
DF

Fast Rainfall Runoff Simulation
and Parameter Calibration
Implementation of a bidirectionally coupled infiltration model
and a method for parameter calibration for large scale flood
simulations

Master’s thesis in Complex Adaptive Systems

Daniel Hesslow

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020:25

Fast Rainfall runoff simulation and parameter
optimization

Implementation of a bidirectionally coupled infiltration model and a
method for parameter calibration for large scale flood simulations

Daniel Hesslow

DF

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2020

Fast Rainfall runoff simulation and parameter calibration
Implementation of a bidirectionally coupled infiltration model and a method for
parameter calibration for large scale flood simulations
Daniel Hesslow

© Daniel Hesslow, 2020.

Supervisor: Andreas Buttinger, VRVis: Zentrum für Virtual Reality und Visual-
isierung Forschungs-GmbH
Examiner: Håkan Nilsson, Mechanics and Maritime Sciences, Fluid Dynamics

Master’s Thesis 2020:25
Department of Mechanics and Maritime Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Screen shot from the visdom application for simulation of flooding events,
here over this town of petzenkirchen.

Department of Mechanics and Maritime Sciences
Gothenburg, Sweden 2020

iv

Abstract
Since the number of flooding events are expected to rise in the coming years as
a consequence of global warming, accurate simulation of such events are now more
important than ever. Running simulations and seeing the effects of different possible
actions serves as a very important tool to mitigate the consequences of such events.
For the results of the simulations to be accurate it is important that both the
parameters that govern the surface flow and the subsurface flow are known, or that
they can be accurately estimated. While it is feasible to measure some parameters to
sufficient accuracy, such as the topology, this is not true for for all parameters. The
subsurface flow is governed by the soil characteristics at all points in the simulation
space and may vary over the depth. Additionally, measuring the soil characteristics
at any one point is expensive. It is, therefore, not feasible to measure the soil
characteristics at all points and all depths to a sufficient accuracy.
The traditional approach is to have an expert estimate all such parameters, however
this is costly and if ground truth data from previous flooding events are available
the parameters can instead be tuned to fit with the previous events.
In this thesis an efficient and numerically accurate way to calculate the infiltration of
the multi-layer Green-Ampt model is presented as well as a method for automatically
optimizing the parameters of large-scale fluid simulations. The developed methods
are implemented in the VISDOM-application developed by VRVIS and evaluated
on different scenarios.

Keywords: Infiltration, Runoff, Bayesian Optimization, Parameter Calibration

v

Acknowledgements
I would like to thank my supervisor, Andreas Buttinger, for always answering my
questions quickly and his general guidance over the process. I would also like to
thank the whole group of people working on VISDOM, lead by Jürgen Wasser, for
letting me use their software for this thesis. In general I would also like to thank
the whole of VRVis for both making be feel welcome in Vienna and providing a nice
place to work.
I would also like to thank Håkan Nilsson for being my examiner. Further I would
like to thank everybody who has collected the hydrological data used in this thesis
as well as the open source community in general for all great software libraries out
there without which this thesis would not be possible.
Finally, I would also like to thank ERASMUS for the financial help.

Daniel Hesslow, Vienna, July 2020

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Background and Problem Description 1
1.2 Previous Work . 2
1.3 Aim and Limitations . 2
1.4 Structure of the Thesis . 2

2 Theory 3
2.1 Infiltration Models . 3

2.1.1 Darcy’s Law . 3
2.1.2 Richards Equation . 3

2.2 Green-Ampt . 5
2.2.1 MultiLayered Green-Ampt Model 6
2.2.2 Two layered Green-Ampt model 7

2.3 Chi Squared- and Noncentral Chi Square distributions 8
2.4 Numerics . 8

2.4.1 IEEE Floating Point Numbers 9
2.4.2 Compensated summation . 9

2.5 Gaussian Processes . 10
2.6 Optimization Methods, Background 11

2.6.1 Sequential Model-Based Optimization - SMBO 12
2.6.2 Acquisition function . 13
2.6.3 Gaussian Process Bayesian Optimization - GPBO 14
2.6.4 Tree Parzen Estimator - TPE 14
2.6.5 Target Vector . 15

2.6.5.1 GPBO . 15
2.6.5.2 TPE . 16

2.6.6 SHGO, Simplicial Homology Global Optimisation 17

3 Implementation 19
3.1 Visdom . 19
3.2 Implementation of Bidirectionally-coupled Infiltration 20

3.2.1 Exact Numerical Solutions to the Green-Ampt Model 20
3.2.2 Euler-Forward approximation of the Green-Ampt Model . . . 21

3.3 Coupling the infiltration model and the surface flow 22

ix

Contents

3.4 Implementation of Optimization . 23
3.4.1 Optimization Node . 23
3.4.2 AutoTracks . 23

4 Results 25
4.1 Infiltration . 25

4.1.1 Dynamic vs Static Infiltration 25
4.1.2 Euler Forward vs Exact . 27

4.2 Optimization . 29
4.2.1 Inverse Problem for Runoff in Thiès 31

5 Closure 35
5.1 Conclusion . 35
5.2 Future Work . 35

5.2.1 Acquisition Functions . 35
5.2.2 Infiltration Parameters . 36

Bibliography 37

x

List of Figures

2.1 Illustration of the water content at a given moment of time. The
wetting front will continuously move downwards, and is gradually
increasing from a water content of θi to θs. 4

2.2 Illustration of the piston flow approximation used in the Green-Ampt
model. The wetting front is approximated as instantly increasing
from a water content of θi to θs. 4

2.3 Illustration of the two layer Green-Ampt Model. 7
2.4 The result of fitting a gaussian process on five noise-free points from

y=sin(x), with different covariance functions. 12

3.1 The deign view of the visdom application. 19
3.2 The application view of the visdom application 20
3.3 The flow diagram in the Visdom design view of the optimization. . . 24

4.1 Comparison of the static and dynamic infiltration models for a slope
with constant inclination. 25

4.2 Comparison of the static and dynamic infiltration models for a storm
event from july, 2016 in Petzenkirchen. 26

4.3 Comparison between the different solver, and the solutions they pro-
duce for two different, Two Layer Green-Ampt model. Both branches
share the same crust, but the soil properties differ. 27

4.4 The effect of varying the maximum infiltration rate for the Euler-
Forward solver, compared to the solution given by the exact solver. . 28

4.5 The performance of the SHGO algorithm on the test function while
varying the fraction used in the global part of the optimization. Each
experiments is evaluated 100 times. Here the lower branch corre-
sponds to the factor of 0.1 and 0.2 and the upper branch corresponds
to 0.3 and 0.4. The reason for the overlap is that the number of iter-
ations in the first phase is only treated as a hint, so in this example
both 0.1 and 0.2 will almost always do the same exact thing and so
will 0.3 and 0.4. 28

4.6 Comparison of the default TPE provided by hyperopt, and an im-
plementation of the method modified for target vectors which was
described in 2.6.5.2. 29

xi

List of Figures

4.7 Comparison of a different optimization methods that has previously
been discussed. ’hyperopt’ is the implementation of TPE form the
popular python library hyperopt, ’GP-BO’ is Bayesian Optimization
with Gaussian Processes here using the expected improvement ac-
quisition function. Random, is a baseline of the performance from
choosing random points, ’SHGO’ is the SHGO algorithm previously
discussed, and finally bo-l2 is the bayesian optimization algorithm us-
ing a gaussian processes to model each component and the acquisition
function is the expected improvement of their `2-norm as discussed
previously. 30

4.8 Performance of the Baysian Optimization For Target Vector opti-
mization method for the different parameters. 31

4.9 Images captured from running the simulation on the thies data set. . 32
4.10 The progress of a optimization run over the infiltration parameters of

the Thiès dataset. 33

xii

1
Introduction

1.1 Background and Problem Description

Since the number of flooding events are expected to rise in the coming years as
a consequence of global warming, accurate simulation of such events are now more
important than ever. Running simulations and seeing the effects of different possible
actions serves as a very important tool to mitigate the consequences of such events.

The traditional approach when it comes to computing the infiltration is to assume
that the infiltration happens over a flat surface with constant parameters such that
the infiltration is constant over space. The infiltration rate for all times can then be
calculated in a separate pass without taking any surface flow into account. During
the simulation, the previously calculated infiltration rate can be used without any
additional runtime computation. We will refer to this as static infiltration. Instead,
in this thesis, methods to dynamically calculate the infiltration rate during the sim-
ulation will be investigated. We refer to this as bidirectionally coupled infiltration,
since the infiltration is both affected by the water simulation and vice versa. The
infiltration rate may differ for different cells in the simulation. Further, it is impor-
tant that such a method can run efficiently so that it is possible to run it even on
large scale simulations.

