CHALMERS

UNIVERSITY OF TECHNOLOGY

Object Detection in Maritime Images

Exploring Deformable Convolutions for Object Detection

Master’s thesis in Electrical Engineering

Jesper Andersson

Department of Electrical Engineering

MASTER’S THESIS 2019

Object Detection in Maritime Images
Exploring Deformable Convolutions for Object Detection

Jesper Andersson

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Object Detection in Maritime Images
Exploring Deformable Convolutions for Object Detection
Jesper Andersson

© Jesper Andersson, 2019.

Supervisor: Amir Shahroudy, Electrical Engineering
Advisor: Eren Erdal Aksoy, Volvo Group Trucks Technology
Advisor: Ethan Faghani, Volvo Penta

Examiner: Fredrik Kahl, Electrical Engineering

Master’s Thesis 2019

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2019

v

Object Detection in Maritime Images

Exploring Deformable Convolutions for Object Detection
Jesper Andersson

Department of Electrical Engineering

Chalmers University of Technology

Abstract

In this thesis, we have used the Faster R-CNN object detection framework to localize
and classify boats in a small dataset of maritime images. In addition to the maritime
images experiments, we have explored the interplay of deformable convolutions with
other techniques that affect the spatial sampling locations of convolutional filters.
For the deformable convolution experiments, we examined the results of applying
atrous spatial pyramid pooling and an inception-like block of multiple filter sizes to
a regular convolutional network as well as a deformable convolutional network.

For the maritime images experiments, we have evaluated the effect on mean average
precision, training speed and test speed for the following techniques, deformable
layers, data augmentation, online hard example mining, soft-NMS and multi-scale
testing. The results showed that adding deformable layers significantly improved
the model with an increase in mean average precision of 5.8 at the intersection over
union threshold 0.7.

Keywords: Deformable Convolutions, Object Detection, Convolutional Neural Net-
works, Maritime Images, Faster R-CNN

Acknowledgements

First of all, I would like to thank Volvo Penta for offering me the opportunity to do
my master’s thesis in this interesting and quickly developing area. A special thanks
goes to Volvo Penta Krossholmen for helping me to collect the maritime images.

I would also like to thank my thesis advisors Eren Erdal Aksoy and Ethan Faghani
at Volvo. They have always been available and offered guidance and assistance
when needed. In addition, I would like to express my gratitude to my academic
supervisor Amir Shahroudy at Chalmers for his valuable comments on the thesis
and his technical advice. I would also like to thank my examiner Fredrik Kahl.
Finally, I would like to thank my wife for all her support and encouragement.

Jesper Andersson, Gothenburg, June 2019

Vil

Contents

List of Figures

List of Tables

1

Introduction

1.1 Thesis Outline
1.2 Machine Learning and Neural Networks
1.3 Object Detection
1.4 Deformable Convolutions
1.5 Problem Statement
Background

2.1 Neural Networks

2.2

2.3

24

2.1.1 Artificial neurons
2.1.2 Feedforward Neural Networks .
2.1.3 Training
2.1.4 Convolutional Neural Networks
Object Detection
2.2.1 Classic Object Detectors
2.2.2 Two-Stage Detectors
2.2.3 One-Stage Detectors
Deformable Convolutional Networks . .
2.3.1 Geometric Transformations . .
2.3.2 Deformable Convolutions
2.3.3 Deformable Rol-pooling
Datasets
2.4.1 Maritime Images
2.4.2 PASCAL VOC

Methods
Implementation Framework and Hardware

3.1
3.2

3.3

Maritime Images Experiments Model .
3.2.1 DBaseline Model
3.2.2 Improvements

Deformable Convolutions Experiments Model

3.3.1 Baseline Model
3.3.2 Atrous Spatial Pyramid Pooling

xi

XV

23
23
23
24
24
26
26
27

X

Contents

3.3.3 Multiple Filter Size
3.34 Trainingo
3.4 Evaluation
3.4.1 Mean Average Precision

4 Results
4.1 Maritime Images Experiments
4.2 Deformable Convolutions Experiments
4.2.1 Atrous Spatial Pyramid Pooling
4.2.2 Multiple Filter Size

5 Discussion
5.1 Visual Assessment of Detections on Maritime Images
5.2 Analysis of the Results of Deformable Convolution Experiments . . .
5.3 Further Work
5.3.1 Other Techniques to Improve mAP Score
5.3.2 Learnable Dilation, .

6 Conclusion

List of Figures

2.1
2.2

2.3

24

2.5

2.6
2.7

2.8

2.9

2.10

2.11

2.12

Model of an artificial neuron

Feedforward network with two fully connected hidden layers, three
inputs and two outputs. Each circle represents an artificial neuron.

Example of 2-D convolution with filter size 2 x 2 and stride 1 applied
to a 3 x 3 input feature map. The output is a 2 x 2 feature map.

Example of max-pooling with filter size 2 x 2 and stride 2 applied to

a 4 x 4 input feature map. The output is a 2 x 2 feature map.

Sample image of PASCAL VOC dataset with ground truth bounding

boxes around objects of interest.
Architecture of R-CNN.

Architecture of Fast R-CNN. Compared to R-CNN, the feature ex-
traction is done once for each image instead of each proposal. This

gives a significant speedup.o

Architecture of Faster R-CNN. The region proposal is done by a sep-
arate region proposal network which uses the feature maps from the
feature extraction process, improving the training and inference time

compared to Fast R-CNN.

Feature Pyramid Network. The bottom-up pass is similar to how a
regular feature extractor work. However, the top-down and lateral
connections allows semantically strong feature maps at multiple spa-
tial resolutions. The feature maps are colored such that semantically

stronger features have a darker color.

Hlustration of the spatial sampling locations in a convolutional 3 x 3
filter. The left image illustrates the sampling locations of a regular
convolutional filter and the right image illustrates a deformable filter

with offsets represented by the arrows.

The red dots show the sampling locations of the final three layers of a
deformable convolutional network for the neuron located at the green
dot. In the left image we can see that the neuron that is representing
the location of the green dot has sampling locations that are adjusted
to the object at that position, namely a person. Likewise, the model
has learned how to adjust the sampling locations for the boat in the

right image. oL

[lustration of parallel offset branch for 3x3 deformable convolution.

