5−k)
j · xi

(5−k)
j

∂yi
(6−k)
j

∂xq
(5−k)
j

= −2S
(5−k)
j · xq

(5−k)
j · yi

(5−k)
j + 2R

(5−k)
j · xq

(5−k)
j · yq

(5−k)
j

∂yq
(6−k)
j

∂xq
(5−k)
j

= −2S
(5−k)
j · xq

(5−k)
j · yq

(5−k)
j − 2R

(5−k)
j · xq

(5−k)
j · yi

(5−k)
j

(4.15)

∂xi
(6−k)
j

∂yi
(5−k)
j

= −2S
(5−k)
j · yi

(5−k)
j · xi

(5−k)
j + 2R

(5−k)
j · yi

(5−k)
j · xq

(5−k)
j

∂xq
(6−k)
j

∂yi
(5−k)
j

= −2S
(5−k)
j · yi

(5−k)
j · xq

(5−k)
j − 2R

(5−k)
j · yi

(5−k)
j · xi

(5−k)
j

∂yi
(6−k)
j

∂yi
(5−k)
j

= −2S
(5−k)
j · yi

(5−k)
j · yi

(5−k)
j + R

(5−k)
j + 2R

(5−k)
j · yi

(5−k)
j · yq

(5−k)
j

∂yq
(6−k)
j

∂yi
(5−k)
j

= −2S
(5−k)
j · yi

(5−k)
j · yq

(5−k)
j − S

(5−k)
j − 2R

(5−k)
j · yi

(5−k)
j · yi

(5−k)
j

(4.16)

27

4. Equalizer Model and Software Simulation

∂xi
(6−k)
j

∂yq
(5−k)
j

= −2S
(5−k)
j · yq

(5−k)
j · xi

(5−k)
j + 2R

(5−k)
j · yq

(5−k)
j · xq

(5−k)
j

∂xq
(6−k)
j

∂yq
(5−k)
j

= −2S
(5−k)
j · yq

(5−k)
j · xq

(5−k)
j − 2R

(5−k)
j · yq

(5−k)
j · xi

(5−k)
j

∂yi
(6−k)
j

∂yq
(5−k)
j

= −2S
(5−k)
j · yq

(5−k)
j · yi

(5−k)
j + S

(5−k)
j + 2R

(5−k)
j · yq

(5−k)
j · yq

(5−k)
j

∂yq
(6−k)
j

∂yq
(5−k)
j

= −2S
(5−k)
j · yq

(5−k)
j · yq

(5−k)
j + R

(5−k)
j − 2R

(5−k)
j · yq

(5−k)
j · yi

(5−k)
j

(4.17)

where the R, the S and all the derivatives are introduced as intermediate values.
The second step is

x̄i
(k+1)
j = x̄i

(k)
j ·

∂xi
(6−k)
j

∂xi
(5−k)
j

+ x̄q
(k)
j ·

∂xq
(6−k)
j

∂xi
(5−k)
j

+ ȳi
(k)
j ·

∂yi
(6−k)
j

∂xi
(5−k)
j

+ ȳq
(k)
j ·

∂yq
(6−k)
j

∂xi
(5−k)
j

x̄q
(k+1)
j = x̄i

(k)
j ·

∂xi
(6−k)
j

∂xq
(5−k)
j

+ x̄q
(k)
j ·

∂xq
(6−k)
j

∂xq
(5−k)
j

+ ȳi
(k)
j ·

∂yi
(6−k)
j

∂xq
(5−k)
j

+ ȳq
(k)
j ·

∂yq
(6−k)
j

∂xq
(5−k)
j

ȳi
(k+1)
j = x̄i

(k)
j ·

∂xi
(6−k)
j

∂yi
(5−k)
j

+ x̄q
(k)
j ·

∂xq
(6−k)
j

∂yi
(5−k)
j

+ ȳi
(k)
j ·

∂yi
(6−k)
j

∂yi
(5−k)
j

+ ȳq
(k)
j ·

∂yq
(6−k)
j

∂yi
(5−k)
j

ȳq
(k+1)
j = x̄i

(k)
j ·

∂xi
(6−k)
j

∂yq
(5−k)
j

+ x̄q
(k)
j ·

∂xq
(6−k)
j

∂yq
(5−k)
j

+ ȳi
(k)
j ·

∂yi
(6−k)
j

∂yq
(5−k)
j

+ ȳq
(k)
j ·

∂yq
(6−k)
j

∂yq
(5−k)
j

(4.18)

In all the Kerr BP calculations from Eq. (4.13) to Eq. (4.18), the xi, xq, yi and
yq are outputs from the FP and the superscript in them represents the layer index
in the FP. The x̄i, x̄q, ȳi and ȳq are outputs from the BP and the superscript in
them represents the layer index in the BP. As shown in Fig. 4.1, the Kerr BP layer
has an input from the corresponding Kerr FP layer and another input directly from
the previous Linear BP layer, which corresponds to the calculations shown here.
Moreover, all the subscripts represent the sample index.
The calculation of the Gradient layer k in a batch can be summarized as

∇
Hxx

(5−k,d)
i

Li =
2(i+1)b−1∑

j=2ib

x̄i
(k)
j · xi

(5−k)
j−4+d +

2(i+1)b−1∑
j=2ib

x̄q
(k)
j · xq

(5−k)
j−4+d

∇
Hyx

(5−k,d)
i

Li =
2(i+1)b−1∑

j=2ib

x̄i
(k)
j · yi

(5−k)
j−4+d +

2(i+1)b−1∑
j=2ib

x̄q
(k)
j · yq

(5−k)
j−4+d

∇
Hxy

(5−k,d)
i

Li =
2(i+1)b−1∑

j=2ib

ȳi
(k)
j · xi

(5−k)
j−4+d +

2(i+1)b−1∑
j=2ib

ȳq
(k)
j · xq

(5−k)
j−4+d

∇
Hyy

(5−k,d)
i

Li =
2(i+1)b−1∑

j=2ib

ȳi
(k)
j · yi

(5−k)
j−4+d +

2(i+1)b−1∑
j=2ib

ȳq
(k)
j · yq

(5−k)
j−4+d

, 0 ≤ d < 5 (4.19)

where the output of Gradient layer k is the gradient of Li with respect to H
(5−k)
i ,

i.e., the weights in Linear FP layer 5 − k. This agrees with the structure shown in

28

4. Equalizer Model and Software Simulation

Fig. 4.1. The superscript 5 − k and d in Hxx, Hyx, Hxy and Hyy are the FP layer
index and tap index, respectively. The subscript in Hxx, Hyx, Hxy. The i still
denotes the batch index and b still denotes the batch size in number of symbols.
The superscript in xi, xq, yi or yq is the layer index in FP, while the superscript in
x̄i, x̄q, ȳi and ȳq is the layer index in BP. The subscripts j and j − 4 + d are both
the sample indices.

The updates of all weights in Matlab simulation are the same as in the Tensorflow
model shown in Eq. (4.5).

4.4 Modified Equalizer Model and Matlab Simu-
lation

After the equalizer model is rebuilt in Matlab, modifications can be done on the
Matlab equalizer since the BP is explicitly implemented from scratch. In this thesis,
the only modification we made is on the Kerr BP layers, while all the other FP and
BP layers as well as the entire structure are the same as in Fig. 4.3. The hardware
friendly first-order Taylor expansion [42, 43] is applied to the Kerr FP model, and
the new Kerr BP layer is calculated from the Kerr FP model with Taylor expansion.
However, the Kerr FP layer itself is not changed and only the Kerr BP layer is
modified.

The original Kerr FP model can be written as

ε(u) = u exp(−jγ̄ ∥u∥2) (4.20)

and after applying the first-order Taylor expansion, the Kerr FP becomes

ε(u) = u(1 − jγ̄ ∥u∥2) (4.21)

and the model can be further written into

ϕ
(5−k)
j = −γ̄((xi

(5−k)
j)2 + (xq

(5−k)
j)2 + (yi

(5−k)
j)2 + (yq

(5−k)
j)2)

xi
(6−k)
j = xi

(5−k)
j − xq

(5−k)
j · ϕ

(5−k)
j

xq
(6−k)
j = xq

(5−k)
j + xi

(5−k)
j · ϕ

(5−k)
j

yi
(6−k)
j = yi

(5−k)
j − yq

(5−k)
j · ϕ

(5−k)
j

yq
(6−k)
j = yq

(5−k)
j + yi

(5−k)
j · ϕ

(5−k)
j

(4.22)

where the superscript is the layer index in the FP and k is the layer index in the
BP. The subscript is the sample index. Thus, the new Kerr BP layer with Taylor
expansion can be derived based Eq. (4.22).

The calculation in the modified Kerr BP layer can be divided into two steps. The

29

4. Equalizer Model and Software Simulation

first step contains equations from Eq. (4.23) to Eq. (4.26):

∂xi
(6−k)
j

∂xi
(5−k)
j

= 1 + 2γ̄ · xi
(5−k)
j · xq

(5−k)
j

∂xq
(6−k)
j

∂xi
(5−k)
j

= γ̄((xi
(5−k)
j)2 + (yi

(5−k)
j)2 + (yq

(5−k)
j)2) + 3γ̄ · xq

(5−k)
j · xq

(5−k)
j

∂yi
(6−k)
j

∂xi
(5−k)
j

= 2γ̄ · xq
(5−k)
j · yi

(5−k)
j

∂yq
(6−k)
j

∂xi
(5−k)
j

= 2γ̄ · xq
(5−k)
j · yq

(5−k)
j

(4.23)

∂xi
(6−k)
j

∂xq
(5−k)
j

= −γ̄((xq
(5−k)
j)2 + (yi

(5−k)
j)2 + (yq

(5−k)
j)2) − 3γ̄ · xi

(5−k)
j · xi

(5−k)
j

∂xq
(6−k)
j

∂xq
(5−k)
j

= 1 − 2γ̄ · xi
(5−k)
j · xq

(5−k)
j

∂yi
(6−k)
j

∂xq
(5−k)
j

= −2γ̄ · xi
(5−k)
j · yi

(5−k)
j

∂yq
(6−k)
j

∂xq
(5−k)
j

= −2γ̄ · xi
(5−k)
j · yq

(5−k)
j

(4.24)

∂xi
(6−k)
j

∂yi
(5−k)
j

= 2γ̄ · xi
(5−k)
j · yq

(5−k)
j

∂xq
(6−k)
j

∂yi
(5−k)
j

= 2γ̄ · xq
(5−k)
j · yq

(5−k)
j

∂yi
(6−k)
j

∂yi
(5−k)
j

= 1 + 2γ̄ · yi
(5−k)
j · yq

(5−k)
j

∂yq
(6−k)
j

∂yi
(5−k)
j

= γ̄((xi
(5−k)
j)2 + (yi

(5−k)
j)2 + (yi

(5−k)
j)2) + 3γ̄ · yq

(5−k)
j · yq

(5−k)
j

(4.25)

∂xi
(6−k)
j

∂yq
(5−k)
j

= −2γ̄ · xi
(5−k)
j · yi

(5−k)
j

∂xq
(6−k)
j

∂yq
(5−k)
j

= −2γ̄ · xq
(5−k)
j · yi

(5−k)
j

∂yi
(6−k)
j

∂yq
(5−k)
j

= −γ̄((xi
(5−k)
j)2 + (yq

(5−k)
j)2 + (yq

(5−k)
j)2) − 3γ̄ · yi

(5−k)
j · yi

(5−k)
j

∂yq
(6−k)
j

∂yq
(5−k)
j

= 1 − 2γ̄ · yi
(5−k)
j · yq

(5−k)
j

(4.26)

30

4. Equalizer Model and Software Simulation

where the derivatives are introduced as intermediate values. The second step is

x̄i
(k+1)
j = x̄i

(k)
j ·

∂xi
(6−k)
j

∂xi
(5−k)
j

+ x̄q
(k)
j ·

∂xq
(6−k)
j

∂xi
(5−k)
j

+ ȳi
(k)
j ·

∂yi
(6−k)
j

∂xi
(5−k)
j

+ ȳq
(k)
j ·

∂yq
(6−k)
j

∂xi
(5−k)
j

x̄q
(k+1)
j = x̄i

(k)
j ·

∂xi
(6−k)
j

∂xq
(5−k)
j

+ x̄q
(k)
j ·

∂xq
(6−k)
j

∂xq
(5−k)
j

+ ȳi
(k)
j ·

∂yi
(6−k)
j

∂xq
(5−k)
j

+ ȳq
(k)
j ·

∂yq
(6−k)
j

∂xq
(5−k)
j

ȳi
(k+1)
j = x̄i

(k)
j ·

∂xi
(6−k)
j

∂yi
(5−k)
j

+ x̄q
(k)
j ·

∂xq
(6−k)
j

∂yi
(5−k)
j

+ ȳi
(k)
j ·

∂yi
(6−k)
j

∂yi
(5−k)
j

+ ȳq
(k)
j ·

∂yq
(6−k)
j

∂yi
(5−k)
j

ȳq
(k+1)
j = x̄i

(k)
j ·

∂xi
(6−k)
j

∂yq
(5−k)
j

+ x̄q
(k)
j ·

∂xq
(6−k)
j

∂yq
(5−k)
j

+ ȳi
(k)
j ·

∂yi
(6−k)
j

∂yq
(5−k)
j

+ ȳq
(k)
j ·

∂yq
(6−k)
j

∂yq
(5−k)
j

(4.27)

where the superscript in xi, xq, yi or yq is the layer index in the FP while the super-
script in x̄i, x̄q, ȳi or ȳq is the layer index in BP. All subscripts represent the sample
index. It can be seen that the complexity of the calculations is drastically decreased
compared to the original Kerr BP layer shown from Eq. (4.13) to Eq. (4.18).

31

4. Equalizer Model and Software Simulation

32

5
Hardware Implementation

In this chapter, the digital circuit implementation of our proposed equalizer model
is demonstrated and explained in detail, layer by layer. The introduction starts
with the overall structure of the hardware equalizer, as shown in Fig. 5.1. Such a
structure is basically the same as the modified software model shown in Fig. 4.3
where each component is replaced with the hardware version and new shift registers
(SRs) are added.

Kerr FP 0 Linear FP 1 MF FPKerr FP 2 Linear FP 3

Loss BP

MF BPLinear BP 2Kerr BP 3

Gradient 2Gradient 4
Kerr

SR 3

Kerr FP 4 Linear FP 5

Linear BP 0Kerr BP 1

Gradient 0
Gradient

SR 0

Kerr

SR 1

(2) (2) (2) (2) (2) (1)

(1)

(2)(6)(6)(10)(10)

(20) (20) (20)

(2b+4)
Gradient

SR 2

(2)

(2b+4)
Gradient

SR 4

(2)

(2b+4)

(6)(10)

Figure 5.1: The system structure of the hardware implementation.

