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Abstract
Developing products based on machine learning algorithms require relevant and
accurate datasets. In particular when it comes to supervised learning algorithms
whose performance is directly related to the quality and amount of training data.
Within the field of computer vision, classification is a task that require training data
in the form of annotated images. Annotating images is a manual task and I propose
that the annotation difficulty of an image should be interpreted as the likelihood
of someone else annotating an image differently. Knowing in advance which images
are hard to annotate would facilitate the distribution of work between annotators
with varying experience. In this thesis, it is shown that the uncertainty derived from
Monte Carlo dropout resembles the variance of a group of persons annotations of the
same image. This finding indicates that the level of agreement between persons can
be predicted, and thus enable for better distribution of work between annotators.
Furthermore, the finding could also be used to order images during training by
prioritizing harder images higher.

Keywords: Annotations, Deep learning, Convolutional neural networks, Annotation
difficulty, Monte Carlo dropout.
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1
Introduction

The number of fields in which machine learning algorithms have been implemented
has increased in recent years. Along with the decreasing cost of computing power,
lots of products based on supervised learning algorithms have become feasible. A
prerequisite for supervised learning algorithms is however the access to quality train-
ing data, which has become the bottleneck of creating reliable products.

Depending on the purpose of the product, different kinds of training data are needed.
In this project, the purpose of the products will be image recognition which means
that the training data will consist of annotated images. Annotated images are
in practice produced by marking objects in images with corresponding labels that
specify what kind of objects they are. This process is manual and hundreds of thou-
sands annotated images are often needed, explaining why it can be the bottleneck
in a product development process. The fact that it is a matter of large volumes of
manual work indicates that there is room for a lot of optimizing in the annotation
process. If the difficulty of annotating an image is known before it is manually as-
sessed would mean that easy images could be given to less experienced annotators,
and hard images to more experienced annotators. Annotation difficulty is what will
be focused on in this thesis, especially how the difficulty of annotating an image can
be predicted without manual assessment.

1.1 Background

The lack of consistent training data was the spark that led to the founding of the
company Annotell, which has made providing reliable and consistent training data
its business. The company has created an annotation platform which their employ-
ees use to annotate images. Annotell is developing policies to assign annotation
tasks to the most appropriate person. For example hard images should be given to
experienced annotators. If the difficulty of annotating an image would be known
before an image has been manually assessed, the images can be better distributed
with respect to difficulty of the image and experience of the annotator.
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1. Introduction

1.2 Aim

The project aims to investigate the possibility of predicting the annotation difficulty
before an image has been assessed manually.

1.3 Limitations

Due to the time limit, the project will be subject to some limitations as follows:

• The model shall be thought of as a prototype and the aim is not to implement
it into Annotell’s annotation platform.

• The model will only predict the annotation difficulty of single class semantic
segmentation.

1.4 Problem formulation

The project aims to answer the following questions

• What does it mean that an image is difficult to annotate?

• How do you predict the difficulty of annotating an image?

2



2
Theory

This chapter will cover basic neural networks, why annotations are needed and more
advanced neural networks that can be used to predict the annotation difficulty.

2.1 The annotation process

To ensure annotations are of high quality, annotations are done in three steps;
annotation, review and correction. An annotation can be either accepted or rejected
in the review step - if it’s accepted it is finished, and if it’s rejected, it goes to
correction.

Figure 2.1: The iterative annotation process. If the reviewer does not approve the
annotation, it is sent in a correction-review loop until it is passed by the reviewer.

2.1.1 Annotation difficulty

Annotations are performed by humans and what humans perceive as difficult varies
from person to person. In other words, the difficulty of a task is a subjective measure.

I define difficulty as proportional to the probability that a group of people provide
the same annotation for a specific image. The harder an image is to annotate, the
less likely a group of people are to provide the same annotation.

3



2. Theory

In other words, a task is assumed to be easy if a large amount of people give the
same answer to it, and hard if the variance among the answers is large.

To put this in context of image annotations, a hard image to annotate is recognized
as one with large variances in annotations. For example, if 10 annotators are asked
to annotate an image by classifying which pixels contains the class road and which
pixels that doesn’t. If a single pixel is classified as road by 5 of the annotators and
as not road by the remaining 5 annotators, then it exists an large ambiguity about
that pixel and it would be interpreted as hard in this thesis.

This is quantified by calculating the variance V at position (x, y) of the annotation
A by annotator n as

V (x, y) = 1
N − 1

N∑
n=1
|A(n, x, y)− µ(x, y)|2 (2.1)

where µ(x, y) is the average annotation of pixel (x, y).

The annotation difficulty of an image is then measured as

W∑
x=1

H∑
y=1

V (x, y) (2.2)

where H and W is the width and height of the image. In other words, summing the
variances for all pixels.

Note that all pixels are weighted equally, meaning that a corner pixel can add equally
to the difficulty as a pixel in the middle of the image.

2.2 Artificial neural networks

The current state of the art-methods for semantic segmentation is based on artificial
neural networks, inspired by the way the brain operates.

The goal of a simple artificial neural network with multiple inputs and a single
output is to approximate some function f so that it maps the input vector x to the
desired output category y. Such a neural network can be seen in figure 2.2.

4



2. Theory

x1
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Input
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φ
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Figure 2.2: A simple neural network with input x, output y, weights w, threshold
b and activation function φ.