10

11

12
13

14

14

16

17

18
18

X1

List of Figures

X1l

2.13 The left image illustrates standard Rol-pooling with a regular grid
of 3 x 3 bins. The right image shows the result of deformable Rol-
pooling with learnable offsets. The bins are adjusted to better cover
the foreground object. oL

2.14 Tlustration of parallel offset branch for 3x3 deformable Rol pooling. .

2.15 Sample images taken from the maritime images dataset with ground
truth bounding boxes. L

2.16 Sample images taken from the PASCAL VOC dataset with ground
truth bounding boxes.o Lo

3.1 An example of non-maximum suppression. Image (a) shows the pre-
dictions of the object detection system before the non-maximum sup-
pression technique has been applied. The thickness of the bounding
boxes indicates the confidence score. Image (b) shows result after
non-maximum suppression, where overlapping predictions have been
removed.

3.2 Ilustration of the spatial sampling locations in a convolutional 3 x 3
filter. The left image illustrates the sampling locations of a regular
convolutional filter and the right image illustrates a dilated filter with
a dilation rate of 3.

3.3 Example of atrous spatial pyramid pooling. The feature maps from
three convolutional layers with different dilation rates are concate-
nated and finally passed through a 1 x 1 convolutional layer.

3.4 Example of atrous spatial pyramid pooling with three different dila-
tion rates for the parallel offset branch of a deformable convolutional

4.1 Sample maritime images from the test set with detections generated
by the final model.

5.1 Images with missing or inaccurate detections due to occlusion and
clutter. Detections are shown as solid red rectangles and ground
truth objects as dashed green rectangles.

5.2 Images with detections of non-boats as boats. Detections are shown as

solid red rectangles and ground truth objects as dashed green rectangles. 40

5.3 Images with detections of boats that are not in the annotation set.
Detections are shown as solid red rectangles and ground truth objects
as dashed green rectangles.o

5.4 Images with duplicate detections of sailboats. Detections are shown
as solid red rectangles and ground truth objects as dashed green rect-

List of Figures

5.5

5.6

5.7

The red dots show the sampling locations of the final three layers
of a deformable convolutional network for the neuron located at the
green dot. In the left images we have the spatial sampling locations
for a network with regular convolutions where the dilation rate in the
last layer is 2, 4 and 8 in subfigure (a), (c) and (e) respectively. In
the right images we have the spatial sampling locations for a network
with deformable convolutions where the dilation rate in the last layer
is 2, 4 and 8 in subfigure (b), (d) and (f) respectively. The number
of spatial sampling locations are the same in all images, but there is
a significant overlap for the locations in the networks using regular
convolutions.
The red dots show the sampling locations of the final three layers of
a convolutional network for the neuron located at the green dot. In
the left images we have the spatial sampling locations for a network
with regular convolutions where the filter size in the last layer is 3 in
subfigure (a) and 5 in subfigure (c). In the right images we have the
spatial sampling locations for a network with deformable convolutions
where the filter size in the last layer is 3 in subfigure (b) and 5 in
subfigure (d). o
[lustration of the spatial sampling locations in a convolutional 3 x 3
filter. The left image illustrates the sampling locations of a learnable
dilation filter with the dilation offset represented by the arrows. The
right image illustrates a deformable filter with offsets represented by
the arrows. Note that there are only two learnable parameters for the
learnable dilation filter, namely the horizontal and vertical dilation
rate. For the deformable convolution we have 2 parameters for each
element of the filter.

Xiii

List of Figures

Xiv

List of Tables

2.1
2.2

4.1

4.2

4.3

4.4

4.5

4.6

PASCAL VOC classes. i
Number of images in the training, validation and test sets for the
PASCAL VOC 2007 and PASCAL VOC 2012 challenges.

Detection mean average precision (mAP) at IoU thresholds 0.5 and
0.7 on the maritime images validation set. The table shows the result
of applying a range of techniques incrementally, i.e. at the final row
all techniques are applied.
Detection mean average precision (mAP) at IoU thresholds 0.5 and
0.7 on the maritime images test set.
Training speed and test speed in images per second on the maritime
images. The techniques listed in the table are applied to the baseline
model incrementally.o
Detection mean average precision (mAP) at IoU thresholds 0.5 and
0.7 on VOC 2007 test. The table shows the result of applying atrous
spatial pyramid pooling to the last convolutional layer when regu-
lar convolution and deformable convolution is used. The table shows
the result for two different dilation rates (2,4) as well as three differ-
ent dilation rates (2,4,8). Two different fusion strategies have been
used, concatenation with 1 x 1 convolution (Concat) and elementwise
adding (Add).
Detection mean average precision (mAP) at IoU thresholds 0.5 and
0.7 on VOC 2007 test. The table shows the result of applying atrous
spatial pyramid pooling to the offset layer in all three deformable
convolutional layers. The table shows the result for two different
dilation rates (2,4) as well as three different dilation rates (2,4,8).
Two different fusion strategies have been used, concatenation with
1 x 1 convolution (Concat) and elementwise adding (Add).
Detection mean average precision (mAP) at IoU thresholds 0.5 and
0.7 on VOC 2007 test. The table shows the result of using multiple
filter sizes on the last convolutional layer when regular convolution
and deformable convolution is used. The table shows the result for
two different combinations of filter sizes (3x3,5x5), (1x1,3x3,5x5).
Furthermore, the results of experiments with two different single filter
sizes of 3 x 3 and 5 x 5 are also shown. Two different fusion strategies
have been used, concatenation with 1 x 1 convolution (Concat) and
elementwise adding (Add).o

21

37

XV

List of Tables

XVi

Chapter 1

Introduction

Docking is one of the most stressful experiences boat owners face. To make dock-
ing easier and safer, Volvo Penta has created a self-docking solution called "Easy-
docking". However, the current system requires sensors on the boat as well as the
berth to guide the boat to its docking position. Ideally, the docking system should
be able to rely entirely on sensors on the boat such that it can dock at any berth.
One step towards the goal of docking safely anywhere is to localize and detect objects
in images, i.e. object detection.

In this thesis we examine what accuracy can be achieved when detecting boats in a
small dataset of maritime images. Furthermore, we explore the interplay between de-
formable convolutions and other techniques that affects the spatial sampling points
of convolutional filters.

1.1 Thesis Outline

This thesis comprises six chapters. In the first chapter we provide a brief introduc-
tion to machine learning, neural networks, object detection and deformable convo-
lutions. Furthermore, we state the goal of the thesis.

The second chapter provides the reader with sufficient background knowledge in the
field of neural networks, object detection and deformable convolutional networks
to understand the techniques and models that have been used in this thesis. The
chapter ends with describing the datasets that have been used.

The background chapter is followed by a chapter describing the methods that have
been used. First, we list the hardware and describe the implementation framework
that has been used for the experiments. Secondly, we describe the experiments that
have been performed in terms of model construction, model tuning and training
protocol. Thirdly, we explain the mean average precision metric that is used to
evaluate object detection models.

