 CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Prototype-based compression of time
series from telecommunication data

Master’s thesis in Computer science and engineering

GABRIEL ALPSTEN
S Bl

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2019

MASTER’S THESIS 2019

Prototype-based compression of time
series from telecommunication data

GABRIEL ALPSTEN
SHARAN SABI

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Prototype-based compression of time series from telecommunication data

GABRIEL ALPSTEN
SHARAN SABI

© GABRIEL ALPSTEN AND SHARAN SABI, 2019.

Supervisor: Alexander Schliep, Department of Computer Science and Engineering
Advisor: Ellinor Range, Ericsson AB
Examiner: Devdatt Dubhashi, Department of Computer Science and Engineering

Master’s Thesis 2019

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: The time series in yellow can be modeled as the sum of the prototype in blue
and the residual in green.

Typeset in BTEX
Gothenburg, Sweden 2019

iv

Prototype-based compression of time series from telecommunication data

GABRIEL ALPSTEN

SHARAN SABI

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

This thesis explores a technique and use-cases for compressing time series data by
the development of prototypes. The methods explored revolve primarily around the
idea that a large group of time series can be represented by a much smaller number
of prototypes and the calculated residual values between the time series.

We evaluate different clustering techniques to develop prototypes, transform the data
by forming residual time series, and explore storage of the transformed dataset to file.
This is implemented and compared to two general-purpose compression techniques:
Snappy and Zstandard. Our techniques outperform Snappy and Zstandard for non-
constant time series, with significant improvements using an error restricted lossy
algorithm we present. This thesis further evaluates the use of the compressed format
for the prediction of missing data and discusses applications.

Keywords: Compression, Time-Series, Prototypes, Clustering, Prediction

Acknowledgements

We want to express our gratitude towards our supervisors, Alexander Schliep (Chalmers)
and Ellinor Rénge (Ericsson), for their continuous, useful feedback and guiding us
throughout our thesis work. We are also grateful for advice and ideas from Dan
Staby, Sima Shahsavari, and Mats Béckstrom, at Ericsson. In addition, a thank
you to Bengt Sjogren and Rosaria D’Alessandro for their help with setting up our
environment and making sure that we did not break it. We would also like to ac-
knowledge our examiner Devdatt Dubhashi for his helpful feedback and remarks
during the midterm discussion.

Finally, we would like to thank the whole team at Ericsson for keeping our morale
high with their constant support, long lunches, and fun afterworks!

Gabriel Alpsten and Sharan Sabi, Gothenburg, June 2019

vii

Contents

List of Figures

List of Tables

1 Introduction
Presentation of performance metricdata
Prototype-based compression

1.1
1.2
1.3

Related works

1.3.1 Principal Component Analaysis

1.3.2 Neural networks . .
1.3.3 Wavelets
1.3.4 Differential encoding

1.3.5 Clustering based approaches
1.3.6 General purpose algorithms

1.3.7 Summary

1.4 Ethical considerations . .
2 Theory
2.1

2.2

Similarity measures for time series L.

K-Means for Time Series .
2.2.1 Algorithm

K-shape clustering for Time Series
Modelling integers in binary

2.3
2.4
3 Methods
3.1 Data preparation

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Definition of Terms

Scale invariance with data normalization
Time invariance using similarity metrics for timeseries
Clustering and Prototype Calculation
Limitations of lossless residual compression

Lossy residuals
File storage
Prediction of missing data

3.10 Evaluation

4 Results and Discussion

xi

xiii

11
11
12
12

13
13
13
14
15
16
17
18
22
24
25

27

ix

Contents

4.1 Clustering Algorithms 27
4.1.1 Dynamic Time Warping 27
4.1.2 k-Shape and k-Means clustering 27
4.1.3 Comparing parameters of Greedy Clustering 30
4.1.4 Greedy clustering vs k-Means clustering 31

4.2 Compression for different counters 31

4.3 Lossy Compression 34

4.4 Comparison to Snappy and Zstd 36

4.5 Secondary compression using Snappy and Zstd 37

4.6 Prediction of missing data 38

4.7 Conclusion 41

5 Future work 43

5.1 Compression to enable simple architectures 43

5.2 Effects of compression on performance 44

5.3 Large scale prototype formation 44
5.3.1 Data preparation 44
5.3.2 Increasing number of prototypes 45
5.3.3 Large scale clustering 45
5.3.4 Lossy prototypes L 46
5.3.5 Time warping 46

5.4 Time series shorter thanaday 47

5.5 Compression format extensions 47
5.5.1 Missing values 48
5.5.2 Improved batch storage 48
5.5.3 Large scale data considerations 49
5.5.4 High speed decompression 49

5.6 Anomaly detection L 50

5.7 Predictions of future data oL 50

5.8 Multivariate analysis L 50

5.9 Summary of future work L 51

6 Appendix 55

1.1

1.2

1.3

2.1

3.1

4.1

4.2

4.3

List of Figures

Size distribution with outliers for 25 commonly monitored metrics
from 7 days of data for 350 random cells. Some counters are generally
zero and only infrequently non-zero whereas other metrics vary over

large ranges of scales.

Four characteristic shapes of metric time series. Counter 0, 52 and
32 are similar as the samples vary with 0 being more random and
having more complex trends. Counter 60 and 29 are near constant
at either zero or some other level. Counter 59 show relatively large
perturbations but neither have sub-sequences of constant values nor

distinguishable trends. L.

The time series in yellow can be modeled as the sum of the prototype

in blue and the residual in green.

Euclidean Distance vs Dynamic Time Warping

Figure (a) represent the compressor function for ¢ = 0.1 and the
values produced are significantly made smaller. Figure (b) represent
the corresponding expander functions that restore the compressed
values to the precision ¢ = 0.1. Note that both functions are linear
and identical for 0 < z < 10 as no greater steps can be taken without
violating the error constraint in definition 3.7.1, and that 223 is the
last integer to obtain the compressed value 25. Figure (c¢) combine

the two functions, often referred to as a quantizer.

Normalized data from k-Shape clustering on Counters 0, 29, 32, & 59

(N=9372, K=1280).

Comparison of compression achieved by k-means vs Greedy clustering
for the best performed value of k for counter 32. Storing the data raw

with 32-bits per sample require 2.88 % 10%® bits.

This figure compares the size of storage of the original dataset af-
ter batch packing (blue) and the lossless residual file (orange) which
includes the prototypes, residuals, scaling factors, and assignment la-
bels. Storing the data raw with 32-bits per sample requires 2.88 * 108

bits. . . .

xi

List of Figures

xii

4.4 The figure shows the comparison of lossy residuals to lossless residuals
(orange) when they are both stored as files in a batch packed form,
for the acceptable imprecision constant € = 1% (green) and ¢ = 10%
(red). They are also compared to only batch packing (blue) to show
relative decrease in file size. Storing the data raw with 32-bits per
sample requires 2.88 x 10® bits.
4.5 Comparison of prototype based compression to two widely used com-
pression algorithms: Snappy and Zstd. The figure shows comparison
for 5 different counters with 1280 prototypes in the prototype com-
pression. Here Snappy (purple) and Zstd (brown) shows the file size
after using the compression technique on the dataset which was con-
verted to byte form. Storing the data raw with 32-bits per sample
require 2.88 x 108 bits.
4.6 Usage of Snappy or Zstd as a secondary compression method, where
snappy or zstd was used to compress the file that contains the proto-
type based compressed data. Storing the data raw with 32-bits per
sample require 2.88 x 108 bits.
4.7 These plots show examples of predictions for various counters. The
prototype averaging tend to be very similar to the averaging of the
true time series, but sometimes miss features that are recurring for a
particular cell. Example (b), (e) and (f) show that averaging is prob-
lematic with data that has many sporadic outliers. In these cases it
is impossible to predict the exact timing of peaks, but it may inves-
tigated if it is possible to predict low levels more accurately together
with aspects such as outlier frequency and peak levels.

5.1 1In the top left, the true time series and a prototype are shown. The
bottom left show the resulting residual. As the batches are stored,
the size describes a bounding interval for the residual values. The
same bounding interval can then be applied to the scaled prototype
instead of decompressing the residuals

6.1 Normalized data from k-Shape clustering (N=9372, K=1280, Counter
0). o
6.2 Normalized data from k-Shape clustering (N=9372, K=1280, Counter
29). 8922 of the time series can be described as a constant line or 0,
see (a). The heatmap show a small fraction of data at y=0, dragging
down the mean center slightly. The rest of the clusters with contains
series with perturbations such as the onein (b)
6.3 Normalized data from k-Shape clustering (N=9372, K=1280, Counter
32).
6.4 Normalized data from k-Shape clustering (N=9372, K=1280, Counter
5O).

3.1

3.2

3.3

4.1

List of Tables

This table show some examples of compressor, (). Note that no loss
of precision occurs for values < €' and that compressor (z) grows

slowly beyond e™'.

This table show the number of significant bits for the examples of
compressor,(z) in table 3.1. The compressor does not provide any
compression on numbers smaller than ¢! but the number of bits

required for large numbers plateau. L.

File format where each item is laid out in the order they appear in the
table. |P| and |R| specify the number of prototypes and time series
so that the rest of the file can be read correctly. P is laid out as a
multidimensional C-array, where the elements of the first prototype
are stored first, then followed by the elements of the second prototype,
and so on. u, ¢ and R stored with matching ordering, so that the
™ element reference the same time series in each of these entities.
Also, if u; store the number 4, this reference the i* prototype in P.
In order to keep the format and the evaluations simple, this format

does not store any metadata.

Table summarizing clustering on N = 9372 with K = 1280, using K-
means and k-Shape for different counters. The results are evaluated
by measuring the sum of absolute differences of values from each time
series to the center of the cluster. Mean/Sample shows the mean value
for samples in each counter and bits show the average amount of bits
that would be required to store the samples. The table is divided into
three: Original, which shows the mean of the samples in the dataset
and the bits/sample required to store them; k-Shape and k-means,
which show the mean of the samples in the residual dataset after

clustering and bits/sample required to store them.

xiii

List of Tables

Xiv

4.2 Table showing results from running the greedy clustering on a dataset
of 9372 time series for various parametric settings on different coun-
ters. Here D denotes the distance measure used for comparison of
time series in the cluster, 7, the threshold value defined for creating
a new cluster, and K, the number of clusters that were formed by
the clustering. It also shows the number of bits required to store the
original dataset in a batch packed form, the bits required after com-
pression using greedy clustering and the compression ratio. Storing
the data raw with 32-bits per sample require 2.88 * 10% bits.

4.3 Table showing how lossy residuals, see Definition 3.7.5, reduce the
size of residual files.

4.4 Execution times from running the averaging of 10 days of data, see
Equation 3.7, and averaging of used prototypes, see Equation 3.8.
Each time series dataset was stored as uncompressed 32 bit integers
at 36MB whereas the residual file header was stored uncompressed at
1MB and it contained 1280 prototypes. The experiment was imple-
mented in Python providing computational speed far below expected
values but the results still illustrate potential speedups. The running
times were averaged over 6 runs. L.

4.5 Comparison of prediction errors for different counters. The 3928 test
data time series is normalized using 1-mean normalization and the
same normalization factor is used for the predictions. In total, the
test data for each counters contains 377088 samples. (*) Only for
non-zero samples. L

4.6 Comparison of prediction errors for different counters. The 3928 test
data time series is normalized using 1-mean normalization and the
same normalization factor is used for the predictions. The prototypes
come from k-means clustering with k£ = 1280. (*) Only for non-zero
samples. ... L L

6.1 k& Shape clustering on Counter 0
6.2 k-means clustering on Counter 0
6.3 k-Shape clustering on Counter 29
6.4 k-Means clustering on Counter 29
6.5 k-shape clustering on Counter 32
6.6 k-means clustering on Counter 32
6.7 k-shape clustering on Counter 59
6.8 k-means clustering on Counter 59

1

Introduction

In recent years, the amount of data collected has seen an upward trend. As the
use of big-data applications grows, the cost of storage and computation increases.
Compression methods have shown promising results to reduce these costs and enable
the development of applications that work with big-data. Compression has not only
the potential to reduce storage and communication requirements, but also speed up
computation by working on more information-dense representations of the data. Our
thesis explores compression of time series data generated from radio base stations
produced by Ericsson. Finding efficient schemes to compress the data has potentially
huge benefits.

In this thesis, we develop a method of prototype-based compression. If some time
series are similar to many other time series in the dataset, we can form prototypes and
each series can be defined by the residuals, the difference, to one of these prototypes.
If a small number of prototypes represent the dataset well, then the prototypes and
the residuals together would need smaller storage than the original dataset.