In the hardware equalizer, the throughput is 2 samples per clock cycle, which means
that the equalizer circuit implementation can process 2 samples every clock cycle. In
the software implementation, the calculation of all the 2b samples in a batch can be
seen as finished in one iteration. In the hardware implementation, the throughput is
2 samples per cycle, but it takes 2b samples (b clock cycles) for each Gradient layer
to produce one gradient output, and then one weight update can happen. Therefore,
the batch size in the hardware equalizer is still 2b samples.
When porting the original software model to the hardware, the whole system is
pipelined both in the FP and in the BP, which means that registers are inserted in
all layers. On the one hand, the system is fully pipelined, which means that the
throughput becomes two samples per cycle after the pipeline is full. On the other
hand, the pipeline introduces latency to each layer. Table 5.1 shows the latency of
each layer in the equalizer. This thesis only implements 3 layers and Section 7.1.1
further discusses the latency in a system with more than 3 layers in the future.
The second modification is that SR components are added to the system. There
are two inputs in the linear BP layer and the Kerr BP layer, one from the output
of the previous BP layer and the other from the input of the corresponding FP
layer, as shown in Fig. 5.1. Since there is latency in each layer, the input from

33

5. Hardware Implementation

the corresponding FP layer is not synchronized with the input from the previous
BP layer. The SRs are introduced to solve this issue. For Kerr SR, the latency
equals the sum of all latencies on the right side. Take Kerr SR 1 as an example, the
latency b + 12 is equal to the latency of Kerr FP 4, Linear FP 5, MF FP, Loss BP,
MF BP and Linear BP 0 added together, and thus the two inputs are aligned. The
latency of each Gradient SR layer is equal to the overall latency on the right side
plus 2 clock cycles. This is because the input from the corresponding Linear FP
layer should include the 4 previous samples stored inside the MIMO-FIR filter in
the Linear FP layer. As the throughput is 2 samples per cycle, 2 more clock cycles
should be delayed in each Gradient SR layer.

Table 5.1: The latency in each layer in the hardware implementation.

Layer/Component Latency (Clock Cycles)
Kerr FP 4

Linear FP 1
MF FP 3
Loss BP 1
MF BP b + 1

Linear BP 2
Kerr BP 2
Gradient b

Gradient SR 0 b + 6
Gradient SR 2 b + 15
Gradient SR 4 b + 24

Kerr SR 1 b + 12
Kerr SR 3 b + 21

The input size and output size of each component in the hardware equalizer in
Fig. 5.1 are not b or 2b samples like the software model, and the port sizes in
number of samples are noted in parentheses next to each arrow. The thinnest arrow
represents 1 sample (symbol), the medium-sized arrow represents 2 samples, the
thick arrow represents a port size larger than 2 samples, and the dashed arrow still
represents 20 weights. In the FP, from layer Kerr 0 to layer Linear FP 5, both the
input size and output size are 2 samples. The down-sampling is included in the MF
BP layer so that its output size is one symbol. In the BP, the MF BP layer converts
the data stream back to 2 samples per cycle, and thus it has an output size of 2
samples. For the remaining layers in the BP, all input sizes or output sizes that
are larger than 2 samples are represented by thick arrows. These port sizes can be
different in each layer which will be further discussed in the following introduction
of each layer.
Although the port sizes in the BP are larger than 2 samples, the throughput of the
entire equalizer is still 2 samples per cycle. In each batch in the BP, the number of
input samples is 0 in some clock cycles, and the number of input samples is larger
than 2 in other clock cycles, and thus the throughput averaged on a whole batch
in the BP is still 2 samples per cycle. As a result, the weights can still be updated
every 2b cycles.

34

5. Hardware Implementation

5.1 Batch-based Forward Propagation and Back-
ward Propagation

In order to explain the hardware structure of the equalizer more clearly, the batch-
based FP and BP should be outlined first. Fig. 5.2 shows a simplified example
including one Linear FP layer, one Kerr FP layer and one MF FP layer. The t
denotes the discrete time index, and the superscript denotes the layer index. The
inputs to the Linear FP layer and the MF FP layer are 2 samples per cycle, and
thus the sample is denoted as “0” or “1” to represent the first sample or the second
sample in the 2 samples. The Linear FP layer and the MF FP layer are simplified
to contain only 5 taps. As an example, the batch size is set to 10 samples.
The circles denote the inputs and outputs of each layer. The arrows denote the
inputs and outputs in a batch. The circles denote the inputs and outputs of each
layer. Each line in the Linear FP layer represents a MIMO-FIR filter tap multiplied
by an input, and the results are added together as 5 lines that converge to each
output. Each line represents an RRC tap in the MF FP layer, and the multiplication
at each input and the addition at each output are the same as in the Linear FP layer.
The single line in each Kerr FP block represents multiplication by 1.
In the MF FP layer, one out of two samples is selected as the final output and the
other is discarded, by which the down-sampling of 2 is realized. The flow from top to
bottom is the FP. When the directions of the input and output arrows are reversed,
the flow from bottom to top becomes the BP, which is colored in Fig. 5.2.

Linear FP
Layer

MF FP
Layer

Kerr FP
Layer

X(1)

[t; 1]
X(1)

[t; 0]

X(0)

[t; 1]
X(0)

[t; 0]
X(0)

[t-1; 1]
X(0)

[t-1; 0]
X(0)

[t-2; 1]
X(0)

[t-2; 0]
X(0)

[t-3; 1]
X(0)

[t-3; 0]
X(0)

[t-4; 1]
X(0)

[t-4; 0]

X(1)

[t-1; 1]
X(1)

[t-1; 0]
X(1)

[t-2; 1]
X(1)

[t-2; 0]
X(1)

[t-3; 1]
X(1)

[t-3; 0]
X(1)

[t-4; 1]
X(1)

[t-4; 0]

X(3)

[t; 1]
X(3)

[t; 0]

X(2)

[t; 1]
X(2)

[t; 0]
X(2)

[t-1; 1]
X(2)

[t-1; 0]
X(2)

[t-2; 1]
X(2)

[t-2; 0]
X(2)

[t-3; 1]
X(2)

[t-3; 0]
X(2)

[t-4; 1]
X(2)

[t-4; 0]

X(3)

[t-1; 1]
X(3)

[t-1; 0]
X(3)

[t-2; 1]
X(3)

[t-2; 0]
X(3)

[t-3; 1]
X(3)

[t-3; 0]
X(3)

[t-4; 1]
X(3)

[t-4; 0]

X(2)

[t-5; 1]
X(2)

[t-5; 0]
X(2)

[t-6; 1]
X(2)

[t-6; 0]

Kerr
FP

Kerr
FP

Kerr
FP

Kerr
FP

Kerr
FP

Kerr
FP

Kerr
FP

Kerr
FP

Kerr
FP

Kerr
FP

X(1)

[t-5; 1]
X(1)

[t-5; 0]
X(1)

[t-6; 1]
X(1)

[t-6; 0]

Kerr
FP

Kerr
FP

Kerr
FP

Kerr
FP

X(0)

[t-5; 1]
X(0)

[t-5; 0]
X(0)

[t-6; 1]
X(0)

[t-6; 0]
X(0)

[t-7; 1]
X(0)

[t-7; 0]
X(0)

[t-8; 1]
X(0)

[t-8; 0]

Figure 5.2: The batch-based FP and BP shown in an example case including one
linear FP layer, one Kerr FP layer and one MF FP layer.

In the Linear FP layer in, only the 6 newest samples with the time index from
t − 2 to t are stored in the MIMO-FIR filter since the number of taps is set to 5
and the 2-sample parallelism is adopted. In the MF FP layer, only the 6 newest
samples with the time index from t − 2 to t are stored in the FIR filter since the
number of RRC taps is set to 5. However, in the BP, as shown colored in Fig. 5.2,
the already discarded samples in the FP are used as inputs in the BP, such as the

35

5. Hardware Implementation

samples with t − 3 and t − 4 in the Linear FP layer. Thus, these samples should be
temporarily stored until reused in the BP. The SRs shown in Fig. 5.1 are responsible
for storing these discarded FP values, in addition to their function of compensating
for hardware latency.

5.2 Forward Propagation
This section focuses on introducing the hardware structure of each component in
the FP by using block diagrams.

5.2.1 Linear FP Layer
The Linear FP layer in the FP is based on the MIMO-FIR filter, a combination of
the MIMO structure and the FIR structure. Fig. 5.3 shows the detailed hardware
architecture of the Linear FP layer. In the top-level architecture shown at the far
right, there are SRs with a step of 2 samples corresponding to the input 2 samples per
cycle. There are two MIMO-FIR filters implemented and working in parallel, and
thus two output samples can be generated at each cycle. The symbol S denotes one
sample including one Xi, one Xq, one Yi, and one Yq. The boxes denote registers. In
the brackets of each sample, the first item is the discrete time index and the second
item denotes whether this is the first or second sample in the two samples per cycle.
At the far left, two 2 × 2 real MIMO systems are shown and the inputs to such
MIMO structure are Xi[t−2; 0], Xq[t−2; 0], Yi[t−2; 0], and Yq[t−2; 0]. This MIMO
structure is duplicated 5 times for each input of the MIMO-FIR. The output in the
shown MIMO structure, Xi[t − 2; 0], is added with the outputs of other MIMOs
namely Xi[t − 2; 1], Xi[t − 1; 0], Xi[t − 1; 1] and Xi[t; 0]. The result of the addition
shown in the middle is Xi[t; 0], which is part of the final output. The same addition
as Xi is duplicated 4 times for Xq, Yi and Yq, as shown in the middle. It should also
be noticed that the output is delayed for 1 clock cycle because of the pipelining.

Xi
[t-2;0]

Yi
[t-2;0]

Yi
[t-2;0]

Xq
[t-2;0]

Yq
[t-2;0]

Xi
[t-2;0]

S[t-2;0] S[t-2;1]

S[t; 0]
S[t; 1]
 (t=t0)

output

input

S[t; 0]
S[t; 1]

 (t=t0+1)

Xi[t-2;0] Xi[t-2;1] Xi[t-1;0] Xi[t-1;1] Xi[t;0] S[t-1;0] S[t-1;1] S[t;0] S[t;1]

·Hxx[0]

·Hyy[0]

Xq
[t-2;0]

Yq
[t-2;0]

·Hxx[0]

·Hyy[0]

Xi[t;0]

 (t=t0)

 (t=t0+1)

Xq

Yi

Yq

Figure 5.3: The hardware structure of the Linear FP layer. The S denotes the
sample. The first item in brackets of S is the time index and the second item denotes
whether this is the first or second sample in the 2 samples per clock cycle.

36

5. Hardware Implementation

5.2.2 Kerr FP Layer

The Kerr FP layer used in this equalizer is based on a previous work [38], with
the modification that the ϕ is replaced with −ϕ to compensate for the optical Kerr
effect. Fig. 5.4 shows the hardware structure of the Kerr FP layer. The critical
path is pipelined by 4 registers and thus the latency in this layer is 4 clock cycles.
The power of the transmitted signal is firstly calculated and stored in a register.
The power is then multiplied with γ̄ to be converted to a rotation angle ϕ, which
is also stored in a register. Then a Limit block can convert the ϕ to the range of
[0, π/2]. A Sine look-up table (LUT) stores all the sine values which are indexed by
the input angle with the range [0, π/2], and the values of both sin ϕ and cos ϕ can be
read out and stored in registers. Finally, the boxed block shows the rotation of the
x-polarization in the Kerr FP layer, while the y-polarization is a duplication that
is not shown. The rotate block rotates the input signal with the angle −ϕ, and the
inputs Xi and Xq are also delayed by 3 registers to be synchronized with the other
inputs sin ϕ and cos ϕ.

 Z-1Xi

Xq

Yi

Yq

φ

cosφ

sinφ

φ
Xi

cosφ

sinφ

×
cosφ×

-sinφ^2

^2

^2

^2

 Z-1

 Z-1

 Z-1

 Z-1

Xi

Xq

×
sinφ ×

cosφ

 Z-1

 Z-1

 Z-1

 Z-1

Sine
LUT

Limit
[0, π/2]

γ -

Xq

 Z-1 Z-1 Z-1

 Z-1 Z-1 Z-1

Figure 5.4: The hardware structure of the MF FP layer [38]. The inputs Xi and
Xq to the boxed block are delayed by 3 registers.

5.2.3 MF FP Layer

The hardware structure of the MF layer used in this thesis project is based on the
pulse-shaping RRC filter in the transmitter proposed by [37], but modified to be
used in the equalizer as a matched filter. Fig. 5.5 shows the hardware structure
of the MF FP layer, and it should be noticed that only the matched filter with 51
taps is constructed. The xi can be either xq, yi and yq. The square box represents
a register, and a 26 × 26 matrix of registers is constructed. There is also a set
of 26 SRs implemented which is shown under the matrix. The SRs shift with a
step of 2 samples, which correspond to the input of 2 samples per cycle. There is
also a multiplier implemented and accompanying each item in the SRs, and each
stored sample is multiplied with the RRC taps from M [0] to M [25]. The register
matrix is also a set of SRs, and each entire row can be viewed as one item in SRs.
The entire bottom row is shifted upwards with a step of 1 to the top row, and the
calculated multiplication results are shifted upwards instead of the samples stored in
the registers. The content stored in each register is also shown in Fig. 5.5. It should
be noticed that the multipliers are only implemented once at the bottom SRs, while
the “×” operator in the register matrix from row 0 to row 25 is just used to denote
the already calculated value.

37

5. Hardware Implementation

M[22] M[23]M[4] M[5]

Xi[t‐1;0]Xi[t‐1;1]

M[0]

...

Xi[t‐15;1]
×

M[22]

Xi[t‐15;0]
×

M[23]

Xi[t‐14;1]
×

M[22]

Xi[t‐14;0]
×

M[23]

.
.
.

Xi[t‐38;1]
×

M[22]

Xi[t‐38;0]
×

M[23]

Xi[t‐37;1]
×

M[22]

Xi[t‐37;0]
×

M[23]

Xi[t‐16;1]
×

M[24]

Xi[t‐5;0]
×

M[3]

Xi[t‐16;0]
×

M[25]

Xi[t‐5;1]
×

M[2]

Xi[t‐6;0]
×

M[5]

Xi[t‐6;1]
×

M[4]

Xi[t‐4;0]
×

M[1]

Xi[t‐4;1]
×

M[0]

Xi[t‐15;1]
×

M[24]

Xi[t‐4;0]
×

M[3]

Xi[t‐15;0]
×

M[25]

Xi[t‐4;1]
×

M[2]

Xi[t‐5;0]
×

M[5]

Xi[t‐5;1]
×

M[4]

Xi[t‐3;0]
×

M[1]

Xi[t‐3;1]
×

M[0]
...

...

.
.
.

.
.
.

.
.
.

.
.
.

Xi[t‐39;1]
×

M[24]

Xi[t‐28;0]
×

M[2]

Xi[t‐39;0]
×

M[25]

Xi[t‐28;1]
×

M[2]

Xi[t‐29;0]
×

M[5]

Xi[t‐29;1]
×

M[4]

Xi[t‐27;0]
×

M[1]

Xi[t‐26;1]
×

M[0]

Xi[t‐38;1]
×

M[24]

Xi[t‐27;0]
×

M[3]

Xi[t‐38;0]
×

M[25]

Xi[t‐27;1]
×

M[2]

Xi[t‐28;0]
×

M[5]

Xi[t‐28;1]
×

M[4]

Xi[t‐26;0]
×

M[1]

Xi[t‐26;1]
×

M[0]
...

...

...

.
.
.

.
.
.

...

...

Xi[t‐3]

Xi[t‐13;1]
×

M[22]

Xi[t‐13;0]
×

M[23]

Xi[t‐14;1]
×

M[24]

Xi[t‐3;0]
×

M[3]

Xi[t‐14;0]
×

M[25]

Xi[t‐3;1]
×

M[2]

Xi[t‐4;0]
×

M[5]

Xi[t‐4;1]
×

M[4]

Xi[t‐2;0]
×

M[1]

Xi[t‐2;1]
×

M[0]
...

input

M[1]

Xi[t‐2;0]Xi[t‐2;1] Xi[t‐3;0]Xi[t‐3;1] Xi[t‐12;0]Xi[t‐12;1] Xi[t‐13;0]Xi[t‐13;1]

M[2] M[3] ... M[24] M[25]

Xi[t;1]
Xi[t;0]

Figure 5.5: The hardware structure of the MF FP layer with 51 taps. The xi can
be either xq, yi and yq. The first item the in brackets is the time index. The second
item denotes the first or the second sample in the 2 samples per clock cycle.