However, any method to calculate the infiltration is only accurate if the parameters
used in the model is accurate. The traditional approach is to let experts estimate
each parameter of the model, potentially based off of real world measurements.
However, this process is expensive, and if we let the parameters freely vary in space,
it becomes entirely unfeasible. To combat this problem, methods for calibrating
such model parameters will be investigated. In particular, the goal of the calibration
procedure is to automatically find model parameters that makes the simulation and
the ground truth data from previous flooding events match as well as possible. This
is, however, a difficult optimization problem to solve. Large scale simulations can
take many hours, or even days, to run. As such it will not be possible to sample the
parameter space many thousands of times. Further, in general we do not have access
to the gradients of the error with respect to the parameters. The problem is thus
to be able to adequately estimate the infiltration parameters in as few iterations as
possible.

1

1. Introduction

1.2 Previous Work
The development of simulation software that includes a bidirectionally coupled in-
filtration model has previously been done by Delestre, Darboux, James, et al.[1].
Fernández-Pato, Caviedes-Voullième, and García-Navarro [2] has also developed
software to simulate the shallow water flow and also includes some simple parame-
ter calibration. For simpler models for the surface flow, assuming for example open
channel flow, more work for parameter calibration has been done. Wang, Sang, Jiao,
et al. [3] use a combination of manual tuning and the Nelder-Mead optimization al-
gorithm [4]. Many authors, for example Zhang, Wang, and Meng [5], has also used
the SCE-UA algorithm which was specifically designed as a black box optimization
algorithm for conceptual runoff modelling [6] [7]. Ding, Jia, and Wang [8] has evalu-
ated multiple different methods for finding optimal values for Manning’s roughness
coefficients in shallow water simulations and conclude that L-BFGS-B works well
for this task.

1.3 Aim and Limitations
The aim of this thesis to twofold: First, to develop and implement an infiltration
model. The infiltration model must be sufficiently accurate so that the results of the
simulation can be trusted for real world situations, but it must also be fast enough
so that it is possible to execute it even on large scale simulations. The infiltration
model will be integrated into the existing codebase at VRVis.
Secondly, an optimization procedure to find sufficiently good parameters for the
infiltration model will be implemented. The optimization procedure will take data
from real world flooding events and attempt to find parameters so as to make the
simulation and the ground truth data match.

1.4 Structure of the Thesis
• Chapter 2: Theory contains the theoretical background that is necessary

for the rest of the thesis, this section both contains background information
form other sources as well as new derivations.

• Chapter 3: Implementation contains an overview of implementation pro-
cess of the software that has been developed, both for the infiltration modelling
and the optimization procedure.

• Chapter 4: Results contains the results of the thesis, both data from the
infiltration procedure as well as from the parameter optimization.

• Chapter 4: Closure discusses the findings of the thesis and possible avenues
for future work on this subject.

2

2
Theory

2.1 Infiltration Models

2.1.1 Darcy’s Law
After conducting experiments on sandbeds in 1856, Darcy found an empirical equa-
tion for for flow in saturated porous soils [9]. It relates the flow between two points
in space, P1, P2 to the difference between their hyrdaulic head as follows

f = Ks

Φ(P1)− Φ(P2)
‖P1 − P2‖

Where f is the flow rate, Ks is a constant depending on the soil, known as the
saturated hydraulic conductivity, and Φ(P) is the hydraulic head at the point P .
The hydraulic head is a measurement of the potential energy from gravity and
pressure at a point in terms of the height of the top of the fluid column needed to
produce such a pressure. The hydraulic head in stationary water column is constant,
further down the energy is in the form of pressure and further up in the form of
gravitational potential energy.

2.1.2 Richards Equation
The Richards equation

∂θ

∂t
= ∂

∂z

[
K(θ)

(
∂Φ
∂z

+ 1
)]

describes flow of water in potentially unsaturated soils. If the soil is saturated it
simplifies to Darcy’s Law. Here θ is the water content at a particular depth. Notice
that the hydraulic conductivity, K, in the Richards equation is a function of the
water content θ. To be able to solve the Richards equations one must relate Φ and
θ which is done through the so called water retention curve. Solving the Richards
equation, even in one dimension as it is described here, is costly and can only
be achieved in simulations of limited size. Further, in real world cases, most soil
parameters need to be estimated, since the exact soil type is not known everywhere.
Estimating the water retention curve for all points in space increases the difficulty.

3

2. Theory

Wetting Front

θi

∆θ

θs

Figure 2.1: Illustration of the water content at a given moment of time. The
wetting front will continuously move downwards, and is gradually increasing from a
water content of θi to θs.

D

Wetting Front

θi

∆θ

θs

Figure 2.2: Illustration of the piston flow approximation used in the Green-Ampt
model. The wetting front is approximated as instantly increasing from a water
content of θi to θs.

4

2. Theory

2.2 Green-Ampt
During infiltration, the soil is in general not fully saturated, see figure 2.1 for an
illustration. However to be able to solve the infiltration rate without solving the
expensive Richards equations, one can make the approximation that the flow is
piston-like, see fig. 2.2, that is to say that the soil at a given depth becomes instantly
saturated once the wetting front reaches it.
The flow from a point, Ps, at the surface to a point, PD, at the wetting front directly
below it can then be calculated from Darcy’s law. The hydraulic head at Ps, Φ(Ps),
is the height of the water column above it, which will be denoted h0. The hydraulic
head at PD is Φ(PD) = −D−Ψ where Ψ is a soil parameter called the suction head
describing the negative pressure caused by the capillary action of the soil and D is
the depth of the wetting front. The flow between these points are then, according
to Darcy’s law,

f = Ks

Φ(Ps)− Φ(PD)
‖Ps − PD‖

 = Ks
(h0 + Ψ +D)

D

Let F =
∫
fdt thenD = F

∆θ , this leads to the usual form of the so called Green-Ampt
model [10]

f = Ks

∆θ(h0 + Ψ) + F

F

For simplicity, in future references, we will drop the ∆ in front of the θ since the
other quantities related to the water content are of no interest. Further in keeping
with other literature using the Green-Ampt model we will refer to θ as the porosity.
The Green-Ampt model can be solved by integrating both sides of the equation as
follows

K = dF

dt

 F

θ(h0 + Ψ) + F

∫ t=T

t=0
Kdt =

∫ t=T

t=0

 F

θ(h0 + Ψ) + F

dF
dt
dt

KT =
∫ F=F (T)

F=F (0)

 F

θ(h0 + Ψ) + F

dF
KT = F (T)− F (0) + θ(h0 + Ψ)log

 θ(h0 + Ψ) + F (0)
θ(h0 + Ψ) + F (T)

Commonly a simpler version of the solution with F (0) = 0 is presented, however,
the slightly more general version is necessary to use when the model is coupled to
the water simulation as will be seen in later chapters.

5

2. Theory

The Green-Ampt model can also be solved in closed form using the Lambert-W
function which is defined as

f(w) = wew = z

W (z) = f−1(z) = w

Since the Lambert-W function has multiple branches, care must be taken to select
the appropriate branch. For the Green-Ampt equation the first negative branch
produces positive infiltration rates and should therefore be chosen. The solution of
the Green-Ampt model in terms of the Lambert-W function is

F (t) = −ΨΘ
W−1

−(F0 + ΨΘ) e−
F0+ΨΘ+kt

ΨΘ

ΨΘ

+ 1

In practice, however, iterative methods must be used to accurately solve the Lambert-
W function. Nevertheless, if one has access to efficient solvers for the Lambert-W
function this formulation may simplify the implementation. Since the Lambert-W
function is well-studied in literature, many approximations exist, if only approxi-
mate soluaitons to the Green-Ampt models are neccesary, this formulation may be
of further interest. Approximate solutions to the Green-Ampt equations are studied
in detail by Barry, Parlange, Li, et al. [11].

2.2.1 MultiLayered Green-Ampt Model
A multilayered model can be constructed by having the same parameters change
discretely over the depth, yielding layers with different parameters. This is impor-
tant since usually, in nature, the soil does not remain constant over all depths. Such
a model can be constructed with an effective Green-Ampt model [12] by using the
parameters of the suction head and porosity from the layer where the wetting front
is currently, as well as a an effective hydraulic conductivity constructed by taking
the harmonic mean of the hydraulic conductivities within the infiltration column
[13]. Formally the effective hydraulic conductivity can be defined as

Ke = D∫D
d=0

1
Kd

,

where D is the depth of the infiltration column and Kd is the saturated hydraulic
conductivity at depth d. It is important to note, that the depth of the infiltrated
water column is not equivalent to the cumulative infiltration, F, since the depth
takes the porosity of the medium into account. For a model with multiple discrete
layers with hydraulic conductivity Ki and thickness Zi the hydraulic conductivity
can be calculated as

Ke = D∑n
i=1

Zi

Ki

Here Zn is the effective depth of the final layer, which is to say Zn = D −∑n−1
i=1 Zi

6

2. Theory

it is important to note that the n− 1 first layers can be combined into a single layer
while still capturing the full model since

D∑n
i=1

Zi

Ki

= D∑n−1
i=1 Zi∑n−1
i=1

Zi
Ki

+ Zn

Kn

The new amalgamated layer will be described by the properties:

Z =
n−1∑
i=1

Zi

K =
n−1∑
i=1

Zi
Ki

θ =
∑n−1
i=1 θiZi
Z

With no loss generality we will therefore assume there to be two layers. If more
layers are desired on can combine the two previous layers into one once the wetting
front reaches the third layer and thereafter continue the simulation.