We consider both lossless and lossy storage schemes. Lossy compression has the
potential of obtaining much higher compression ratios at the expense of fidelity, but
the usefulness depends on the application. Furthermore, the storage format can be
decompressed in progressively more accurate steps, enabling applications to read
data accurately or read a smaller sized version inaccurately from the same file. We
demonstrate this concept with the implementation of a prediction task.

1. Introduction

1.1 Presentation of performance metric data

The data used in this study arise from event counters and status measurements
tracking the performance of radio access network cells. In the rest of this study,
we will refer to these different values as counters. These counters are sampled four
times per hour, forming time series of 96 samples each day, and we used up to 93 000
such time series. To make this project manageable, we looked at a representative
subset of the counters. Figure 1.1 shows how a selection of commonly monitored
metric values vary in size. Some of the metrics are almost always zero, or some other
constant value, whereas other metrics vary much more. Figure 1.2 show typically
occurring types of shapes that the metric time series have. Even if many metrics
take on large values that require many bits to be represented, the properties for data
collected from the same cell tend to stay very similar over time.

Size of samples in bits

=
et =1

=
=]

Bits required per sample

Performance metrics

Figure 1.1: Size distribution with outliers for 25 commonly monitored metrics
from 7 days of data for 350 random cells. Some counters are generally zero and only
infrequently non-zero whereas other metrics vary over large ranges of scales.

1. Introduction

Typical time series metric shapes

(a) Counter 0 and 52. The time series (b) Counter 32. The samples revolve

have relatively large random variations around well distinguishable constant

but typically have some trend. levels or, as here, wave shapes. Per-
turbations are frequent but of relatively
small magnitude.

(c) Counter 60. Four time series that (d) Counter 29. Samples are near con-

have sporadic non-zero values. stant, with infrequent changes or per-
turbations. Note that there may be mi-
nor variations the exact level for a time
series.

:l

(e) Counter 59. Four time series with
random variations and relatively large
spikes of perturbations.

Figure 1.2: Four characteristic shapes of metric time series. Counter 0, 52 and 32
are similar as the samples vary with 0 being more random and having more complex
trends. Counter 60 and 29 are near constant at either zero or some other level.
Counter 59 show relatively large perturbations but neither have sub-sequences of
constant values nor distinguishable trends. 3

1. Introduction

1.2 Prototype-based compression

The dataset comprises of 93,969 time series, which are in turn composed of 96
samples over the period of 24 hours. The time series data come from various sources,
and vary in magnitude by a large range, depending on the source. The time series
plots show that many of them follow similar trajectories over the course of a day.

Clustering can be performed on the dataset to group similar time series, and a
prototype can be found from each cluster. The prototype will be a time series, and
it may be the cluster center, or the median of the cluster elements. A cluster can
now be stored as a prototype along with the residuals of time series in the cluster
to the prototype. A residual time series is found by calculating the differences of
each time series in a cluster to the cluster prototype. The sum of the bits required
to store the prototype time series along with the residual time series for each time
series in the original dataset, will effectively be less than the original time series.
This hypothesis is based on the following assumptions: 1) The same prototype can
be used to represent multiple time series 2) The residual time series will have values
significantly smaller than the original time series, since we expect the time series
to be very similar to the prototype used to find the residuals. This in turn saves
storage space since smaller numbers require less no. of bits in a packed storage.

An illustration of a prototype and residual
—_— A M A S

+

Figure 1.3: The time series in yellow can be modeled as the sum of the prototype
in blue and the residual in green.

The compression strategy proposed above, of storing residual and the prototype
instead of the original time series, is a lossless process since the original data can
be recreated without any loss. In order to achieve greater savings in storage space,
we can also store the residuals in a more compact form at the expense of precision.
This idea of lossy compression is also explored further in the project.

In addition to serving as a general purpose compression format for time series, the
compressed format is itself useful since pieces of the structure provide a condensed
representation of the dataset as a whole. The prototypes, the assignments and other
parts of the compressed format may be useful for some computation tasks, answering
querries approximately without the need of decompressing and restoring the residu-
als. For those tasks, in particular, the effective compression will be considerable as

4

1. Introduction

the assignment or other stored parameters are much smaller than the 96 values of
the whole time series.

1. Introduction

1.3 Related works

1.3.1 Principal Component Analaysis

One method used for time series analysis is the statistical method, Principle Com-
ponent Analysis (PCA). PCA uses an orthogonal transformation to convert a set of
observations of possibly correlated variables (entities, each of which takes on var-
ious numerical values) into a set of values of linearly uncorrelated variables called
principal components [1]. However, this method may fail to model the data without
information loss and does not utilize inherent similarities within similar sets of time
series.

1.3.2 Neural networks

Neural networks are powerful in many machine learning tasks and can often find
dense representations of data by projecting into lower spaces. This may be achieved
by training a network to reduce the input data to a few values and then recon-
struct the original data (auto encoder). Other techniques involve reusing a network
trained for one task by extracting the feed forward state at some layer of the net-
work. However, neural networks are often computationally expensive and are hard
to introspect.

1.3.3 Wavelets

Agarwal et al. [2] worked with a time series that stretched over many days. They
found that the data from subsequent days and spatially closely located sensors had
clear similarities. They utilized these features by arranging the data in a three di-
mensional matrix with the axes time, day and location, which was then compressed
using methods designed for images. They showed that this arrangement could pro-
vide higher rates of compression compared to data that was arranged in only two
dimensions. A limitation of this approach is, however, that the compression only
utilizes the similarities of values that are close to each other in the matrix structure,
that are, neighboring values in time, day and location.

1.3.4 Differential encoding

One approach to compressing sequences is differential encoding. It is based on
predicting values with some simple function and then only storing the residual. If
the predictions tend to be close and the residuals are smaller than the original values
and can be stored more compactly. One such application is the audio compression
algorithm FLAC which calculates predictions as a linear combination of preceding
samples and store residuals with the variable length coding scheme Rice [3], typically
obtaining a 50-70% compression rate. A recent algorithm Sprintz [4] designed for

6

1. Introduction

IoT sensors do linear predictions and store residuals in small batches of evenly sized
numbers. By utilizing run-length encoding of zeros, online parameter learning and
a final step Huffman encoding, Sprintz achieved a 50-70 % on a number of tested
datasets while maintaining high speed.

Differential encoding of linear predictor functions provide a simple and some times
a very effective compression strategy. However, these algorithm tend not to perform
well on data that is relatively sporadic [4] and fail to make use of redundancies on
a data set level. Since the predictions made for each sample is individual for each
time series and sample, it is not straight forward how the compressed format can be
useful without decompression.

1.3.5 Clustering based approaches

Vector quantization is a lossy compression method for vectors that tend to perform
better than compression methods operating on single values [3]. The vectors are
clustered with a variant of k-means. Variants of the algorithm likely exist, but the
most common one minimizes the overall error but does not provide any guarantee
on the precision of each value in the vectors.

Aghabozorgi et al. [5] presents an approach for clustering time series data with k-
means by using prototypes. Their prototypes are cluster centers with number of data
points reduced, making them more efficient for querying. However, their approach
provides no obvious path to data compression.

Basheer and Sha [6] applied compression techniques to reduce the communication
required between wireless sensors. They clustered sub sequences of the data and
assigned Huffman codes to each of these clusters, providing an error restricted lossy
compression. Although they showed the utility of clustering techniques for time
sequences, their technique does not utilize the similarity between different time
series.

Ding et al. [7] clustered time series with DBSCAN. They presented a parameterless
dimensionality reduction based on the algorithm piecewise aggregate approximation
(PAA) and argued that a random sub sample is acceptable for clustering. In addi-
tion, they used L! norm as similarity metric, which is fast to compute and is resilient
to outliers.

1.3.6 General purpose algorithms

There exists a number of general purpose loss-less compression algorithms. One
common one is GZIP, but recently some new techniques such as Zstd, Brotli and
LZ4 have improved computation and compression ratio trade-offs [4]. These may
serve as a good baseline for comparison. Since time series tend not to have exact
repetitions of sub-strings, it is a hard challenge for dictionary based compressors to
find good patterns. Thus, they don’t have the potential to compress very well[4].

1. Introduction

1.3.7 Summary

In summary, we have identified several different strategies in the literature relevant
for compression of time series where some operate on single time series and some
on a data set level. The data set level compression strategies are based on either
neural networks or clustering of vectors or time series. However, these referenced
works tend to only provide lossy compression. Therefore, some similar clustering
techniques may be combined with encoding of residuals to provide a lossless or error
restricted lossy compression as described in section 3.8.

1.4 Ethical considerations

The use of telecommunication performance data for machine learning tasks and
analysis is not new, but having data that is better compressed may help in doing
it at a larger scale. The data is used to find problems (anomalies) in the networks
and cells. It also helps in finding out where new equipment is most needed based
on performance. Indirectly, the data analysis could help the network operators get
better performance from their mobile networks and help them utilize the resources
allocated for the purpose better. This study does not deal with any personal data
of the end users as the data used are mainly performance metrics from the various
machines in the mobile networks, so there are hardly any privacy issues concerning
this task. Compression techniques are not new and can be used for many other
applications as well, those for which, it is hard for us to analyze our impact.

2

Theory

2.1 Similarity measures for time series

An empirical evaluation of similarity measures for time series data was presented
by [8]. We use some of these similarity metrics in the clustering algorithm, and
evaluate how well each of them perform in finding a prototype that gives us the
smallest residuals. They are:

e L' Norm — L! norm is the sum of absolute differences of components the
vectors in a space. It is also sometimes known as Manhattan distance or
Taxicab norm. It assumes equal weightage to all components of the vector.
Comparing the similarity of two time series using L' norm can be done by
adding up the L' norm values of corresponding points from start to end of the
two series assuming they have equal length. Here, value 0 would indicate that
the time series are exactly equal to each other.

« Euclidean Distance — Sometimes referred to as L? norm, the euclidean dis-
tance between two points p and q is the length of the line segment joining the
points p and . It can be calculated using the cartesian coordinates of the
two points in an n dimensional space. If p and q are two points in Euclidean
n-space, then the distance (d) from p to ¢, or from ¢ to p is given by the
Pythagorean formula:

n

d(p.q) = (@1 =) + (g2 = o) + oo+ (@ = pa)® = | D (0 = p)* (21)

=1

Comparing the similarity of two time series using Fuclidean Distance can be
done by adding up the Euclidean Distance values of corresponding points from
start to end of the two series assuming they have equal length. Here, value 0
would indicate that the time series are exactly equal to each other.

e Dynamic Time Warping (DTW) distance — Dynamic Time Warping is an-
other classical approach in time series similarity calculation. It is very useful in
detecting similarities when one time series might have values added in a more
accelerated or decelerated manner at varying interval but behaves similar in
terms of magnitude. It is also useful in comparing time series that are similar

9

2. Theory

\u - \ /-
Euclidean Matching

Dynamic Time Warping Matching

Figure 2.1: Euclidean Distance vs Dynamic Time Warping

10

but may have varying lengths. In general it is able to compute an optimal
match between two time series if 1) Every point in one series is matched with
one or more points from the other series 2) The first and the last point of one
series must be matched with the first and the last point of the other series
respectively 3) The matching of points from the first sequence to the other
must be monotonically increasing and vice versa. DTW is often referred to
as an elastic dissimilarity measure. It works by finding an optimal alignment
between the time series. The cost of this alignment can often be computed by
the recursive formula

D;; = f(xi,yj) + minD; j_1, D1 j, Di—1 ;-1 (2.2)

fori =1..M and j = 1..N where M and N are the lengths of the time series.

Cross Correlation — Cross Correlation is another similarity measure between
two time series. It is sometimes known as the sliding dot product. It is very
useful in searching one long time series for a shorter time series. It is calculated
as a product of the function of the two time series t; and ty, by keeping t;
series stationary and sliding the other series over it point by point, with the

2. Theory

first shift being the first point of #; corresponding to the last point of ¢, and
the last shift being the last point of #; corresponding to the first point of ¢,.
For two time series t; and to, the cross-correlation at each shift s can be defined
as

(t * t2)(5) = / t(x + 8)ta(2)dx (2.3)
where x is the time index ranging from 1..M for ¢, with length M.

When calculating the similarity of two time series, simply comparing sample to
sample as is done in L' norm and ED may not reveal all intuitive similarities.
For example, two time series may have similar features without being perfectly
aligned, resulting in a relatively large distance metric. Instead, metrics such as
Cross Correlation and DTW match samples more flexibly so that they may discover
similarities to a greater set of time series.