The result of the MF FP layer is calculated from the diagonal samples and the
samples in the bottom row, which are denoted red in Fig. 5.5. The final result is
calculated by adding all the “red” samples. The adder chain is shown on the right
and the bottom sides. A critical feature of the proposed MF FP layer architecture is
that the SRs at the bottom row shift with a step of 2, and thus the down-sampling of
2 is also implemented. Also, it can be seen that due to pipelining, the final output
is delayed by 3 clock cycles, one cycle from the bottom SRs, one cycle from the
register matrix, and one cycle from the pipelined adder chain.

5.3 Backward Propagation
In this section, the hardware structure of each block in the BP is demonstrated in
detail with block diagrams. The state machines in the layers are also thoroughly
explained by their input/output mechanism and state-transition diagram (STD).

5.3.1 Loss BP Layer
The loss BP layer serves as the first layer in the BP, and the outputs from the FP
combined with the aligned labels are sent to the loss BP layer.

38

5. Hardware Implementation

5.3.1.1 Calculation

The loss function defined in Eq. (4.4) does not need to be implemented in the
hardware since the BP does not need the results of the loss function itself. Only the
backward propagation of the loss function needs to be implemented which is shown
in Eq. (4.7). This equation can be rewritten in a more abstract and general way for
hardware implementation:

x̄i = (xi − x̂i)
b

(5.1)

where only xi is shown but the calculation is the same for xq, yi and yq. The xi
denotes the output of FP, i.e., prediction. The x̂i denotes the desired FP output,
i.e., label. The x̄i denotes the output of this layer.

5.3.1.2 Hardware Implementation

Fig. 5.6 shows the block diagram of the x-polarization in the Loss BP layer. The
x-polarization label X̂ is modulated to QPSK since it is stored as a 2-bit baseband
symbol in the transmission in hardware. Then two parallel subtractors calculate the
difference between the data symbol and the label. In the Loss BP layer, the division
is approximated by right shifts to save the on-board DSP resources. We use a batch
size of 20 and a data symbol wordlength of either 9, 10 or 11 as an example in Fig. 5.6
(see Section 6.4 about the wordlengths). Thus, we have A >> 5 + A >> 6 + A >>
8 + A >> 10 = A/19.3208. There exists a mechanism of VHDL Generics to ensure
that at most 6 right-shift operators are implemented for different batch sizes and
wordlengths when 16 ≤ b ≤ 22. There is one register inserted for pipelining, and the
y-polarization has the same hardware as the shown x-polarization implementation.

QPSK
Modulator

Xi
>>5

>>6

>>8

>>10

 Z-1-Xi
^

Xq

 Z-1-Xq
^

X
^

Xi

Xq

Figure 5.6: The block diagram of the x-polarization in the Loss BP layer. As an
example, the batch size is set to 20 and the data symbol wordlength is either 9, 10
or 11.

5.3.2 MF BP layer
The input to the MF BP layer is the output from the Loss BP layer in one symbol
per cycle, and the MF BP layer converts the data stream to 2 samples per cycle.
The high-level architecture of the MF BP layer can be summarized as a state machine
plus so-called “operators”. The operators can cover all the calculations in this layer
by assigning different inputs and outputs to them. This enables the re-usage of the

39

5. Hardware Implementation

basic operators in different states in the state machine, which can save hardware
utilization.

5.3.2.1 Calculation

The calculation in the MF BP layer has already been shown in Eq. (4.8). Such
equation is abstracted into basic operators

R = R + M · ūj ib ≤ j < (i + 1)b (5.2)

where R can be viewed as a register storing the value, and it is reset to 0 when a
new batch starts. The M can be any of the 51 taps, the j is the symbol index and
i is the batch index. The u represents the input symbol and can be either X̄i, X̄q,
Ȳi or Ȳq.

5.3.2.2 Basic Operators

Before introducing the basic operators themselves, how the input and the output
work in the MF BP layer should be first introduced, as shown in Fig. 5.7. The input
is one symbol per cycle, while the output is two samples per cycle. The squares R[0],
R[1], ..., R[2b − 1] are registers. The arrow accompanied by the RRC tap represents
the basic operator, as shown in Eq. (5.2). At t = 0, only the first 2 operators R[0]
and R[1] as well as the connected basic operators are activated. At t = 1, the first
4 operators R[0], R[1], R[2] and R[3] and the accompanied operators are activated.
The same pattern continues until the end of the batch, and all 2b operators are
activated at t = b − 1.
At t = b, the first two results from the previous finished batch stored in R[0] and
R[1] are read out and sent to the output. The two new values from the second batch
are stored in R[0] and R[1] at the same time. In other words, the outputs at t = b
are the first and the second output sample in the previous batch. Then at t = 1,
the output is shifted to R[2] and R[3]. The pattern continues until t = 2b − 1 when
the output is shifted to R[2b − 2] and R[2b − 1]. The previous batch is completely
output to the next layer at t = 2b − 1. To summarize this pattern, the results of a
batch will be read out from the registers in the next batch, and the values in the
registers will be replaced by the intermediate values in the next batch after being
read out.

R
[2b-1]

input

. . .

1st symbol (t=1)

input

M[49] M[50]
M[48]M[47]

0th symbol (t=0)

input

M[49] M[50]
M[52-2b]M[51-2b]

(b-1)th symbol (t=b-1)

M[54-2b]M[53-2b]

output
0th sample
1st sample

(t=b)
output

2nd sample
3rd sample

(t=b+1)

. . .

output
(2b-2)th sample
(2b-1)th sample

(t=2b-1)

R
[2b-1]

R[1]R[0] . . .R[3]R[2] R[1]R[0] R[3]R[2]
R

[2b-1]
. . . R

[2b-2]

M[50]M[49]

R[1]R[0]

Figure 5.7: The input and output of the MF BP layer.

40

5. Hardware Implementation

As shown in Fig. 5.7, every MF BP layer has 2b operators working in parallel in each
channel, and thus every MF BP layer has 8b parallel operators in total. Fig. 5.8
shows the block diagram of an individual operator and how all the operators are
organized into the MF BP layer.

Op[2b-1]. . . xi
channel

xq
channel

yi
channel

yq
channel

Op[0]

 Z-1 RM
xi

Op[0] . . . Op[2b-1]

Op[0] . . . Op[2b-1]

Op[0] . . . Op[2b-1]

Figure 5.8: The block diagram of the basic operator in the MF BP layer, and all
parallel basic operators in a layer. Each layer contains 4 parallel channels and each
channel contains 2b identical basic operators.

5.3.2.3 State Machine

The entire MF BP layer is controlled by a state machine, and Fig. 5.7 can also be
seen as an STD. There are b states in total when b ≤ 25, and each block in Fig. 5.7
can be seen as a single state. At t = 0 the state machine shifts to State 0 (S0),
and t = 1 to S1, etc. At each state, one symbol in a batch is processed, and the b
states correspond to the b symbols in a batch. At State b − 1 a batch is finished and
the state machine returns back to S0 to process a new batch. The state machine
controls all the inputs and outputs of the basic operators, and different inputs and
outputs are selected in different states. The hardware utilization in the MF BP layer
increases as the batch size increases since more basic operators working in parallel
need to be implemented, as shown in the last state in Fig. 5.8. This increase of
hardware utilization stops when the batch size reaches 26 for this particular 51-tap
MF. Moreover, the state machine and the input and output pattern of the MF BP
layer are also changed when b > 25. See Section 7.1.2 about the discussion of the
MF BP layer with b > 25.

5.3.3 Linear BP Layer
The Linear BP layers have different input sizes and output sizes at different layer
indices k. The MF BP layer converts the data stream from 1 symbol per cycle to
2 samples per cycle. Thus, the Linear BP layer right after the MF BP layer has
an input size of 2 samples. However, the output size is actually 6 samples. For

41

5. Hardware Implementation

the second Linear BP layer, the input size becomes 6 samples and the output size
becomes 10 samples.
The Linear BP layer follows the same high-level architecture as the MF BP layer,
which is a state machine plus basic operators.

5.3.3.1 Calculation

The calculation of the Linear BP layer can be divided into two parts which are
shown in Eq. (4.11) and Eq. (4.12). The basic operators can be extracted as

x̄i
(k+1) =

4∑
d=0

Hxx(4−d) · x̄i
(k)
j+d +

4∑
d=0

Hxy(4−d) · ȳi
(k)
j+d

x̄q(k+1) =
4∑

d=0
Hxx(4−d) · x̄q

(k)
j+d +

4∑
d=0

Hxy(4−d) · ȳq
(k)
j+d

ȳi
(k+1) =

4∑
d=0

Hyx(4−d) · x̄i
(k)
j+d +

4∑
d=0

Hyy(4−d) · ȳi
(k)
j+d

ȳq(k+1) =
4∑

d=0
Hyx(4−d) · x̄q

(k)
j+d +

4∑
d=0

Hyy(4−d) · ȳq
(k)
j+d

, 2ib ≤ j < 2(i + 1)b − 4 (5.3)

and

x̄i
(k+1) =

2(i+1)b−j−1∑
d=0

Hxx(4−d) · x̄i
(k)
j+d +

2(i+1)b−j−1∑
d=0

Hxy(4−d) · ȳi
(k)
j+d

x̄q(k+1) =
2(i+1)b−j−1∑

d=0
Hxx(4−d) · x̄q

(k)
j+d +

2(i+1)b−j−1∑
d=0

Hxy(4−d) · ȳq
(k)
j+d

ȳi
(k+1) =

2(i+1)b−j−1∑
d=0

Hyx(4−d) · x̄i
(k)
j+d +

2(i+1)b−j−1∑
d=0

Hyy(4−d) · ȳi
(k)
j+d

ȳq(k+1) =
2(i+1)b−j−1∑

d=0
Hyx(4−d) · x̄q

(k)
j+d +

2(i+1)b−j−1∑
d=0

Hyy(4−d) · ȳq
(k)
j+d

, 2(i + 1)b − 4 ≤ j < 2(i + 1)b (5.4)

5.3.3.2 Basic Operators

Fig. 5.9 shows how the input and the output work in the first Linear BP layer, and
the brackets with an arrow is the basic operator. For simplicity, only the calculation
in the xi channel is shown. There are 6 + 2k operators implemented, and note that
the first Linear BP layer has an index k = 0 and the second Linear BP layer has
k = 2. The operators can be divided into two types: 2 + 2k operators with an input
width of 10 samples corresponding to Eq. (5.3), and 4 colored operators with an
input width shorter than 10 samples corresponding to Eq. (5.4). We will refer to
the 10-sample operator as Op1 and the other colored operators with shorter than
10 samples as Op2. In the first k clock cycles, i.e., 2k samples, the entire Linear BP
layer is deactivated. At t = k and t = k + 1, only the inputs are activated while the
outputs and the basic operators still stay idle. The incoming samples are forwarded
to registers represented as squares. At t = k + 2, two input ports are activated and
the registers start shifting with a step of two samples. The outputs at t = k + 2 are
the first and the second output sample in this batch. Meanwhile, two op1 operators
and two output ports are also activated. Then in the following cycles, the registers
continue shifting and two results are continually sent to the output at each cycle

42

5. Hardware Implementation

until t = b−2. At t = b−1, all the 2+2k operators are activated and all the results
are sent to the output ports at the same clock cycle. Then this batch ends and the
state machine returns to the first state to start accepting the next batch.

Xi[0]

Yi[0]

-

-

Xi[1]

Yi[1]

-

-

Xi[2]

Yi[2]

-

-

Xi[3]

Yi[3]

-

-

(2b-8-2k)th sample
(2b-7-2k)th sample

(t=b-2)

(2b-2-2k)th to (2b-1)th
samples
(t=b-1)

(2b-6-2k)th to (2b-1)th
samples
(t=b-1)

output

4th sample
5th sample

(t=k+2)

-Yi[4] Yi[5]-

output
0th sample
1st sample

(t=k+2)

input
0th sample
1st sample

(t=k)

Xi[0]

Yi[0]

- 0

0

0

0

input
2nd sample
3rd sample

(t=k+1)
input

Xi[1]

Yi[1]

- Xi[0]

Yi[0]

-

-

Xi[1]

Yi[1]

-

-

Xi[2]

Yi[2]

-

-

Xi[3]

Yi[3]

-

-

-Xi[4] Xi[5]- Xi[2]

Yi[2]

-

-

Xi[3]

Yi[3]

-

-

Xi[4]

Yi[4]

-

-

Xi[5]

Yi[5]

-

-

6th sample
7th sample

(t=k+3)

-Yi[6] Yi[7]-

output
2th sample
3st sample

(t=k+3)

input

-Xi[6] Xi[7]-

Xi[4]

Yi[4]

-

-

Xi[5]

Yi[5]

-

-

Xi[6]

Yi[6]

-

-

Xi[7]

Yi[7]

-

-

8th sample
9th sample

(t=k+4)

-Yi[8] Yi[9]-

output
4th sample
5th sample

(t=k+4)

input

-Xi[8] Xi[9]-

(t=0)

0

0

0

0

0

0

0

0

. . .

. . .

(2b-4-2k)th sample
(2b-3-2k)th sample

(t=b-2)

output

input

Xi[2b-6-2k]

Yi[2b-6-2k]-

- Xi[2b-5-2k]

Yi[2b-5-2k]-

- Xi[2b-4-2k]

Yi[2b-4-2k]-

- Xi[2b-3-2k]

Yi[2b-3-2k]-

-

Yi[2b-2]- Yi[2b-1]-

-Xi[2b-2] Xi[2b-1]-

Yi[2b-2-2k]- Yi[2b-1-2k]-

-Xi[2b-2-2k] Xi[2b-1-2k]-
. . .

. . .

input

. . .

Xi[2b-8-2k]

Yi[2b-8-2k]-

- Xi[2b-7-2k]

Yi[2b-7-2k]-

- Xi[2b-6-2k]

Yi[2b-6-2k]-

- Xi[2b-5-2k]

Yi[2b-5-2k]-

-

Yi[2b-4-2k]- Yi[2b-3-2k]-

-Xi[2b-4-2k] Xi[2b-3-2k]-

Yi[2b-4]- Yi[2b-3]-

-Xi[2b-4] Xi[2b-3]-

Figure 5.9: The input and output of the Linear BP layer k. For simplicity, only
the calculation in the xi channel is shown.

Op1[0]

Op1[1] . . .

Xi

[t-2;0]

Yi

[t-2;0]

Yi

[t-2;0]

Xq

[t-2;0]

Yq

[t-2;0]

Xi

[t-2;0]

Xi[t-2;0] Xi[t-2;1] Xi[t-1;0] Xi[t-1;1] Xi[t;0]

·Hxx[0]

·Hyy[0]

Xq

[t-2;0]

Yq

[t-2;0]

·Hxx[0]

·Hyy[0]

Xi[t;0]

 (t=t0)

 (t=t0+1)

Xq

Yi

Yq

Op1[1+2k] Op2[5+2k]. . .Op2[2+2k]

Figure 5.10: The block diagram of the basic operator in the Linear BP layer and
all parallel basic operators in a layer. Each operator covers all 4 channels. Only
the structure of the Op1 is shown while the structure of the Op2 is not specifically
illustrated. Each layer contains 6 + 2k operators in total.