The output in the example is calculated as

y = φ

( 4∑
i=1

wixi + b

)
(2.3)

where φ is the activation function, wi is the weights, xi is the inputs, b is a threshold
and y is the output.

To make the neural network map the input to the desired output, the weights are
updated until the output is close enough to the desired output. A cost function is
defined to measure how well the output matches the desired output.

2.2.1 Cost function

The purpose of the cost function is to quantify the difference between the output
and the desired output. A common cost function for image segmentation is the cross
entropy function

H(y,y′) = −
∑

i

yilog(y′i) (2.4)

where y is the desired output and y′ is the actual output. Large deviations between
y and y′ generate large values, which means that a poor output is punished with a
high cost.

The ambition is to make the cost function as small as possible, so to make the output
match the desired output, the cost function is minimized.

2.2.2 Optimization algorithms

The weights and threshold in figure 2.2 are the parameters to adjust so that the
cost function reaches its minima. Attempting to solve this minimization problem

5



2. Theory

analytically quickly becomes unfeasible since it is a non-linear problem due to the
presence of non-linear activation functions. Instead, iterative methods are used.

For artificial neural networks, gradient descent is the most fundamental algorithm.
It works as follows

1. Calculate the gradient of the cost function, with respect to the current signif-
icant parameter, for example the weights

G = ∂H
∂w

(2.5)

2. Update the weights according to

w ← w − η
N∑
j

Gj (2.6)

where η is the learning rate, which needs to be set to a good level, and N is
the number of training examples. If the learning rate is too small, it will take
the network too long time to converge and if it is too big, the network might
miss minima since it "jumps" in the direction of the gradient.

However, equation (2.6) becomes very computationally heavy when the number of
training examples are large. So instead, stochastic gradient descent is generally pre-
ferred. The stochasticity refers to the fact that all training examples not are included
when calculating the weight update, as in equation (2.6). Instead, a batch of training
examples are randomly selected from which the weight updates are calculated [1].

This introduces two parameters required to be set to some value, the learning rate η
and the batch size. These two are included in the family of hyperparameters that are
required to be specified prior to training a neural network. The hyperparameters are
usually required to be adjusted gradually in the beginning of a training procedure,
to find a combination that works well given the current task and computing power
limitations.

Stochastic gradient descent can be further extended with additional hyperparame-
ters such as momentum and weight decay. Momentum refers to maintaining a small
part of a weight update to the next iteration, so that the update direction is cal-
culated using not only the current gradient, but also using a part of the previous
gradient. The momentum parameters refers to how much the previous gradient
should impact the weight update.

Weight decay is a method that limits the freedom of the model’s learning by penal-
izing large weights. By adding weight decay, equation (2.6) changes to

w ← w − η
N∑
i

Gi − ληw (2.7)

where λ is the weight decay parameter.
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2. Theory

A further extension of stochastic gradient descent is the optimizer Adam. With
Adam, the learning rate is individually estimated based on the first and second
moments of the gradients [2]. Adam has proven to be superior of stochastic gradient
descent, especially when it comes to time to convergence [3].

2.2.3 Activation function

As mentioned in equation (2.3), an activation function can be used in the output
layer of a neural network. The reason for having an activation function there is to
map the neural network output to possible answers of a problem. For example if the
network is to define what pixels of an image are road and which pixels are not road.
Then a suiting activation function would be one that maps the network output to
either 1 (road), 0 (not road) or something in between. The sigmoid function is an
example of such a function,

S(x) = 1
1 + e−x

∈ (0, 1) (2.8)

where x is the network output and the resulting S ranges from 0 to 1.

Another common and useful activation function is the rectified linear unit (ReLU)
which is defined as

f(x) = max(0, x) (2.9)

where x is the input. As can be understood from the equation, it simply removes
all negative values by setting them to zero. The reason behind using the ReLU
activation function is that its gradient is always 0 or 1, in contrary to the sigmoid
activation function where the gradient goes to zero for large values. In the context
of neural networks, a gradient that goes to zero means that the learning process
slows down, or even stops, which is preferably avoided.

2.3 Convolutional neural networks

Images can be broken down into parts. They are made up of motifs which in turn
are made up of scenes, which are made up of objects, which are made up of parts,
which are made up of edges and so on until the smallest level are reached - pixels.
A good way of interpreting images would be to have different stages of recognition,
relating to the stages that an image is broken down into. This is what is achieved
in convolutional neural networks and is the reason why they are commonly used in
image classification tasks. The thing that enables this has given the convolutional
neural networks its name - the convolution operator. The process of interpreting
different stages of an image is referred to as feature extraction, where features can be
everything from a sharp edge, sized no bigger than a few pixels, to a car. Convolution
is also suiting for feature extraction thanks to it being a translational invariant

7



2. Theory

operation. This means that it can recognize a feature independent of the feature’s
position in an image [4, 5].

Convolution

Convolution works by sliding a filter across an image and multiplicating the filter
with the values currently being covered by the filter and then adding the resulting
terms together. The operation is displayed graphically in figure 2.3. To control the
size of the output, zero values are added around the input. This technique is called
padding. A larger filter calls for more padding, if the size of the image is meant to
be preserved.

Figure 2.3: Convolution example. The operation displayed in the figure is per-
formed across the whole input matrix, so that all cells in the right matrix is filled.
In this example, padding is also added to the input, so that the output preserves
the input size.

Typically in a convolutional neural network, many filters such as the one in figure
2.3 are used in the convolutional layer, which means that the number of output
channels from a convolutional layer is bigger than the number of input channels.