D

Zc, (Kc,Ψc, θc)

(Ks,Ψs, θs)

Figure 2.3: Illustration of the two layer Green-Ampt Model.

2.2.2 Two layered Green-Ampt model
In this section we will denote the parameters that are associated with the first layer,
the crust, with a subscript c, ie. θc,Ψc, Kc and the parameter that are associated
with the second layer, the soil with a subscript s, ie. θs,Ψs, Ks see figure 2.3 for an
illustration.
To solve the two layered Green-Ampt model, the easiest approach is to first refor-
mulate it in terms of the infiltrated depth instead of the cumulative infiltration.

7

2. Theory

Ke = D
Zc

Kc
+ D−Zc

Ks

dD

dt
= 1
θc
Ke

h0 + Ψc +D

D
dD

dt
= 1
θc

h0 + Ψc +D
Zc

Kc
+ D−Zc

Ks

As with the one layer model, it can be solved by integrating both sides of the
equation.

1
θc

= dD

dt

Zc

Kc
+ D−Zc

Ks

h0 + Ψc +D∫ T

t=0

1
θc
dt =

∫ T

t=0

Zc

Kc
+ D−Zc

Ks

h0 + Ψc +D

dD

dt
dt

T

θc
=
∫ D=DT

D=D0

Zc

Kc
+ D−Zc

Ks

h0 + Ψc +D
dD

T

θc
=
Kc (DT −D0) + (ZcKc − ZcKs + (Ψc + h0)Kc) log

(
D0+(Ψc+h0)
Dt+(Ψc+h0)

)
KcKs

KcKsT

θc
= Kc (DT −D0) + (ZcKc − ZcKs + (Ψc + h0)Kc) log

(
D0 + (Ψc + h0)
Dt + (Ψc + h0)

)

Solutions in terms of the Lambert-W function also exist, and is easiest to obtain
using computer algebra systems such as sympy [14] to directly solve the differential
equations. The resulting solutions are however very large, and suffers from numerical
issues, as such they will not be presented here.

2.3 Chi Squared- and Noncentral Chi Square dis-
tributions

If a collection of k random variables Xi is standard normally distributed, Xi ∼
N (µ = 0, σ = 1), then the sum of the squares of those variables will be chi square
distributed with k degrees of freedom, ‖X‖2

2 = ∑k
i=1X

2
i ∼ χ2(k)

If those variables instead have different means, Xi ∼ N (µ = µi, σ = 1), then their
squared sum will be distributed according to the noncentral chi square distribution,
‖X‖2

2 ∼ χ′(k,∑k
i=1 µ

2
i)

2.4 Numerics
When constructing numerical methods it is important to make sure that errors,
that are inherently introduced by calculating quantities in finite precision, does not

8

2. Theory

accumulate over time such that the final result is far from the correct result. To be
able to achieve this it is important to understand how the infinite precision reals
are represented on computers. Let ⊕ and 	 denote the addition and subtraction
operators on finite precision floating point numbers.

2.4.1 IEEE Floating Point Numbers
While many different encodings of the reals are available, the defacto standard used
in computers today is the IEEE-754 standard. The standard describes 7 different
formats, three of which are commonly available in hardware. The common formats
are binary16, binary32, and binary64 where the number indicates the number of
bits used to encode the number. Binary16, Binary32 and Binary64 are commonly
referred to as half, float and double respectively.
An IEEE floating point number consists of three parts, the sign, s, the exponent
q, and the mantissa or significand, c. The real represented by the floating point
number can then be calculated as sc2q. Note that to represent all numbers it is
sufficient for c to be in the range [1, 2). In IEEE this is indeed the case, ignoring
the special case of so called denormal numbers which is not of particular interest
to this discussion. q and s can then be seen as describing an interval from s2q to
s2q+1 inside of which c is used to uniformly select a number. let ulp(x) denote the
distance between two subsequent numbers in the range R = [s2q, s2q+1) such that
x ∈ R
The result of an operation on a floating point number such as addition, multiplica-
tion, division etc. is guaranteed to be exact if its result is exactly representable. If,
however, this is not the case the result is rounded, according to a specified round-
ing rule, to a representable number. The error of the addition of two number a
and b is at most ulp(a+b)

2 ≤ max (ulp(a), ulp(b)). The same inequality also holds for
subtraction.

2.4.2 Compensated summation
Assume one is to add up many numbers ∑n

i=1Xi using floating point addition. The
naive approach seen in listing 2.1 will have have large errors if the sum is large
compared to the individual numbers. However, it is possible to do better, consider
A large and x small, and we wish to compute A′ = A + x but because it is finite
precision we know that there will likely be some error in the computation which we
also want to keep track of. Then A + x = A ⊕ x + (x − ((A ⊕ x) − A)). Since
|(A⊕x)−A)| ≤ max x, ulp((A⊕ x)− A)) ≤ ulp(x) the error of the error correction
term (x	 ((A⊕x)	A)) is smaller than 2ulp(x), which is much smaller than ulp(A)
if A� x
From this one can derive the algorithm for compensated summation, or kahan sum-
mation after its inventor [15], seen in listing 2.2.

Listing 2.1: The naive method for summing a list of variables X
def naive_sum (X) :

acc = 0
for xi in X:

9

2. Theory

acc += xi
return acc

Listing 2.2: The kahan summation method for summing a list of variables X
def kahan_sum(X) :

acc = 0
c = 0
for xi in X:
x′i = xi+c
acc′ = acc + x′i
c = x′i−(acc′ − acc)
acc = acc′

return acc

2.5 Gaussian Processes
While, it is not strictly necessary to understand how Gaussian processes work to
understand or use the methods described in this thesis they will nevertheless be used
so some of the theoretical background will be discussed here. To understand the rest
of this thesis one must only be aware of the fact the gaussian processes (GP) provide
a framework to, for a function f , construct a probability distribution over possible
values in each each point, f(x), given a number of previous observations {xi, yi =
f(xi)}. In particular this probability distribution will be a normal distribution.
Using any popular framework for gaussian processes one can query the mean and
standard deviation of a point given the previous samples. Formally a Gaussian Pro-
cess is a, potentially infinite, collection of random variables. The joint distribution
of any finite subcollection of these random variables is gaussian. While we won’t
show it here the second requirement is fulfilled if and only if the covariance function
is positive definite. The same holds true for kernels and as such kernels and covari-
ance functions is generally used interchangeably in reference to gaussian precesses.
There are of course a wide variety of kernels possible to chose from. However in
practice only a few are commonly used, the most common being the radial basis
function (RBF) and the Matérn kernel.
Let d = ‖x,x′‖2

l
be the scaled euclidean distance between the two points x and x’. In

the context of Gaussian Process l can be though of as a characteristic length scale of
the problem describing how quickly the problem varies. The RBF and Matern-kernel
is then defined as

RBF (d) = e−
d2
2

Matérnν(d) = 21−ν

Γ(ν)(
√

2νd)νKν(
√

2νd),

Here ν is a non negative parameter, Γ is the gamma function and Kν the modified
Bessel Function of the second kind. For the Matérn kernel a common choice for ν
is either 3

2 or 5
2 where simpler expressions are available,

10

2. Theory

Matérn 3
2
(d) = (1 +

√
3d)e−

√
3d

Matérn 5
2
(d) = (1 +

√
5d+ 5d2

3)e−
√

5d

It has been argued that one possible problem with the radial basis function is that
it is too smooth [16]. The problem being that if a function is exactly known on an
arbitrarily small domain, the rest of the function is, according to the RBF covariance
function, also known. This in turn, is argued to be unrealistic for physical processes.
The Matérn covariance function can intuitively be thought of as a modification to
the RBF such that it is only ν-times differentiable, instead of infinitely differentiable.
In fact if we let ν go to infinity the Matérn-kernel approaches the RBF kernel. For
the comparison of the different covariance functions on a simple problem see fig. 2.4
The posterior distribution of the Gaussian process is then given by

µ = K(X∗, X)[K(X,X) + σ2
nI]−1y

σ2 = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗)

(2.1)

Here {X, y} are the observations and X∗ is the points where the predictive distribu-
tion is to be evaluated, σ2

n is a parameter describing the the expected variance of the
measurements y = f(X). For information about the derivation of these equations as
well as in depth explanations of gaussian processes in general we refer to Rasmussen
and Williams [17].