The fourth chapter presents the results of the experiments described in the methods
chapter. Following the results chapter, we analyze the results and suggest ideas
for further work in a discussion chapter. We conclude the thesis with a conclusion
chapter where we give a brief summary of the findings in this thesis.

1. Introduction

1.2 Machine Learning and Neural Networks

Since decades ago, computers have put humans to shame in terms of raw compu-
tational ability. However, computers have only recently started to match human
performance in tasks that involve dealing with high-dimensional data such as im-
ages. While a human can recognize an object in an image with a single glance, it
is hard to describe the task of object detection to a computer in a formal way. By
using machine learning techniques, we do not need to provide any such formal rules.
Instead, we feed the computer with examples from which it can extract patterns.
Traditional machine learning techniques combined with hand-engineered features
have seen some success in the computer vision area[l]. Nevertheless, it was not
until the advent of neural networks that the computer systems started to approach
human level performance for computer vision tasks such as image recognition[2].
One of the reasons that neural networks works so well is that their performance
continually improves with the number of training examples, whereas the performance
of many traditional machine learning methods seems to saturate after a certain
point. Another reason that neural networks work so well is that they have a layered
structure that allows the network to learn increasingly more complex concepts. This
layered structure of more and more complex representations allows neural networks
to learn useful features from raw input data, such as the pixels of an image, as
opposed to other traditional machine learning methods which first need to extract
hand-engineered features from the input. The end to end learning from raw pixels to
the desired output, not only removes the time-consuming step of finding good hand-
engineered features, but also allows the neural network to learn even better features.
This nested hierarchy of more and more complex representations is a special type
of machine learning referred to as deep learning.

1.3 Object Detection

Object detection is the task of classifying all objects of interest in an image and
drawing bounding boxes around them.

This task has traditionally been done by sliding a window over the image and ex-
tracting features such as histogram of oriented gradients [3] or Haar features|[l]
which are then passed to a classifier. However, the field has completely changed
since convolutional neural networks[4] were popularized for computer vision tasks
by the groundbreaking work of Krizhevsky et. al.[5]. The R-CNN object detection
system[6] used Krizhevsky’s convolutional neural network to extract features from
region proposals and improved the mean average precision on the PASCAL VOCI7]
benchmark dataset by more than 30%. Since then, extensions of the R-CNN named
Fast R-CNN[8] and Faster R-CNNJ[9] have improved the accuracy and inference time
to a great extent.

It it is hard to compare the accuracy of different object detection systems since
there is a large number of general techniques that can be used to improve all de-
tectors. These techniques include but are not limited to multi-scale testing, online
hard example mining[10], heavier heads, deformable convolutions[11], test time aug-
mentation, deeper backbone architectures and feature pyramid networks[12]. In

2

1. Introduction

recent years, the most commonly used benchmark dataset for object detection is
the COCO[13] dataset. TridentNet[14], SNIPER[15] and PANet[16] are three of
the top-performing detectors on this dataset. All of these detectors use deformable
convolutions and a region-based "Faster R-CNN"-like detection framework.

In addition to the aforementioned region-based detectors, there is another type of
object detection system called single shot detector. Two of the most notable single
shot detectors are Single Shot MultiBox Detector (SSD)[17] and You Only Look
Once (YOLO)[18]. Compared to region-based detectors, single shot detectors are
generally faster but lack in accuracy.

1.4 Deformable Convolutions

Convolutional neural networks draws inspiration from the animal visual cortex and
makes use of a layered structure of learnable filters that aggregates the value of
spatially close values. The aggregation is done by doing a convolution between the
image and the weights in the convolutional filter, hence the name convolutional
neural networks. In the case of classifying objects in an image, we can conceptually
think of the filters in the first layer of a convolutional neural network as being
able to detect edges from nearby pixel values. The filters in later layers can then
detect curves from nearby edges. From spatially close curves the filters of even
deeper layers can then detect object parts. Finally, the object parts can be used to
determine object identity.

In standard convolutional filters, the spatial sampling positions that we aggregate
over are fixed and are typically a 3 x 3 area of adjacent positions. Depending on
the scale, shape and other geometric properties of the object that we are trying
to detect, this configuration may not be optimal. For large objects we would like
the sampling locations to be located further away from each other and for tall and
narrow objects we would like the spatial sampling locations to follow the shape of
the object. Deformable convolutional networks[11] address the question of finding
good spatial sampling locations by presenting a deformable convolution module with
learnable offset parameters for the spatial sampling positions. The offset parameters
are conditioned on the values of the feature map where the convolution is taking
place so that it can adapt to the shape of the object.

1.5 Problem Statement

The main goal of this project is to detect boats in a small dataset of images in a
maritime environment. We will examine the performance when using the Faster
R-CNN object detection framework and employing a range of techniques, including
deformable convolutions, data augmentation, online hard example mining, soft-NMS
and multi-scale testing.

The second goal of this project is to look deeper into deformable convolutional
networks and explore the interplay of deformable convolutions with other techniques
that affects the spatial sampling locations of the convolutional filters.

1. Introduction

Chapter 2

Background

In this section we present the necessary background to understand the methods this
thesis builds upon. In the first sections we discuss feedforward networks, convolu-
tional neural networks and methods to train these networks. In the later sections we
cover the topic of object detection and some of the most common object detection
systems. We continue by describing deformable convolutional networks. Finally, we
present the datasets that have been used in this thesis.

2.1 Neural Networks

Neural networks[19] are used as non-linear function approximators. In the case of
object detection, the function that we are trying to approximate is a mapping from
the pixel values in an image to the class and bounding box coordinates of all objects
of interest in that image. The networks draw inspiration from the structure of the
human brain and consists of a large number of connected artificial neurons.

2.1.1 Artificial neurons

Artificial neurons, also termed units, are information-processing units which can be
said to be made up of three basic elements, see Figure 2.1.

Bias
b
xlo—>w1\ T Activation
function Out
put
o e I) [
Signals /v
T3 o— W3

Weights

Figure 2.1: Model of an artificial neuron

2. Background

The first element is the input signals x. Each input signal x; is multiplied by a
weight w; and given to the second element of the neuron, the adder. The adder
adds up all the weighted input signals together with a bias b which has the function
of increasing or decreasing the net input to the neuron. The net input z can be
described mathematically as:

z=b+ >z w; (2.1)

Finally, the net input is given to the third element, an activation function, which
computes the output of the neuron. The output y can then be written as:

y = ¢(z) (2.2)

Where ¢(+) is the activation function. The activation function for neurons that
are used to produce the final output of a neural network is task-dependent. For
regression tasks, such as the coordinates and size of an object in an image, the
identity function is commonly used. For multi-class classification of N-classes, the
softmax activation function is used over N neurons, where each neuron outputs the
probability for a specific class:
e*
0i(Z) = — for i=1,...,N (2.3)
> e
k=1

The activation function for units that calculates intermediate results, i.e. hidden
units, is typically a non-linear function such as the rectifier:

©(z) = max(0, z) (2.4)

Units with the rectifier as activation function are commonly known as rectified linear
units or simply ReLU[20].