The values of the filters (a 3×3 filter is shown in figure 2.3) are the parameters that
are updated when training a convolutional neural network.

Pooling

Pooling is a form of non-linear down-sampling that can be done using different
functions. The most common function used to perform pooling is max pooling,
demonstrated graphically in figure 2.4. In the case of max pooling, a layer is split
up into non-overlapping sub-regions, where the maximum value is extracted from
each sub-region. While convolution increases the number of channels, the number
of channels stays the same after pooling but the size of each channel is reduced [6].

8



2. Theory

Figure 2.4: How max pooling is performed. A layer is split up into smaller sub-
regions that do not overlap and the maximum value of each region is extracted.

Transposed convolution

As seen in figure 2.4, pooling reduces the size of each image. This means that
some kind of upsampling is needed to bring the images back to their original size.
Instead of using regular upsampling methods such as bilinear interpolation, trans-
posed convolution is used since it comes with the advantage of containing trainable
parameters. It works similarly to a regular convolution but as can be seen in figure
2.5, it adds extra padding to the input and also calculates output with the filter
centered outside the input matrix.

Figure 2.5: Example of a transposed convolution for upsampling. As with convo-
lution, the filter is moved across the whole input matrix and the whole right matrix
is filled with numbers. In this example, the transposed convolution changes the
dimension of the input from 5×5 to 7×7.

Dropout

A common problem when training neural networks is overfitting, which means that
the network learns the training data too well and thus will perform badly on vali-
dation data. To avoid this, dropout can be applied, meaning that the output from
neurons in specific layers will be discarded with a dropout probability p.

9



2. Theory

2.3.1 Architecture

A convolutional neural network can often be split up into two parts, an encoder that
performs downsampling and a decoder that performs upsampling. The idea with the
encoding is to extract different inherent features of the input. By performing con-
volution with a larger number of output channels than input channels, the encoder
produces multiple feature maps that represent different characteristics of the im-
age. Each layer of the encoder usually consists of concatenations of convolutions
and max pooling. The convolutions produce an arbitrary amount of channels, each
channel is produced by a single convolving filter. More output channels in a layer in
other words come with more parameters to be trained, which relates to complexity
and training time of the network. Max pooling reduces the dimensionality, extract-
ing only the sharpest details of sub-regions, which enhances the feature extraction
performed by the convolution [7].

The decoder part of a network is the natural opposite to the encoder. By transposed
convolution or other upsampling methods, all features extracted by the encoder are
taken into consideration and an output is produced. The output is then through
some activation function mapped to an, in the case of an input image, pixel-wise
prediction.

Different types of architectures perform well on different problems and for the task
of semantic segmentation, fully convolutional neural networks have proven to be
reliable [8]. It is not the current best performing according to the Pascal Visual
Objects Challenge leaderboard for semantic segmentation [9], but since the perfor-
mance of the neural network not is crucial in this thesis, it is a convenient thanks
to its relatively simple implementation.

Fully convolutional network

The Fully Convolutional Network (FCN) was proposed in a paper in 2015 [8] and
the idea is to make maximal use of the powerful convolution operator, both in the
downsampling and upsampling part of the network. Three different variants of a
fully convolutional network is proposed by Long, Shelhamer and Darrel; FCN-32,
FCN-16 and FCN-8.

FCN-8 is the one that performs best, according to the authors. The architecture
FCN-32 is presented in Figure 2.6, which also is the base for FCN-16 and FCN-
8. In FCN-16, the architecture is identical to FCN-32, but with the predictions
(upsampled via transposed convolution) from layer 4 is added to the final output.
In FCN-8, both the predictions from layer 3 and 4 are added to the final output. By
adding the predictions from earlier layers, the network can produce output of finer
detail [8].
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2. Theory

Figure 2.6: FCN-32 architecture. The architecture FCN-8 is the same as FCN-
32 with the only difference being that the predictions (upsampled via transposed
convolution) from layer 3 and 4 are added to the final output.
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2.4 Model uncertainty

The output of a semantic segmentation neural network with a sigmoid activation
function is a matrix of the same size as the input image with values between 0
and 1. It is easy to interpret this as a probability, that the higher the value, the
more probable it is that it is actually road and not background. With a perfectly
calibrated network, this could be the case. However, such a network is not plausible
in practice.

Think of a prediction of 0.5. Instinctively, it should mean that the network is
absolutely clueless whether the pixel is road or background, which is a correct ob-
servation. But what if the same image was processed again by the same network,
and the output of that same specific pixel is now 0.4? This would also point to
some other kind of uncertainty - how then should the total uncertainty of the model
be quantified? It should be noted that neural network predictions in general are
deterministic and can not produce a different output if fed with the same image
multiple times. This is achieved through Monte Carlo dropout, described in section
2.4.3.

These two types of uncertainty are categorized as aleatoric and epistemic uncer-
tainty.

2.4.1 Aleatoric uncertainty

Aleatoric uncertainty is the type of uncertainty that is impossible to foresee and
therefore is unavoidable [10]. For example a coin toss, the probability of getting
heads is 0.5. No matter how many times the coin is tossed, the probability will still
be 0.5 of getting heads. This is an example of an purely aleatoric uncertainty [11].

The neural network predictions being between 0 and 1 is the aleatoric uncertainty
in this context - a prediction close to 0.5 has high aleatoric uncertainty.