Note that the basic operator defined in Eq. (5.3) and Eq. (5.4) includes all four
channels xi, xq, yi and yq, and thus every Linear BP layer contains 6 + 2k parallel
operators including 2 + 2k Op1 operators and 4 Op2 operators. The number of
operators and the level of parallelism increase as the layer index increases. Such

43

5. Hardware Implementation

increase stops when reaches the layer index reaches k = b−2 if b is even or k = b−3
if b is odd. See Section 7.1.3 about the discussion of the Linear BP layer when the
number of layers is above 3.
Fig. 5.10 shows the block diagram of the basic operator in the Linear BP layer and
how all basic operators form into a Linear BP layer.

5.3.3.3 State Machine

Each Linear BP layer is controlled by a state machine. It controls all the inputs
and outputs of the basic operators, and different inputs and outputs are selected in
different states. Fig. 5.11 shows the STD of the state machine in the first layer. The
state S0 corresponds to t = 0 in Fig. 5.9, the state S1 corresponds to t = 1, the state
S2 covers from t = 2 to t = b − 2, and the state S3 corresponds to t = b − 1. Then
the state machine returns to the initial state S0. The state machine is activated by
a valid signal from the previous BP layer. There is a counter counting from 0 to
b − 1 running in parallel with the state machine, and it starts counting after being
activated by the valid signal. When the counter reaches b − 2, the state is changed
to S3.

cnt >= b-2valid='1'

valid='0'

reset
S0 S2 S3

cnt < b-2

S1

Figure 5.11: The STD of the state machine in the Linear BP layer k = 0.

Fig. 5.12 shows the STD of the state machine in the second linear BP layer. It can be
seen that S0 corresponds to t = 0, S1 corresponds to t = 1, S2 corresponds to t = 2,
S3 corresponds to t = 3, S4 covers from t = 4 to t = b − 2, and S5 corresponds to
the last t = b − 1 in a batch where all the operators and output ports are activated.
Then transition from S4 to S5 happens when the counter reaches b − 2.

cnt >= b-2valid='1'

valid='0'

reset
S0 S1 S4 S5

cnt < b-2

S2 S3

Figure 5.12: The STD of the state machine in the Linear BP layer k = 2.

5.3.4 Kerr BP Layer
The Kerr BP layer is the backward propagation of the Kerr FP layer. There is no
basic operator or state machine in this layer. The calculation is already shown from
Eq. (4.23) to Eq. (4.27).

44

5. Hardware Implementation

5.3.4.1 Hardware Implementation

Fig. 5.13 shows the block diagram of the Kerr BP layer. The hardware is pipelined
by inserting a layer of registers and can be divided into three parts. The two parts
on the left are aligned by output registers, while the outputs from these two blocks
serve as the input to the part at the far right. The left two parts correspond to
Eq. (4.23) until Eq. (4.26), while the rightmost part corresponds to Eq. (4.27).
All the intermediate values are reused as much as possible in the leftmost part to
save the DSP resources. The multiplication of 2 is also implemented by a shift left
operator to save hardware resources.

γxixi γ -
xi

xi

- Z-1

1

dxi_xi

1

-2γxixq -

1

2γxiyq -

2γyiyq -

2γxqyq -

1

-2γxiyi -

-2γxqyi -

 Z-1

 Z-1

 Z-1

dxi_xq

dxi_yi

dxi_yq

dxi_xi

dxq_xi

dyi_xi

dyq_xi
yq0

 Z-1

dxi_xq

dxq_xq

dyi_xq

dyq_xq

 Z-1

 Z-1 dxq_xi

 Z-1
dxq_xq

 Z-1

 Z-1

dxq_yi

dxq_yq

 Z-1

 Z-1

dyi_xi

dyi_xq

 Z-1 dyi_yi

 Z-1
dyi_yq

dxi_yi

dxq_yi

dyi_yi

dyq_yi

 Z-1

 Z-1

 Z-1

dyq_xi

dyq_xq

 Z-1 dyq_yi

 Z-1
dyq_yq

dxi_yq

dxq_yq

dyi_yq

dyq_yq

 Z-1

 Z-1

 Z-1

 Z-1

 Z-1

γ -
xi

xq

γxixq -

γ -
xi

yi

γxiyi -

γ -
xi

yq

γxiyq -

γ -
xq

xq

-γxqxq

γ -
xq

yq

γxqyq -

γ -
yi

yq

γyiyq -

γ -
yq

yq

γyqyq -

-γ -
xq

yi

γxqyi

γ -
yi

yi

γyiyi -

<<1γxixi - 2γxixi -

<<1γxixq - 2γxixq -

<<1γxqxq - 2γxqxq -

γxqyi 2γxqyi <<1- -

γxqyq <<1- 2γxqyq -

γxiyq <<1- 2γxiyq -

γxiyi <<1- 2γxiyi -

2γyiyq γyiyq <<1- -

γyiyi -

γyqyq - γyiyi+γyqyq
--

γyiyi+γyqyq
-

2γxixq -

-γyiyi+γyqyq

+γxixi+γxqxq

-
- -

2γxqyi -

2γxqyq -

--γxixi

--(γyiyi+γyqyq

+γxixi+γxqxq)

-
- -

-2γxiyi -

-2γxiyq -

-γyiyi+γyqyq

+γxixi

-
-
-γyiyi+2γyqyq

-

-2γyiyq -

--(γyiyi+γyqyq

+γxixi)

-
-

--γyqyq+2γyiyi

-

γyiyi -
--γyqyq+2γyiyi

-
--γyiyi+γyqyq+γxixi

- -

γxqxq
γyiyi+γyqyq

+γxixi+γxqxq

-
- -

-

γxixi -
-γyiyi+γyqyq

+γxixi

-
-

γyiyi+γyqyq
-

-

γyqyq -
-γyiyi+2γyqyq

-
-γyiyi+γyqyq

xi(0) xi(0)

xi(0)

xi(0)

xi(0)

xi(0)

xi(1)

xq(0) xq(0)

xq(0)

xq(0)

xq(0)

xq(0)

xq(1)

yi(0) yi(0)

yi(0)

yi(0)

yi(0)

yi(1)

yq(0) yq(0)

yq(0)

yq(0)

yq(0)

yq(1)

yi(0)

2γxqyq -

Figure 5.13: The block diagram of the Kerr BP layer. The superscript 0 in xi
(0)

denotes it is the input, and the superscript 1 denotes it is the output. The “dxi_xq”
denotes the (∂xi)/(∂xq), etc.

5.3.5 Gradient Layer
Like the Linear BP layer, the Gradient layer also has a different input size when the
layer index k differs. Moreover, like the Kerr BP layer, the inputs are from both the
FP and the BP. In our implemented 3-layer equalizer, the input size is 2 samples
when k = 0, 6 samples when k = 2, and 10 samples when k = 4.
The Gradient BP layer follows the same high-level architecture where basic operators

45

5. Hardware Implementation

are implemented and a state machine controls the inputs and outputs of the basic
operators.

5.3.5.1 Calculation

The calculation of the Gradient layer is shown in Eq. (4.19), from which the basic
operators can be extracted in a more general and simpler fashion as

R(Hxx,d) = R(Hxx,d) + x̄ij · xij−4+d + x̄qj · xqj−4+d

R(Hyx,d) = R(Hyx,d) + x̄ij · yij−4+d + x̄qj · yqj−4+d

R(Hxy,d) = R(Hxy,d) + ȳij · xij−4+d + ¯yqj · xqj−4+d

R(Hyy,d) = R(Hyy,d) + ȳij · yij−4+d + ¯yqj · yqj−4+d

, 2ib ≤ j < 2(i + 1)b (5.5)

where R can be viewed as a register to temporarily store the intermediate value of
either ∇Hxx(d), ∇Hyx(d), ∇Hxy(d) or ∇Hyy(d) (in a simplified format of symbol).
The d refers to the tap index in the weights, and j denotes the sample index in the
batch i. The x̄i denotes the input from the BP, and xi denotes the input from the
FP, and the same goes for xq, yi and yq.

5.3.5.2 Basic Operators

There are three Gradient layers implemented, namely k = 0, k = 2 and l = 4 in
our equalizer. Fig. 5.14 shows the input and the output of the Gradient layers, and
it only shows the calculation of tap Hxx(d) as an example. The input port of the
Gradient layer k has two parts: the 2 + 2k samples from the output of the previous
BP layer and the 2b + 4 samples from the intput of the corresponding Linear FP
layer. The output port size is fixed as 5 taps from ∇Hxx(0) to ∇Hxx(4). Fig. 5.14
shows only the hardware of one item Hxx(d) and it can be seen from Eq. (5.5) that
the operand shown in Fig. 5.14 should be duplicated for 20 times and working in
parallel in each Gradient layer since each Linear FP layer contains 4 weights Hxx,
Hyx, Hxy and Hyy, and each weight contains 5 taps. The arrow accompanied
by an xi or an xq sample denotes a multiplication operator, and all the multiplied
values are added to the value stored in the register R[d].

From t = 0 to t = k − 1, the whole Gradient layer stays idle, which means that the
inputs, the operators and the outputs are not activated. Note that these states do
not exist when k = 0. From t = k to t = b − 2, only 4 inputs are activated and all
other inputs still stay idle by applying 0 to them. The x̄i or x̄q is directly from the
input ports at each clock cycle with 2 samples per cycle. All the 2b + 4 xi and xq
inputs are only valid at t = k and they are stored in registers at t = k, which is not
shown in Fig. 5.14. At t = b − 1, all the 2 + 2k x̄i and x̄q inputs are activated as
well as all the operators. The result ∇Hxx[d] finally finishes calculation and is sent
to the output port at t = b − 1. Then a batch finishes, and the layer returns to the
first state.

46

5. Hardware Implementation

0th sample
1st sample

(t=k)

add

Xi[d-4]

-Xi[0]

Xi[d-3]

-Xi[1]

Xq[d-4]

-Xq[0]

Xq[d-3]

-Xq[1]

(t=0)

add . . .

. . .

.

2st sample
3rd sample

(t=k+1)

add

Xi[d-2]

-Xi[2]

Xi[d-1]

-Xi[3]

Xq[d-2]

-Xq[2]

Xq[d-1]

-Xq[3] . . .

R[d] R[d]

R[d]

(2b-2)th sample
(2b-1)th sample

(t=b-1)

add

Xi[d+2b
-2k-6]

-Xi

[2b-2k-2]
Xq[3]. . .

 Hxx[d]

Xq

[2b-1]
Xq

[2b-2]

Xi

[d+2b-6]
Xi

[d+2b-5]

-Xi

[2b-2k-1]

-Xq

[2b-2k-2]

-Xq

[2b2k-1]

Xi[d+2b
-2k-5]

Xq[d+2b
-2k-6]

Xq[d+2b
-2k-5]

-Xi

[2b-2k]

-Xi

[2b-2k+1]

-Xq

[2b-2k]

-Xq

[2b-2k+1]

Xi[d+2b
-2k-4]

Xi[d+2b
-2k-3]

Xq[d+2b
-2k-4]

Xq[d+2b
-2k-3]

R[d]

Figure 5.14: The input and output of the Gradient layer when k = 0, 2 or 4. It
only shows the hardware of calculating of the d-th item in ∇Hxx, ∇Hxx(d), as an
example. The ∇Hyx(d), ∇Hxy(d) and ∇Hyy(d) are duplications of the shown block
diagram.

The basic operator shown in Eq. (5.5) contains all the four channels xi, xq, yi and
yq. Thus, every Linear BP layer contains 5 operators working in parallel for the 5
taps. From Fig. 5.14, it can be seen that the number of multiplier-adders increases
as the layer index increases, and thus the hardware consumption increases. Such
increase stops when k > 2⌊ b−2

2 ⌋ where “⌊ ⌋” is the floor operation. Section 7.1.4
discusses the hardware structure of the Gradient layer when the number of layers is
above 3.

Op[0]
(d=0)

Op[1] Op[4]. . .
Hxx

 Z-1
 Hxx[d]

-Xi[2b-2k-2]

Xi[d+2b-2k-6]

Op[0] . . .

Op[0] . . .

Op[0] . . .

Hyx

Hxy

Hyy

Op[4]

Op[4]

Op[4]

-Xi[2b-2k-1]

Xi[d+2b-2k-5]

-Xq[2b-2k-2]

Xq[d+2b-2k-6]

Xq[d+2b-2k-5]

. . .

-Xi[2b-2]

Xi[d+2b-6]

-Xi[2b-1]

Xi[d+2b-5]

-Xq[2b-2]

Xq[d+2b-6]

-Xq[2b-1]

Xq[d+2b-5]

-Xq[2b-2k-1]

Figure 5.15: The block diagram of the basic operators and the structure of the
entire Gradient layer (k = 0). Each layer contains 4 parallel gradients Hxx, Hyx,
Hxy and Hyy. Each gradient contains 5 basic operators.

47

5. Hardware Implementation

Fig. 5.15 shows the block diagram of the basic operators in the Gradient layer k = 0.
Each Gradient layer contains 4 parallel gradients Hxx, Hyx, Hxy and Hyy, and
each gradient contains 5 taps. The basic operator is for calculating 1 tap, and thus
each Gradient layer contains 20 basic operators in total.

5.3.5.3 State Machine

Fig. 5.16 shows the STD of the state machine in Gradient layer k = 0. A counter
counting from 0 to b − 1 runs in parallel with the state machine. The function of
each state can be summarized as follows:

• S0: The state machine and the counter are activated if the valid signal becomes
“1”, and this state corresponds to t = k in Fig. 5.14. Note that there are no
idle states from t = 0 to = k − 1 in Fig. 5.14 when k = 0.

• S1: This state corresponds to the states from t = k+1 to t = b−2 in Fig. 5.14.
The state machine remains in this state when cnt < b − 2.

• S2: This state corresponds to the last state t = b − 1.

cnt >= b-2valid='1'

valid='0'

reset
S0 S2

cnt < b-2

S1

Figure 5.16: The STD of the state machine in Gradient layers k = 0.

Fig. 5.17 shows the STD of the state machine in Gradient layer k = 2 or k = 4. The
function of each state can be summarized as follows:

• S0: The state machine and the counter are activated if the valid signal becomes
“1”, and this state corresponds to t = 0 in Fig. 5.14.

• S1: This state corresponds to t = 1 to t = k in Fig. 5.14. The state machine
remains in this state when cnt < k − 1.

• S2: This state corresponds to t = k + 1 to t = b − 2 in Fig. 5.14. The state
machine remains in this state when when cnt < b − 2.

• S3: This state corresponds to the last state t = b − 1.

cnt >= k-1 cnt >= b-2valid='1'

valid='0'

reset
S0 S1 S2 S3

cnt < k-1 cnt < b-2

Figure 5.17: The STD of the state machine in the Gradient layer k = 1 or k = 2.

48

5. Hardware Implementation

5.3.6 Weight Update Block

The weight update blocks are used to update the trainable weights in Linear FP
layers, and therefore each Linear FP layer has a corresponding Weight Update block.
Since the training is batch-based, the update is executed only once in each batch.
This means that the weight update happens every b clock cycles, after the process
of the 2b samples in a batch is finished.