2.1.2 Feedforward Neural Networks

The feedforward neural network is a simple type of neural network that form the
basis of more advanced architectures, such as the convolutional neural network and
recurrent neural network. Feedforward neural networks consists of several layers of
neurons and the name feedforward comes from the information flow going in one
direction, where the outputs of one layer are fed as input to the next layer. The
first layer is called the input layer and the last layer is the output layer. Between
the input layer and the output layer there are zero or more hidden layers which
performs intermediate computations. The Figure 2.2 shows a feedforward neural
network with two hidden layers.

Although the representational power of a single neuron is limited, the universal
approximation theorem states that a feedforward neural network with enough hidden
units can approximate any continuous function. In order to utilize this capacity and
approximate a target function, the neural network must undergo training.

2. Background

Input First hidden Second hidden Output
layer layer layer layer

N
RS

© Y
SRS
KSR

<
SRS
pa v
\‘/,\\‘

Figure 2.2: Feedforward network with two fully connected hidden layers, three
inputs and two outputs. Each circle represents an artificial neuron.

2.1.3 Training

The most common learning paradigm used for training neural networks is supervised
learning. In supervised learning we are given a training set containing input exam-
ples annotated with ground truth output values. When training a neural network,
the weights of the network are tuned to approximate the mapping defined by the
training data.

Cost Function

A cost function, also referred to as a loss function, quantifies the performance of a
network. The cost function varies from task to task. For bounding box regression
in object detection the cost function can be defined as a sum of the smooth L; loss
for the width, height and center coordinates of the bounding box. The smooth L,
loss is defined as:

(2.5)

Sy —9)? ifly—gl<1
Smoothh(y,g):{%(y 97 ity -9l <

ly — 9| — 0.5 otherwise

Where ¢ is the value predicted by the model and y is the ground truth output value
of the training data.

For multi-class classification of N-classes the loss L for each training example is
given by the negative log probability for the ground truth class ::

L(9) = —log g (2.6)

Given a cost function, we can use the backpropagation algorithm|21] to find the cost
derivatives w.r.t. the weights in the network.

2. Background

Backpropagation

The backpropagation algorithm[21] is an algorithm for computing gradients in neu-
ral networks and can be said to consist of two phases, the forward propagation
phase and the backward propagation phase. In the forward propagation phase, the
intermediate activation values and the output is computed by propagating the input
through the network. In the backward propagation phase, the chain rule for deriva-
tion is used iteratively in combination with the cost function and the previously
computed activation values to give us the cost derivative w.r.t. all the weights in
the network.

When the cost derivatives are computed, we can then use a gradient based learning
method to update the weights and minimize the cost function, i.e. train the network.

Gradient based optimization

The simplest type of gradient based optimization methods is gradient descent. Gra-
dient descent, also known as "batch" gradient descent, is a simple optimization
method where we iteratively update the parameters of our network 6 by a small
step in the direction of the negative gradient of the cost function C' in 6, where 6,
represents the parameters at iteration n. These updates are repeated until 6, has
converged to a local minimum:

Ops1 = 0, — aVC(6,) (2.7)

Where « is the learning rate and determines the step size. The learning rate is one
of the most influential hyperparameters in a neural network. If the learning rate is
small, convergence may take a long time. On the other hand, if the learning rate is
too large, the objective function may not converge at all.

Gradient descent calculates the cost function based on the entire training set in each
iteration and is generally too slow for practical use in neural networks. Stochastic
gradient descent (SGD) works in a similar fashion as gradient descent. However,
when using SGD we do not consider the entire set of training examples for each iter-
ation but rather a small randomly chosen subset. This small subset of the training
examples is known as a "mini-batch" and may be as small as a single training exam-
ple. Gradient descent form the basis of more advanced gradient based optimization
methods such as Adam[22].

Regularization

Training a neural network minimizes the cost function with respect to a training
set. However, our end goal is to perform well during inference time on unseen
examples. Techniques that are employed to allow a model to generalize better rather
than reducing the training error are referred to as regularization techniques. One
common regularization technique is to use weight decay. Weight decay multiplies
the weights of the network by a factor of slightly less than 1 in each iteration of
the gradient based learning algorithm, penalizing large weights. Another technique
to make the model generalize better is to augment the training data with synthetic
examples. In the case of image classification, transformations of the input such as

2. Background

flipping, rotation, scaling and translation can often be used without changing the
correct class.

2.1.4 Convolutional Neural Networks

Convolutional Neural Networks[4] (CNNs) are a class of neural networks that are
used for grid-like data where there are strong local connections between the inputs.
Convolutional networks are most commonly seen in computer vision applications,
but they have also been succesfully applied to time-series data[23].

Convolutional Layer

A convolutional layer consists of several learnable filters which are convolved across
the input data. The density of the positions of the input data that the filters will
be convolved over is determined by the stride parameter. With a stride of one the
filters are applied at every position, with a stride of two the filters are applied at
every other position and so on. When convolving a filter F' of dimension m x n over
a single position of a 2-D input data [at row ¢ and column j, the weights of the
filter are multiplied elementwise with the input and then added together to produce
a single output value:

S(,5) =YY 1({i+m,j+n)F(m,n) (2.8)

By doing this for all positions we get a 2-D output feature map. See figure 2.3 for an
illustration of a single 2 x 2 filter convolved over a 3 x 3 2-D input feature map. For
each filter, its 2-D output feature map is stacked into a 3-D tensor. In general, we
apply 3-D filters over the 3-D stack of feature maps, but the principle is the same as
in the 2-D case. A convolutional layer is typically followed by a non-linearity layer
which applies a non-linear function such as the rectifier.

One of the main advantages of convolutional layers is that they are very parameter
efficient. The parameters for a single filter is shared over all positions that the filter
is convolved over. This parameter sharing combined with the fact that the filters are
generally much smaller than the input, gives us that the number of parameters in a
convolutional layer is several orders of magnitude smaller than in a fully connected
layer. This is especially important when working with high dimensional inputs such
as images.