The predictions are 1 (road) with a probability p ∈ (0, 1), making it a Bernoulli
variable for which the variance is

Var(p) = p(1− p). (2.10)

The Bernoulli variance is used to quantify the aleatoric uncertainty.

2.4.2 Epistemic uncertainty

Generally, the epistemic uncertainty is the type of uncertainty that can be predicted
and reduced by refining a model or expanding a dataset.
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For example a bag of poker chips. Assume that it is known that there are black
and red poker chips in the bag, but the proportions of red and black are not known.
When pulling out the first chip, the probability is 0.5 of getting a red chip since
the distribution between red and black chips are unknown. Assume that the first
chip turns out to be red, and after drawing another 9 chips, it turns out that 7 out
of 10 are red. This indicates that there are more red chips than black chips in the
bag. It also means that the epistemic uncertainty has decreased with the increasing
knowledge of the contents of the bag. In clear, with more knowledge comes a smaller
epistemic uncertainty. When all poker chips are drawn, the share of red and black
poker chips are known and the epistemic uncertainty is zero.

In the context of this thesis, the epistemic uncertainty refers to the fact that a
network can give different predictions of the same input image only due to the
presence of active dropout during inference [10, 11].

2.4.3 Monte Carlo dropout

Normally, neural networks are deterministic. This means that they will return the
same answer if asked several times. Unfortunately, this behaviour does not give any
information concerning uncertainty.

Approximating the uncertainty of deep learning models is a relatively new field where
Monte Carlo dropout has gained a lot of attention [12]. It uses dropout, which is
often already implemented in neural networks to mitigate overfitting, to approximate
the epistemic model uncertainty. By having dropout activated during inference and
performing inference multiple times, random predictions are generated which can be
interpreted as samples from a probabilistic distribution [12]. The network is then
not deterministic anymore, it is instead probabilistic. Meaning that it will produce
different results each time the same image is fed to it.

Gal and Ghahramani name this approach Monte Carlo dropout and show its validity
in [12] when having dropout applied at each weight layer. In [13], Gal shows through
examples that it is possible to have dropout applied at only a subset of weight layers
and still get a measure of uncertainty. This means that Monte Carlo dropout can
be used to estimate uncertainty of already existing network architectures that have
dropout implemented. One example of such a network architecture is the fully
convolutional network FCN-8 which is the architecture used in this thesis. The
architecture FCN-8 is explained in detail in section 2.3.1.
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3
Method and Data

In this chapter, the methods of the two parts of the project is presented first, followed
by an explanation of the data used.

The project was written in Python and the neural networks were implemented using
the package PyTorch [14]. An implementation of FCN-8 in PyTorch by Kentaro
Wada1 was used as a starting point for the project.

The training of the neural networks was executed using a Google-powered virtual
machine provided by Annotell. The GPU used was a Nvidia Tesla P100 along with
32 GB RAM. With this setup, along with Nvidias parallel computing platform Cuda,
a training session as described below, with 50000 iterations, took around 24 hours.

3.1 Multiple network model

The idea behind using multiple networks was to simulate the behaviour of an an-
notator. This was achieved by training multiple networks on different data. The
networks were all of the same architecture and a network was only trained on anno-
tation data created by a single person to make the networks represent one annotator
each. This way, each network would capture underlying behaviour of the different
annotators.

A total number of 10 models were each trained for 50000 iterations. The number
50000 were used based on training a network with the same configuration for 100000
iterations and evaluating where the network reached a acceptable loss. Each model
was only trained on data annotated by a single annotator, so that each model would
represent an annotator.

By feeding the same image to each of the trained networks, a number of output
values for each pixel were created, as visualized in figure 3.1.

1https://github.com/wkentaro/pytorch-fcn
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Figure 3.1: Overview of how the mean and variance were calculated using the
multiple networks trained on different data.

At the output layer of each network, a sigmoid activation function were applied,
which put the output pixel values in the range from 0 to 1. This method resulted
in 10 different values between 0 and 1 for every pixel in each image. As seen
in figure 3.1, the mean and variance of these values were calculated. The mean
and variance are used in section 3.3 to quantify the aleatoric and the epistemic
uncertainty respectively.

3.2 Monte Carlo dropout model

For dataset A, the network aimed to perform Monte Carlo dropout was trained us-
ing the same network architecture and parameter configuration as in the previous
section, but with annotations from all annotators. All parameters were set to the
same values. The only difference in the training was that this time, it was trained
for 100000 iterations and trained on more data. Since it did not matter who an-
notated the data, the model could be trained using all available data. But due to
computational limitations, the number of training images to be loaded simultane-
ously was limited to around 5000-6000 (out of 15000 totally). Roughly 5500 images
were therefore randomly selected as training data from the dataset.

The same network architecture and configuration were used for training with the
data from dataset B. However, only around 800 images were available for training,
which limited the training since overfitting started occuring after around 70000
iterations (indicated by increasing validation error). Therefore, training was stopped
after 60000 iterations.

Monte Carlo dropout was performed with 1000 iterations. Each time, the output
pixel values varied due to the presence of dropout in the network which gave rise to a
distribution for each pixel. These distributions are used to provide information about
the epistemic uncertainty of the model. If a distribution is wide (large variance) the
epistemic uncertainty is large for that specific pixel. See figure 3.2 for an overview
of how the mean and variance were created using Monte Carlo dropout.
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Figure 3.2: Overview of how the mean and variance are calculated with the model
using Monte Carlo dropout.