The inputs to each Weight Update block are the trainable weights and the calculated
gradients from the corresponding Gradient layer. The Weight Update block returns
the updated weights. There is no state machine or basic operator in this block. The
calculation of the Weight Update layer is shown in Eq. (4.5).

5.3.6.1 Hardware Implementation

Fig. 5.18 shows the block diagram of the Weight update block. In order to save the
DSP resources, the learning rate ξ is implemented by left shifting the gradient with
p bits. Thus the learning rate is limited to 2p, p ∈ N. Such a learning rate is enough
for this design.

There are 4 different weights in each Linear FP layer Hxx, Hyx, Hxy and Hyy,
and each weight contains 5 taps. Fig. 5.18 shows only the weight update of one tap
d, and thus the shown hardware should be duplicated 5 times to form a complete
Weight Update layer. Moreover, it should be noticed that the left shift operations
are implemented in the corresponding Gradient layer. In the Gradient layer, there
are intermediate values whose wordlengths are longer than the outputs. Thus, these
intermediate values should be right-shifted to be converted to the wordlength of the
outputs. Thus, by subtracting the number of right shift bits with p, the left shift of
p bits is realized.

Hxx[d]
<<p Z-1-Hxx_grad[d]

Hxy[d]
 Z-1-Hxy_grad[d]

Hyx[d]
 Z-1

Hyy[d]
 Z-1

-Hyx_grad[d]

-Hyy_grad[d]

<<p

<<p

<<p

Figure 5.18: The block diagram of the Weight Update block. The same hardware
is duplicated for the indices d = 0, 1, 2, 3, and 4. The symbol “Hxx_grad[d]”
represents the gradient ∇Hxx(d)L, etc. The left shift operations are implemented in
the Gradient layers but shown here for simplicity.

49

5. Hardware Implementation

5.3.6.2 Weight Update Pattern

It should be noted that the timing when the weights are updated in the hardware
implementation is different from the software. Table 5.2 shows how all the weights
are updated in the software implementation, while Table 5.3 shows the hardware
implementation. Each item in the tables is the symbol index. The H denotes the
weights, and the subscript in H increases 1 when a weight update occurs. Thus,
the tables can show at which symbol the weights in different layers are updated. In
the software implementation, the three layers are simultaneously updated every b
symbols, and there is no initial interval. In the hardware implementation, on the
contrary, every layer has an initial interval when updating, and different layer has
a different initial interval. As a result, all the layers are not updated at the same
time. However, the hardware implementation is fully pipelined which means that
the weight update still happens every b symbols after the pipeline is full.

Table 5.2: The pattern of weight update in the software implementation.

H0 H1 H2 H3 H4 · · ·
Linear FP layer 0 0 b − 1 2b − 1 3b − 1 4b − 1 · · ·
Linear FP layer 1 0 b − 1 2b − 1 3b − 1 4b − 1 · · ·
Linear FP layer 2 0 b − 1 2b − 1 3b − 1 4b − 1 · · ·

Table 5.3: The pattern of weight update in the hardware implementation.

H0 H1 H2 H3 H4 · · ·
Linear FP layer 0 0 2b + 28 3b + 28 4b + 28 5b + 28 · · ·
Linear FP layer 1 0 2b + 24 3b + 24 4b + 24 5b + 24 · · ·
Linear FP layer 2 0 2b + 20 3b + 20 4b + 20 5b + 20 · · ·

50

6
Experiments and Results

In this chapter, all experiments carried out in this paper and their setups are in-
troduced, and all the experimental results are presented. The experiments are per-
formed on both the software equalizer models and the VHDL hardware equalizer.
Firstly, the metrics used in this thesis are introduced. Secondly, the experiments on
the optimal set of parameters carried out in the software equalizers and the hardware
equalizer are presented. Thirdly, the performance of the software equalizer and that
of the hardware equalizer are compared. Fourthly, the experiments on the hardware
equalizer with a transient or time-varying channel are demonstrated. Finally, the
FPGA synthesis and implementation results are shown.

6.1 Metrics
The metric adopted in this thesis to assess the performance of the equalizer is
effective signal-to-noise ratio (SNR), which is defined as

effective SNR = ||ŝ||
||ŝ − s||

(6.1)

where s is the original transmitted symbol and ŝ is the symbol after equalization. In
the rest of thesis, “SNR” and “effective SNR” both refer to the mean effective SNR
which is calculated on a window of 4,096 symbols. The number 4,096 is deliberately
chosen for porting the calculation of the mean effective SNR to the same FPGA in
the future. The averaging window is sliding with a step of 1 symbol in order to more
accurately illustrate how the SNR changes over time.
Two metrics are defined as below to evaluate the performance of the equalizers in
both the software model and hardware implementation:

• performance: the final achieved effective SNR, which is calculated on the last
4,096 symbols.

• convergence time: the number of symbols before the equalizer converges to
within 1% of its final effective SNR.

6.2 Model Verification
In order to verify that the Matlab equalizer proposed in Section 4.3 is an identical
to the Tensorflow version proposed in Section 4.2, 20 fiber realizations are used

51

6. Experiments and Results

to generate the test data. Each fiber realization has a different set of θ(k) ∀k ∈
{0, 1, 2, 3} that are generated uniformly and randomly on [−π, π], while all the other
parameters are kept the same as Table 4.1. The same test data are used as the input
to the Tensorflow equalizer and the Matlab equalizer, and the training curves from
both of them are compared. The transmission power is set to 10 dBm, and there
are 184,095 symbols used in the training. The setup of the channel simulation can
be seen in Section 4.1 and Table 4.1, and the equalizer setup is shown in Table 4.2.
The effective SNR is averaged on 4,096 symbols. Fig. 6.1 shows the training curves
on one of the fiber realizations, and the two curves completely overlap each other.
All training curves on the remaining 19 fiber realizations are also identical, which
confirm that our mathematical derivation of the BP is correct.

Figure 6.1: The training curves from the Tensorflow and the Matlab equalizer on
one of the 20 fiber realizations.

6.3 Batch Size and Transmission Power in Soft-
ware Equalizers

Before testing the VHDL hardware equalizer, the software equalizer is investigated
firstly to provide a reference to the hardware implementation. The batch size b and
the transmission power P are two important system-level hyperparameters that can
strongly impact the performance and convergence time. To find the optimal batch
size and transmission power, these two parameters are varied respectively and each
parameterization is tested on the 20 fiber realizations. In each test, 184,095 symbols
are used and the performance is calculated on the last 4,096 symbols.
Fig. 6.2 shows the performance with respect to the batch size and transmission
power. The batch size is in number of symbols and thus the actual number of
samples in a batch should be two times the number of symbols. For example, if the
batch size is 20, the actual number of samples in a batch is 40. At each combination
of batch size and transmission power, the performance is tested using the 20 different

52

6. Experiments and Results

fiber realizations, and the performance is averaged. The “without PMD and Kerr
effect” line shows an ideal channel without any PMD or Kerr effect. The “channel
inverse” means that the equalizer is initialized as the inverse of the PMD-Kerr effect
in the channel, and that the BP is not activated. The “channel inverse” curve shows
the upper limit of performance regardless of the batch size used. It can be seen that
the performance decreases as the batch size decreases in general, and there is an
optimal transmission power for each batch size.

Figure 6.2: The performance with respect to the batch size and transmission
power. The Taylor expansion is not applied in the BP.

Figure 6.3: The performance with respect to the batch size ranging from 19 to 22
and the transmission power ranging from 8 dBm to 12 dBm. The Taylor expansion
is not applied in the BP.

53

6. Experiments and Results

To have a clearer view of the parameterizations that have higher performance,
Fig. 6.3 shows only the batch sizes between 19 and 22, for a transmission power
between 8 dBm and 12 dBm.

Figure 6.4: The performance with respect to the batch size and transmission
power. The Taylor expansion is applied in the BP.

Figure 6.5: The performance with respect to the batch size and transmission
power. The Taylor expansion is applied in the BP.

Then the Taylor expansion is applied to the BP of the equalizer, and the same test
of performance is conducted on the modified equalizer model. Fig. 6.4 shows all the
tested batch sizes and transmission power, and Fig. 6.5 shows only the batch sizes

54

6. Experiments and Results

ranging from 19 to 22 and the transmission power ranging from 8 dBm to 12 dBm.
It can be seen that the performance still follows the same pattern that it increases
as the batch size increases, and that there is always an optimal transmission power
for each batch size. However, there is a degradation in the performance compared
to the original equalizer when the transmission power is 12 dBm.

Figure 6.6: The convergence time with respect to the batch size and transmission
power. The Taylor expansion is applied in the BP.

Figure 6.7: The convergence time with respect to the batch size and transmission
power. The Taylor expansion is applied in the BP.

The convergence time is also measured in this test, and it is also averaged on all the

55

6. Experiments and Results

20 different fiber realizations. Fig. 6.6 shows the convergence time in relation to the
batch size and the transmission power. The convergence time follows the pattern
that it generally decreases as the batch size increases, except for batch sizes 13, 14,
19 and 20.
Fig. 6.7 shows the convergence time when the Taylor expansion is applied in the
BP. It can be seen that, although the values are different from the equalizer without
Taylor expansion, the general pattern that the convergence time decreases as the
batch size increases still holds.
Based on all the test data obtained from the above tests, a batch size of 21 and a
a transmission power of 10 dBm can be selected as the optimal operating point in
terms of performance, convergence time and resource utilization. When the batch
size is smaller than 26 symbols, the resource utilization increases as the batch size
increases (see Section 7.1.2). Thus, bath size 22 is not chosen although it has the
best performance and convergence time. However, this optimal point only works in
the software models. When the equalizer is ported to FPGAs, there will be latency
introduced to each layer when pipelining is used and there will be a performance
deterioration caused by the fixed-point approximations.

6.4 Wordlengths in VHDL Hardware
In the software equalizer models, all the variables and constants are represented in
double-precision floating-point format. However, the VHDL equalizer adopts fixed-
point format with an alterable wordlength for each variable and constant. Normally,
due to the limited DSP resources on an FPGA, the fixed-point format should have
shorter wordlengths than the double format in software equalizers. Thus, there are
two errors caused by the fixed-point representation:

• fixed-point error : the error caused by the fixed-point representation itself due
to the difference between floating point format and fixed-point format.

• rounding error : the error caused by the shorter wordlengths in the VHDL
equalizer compared to the 64-bit double format in the software equalizers.

In the VHDL equalizer, all the parameters/variables/constants have 5 different
wordlengths which are denoted and summarized as below:

• dat: the wordlength of the symbol/sample, and the wordlength of the inputs
and outputs of all BP layers except for the output of the Gradient layers.

• ker: the wordlength of the Kerr parameter γ̄.
• ang: the wordlength of the Kerr angle ϕ in the Kerr FP layers.
• wei: the wordlength of each tap in the weights in the Linear FP layers, and

the wordlength of the gradients in the Gradient layers.
• tap: the wordlength of the RRC taps in the MF FP layer and in the MF BP

layer.
It should be noticed that the wordlength of the intermediate signals in each FP or
BP layer may differ from the 5 wordlengths listed and they are actually combinations

56

6. Experiments and Results

of these wordlengths, but all the parameters/variables/constants listed above must
have the assigned wordlengths.
There is a degradation in the performance and the convergence speed due to the
fixed-point error and the rounding error. Since the FPGA resource utilization in-
creases as the wordlengths increase, the wordlengths cannot be extended without
limitation. Thus, tests should be carried out on the wordlengths to find the optimal
set {dat, ker, ang, wei, tap} within a certain range.
The tests are performed under the optimal operating point in the software imple-
mentation, i.e., a batch size of 21 symbols and a transmission power of 10 dBm.
An important assumption should also be made that the optimal wordlengths do
not change for different combinations of batch size and transmission power. This
assumption ensures that testing the wordlengths at only one operating point is
enough, thus avoiding excessive simulation runs.
In the experiments on the wordlengths, the dat, ker, ang, wei and tap are all varied
independently from 12 to 16 with a step of 2 bits, which results in 243 tests in
total. In each test, 20 simulations are performed on the 20 fiber realizations, and
the performance and convergence time from the 20 simulations are both averaged,
as in previous tests. We use VHDL logic simulation to conduct the tests and such
simulation is performed in QuestaSim 2021.2. The number of symbols used in each
simulation is 184,095 symbols, and the performance is calculated on the last 4,096
symbols.
Then the performance and the convergence speed are sorted in descending order
respectively, and Table 6.1 shows the sets {dat, ker, ang, wei, tap} with the high-
est performance, lowest performance, highest convergence speed, and lowest con-
vergence speed. The set {14, 16, 12, 14, 12} is chosen as the optimal operating point
and will be used in all the following experiments, which is also shown in the table. A
longer wordlength generally results in more hardware resource utilization, and thus
a trade-off needs to be made on the performance, convergence time and resource
utilization. The chosen operating point meets the criteria that it has relatively high
performance, high convergence speed, and limited resource utilization.

Table 6.1: The results from the experiments on wordlengths in the VHDL equalizer.

Metric Type Wordlengths Perform. (Rank) Conv. Time (Rank)
highest perform. {14, 14, 12, 16, 12} 21.2456 dB (1) 5.3041 × 104 symbs (122)
lowest perform. {12, 12, 14, 12, 16} 21.1840 dB (243) 5.2038 × 104 symbs (216)

highest conv. speed {16, 14, 12, 12, 12} 21.2204 dB (165) 4.9091 × 104 symbs (1)
lowest conv. speed {14, 12, 16, 16, 16} 21.2219 dB (138) 5.7920 × 104 symbs (243)

operating point {14, 16, 12, 14, 12} 21.2443 dB (17) 5.4967 × 104 symbs (23)

It should be noticed that all the sets of wordlengths tested in this experiment perform
very well and have relatively small difference in performance and convergence time,
if comparing the highest and lowest values. This indicates that the set of shortest
wordlengths {12, 12, 12, 12, 12} is already located on the plateau of the function of

57

6. Experiments and Results

performance and the function of convergence time. Thus, more tests need to be
done in the future to test wordlengths shorter than {12, 12, 12, 12, 12}.

6.5 Batch Size and Transmission Power in VHDL
Equalizer

In Section 6.3, the optimal batch size and transmission power are surveyed in the
software equalizer models. However, when porting the equalizer model to VHDL
hardware, modifications are introduced so that the optimal batch size and transmis-
sion power might drift to a different point. In this section, the same experiment done
in Section 6.3 is applied to the VHDL equalizer but using VHDL logic simulation in
QuestaSim 2021.2. The batch size is varied from 19 to 22 with a step size of 1 and
the transmission power is varied from 8 dBm to 12 dBm with a step size of 1 dBm.
The wordlengths are fixed using the selected operating point {14, 16, 12, 14, 12} in
Section 6.4.

Fig. 6.8 shows the performance with respect to the transmission power when dif-
ferent batch sizes are used. Unlike the software model shown in Fig. 6.5, there is
now a considerable decrease in the performance when the transmission power be-
comes 12 dBm regardless of the batch sizes. Fig. 6.9 shows more clearly about the
transmission power from 8 dBm to 11 dBm.

Fig. 6.10 shows the convergence time with respect to the transmission power when
different batch sizes are used. A trade-off should be made when selecting the optimal
operating point and thus we choose the batch size 21 symbols and the transmission
power 10 dBm.

Figure 6.8: The performance with respect to the batch size and transmission power
in the hardware implementation.

58

6. Experiments and Results

Figure 6.9: The zoomed-in view of the performance with respect to the batch size
and transmission power in the VHDL equalizer.