Pooling Layer

Pooling layers are used to reduce the dimension of the activation maps of convo-
lutional layers and to make the features more robust to small translations. This
is achieved by aggregating clusters of adjacent values of the activation maps. The
intuition behind the translation invariance is that the aggregated values will remain
similar even if there are small changes to the input. The most commonly used
aggregation function is to take the maximum value of the cluster, this is called max-
pooling[24]. Figure 2.4 shows the result of applying max-pooling with a filter size
of 3 x 3 and stride 2 to a feature map of size 3 x 3.

2. Background

Input
Output
1| 2 13
1y 15 16 flzl + f222+ f122 -+ f223—|—
iv i | g fsta+ fais | f3i5 + fals
Convolution
Filter
fi | fo Jiia + fais+ | fiis + faiet
fair + fatg | f3tg + faig
f3 fa

Figure 2.3: Example of 2-D convolution with filter size 2 x 2 and stride 1 applied
to a 3 x 3 input feature map. The output is a 2 x 2 feature map.

Convolutional Architectures

One of the first applications of convolutional networks was developed by LeCun
et. al.[25] in 1998 to classify hand-written digits. The architecture used was called
LeNet and comprises 7 layers. It starts with three convolutional layers interspersed
with two pooling layers and is followed by a fully connected layer and a softmax
output layer.

Although there has been some successful applications of convolutional networks fol-
lowing the LeNet network, it was not until AlexNet[5] won the ImageNet Large Scale
Visual Recognition Challenge[2] (ILSVRC) in 2012 that convolutional networks were
widely popularized in computer vision. The structure of AlexNet closely resembles
that of LeNet. The key difference is the depth of the network, where AlexNet has
more convolutional and fully connected layers. The intuition behind more layers
working better is that deeper layers learn increasingly complex representations. In
the first layers we can easily identify edges, and as we move up the layers we can
recognize corners, contours and more complex object parts. The value of depth has
been further demonstrated by the even deeper convolutional network VGGNet[26],
which achieved second place in the 2014 ILSVRC. To train the deep and computa-
tionally expensive network, AlexNet utilized GPUs to speed up training.

Even though the depth of an architecture is important for performance, it comes
with some optimization problems. When using the backpropagation algorithm, the
gradient is propagated backwards from the output layer to the earlier layers. If
the network is very deep, the gradient signal may become very small for the earlier
layers, which is called the vanishing gradient problem. To tackle the vanishing gra-
dient problem, Kaiming He et. al. presented the ResNet[27] architecture. ResNet
uses skip connections which allows the gradient to be passed back to previous layers
unchanged, maintaining a strong signal even at earlier layers. Using skip connec-
tions and stacking these residual block allows for networks with hundreds or even

10

2. Background

Output

Input

A R max (i1, max (i3,
i 1y | i3 1 AR as’
! 2 ’ ! i, 15, i) iy, 7, i8)
5 % 7 | 18 Max-pooling

9 | 110 l11 | %12

N max (i, max (11,
il Bl e 010,913, 114) | 412, %15, 116)

Figure 2.4: Example of max-pooling with filter size 2 x 2 and stride 2 applied to
a 4 x 4 input feature map. The output is a 2 x 2 feature map.

thousands of layers. ResNet performs remarkably well and was the winner of the
2015 ILSVRC.

The convolutional network architectures mentioned above are used for image recog-
nition, but they they can also be used in object detection systems as feature extrac-
tors.

Transfer Learning in Convolutional Networks

Transfer learning is a technique where we store knowledge that we acquire by learning
one task and then apply this knowledge to solve another task. The first stage is often
referred to as pre-training and the second stage is referred to as fine-tuning. Transfer
learning is not limited to images and convolutional neural networks, but has turned
out to be a core component in systems that solve computer vision tasks.

Transfer learning makes sense when we have little data for the problem that we are
trying to solve and a large amount of data for the problem that we are trying to
transfer knowledge from. Feature extractors are generally trained on the ImageNet
dataset which has more than a million images and thousands of classes.

The reason that transfer learning works for convolutional neural networks is that the
layers in the pre-trained network learn general features that are good at detecting
a wide range of objects. This is especially true for the earlier layers which detects
edges, curves and parts of objects. These general features are probably useful for
the new task as well. The usefulness of the high-level features in the later layers of
a pre-trained network is determined by the similarity of the original and new task.

2.2 Object Detection

Object detection is the task of classifying all objects of interest in an image and
drawing bounding boxes around them, see figure 2.5.

11

2. Background

Figure 2.5: Sample image of PASCAL VOC dataset with ground truth bounding
boxes around objects of interest.

The modern history of object detection took off in 2013 when convolutional net-
works started to be used in object detection systems. Most convolutional based
object detection systems can be categorized into two-stage detectors and one-stage
detectors. In this section we go through the state-of-the art detectors for the two
types of object detection systems and give a brief mention to the classic methods
preceding them.

2.2.1 Classic Object Detectors

Before the advent of modern object detectors, the sliding window algorithm was
commonly used. The sliding window algorithm works by sliding a fixed size rect-
angular region across an image. For each region, features are extracted and then
passed to a classifier. LeNet[25] is one of the early successful object detectors which
uses the sliding window algorithm for hand-written digits. The Viola-Jones[27] is
another influential sliding window detector and was the first real-time object detec-
tion framework for face detection. Viola-Jones uses Haar features and a cascade of
gradually more complex classifiers. Another significant step in the history of object
detection is the work of Dalal and Triggs[3] which demonstrates the effectiveness of
HOG descriptors as features for pedestrian detection.

Deformable part models[28] (DPMs) was the best performing models before the
modern convolutional object detectors and held the top results on the canonical
PASCAL VOC][7] object detection benchmark dataset for many years. The DPMs
model an object as a set of parts. The model expect the parts to have a certain
arrangement of relative locations and weighs the likelihood of relevant parts be-
ing present against the parts deviation from the expected spatial arrangement, i.e.
deformation.

12

2. Background

2.2.2 Two-Stage Detectors

Two-stage detectors are the most accurate detectors to date. In the first stage, a set
of proposal regions are generated. These proposals are then passed to the second
stage for classification and bounding box refinement. Girshick et. al. invented the
first two-stage detector, called R-CNN: Regions with CNN features|[6].