3.3 Annotation difficulty

In this section, it is described how the predictions in section 3.1 and 3.2 were used
to calculate a level of annotation difficulty for an image.

In addition to the epistemic uncertainty which is measured through the variance
of the predictions, the mean of the predictions were used to quantify the aleatoric
uncertainty of each image. Since each pixel output is 1 (road) with probability
p1 ∈ (0, 1), the prediction y′ is a Bernoulli variable with parameter p1. The variance
is consequently

Var(p1) = p1(1− p1). (3.1)

Call the prediction for pixel (x, y) by network/iteration n (network for multiple
network model and iteration for Monte Carlo dropout model) P (n, x, y).

The epistemic uncertainty Ue for each pixel was then estimated by calculating the
pixel-wise variance,

Ue(x, y) = 1
N − 1

N∑
n=1
|P (n, x, y)− µ(x, y)|2 (3.2)

where µ(x, y) is the mean prediction for a pixel and N is the number of networks
for the multiple network model and the times an image was fed to the network for
the Monte Carlo dropout model.

With the Bernoulli variance Var(x), the aleatoric uncertainty Ua was calculated as

Ua(x, y) = Var(µ(x, y)). (3.3)

Since the difficulty of an whole image is of interest, a summation over all pixels was
done for both the epistemic,

Se =
W∑

x=1

H∑
y=1

Ue(x, y) (3.4)
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and the aleatoric uncertainty:

Sa =
W∑

x=1

H∑
y=1

Ua(x, y). (3.5)

A complete measure of difficulty for an image could then be a created by adding
together Se and Sa. Unfortunately, this calls for some scaling. The scaling factors
Ce and Ce was derived by calculating the mean Se and mean Sa for 100 images.

Consequently, the difficulty of an image could be computed by combining the aleatoric
and epistemic uncertainty:

D = Se

Ce

+ Sa

Ca

. (3.6)

The classic way of evaluating a prediction is by comparing it to some kind of ground
truth. The ground truth in this case would be images annotated by multiple annota-
tors, which would give rise to a real variance of annotations that could be compared
to the predicted variances and difficulties.

For dataset A, such data was unfortunately not available. For dataset B however,
8 annotators were asked to annotate the same 100 images to create a ground truth
to compare with.

Using the Monte Carlo dropout model, annotation difficulties were predicted for
these 100 images. The method for calculating prediction difficulties described in
section 3.3 were applied also to the ground truth variances to produce a ground
truth annotation difficulty for each image. To evaluate the performance of the
model, the correlation between the predicted annotation difficulties and the ground
truth annotation difficulties were measured.

3.4 Data description

Two different datasets were used in the project. The first dataset will be referenced
as dataset A and the second dataset B. The advantage of dataset A was that it
contained a lot of data, 15000 annotated images, all taken while driving on a highway.
The downside was however that it lacked a relevant and accurate ground truth to
evaluate the predicted difficulties.

Dataset B on the other hand, contained 100 images annotated by 8 annotators each
which means that the predicted difficulties could be evaluated in a quantitative
fashion. Unfortunately, dataset B only contained 800 images in total. Another
downside is that the images, unlike the images in dataset A, were taken in a lot of
different settings and not only on a highway, which lowered the performance of the
trained network.
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Figure 3.3: Birds view of a car in a car lane. The arrows represent the six camera
views from where the images in dataset A were taken.

Figure 3.4: Example of an image from dataset A along with the corresponding
bitmap. White pixels in the bitmap represent parts of the road that belong to the
own vehicle lane. This image is taken from the rear of the vehicle, opposite of the
driving direction.

3.4.1 Dataset A

Dataset A consisted of images taken with cameras attached to a car. The images
were taken from six different camera views, shown in figure 3.3. All images were
taken while the vehicle, to which the camera was attached, was driving on a highway.

Each image had an corresponding annotation bitmap of the same size as the image
(1920×1208) where own road lane pixels were set to 1 (white) and background pixels
to 0 (black). An example of an image and a bitmap can be seen in Figure 3.4. The
whole dataset contained approximately 15000 images with annotations. The images
were annotated by 10 different annotators (each annotator annotated roughly 1500
images).
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Figure 3.5: Example of an image from dataset B along with the corresponding
bitmap. White pixels in the bitmap represent all paved surfaces. This image is
taken from the front of the vehicle. Road markings were not included in the class
paved surfaces, explaining why they not are included in the bitmap.

3.4.2 Dataset B

Dataset B consisted of about 800 images taken from a truck. While the images
in dataset A only were from highway driving, the images in dataset B were from
varying scenes and conditions. The camera angles, in relation to the truck, were not
specified in the data.

As in dataset A, each image had a corresponding annotation bitmap of the same
size as the image (1920×1200). Originally, the dataset contained annotations for
a lot of classes and not only road as in dataset A. To create a dataset as easy as
possible to learn for the network, only annotations for the class paved surfaces were
extracted. An artifact from this is that some road markings are not annotated, since
they belonged to another class in the original dataset. This can be seen in figure
3.5.

3.5 Neural network setup

Semantic segmentation was chosen as the type of classification, meaning that the
network architecture had to be one that could learn this task. To minimize unnec-
essary work, the architecture had to be one for which it existed a PyTorch imple-
mentation. In addition, the architecture should preferably have performed well in
the past. Originating from these conditions, the network architecture FCN-8 was
chosen from the paper Fully Convolutional Networks for Semantic Segmentation [8].
It was chosen because it is in the Pascal Visual Objects Challenge leaderboard for
semantic segmentation [9], along with having an existing PyTorch implementation2.