2.2 K-Means for Time Series

k-means [9] is a clustering method used in Data Analysis. It takes in a dataset of N
data-points (1, xs, ...x,) and forms K clusters S;, S, ...Sg in which each data point
is assigned to the cluster with the closest mean which we call the prototype for the
cluster. The objective of the algorithm can be described as :

k
min 3 fla il (2.4)

i=1 €St

where p; is the mean of data points in .5;.

2.2.1 Algorithm

The algorithm assumes an initial set of k means my, ma, ..., my.

In the assignment step on the t™ iteration of the algorithm can be shown as fol-

lows, where each data point is assigned to the cluster whose mean has the highest
similarity. [10]

SZ-(t) = {(Ep : pr —m?

(2

P < e —m| i1 << k) (2.5)

In the update step, new centroids for the (t+ 1):h are calculated for all clusters after
the assignment step.

1
mgtﬂ) = > (2.6)

The assignment step and the updation step, is repeated a specified number of it-
erations or until the updation step no longer changes assignments. There is no
guarantee that the algorithm will find an optimum [11] and the problem is NP-hard
in the general Euclidean Space even in a simple case of 2 clusters.

11

2. Theory

2.3 K-shape clustering for Time Series

K-shape [12] clustering works similarly to &-means but it also addresses the problems
of scaling and translation variances that may be present in the data. The data is
normalized to gain scale invariance. Cross correlation similarity measure is used to
find an optimal alignment between two time series to gain translation invariance.
By using Fast Fourier Transform the complexity of computing cross correlation go
down to O(m log(m)), which is orders of magnitude faster than DTW or ¢cDTW.
This works by keeping one signal static and sliding the other one over the former
to compute their inner product for each shift s of the latter. After all possible
shifts are considered, a cross correlation sequence of distance m is defined. The
goal is to compute the position w where the cross correlation is maximized. The
cluster center calculation is an iteratively improving method that optimizes the
shift distance for the members in the cluster. This algorithm may be interesting
for use with Telecommunication performance data since each day in the data is
relatively short, and the data has relatively few number of distinct shapes in each
time series. However, this technique alone does probably not handle big sample to
sample variance efficiently.

2.4 Modelling integers in binary

Integers are typically stored using a well-defined size, commonly 8, 16, 32 or 64
bits. However, when compressing integers, it may be desirable to store with flexible
sizes. It is therefore relevant to analyze the number of significant bits in a stored
integer, that is, the lower bound for how many bits are required. For example, the
integer nine can be stored in binary like 1001, using four significant bits. If nine
is stored using more bits, it entails padding of zeros which contain no information.
The number of significant bits can be calculated with

bits(z) = { [logy(z + 1)] if x unsigned integer 2.7)

[log,(2|z| 4+ 1)] if x signed integer

where the +1 inside the log, is needed as 0 take up space on the number line. Signed
integers need to model both positive and negative values which lead to an extra bit
for the sign. Zeros may not require any bits at all. 232 — 1 = 4 294 967 295 is the
largest value that can be stored in a 32-bit unsigned integer.

Negative integers are commonly stored in 2-complementary form. However, as the
sign is stored in the most significant bit, all bits become significant. Another encod-
ing for signed integers is zigzag encoding. Zigzag encoding interleave positive and
negative values in the sequence [0, —1,1,—2,2...]. This allows small negative values
to come closer to zero and have fewer significant bits.

12

3

Methods

3.1 Data preparation

The data and the environment for computation are provided by Ericsson. The data
is already pre-processed, reducing the effort which was required to isolate a suitable
data set for this study. We needed to sort data from different network cells into a
format that is simple and flexible as we planned to try different kinds of calculations
requiring us to write customized code for filtering and visualization etc. For initial
analysis, visualization and tests we will use six small datasets of 9,732 time series,
each containing 96 values, consecutively measured every fifteen minutes, over a day.
Later, for testing large scale clustering and compression ratios, we use a larger
dataset containing 93,969 time series. The time series data comes from different
event counters on various radio equipment controlled by Ericsson. Each dataset
represents a different counter. We chose the counters based on the shape of the
time series formed by their data, so we represent the common types of counters.(see
Figure 1.2. Initial analysis showed that some counters contained null values. We
replace the null values with -1 for computational purposes.

3.2 Definition of Terms

Definition 3.2.1. (Time series data set). A data set X, X, for a time series with
the identifier t.

Definition 3.2.2. (Prototype). P for the collection of prototypes. P; for one
prototype with identifier i.

Definition 3.2.3. (Prototype assignment). u denote a mapping from time series to
prototype identifiers. For example, P, is the prototype assigned to time series ¢
Definition 3.2.4. (Residual). R is the the transformed data set. P, must have the
same dimensions as X;. R, is formed with

R, = Xy — Py
and the original data is restored with
Xy = R, + Py

13

3. Methods

Definition 3.2.5. (Residual parameter). The use of a prototype may be accompa-
nied with the application of some parameters ¢;. A specific ¢; relate to one time
series X; and need to be stored alongside the residuals. ¢ denotes the collection of
all parameters.

3.3 Scale invariance with data normalization

Since the time series dataset contains many times series that have a similar shape,
it is natural to assume that they would fall into the same clusters while clustering
and use the same prototype during compression. However, they sometimes have
substantial differences in scales of magnitude. This can cause them to cluster im-
properly. One way to resolve this issue is by normalizing the time series around the
same mean value.

In the motivation for the clustering algorithm k-Shape [12], the authors claim that
scale normalization of data yields scale-invariant clusters. The normalization strat-
egy used by k-Shape is z-normalization, or zero normalization, that shift time series
so that the mean overall samples is zero and then scales the samples so that the
variance is equal to one. However, which normalization strategy is chosen should
depend on the properties of the data at hand.

For many of the performance metrics we have observed, the low values of activity
occur during night time. The measurements during the daytime often vary a lot. If
samples are shifted in order to make the average of the day normalized to zero, then
the predictable and commonly similar values of the low-activity hours are shifted
out of place. Therefore, it may match our data better to only scale the data and
not shift values, but this is a topic for comparative evaluation.

When a normalization strategy is in place, a practical approach is to apply the
normalization to the whole dataset as a preparation for the clustering algorithm.
The clustering later produces a set of prototypes that will be in the normalized
domain. In order for the prototypes to be used, they need to be upscaled to match
the original scale of the time series. If a normalization process N (X, @) normalizes
the time series X; with the argument «a, the inverse normalization process N~!(P;«a)
applied to a normalized prototype P; will make it similar in scale to X;. Therefore,
we introduce ¢;, as the inverse normalization factor for X;, and the residual to a
normalized prototype become:

Definition 3.3.1. (Scaled prototype residual).

R, =X, — (@,a * Pu(t)—‘
and the original data is restored with
Xt - Rt + ’7¢t,o¢ * Pu(t)—|a

where P,(t) and ¢, are floating point numbers whereas R; and X, are integers.

14

3. Methods

3.4 Time invariance using similarity metrics for
timeseries

Commonly when comparing vector type objects, such as time series, pairwise com-
parison on samples at corresponding indices is performed. For time series, however,
it is natural that features may occur at slightly different timings without there being
a change of meaning. If time series are only compared against each other with fixed
alignment, slight miss-alignments of similar features may appear as there are no
common features at all. Two strategies were considered for this purpose: shifting all
samples in the prototype series uniformly in time, similar to cross-correlation, and
shifting samples individually similar to how DTW measure similarity, see section
2.1. This way, the prototypes are applied in the residual calculation in a form that
further minimize the residuals.

Shifting all samples uniformly and comparing similarity for each of these alignments
is efficiently performed by cross-correlation. The optimal alignment of two time
series according to the L? norm is given by argmaz,CC,(a,b), where CC is the
cross correlation vector and s is the alignment [12]. When cross correlation shift
time series, it pad the missing ends with zeros. Similarly, given an alignment, the
samples of a prototype can be shifted prior to application of the residual formula.
Definition 3.4.1. (Shifted prototype). Let

(|s| zeros, o, x1...Tm—s), s>0

shift, (%) = { [12]

(T1_g-e -1, Tm, |8| zeros), s <0

where m is the size of Z. Then residuals to a shifted prototype can be calculated
with

Ry = Xy = [0 % shifty, , (Pu) 1,

and the original data is restored with

Xt = Rt + Mbt,a * Shift(f?t?s (Pu(t))—‘ :

Instead, shifting samples individually similarly to DTW would be powerful as this
would allow for alignment features that have different lengths. In addition, not
every sample in the prototype would have to be compared against. However DTW
is computationally expensive, so it was largely ignored. In addition, the alignment
would need to be stored along with residuals. Since the storage format would have to
model any accepted alignment, the total number of possible alignments can provide a
lower bound for how many variants the format must be able to enumerate. By filling
a dynamic programming matrix over how many paths exist in the DTW alignment
matrix, it can be calculated that 2 bits is required per sample. Even when the
warping window is restricted, as in cDTW, close to 2 bits is needed even for small
warping windows.

15

3. Methods

3.5 Clustering and Prototype Calculation

The main algorithm we use for clustering and evaluation is K-means. We use eu-
clidean distance (ED) as similarity metric and optimization of the ED cost for cluster
center calculation. We further test a variant that uses dynamic time warping (DTW)
distance for similarity metrics. It also uses Dynamic Time Warping Barycenter Av-
eraging for center calculation. We also evaluate the faster variant called soft-DTW.
Another variant we evaluate, which utilizes cross-correlation as a similarity metric,
is called k-shape [12].

The algorithms mentioned above usually require multiple passes over the entire
dataset before they converge and this can prove to be expensive for large datasets.
We introduce a greedy clustering method which works as a two-pass algorithm. The
number of clusters K is not specified. In the first pass, we iterate through every
time series exactly once. The first time series is in a cluster by itself and is also
the prototype of the cluster. For each new time series, we calculate its distance to
existing cluster centers and if no cluster center is below a specified threshold value,
tau, the new time series is added as a prototype. In the second pass, each time
series is assigned to the closest matching prototype. We run the greedy algorithm
for multiple values of tau and using different distance measures and evaluate the
results.

Algorithm 1 Greedy Clustering

Input: dataset, tau, distance measure
Output: cluster assignments, prototypes
prototypes = [J:
Prototype formation :

. for for each time series x do
if there exist no prototype ¢ so that d(c,x) < tau then
add x to prototypes

end if
end for

Prototype assignment :

for for each data point x: do
find a prototype ¢ so that d(c,x) minimal
assign x to that cluster

end for

10: return cluster assignments, prototypes

It is noteworthy that even the similarity metrics that utilize time shifting, has a
cost very similar to ED. One important part of the ED formulation is that the
differences between the samples compared are squared. This gives a high penalty
for large deviations as squares grow faster, and holds even for very small numbers
such as those encountered when comparing normalized data. This type of cost
evaluation is different from the evaluation of the cost of storing residual integers.

16

3. Methods

Larger residuals do have a larger cost, but the cost only grows by [log,| of the
difference in residual, ignoring effects by batch bit packing during file storage.

When the clustering algorithms finish execution, it provides the cluster assignments
for the dataset and the prototypes for these formed clusters. We also evaluate
if improvements can be achieved by recalculating the prototypes for the clusters
obtained by using other center calculations: mean, and median.

Once the prototypes have been developed, they can be used to transform the time
series of the dataset into a residual form. For each of the time series, the best
matching prototype is picked for this purpose.

Prototypes can be formed on the basis of different kinds of similarity metrics. The
distance calculation measure used to calculate the residual should match the method
for which the clustering was made and how the cluster centers were calculated. For
instance, if the centers were recalculated, the distance measure should match the
method used for the recalculation. For example, if a center was formed without time
warping, it might be of little benefit to calculate time warped residuals, but this is
a question for evaluation.

The application of prototypes also depends on the data normalization strategy as
presented in section 3.3. As described, as the prototypes were formed in the normal-
ized domain, they need to be properly inverse normalized to match the magnitude
of the time series at hand.

3.6 Limitations of lossless residual compression

Blalock et al. [4] reported that they compressed 16-bit typed data sets worse com-
pared to 8-bit datasets. The reflection they gave was that large numbers are much
more precise and least significant bits are often more dominated by noise. Sayood
[3] also went into details of differential encoding, but neither of them analyzed when
differential encoding is effective or if there are any formal bounds.