Figure 6.10: The convergence time with respect to the batch size and transmission
power in the VHDL equalizer.

6.6 Software Equalizer and Hardware Equalizer
Comparison

This section focuses on the comparison between the software model equalizer and
the VHDL hardware equalizer based on the results obtained in the previous tests.
Table 6.2 compares the chosen operating point in the software equalizer and that

59

6. Experiments and Results

in the VHDL equalizer, with the corresponding equalizer parameters. It can be
concluded that the VHDL equalizer has a performance and a convergence time that
are both very close to the original equalizer model, which means that our proposed
digital implementation of adaptive nonlinear equalizer is successful.

Table 6.2: The comparison between the chosen operating point in the software
equalizer model and that in the VHDL equalizer.

Equalizer Type Batch Size Trans. Power Perform. Conv. Time
channel inverse – 10 dB 21.4586 dB –

Matlab w/o Taylor expansion 21 symbs 10 dB 21.3566 dB 5.4732 × 104 symbs
Matlab w/ Taylor expansion 21 symbs 10 dB 21.3456 dB 5.4021 × 104 symbs

VHDL 21 symbs 10 dB 21.2443 dB 5.4967 × 104 symbs

2

3

1

5

4

Figure 6.11: The comparison between the training curve of the original Matlab
equalizer without Taylor expansion, the training curve of the modified Matlab equal-
izer with Taylor expansion, and the training curve of the VHDL implementation.

Fig. 6.11 shows the training curve of the original software equalizer, the training
curve of the modified software equalizer with Taylor expansion in the BP, and the
training curve of the VHDL equalizer. All the three curves are obtained on one
fiber realization in the 20 realizations. Like previous tests, 184,095 symbols are
used and the SNR is averaged on a window of 4,096 symbols in each test. The
channel inverse here refers to the original equalizer model initialized with the inverse
of the channel, which serves as the upper-bound of performance of the proposed
equalizer model. It can be seen that there is a performance degradation noted as
1 between the ideal upper-bound performance and the original equalizer model,
which is due to the limitation of the equalizer model itself such as the MF design
and the number of MIMO-FIR filter taps in the Linear FP layers. There is a further

60

6. Experiments and Results

performance degradation between the original equalizer model and the modified
model with Taylor expansion in the BP, which is noted as 2. This degradation is
caused by the Taylor expansion introduced since the Taylor expansion is just an
approximation of the original function. A third degradation is between the modified
equalizer model and the VHDL equalizer, and it is noted as 3. Such degradation is
caused by the fixed-point error and the rounding error.
Another point is that the convergence speeds are different in all the three cases.
The first difference noted as 4 is that the model with Taylor expansion has a faster
convergence than the original model. This difference is due to the introduced Taylor
expansion resulting in lower performance, so fewer symbols are required for the
final convergence. The second difference is that the VHDL equalizer has a lower
convergence speed compared with the modified equalizer model, which is reflected
in the fact that the VHDL equalizer requires more symbols to converge in Table 6.2.
The training curve of the VHDL equalizer can be viewed as approximately a bottom-
right shift of the training curve of the modified model. The lower performance of
the VHDL equalizer cannot compensate for the right-shift of the training curve, and
therefore the VHDL equalizer still needs more symbols to reach convergence. There
are three contributors to such right-shift. Firstly the 18-sample latency between the
input and output of the equalizer, as shown in Table 5.1. The second contributor is
the 4-sample latency between the weight updates in two adjacent Gradient layers, as
shown in Table 5.3. The third contributor is the initial latency in the weight update
which can be obtained by comparing Table 5.2 and Table 5.3. It can be seen that
the hardware equalizer has initial latencies b + 29, b + 25 and b + 21 in the weight
update of each layer when compared to the software equalizer.

6.7 Instantaneous PMD Change
After the optimal operating point in the VHDL equalizer is decided, the adaptive
capability of the VHDL equalizer can be tested. The first test is to introduce an
instantaneous PMD change in the channel after the equalizer has already converged,
and to verify that the equalizer can retrain itself afterwards. Table 6.3 shows the
PMD angles before and after the instantaneous PMD change, and all the angles are
randomly and uniformly generated on [π, π]. The channel with a transient PMD
change is simulated using Matlab and the results are used as inputs to the VHDL
equalizer. The VHDL logic simulation is then carried out on the VHDL equalizer.

Table 6.3: The transient PMD change in the channel.

PMD Angle θ(k) Before After
θ(0) 1.9775 rad 0.8316 rad
θ(1) 2.5497 rad −2.5287 rad
θ(2) −2.3437 rad −1.3917 rad
θ(3) 2.5973 rad 0.2946 rad

As shown in Fig. 6.12, there is an initial convergence, and then a transient PMD

61

6. Experiments and Results

change happens at the 184,096th symbol when a total number of 364,095 symbols are
used. The SNR is averaged on 4,096 symbols as before. It can be seen that the VHDL
equalizer can quickly recover from the PMD change to its original performance level,
just as the software models.

Figure 6.12: The initial training curve and its recovery when an instantaneous
PMD change happens. The Matlab equalizers without and with Taylor expansion,
and the VHDL equalizer are all shown.

6.8 Time Varying Channel
Due to the nonstationary nature of PMD, one important aspect of an equalizer’s
adaptive performance is compensating for the time-varying PMD in the channel [44].
The time-variation of PMD is normally a very slow process that takes hours or even
days to accumulate a considerable change in real systems [44]. However, we use
a much faster PMD variation for simulation purpose. The time-varying channel is
simulated in Matlab and the results are used as input data to the VHDL equalizer.
The VHDL logic simulation is then conducted on the VHDL equalizer to obtain the
equalization outputs.
For our 3-section channel simulation, there are 4 rotation angles θ(k) (k = 0, 1, 2, 3)
including the 3 angles in the 3 sections plus the output rotation angle. In the first
test, the varying speeds of all the 4 rotation angles are kept the same and increased
from 0 rad/s up to 1×107 rad/s. All the 4 rotation angles are initialized randomly and
uniformly on [−π, π], and the initial values are 0.8316 rad, −2.5287 rad, −1.3917 rad
and 0.2946 rad from θ(0) to θ(3).
Fig. 6.13 shows the training curves from VHDL logic simulation when the varying
speeds are 0 rad/s, 1 × 105 rad/s, 1 × 106 rad/s, 1 × 106 rad/s, and 1 × 107 rad/s with
the same direction. A total number of 364,095 symbols are used in each test and
the averaging window is 4,096 in SNR calculation. It can be seen that, when the

62

6. Experiments and Results

varying speed is 1 × 105 rad/s, the VHDL equalizer has basically the same level of
performance and convergence speed as the stationary case 0 rad/s. For the speeds
1 × 106 rad/s and 1 × 107 rad/s, the equalizer cannot keep its original performance
anymore and becomes unstable.

Figure 6.13: The training curves from VHDL logic simulation when different vary-
ing speeds of the rotation angles are adopted. All the 4 rotation angles in the channel
have the same varying speed and direction.

Figure 6.14: The training curves from VHDL simulation when the varying speeds
vary between 1 × 105 rad/s and 1 × 106 rad/s.

In the second test, the varying speeds between 1 × 105 rad/s and 1 × 106 rad/s are
further tested to acquire an upper bound of the varying speed, and the step is set to

63

6. Experiments and Results

2 × 105 rad/s. Like before, the number of symbols used is also 364,095 in each test
and the averaging window of the performance is 4,096. Fig. 6.14 shows the results
from VHDL logic simulation. It can be seen that the equalizer becomes unstable
when the varying speed reaches 3 × 105 rad/s.
In the third test, the varying speeds of the 4 rotation angles become different and
Fig. 6.15 shows the results. The varying speeds of the rotation angles from θ(0)

to the θ(3) are respectively shown in a set. All the rotation angles have the same
direction of varying, and all the initial angles are the same as the first test. The
number of symbols in each test is 364,095 and the effective SNR is averaged on
a window of 4,096 symbols. We can conclude from the results shown in Fig. 6.14
and Fig. 6.15 that when the VHDL equalizer contains 3 layers, to ensure that the
equalizer remains stable, the upper limit on the varying speed of each rotation angle
is 1 × 105 rad/s.

Figure 6.15: The training curves from VHDL simulation when the varying speeds
of all rotation angles are different.

6.9 FPGA Implementation
The 3-layer equalizer with the batch size 21 and the wordlengths {14, 16, 12, 14, 12}
is implemented on a Xilinx Virtex-7 VC709 FPGA development board, and the
FPGA model number is Virtex-7 XC7VX690T. The synthesis and analysis tool is
Vivado Design Suite 2020.2. The clock frequency is set to 50 MHz. The resource
utilization after Vivado implementation is shown in Table 6.4, where the “FP” and
“BP” entries refer to the resource utilization in the entire FP and BP, respectively.
The “Total” entry refers to the resource utilization of the entire equalizer. The sum
of the utilized slice LUTs in the FP and BP is not equal to the total utilization of
slice LUTs in the whole system. So do the slice registers. This is because the system-
level control logic also consumes LUTs and slice registers, which is not shown as a

64

6. Experiments and Results

separate entry in the table. It should be noticed that the equalizer does not utilize
any block random access memory (BRAM) since the whole VHDL equalizer is fully
pipelined and runs strictly at the speed of 2 samples per clock cycle. As a result, the
data samples do not need to be stored temporarily in any specific on-board memory.

Table 6.4: The Break-down resource utilization on Xilinx VC709 with 50 MHz
clock.

Module Slice LUTs Slice Registers DSPs F7 Muxes F8 Muxes BRAM
Kerr FP 0 3,893 (0.90%) 282 (0.03%) 26 (0.72%) 866 (0.40%) 166 (0.15%) 0 (0.00%)
Kerr FP 1 3,893 (0.90%) 282 (0.03%) 26 (0.72%) 866 (0.40%) 166 (0.15%) 0 (0.00%)
Kerr FP 2 3,899 (0.90%) 310 (0.04%) 26 (0.72%) 866 (0.40%) 166 (0.15%) 0 (0.00%)

Linear FP 0 492 (0.11%) 112 (0.01%) 96 (2.67%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Linear FP 1 492 (0.11%) 112 (0.01%) 96 (2.67%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Linear FP 2 492 (0.11%) 112 (0.01%) 96 (2.67%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

MF FP 7,028 (1.62%) 7,172 (0.83%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Loss BP 2,920 (0.67%) 62 (<0.01%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
MF BP 5,724 (1.32%) 1,078 (0.12%) 132 (3.67%) 188 (0.09%) 94 (0.09%) 0 (0.00%)

Linear BP 0 2,439 (0.56%) 1,142 (0.13%) 160 (4.44%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Linear BP 1 4,591 (1.06%) 1,854 (0.21%) 320 (8.89%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Kerr BP 0 13,643 (3.15%) 338 (0.04%) 372 (10.33%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Kerr BP 1 23,488 (5.42%) 562 (0.06%) 620 (17.22%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Gradient 0 9,478 (2.19%) 3,327 (0.38%) 100 (2.78%) 2,128 (0.98%) 336 (0.31%) 0 (0.00%)
Gradient 1 15,090 (3.48%) 3,375 (0.39%) 300 (8.33%) 1,554 (0.72%) 364 (0.34%) 0 (0.00%)
Gradient 2 20,349 (4.70%) 3,421 (0.39%) 500 (13.89%) 2,506 (1.16%) 616 (0.57%) 0 (0.00%)

FP 20,189 (4.66%) 8,382 (0.97%) 366 (10.17%) 2,598 (1.20%) 498 (0.46%) 0 (0.00%)
BP 97,722 (22.56%) 15,159 (1.75%) 2,504 (69.56%) 6,376 (2.94%) 1,410 (1.30%) 0 (0.00%)

Total 120,423 (27.80%) 32,935 (3.80%) 2,870 (79.72%) 8,974 (4.14%) 1,908 (1.76%) 0 (0.00%)

Table 6.5: The summary of the resource utilization on Xilinx VC709 with 50 MHz
clock.

Module Slice LUTs DSPs
Kerr FPs 11,685 (2.70%) 78 (2.17%)

Linear FPs 1,476 (0.34%) 288 (8.00%)
MF FP 7,028 (1.62%) 0 (0.00%)
Loss BP 2,920 (0.67%) 0 (0.00%)
MF BP 5,724 (1.32%) 132 (3.67%)

Linear BPs 7,030 (1.62%) 480 (13.33%)
Kerr BPs 37,131 (8.57%) 992 (27.56%)
Gradients 44,917 (10.37%) 900 (25.00%)

FP 20,189 (4.66%) 366 (10.17%)
BP 97,722 (22.56%) 2,504 (69.56%)

Total 120,423 (27.80%) 2,870 (79.72%)

Table 6.5 summarizes the utilization of the resources of interest to us. The repeated
items are summarized into one item in the table. It can be seen that the BP utilizes
more resources than the FP, which indicates that the on-chip training brings a
significant resource overhead to the equalizer. The Gradient layers utilize the most
slice LUTs, and the Kerr BP layers utilize the most DSPs.

65

6. Experiments and Results

It can also be seen that the bottleneck of hardware utilization is the DSP. This
3-layer equalizer utilizes 79.72% of the total DSPs, which still leaves enough room
for further adding the PMD-Kerr emulator from [38] on the same FPGA in the
future. By implementing both the PMD-Kerr emulator and the equalizer on the
same FPGA, an entire test platform running on board can be formed in the future.

66

7
Discussion and Future Work

In this chapter, we focus on some specific aspects of this thesis project that we
believe can be improved, and possible future work can be based on them.

7.1 Batch Size and Number of Layers
This section discusses the hardware structure of each BP layer when more than 3
layers are used and a batch size larger than 22 symbols is adopted. These extensions
can be implemented in future work to facilitate an equalizer with more than 3 layer
implemented on a larger FPGA, which can compensate for more realistic PMD-Kerr
effects in the channel.

7.1.1 Hardware System Structure
The same hardware structure shown in Fig. 5.1 can still be applied when more than
3 layers are used in the equalizer. Fig. 7.1 shows our proposed general hardware
structure with more than 3 layers. There are L layers in total, and layer 1 to layer
L − 2 are duplications. The “layer” here refers to the general layer including one
Kerr FP,one Linear FP, one Linear BP, one Kerr BP, one Gradient, one Kerr SR
and one Gradient SR. The layer 0 and layer L − 1 have different structures which
are also shown. We also illustrate the layer index k in each specific layer (Linear
FP, Kerr FP, Linear BP, etc.) calculated from L. The port sizes are denoted in
parentheses in Fig. 7.1.

Kerr FP 0 Linear FP 1 MF FP
Linear FP

2L-3

Loss BP

MF BPLinear BP 2

Gradient 2
Gradient

2L-2

Gradient

SR 2L-2

Kerr FP

2L-2

Linear FP

2L-1

Linear BP 0Kerr BP 1

Gradient 0
Kerr

SR 1

Kerr FP

2L-4

Kerr BP 3

Kerr

SR 3
Layer 1 . . .

Layer

L-2

(2) (2) (2)

(2b+4)

(20)

(2) (2) (2) (1)

(1)

(2)

(20)

(6)(6)(10)(10)

(20)

Gradient

SR 0

(2b+4)

(2)

Gradient

SR 2

(2b+4)

(2)

(6)(10)

6+4(L-2)

(2)

6+4(L-3)

Figure 7.1: The proposed general hardware architecture of the entire equalizer
when the number of layers L > 3.