2https://github.com/wkentaro/pytorch-fcn
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3.5.1 Configuration and training

The optimizer Adam was used, along with the cross entropy cost function (2.4)
which, for only 2 classes, takes on the form

H(y, y′) = −ylog(y′)− (1− y)log(1− y′) (3.7)

where y′ ∈ (0, 1)
y ∈ {0, 1}

(3.8)

The annotation value for a pixel, y, is 1 for road and 0 for background. The variable
y′ is the output from the network, a value between 0 and 1. This equation is often
referred to as the binary cross entropy.

Before starting the training, a majority of the parameters were initialized based on a
pre-trained model called VGG-16 which has reached good results in classification and
localization contests [15]. It was possible thanks to the fact that the architectures
are the same through the whole encoding parts of the networks. The decoder of the
networks differed slightly, the architectures did not have the same number of output
classes. The parameters that were not initialized based on the pre-trained VGG-16
model were initialized randomly.

To speed up the training, the images were scaled down by a factor of 16, from
1920×1208 to 480×302 for dataset A and from 1920×1200 to 480×300 for dataset
B. The parameters used for training can be seen in table A.1.
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4
Results

The results are divided into two parts which correspond to the two different ap-
proaches described in the method. 100 randomly selected images from dataset A
are used to show the performance of the two different models used.

For dataset B, the 100 images annotated by 8 different annotators are used to
evaluate the Monte Carlo dropout model.
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4.1 Multiple network model

Along with the results of the training, a selection of images from dataset A are
shown in this section. They are meant to be representative of different regions of
predicted annotation difficulties by the multiple network model.

The training and validation loss during the 10 different training sessions are shown
in figure 4.1. This is to ensure that the performance of the different networks are
aligned. If the validation error would have started to increase sometime during train-
ing, it would have indicated that the model is overfitted. The constantly decreasing
validation loss confirms that this is not the case.
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Figure 4.1: The loss during training for the training and the validation dataset
when training networks to use in the multiple network model. The validation dataset
consists of a very small number of images extracted from the training dataset. A
user refers to an annotator.

4.1.1 Dataset A

Three images ranked 3, 51 and 94 out of 100 where 1 is the easiest possible predicted
annotation difficulty are shown below. For each image, the prediction variance of the
10 networks is displayed in one image, and the prediction mean of the 10 networks in
another. The variance and mean are normalized independently so that the maximum
value is 1.

These three images are selected out of the 100 randomly selected images based on
the fact that they are predicted as relatively easy (3/100), medium (51/100) and
hard (94/100).
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Under each pair of images is a histogram of predicted annotation difficulties of the
100 randomly selected images. The position of the current image in the histogram
is denoted by a dotted line.

Figure 4.2: Heat maps of the multiple networks prediction variance and mean for
an image from dataset A. This image is ranked 3/100 by the model, where 1 is
the easiest. Zero values (purple) are hidden. Top from left to right: Prediction
variance, prediction mean. Bottom: Histogram that shows the distribution of
predicted difficulties, the dotted line shows the position of the image above in the
distribution.
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Figure 4.3: Heat maps of the multiple networks prediction variance and mean for
an image from dataset A. This image is ranked 51/100 by the model, where 1 is
the easiest. Zero values (purple) are hidden. Top from left to right: Prediction
variance, prediction mean. Bottom: Histogram that shows the distribution of
predicted difficulties, the dotted line shows the position of the image above in the
distribution.

Figure 4.4: Heat maps of the multiple networks prediction variance and mean for
an image from dataset A. This image is ranked 94/100 by the model, where 1 is
the easiest. Zero values (purple) are hidden. Top from left to right: Predic-
tion variance, prediction mean. Bottom: histogram that shows the distribution of
predicted difficulties, the dotted line shows the position of the image above in the
distribution.
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4.2 Monte Carlo dropout model

This section shows the results of the Monte Carlo dropout model, applied to both
dataset A and dataset B. The training and validation loss from both training sessions
can be seen in figure 4.5.
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Figure 4.5: The loss during training for the training and the validation dataset
when training for the Monte Carlo dropout model. The validation dataset consists
of a very small number of images extracted from the training dataset.

4.2.1 Dataset A

The same images used for evaluation with the multiple network model are used again.
They have been ranked as 12/100, 39/100 and 93/100 according to the Monte Carlo
dropout model.

As with the results for the multiple network model, each image with both its pre-
diction variance and its prediction mean as overlay in the image. Along with the
prediction, each image is accompanied by a histogram that shows the distribution
of the predicted annotation difficulties with the current shown image denoted by a
dotted line.
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Figure 4.6: Heat maps of the Monte Carlo dropout model prediction variance and
mean for an image from dataset A. This image is ranked 12/100 by the model, where
1 is the easiest. Zero values (purple) are hidden. Top from left to right: Predic-
tion variance, prediction mean. Bottom: Histogram that shows the distribution of
predicted difficulties, the dotted line shows the position of the image above in the
distribution.