An unsigned integer n requires [log,(n)| bits to be stored. Compression rate can
be described as one minus the ratio of the compressed and uncompressed size; for
instance, 100 bytes reduced to 80 bytes has a compression rate of 20 %. If we want
to achieve a compression rate ¢ by reducing the size of a number, we can only leave
[logy(n)](1 — ¢) number of bits for the prediction residual. The size of such number
can maximally be

Epnaz(n) = 9llogs(n)(1-c)] (3.1)

or simplified

Eonaz(n) = 2108200170 = pl=c (3.2)

This equation grows very slowly in comparison to n even for small c¢. It may be of
interest to compare the size of the original number n with E,,..(n). For instance, if

17

3. Methods

the properties of the data is such that the prediction algorithm can only get 20 %
close to the true value, compression is essentially non-existing except for small n.

- =n (3.3)

The above equation shows that compression only with residuals is limited to the
precision of the predictions and that it furthermore depends on the size of the
numbers. Prediction errors must be proportionally smaller when the numbers are
bigger in order to maintain the same compression rate.

3.7 Lossy residuals

So far in the thesis, the algorithms presented can be applied without information
loss. In order to increase the potential compression ratio, we present a formulation
of residuals that produce smaller numbers at the expense of fidelity by adopting
the concept nonuniform companded quantization [3]. Quantization means that the
number line is segmented to a specified set of levels that we will refer to as quanti-
zation levels. A value is mapped onto a quantization level, which is then stored as
an integer. This mapping is irreversible as a range of values may be mapped to the
same quantization level, hence, some information loss incur. Companded refers to
the quantization levels not being spaced uniformly. Prior to integer mapping, the
values are applied to a compressor function that stretch or compress areas on the
number line. This way, the compressor function provides quantization levels that
have higher precision where they are needed most. In order to restore the com-
pressed quantized values, an ezpander function is applied, which can be thought of
as a lossy inverse to the compressor function.

When analysing a lossy compression scheme, some error is allowed, but the error
cannot be too large. Common ways of measuring errors include the average absolute
error and the mean square error (MSE) [3]. However, a low score on these measures
does not guarantee any properties of each sample. For instance, occasional outliers
could be ignored without a substantial impact on MSE, whereas it may be outliers
that are most crucial to be stored precisely. Due to the difficulty of deciding if some
value is more important than another, we define a uniform criterion for how large
the error proportional to the value is allowed to be:

Definition 3.7.1. (Compression precision €). € > 0 is a precision parameter so that
every true integer x is proximate to its reported quantized value ¢ as defined by
g1 —¢€) <x<q(l+e).

For example, if ¢ = 0.1, then every true integer z is within £10% of its reported value
q. Based on the definition of e, restrictions can be formulated for the compressor
and the expander functions. Definition 3.7.1 state that the stored integer is either
larger or smaller than the assigned quantization level. Thus, the space between two
subsequent quantization levels [and [+ 1 are covered by two regions, one that will
be "rounded down" and one that will be "rounded up". The first region can at most

18

3. Methods

be € * expander(l) long and the second region at most € * expander(l + 1) long since
that is how far the error restriction reach. This is formalized by the expression

expander(l 4+ 1) — expander(l) < € x expander(l) + € x expander(l + 1), (3.4)

of which its equality formulation has the solution expander(z) = a* with a = %

For example, ¢ = 0.1 yield a ~ 1.222. Since a® solves the equation 3.4 for all
continuous x > 0, an expander based on this function will satisfy definition 3.7.1.
However, a® is not useful for small . For o < e !, the accepted error interval does
not stretch even to the adjacent integers and it is not desirable to use a greater
number of quantization levels than there are integers. For example, consider the
number 95 and € = 0.01. The accepted error interval for a quantization level centered
at 95 reach to 95(1 + 0.01) = 95.95 but not all the way to 96. The first time that
the accepted error interval includes another integer is at e~! = 100. Therefore, it is
more efficient that the first section of the expander function is linear.

Definition 3.7.2. (Expansion and compaction basis a).

_ l+e

@ 1—¢€

Definition 3.7.3. (Expander).

T x<el

expander,(z) = {Lelja“fteﬂ z>e!

For continuous variables, it is trivial to construct the compressor as an inverse to the
expander. However, the compressor also needs to do the correct integer mapping.
Each quantization value g has both a leading and a trailing accepted error interval
with the decision boundary being located at ¢(1 +¢€). Since a® = ¢ (14+¢) => 2 =
log,(¢q) + log,(1 + €), one may use log,(1 + €) as a constant to make the rounding
easier.

Definition 3.7.4. (Compressor).

x < el

T
compressor, (z) =
P (@) {Le_lj + [log,(we) —log,(1+¢€)] x>¢e!

19

3. Methods

Companded quantization (¢ = 0.1)

5 200

175
20

150

0.1)
0.1)

-
tn

125

w [}
h
% 2 100
2w E =
g b
54 309
P
0 0
D 0 100 150 200 0 5 bt 5 P =
integer x ®
(a) compressory(x), 0 < z < 223 (b) expandery,(z), 0 < x < 223
200 —
175
150
L)
ERbL
=3
T 100
s
g 7
i
=
0_
0 0 100 150 200
original value

(c) Resulting quantizer for 0 < z < 223

Figure 3.1: Figure (a) represent the compressor function for € = 0.1 and the values
produced are significantly made smaller. Figure (b) represent the corresponding
expander functions that restore the compressed values to the precision ¢ = 0.1.
Note that both functions are linear and identical for 0 < z < 10 as no greater steps
can be taken without violating the error constraint in definition 3.7.1, and that 223
is the last integer to obtain the compressed value 25. Figure (c¢) combine the two
functions, often referred to as a quantizer.

20

3. Methods

Examples of compressor, (z)

xle=10""]e=102%2]e=103]|e=10"* | e=10"°

10 10 10 10 10 10

100 21 100 100 100 100
1000 33 215 1000 1000 1000
10° 67 561 4454 33026 215129
10” 102 906 7908 67565 560517

232 _ 1 109 979 8636 74852 633389

Table 3.1: This table show some examples of compressor,(z). Note that no loss of

precision occurs for values < ¢! and that compressor,(x) grows slowly beyond ¢!

Examples of bits(compressor,(z))

x| bits(z) | e=10"1 | e=10"2|e=102 | e=10"* | e =107°

10 4 4 4 4 4 4

100 7) 7 7 7 7
1000 10 6 8 10 10 10
10° 20 7 10 13 16 18
10° 30 7 10 13 17 20

232 —1 32 7 10 14 17 20

Table 3.2: This table show the number of significant bits for the examples of
compressor, () in table 3.1. The compressor does not provide any compression on
numbers smaller than e~! but the number of bits required for large numbers plateau.

With this way of compressing values, we can apply it also for residuals. An intuitive
way would be to apply the compressor function on the residuals R, in which case
compressor,(R) represent the compressed distance between X and the used proto-
types. This yield improvements, but it is even more efficient if both X and the
prototypes are compressed with the residuals measuring the difference in quantiza-
tion levels.

Definition 3.7.5. (Lossy residuals to a scaled prototype).

Ry = compressor (X;) — compressor, (¢ qPut))
and the original data is restored with
X, = expander, (R, + compressor, (¢¢,qPu)))

Note that the reconstructed X, is of type floating point number as the error con-
straint € is not guaranteed if X; is rounded.

21

3. Methods

3.8 File storage

The stored residual file needs to contain the prototypes P, assignments u, parameters
¢, and residuals R. In order to store residuals compactly, using as few bits as
possible for each sample, we adopt the technique batch encoding. Integers are stored
in batches containing a batch header and a batch body. The batch body contains
eight integers and each integer is encoded using the same number of bits, that the
batch header specifies using 5 bits. 5 bits is enough to model the number range 0-31.
As residuals may take on negative values, the integers are stored in zigzag encoding,
see section 2.4. The complete file format is presented in Table 3.3.

File format for batch encoded residuals

Item | Number of values | Data type | Description

|P| 1 uint32 Number of prototypes
|R| 1 uint32 Number of time series
P | P| % 96 float32 Prototypes

u |R| uint16 Prototype assignments
R |R| float32 Scaling parameter

R | R| * 96 batches Residual batch bodies

Table 3.3: File format where each item is laid out in the order they appear in the
table. |P| and | R| specify the number of prototypes and time series so that the rest
of the file can be read correctly. P is laid out as a multidimensional C-array, where
the elements of the first prototype are stored first, then followed by the elements
of the second prototype, and so on. u, ¢ and R stored with matching ordering, so
that the t” element reference the same time series in each of these entities. Also,
if u; store the number i, this reference the i prototype in P. In order to keep the
format and the evaluations simple, this format does not store any metadata.

This format is compared to a variant that employs run-length encoding of zeros.
With run-length encoding, an additional value in the header specifies the number
of proceeding of 0’s. This way, several samples may sometimes be skipped over
efficiently. Since our time series are of length 96, we use 7 bits for this purpose.

These two formats are inspired by the compression algorithm Sprintz [4], that em-
ploys run-length encoding. The authors of Sprintz argue that a batch size of eight
samples is a good tradeoff considering the cost of storing batch headers. If batches
are short, the cost of storing the header is proportionally high. If instead, batches
are long, then large sporadic values will cause a greater number of samples to be
stored inefficiently. However, this tradeoff was not evaluated in this thesis. Fur-
thermore, Sprintz is efficiently implemented using SIMD instructions, CPU vector
instructions, which was not done in this thesis. Instead, the python library bit-
string [13] was used. It is possible that an implementation using SIMD instructions
would benefit from additional padding within batch headers and bodies to make
more values byte aligned, but this was ignored for simplicity. Further ideas on how
the format may be developed are presented in section 5.5.

22

3. Methods

Given the file format for batch encoded residuals as shown in table 3.3, we can also
formulate a mathematical way of calculating the file size where

bits_batch_bodies(Z) = > 8x max bits(b;) (3.5)

bebatches (&)

calculates the number of bits in one batch body. The size of the whole file can then
be calculated with

2% 32+ |P|*96%32+ |R| % (16 + 32+ 12 5) + > _bits_batch_bodies(R,). (3.6)
t

that also represent the true optimization target.

23

3. Methods

3.9 Prediction of missing data

In order to illustrate the idea of using a compressed format for computation, we
present a simple algorithm for predicting missing data. As the time series has
similar properties over the course of days, a good guess for missing data is that it
should be similar to known days. For a cell ¢ and the known set of days, History(c)
of size N, the average time series is calculated with

f(c:i X (3.7)

¢ teHistory(c)

This can be performed with a single pass over the dataset by incrementing the
instances of N, and the sums of X;, and doing the division at the end. Similarly,
averages can be calculated on the predictions provided with prototypes with

Xc — ﬁ Z ¢t,aPu(t)~ (38)

¢ teHistory(c)

The usage of only parameters for this task drastically reduce 1O requirements. Read-
ing an uncompressed dataset with 32-bit integers, N time series of 96 samples re-
quire reading 32 x 96N = 3072N bits, given the storage format provided in section
3.8. Reading the parameters P, v and ¢, comparatively require approximately
96 * 32| P| 4+ (16 + 32) N = 3072|P| 4+ 48N bits. With |P| = 0.01N, the compressed
format require approximately 79N bits, a reduction of 97.4%.

For the evaluation, it was assumed that the mapping History(c) was known so that
considerations revolving metadata didn’t need to be addressed. The arithmetic was
implemented using the Python library Numpy. Furthermore, the algorithm is not
meant to provide competitive predictions as it mainly serves as an illustration. Some
more ideas on the problem are provided in section 5.7.

24

3. Methods

3.10 Evaluation

We evaluate different clustering methods and try different n and k. We also investi-
gate the effects of recalculating the cluster centers, i.e., prototypes, and calculating
the residuals on the basis of different distance measures. The effects of using lossy
residuals in terms of savings in storage space and accuracy is also evaluated. We
evaluate these on different datasets, which consist of time series representing differ-
ent performance management counters provided by Ericsson.

After the clustering is done, the prototypes and residuals that represent the dataset is
stored into file formats as specified in section 3.8. Different file formats are compared
to each other, to see how storing them in batches of packed bits evaluate against
storing them with a run-length encoding of zeros. We also compare the file sizes
to the size of the file which contains the original dataset in bit packed form This
evaluations gives us the compression ratio of storing data using our prototype based
compression technique to the original dataset. We compare the results from our
compression to compression sizes obtained by compressing the dataset in byte form
using two standard compression techniques: Snappy and Zstd.

To evaluate how well, the prototype represents the entire dataset, we also use them
to predict a new time series for a whole day. We also assess how well it can perform
at predicting missing values in a time series. These predictions will be evaluated by
comparing them to a test dataset and measuring the accuracy.

25

3. Methods

26

4

Results and Discussion

In this chapter we present and discuss different results obtained from the execution
of the methods described in the Methods chapter: Implementation and comparison
of different clustering algorithms, results for compression ratios, lossy compression
and comparison to two standard compression techniques.