Table 7.1 shows the latency in each layer when L > 3. It can be seen that only the
latency in the Gradient SR component and that in the Kerr SR component grows

67

7. Discussion and Future Work

linearly with the layer index l. This means that more LUT resources will be utilized
in the Gradient SR with k = 2L − 2l − 2 and in the Kerr SR with k = 2L − 2l − 1
(i.e, the Gradient SR and the Kerr SR in Layer l), as l increases. It can also be seen
that the the latency of the Gradient SR, Kerr SR, Gradient layer and MF BP layer
grows linearly with the batch size b.

Table 7.1: The latency in each layer in the proposed general hardware structure
when the number of layers L > 3.

layer/component latency (clock cycles)
Kerr FP 4

Linear FP 1
MF FP 3
Loss BP 1
MF BP b + 1

Linear BP 2
Kerr BP 2
Gradient b

Gradient SR b + 6 + 9l
Kerr SR b + 12 + 9l

7.1.2 MF BP Layer
When a 51-tap MF FP layer is used, the architecture of the MF BP layer shown
in Fig. 5.7 does not work for b > 25. Thus, a new hardware architecture can be
designed and implemented in the future, which targets at equalizers with a batch
size larger than 25 symbols. Fig. 7.2 shows such an architecture. It can be seen that
the number of parallel operators is a constant 51 and has nothing to do with the
batch size any more.

1st symbol (t=1)

input

M[49] M[50]
M[48]M[47]

input

M[2]M[1]

24th symbol (t=24)

M[4]M[3]

output
2nd sample
3rd sample

(t=b+1)

. . .

48th sample
49th sample

(t=b+24)

R
[2b-1]R[1]R[0] . . .R[3]R[2] R[1]R[0] R[3]R[2] . . . R[48]

M[49]

R
[2b-1]

. . .R[49]

M[50]

output

25th symbol (t=25)

R[1] R[3]R[2] . . . R[50]
R

[2b-1]
. . .R[51]

output

R[0]

R
[2b-1]

input

. . .

0th symbol (t=0)

output

M[50]M[49]

R[1]R[0]

0th sample
1st sample

(t=b)

input

M[2]M[0] M[3] M[49] M[50]

26th symbol (t=26)

R[3] R[5]R[4] . . . R[52]
R

[2b-1]
. . .R[53]

output

R[2]

input

M[2]M[0] M[3] M[49] M[50]

R[0] . . .

. . .

(b-1)th symbol (t=b-1)

R
[2b-51]

R

[2b-49]

R

[2b-50]
. . . R

[2b-2]
R

[2b-1]

output

R

[2b-52]

input

M[2]M[1] M[3] M[49] M[50]

R[0] . . .

50th sample
51th sample

(t=b+25)

52th sample
53th sample

(t=b+26)

(2b-2)th sample
(2b-1)th sample

(t=2b-1)

Figure 7.2: The hardware architecture of the MF BP layer when b > 25.

From t = 0 to t = 24, two more inputs/operators/registers are activated at each clock
cycle. From t = 25 to t = 2b − 1, there are constant 51 inputs/operators/registers

68

7. Discussion and Future Work

activated and not increasing as t increases, while the 51-sample activation window
shifts with a step of 2 samples per clock cycle.

7.1.3 Linear BP Layer
Although we have only implemented a 3-layer equalizer including two Linear BP
layers k = 0 and k = 2, the same introduced hardware architecture of Linear BP
layer in Section 5.3.3 can be applied for the equalizer with more than 3 layers. In
this section we will discuss how this architecture can be applied to the Linear BP
layers with k ≥ 4 in 4 different cases:
1). The layers with k < 2⌊ b−2

2 ⌋1:
• The input size should be 2 + 2k samples and the output size should be 6 + 2k

samples.
• There are 6 + 2k basic operators implemented in each layer which are divided

into two types, 2 + 2k Op1 operators with a length of 5 samples and 4 Op2
operators with lengths of 1, 2, 3 or 4 samples.

• From t = 0 to t = k − 1, the input ports, operators and output ports all stay
idle.

• At t = k and t = k + 1, only two input ports are activated and the input
samples are stored in the SR, while the outputs and the operators still stay
idle.

• At t = k +2, two input ports are activated and the registers start shifting with
a step size of two samples. Two Op1 operators as well as two output ports
are activated. The registers continue shifting and two results are continually
being forwarded to two output ports at each cycle until t = b − 2.

• At t = b−1, all the 2+2k input ports and all the 6+2k operators are activated,
and there are 6 + 2k results generated. These 6 + 2k samples altogether are
forwarded to the 6 + 2k output ports at the same clock cycle. Then this batch
ends and the state machine returns to the first state to start accepting the
next batch.

2). The layer with k = b − 2 if b is even,:
• The input size should be 2b − 2 samples and the output size should be 2b

samples.
• The number of basic operators is a constant 2b including 2b − 4 Op1 operators

with a length of 5 samples and 4 Op2 operators with lengths of 1, 2, 3, or 4
samples.

• From t = 0 to t = b − 3, the input ports, operators and output ports all stay
idle.

• At t = b − 2, only two input ports are activated and the input samples are
stored in a register, while the outputs and the operators still stay idle.

1The symbol “⌊ ⌋” represents the floor operation.

69

7. Discussion and Future Work

• At t = b − 1, all the 2b − 2 inputs and all the 2b operators are activated, and
there are 2b results generated. These 2b samples altogether are forwarded to
the 2b output ports at the same clock cycle. Then this batch ends and the
state machine returns to the first state to start accepting the next batch.

3). The layer with k = b − 3 if b is odd:
• The input size should be 2b − 4 samples and the output size should be 2b

samples.
• The number of basic operators is a constant 2b including 2b − 4 Op1 operators

with a length of 5 samples and 4 Op2 operators with lengths of 1, 2, 3 or 4
samples.

• From t = 0 to t = b − 4, the input ports, operators and output ports all stay
idle.

• At t = b − 3 and t = b − 2, only two input ports are activated and the input
samples are stored in a register, while the outputs and the operators still stay
idle.

• At t = b − 1, all the 2b − 4 inputs and all the 2b operators are activated, and
there are 2b results generated. These 2b samples altogether are sent to the
2b output ports at the same clock cycle. Then this batch ends and the state
machine returns to the first state to start accepting the next batch.

4). The layers with k > b − 2 if b is even, or the layers with k > b − 3 if b is odd:
• The input size should be 2b samples and the output size should be 2b samples.
• The number of basic operators is a constant 2b including 2b − 4 Op1 operators

with a length of 5 samples and 4 Op2 operators with lengths of 1, 2, 3, or 4
samples.

• From t = 0 to t = b − 2, the input ports, operators and output ports all stay
idle.

• At t = b − 1, all the 2b inputs and all the 2b operators are activated, and there
are 2b results generated. These 2b samples altogether are sent to the 2b output
ports at the same clock cycle. Then this batch ends and the state machine
returns to the first state to start accepting the next batch.

7.1.4 Gradient Layer
This thesis work only implements the Gradient layers k = 0, 2 and 4. However, the
same hardware structure shown in Section 5.3.5 can still be applied to the Gradient
layers k > 4 if an equalizer with more than 3 layers will be designed in the future.
There are two different cases of the Gradient layer when k > 4 and the following
describes the procedure in each case:
1). The layers with 4 < k ≤ 2⌊ b−2

2 ⌋:
• The input size of x̄i, x̄q, ȳi, or ȳq should be fixed as 2b samples, and the input

size of xi, xq, yi, or yq should still be 2b + 4 samples.

70

7. Discussion and Future Work

• The number of multiplier-adders is 2k + 2.
• From t = 0 to t = k − 1, the input ports, operators and output ports all stay

idle.
• From t = k to t = b − 2, 4 input ports and 4 operators are activated while the

others all stay idle.
• At t = b − 1, all the 2k + 2 inputs and all the 2k + 2 multiplier-adders are

activated, and the results Hxx[d], Hyx[d], Hxy[d] and Hyy[d] are calculated.
Then this batch ends and the state machine returns to the first state to start
accepting the next batch.

2). The layers with k > 2⌊ b−2
2 ⌋:

• The input size of x̄i, x̄q, ȳi, or ȳq is 2k + 2 samples, and the input size of xi,
xq, yi, or yq is 2b + 4 samples.

• The number of multiplier-adders is fixed as 2b.
• From t = 0 to t = b − 2, the input ports, operators and output ports all stay

idle.
• At t = b − 1, all the 2b inputs and all the 2b multiplier-adders are activated,

and the results Hxx[d], Hyx[d], Hxy[d] and Hyy[d] are calculated. Then this
batch ends and the state machine returns to the first state to start accepting
the next batch.

7.2 Other Hyperparamters
This section discusses possible future work about all the system-level hyperparam-
eters apart from the batch size and the number of layers already discussed in Sec-
tion 7.1.

7.2.1 Wordlengths
In the experiments about fixed-point wordlengths in Section 6.4, we only focus on the
wordlengths 12, 14 and 16 bits for each item in {dat, ker, ang, wei, tap}. However,
this range falls on the plateau of the function of performance and the function of
convergence time, and the results turn out to be very close to each other. In future
work, tests on wordlengths below 12 should be carried out to further explorer the
relationship between wordlengths, performance and convergence time. The future
experiment can be divided into two steps. In the first step, we keep the wordlengths
the same for {dat, ker, ang, wei, tap} and decrease them from 11 to lower in 1-bit
steps. In the second step, all the 5 wordlengths in {dat, ker, ang, wei, tap} can be
varied independently in steps of 1 bit, and this variation can be done around a point
selected in the first step.

7.2.2 Learning Rate and Optimizer
In this thesis, a grid search is carried out on transmission power and batch size while
the learning rate is not varied at all. Therefore, the variation of learning rate can

71

7. Discussion and Future Work

be included in the experiments in future. In other words, transmission power, batch
size, number of layers and learning rate can all be varied independently to find the
optimal combination of these 4 parameters.
The fixed learning rate used in this thesis project is 32, as shown in Table 4.2,
which is larger than the commonly used learning rates in neural networks. This is
because the loss used in this thesis project is not normalized as shown in Eq. (4.4).
The calculation in the Loss BP layer shown in Eq. (4.7) is consequently also not
normalized. The reason for removing the normalization is to save hardware resource
utilization. As a result, a large learning rate is adopted to compensate for the
unnormalized loss. However, whether the above method has an impact on the
equalizer performance and converge speed is not studied in this thesis project. In
future work, normalization can be added to the Loss BP layer to thoroughly study
how normalization can affect the equalizer performance/convergence speed and how
it can impact hardware resource utilization.
The optimizer used in this thesis project is SGD which is very simple in terms of
computational complexity and hardware resource utilization. Other types of opti-
mizers may also be possibly used in future work, which may have an impact on both
the equalizer performance/convergence speed and the hardware resource utilization.
The type of optimizer can also be added to the grid search on hyperparameters.

7.2.3 RRC Filter
The RRC pulse-shaping filter used in the channel simulation in this thesis adopts a
roll-off factor of 0.1 and a total number of 51 RRC taps. The same parameters are
used for the MF FP layer and the MF BP layer in the equalizer accordingly. These
two parameters can have an impact on the performance and convergence speed of
the equalizer. It should also be noticed that the number of RRC taps can also
have an impact on the hardware resource utilization as discussed in Section 7.1.2.
Therefore, the roll-off factor and the numbers of RRC taps should be studied and
varied in future work. Possible variation of the roll-off factor and FIR filter taps can
also be added to the grid search on hyperparameters.

7.2.4 MIMO-FIR Filter
The number of taps in the MIMO-FIR filter used in this thesis is fixed as 5. A
MIMO-FIR filter with more taps can have better compensation of the DGD in the
PMD effect but also results in larger resource utilization. In future work, the number
of MIMO-FIR filter taps should be studied and varied to be added to the grid search
on hyperparameters.

7.3 Loss BP Layer
The VHDL implementation of the Loss BP layer in this thesis project is parameter-
ized as shown in Section 5.3.1. More specifically, different wordlengths and batch
sizes can result in different hardware implementation in Fig. 5.6, and VHDL Generics

72

7. Discussion and Future Work

are used to automatically decide the hardware implementation based on the batch
size and wordlengths. However, such VHDL Generics only support the batch size
16 ≤ b ≤ 22. Thus, future work is needed to expand the range of the batch size in
the VHDL Generics.
Moreover, the division approximated by right shifts can have an impact on both
the equalizer performance/convergence speed and the hardware resource utilization.
Generally, more shift right operators can have a better approximation of the division
but can result in more hardware resource utilization. Thus, the relationship between
the number of right shift operators and the equalizer performance/convergence speed
and hardware resource utilization should be studied in future work. Moreover, we
should also implement the division directly by DSPs in the future and compare its
resulting performance, convergence speed and hardware resource utilization to the
right shift solution.

7.4 Resource Utilization
Only one FGPA implementation is carried out in this thesis project. In other words,
the resource utilization of only one set of hyperparameters is tested on an FPGA.
Thus, future work should include the study of the relationship between different
hyperparameter values and FPGA resource utilization. The FPGA resource utiliza-
tion should be obtained for each set of the hyperparameters. Moreover, a trade-off
between resource utilization and equalizer performance/convergence speed should
also be taken into consideration in future work.

7.5 Evaluation Platform
This thesis project adopts a common research method of FPGA-based equalizers,
namely Matlab-VHDL co-simulation. In Matlab-VHDL co-simulation, the test sam-
ples are generated using Matlab simulation, sent to the VHDL simulation of the
equalizer, and finally sent back from the VHDL simulation to Matlab to process the
results. This conventional way requires a complex procedure, and the conversion
between the data types of matlab and those of VHDL should also be taken into con-
sideration. Usually, a large number of test samples are needed to test an equalizer’s
performance and convergence speed, which can cause long runtime in both Matlab
and VHDL simulation. Moreover, the time-varying PMD effect can bring further
challenges to the Matlab-based test data generation.
The work [37] provides VHDL code for FPGA-based emulation of optical fiber com-
munication systems, including pseudo random number generator, modulator, RRC
filter, AWGN generator, PMD emulator and demodulator. This work provides a
way to move the simulation of the transmitter and the PMD channel to hardware,
forming an FPGA-based PMD effect emulator. Moreover, another work [38] further
extends the PMD effect emulator in [37] by implementing and adding a Kerr Em-
ulator to the original FPGA-based PMD emulator, which is called an FPGA-based
PMD-Kerr effect emulator.

73

7. Discussion and Future Work

In future work, the PMD-Kerr emulator from [38] and the VHDL equalizer from this
thesis can be implemented together on the same FPGA, forming an entire evaluation
platform according to the Fiber-on-Chip approach [45]. For data recording and
analysis, a BER-based error counter and a data recorder proposed in [46] can be
further added to this evaluation platform. Moreover, the SNR calculation can also
be ported to FPGA in the future and we have already adopted an averaing window
of 4,096 in thesis to make the SNR on-board calculation feasible. This evaluation
platform does not need any Matlab-based test data generator since the test samples
are also generated on the same FPGA. The data after equalization are demodulated
and the errors are also counted on board. The computer is only used to receive
the error information from the FPGA and no calculations need to be performed on
the computer. Such an evaluation platform will drastically decrease the runtime of
testing an FPGA-based equalizer. Meanwhile, the performance of the FPGA-based
PMD-Kerr emulator, i.e., the accuracy of the PMD-Kerr effect emulation, should be
kept high enough to generate valid test data for the equalizer on the same FPGA.