2.6 Optimization Methods, Background
The field of optimization is well-developed and there exists many optimization-
algorithms useful in different scenarios. Broadly, they can be categorized by the
number of derivatives that is needed in each sample point. For many common
use-cases in machine learning first order methods such as gradient decent, ADAM
[18] or BFGS [19], offers a good compromise between the time taken to calculate
the necessary information in each sample point and the convergence rate of the
algorithm. However, there exists a wide variety of problems where the gradient is
either not possible to calculate or is too expensive calculate. For these problems
zeroth order methods must be used where only the value of the function to be
optimized is available, as such, these methods are also commonly referred to as
black-box optimization methods.
The problem of automatic calibration of infiltration parameters addressed in this
thesis is just such a problem. We are to find infiltration parameters such that the
simulation and recorded data matches as closely as possible. While it is indeed
possible to calculate gradients in fluid simulations, as has been demonstrated by
for example Schenck and Fox [20], it is not available in the software that we are
working with, VISDOM, and implementing it would be outside the scope of this
thesis. Further, computing gradients during simulation would increase both the
memory consumption and computational difficulty of the problem. As such this
thesis will be limited to gradient free methods for the parameter optimization.

11

2. Theory

-3 -2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

Mattern32

Mattern52

RBF

(a) Comparison of the shape of the
different kernels

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Estimated f(x)
True f(x)
data
Confidence

(b) The predictive distribution given
by the RBF kernel.

3 2 1 0 1 2 3
2

1

0

1

2 Estimated f(x)
True f(x)
data
Confidence

(c) The predictive distribution given
by the Matern32 kernel.

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Estimated f(x)
True f(x)
data
Confidence

(d) The predictive distribution given by
the Matern52 kernel.

Figure 2.4: The result of fitting a gaussian process on five noise-free points from
y=sin(x), with different covariance functions.

Black-box optimization algorithms can be split into two main types. Those for
functions where evaluating new samples is cheap and those where it is expensive. In
the first group, there are both naive methods such as grid search or random search
but also more sophisticated methods such as differential evolution, particle swarm
optimization, genetic algorithms and the fairly recent algorithm SHGO.
However, if evaluating a new sample point is very expensive we can allow the opti-
mization algorithm to be much slower. Recently, this class of algorithms has gained
a lot of interest in the context of hyper-parameter optimization, in particular in the
context of deep learning. The state of the art in such cases are so called Sequential
Model Based Optimization or SMBO. Since this is also the context of our problem
the methods used here will be thoroughly examined in the following sections.

2.6.1 Sequential Model-Based Optimization - SMBO
Sequential model based optimization works in two steps. First a model is con-
structed based on the samples that have already been evaluated. Then that model
is optimized based on some criteria called the acquisition function. The optima of
the acquisition function is then chosen as the next sample point to be evaluated,
and the process is then repeated see listing 2.3.
It is important to note that in the framework of SMBO there is still a lot of freedom

12

2. Theory

left in choosing both the model and the acquisition function. In particular the
model usually contains a probability distribution over possible values for each point
in space. A good acquisition function then makes the trade off between sampling
regions that are known to be good and regions which are uncertain. In other words
it controls the trade off between exploration and exploitation.
There are two methods that are by far more common than any others in this con-
text, Tree Parzen Estimators (TPE) and Gaussian Process Bayesian Optimization
(GPBO).

Listing 2.3: Pseudo Code for Sequential Model Based Optimisation, where f(x)
is the expensive function that is to be minimized and g(x,M) is the acquisition
function

def SMBO(f , g) :
h i s t o r y = []
loop :
M = f i tMode l (h i s t o r y)
x∗ = argminxg(x,M)
h i s t o r y . append ({x∗ , f (x∗)})

return min(h i s t o r y)

2.6.2 Acquisition function
There are a few common acquisition functions, Probability of Improvement (PI) is
defined as

PIy∗(x) = P (f(x) < y∗)

and is probably the simplest acquisition functions that still see some use. However
since it doesn’t take into account how much better a new value is than the best
previously known one, it tends to perform quite badly and favour exploitation much
over exploration. The slightly more complicated acquisition function Expected Im-
provement (EI) addresses this problem and is defined as

EIy∗(x) =
∫ y∗

y=∞
(y∗ − y)P (f(x) = y)

or equivalently

EIy∗(x) = y∗ − E(min(f(x), y∗)

If we are only to run the algorithm for one more iteration it is clear from the second
definition that EI is optimal. However, for any real problem we will need to sample
many times and then this greedy solution will still intuitively favour exploitation
over exploration. For thorough discussion on this topic as well as a better acquisition
we refer to Qin, Klabjan, and Russo [21].
Finally we will also consider Upper Confidence Bound (UCB), which is very popular
in theoretical works but also works rather well in practice. UCB is often described as
"optimism in the face of uncertainty", that is to say if we are uncertain about the true

13

2. Theory

value of a random variable we assume it is better than we think. This is achieved by
picking the nth percentile of the CDF produced by the model. Intuitively it is clear
that this should lead to more exploration than PI. The tradeoff between exploration
and exploitation is then a tunable parameter of the function which means that as
long as we chose good parameters for UCB it should be able to strike a balance
between exploration and exploitation.

2.6.3 Gaussian Process Bayesian Optimization - GPBO

If an implementation of gaussian processes is available, Gaussian Process Bayesian
Optimization is fairly straight forward. The only difficulty lies in efficiently optimiz-
ing the acquisition function, once the dimensionality of the input space grows large
methods such as grid search quickly becomes unfeasible.
In literature DIRECT [22] is commonly used, see for example [23], [24], however,
this method suffers from the same problems. Recently, more specialized versions
of evolutionary algorithms have also been employed [23]. For our purposes we will
simply use random search for a predetermined number of iterations. While this
will not find the optima of the acquisition function, we will at least find a good
candidate. If one is concerned with theoretical guarantees of convergence, it should
be noted that this is a bad choice since it means that we have the exact same order
of convergence as random search. However, the number of samples we can afford
to evaluate the true function on is so low that analysis as number of samples grows
large is of no practical importance. This choice is done for practical reasons only,
better alternatives exists and should be used for problems where the time spent
optimizing the acquisition function is significant.

2.6.4 Tree Parzen Estimator - TPE

Tree Parzen Estimators (TPE) introduced by Bergstra, Bardenet, Bengio, et al.
[25] has recently gained a lot traction as it has been empirically shown to preform
as well or better than GPBO on many problems while being less computationally
expensive, especially as the dimensionality of the input grows large. The idea is to
separate the observations into two subsets: those above desired value y∗ and those
below. For each subset a density is formed through kernel density estimation. We
will refer to the density lower than y∗ as l(x) and that greater than y∗ as g(x). The
probability of x given y can then be estimated as

p(x|y) =

l(x), if f(x) < y∗

h(x), otherwise

Let y∗ be defined through p(y < y∗) = γ. The expected improvement over y∗ can
then easily be optimized by optimizing the ratio: l(x)

h(x) . The proof follows below.

14

2. Theory

EIy∗(x) =
∫ y∗

y=−∞
(y∗ − y)p(y|x)dy

=
∫ y∗

y=−∞
(y∗ − y)p(y)p(x|y)

p(x) dy

=
∫ y∗

y=−∞
(y∗ − y)p(y)l(x)

p(x) dy

= l(x)
p(x)

∫ y∗

y=−∞
(y∗ − y)p(y)dy

∝ γl(x)
p(x)

= γl(x)
γl(x) + (1− γ)h(x)

= 1
1 + (γ−1 − 1)h(x)

l(x)

argmaxxEIy∗(x) = argmaxx
l(x)
h(x)

Good candidate samples can efficiently be found by drawing samples form l(x) and
evaluating their expected improvement.

2.6.5 Target Vector
While we have previously considered our problem as a black-box optimization prob-
lem with a single output this formulation discards important information: we know
the errors for each time step of the simulation, not only its `2-norm. If one were
to manually tune such parameters it is easy to see that one would not discard this
information, one parameter may for example control the value at small times while
another does so for larger times. If it is possible to infer such structures it is clear
that it should improve the sample efficiency of the optimization algorithm.