4.1 Clustering Algorithms

4.1.1 Dynamic Time Warping

First of all, we found that DTW and cDTW with DTW averaging to calculate
clusters, and soft-DTW were very slow to run. For instance, running DTW with NV =
400 and k = 40 took roughly half an hour. This may be due to the implementation
of DTW in the library. For instance, cDTW seemed to run consistently slower than
DTW. We found that it ran faster when the convergence criterion for the cluster
center calculation was changed, but it was still too slow to be practical.

4.1.2 k-Shape and k-Means clustering

We ran k-Shape and k-Means clustering on a datasets with 9,372 time series using
different values of k. The tables comprising of results for different values of k, for
different counters can be found in the Appendix. Initially, the cluster centers were
recalculated and the difference it causes can also be inferred from the tables. Here
we show a summarized table for k=1280 since we saw that k=1280 gave the best
results.

The following tables presents the summarized results:

27

4. Results and Discussion

Table 4.1: Table summarizing clustering on N = 9372 with K = 1280, using K-
means and k-Shape for different counters. The results are evaluated by measuring
the sum of absolute differences of values from each time series to the center of the
cluster. Mean/Sample shows the mean value for samples in each counter and bits
show the average amount of bits that would be required to store the samples. The
table is divided into three: Original, which shows the mean of the samples in the
dataset and the bits/sample required to store them; k-Shape and k-means, which
show the mean of the samples in the residual dataset after clustering and bits/sample
required to store them.

Original K Shape k-Means
Mean/Sample Bits Mean/Sample Bits Mean/Sample Bits
Counter 0 206950.2 16.5 2355452 174 68617.3 15.6
Counter 29 76110633.9 27.3 23050.2 0.5 0.0 0.0
Counter 32 821282.5 20.8 9105.6 11.9 6972.0 13.1
Counter 59 76320.9 13.2 92910.2 124 56810.2 14.6

Figure 4.1: Normalized data from k-Shape clustering on Counters 0, 29, 32, & 59
(N=9372, K=1280).

(a) Cluster 20 (b) Cluster 829
5 | —— cluster members {7/56) 1004 1 —— cluster members {7/11)
—— k-Shape 1 —— k-Shape
44 —— Mean 1003 —— Mean
3] Median 1002 4 Median
1001 A
2] A RAN
1000 =
4 VPvw .y v |
Y 0.999 |
0 4
0.998 4
] 4
0.997 4
-2 , :
o 20 0 0 g0 o 0 40 B0 80
(c) Cluster 10 (d) Cluster 31

—— cluster members (7/21)
8 — kShape
—— Mean

Median

14
13 A
12 A
11 A

10 4 /

09 —— cluster members (7/16)
08 | —— k-Shape
= Mean
0.7 4 Median
0 0

P &0 80

The data in the tables, presented above and in the Appendix, show the evaluation
results from running k-means and k-shape clustering on a dataset consisting of 9732

28

4. Results and Discussion

time series vectors for different values of K = 30, 320 and 1280. k-Means performed
better than k-shape clustering in most cases whereas k-shape performed slightly
better in specific instances. It is hard to infer a pattern of cases where k-shape was
better since it seems rather sporadic.

Comparing results from the different counters show that some counters are very
compressible with a reduction of number of bits required to store the residuals from
the original value, for example, from 28 bits/sample to 0 (since all the information
was captured by the prototypes) in the case of Counter 29. This can be attributed
to the regularity of the time series in terms of magnitude and also the minimal
number of deviations from its regular shape. Counter 59, on the other hand, gave
poor results due to its stochastic nature with large variations in magnitude, making
it harder to cluster and thus forming poorly evaluating prototypes. Counter 32
and to some extent counter 0 gave good evaluation results due to their repetitive
and regular nature between different cells and days. It can also be observed from
Figrue 4.1 (a) that, due to zero-normalization, k-shape sometimes pulls down the
normalized prototype values to below zero and this shift can cause calculation of
larger residual values.

29

4. Results and Discussion

4.1.3 Comparing parameters of Greedy Clustering

Table 4.2: Table showing results from running the greedy clustering on a dataset
of 9372 time series for various parametric settings on different counters. Here D
denotes the distance measure used for comparison of time series in the cluster, T,
the threshold value defined for creating a new cluster, and K, the number of clusters
that were formed by the clustering. It also shows the number of bits required to
store the original dataset in a batch packed form, the bits required after compression
using greedy clustering and the compression ratio. Storing the data raw with 32-bits
per sample require 2.88 * 10® bits.

Counter | 7 D K | Batch Packed | Residual file | Reduction (%)
0 1920 bits || 433 166 990 380 | 166 830 388 0.096
0 48 L2 131 166 990 380 | 171 935 044 -2.961
0 91.2 L1 2045 166 990 380 | 176 460 676 -5.671
29 744 bits 387 251 965 644 13 481 484 94.65
29 0.00096 | L2 1174 251 965 644 15 077 700 94.016
29 0.00096 | L1 1174 251 965 644 15 077 700 94.016
32 1488 bits || 1520 194 275 932 | 156 376 324 19.508
32 0.48 L2 || 1504 194 275 932 | 159 367 580 17.968
32 4.8 L1 412 194 275 932 | 159 175 612 18.067
52 840 bits 306 90 328 852 77 735 132 13.942
52 9.6 L2 2172 90 328 852 92 865 148 -2.808
52 07.6 L1 2390 90 328 852 93 657 676 -3.685
59 1728 bits || 1234 155 514 028 | 162 202 876 -4.301
59 48 L2 281 155 514 028 | 162 559 356 -4.530
59 96 L1 27 155 514 028 | 160 409 572 -3.148

The results above show that greedy clustering gives a high compression ratio for
counter 29, but it performs poorly for Counters 0, 52, and 59. 7 was tuned for each
counter as a small change often drastically influenced the number of clusters. The
tuning process was conducted manually and do not reflect optimal values. Also,
using the number of significant bits as similarity measure increased the compression
rate compared to using a similar number of prototypes formed using other similarity
measures.

30

4. Results and Discussion

4.1.4 Greedy clustering vs k-Means clustering

led

@ Batch pack on dataset
20 , Residual file BP

greedy, c: 32, k: 1520
kmeans, : 32, k: 1280 4

Figure 4.2: Comparison of compression achieved by k-means vs Greedy clustering
for the best performed value of k for counter 32. Storing the data raw with 32-bits
per sample require 2.88 * 10% bits.

The plot above shows the comparison of the greedy clustering compression that
performed best for counter 32 to the k-means clustering compression that performed
best for the same counter. We can see that the k-means clustering compressed the file
to a smaller size than the greedy algorithm did. This was the case in tests performed
for the other counters by varying the k values, and the 7, and and similarity measures
for the greedy algorithm. Only k-means clustering is considered in the results and
comparisons shown, henceforth, since it outperformed greedy clustering in most
cases. Although, k-means performed better than greedy clustering in our dataset
of 93969 time series, it might be a viable option for much larger datasets since it
passes through the entire dataset only twice and provided competitive results.

4.2 Compression for different counters

Different counters in the dataset form differently shaped time series. Some of them
are regular over days and, thus, compresses better than the other counters. The
following plot shows the reduction in data size for prototype based compression for
four different counters.

31

4. Results and Discussion

()

20
19
118
17
16
15

14

(c)

Figure 4.3: This figure compares the size of storage of the original dataset after
batch packing (blue) and the lossless residual file (orange) which includes the pro-
totypes, residuals, scaling factors, and assignment labels. Storing the data raw with

1ed

dataset BP
res. file BP

ae

e

L

1ed

0, k- 30 4

c: 0, k- 320 4

1280 4

c: 0, k:

10000

c: 0, k:

L]

1e8

30

25 1

2.0 1

15 1

10

0.5 1

0.0 1

(b)

105
100
095

0.90

0.85 1

0.80 4

0.75

&

&

1e8

o 29, k: 30

€229, k: 320

c: 29, k: 1280 |

€29, k: 10000

[

c: 32, k: 30 4

c: 32, k: 320

c: 32, k: 1280 4

c: 32, k: 10000

(d)

32-bits per sample requires 2.88 * 10® bits.

Here counter 29 compresses close to 95 percent compared to only batch packing the
time series. The compression improves for increase in the number of clusters up
till 1000 and then worsens for k=10000. We can infer from this that the overhead
required to store the prototype crosses the optimum number of prototypes at this
point. The counters 32 and 52 also had a reduction in storage size with varying
compression ratios for different cluster sizes. For counter 0, the residual file was

32

c: 52, k: 30 4

c: 52, k: 320 4

: 52, k: 1280

c: 52, k: 10000 4

4. Results and Discussion

worse than batch packing for larger number of clusters. This can be attributed to
the irregularity of the time series for that counter. Results from this comparison
shows that counters that form similar time series over time can be compressed better
than irregular counters due to a better performing clustering which in turn forms
prototypes that fit the dataset better.

33

4. Results and Discussion

4.3 Lossy Compression

Figure 4.4: The figure shows the comparison of lossy residuals to lossless residuals
(orange) when they are both stored as files in a batch packed form, for the acceptable
imprecision constant € = 1% (green) and € = 10% (red). They are also compared
to only batch packing (blue) to show relative decrease in file size. Storing the data
raw with 32-bits per sample requires 2.88 % 10% bits.

(a) Counter 0 (b) Counter 29
1e8 1ed
30
200 4
25 4 ® ® @ ®
175
) [] L]
J 210 1
5 ® Batch pack on dataset
125 @ Residual file BP 15 4
® Res. file BP lossy=1% ®
100 & Res. file BP lossy=10% ™ 10 1
) ®
0.75 ® ® b -
0.50 = .
.50 ® & * e []
0.0 1 e
0.25 -
T T T T
R S 2 g o = o o
E [ag} ™ 8 m ™~ o (=)
: L p = i " N &
= = - i o s u s
- G = = o & i =
L= U = i ™~ o
U o
=
(c) Counter 32 (d) Counter 52
1e8 1ed
20 L] L] L] L] 10 L]
. [] L] L] L]
15 - . i L H
0.8 . -
10 A1
0.6 ° ° L] *
0.5 3
& ™ ™ 04
L & L [] L -
0.0
T T T T l}z 1
= = T T T T
B 8 g g R 2 2 2
- ¥ — = U ™ ™~ =2
z] i — = 7] =l =
=] 2 i o - K 5 —
™ i e i el = £ I
e et =1 [T} (] il)
5] i [} 1 L el] 5
(8] 5 ™ L) [Ty e
L i = g [Ts]
= G

34

4. Results and Discussion

Performing lossy compression, see Section 3.1 and 3.8, provided much higher reduc-
tion in the file sizes compared to the lossless compression. In all cases, the lossily
compressed files were much smaller in size compared to the only batch packing time
series and the lossless prototype-based compression. In the case of counter 29, the
prototypes formed from the clustering were able to represent the entire dataset.
Thus the residuals formed, when the values of k were 1280 and 10000, were zero
values, hence, the lossy compression makes no difference on the residual values and
hence the file size remains the same. In addition to this, since the time series re-
tains a similar to the true data with a known maximum error factor, it may still be
utilized to approximate Key Performance Indicators or other aggregate values.

Storing a lossy residual file was generally more efficient compared to only using the
numerical compressor function, see Definition 3.7.4, together with batch packing.
For counter 59 and 60 there was little or no difference, but for the other counters the
lossy residual file compressed better or significantly better. It was most noticeable
for counter 32 with instances where the lossy residual file was 2.3 and 5.9 times
smaller at ¢ = 1% and ¢ = 10% respectively, but also the other counters showed a
trend where larger € lead to larger relative improvements.

Table 4.3: Table showing how lossy residuals, see Definition 3.7.5, reduce the size
of residual files.

counter | k | Reduction bits (e = 1%) | Reduction bits (e = 10%)
0 320 | 55% 73%
29 30 | 92% 92%
32 320 | 81% 89%
52 30 | 27% 60%
59 30 | 47% 64%

35

4. Results and Discussion

4.4 Comparison to Snappy and Zstd

1ed

& Batch pack on dataset
& Residual file BP
340 & Res. file BP lossy=1%
& Res. file BP lossy 10% * L]
& Snappy on dataset
25 & zstd on dataset [] -
[]
20 L] .
L] @]
15 -
10 =
L] L]
L]
- L]
05 L]
[)
® L]
0.0 e
0.5
[=] [=] r::l [=] [=]
=] o ==} [==] [==]
™~ ™~ ~ ™~ ™~
— -l — — —
i = o e o
u ™~ m u
o] i [u] [u] u]

Figure 4.5: Comparison of prototype based compression to two widely used com-
pression algorithms: Snappy and Zstd. The figure shows comparison for 5 different
counters with 1280 prototypes in the prototype compression. Here Snappy (purple)
and Zstd (brown) shows the file size after using the compression technique on the
dataset which was converted to byte form. Storing the data raw with 32-bits per
sample require 2.88 * 10® bits.