R-CNN

The R-CNNJ[6] object detection system set the starting point for a new era in ob-
ject detection. After years of stagnating results on the PASCAL VOC benchmark
dataset, R-CNN improved the mean average precision (mAP) by more than 30%.
R-CNN uses the Selective Search[29] region proposal algorithm to generate approx-
imately 2000 proposals. The proposals are then warped into a fixed size and fed to
a convolutional network for feature extraction. The original R-CNN paper presents
results with AlexNet and VGG-16 as feature extractors. However, any kind of con-
volutional architecture used for image classification can also be used as a feature
extractor for almost any kind of two-stage or one-stage object detector. Classifica-
tion in the R-CNN is done with category-specific support vector machines (SVMs)
and a linear regression model is used for refinement of bounding boxes. Figure 2.6
depicts the architecture of the R-CNN detector.

roposal 1
R .
l proposal 2 l
. region
image | — : —| CNN
proposal :
1 .
regressor | | bounding
box

Figure 2.6: Architecture of R-CNN.

Fast R-CNN

Fast R-CNN][8] is an extension of the R-CNN which is much faster and has higher
detection quality. Instead of processing each region proposal through a convolutional
network, Fast R-CNN processes the entire image through a convolutional network
to produce feature maps for the whole image. The region proposals are then used
to extract regions from the feature maps instead of the image. These regions of
the feature maps are then passed to a pooling layer to create regions of interest
(Rols). The Rols are then fed to fully connected (FC) layers which branches into a
bounding box regression layer and a softmax classification layer. Figure 2.7 depicts
the architecture of the Fast R-CNN detector.

13

2. Background

proposal 1
' proposal 2 '
region .
roposal :
— ~| FC |~| softmax [~ class
i Rol
image L I
pooling
L FC || regressor | bOli)Hding
0xX
CNN
feature maps

Figure 2.7: Architecture of Fast R-CNN. Compared to R-CNN, the feature extrac-
tion is done once for each image instead of each proposal. This gives a significant
speedup.

Faster R-CNN

Faster R-CNNJ9] is similar in structure to Fast R-CNN but makes use of a convo-
lutional network for region proposals, called region proposal network (RPN). The
proposal network share convolutional layers with the feature extraction network and
generates proposals by using the sliding window technique over the feature map of
the last convolutional layer. The features of each sliding window is passed to two
sibling networks to produce regressed region proposals with objectness score for that
windows position, where objectness is a measure for the likelihood of the proposal
containing an object. The classification and bounding box regression part of the ar-
chitecture is basically the same as in Fast R-CNN. Faster R-CNN is much faster and
has higher detection accuracy than Fast R-CNN. Figure 2.8 depicts the architecture
of the Faster R-CNN detector.

proposal 1

il

proposal 2 ()
‘ RPN i— : - | FC [~| softmax [~| class
roposal m Rol —
o 1t e
pooling —
image CNN] | pc | regressor || Pounding
J box
feature maps \ J \ J
 S—
 S— S—

Figure 2.8: Architecture of Faster R-CNN. The region proposal is done by a
separate region proposal network which uses the feature maps from the feature
extraction process, improving the training and inference time compared to Fast

R-CNN.

14

2. Background

Faster R-CNN and extensions of Faster R-CNN are the most accurate object de-
tectors. The winning submission[30] of the 2017 COCO[13] detection challenge was
based on the Faster R-CNN extension called Mask R-CNN[31]. Mask R-CNN ex-
tends Faster R-CNN with an object mask branch to be able to solve another task,
namely object instance segmentation. The performance gain of Mask R-CNN over
Faster R-CNN comes from trying to solve multiple tasks simultaneously, which can
have a regularizing effect on the model and is known as multi-task learning[32].

This thesis will not cover instance segmentation and will not delve deeper into Mask
R-CNN.

2.2.3 Omne-Stage Detectors

One-stage detectors are optimized for speed and are not as accurate as two-stage de-
tectors. They are called one-stage detectors since they do not use a region-proposal
step but rather predict the bounding boxes and object classes with a single con-
volutional neural network directly. Two of the most succesful one-stage detectors
are YOLO[18] and SSD[17]. Another influential one-stage detector is RetinaNet[33],
which demonstrates the effectiveness of the focal loss function and feature pyramid
networks.

YOLO

You Only Look Once (YOLO) [18] is an object detection system that is extremely
fast and divides the image into a grid. FEach cell in the grid is responsible for
predicting bounding boxes for objects where the center of the object is located
inside of the grid cell. The original architecture is called DarkNet and comprises 24
convolutional layers and 2 fully connected layers. After the original version of YOLO,
two improved versions have been released, namely YOLOv2[34] and YOLOv3[35].
The improvements include incorporating ResNet-like residual blocks and usage of
dimension priors for the bounding boxes called anchors.

SSD

As we move down the convolutional layers of a convolutional network, we have that
the spatial resolution decreases. This makes it hard to detect small objects in the low
resolution layers deep down in the convolutional network. The Single Shot MultiBox
Detector (SSD) [17] is a one-stage detector that tries to deal with this problem by
predicting objects from feature maps at multiple levels of the network. One of the
issues with this method is that the features of the high resolution feature maps are
semantically weaker. To enrich the semantically weaker layers we can use top-down
connections as is done in the RetinaNet architecture.

RetinaNet

The main contribution of RetinaNet[33] is the use of a novel loss function called
focal loss. The loss function reduces the loss of well-classified easy examples to

15

2. Background

focus on misclassified hard examples. This focus is especially important for one-
stage detectors which has an extreme background-foreground class imbalance with
many easily classified background examples.

Other than focal loss, RetinaNet also makes use of a component called feature
pyramid networks[12] to detect objects at different scales. Similarly to how SSD
works, feature pyramid networks uses feature maps at multiple levels of the network
to make predictions. The difference is that it also uses top-down connections to
propagate information from the deep and semantically rich feature maps to the
shallow but semantically weaker feature maps. This allows for semantically strong
feature maps at multiple spatial resolutions. The feature pyramid technique is not
limited to one-stage detectors but can be used in the feature extraction step of
a two-stage detector as well. Figure 2.9 illustrates how feature pyramid networks
works.

g
predlct

predlct

v

PR — - —— T

Figure 2.9: Feature Pyramid Network. The bottom-up pass is similar to how
a regular feature extractor work. However, the top-down and lateral connections
allows semantically strong feature maps at multiple spatial resolutions. The feature
maps are colored such that semantically stronger features have a darker color.

2.3 Deformable Convolutional Networks

In this section we cover deformable convolutional networks [11]. The deformable
modules in a deformable convolutional network can be used to replace regular con-
volutional layers and Rol-pooling layers in any object detection system to learn
invariance to geometric transformations. At the cost of a few extra parameters for
the deformation offsets, deformable convolutional networks produce leading results
on the COCO benchmark for object detection[36].