2.6.5.1 GPBO

GPBO for target vectors has previously been investigated by Uhrenholt and Jensen
[26]. They come up with a simple and elegant approach, based on modelling each
timestep independently as a separate gaussian process. They then note that the `2-
norm of the of the resulting vector of gaussian variates is approximately distributed
according to a scaled version of the noncentral chi square distribution. Formally

f(x) = y, x ∈ Rn

ŷi ∼ N (µi, σi)
‖ŷ‖2

2∑k
i=1 σ

2
i

approx∼ χ′2(k,
∑

µ2
i)

15

2. Theory

They show that this approximation is bias free, given the previous assumption that
the yi are independent. The expected improvement is then given by the truncated
mean of the noncentral chi square distribution. Which can be computed in closed
form as

w ∼ χ′2(K,λ)
E(w|w < a) = KFK+2,λ(a) + λFK+4,λ(a)

Where FK,λ is the CDF of the non central chi square distribution. We note two
things about this approximation, first if σi is given by a a gaussian process then all
σi are equal. This is easy to see from how σ is computed in a gaussian process, see
eq. 2.1. This means that this approximation is exact given that yi are independent
and can be calculated as

‖ŷ‖2
2

kσ2 ∼ χ′2(k,
∑

µ2
i)

Further, the assumption that yi is independent is quite strong and does not hold in
general. To show that this is problematic consider the following, we are trying to find
the parameter c as to minimize f(c) =

∫
cdt. If we optimize it using the proposed

method we must first chose the number of components, k′. This will then cause us
to model it as a non central chi square distribution with k′ degrees of freedom, while
in fact for this simple function, all samples are the same and the number of degrees
of freedom is one. The number of degrees of freedom can be bounded by the number
of arguments to f. Another possible model is therefore

‖ŷ‖2
2

kσ2 ∼ χ′2(min(k, n),
∑

µ2
i)

2.6.5.2 TPE

While generalizations to multiple outputs has been explored for GPBO, no similar
work has been done for TPE, therefore we attempt to derive one such generalization.
We will consider the simpler case of a target vector of length two first. First note
that there are two potentially different approximations for p(x).

p(x) ≈γ1l1(x) + (1− γ1)g1(x)
p(x) ≈γ2l2(x) + (1− γ2)g2(x)

16

2. Theory

EIy∗(x) =
∫ y∗

y1=−∞

∫ y∗

y2=y1
(y∗ − (y1 + y2))p(y1|x)p(y2|x)dy2dy1

≈
∫ y∗

y1=−∞

∫ y∗

y2=y1
(y∗ − (y1 + y2))p(y1)p(y2)p(x|y1)p(x|y2)

p(x)2 dy2dy1

= l1(x)l2(x)
p(x)2

∫ y∗

y1=−∞

∫ y∗

y2=y1
(y∗ − (y1 + y2))p(y1)p(y2)dy2dy1

∝ l1(x)l2(x)
p(x)2

≈ l1(x)l2(x)
(γ2l2(x) + (1− γ2)g2(x)) ∗ (γ1l1(x) + (1− γ1)g1(x))

=
(
(γ2 + (1− γ2)g2(x)

l2(x))(γ1 + (1− γ1)g1(x)
l1(x))

)−1

Where the first approximation comes from p(y1, y2) ≈ p(y1)p(y2), which is to say, the
timesteps are assumed to be independent. In general where the number of outputs
are more than two the final formula becomes

EI(x) =
n∏
k=1

((γi + (1− γi)
gi(x)
li(x))−1,

where γi must be set such that y∗ is equal for all outputs.

2.6.6 SHGO, Simplicial Homology Global Optimisation
SHGO is a two step global optimization algorithm. The first step consists of find-
ing sub-domains which are locally approximately convex. Once such domains have
been identified, a standard optimization algorithm for convex problems can be used
such as for example SLSQP. The algorithm uses concepts from Simplicial Homology
Global Optimisation Theory to find these sub-domains, however since this is much
beyond the scope of this thesis further information is deferred to the original paper
[27].

17

2. Theory

18

3
Implementation

3.1 Visdom
Visdom is a software application developed by VRVis. Its purpose is to provide
a way to run simulations to help decision making in various scenarios, primarily
related to mitigating the effect of flooding events, but other scenarios such as crowd
simulations are also available.
The application consists of two different views: one where it is possible to design a
specific scenario see fig. 3.1, and one where it is possible to evaluate the scenario
and see the results of taking different actions see fig 3.2.

Figure 3.1: The deign view of the visdom application.

In the design view, one can use visual programming by connecting together nodes
to set up the desired scenario. There exist hundreds of different nodes of varying
complexity, some running the full shallow water simulation, others plotting results or
importing data. By connecting these nodes both simple simulations of for example
Green-Ampt infiltration with fixed water height can be created, but also much more
complex scenarios that for example automatically create timelines with different
parameters and evaluating the effects of for example introducing sand bag barriers
in various locations on the damage caused on buildings can be created. In this
thesis we will introduce two new things into the Visdom application. First, the

19

3. Implementation

Figure 3.2: The application view of the visdom application

node that simulates the shallow water equations will be modified so as to calculate
the infiltration dynamically using the specified Green-Ampt parameter. Second,
a new node will be introduced that can handle the optimization of parameters of
other nodes. In particular, this new node will be used to optimize the infiltration
parameters of the shallow water simulation.
The Visdom-application is mainly written in C++, with the performance critical
shallow water simulation also having an optional GPU-accelerated path written in
CUDA. To be able to utilize libraries written in python for the optimization an
additional node will be created that integrates python into the C++ application.

3.2 Implementation of Bidirectionally-coupled In-
filtration

3.2.1 Exact Numerical Solutions to the Green-Ampt Model
In section 2.2 two different solutions to the Green-Ampt model were shown. We
will use the implicit solution, instead of the one using the Lamber-W function, since
solving the Lambert-W function is more difficult. Additionally we will compare it
with a simple Euler-Forward approach using the infiltration rate directly, as was
done in [28].
We notice that both the single and two-layer Green-Ampt equation can be formu-
lated as solving an equation on the form.

c1 = x− x0 − c2 log
(
x+ c3

x0 + c3

)
,

where c1,c2, c3, x0 are all constants. While it is possible to reduce this to 3 constants,
on the form

20

3. Implementation

c′1 = x+ c′2 log(c′3x),

more accurate results can be achieved by instead directly solving for ∆x = x− x0.
Since x and x0 are potentially large, calculating their difference will lead to so called
catastrophic cancellation.

c1 = ∆x+ c2 log
(
x0 + ∆x+ c3

x0 + c3

)

c1 = ∆x+ c2 log
(

1 + ∆x
x0 + c3

)

c′3 = 1
x0 + c3

0 = −c1 + ∆x+ c2 log(1 + c′3∆x)

The derivative of which is easily calculated as

d

d∆x (−c1 + ∆x+ c2 log(1 + c′3∆x)) = c2c
′
3

c′3∆x+ 1 + 1

Both the single and multi-layered model can thus easily be solved through Newton-
Raphson iteration. If ∆x is sufficiently small, or c′3 is sufficiently large the log term
will approach one, therefore, a good approximation can be found by taylor expanding
around one yielding the following expression

log(c′3∆x + 1) ≈ c′3∆x− c′23 ∆x2

2
Which gives a closed form approximate expression for ∆x,

∆x ≈
c2c3 +

√
(c2c3 + 1) 2 − 2c1c2c′23 + 1

c2c′23

This approximate solution for ∆x can be used as a starting point for the Newton-
Raphson iteration. Higher order root finding methods can also be used without
much overhead since higher order derivatives are easily calculated, in practice the
approximate solution given above yields very good starting points so the simple
Newton-Raphson iteration converges in few iterations.

3.2.2 Euler-Forward approximation of the Green-Ampt Model
Another approach instead of solving the Green-Ampt model exactly, is to simply
calculate the current infiltration rate and multiply that with the delta time. Since
the infiltration rate is available in a simple closed form expression,

f = Ke
D + Ψ + h0

D
,

21

3. Implementation

this is very efficient. However one issue that needs to be taken care of is the situation
where the cumulative infiltration is equal to zero, which will happen at the start
of the simulation. In this case the infiltration rate diverges to infinity. Previously
Delestre, Darboux, James, et al. [28] has taken the same, euler forward approach,
and they solved the divergence issue by simply clamping the infiltration rate to an
arbitrary maximum allowed infiltration rate. We will take the same approach here.

3.3 Coupling the infiltration model and the sur-
face flow

For each simulation cell we add two more variables, one representing the cumulative
infiltration, and another representing the current error in the infiltration, similar to
how compensated summation from listing 2.2. Additionally for each cell we store
either three or seven more constants for the infiltration parameters, depending on if
the one- or two-layer model is used. The infiltration can then be calculated according
to the previous section. However, some care must be taken if one attempts to solve
the two layer Green-Ampt model exactly since it is necessary to account for layer
changes during a time step, see listing 3.1.
As previously mentioned, when updating the water heights we make sure to both
also have an error term, which we call the pending runoff, as well as make sure
that the water depths never go below zero. The full algorithm is seen in listing
3.2, which also updates the globalWaterVolume which checks that the shallow water
solver being volume conserving.