We used two standard compression techniques called Snappy and Zstd to compress
the time series dataset which was converted to byte form for compression and com-
pared the resulting file sizes to that of the file compressed by our technique. The
plot above presents the results.

All counters without piece-wise constant sections compressed better with batch pack-
ing and our residual file, particularly for lossy compression. Snappy’s and Zstd’s
worse performance can be explained by them requiring exact reoccurring subse-
quences. Batch packing utilizes similarity of size and the residual file reoccurring
patterns that do not have to be exact.

Counter 29, however, with large non-zero constant values, compressed significantly
better with Zstd. Snappy was only 10% better than a residual file, but Zstd was

36

4. Results and Discussion

30 times better than that. The good performance by both Snappy and Zstd can
be explained by their good handling of repeated values. Unfortunately, we do not
present the results for counter 60.

4.5 Secondary compression using Snappy and Zstd

1ed

30
@ Batch pack on dataset
: Residual file BP
@ Res. file BP + Snappy
251 @ Res. file BP + Zstd .
20 .
[] []
15 »
[]
10
L
)
05
0.0 []
nS T T T T T
[] 2 = = =
==} [=x] (== == (==
™~ (o] ™~ (o] ™~
— o — — —
) = o e o
[Fa] ('] m™ [Fa]
o] -] [[

Figure 4.6: Usage of Snappy or Zstd as a secondary compression method, where
snappy or zstd was used to compress the file that contains the prototype based
compressed data. Storing the data raw with 32-bits per sample require 2.88 * 108
bits.

It was also checked if using Snappy or Zstd as a secondary compression would
provide additional data savings. The plot above shows the comparison of batch
packing (blue) to residual files with batch packing (orange). It is also compared to
an additionally compressed file formed by using the Snappy (green) or Zstd (red)
compression on the residual file. The results show that there are no considerable
improvement or setback for most counters. For counter 29, however, Snappy provides
an additional 9.5 times improvement and Zstd 19.7 times improvement, only 35%
worse than using Zstd as primary compression. Unfortunately, we do not present
the results for counter 60.

37

4. Results and Discussion

4.6 Prediction of missing data

Speed: Prediction of missing data

Averaging (ms) | Prototype averaging (ms)
Read file 242 14
Prediction single cell 0,15 0,25
Total 242 15
Prediction of 3928 cells 1481 2306
Total 1723 2321

Table 4.4: FExecution times from running the averaging of 10 days of data, see
Equation 3.7, and averaging of used prototypes, see Equation 3.8. Each time series
dataset was stored as uncompressed 32 bit integers at 36 MB whereas the residual
file header was stored uncompressed at 1MB and it contained 1280 prototypes. The
experiment was implemented in Python providing computational speed far below
expected values but the results still illustrate potential speedups. The running times
were averaged over 6 runs.

38

4. Results and Discussion

Prediction Accuracy Averaging

Counter MSE | Avg. Error | Avg. Error/Value (*) | Sample=0
0 54 068.368 2.142 3.910 12 906
29 0.983 0.001 0.001 5774
32 1.063 0.034 0.034 5774
52 15.470 0.265 0.285 13 960
59 3 898 867.011 17.096 115.964 30 154
60 8.496 1.647 0.025 366 661

Table 4.5: Comparison of prediction errors for different counters. The 3928 test
data time series is normalized using 1-mean normalization and the same normal-
ization factor is used for the predictions. In total, the test data for each counters

contains 377088 samples.

(*) Only for non-zero samples.

Prediction Accuracy Prototype Averaging

Counter MSE | Avg. Error | Avg. Error/Value (*) | Sample=0
0 41 920.701 2.145 6.041 12 906
29 0.983 0.001 0.001 5774
32 1.062 0.035 0.034 5 774
52 14.107 0.271 0.325 13 960
59 2 954 982.289 17.059 148.048 30 154
60 6.086 1.646 0.025 366 661

Table 4.6: Comparison of prediction errors for different counters. The 3928 test
data time series is normalized using 1-mean normalization and the same normaliza-
tion factor is used for the predictions. The prototypes come from k-means clustering
with &k = 1280.
(*) Only for non-zero samples.

39

4. Results and Discussion

Cell prediction examples

Data history

— Testdata

—— Prototype prediction
Averaging prediction

Data history

— Testdata

— Prototype prediction
Averaging prediction

(b) Counter 0. The predictions find
some average level

(a) Counter 32, for which most predic-
tions fit very well.

Data history

—— Test data

—— Prototype prediction
Averaging prediction

Data history

—— Test data

—— Prototype prediction
Averaging prediction

(c) Counter 52. This cell keep a stable
pattern but might have a trend shift in
scale, that is not captured by the aver-

(d) Counter 52. The prototype based
prediction did not fit the dip in the be-
ginning that may be unique to this cell.

aging.

Data history

— Test data

—— Prototype prediction
Averaging prediction 25

ng sl .

(e) Counter 59. This prediction fit nei- (f) Counter 60.
ther the low levels nor the peaks. counter 59.

30 Data history

—— Testdata

—— Prototype prediction
Averaging prediction

Similar problems as

Figure 4.7: These plots show examples of predictions for various counters. The
prototype averaging tend to be very similar to the averaging of the true time series,
but sometimes miss features that are recurring for a particular cell. Example (b),
(e) and (f) show that averaging is problematic with data that has many sporadic
outliers. In these cases it is impossible to predict the exact timing of peaks, but it
may investigated if it is possible to predict low levels more accurately together with
aspects such as outlier frequency and peak levels.

40

4. Results and Discussion

4.7 Conclusion

In this thesis, we have explored techniques and use cases for compressing time series
data provided by Ericsson. The methods explored revolve primarily around the
compression idea that a large group of time series can be represented by a much
smaller number of prototypes and the calculated residual values between the time
series and their corresponding assigned prototypes.

Initial analysis and visualization of the dataset revealed that some counters formed
regular time series curves, whereas others were more noisy and unpredictable. From
the provided dataset, we used six performance measurement counters which formed
time series, which we thought was representative of the larger dataset. It was ex-
pected that the more regular time series would be easier to represent with a smaller
number of prototypes, and hence, more compressible.

Prototypes for the dataset were formed using the clustering technique k-means.
Different clustering techniques such as k-means, k-shape, and greedy clustering were
used on the dataset and evaluated before deciding on k-means. We observed that k-
means outperformed k-shape and greedy clustering in most cases. However, greedy
clustering still provided competitive results and might be a viable option for larger
datasets when multiple iterations through the entire dataset become expensive and
impractical. Parametric optimization may be further required to find the optimal 7,
distance function, and the number of clusters. Dynamic Time Warping as a distance
measure while clustering proved to be too slow to be practical for large datasets and
a large number of clusters with running time increasing linearly to the number of
clusters.

When a prototype is formed, it is desirable that the prototype is similar to the time
series it is applied. However, when the prototypes come from averaging of cluster
members, a single large outlier can make every member deviate slightly. If the value
ranges are large, this can cost an addition of several bits, as can be suggested from
k-means clustering on counter 29 as can be seen in Table 6.4. Instead selecting
the median sample made a huge improvement for small k. However, the median
is challenging to calculate in large scale applications. Therefore we used the mean
time series of the cluster as the prototype.

As expected initially, the clustering performed very well on counters 29 and 32 which
formed regular time series over multiple days, whereas counters 0, 59 performed
poorly due to their noisy nature. The residual file for counter 29 performed very
well with greedy clustering and was 94.6 percent smaller than only batch packing.
However, for counter 59 and some clustering cases of counter 0, due to their noisy
nature, clustering was unable to provide meaningful prototypes and the residual
values were high. This causes higher file sizes due to storing residuals for every time
series along with the prototypes and the resulting files were not compressed.

We observed that Lossy compression provided significantly higher compression rates
even for noisy counters were compression increased up to 92% compared to batch
packing. Decompression of lossily compressed time series still retains similar struc-
ture to that of the original time series and thus might prove useful for tasks like

41

4. Results and Discussion

calculation of Key Performance Indicators or other aggregates.

Our algorithm also outperformed two standard general-purpose compression algo-
rithms Snappy and Zstandard for 4 out of 5 tested counters. This result shows
that the techniques used in this thesis are suitable for time series that lack constant
sub-sequences, particularly when common trends exist in the dataset. On the other
hand, for time series that are piecewise constant, Snappy and Zstandard perform
better. However, by using either Snappy or Zstandard as a secondary compression,
the gap is closed with no reduction in compression ratio for the other time series.

Another major use case for the prototypes besides forming the basis of the compres-
sion technique is that it could be used to analyze trends of data over time and to
predict missing data in a dataset. For regular counters 29, 32 and 52 we were able
to predict a time series for a whole day for 3928 test data with an error range of
0.001 to 0.325 per sample on a 1-mean normalized dataset.

Our investigations conclude that our technique of prototype-based compression
proves very effective for time series datasets which contain data which are regular
and repetitive and is efficient in detecting patterns to form smaller representative
datasets. This also benefits increase in computational capability and reduction in
storage sizes. We believe that our methods and results open up opportunities for
larger investigations into the topic of time series clustering and compression, while
providing huge benefits to Ericsson.

42

D

Future work

In order to solve many analytical tasks in telecommunication or IoT, there exist a
need for efficient large scale storage and algorithms. Reducing the data into simpler
forms may prove crucial in this development. This thesis presents a compression
format that can be decompressed to various degrees. Prototypes, parameters, and
residuals may all be used, but some may be ignored in order to reduce IO usage.

The idea of selectively using only aspects of the data can be taken further. If the
compression format contains more statistics and summarizing values about the pro-
totypes and time series such as variance and maximum levels, more kinds of tasks
would be supported on the compressed format. For instance, if it is known that
the residual variance for a particular prototype is low, that assignment label may
in itself be enough to validate the conditions of a query. For tasks where similar
optimizations are possible, the compression may be seen as an intermediate step
in the computation. As long as only a few values for each time series is stored for
this purpose, the storage size is insignificant in comparison to the original data, but
significant 10 and computational reductions may be achieved. This is particularly
the case when information loss is acceptable such as when residuals are stored im-
precisely or ignored completely. Information loss prevents the original data to be
restored accurately, but can also be helpful in improving algorithm and prediction
generality.

As a way forward, it would be relevant to survey what kinds of analytical tasks
are relevant in the domain and what kind of information is needed to answer such
queries. If some dense and well descriptive values can be easily computed and
then reused for multiple analytical tasks, then there is a good chance it is worth
developing this thesis further. The rest of this chapter further discuss the potential
impact of applying compression techniques and provide some suggestions for tasks
that may be considered for the compressed format.

5.1 Compression to enable simple architectures

If the size of the dataset is large, it can only be stored and processed in compute
clusters. That is costly, add performance penalties, and may make development
harder. If instead, compression is applied to such a degree that the dataset fits in a
single machine, many new kinds of system architectures can be enabled, at least for

43

5. Future work

some use cases. One strategy may be to store a highly compressed version of the
data set in addition to the accurate data set. The compressed dataset can then be
duplicated into development environments, be used to train and evaluate machine
learning models, or be used to run proximate queries. An approximate query may
be sufficient but can also be used to prune and optimize computation on the larger
dataset.

5.2 Effects of compression on performance

In this thesis, only little focus was directed towards evaluating computational speed.
The performance results presented for the prediction task in section 4.6 is under-
whelming and not what would be expected from a well-optimized implementation.
In general, it is helpful to think of tasks that are either bound by IO or by compu-
tation.

When the computation is light, it is expected that the execution time is bounded
by 10, at least for well-optimized applications. Examples of light tasks include data
selection queries, simple statistical calculations, and some machine learning tasks.
When 10 bottlenecks the execution, a reduction of 10 will cause speedup. Therefore,
it is desirable to select and read a smaller amount of data from disc. Similar speedup
will also be obtained from efficiently decompressing highly compressed data. Lossy
representation may, therefore, provide execution speedup.

When the computation is substantial, the execution time is bound by computation
and IO speed is of lesser significance. Examples include processes dominated by
overhead costs, algorithms that frequently access random memory and machine
learning such as deep learning. For these cases, optimizing IO have comparably
lesser significance. As long as the decompression in itself is fast, no significant
impact is inflicted on execution time, but the savings in storage remain.