74

8
Conclusion

In this thesis, an ML-based adaptive nonlinear equalizer is implemented on an
FPGA, and the equalizer can compensate for the PMD-Kerr effect in the fiber-
optical channel in real-time. The training of the equalizer is implemented on the
same FPGA and works in parallel with the inference, and thus the on-chip training is
realized. The on-chip training enables the equalizer to be adaptive to a time-varying
or transient PMD change.
In this thesis, we first evaluate the original equalizer model with only the FP and
simulate it in Tensorflow. Secondly, the BP model is deduced, and the equalizer
model with the BP manually implemented is simulated in Matlab. Then the Taylor
expansion is introduced into the BP, and we simulate the modified model again in
Matlab. Then a hardware model of the modified equalizer is proposed and imple-
mented as digital circuits using VHDL, and we use VHDL logic simulation to test
the VHDL equalizer. Finally, the VHDL equalizer is synthesized and implemented
on a Xilinx VC709 FPGA board.
Thorough experiments are carried out in this thesis to test the performance and con-
vergence speed of the VHDL equalizer. Results show that the VHDL equalizer has a
performance close to the theoretical upper limit of the original equalizer model and
a convergence time slightly longer than the original equalizer model. Experiment
results also show that the converged VHDL equalizer can retrain itself to reach con-
vergence again when a transient PMD change occurs. When the PMD effect in the
channel is time-varying, the VHDL equalizer remains stable until the varying speed
per each PMD rotation angle exceeds 1 × 105 rad/s in the same varying direction.

75

8. Conclusion

76

Bibliography

[1] J. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion
in optical fibers,” Proceedings of the National Academy of Sciences, vol. 97,
no. 9, pp. 4541–4550, 2000.

[2] R. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide,” Applied
Physics Letters, vol. 22, no. 6, pp. 294–296, 1973.

[3] A. Yang, X. Li, A. Xu, and D. Wu, “Combined impacts of group velocity dis-
persion, Kerr effect and polarization mode dispersion in optical fibers,” Optics
communications, vol. 214, no. 1-6, pp. 133–139, 2002.

[4] C. Menyuk and B. Marks, “Interaction of polarization mode dispersion and
nonlinearity in optical fiber transmission systems,” Journal of Lightwave Tech-
nology, vol. 24, no. 7, pp. 2806–2826, 2006.

[5] S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,”
IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 5, pp.
1164–1179, 2010.

[6] R. M. Bütler, C. Häger, H. D. Pfister, G. Liga, and A. Alvarado, “Model-Based
machine learning for joint digital backpropagation and PMD compensation,”
Journal of Lightwave Technology, vol. 39, no. 4, pp. 949–959, 2020.

[7] D. E. Crivelli, M. R. Hueda, H. S. Carrer, M. del Barco, R. R. López, P. Gianni,
J. Finochietto, N. Swenson, P. Voois, and O. E. Agazzi, “Architecture of a
single-chip 50 Gb/s DP-QPSK/BPSK transceiver with electronic dispersion
compensation for coherent optical channels,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 61, no. 4, pp. 1012–1025, 2014.

[8] H. F. Haunstein, K. Sticht, A. Dittrich, W. Sauer-Greff, and R. Urbansky,
“Design of near optimum electrical equalizers for optical transmission in the
presence of PMD,” in Optical Fiber Communication Conference and Interna-
tional Conference on Quantum Information, 2001, paper WAA4.

[9] L. E. Nelson, S. L. Woodward, S. Foo, X. Zhou, M. D. Feuer, D. Hanson,
D. McGhan, H. Sun, M. Moyer, M. O. Sullivan, and P. D. Magill, “Perfor-
mance of a 46-Gbps dual-polarization QPSK transceiver with real-time coher-
ent equalization over high PMD fiber,” J. Lightwave Technol., vol. 27, no. 3,
pp. 158–167, Feb. 2009.

[10] H. Sun, K.-T. Wu, and K. Roberts, “Real-Time measurements of a 40 Gb/s
coherent system,” Optics Express, vol. 16, no. 2, pp. 873–879, 2008.

77

Bibliography

[11] B. C. Thomsen, R. Maher, D. S. Millar, and S. J. Savory, “Burst mode receiver
for 112 Gb/s DP-QPSK with parallel DSP,” Optics Express, vol. 19, no. 26,
pp. B770–B776, 2011.

[12] T. Tanimura, Y. Aoki, H. Nakashima, T. Hoshida, J. Li, Z. Tao, and J. C. Ras-
mussen, “FPGA-Based 112Gb/s coherent DP-QPSK receiver and multi-stage
PMD-PDL emulator for fast evaluation of digital signal processing algorithms,”
in 36th European Conference and Exhibition on Optical Communication, 2010,
paper Tu.S.A.3.

[13] E. Dutisseuil, J.-M. Tanguy, A. Voicila, J. Renaudier, and G. Charlet, “21
Gb/s polarization switched-QPSK real-time coherent FPGA-based receiver,” in
2013 Optical Fiber Communication Conference and Exposition and the National
Fiber Optic Engineers Conference (OFC/NFOEC), 2013, paper OW1E.2.

[14] N. Kaneda and A. Leven, “Coherent polarization-division-multiplexed QPSK
receiver with fractionally spaced CMA for PMD compensation,” IEEE Photon-
ics technology letters, vol. 21, no. 4, pp. 203–205, 2008.

[15] E. Dutisseuil, J.-M. Tanguy, A. Voicila, R. Laube, F. Bore, H. Takeugming,
F. de Dinechin, F. Cérou, and G. Charlet, “34 Gb/s PDM-QPSK coherent
receiver using SiGe ADCs and a single FPGA for digital signal processing,” in
Optical Fiber Communication Conference, 2012, paper OM3H–7.

[16] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and
M. Tornatore, “An overview on application of machine learning techniques in
optical networks,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2,
pp. 1383–1408, 2018.

[17] E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impair-
ments using digital backpropagation,” Journal of Lightwave Technology, vol. 26,
no. 20, pp. 3416–3425, 2008.

[18] D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D.
Ellis, “Compensation of intra-channel nonlinear fibre impairments using sim-
plified digital back-propagation algorithm,” Optics Express, vol. 19, no. 10, pp.
9453–9460, 2011.

[19] T. S. R. Shen and A. P. T. Lau, “Fiber nonlinearity compensation using ex-
treme learning machine for DSP-based coherent communication systems,” in
16th Opto-Electronics and Communications Conference, 2011, pp. 816–817.

[20] M. A. Jarajreh, E. Giacoumidis, I. Aldaya, S. T. Le, A. Tsokanos, Z. Ghas-
semlooy, and N. J. Doran, “Artificial neural network nonlinear equalizer for
coherent optical OFDM,” IEEE Photonics Technology Letters, vol. 27, no. 4,
pp. 387–390, 2014.

[21] S. Gaiarin, X. Pang, O. Ozolins, R. T. Jones, E. P. Da Silva, R. Schatz, U. West-
ergren, S. Popov, G. Jacobsen, and D. Zibar, “High speed PAM-8 optical in-
terconnects with digital equalization based on neural network,” in Asia Com-
munications and Photonics Conference, 2016, paper AS1C–1.

[22] S. T. Ahmad and K. P. Kumar, “Radial basis function neural network nonlinear
equalizer for 16-QAM coherent optical OFDM,” IEEE Photonics Technology
Letters, vol. 28, no. 22, pp. 2507–2510, 2016.

78

Bibliography

[23] C. Fougstedt, C. Häger, L. Svensson, H. D. Pfister, and P. Larsson-Edefors,
“ASIC implementation of time-domain digital backpropagation with deep-
learned chromatic dispersion filters,” in 2018 European Conference on Optical
Communication (ECOC), 2018, pp. 1–3.

[24] S. M. Ranzini, V. E. Parahyba, T. Vilela, E. O. Schneider, J. B. Tardelli, J. C.
Oliveira, E. P. Lopes, T. C. Lima, J. D. Reis, J. R. Oliveira et al., “Digital
back-propagation ASIC design for high-speed coherent optical system,” in 2015
SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference
(IMOC), 2015, pp. 1–5.

[25] L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen,
“Nonlinear polarization crosstalk canceller for dual-polarization digital coherent
receivers,” in Optical Fiber Communication Conference, 2010, paper OWE3.

[26] E. Giacoumidis, Y. Lin, M. Blott, and L. P. Barry, “Real-Time machine learn-
ing based fiber-induced nonlinearity compensation in energy-efficient coherent
optical networks,” APL Photonics, vol. 5, no. 4, pp. 041 301–1–041 303–5, 2020.

[27] N. Kaneda, Z. Zhu, C.-Y. Chuang, A. Mahadevan, B. Farah, K. Bergman,
D. Van Veen, and V. Houtsma, “FPGA implementation of deep neural net-
work based equalizers for high-speed PON,” in Optical Fiber Communication
Conference, 2020, paper T4D–2.

[28] M. Li, W. Zhang, Q. Chen, and Z. He, “High-Throughput hardware deployment
of pruned neural network based nonlinear equalization for 100-Gbps short-reach
optical interconnect,” Optics Letters, vol. 46, no. 19, pp. 4980–4983, 2021.

[29] D. A. Ron, P. J. Freire, J. E. Prilepsky, M. Kamalian-Kopae, A. Napoli, and
S. K. Turitsyn, “Experimental implementation of a neural network optical chan-
nel equalizer in restricted hardware using pruning and quantization,” Scientific
Reports, vol. 12, no. 1, pp. 1–14, 2022.

[30] S. B. Amado, F. P. Guiomar, N. J. Muga, and A. N. Pinto, “Assessment of
nonlinear equalization algorithms for coherent optical transmission systems us-
ing an FPGA,” in 2015 17th International Conference on Transparent Optical
Networks (ICTON), 2015, paper Mo.C1.4.

[31] W. J. Dally, W. J. Dally, and J. W. Poulton, Digital systems engineering.
Cambridge University Press, 1998.

[32] M. Joost, “Theory of root-raised cosine filter,” Dec. 2010. [Online]. Available:
http://www.michael-joost.de/rrcfilter.pdf

[33] P.-K. A. Wai, C. R. Menyuk, and H. H. Chen, “Stability of solitons in randomly
varying birefringent fibers,” Optics Letters, vol. 16, no. 16, pp. 1231–1233, 1991.

[34] O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the
split-step Fourier method in modeling optical-fiber communications systems,”
Journal of Lightwave Technology, vol. 21, no. 1, pp. 61–68, 2003.

[35] D. Saad, On-line learning in neural networks. Cambridge University Press,
1999.

79

http://www.michael-joost.de/rrcfilter.pdf

Bibliography

[36] V. Valimaki and T. Laakso, “Principles of fractional delay filters,” in Proceed-
ings of 2000 IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 6, 2000, pp. 3870–3873.

[37] H. Kan, H. Zhou, E. Börjeson, M. Karlsson, and P. Larsson-Edefors, “Dig-
ital emulation of time-varying PMD for real-time DSP evaluations,” in Asia
Communications and Photonics Conf., Oct. 2021, paper M4H.4.

[38] K. Liu, E. Börjeson, C. Häger, and P. Larsson-Edefors, “FPGA-Based optical
Kerr effect emulator,” in Signal Processing in Photonic Communications, Jul.
2022, paper SpTh1I–2.

[39] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-Scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[40] C. B. Czegledi, Modeling and compensation of polarization effects in fiber-optic
communication systems. Chalmers Tekniska Högskola (Sweden), 2018.

[41] G. Liga, C. B. Czegledi, and P. Bayvel, “A PMD-adaptive DBP receiver based
on SNR optimization,” in Optical Fiber Communication Conference, 2018, pa-
per W2A–53.

[42] C. Fougstedt, M. Mazur, L. Svensson, H. Eliasson, M. Karlsson, and P. Larsson-
Edefors, “Time-Domain digital back propagation: Algorithm and finite-
precision implementation aspects,” in Optical Fiber Communications Confer-
ence and Exhibition (OFC), 2017, paper W1G.4.

[43] C. Fougstedt, L. Svensson, M. Mazur, M. Karlsson, and P. Larsson-Edefors,
“ASIC implementation of time-domain digital back propagation for coherent
receivers,” IEEE Photonics Technology Letters, vol. 30, no. 13, pp. 1179–1182,
2018.

[44] D. E. Crivelli, H. Carter, and M. R. Hueda, “Adaptive digital equalization
in the presence of chromatic dispersion, pmd, and phase noise in coherent
fiber optic systems,” in IEEE Global Telecommunications Conference, 2004.
GLOBECOM’04., vol. 4, 2004, pp. 2545–2551.

[45] E. Börjeson and P. Larsson-Edefors, “Fiber-on-Chip: Digital emulation of chan-
nel impairments for real-time DSP evaluation,” Journal of Lightwave Technol-
ogy, 2022.

[46] E. Börjeson, C. Fougstedt, and P. Larsson-Edefors, “Towards FPGA emulation
of fiber-optic channels for deep-BER evaluation of DSP implementations,” in
Signal Processing in Photonic Communications, 2019, paper SpTh1E–4.

80

https://www.tensorflow.org/

	Acronyms
	Introduction
	Related Work
	Thesis Contributions
	Thesis Outline

	Technical Background
	Fiber-Optical Communication System
	Transmitter
	Digital Modulation Formats
	Up-Sampling and Pulse Shaping

	Channel
	SSFM Based Manakov-PMD Model
	Simplified PMD-Kerr Model

	Equalizer
	Deep Learning
	Artificial Neural Network
	Batch-Based Training

	Model-Based Neural Network
	Lagrange Fractional Delay Filter
	MIMO System
	MIMO-FIR Filter
	Kerr Model Activation Function
	Matched Filter Linear Layer

	Supporting Works
	FPGA-Based PMD Effect Emulator
	FPGA-Based Optical Kerr Effect Emulator

	Methods
	Equalizer Design and Python Simulation
	Matlab Simulation
	Model Modification and Matlab Simulation
	VHDL-Matlab Co-Simulation
	FPGA Implementation

	Equalizer Model and Software Simulation
	Transmitter-Channel Setup and Simulation
	Forward Propagation Model and Tensorflow Simulation
	Backward Propagation Model and Matlab Simulation
	Modified Equalizer Model and Matlab Simulation

	Hardware Implementation
	Batch-based Forward Propagation and Backward Propagation
	Forward Propagation
	Linear FP Layer
	Kerr FP Layer
	MF FP Layer

	Backward Propagation
	Loss BP Layer
	Calculation
	Hardware Implementation

	MF BP layer
	Calculation
	Basic Operators
	State Machine

	Linear BP Layer
	Calculation
	Basic Operators
	State Machine

	Kerr BP Layer
	Hardware Implementation

	Gradient Layer
	Calculation
	Basic Operators
	State Machine

	Weight Update Block
	Hardware Implementation
	Weight Update Pattern

	Experiments and Results
	Metrics
	Model Verification
	Batch Size and Transmission Power in Software Equalizers
	Wordlengths in VHDL Hardware
	Batch Size and Transmission Power in VHDL Equalizer
	Software Equalizer and Hardware Equalizer Comparison
	Instantaneous PMD Change
	Time Varying Channel
	FPGA Implementation

	Discussion and Future Work
	Batch Size and Number of Layers
	Hardware System Structure
	MF BP Layer
	Linear BP Layer
	Gradient Layer

	Other Hyperparamters
	Wordlengths
	Learning Rate and Optimizer
	RRC Filter
	MIMO-FIR Filter

	Loss BP Layer
	Resource Utilization
	Evaluation Platform

	Conclusion
	Bibliography