2.3.1 Geometric Transformations

Geometric transformations such as scale, rotation, translation and other kinds of
warping is one of the main challenges of object detection. One way to deal with
this problem is to collect or create data with enough variation. Another way is to
use feature detection algorithms invariant to transformations such as SIFT (scale
invariant feature transform) [37]. Deformable part models [28] mentioned in sec-
tion 2.2.1 tackle this problem by learning spatial deformation through weighing the

16

2. Background

deformation between parts against the individual parts score of being part of the
object. More recently, spatial transformer network[38] introduces a learnable spatial
transformer module that warps the feature map in a global manner.

Deformable convolutional networks use deformable convolutions and deformable
Rol-pooling to achieve transformation-invariance. Deformable convolutions share
some of the ideas of the spatial transformer module, but it uses local and dense
transformations of the feature maps instead of a global transformation. Deformable
Rol-pooling is similar in spirit to deformable part models and learns deformation
between entire parts.

2.3.2 Deformable Convolutions

Deformable convolutions add learnable offset parameters to the spatial sampling
locations of convolutional filters, see figure 2.10.

——

,,

Figure 2.10: Illustration of the spatial sampling locations in a convolutional 3 x 3
filter. The left image illustrates the sampling locations of a regular convolutional
filter and the right image illustrates a deformable filter with offsets represented by
the arrows.

The motivation behind modifying the sampling locations is that we can alter the
receptive field of a convolutional network. The receptive field is the area of the input
that a neuron receives information from. For deep neural networks, the receptive
field could in theory be the entire image. However, pixels near the center provide
more information and the effective receptive field is much smaller. Deformable
convolutions are conditioned on the feature maps of the input to give an effective
receptive field matching the object that the neuron is centered at, see figure 2.11.

Deformable convolution can replace a regular convolutional layer by performing the
following steps. Firstly, we introduce a parallel convolutional layer which gener-
ate offsets for each position of the input feature map that we will convolve over.
Secondly, we use these offsets in our existing convolutional layer to modify the sam-
pling locations for each position that we convolve over. Figure 2.12 illustrates the
information flow with the introduction of a parallel offset branch.

17

2. Background

Figure 2.11: The red dots show the sampling locations of the final three layers of
a deformable convolutional network for the neuron located at the green dot. In the
left image we can see that the neuron that is representing the location of the green
dot has sampling locations that are adjusted to the object at that position, namely
a person. Likewise, the model has learned how to adjust the sampling locations for
the boat in the right image.

Offset field
Conv Offsets

/

AV RN

t
/

| Deformable convolution

Input feature map Output feature map

Figure 2.12: Illustration of parallel offset branch for 3x3 deformable convolution.

Compared to the previously mentioned equation for regular convolution 2.8, our
deformable convolution equation now takes the form:

S(,5) =YY I +m+ 6y, j+n+08,)F(m,n) (2.9)

Where §,, and d,, are the offsets. Note that there is one (d,,,,,) offset pair per filter
position per feature map position. The offset locations are usually fractional and
are computed by bilinear interpolation, which is differentiable. Both the offset layer
and regular convolutional layer are trained simultaneously by backpropagating the
gradient in equation (2.9).

18

2. Background

2.3.3 Deformable Rol-pooling

Rol-pooling does course spatial quantization by converting an arbitrary size rectan-
gular region into fixed size features. It does so by dividing the rectangular region
into k X k bins by performing max-pooling. The region proposal rectangular region
contains a lot of background information that is not related to the foreground object
of interest. By adding learnable offsets to the bin locations we can move the bins to
nearby object foreground regions. Deformable Rol-pooling adds offset parameters
for the bins, see figure 2.13 for a comparison to regular Rol-pooling.

Figure 2.13: The left image illustrates standard Rol-pooling with a regular grid
of 3 x 3 bins. The right image shows the result of deformable Rol-pooling with
learnable offsets. The bins are adjusted to better cover the foreground object.

The deformable Rol-pooling module can replace regular Rol-pooling by adding an
offset branch similar to how it is done in the deformable convolution module. How-
ever, instead of adding a convolutional layer we use a fully connected layer to com-
pute the offsets. See figure 2.14 for an illustration of the deformable Rol pooling
parallel branch.

Offsets

Nk
B

PADARN

/

4/

Deformable Rol-pooling

Input feature map Output Rol feature map

Figure 2.14: Illustration of parallel offset branch for 3x3 deformable Rol pooling.

19

2. Background

2.4 Datasets

Some of the most common benchmark datasets that are used for object detection are
PASCAL VOC][7], ImageNet[2] and COCO[13]. In this thesis we have performed ex-
periments on two datasets, namely a small dataset of maritime images and PASCAL
VOC. In this section we describe these two datasets.

2.4.1 Maritime Images

The Maritime Images dataset contains 1500 images of boats from two marinas in
Gothenburg, namely Langedrag marina and Skeppstadsholmen marina. The images
contains 5810 instances of approximately 300 unique boats of different kinds such as
sailboats, motorboats and skiffs. The dataset does not contain any large passenger
ships or freighters. All the boats have been annotated with the class label boat and
there are no other classes in the dataset.

The bounding boxes for the boats have been annotated to be as tight as possible
while still containing all the objects that are part of the boat. The objects that are
considered to be part of the boat is the boat itself and everything that is attached
to the boat such as masts, engines, anchors, fenders, boat covers, rails as well as
antennas and other electronic equipment.

The images were taken by an Iphone 6s camera on a boat while driving inside the
marinas. The width and height of the images are 3024 and 4032 pixels. The images
were collected on a cloudy afternoon in May. No postprocessing has been done.

A sample subset of images with ground truth bounding boxes are shown in figure
2.15. As can be seen in the images, not all boats are annotated. The boats that are
near unrecognizable due to occlusion or small size are not included. Furthermore,
examples where only the mast is visible has not been annotated.

The dataset is split into a training, validation and test set containing 1000, 250 and
250 images respectively. The images are split such that no unique boat occurs in
more than one set.

2.4.2 PASCAL VOC

The PASCAL Visual Object Challenge[7] (VOC) was an annual event from 2006
until 2012. It consisted of three primary challenges, namely object classification,
object detection and semantic segmentation. The dataset of the challenges are
publicly available together with ground truth annotations. A sample subset of the
images in PASCAL VOC with ground truth bounding boxes are shown in figure
2.16.

The classes of the dataset comprises a person class as well as classes of different
types of vehicles, household objects and animals, see table 2.1.

The datasets are divided into a training, validation and test set. Table 2.2 shows
the number of images in the training, validation and test set for the 2007 and 2012
challenges. The union of the training set and validation set is referred to as the
"trainval" set.