Listing 3.1: Accounting for change of layers during the time step.
def solveGreenAmpt (F0 , params , dt) :

Depth = F0/params . c ru s t . po r o s i t y
i f Depth > params . c rus tTh icknes s :

return solveTwoLayerGaSoil (params , F0 , dt) ;
else :

c rustCapac i ty = params . c rus tTh icknes s ∗ params . c ru s t . po r o s i t y
tBoundary = solveCrustT (params . crust , crustCapacity , F0) ;
i f (dt > tBoundary) :

F0New = params . c rus tTh icknes s ∗ params . c ru s t . po r o s i t y
return s o l v e S o i l (params , F0New , dt − tBoundary) ;

else :
return so lveCrus t (params . crust , F0 , dt) ;

Listing 3.2: Accounting for infiltration in the shallow water solver.
def add_ in f i l t r a t i o n () :

i n f i l t r a t i o n = solveGreenAmpt (cumu l a t i v e I n f i l t r a i n , parameters , dt)
pendingRunoff += ge tPr e c ep i t a t i on (t) − i n f i l t r a t i o n
negat iveHe ight = de l t a < 0 :
i f negat iveHe ight :

newH = 0 ;

22

3. Implementation

waterDepthChange = newH − h ;
pendingRunoff −= waterDepthChange ;
i f negat iveHe ight :

pendingRunoff = 0 ;
globalWaterVolume += waterDepthChange
h = newH

3.4 Implementation of Optimization

3.4.1 Optimization Node
A new node was created that, given a list of input and its corresponding outputs,
creates a new sample that should be evaluated. Since there are a vast number of op-
timization algorithms available in python, instead of picking one and implementing
it in c++ directly, it was decided that a better approach would be to run python
directly from the c++ application. This was achieved by creating a new node, which
given a python script, pipes all the input to the node into python, runs the scripts
and read back the data again to c++ and send it through to the rest of the Visdom
application. While this certainly represents some overhead, some nodes will simply
not be on the performance critical path. In the case of the optimization node this
is the case since the vast majority of the time will be spent running the water simu-
lation. Finding a new parameters to evaluate will not take up a significant amount
of time.

3.4.2 AutoTracks
For running simulations, the Visdom application uses the concept of tracks. Usually
these tracks are created by the users with the desired parameters. Instead these
tracks must now also be possible to create from the nodes directly. To solve this
problem a new node called the AutoTracks node was created, this node is given a
name of the new track as well as a list of floats representing the new parameter
values to be tested. It then creates a new track where it changes the setting of a
connected values node to represent the input it got.
The Visdom application only executes lazily, ie. it does not run a track unless the
user requests it. To make sure that the new track is executed, the auto tracks node
also updates a data series node which makes a data series that includes the newly
created track, finally the auto tracks node request itself to be run again, but now
since its input has changed a new simulation is run. The flow diagram from visdoms
design view can be seen in fig 3.3.

23

3. Implementation

Figure 3.3: The flow diagram in the Visdom design view of the optimization.

24

4
Results

4.1 Infiltration

4.1.1 Dynamic vs Static Infiltration

0 50 100 150 200 250
Time

0

100

200

300

400

500

600

700

800

C
um

ul
at

iv
e

In
fil

tra
tio

n

Static Infiltration
Dymamic Infiltration

(a) Cumulative Infiltration

0 50 100 150 200 250
Time

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

 W
et

 C
el

ls

Static Infiltration
Dymamic Infiltration

(b) Percentage of cells that are wet.

0 50 100 150 200 250 300
Time

0

200

400

600

800

1000

C
um

ul
at

iv
e

In
fil

tra
tio

n

Static Infiltration
Dymamic Infiltration

(c) Cumulative Infiltration with con-
stant precipitation.

Figure 4.1: Comparison of the static and dynamic infiltration models for a slope
with constant inclination.

To evaluate the importance of the dynamic infiltration model we test it on a simple
scenario that clearly illustrates the problems with the static infiltration model. A
sloped plane is created so that the water movement has a large effect, then precip-
itation is added at the top of the slope. The infiltration problem cannot be solved
without first simulating the surface flow. If we use the approach we detailed before,
where we assume there to be constant precipitation everywhere the results are not
correct. See figure 4.1, in figure 4.1a, we see the cumulative infiltration which ap-
pears to be quite similar for both models although still differing. However, if we

25

4. Results

(a) The heightfield of the simulation
domain.

(b) A frame form the simulation
showing where the water accumulates
during the periods of high precipita-
tion.

0 10 20 30 40 50
Time

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Pr
ec

ip
ita

tio
n

(c) The measured precipitation of a
storm event in july 2016.

0 10 20 30 40
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ch
ar

ge

dynamic
static

(d) The simulated discharge over the
storm event for the static and dy-
namic infiltration model with the
same parameters.

Figure 4.2: Comparison of the static and dynamic infiltration models for a storm
event from july, 2016 in Petzenkirchen.

26

4. Results

look at the percentage of the cells in the simulation which are wet, figure 4.1b, we
see a large difference. Since the number of wet cells in this simulations describes
how far along the slope the water has flowed this constitutes a large difference in
the behavior of the simulation. Further, this demonstrates that only observing the
infiltration may be deceiving since differences in the surface flow may hide the dif-
ference in subsurface flow. Finally, in 4.1c we see the reference if the infiltration
happened over the full area, where both the static and dynamic infiltration model
behave almost identically.

We also evaluate the the static and dynamic infiltration model on a real world
scenario with data gathered from Petzenkirchen in lower Austria during a storm
event in july 2016. In figure 4.2 we can see the setup as well as the result of the
experiment, in particular, in 4.2d we see that while there are differences between
the discharge of the simulation with static and dynamic infiltration models they are
small. The quality of the simulation will not be drastically improved in this case
by using the dynamic infiltration model since both the precepitation model and the
infiltration model is constant over space.

4.1.2 Euler Forward vs Exact

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

10

20

30

40

50

In
fil

tra
tio

n
R

at
e

Upper Branch Exact
Upper Branch Euler Forward
Lower Branch Exact
Lower Branch Euler Forward

(a) Infiltration Rate

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

1

2

3

4

5

6

C
um

ul
at

iv
e

In
fil

tra
tio

n

Upper Branch Exact
Upper Branch Euler Forward
Lower Branch Exact
Lower Branch Euler Forward

(b) Cumulative infiltration

Figure 4.3: Comparison between the different solver, and the solutions they pro-
duce for two different, Two Layer Green-Ampt model. Both branches share the same
crust, but the soil properties differ.

27

4. Results

0.00 0.05 0.10 0.15 0.20
Time

0.0

0.2

0.4

0.6

0.8

1.0

In
fil

tra
tio

n

Exact solution

Figure 4.4: The effect of varying the maximum infiltration rate for the Euler-
Forward solver, compared to the solution given by the exact solver.

To test the differences between the euler forward and exact solver we set up another
simple scenario, which is flat and has fixed water depths. There, two different soils
are simulated, sharing the same crust. This is done both for the exact solver and for
the euler forward solver, see fig 4.3. Both solvers show good agreement. However,
to get this good agreement the maximum infiltration rate must first be tuned see
fig 4.4 for an even simpler one layer example of this. In 4.4 we see that changing
the maximum infiltration rate can have large effects on the cumulative infiltration.
However, in some real world cases this is not as much of an issue as the infiltration
rate is also limited by the available water. In real world cases we will likely have
some precipitation on all areas before a sufficiently large body of water gets there
for this to cause an issue. However if this is not the case and large amount of water
quickly moves into dry areas, the simple euler forward solver will not preform well.
In such cases even if one attempts to tune the maximal infiltration rate it may not
be sufficient as different rates may be needed to be provided at different locations
for it to behave correctly. At that point, simply solving the model exactly might be
the easier solution.

0 5 10 15 20 25 30 35 40
Iteration

10
5

10
4

10
3

10
2

M
SE

shgo: factor=0.1
shgo: factor=0.2
shgo: factor=0.3
shgo: factor=0.4

Figure 4.5: The performance of the SHGO algorithm on the test function while
varying the fraction used in the global part of the optimization. Each experiments
is evaluated 100 times. Here the lower branch corresponds to the factor of 0.1 and
0.2 and the upper branch corresponds to 0.3 and 0.4. The reason for the overlap is
that the number of iterations in the first phase is only treated as a hint, so in this
example both 0.1 and 0.2 will almost always do the same exact thing and so will 0.3
and 0.4.