5.3 Large scale prototype formation

In this study a relatively small amounts of data was used. Scaling up the amount
of data used has has prospects of contributing to higher compression rate as more
redundancies is expected from a larger dataset. However, in order to use prototype
based compression at such scale, the algorithms involved need to be developed. One
core challenge is to prepare and cluster a time series data on a large scale. Once the
collection of prototypes is developed, it can be distributed and used in parallel.

5.3.1 Data preparation
For the applications presented in this thesis, the collected data is interpreted as

time series. The data that originate from the same cell is considered one unit, which
poses challenges if data is collected continuously. A common way of handling data

44

5. Future work

is to store it as rows in a distributed table. However, it is crucial for performance
that data from the same cell is stored in the same machine. When data is processed
as time series, all individual samples need to be grouped together. If the data is not
stored in close proximity, it risks causing expensive reorganization and transmissions
over network.

5.3.2 Increasing number of prototypes

By increasing the number of prototypes, more aspects of the dataset may be modeled
and more redundancies utilized for compression. In this regard, the compression
problem differs from many other clustering applications. When the intent is for
a human to interpret the clusters, there cannot be too many of them. However,
when the usage is purely for machine use, in particular for compression, the suitable
number of clusters is likely much higher. As long at it improves the total storage by
adding more prototypes, there might be a good reason to do so. For instance, if the
number of prototypes |P| equals 1% of the total number of time series, |P| = 0.1V,
the storage of those are still likely insignificant.

A drawback with using a large number of prototypes is that it would require a
large number of similarity comparisons. If every time series is compared to every
prototype, a total of N|P| comparisons are needed. It would, therefore, be crucial to
employ some indexing technique so that the number of comparisons can be brought
down to O(N log(|P])). Interesting algorithms to analyze includes K-d trees, iSax
2.0 [14], and the use of hierarchical clusters as in [15]. K-d trees provide efficient
lookups for vectors but work only well for few dimensions. iSax provides a tree
search based on comparing progressively more accurate representatives. Tan et al.
[15] clusters time series in two levels so that the top level narrow down the search
of cluster representatives to be compared.

A significant increase in the number of prototypes may also increase the challenges
for analytical tasks operating on prototype labels. As more clusters form, many
will be similar to each other. Distinguishing classes and behaviors from the data
may be challenging as the set of prototypes in itself may be large and assignments
more varied. On the other hand, since a broader set of prototypes can represent the
dataset more accurately, there exists potential of achieving better results. As the
prototype assignments provide a condensed version of the dataset. Over time, the
data from a particular cell form a sequence of parameters and discrete labels. It
may enable the use of algorithms that would be unsuitable for the raw time series
of integers.

5.3.3 Large scale clustering

Due to the large scale of the data, it is likely not feasible to employ iterative al-
gorithms such as k-means, where the algorithm iterate over the data several times.
Instead, the greedy clustering, Algorithm 1, provide an idea for how clustering may
be employed more efficiently. Hopefully, single pass over the dataset is enough form

45

5. Future work

a collection of prototypes, which would entail profound performance gains compared
to other clustering techniques. Furthermore, Ding et al. [7] argue that clustering
can be employed safely on a subset of time series.

It is interesting to analyze how the collection of prototypes would change over time.
According to experience from this project, the characteristics of time series remain
similar over days and weeks. Experts in the field confirm this with the extension
that changes commonly happen throughout seasons in the year and events such
as concerts and holidays. That suggests that the prototypes formed at one point
in time can also be reused for data that arrive later, but this would require more
investigation. If it is the case that prototypes are relatively stable over time, only
limited additions or removals would be required regularly. A distributed prototype
update may be executed with the following steps

1. Distribute collection of prototypes.
2. Scan a sub-sample of new data for new potential prototypes.
3. Possibly attempt de-duplication.

with only step three being single thread bounded. Some special handling may be
needed so that comparative analysis can be done between rare events that occur
infrequently or even only yearly.

5.3.4 Lossy prototypes

In this thesis, the prototypes were produced normalized time series and stored ac-
curately. If the goal of the clustering is to produce prototypes that will be used for
lossy compression, it might also be considered if the prototypes can be transformed
into a lossy form. One way may be to utilize the compressor function presented in
Definition 3.7.4. For instance, if all time series are compressed before clustering,
some different time series might end up more similar, making the prototypes more
efficient.

5.3.5 Time warping

As reported in results, there was some utility in doing k-shape clustering that com-
pare shifted time series. Even if it did not show to improve compression much at
the tested scale, it might be of interest to find time-invariant features for analyti-
cal purposes. Time-invariant similarity measures may also be evaluated for Greedy
clustering or similar cluster algorithms, and new approaches may be considered for
similarity measurements.

For time series that are mostly zero with a few single non-zero features as in counter
60, the prototype would not need to be a full-length time series but only the length of
the single feature. For other types of time series, one may consider how the padding
at the inserted ends is performed. In cross-correlation, the ends are padded with
zeros, but it may also be considered to pad with the edge-most value and to roll in

46

5. Future work

values removed from the other side. According to the results of the approach tried
in this thesis, well compressible counters tended not to shift at all, but it may be
because of the limitations of the tested technique. Also, it may make little sense in
measuring large shifts. If only small shifts are compared, the computational expense
should be significantly reduced compared to cross-correlation.

5.4 Time series shorter than a day

In this thesis, the data for one whole day was considered to be one time series and
a prototype span the whole day, but it may be considered to split the data into
even smaller segments. It is more likely to find matching short sequences than long
ones, and there might be comparatively little meaning in only matching complete
days. Since the same prototype shapes may be shared for each segment of the day,
the total size of prototypes may also be reduced. Shorter time series may make it
simpler to mine features that only span parts of a day. For instance, some analytical
use cases only focus on the worst parts or moments of a day and ignore the rest. It
does come with its challenges though.

The number of assignments and parameters would increase, but it may also be
desirable to increase the resolution of the lossy components of the storage format.
A greater number of similarity searches would be required, but on the other hand,
each similarity calculation is faster as each segment is shorter.

Another challenge is that the number of split locations increase. Since important
features may span over the arbitrarily located splits, precautions may be needed to
not lose information. One attempt to address it is to employ some time warping
technique. For instance, the exact location of each segment is slightly adjustable.
Furthermore, the prototypes could be slightly longer than the sections they are
applied to so that only a subsequence of a prototype is applied.

It may be useful for real-time applications to use shorter time series. When the
prototypes are a whole day long, they can only be used for analysis when a complete
day of data is accessible. If the prototypes are used for inference when only a portion
of the data is available, the best matching prototypes may say little about the
remaining part of the day. Shorter time series can this way provide faster feedback.
It may, for instance, be possible to analyze if the day progress in an expected way.

Since a shorter time series have the potential of making the prototype based storage
fit better, it may be possible to ignore exact residuals in applications that accept
some level of information loss. That may make the lossy components of the prototype
compression usable for a greater number of applications.

5.5 Compression format extensions

One important motivation for the compression format presented in this thesis is the
ability to use parts of the format without decompressing or restoring the original

47

5. Future work

data accurately. Therefore, it might be relevant to add additional values to enable
a broader range of tasks. Examples may include

e The number of times a prototype has been used.

e The variance or other distribution for residuals, either for the whole time series
or for sections of the data.

e Maximum values in time series or segments of time series.

« Indicative statistics for each batch, such as if residuals tend to be positive or
negative and if the variation among residuals is large.

5.5.1 Missing values

In this thesis, missing values in the data were stored as the number -1. For missing
values, it was therefore required to store large residuals. It may instead be beneficial
to adjust the zigzag encoding so that one code can model null. For instance, a zigzag
encoding may instead be defined by the sequence [0, null, 1,—1,2,—2...]

Another strategy is to construct a dense index of where nulls occur. If one considers
the storing codes that state that all values in a time series exist, all are missing or
that some exist, only two bits are required. This represents a compression of approx-
imately 0.06% compared to reading 32-bit integers uncompressed. Furthermore, for
data that only has some existing values, an accurate record of which samples are
missing can be stored using at most 96 bits, which is about 3% of uncompressed
integers. Doing any analysis of missing values has, therefore, the potential to obtain
high-speed.

5.5.2 Improved batch storage

In this thesis, five bits were used to store the number size. Five bits is sufficient
in a logical sense as it can model the value range 0-31. However, five bits does not
store well so it would be preferable to store the batch number sizes as a whole byte,
improving algorithm simplicity and speed. If the batch sizes are stored separately
from the batch bodies, they may be used in computational tasks without using the
residuals in the batch bodies.

As each batch body contain eight samples, the beginning of each batch body will
always be byte aligned. Despite how many bits are used, the total length sum to
a multiple of 8. Therefore, keeping an accumulative sum of the batch number sizes
provide an index for where batch bodies are laid in memory.

The batch number size bounds the deviation to the used prototype, as can be seen
in Table 5.1. The additional three bits may also be used to store 2° = 8 times
increased fidelity. This way, the batch number size more accurately describes the
maximum size of residuals, and not only how many significant bits that are used.
The deviation interval may, for instance, be used to infer if values exceed or fall
below a threshold, or if there is a change that it does. Even if the precision is

48

5. Future work

limited, it might accelerate tasks such as trend analysis, when precision may have
limited necessity.

Batch number size illustration

&

’/_'\—’_\ 0 X : \ / .

Prototype

Prototype

I\ [r— - —_—
0 =]\ i >
— \\. 7 N [=

0 >

Figure 5.1: In the top left, the true time series and a prototype are shown. The
bottom left show the resulting residual. As the batches are stored, the size describes
a bounding interval for the residual values. The same bounding interval can then
be applied to the scaled prototype instead of decompressing the residuals

5.5.3 Large scale data considerations

Since the prototypes are intended to be used on very large data sets, they should
likely be stored separately from the time series in the dataset. This way, the same
collection of prototypes can be used for many other compressed files. Also, it is
adjustable how many time series are put in a single file. Even in the same file, the
content may be organized with repeating header and body sections to enable easy
parallel reads.

With prototype compression, the data from the same cell and day is stored in the
same file, compared to being spread out in multiple rows in a big table. This may
enable the development of efficient dataset scale indexes.

5.5.4 High speed decompression

In order to obtain high performance of compression, decompression, and many an-
alytical tasks, it would be required to implement algorithms with efficient program-
ming languages. For instance, CPU vector instructions, SIMD, may be relevant for
residual calculations and bit packing procedures. The similar algorithm Sprintz [4]
reported single threaded decompression speed over 3GB/s. This show that there
exist promising possibilities in the ability to implement a compression algorithm
that can operate on very high speeds.

49

5. Future work

5.6 Anomaly detection

Prototype-based compression provide added structure to the data, of which several
aspects can be used for anomaly detection. For a start, if some time series does not
compress well, it suggests that something is unusual. Furthermore, assignments,
stored statistics, and parameters can be analyzed to find trends. For instance, the
assignments over time form a series of discrete labels, which may be a suitable subject
for Markov models. Another strategy may be to keep statistics of each prototype.
If that statistics can be used accurately enough, decisions may be conducted solely
on the assignments of prototypes. One such example may be if the prototype shape
satisfies some condition and stored statistics reveal that no large residuals exist for
that prototype.

Even if the algorithms using lossy forms of the data are not entirely accurate, they
may be used to find a reduced number of candidates. More precise forms of the data
can then be processed selectively, potentially yielding a total speedup and a reduced
use computation resources.

5.7 Predictions of future data

As was discussed in 4.6, there is a significant variation in how regular the counters
are. Trying to predict exact values at all points in time is not only impossible, but
it might also be irrelevant. For instance, instead of guessing the exact magnitude
at particular times, it might be more relevant to estimate aspects such expected
maximum of amplitude and frequency of such peaks. If aspects such as these are
stored, it may easier develop algorithms to distinguish trends and train models on
a more extensive history of data.

5.8 Multivariate analysis

So far, we've only discussed the application of prototype compression on a single
counter at the same time. However, sophisticated analysis likely requires the consid-
eration of many counters simultaneously. There exists many strategies to take this
forward. For example, counters may be clustered separately, which require care of
the clustering algorithm as there exist many different counters. Another strategy is
to run all counters in the same instance of the clustering. This way, the prototypes
are shared for all counters, and some comparative analysis may be performed based
on cluster assignments. A third strategy is to cluster in a multivariate setting so
that each prototype contains values for each counter. This may reveal patterns that
span over multiple counters but may not be suitable for compression as it should
make it harder to find well-fitting prototypes for many time series.