Figure 4.7: Heat maps of the Monte Carlo dropout model prediction variance and
mean for an image from dataset A. This image is ranked 39/100 by the model, where
1 is the easiest. Zero values (purple) are hidden. Top from left to right: Predic-
tion variance, prediction mean. Bottom: Histogram that shows the distribution of
predicted difficulties, the dotted line shows the position of the image above in the
distribution.
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Figure 4.8: Heat maps of the Monte Carlo dropout model prediction variance and
mean for an image from dataset A. This image is ranked 93/100 by the model, where
1 is the easiest. Zero values (purple) are hidden. Top from left to right: Predic-
tion variance, prediction mean. Bottom: Histogram that shows the distribution of
predicted difficulties, the dotted line shows the position of the image above in the
distribution.
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4.2.2 Dataset B

Three images from dataset B are presented in this section. They have been selected
with the only condition being that the image should contain road. For each of
the three images, two columns that represent the predictions (left column) and the
ground truth (right column) are shown. From top to bottom, the columns contain
mean, variance and a histogram that shows the distribution of difficulties with the
current image denoted by a dotted line. For clarity, the left histogram shows the
distribution of predicted difficulties and the right histogram shows the distribution
of the difficulties calculated based on the ground truth data.

Figure 4.9: Heat maps of the Monte Carlo dropout model prediction variance and
mean for an image from dataset A along with ground truth variance and mean.
This image is ranked 6/100 by the model and 19/100 based on the ground truth
data. Zero values (purple) are hidden. Left column from top to bottom:
Prediction mean, prediction variance and histogram over the predicted difficulties
with the image shown above marked with a dotted line. Right column from top
to bottom: Ground truth mean, ground truth variance and histogram over the
ground truth difficulties with the image shown above marked with a dotted line.
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Figure 4.10: Heat maps of the Monte Carlo dropout model prediction variance
and mean for an image from dataset A along with ground truth variance and mean.
This image is ranked 8/100 by the model and 27/100 based on the ground truth
data. Zero values (purple) are hidden. Left column from top to bottom:
Prediction mean, prediction variance and histogram over the predicted difficulties
with the image shown above marked with a dotted line. Right column from top
to bottom: Ground truth mean, ground truth variance and histogram over the
ground truth difficulties with the image shown above marked with a dotted line.
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Figure 4.11: Heat maps of the Monte Carlo dropout model prediction variance
and mean for an image from dataset A along with ground truth variance and mean.
This image is ranked 76/100 by the model and 78/100 based on the ground truth
data. Zero values (purple) are hidden. Left column from top to bottom:
Prediction mean, prediction variance and histogram over the predicted difficulties
with the image shown above marked with a dotted line. Right column from top
to bottom: Ground truth mean, ground truth variance and histogram over the
ground truth difficulties with the image shown above marked with a dotted line.
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4.2.3 Prediction and ground truth correlation

The predicted difficulty ranks and the ranks calculated using the ground truth are
used to create the scatter plot in figure 4.12. It displays the correlation between
the predicted ranks and the ground truth ranks. The Pearson correlation coefficient
(ranging from -1 to 1, where -1 is total negative linear correlation, 0 is no linear
correlation and 1 is total positive linear correlation) for the two variables are 0.11,
indicating no significant correlation. It should be noted that there are 14 images
that have the rank 0 in the ground truth rankings. This is due to the fact that 14
images, according to the annotators, do not contain any road which give a difficulty
value of 0.
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Figure 4.12: Scatter plot of the ground truth difficulty ranks and the predicted
difficulty ranks. Note that 14 images among the ground truth rankings have the
rank 0. This is due to the fact that these images, according to the annotators, do
not contain any road which give a difficulty value of 0.
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5
Discussion & Conclusion

In this chapter, the methods used are discussed and compared. The achieved results
with the different methods are interpreted and analysed. Lastly, the conclusions for
the project are presented and possible extensions and future work are discussed.

5.1 Multiple network model

The idea with the multiple network model was that each network should capture
the underlying behaviour of the single annotator that created the training data for
each network. However, the data used for training had been annotated according
to the annotation process described in section 2.1 and all the used data was passed
by the process. This means that both reviews and corrections of the annotations
had taken place which arguably remove the annotation characteristics belonging to
a single annotator. A possible solution to this could have been to use data that was
only annotated once and not corrected at all for training.

Another relevant question concerning the multiple network model is if it mattered at
all that the networks were trained on different data. Maybe the same result could
have been achieved by training 10 networks on mixed data from all annotators,
especially since the data was reviewed and corrected prior to training as mentioned
above.

Unfortunately, the only way to evaluate the results from the multiple network model
was through visual inspection. Simply put, does it look like the images ranked as
hard could give rise to large variance among annotators? And does it look like the
images ranked as easy could give rise to low variance?

Looking at the image ranked as 3/100 in figure 4.2, it contains no vehicles or other
objects and it seems to be quite clear where the road ends, the road edge seem to
be close to lane markings. It also has good lighting (no backlight).

The second image, ranked as 39/100, shown in figure 4.3 contains one other car. The
side of the own vehicle is also slightly visible, which however has a very clear edge
so it will probably not cause any disagreement between annotators. Even though a
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barrier is visible on the side of the road, it is a somewhat wide region between the
road edge and the breakdown lane. The lighting is good.

The third image, figure 4.4, is taken while driving in a tunnel and is ranked among
the hardest to annotate (93/100). The image contains two other vehicles, but the
part that seem to confuse the model is the road edge, it has a very large area of
uncertainty. However, it is actually a curb on the side of the road so a real annotator
would probably not have any problems with defining road edge. If the network would
have been trained on more images of curbs and tunnels, it is quite easy to imagine
that this image then not would have been ranked as particularly difficult since the
curb acts as a very specific road edge indicator.