28

4. Results

4.2 Optimization
To test the optimization of the infiltration parameters a simple test case was cho-
sen such that the simulation can repeated many time to give significance to the
differences between different approaches. Further it is important that the test case
resembles the function over which we will run the final parameter optimization. To
this end the test chosen was to solve the inverse problem of the Green-Ampt in-
filtration. That is to say, finding the parameters which gives rise to a particular
infiltration curve. The Green-Ampt parameters to find are chosen randomly and
uniformly from a range of possible parameter values. For each set of Green-Ampt
parameters the inverse problem is solved and the mean squared error of the resulting
infiltration curve compared to the correct infiltration curve is computed. A new set
of parameters is then chosen and the process repeated. The parameters are chosen
uniformly in the following domain: K ∈ (0.01, 2), Ψ ∈ (0, 10), θ ∈ (0.01, 1) and the
infiltration curve is computed for twenty equally spaced timesteps in the interval
t ∈ (0, 1).
For the SHGO algorithm, described in section 2.6.6, the implementation which we
use from [29] does not include a way to limit the total number of iterations, but it
does include a way to approximately limit the number of iterations that is spent in
the first part of the optimization problem where it attempts to find different regions
which are approximately convex. To be able to fairly compare it with other methods
we treat the fraction of the iterations which is used in the first optimization phase
as a hyper parameter, the results can be seen in figure 4.5. For future testing when
comparing SHGO with the other algorithms we will set this fraction to 0.15.

0 5 10 15 20 25 30 35 40
Iteration

10
5

10
4

10
3

10
2

M
SE

TPE_TargetVector
hyperopt

Figure 4.6: Comparison of the default TPE provided by hyperopt, and an imple-
mentation of the method modified for target vectors which was described in 2.6.5.2.

In section 2.6.5.2 a version of TPE for target vectors was derived, in figure 4.6 we see
the results of this model. The vanilla TPE algorithm provided by hyperopt preforms
better than the version that also takes multiple outputs into account, therefore this
method will be abandoned. One likely reason why this did not work is that to get
good estimates for l(x) and g(x), γ should be set such that the y is approximately
split into half, however if all components are on the same scale this means that we
are optimizing for the expected improvements over the average value per component.
This is approximately the number of components that we use times smaller than
what would like it to be, which means that we only search for values that are much

29

4. Results

smaller than what has previously found, ie we are exploring too much. Another
possible reason, caused by the γith percentile of yi needing to be the same for all
components is that we only have accurate estimates for l(x) and h(x) for a few
components that the γith percentile of yi splits roughly equally. A possible avenue
for future exploration for target vector TPE would be to try and derive a method
that allows arbitrary splits for each component.
Finally the performance of different methods are compared on the previously de-
scribed problem, the result of which can be seen in figure 4.7. The bayesian op-
timization method using gaussian processes and the `2-norm, ’bo-l2’, which has
previously been described in detail performs much better than all other algorithms.
As such we will focus only on this method.

0 5 10 15 20 25 30 35 40
Iteration

10
8

10
7

10
6

10
5

10
4

10
3

10
2

M
SE

hyperopt
GP-BO
Random
shgo
bo-l2

Figure 4.7: Comparison of a different optimization methods that has previously
been discussed. ’hyperopt’ is the implementation of TPE form the popular python
library hyperopt, ’GP-BO’ is Bayesian Optimization with Gaussian Processes here
using the expected improvement acquisition function. Random, is a baseline of
the performance from choosing random points, ’SHGO’ is the SHGO algorithm
previously discussed, and finally bo-l2 is the bayesian optimization algorithm using
a gaussian processes to model each component and the acquisition function is the
expected improvement of their `2-norm as discussed previously.

For BO-l2 we run the experiment for the different kernels and find that the Matern
kernels appear to perform slightly better for very low number of iterations but that
they all perform approximately equivalently, see fig 4.8a. We chose the Matern-52
in future experiments.
In section 2.6.5.1 it was asserted that the number of degrees of freedom in the non-
central chi-square distribution used to estimate the expected improvement, may be
to high. To this effect we test if changing the number of degrees of freedom has a
large effect on the performance of the algorithm see fig. 4.8b. We also test the how
the number of timesteps used affects the performance in 4.8c, We conclude that the
number of degress of freedom does not have a large effect on the performance of the
algorithm. As such we will continue to use the same number of degrees of freedom
as there are timesteps as was done originally in [26].

30

4. Results

0 5 10 15 20 25 30 35 40
Iteration

10
8

10
7

10
6

10
5

10
4

10
3

10
2

M
SE

bo-l2: kernel=RBF
bo-l2: kernel=Matern32
bo-l2: kernel=Matern52

(a) The performance of different ker-
nels on the test function. The five first
samples are chosen randomly which
account for the sudden increase in
performance thereafter. Each exper-
iments is evaluated 100 times.

0 5 10 15 20 25 30 35 40
Iteration

10
8

10
7

10
6

10
5

10
4

10
3

10
2

M
SE

bo-l2: k=1
bo-l2: k=2
bo-l2: k=5
bo-l2: k=10
bo-l2: k=20

(b) The performance of different num-
ber of degrees of freedom used in the
acquisition function.

0 5 10 15 20 25 30 35 40
Iteration

10
8

10
7

10
6

10
5

10
4

10
3

10
2

M
SE

bo-l2: Num TimeSteps=10
bo-l2: Num TimeSteps=100
bo-l2: Num TimeSteps=1000

(c) The performance of different num-
ber of timesteps for the l2-bo algo-
rithm. With the number of degrees
of freedom equal to the number of
timesteps as in [26]

Figure 4.8: Performance of the Baysian Optimization For Target Vector optimiza-
tion method for the different parameters.

4.2.1 Inverse Problem for Runoff in Thiès

The optimization procedure, previously outlined, is evaluated on a small real world
case, captured in Thiès, Senegal from [30]. The test case consists of a small 10m by
4m simulation plot. It is originally captured to calibrate roughness models, as such
they provide the velocities of the water at several points in time and space, however
we do not have access to the runoff information from for example hydrographs. A
plot of the heightfield as well as the typical fluid flow from a simulation can be seen
in figure 4.9.
Nevertheless we use the height-field provided, along with the roughness parameters
that they recommend. The parameters that the algorithm should find is K = 0.005,
Ψ = 30, θ = 0.3 . The search interval is K ∈ (0, 0.01), Ψ ∈ (0, 1000), θ ∈ (0, 1).
Which includes the parameters for most naturally occurring elements.
The results can be seen in figure 4.10d. Parameters matching very closely to the

31

4. Results

ones used in the original simulation is found in 29 iterations.

(a) The bed elevation from the Thiès
dataset, per simulated cell

(b) The resulting water depths af-
ter running the water simulation for
2 simulated hours.

Figure 4.9: Images captured from running the simulation on the thies data set.

32

4. Results

0 1000 2000 3000 4000 5000 6000 7000
Time

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

D
is

ch
ar

ge

True Function

0

5

10

15

20

25

30

35

40

Ite
ra

tio
n

(a) All of the tested parameters.

0 1000 2000 3000 4000 5000 6000 7000
Time

0.0004

0.0002

0.0000

0.0002

0.0004

Er
ro

r

0

5

10

15

20

25

30

35

40

Ite
ra

tio
n

(b) The error of all of the tested pa-
rameters.

0 5 10 15 20 25 30 35 40
Iteration

10
8

10
7

10
6

10
5

Er
ro

r

Error
Best Error

(c) How the error of the best fit
evolves over the optimization run.

0 1000 2000 3000 4000 5000 6000 7000
Time

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

D
is

ch
ar

ge

True Function
Best Fit: It = 34

(d) The best fit found during the op-
timization, compared with the ground
truth function.

Figure 4.10: The progress of a optimization run over the infiltration parameters
of the Thiès dataset.

33

4. Results

34

5
Closure

5.1 Conclusion
The aim of this thesis was two fold. Firstly to develop a fast algorithm for a suf-
ficiently accurate infiltration model and integrate into the existing visdom system.
Secondly to create a procedure to optimize the infiltrator parameters in such a way
that it is feasible ot do even for large scale optimization problems.
For the first part of he aim, two algorithms where implemented, one exact solu-
tion that iteratively solves the Green-Ampt model, and one simple euler forward
solver. Both model show good agreement except for when the euler forward solu-
tion diverges when the cumulative infiltration is zero. In an application where this
scenario is unlikely, the simple euler forward approach is likely sufficiently accurate,
in particular if the true infiltration parameters are unknown.
For the second part of the aim many different optimization algorithms where evalu-
ated and the Bayesian Optimization using Gaussian Processes with a target vector
performed much better than anything else. Using this algorithm it seems possible
to find good infiltration parameters in around twenty simulations, which is feasible
even for large scale simulations.

5.2 Future Work

5.2.1 Acquisition Functions
More work can be done to improve the optimization algorithm, the main algorithm
used here from Uhrenholt and Jensen [26] was published fairly recently and more
improvements can likely be made. In particular only two acquisition functions were
evaluated in the original paper, the expected improvement and the lower confidence
bound, however for many types of problem better alternatives exist. In particular EI
has been shown to explore too little and, for example TTEI, has for many functions
shown to preform better. To this effect one might hope to be able to derive at-
least an approximate solution to this acquisition function. However finding an exact
solution might be hard since this amounts to calculating the truncated mean for
the distribution generated by taking the difference of two scaled and correlated non
random variates distributed according to the non central chi square distribution.
The difference between random, uncorrelated and unscaled variates from the non
central chi square distribution are known to be distributed according to the variance
gamma distribution. The distribution the scaled and correlated case must therefore

35

5. Closure

be able to represent both the non central chi-square distribution as well as the
variance gamma distribution. However, as previously noted we must only be able
to solve this problem approximately, as such as long as we have sufficiently good
approximations we could still get an improvement over the Expected Improvement
that we use here.