20

5. Future work

5.9 Summary of future work

Key topics:

Compress datasets and store lossy versions of large datasets, either by using
lossy residuals by ignoring them entirely.

Utilize or develop new algorithms designed for large-scale time series similarity
search and clustering.

Develop time-invariant similarity measures and residual calculation suitable
for large scale compression.

Evaluate clustering and compression of shorter time series than a day.

Improve the storage format by encoding null values in zigzag encoding and
separate the batch headers so they are accessible without reading batch bodies.

Extend the storage of prototypes and time series with additional statistics
such as maximum values and variance.

Implement high-speed compression and decompression

Employ the storage format for tasks such as threshold breach searches, anomaly
detection, trend analysis, and predictions.

Consider multivariate analysis.

51

5. Future work

52

[1]

[10]

Bibliography

Arnak V Poghosyan, Ashot N Harutyunyan, and Naira M Grigoryan. Com-
pression for time series databases using independent and principal component
analysis. In Autonomic Computing (ICAC), 2017 IEEE International Confer-
ence on, pages 279-284. IEEE, 2017.

Shaurya Agarwal, Emma E Regentova, Pushkin Kachroo, and Himanshu
Verma. Multidimensional compression of its data using wavelet-based com-
pression techniques. IEEFE Transactions on Intelligent Transportation Systems,
18(7):1907-1917, 2017.

Khalid Sayood. Introduction to data compression. Morgan Kaufmann, 2012.

Davis Blalock, Samuel Madden, and John Guttag. Sprintz: Time series com-
pression for the internet of things. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 2(3):93, 2018.

Saeed R Aghabozorgi, Teh Y Wah, Amineh Amini, and Mahmud R Saybani.
A new approach to present prototypes in clustering of time series. 2011.

Aseel Basheer and Kewei Sha. Cluster-based quality-aware adaptive data com-
pression for streaming data. Journal of Data and Information Quality (JDIQ),
9(1):2, 2017.

Rui Ding, Qiang Wang, Yingnong Dang, Qiang Fu, Haidong Zhang, and Dong-
mei Zhang. Yading: fast clustering of large-scale time series data. Proceedings
of the VLDB Endowment, 8(5):473-484, 2015.

Joan Serra and Josep L1 Arcos. An empirical evaluation of similarity measures
for time series classification. Knowledge-Based Systems, 67:305-314, 2014.

J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, Volume 1: Statistics, pages 281-297, Berkeley,
Calif.; 1967. University of California Press. URL https://projecteuclid.
org/euclid.bsmsp/1200512992.

David J. C. MacKay. Information Theory, Inference & Learning Algorithms.
Cambridge University Press, New York, NY, USA, 2002. ISBN 0521642981.

53

Bibliography

[11]

o4

J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100-108, 1979. ISSN 00359254, 14679876. URL http://www. jstor.org/
stable/2346830.

John Paparrizos and Luis Gravano. k-shape: Efficient and accurate clustering of
time series. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1855-1870. ACM, 2015.

bitstring - a python library for packing and analysis of bit strings. https:
//github.com/scott-griffiths/bitstring. Accessed: 2019-05-21.

Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn Keogh. isax
2.0: Indexing and mining one billion time series. In 2010 IEEE International
Conference on Data Mining, pages 58-67. IEEE, 2010.

Chang Wei Tan, Geoffrey I Webb, and Frangois Petitjean. Indexing and clas-
sifying gigabytes of time series under time warping. In Proceedings of the 2017
SIAM International Conference on Data Mining, pages 282—-290. STAM, 2017.

§

Appendix

Table 6.1: k Shape clustering on Counter 0

counter 0 N =9372 K =30 N=937T2 K =320 N =09372 K = 1280
size(clusters) > 1 30 255 798
size(clusters) = 1 0 18 188
Mean/Sample Bits Mean/Sample Bits Mean/Sample Bits
Original value 205154.1 16.5 205377.1 16.5 206950.2 16.5
Residual to center averages:
Kshape 2567409 17.3 235643.3 174 235545.2 174
ED 88718.8 15.8 84386.4 15.8 79742.8 15.6
Mean 88718.8 15.8 84386.4 15.8 79742.8 15.6
Median 85711.8 15.5 82210.8 15.2 76574.9 14.7
Shift residual to center averages:
shift kshape 189800.1 17.1 213003.6 17.3 216047.8 17.3
shift ED 85672.0 15.8 80899.0 15.7 77059.5 15.6
shift Mean 85672.0 15.8 80899.0 15.7 77059.5 15.6
shift Median 82510.7 15.5 79159.6 15.3 743829 14.9

Table 6.2: k-means clustering on Counter 0

Counter 0 N =9372 K =30 N=9372K =320 N =09372 K = 1280
Mean/Sample Bits Mean/Sample Bits Mean/Sample Bits
size(clusters) > 1 29.0 197.0 456.0
size(clusters) = 1 1.0 123.0 824.0
Original value 2051759 16.5 207821.7 16.7 222119.8 17.1
Residual to center averages:
KMeans 79699.7 15.6 70038.6 15.6 68617.3 15.6
Median 77068.2 154 67832.4 15.2 66102.5 15.0

55

6. Appendix

Figure 6.1: Normalized data from k-Shape clustering (N=9372, K=1280, Counter

0).

(a) Cluster 0

(b) Cluster 3

14 {4 —— cluster members (7/366)
—— k-Shape

L | - Mean

10 Median

(c) Cluster 20

s k-Shape
—— Mean

Median

— cluster members (7/34)

T
| —— cluster members (7/56) 21 — cluster members (2/2)
= k-Shape 44 —— k-Shape
1 —— Mean | — Mean
Median 3 \{[4 Median
=2 T T T T T T T
o 20 40 &0 80 0 20 40 &0 80

Table 6.3: k-Shape clustering on Counter 29

counter 29 N=93712K=30 N=93712K =320 N =09372 K = 1280
Mean/Sample Bits Mean/Sample Bits Mean/Sample Bits
size(clusters) > 1 1.0 12.0 26.0
size(clusters) = 1 0.0 1.0 7.0
Original value 76101761.4 27.3 76100278.4 27.3 76110633.9 27.3
Residual to center averages:
Kshape 265179 0.7 26317.8 0.6 23050.2 0.5
ED 1162540.7 21.4 1165074.0 21.0 1163433.3 21.0
Mean 1162540.7 214 1165074.0 21.0 1163433.3 21.0
Median 265179 0.7 26285.0 0.5 23191.6 0.5
Shift residual to center averages:
shift kshape 265179 0.7 26316.2 0.6 22492.1 0.5
shift ED 1162541.1 214 1165056.0 21.0 1163644.6 21.0
shift Mean 1162541.1 214 1165056.0 21.0 1163644.6 21.0
shift Median 265179 0.7 262832 0.5 238209 0.5

56

6. Appendix

Table 6.4: k-Means clustering on Counter 29

Counter 29 N =9372 K =30 N=937T2K =320 N =09372 K = 1280
Mean/Sample Bits Mean/Sample Bits Mean/Sample Bits
size(clusters) > 1 7.0 45.0 45.0
size(clusters) = 1 23.0 127.0 127.0
Original value 76113892.1 27.3 76102955.7 27.3 76102955.7 27.3
Residual to center averages:
KMeans 300.6 74 0.0 0.0 0.0 0.0
Median 205.8 0.5 0.0 0.0 0.0 0.0

Figure 6.2: Normalized data from k-Shape clustering (N=9372, K=1280, Counter
29). 8922 of the time series can be described as a constant line or 0, see (a). The
heatmap show a small fraction of data at y=0, dragging down the mean center
slightly. The rest of the clusters with contains series with perturbations such as the
one in (b)

(a) Cluster 0 (b) Cluster 829
10
— cluster members {7/8922) | 1004 - — cluster members {7/11)
— k-Shape | — k-Shape
0.8 Mean Loo3 Mean
Median 1002 A Median

o |
o VYWY I

02 0.993 -

0.997

0.0 v r : . T T T r
0 20 a0 &0 80 o 20 40 60 80

57

6. Appendix

Table 6.5: k-shape clustering on Counter 32

Counter 32 N =9372 K =30 N=937T2K =320 N =09372 K = 1280
Mean/Sample Bits Mean/Sample Bits Mean/Sample Bits
size(clusters) > 1 29.0 302.0 1056.0
size(clusters) = 1 0.0 12.0 123.0
Original value 821056.5 20.8 821303.1 20.8 821282.5 20.8
Residual to center averages:
Kshape 212455 14.9 13363.5 13.7 9105.6 11.9
ED 20206.0 14.8 13395.5 14.1 9066.2 13.3
Mean 20206.0 14.8 13395.5 14.1 9066.2 13.3
Median 20453.2 14.7 13211.2 13.6 8595.7 12.2
Shift residual to center averages:
shift kshape 21198.0 14.9 13293.0 13.7 9052.0 11.9
shift ED 20156.5 14.8 13332.6 14.1 9056.0 13.3
shift Mean 20156.5 14.8 13332.6 14.1 9056.0 13.3
shift Median 20404.8 14.7 13136.5 13.6 8568.3 12.2

Table 6.6: k-means clustering on Counter 32

Counter 32 N =9372 K = 30 N=93712K =320 N =9372 K = 1280
Mean/Sample Bits Mean/Sample Bits Mean/Sample Bits
size(clusters) > 1 25.0 302.0 889.0
size(clusters) = 1 5.0 18.0 391.0
Original value 821285.7 20.8 821607.2 20.8 830411.9 20.8
Residual to center averages:
KMeans 16925.1 14.7 10036.4 13.8 6972.0 13.1
Median 16756.6 14.6 9754.2 134 6566.4 12.1

28

6. Appendix

Figure 6.3: Normalized data from k-Shape clustering (N=9372, K=1280, Counter

32).

(a) Cluster 10

(b) Cluster 1

14
13

|
12
11 1
10 /
09 — cluster members {7/16)
08 —— k-Shape
- Mean
07 4 Median

) !
W 0.7

Y 06

134
124
11 4
10 4
0.9 4

0.8

—— cluster members (7/10)
— k-Shape

Mean
Median

D 0 0 &0

(c) Cluster 20

11 . ad

10 1

0.9 /
! —— cluster members {7/8}

08 |l = kShape
_,."'l — Mean
0.7 1 / Median

| 0B

D 0 0 &0 &0

0 0

(d) Cluster 73

16 4

14

124

104

—— clustar members (7/13)

i —— k-Shape

- -\QAJ et

04 'I.k"’*-—-‘/ Median
I

Table 6.7: k-shape clustering on Counter 59

40 & B

Counter 59 N =09372 K = 30 N=9372 K=320 N =09372 K = 1280
Mean/Sample Bits Mean/Sample Bits Mean/Sample Bits
size(clusters) > 1 30.0 300.0 1017.0
size(clusters) = 1 0.0 6.0 152.0
Original value 76476.7 13.2 76470.6 13.2 76320.9 13.2
Residual to center averages:
Kshape 95860.2 15.2 102879.1 13.6 92910.2 124
ED 82639.9 15.6 81839.1 154 78153.7 14.9
Mean 82639.9 15.6 81839.1 154 78153.7 14.9
Median 65693.2 13.7 63065.4 13.3 60342.7 12.7
Shift residual to center averages:
shift kshape 75158.9 14.9 75231.6 13.6 59255.5 124
shift ED 80515.9 15.6 79565.8 15.4 77184.4 15.0
shift Mean 80515.9 15.6 79565.8 15.4 77184.4 15.0
shift Median 65363.2 13.9 63275.8 13.7 61554.8 13.5

59

6. Appendix

Table 6.8: k-means clustering on Counter 59

Counter 59 N=93712 K =30 N=93712 K =320 N =9372 K = 1280
Mean/Sample Bits Mean/Sample Bits Mean/Sample Bits
size(clusters) > 1 30.0 308.0 862.0
size(clusters) = 1 0.0 12.0 418.0
Original value 76476.7 13.2 76559.5 13.2 78172.2 134
Residual to center averages:
KMeans 75479.0 154 61783.0 14.9 56810.2 14.6
Median 62469.2 13.6 51785.3 13.2 48397.3 129

Figure 6.4: Normalized data from k-Shape clustering (N=9372, K=1280, Counter

59).

(a) Cluster 1

(b) Cluster 10

16 1 —— cluster members (5/5)
= k-Shape

14 1 —— Mean

12 1 Median

10

(c) Cluster 31

50 { = cluster members (7/8)
—— k-Shape

| = Mean

Median

(d) Cluster 56

= cluster members {7/21)

Il
]

60

(SR

)

T
— cluster members {2/2)
1 =— k-Shape

—— Mean

81 Median

&0

20