To summarize the analysis of the results, the ranking of the two easiest images seem
to make sense while the image ranked as hardest out of the three probably not would
be particularly difficult to annotate.

5.2 Monte Carlo dropout model

It is important to mention that there is no single correct way of measuring model
uncertainty, Monte Carlo dropout is only one idea presented by Gal et al [12]. But
obviously, using dropout is a very convenient way.

For dataset A, as with the multiple network model, the only available way of eval-
uating the result is through visual inspection. The three images are ranked 12/100,
39/100 and 93/100, in the same order as with the multiple network model. The
results for these images are very similar for both models, one difference is however
the wider areas of uncertainty for the multiple network model. This could be an
artifact of more training, the networks used in the multiple network model were
trained for 50000 iterations while the network used for Monte Carlo dropout was
trained for 100000 iterations.

Another interesting detail to notice is the shape of the distributions, the Monte Carlo
dropout model produces a wider distribution than the multiple network model. The
fact that the distribution of the Monte Carlo dropout model seems to look somewhat
like a Gaussian distribution give the impression that it is the desirable distribution
since a lot of distributions tend to be Gaussian. But, looking at the ground truth
distribution in figure 4.9 (for another dataset), it actually is more similar to the
distribution of the multiple network model.

Dataset B opens for a more in-depth analysis thanks to the availability of ground
truth data. The two figures 4.9 and 4.10 clearly illustrate that predicted mean and
variance are very similar to the ground truth mean and variance. As expected, it
is the areas at the edge of the road that causes a variance among the annotators,
probably because there is a disagreement of where the road actually ends.

Figure 4.11 prove that snow is a challenging condition, it is very hard for both the
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annotators and the model to predict where the road is when it is partly covered by
snow. Even though the model has a lacking performance for this image, it is notable
that it predicts large variance in the same areas as the ground truth, along the edges
of the road.

Thanks to the available ground truth, a statistical analysis is also possible for dataset
B. The predicted ranks and the ground truth ranks are scatter plotted in figure 4.12.
It does however not look like there is a correlation between the ranks and the Pearson
correlation coefficient verifies this.

I believe that the poor correlation can be derived from the lacking performance of
the network which in turn can be derived from the small and irregular dataset. 800
images to train on is not enough to reach a decent performance, especially when
the dataset contains a very wide range of scenarios and angles. This hypothesis is
strengthened by the fact that in images such as the one in figure 4.9, it can be seen
that the predicted variance clearly resemble the ground truth variance but with big
areas of uncertainty.

5.3 Conclusion

The following research questions were asked in the beginning of this thesis:

• What does it mean that an image is difficulty to annotate?

• How do you predict the difficulty of annotating an image?

The proposed answer to the first question is that an image is difficulty to annotate
if the image, when given to several people, yields a big variance among annotations.
In other words, the image is hard to annotate if the level of disagreement between
annotators is large.

A possible answer to the second question is that it can be predicted by quantifying
the uncertainty of a suitable neural network trained on a satisfactory amount of data.
Two methods are proposed in this thesis, the multiple network model and the Monte
Carlo dropout model. Both models give similar results, but the Monte Carlo dropout
model works with a fraction of the training that the multiple network model requires.
Furthermore, it also saves time at inference since only a single network needs to be
loaded. Therefore, the Monte Carlo dropout model is the recommended model for
predicting annotation difficulties. And even though the results did not prove the
method entirely, there are intuitive reasons to motivate further investigation.
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5. Discussion & Conclusion

5.4 Future work

A good next step would be to evaluate the Monte Carlo dropout model further, for
example by creating a ground truth for dataset A and perform the same correlation
analysis for dataset A as was done for dataset B. This would be necessary to ensure
that the model works in the expected way.

The approach is also very dependent on a well-trained neural network, so a nat-
ural development would be to increase the performance of the network. It could
be achieved by training on more data and augmenting data (cropping, mirroring
etc.). Furthermore, if time and computing power not is a limitation, tuning of hy-
perparameters can be done to enhance the training procedure and eventually the
performance of the network.

38



Bibliography

[1] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in
Proceedings of COMPSTAT’2010, pp. 177–186, Springer, 2010.

[2] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[3] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

[4] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and ap-
plications in vision,” in Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, pp. 253–256, IEEE, 2010.

[5] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3431–3440, 2015.

[9] “Pascal voc segmentation results: Voc2012.” http://host.robots.ox.ac.uk:
8080/leaderboard/displaylb.php?challengeid=11&compid=6. Accessed:
2019-01-31.

[10] A. Der Kiureghian and O. Ditlevsen, “Aleatory or epistemic? does it matter?,”
Structural Safety, vol. 31, no. 2, pp. 105–112, 2009.

[11] T. O’Hagan, “Dicing with the unknown,” Significance, vol. 1, no. 3, pp. 132–
133, 2004.

39

http://www.deeplearningbook.org
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6


Bibliography

[12] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning,” in international conference on machine
learning, pp. 1050–1059, 2016.

[13] Y. Gal, Uncertainty in deep learning. PhD thesis, PhD thesis, University of
Cambridge, 2016.

[14] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”
2017.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

40



A
Appendix 1

Parameter
Learning rate 10−7

Weight decay 0.0005
Momentum 0.99
Batch size 4

Dropout probability 0.5

Table A.1: Parameters used for training. All networks were trained with the same
parameters.
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