5.2.2 Infiltration Parameters
We only support infiltration parameters that are constant in space for the optimiza-
tion procedure, while the infiltration supports parameters varying in space. Finding
good ways to represent spatial variability while still keeping the number of param-
eters needed to be estimated low deserves some more work. Previous work has
achieved this through splitting the space into multiple regions each with constant
parameters, however there might be other parametrization that work better.
Further, increasing the number of parameters might change which optimization pro-
cedure work best, since many algorithms struggle when the dimensionality increases,
and some might be able to handle this better than others.

36

Bibliography

[1] O. Delestre, F. Darboux, F. James, C. Lucas, C. Laguerre, and S. Cordier, “Fullswof: Full
shallow-water equations for overland flow,” 2017.

[2] J. Fernández-Pato, D. Caviedes-Voullième, and P. García-Navarro, “Rainfall/runoff simula-
tion with 2d full shallow water equations: Sensitivity analysis and calibration of infiltration
parameters,” Journal of Hydrology, vol. 536, pp. 496–513, 2016.

[3] Y. Wang, G. Sang, C. Jiao, Y. Xu, and H. Zheng, “Flood simulation and parameter cali-
bration of small watershed in hilly area based on hec-hms model,” IOP Conference Series:
Earth and Environmental Science, vol. 170, p. 032 093, Jul. 2018. doi: 10.1088/1755-
1315/170/3/032093.

[4] J. Dennis and D. J. Woods, “Optimization on microcomputers: The nelder-mead simplex
algorithm,” New computing environments: microcomputers in large-scale computing, vol. 11,
pp. 6–122, 1987.

[5] C. Zhang, R.-b. Wang, and Q.-x. Meng, “Calibration of conceptual rainfall-runoff models
using global optimization,” Advances in Meteorology, vol. 2015, 2015.

[6] Q. Duan, S. Sorooshian, and V. K. Gupta, “Optimal use of the sce-ua global optimization
method for calibrating watershed models,” Journal of hydrology, vol. 158, no. 3-4, pp. 265–
284, 1994.

[7] Q. Duan, S. Sorooshian, and V. Gupta, “Effective and efficient global optimization for con-
ceptual rainfall-runoff models,” Water resources research, vol. 28, no. 4, pp. 1015–1031, 1992.

[8] Y. Ding, Y. Jia, and S. S. Wang, “Identification of manning’s roughness coefficients in shallow
water flows,” Journal of Hydraulic Engineering, vol. 130, no. 6, pp. 501–510, 2004.

[9] H. Darcy, Fontaines Publiques de La Ville de Dijon. Libraire des Corps, 1856.
[10] W. Green and G. Ampt, “Studies on soil physics, 1. the flow of air and water through soils,”

J. Agric. Sci, vol. 4, no. 1, pp. 1–24, 1911.
[11] D. Barry, J.-Y. Parlange, L Li, D.-S. Jeng, and M. Crapper, “Green–ampt approximations,”

Advances in Water Resources, vol. 28, no. 10, pp. 1003–1009, 2005.
[12] M. Esteves, X. Faucher, S. Galle, and M. Vauclin, “Overland flow and infiltration modelling

for small plots during unsteady rain: Numerical results versus observed values,” Journal of
hydrology, vol. 228, no. 3-4, pp. 265–282, 2000.

[13] W. Rawls, D. Brakensiek, and K. Saxton, “Estimation of soil water properties,” Trans. Asae,
vol. 25, no. 5, pp. 1316–1320, 1982.

[14] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar,
S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller,
F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v.
Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, “Sympy: Symbolic
computing in python,” PeerJ Computer Science, vol. 3, e103, Jan. 2017, issn: 2376-5992. doi:
10.7717/peerj-cs.103. [Online]. Available: https://doi.org/10.7717/peerj-cs.103.

[15] W. Kahan, “Pracniques: Further remarks on reducing truncation errors,” Communications
of the ACM, vol. 8, no. 1, p. 40, 1965.

[16] M. Stein, Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999.
[17] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive

Computation and Machine Learning). The MIT Press, 2005, isbn: 026218253X.
[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

37

https://doi.org/10.1088/1755-1315/170/3/032093
https://doi.org/10.1088/1755-1315/170/3/032093
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

Bibliography

[19] C. G. Broyden, “The convergence of a class of double-rank minimization algorithms: 2. the
new algorithm,” IMA journal of applied mathematics, vol. 6, no. 3, pp. 222–231, 1970.

[20] C. Schenck and D. Fox, “Spnets: Differentiable fluid dynamics for deep neural networks,”
arXiv preprint arXiv:1806.06094, 2018.

[21] C. Qin, D. Klabjan, and D. Russo, “Improving the expected improvement algorithm,” in
Advances in Neural Information Processing Systems, 2017, pp. 5381–5391.

[22] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the
lipschitz constant,” Journal of optimization Theory and Applications, vol. 79, no. 1, pp. 157–
181, 1993.

[23] K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C. R. Collins, J. Schneider,
B. Poczos, and E. P. Xing, “Tuning hyperparameters without grad students: Scalable and
robust bayesian optimisation with dragonfly,” arXiv preprint arXiv:1903.06694, 2019.

[24] T. G. authors, GPyOpt: A bayesian optimization framework in python, http://github.
com/SheffieldML/GPyOpt, 2016.

[25] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter op-
timization,” in Advances in neural information processing systems, 2011, pp. 2546–2554.

[26] A. K. Uhrenholt and B. S. Jensen, “Efficient bayesian optimization for target vector esti-
mation,” in Proceedings of Machine Learning Research, K. Chaudhuri and M. Sugiyama,
Eds., ser. Proceedings of Machine Learning Research, vol. 89, PMLR, 2019, pp. 2661–2670.
[Online]. Available: http://proceedings.mlr.press/v89/uhrenholt19a.html.

[27] S. C. Endres, C. Sandrock, and W. W. Focke, “A simplicial homology algorithm for lipschitz
optimisation,” Journal of Global Optimization, vol. 72, no. 2, pp. 181–217, 2018.

[28] O. Delestre, F. Darboux, F. James, C. Lucas, C. Laguerre, and S. Cordier, Fullswof: A
free software package for the simulation of shallow water flows, 2014. arXiv: 1401.4125
[math.AP].

[29] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.
Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey,
bibinitperiodI. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R.
Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F.
Pedregosa, P. van Mulbregt, and S. Contributors, “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. doi: https:
//doi.org/10.1038/s41592-019-0686-2.

[30] C Mügler, O. Planchon, J Patin, S. Weill, N. Silvera, P. Richard, and E Mouche, “Compar-
ison of roughness models to simulate overland flow and tracer transport experiments under
simulated rainfall at plot scale,” Journal of Hydrology, vol. 402, no. 1-2, pp. 25–40, 2011.

38

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
http://proceedings.mlr.press/v89/uhrenholt19a.html
https://arxiv.org/abs/1401.4125
https://arxiv.org/abs/1401.4125
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2

	List of Figures
	Introduction
	Background and Problem Description
	Previous Work
	Aim and Limitations
	Structure of the Thesis

	Theory
	Infiltration Models
	Darcy's Law
	Richards Equation

	Green-Ampt
	MultiLayered Green-Ampt Model
	Two layered Green-Ampt model

	Chi Squared- and Noncentral Chi Square distributions
	Numerics
	IEEE Floating Point Numbers
	Compensated summation

	Gaussian Processes
	Optimization Methods, Background
	Sequential Model-Based Optimization - SMBO
	Acquisition function
	Gaussian Process Bayesian Optimization - GPBO
	Tree Parzen Estimator - TPE
	Target Vector
	GPBO
	TPE

	SHGO, Simplicial Homology Global Optimisation

	Implementation
	Visdom
	Implementation of Bidirectionally-coupled Infiltration
	Exact Numerical Solutions to the Green-Ampt Model
	Euler-Forward approximation of the Green-Ampt Model

	Coupling the infiltration model and the surface flow
	Implementation of Optimization
	Optimization Node
	AutoTracks

	Results
	Infiltration
	Dynamic vs Static Infiltration
	Euler Forward vs Exact

	Optimization
	Inverse Problem for Runoff in Thiès

	Closure
	Conclusion
	Future Work
	Acquisition Functions
	Infiltration Parameters

	Bibliography