20

2. Background

Figure 2.15: Sample images taken from the maritime images dataset with ground
truth bounding boxes.

Vehicles Household Objects Animals Other

Aeroplane Bottle Bird Person
Bicycle Chair Cat
Boat Dining table Cow
Bus Potted plant Dog
Car Sofa Horse
Motorbike TV /Monitor Sheep
Train

Table 2.1: PASCAL VOC classes.

Training Images Validation Images Test Images
VOC 2007 2,501 2,510 4,952
VOC 2012 5,717 5,823 10,991

Table 2.2: Number of images in the training, validation and test sets for the
PASCAL VOC 2007 and PASCAL VOC 2012 challenges.

21

2. Background

Figure 2.16: Sample images taken from the PASCAL VOC dataset with ground
truth bounding boxes.

22

Chapter 3

Methods

This section explains the methodology used for this project. First, we briefly describe
the implementation framework that has been used and the hardware that was used
for the experiments. Secondly, we describe the model for the experiments that
have been conducted on the dataset with maritime images as well as the model for
the experiments where we combined deformable convolutions with other techniques
that affect the spatial sampling locations of the convolutional filters. Finally, we
go through the evaluation metric "mean average precision" that has been used to
analyse the performance of the models.

3.1 Implementation Framework and Hardware

All the models have been implemented in the MXNet! framework and are based on
the official implementation from the authors of the deformable convolutional network
paper?. Apache MXNet is an open source deep learning framework that supports
both imperative and symbolic programming as well as a wide range of programming
languages.
The experiments in this thesis has been performed on a desktop computer with the
following hardware specifications

o GPU: Single GeForce GTX 1070 8GB

o CPU: Intel 15-2500K CPU 3.30GHz

« RAM: 8GB 1600MHz

3.2 Maritime Images Experiments Model

In this section we present a baseline model for the experiments on the maritime
images. Secondly, we describe the techniques that have been used to improve the
baseline model. We end the section with an explanation of how the models have
been trained.

Thttps://mxnet.apache.org/
2https://github.com /msracver /Deformable-ConvNets

23

3. Methods

3.2.1 Baseline Model

We have used the Faster R-CNN as a baseline model. The reason that we use the
Faster R-CNN framework is that it is one of the most accurate detectors. Another
reason that we use Faster R-CNN is that it is two-stage detector which allows us to
replace the Rol-pooling layer with its deformable counterpart when we try to im-
prove the baseline. The feature extractor that we use is a ResNet-101 convolutional
network that has been pre-trained on the ImageNet dataset. The suffix indicates the
number of layers in the residual network, i.e. 101 layers. There are deeper models
that may perform better but are slower to train and more memory intensive. All
layers in the baseline model uses regular convolutions and regular Rol-pooling. The
model has been trained with 1 epoch with a warmup learning rate 5% 10~°. Warmup
is a training strategy that uses a lower learning rate in the beginning of training,
which has been proven to be effective for avoiding early optimization difficulties[39].
After the warmup we have trained the model for 11 epochs with a learning rate of
5 107* and finally for 6 epochs with a learning rate of 5 107°. The learning rate
schedule has been determined by looking at the error on the validation set. In the
training and testing phase, the images have been resized to have a shorter side of
600 pixels.

3.2.2 Improvements

In order to improve the baseline model we have used the following techniques, de-
formable layers, online hard example mining, data augmentation, soft-NMS and
multi scale testing. The techniques have been applied incrementally in the order
they are listed. Each of the techniques are explained below.

Deformable Layers

Deformable convolutions and deformable Rol-pooling is explained in section 2.3.
In our experiments, we have used deformable Rol-pooling and have replaced the
last three convolutional layers in the ResNet feature extractor with their deformable
counterpart.

Data Augmentation

Almost all computer vision tasks benefit from more data. Collecting data can be
expensive and another way to increase the amount of training data is to create
synthetic examples. One of the simplest methods to create synthetic data is to
flip images horizontally. For object detection, many objects preserve their class
when this operation is performed and there is no degradation of the bounding box
positioning in relation to the object. With some augmentation techniques, such as
slight rotation and random cropping, we risk either degrading the bounding box or
changing the class. In the maritime images dataset, there are several objects that
are tall but narrow, such as sailboats. If we rotate the sailboat, we risk degrading
the bounding box by making it too small or too large for the object. If we apply
random cropping, we might crop the image such that we can only see a piece of

24

3. Methods

electronic equipment of a boat. However, the electronic equipment should not be
labeled as a boat unless it is attached to one. Therefore, care needs to be taken
when cropping images in order to preserve the class of the objects.

For our experiments, we have only used horizontal flipping as data augmentation.

Online Hard Example Mining

One of the main differences between image classification and object detection is
that in object detection we have a large class imbalance between foreground and
background objects. This is especially true for single-stage detectors, but is also
an issue for region proposal detection systems. One of the techniques that have
been used historically to deal with this problem is called "bootstrapping"[40], which
allows us to find useful negative background examples. When using bootstrapping,
we first train a detector to recognize a certain object. Secondly, we freeze the model
and try to detect objects in images that doesn’t contain the object of interest in
order to produce hard negatives. The hard negatives are then used again in the
training phase to improve the detection accuracy. These two steps of training with
the difficult examples and then using the model to find new hard negatives are
repeated until a satisfactory accuracy has been reached.

One of the reasons that bootstrapping has not been used for convolutional networks
is that freezing the model to find hard negatives considerably slows down the train-
ing. Online hard example mining (OHEM)[10] is a technique that performs a form
of bootstrapping without introducing a significant computational overhead. In the
Faster R-CNN object detection framework, OHEM works by increasing the number
of region proposals in the forward pass and then does a hard example selection to
pick out examples for which we should compute the gradient and use in the backward
pass when we update the weights.

In our experiments we use OHEM and select 128 regions in the hard example selec-
tion process.

Soft-NMS

Almost all object detection systems use a post-processing technique called non-
maximum suppression (NMS) in order to remove duplicate predictions of the same
object. It works by choosing the prediction with the maximum confidence score
and then removing the other predictions that have a significant overlap with that
prediction. The maximum prediction is added to a list of final predictions and then
the process is repeated again until all predictions have been processed. Figure 3.1
shows an example of applying the NMS technique.

The issue with standard NMS is that there may be two distinct objects with bound-
ing boxes that have a significant overlap, which will cause NMS to remove the over-
lapping prediction with the lowest confidence score. Soft-NMS[41] addresses this
problem by decreasing the confidence score of predictions that have an overlap with
the prediction with maximum confidence score. The confidence score is decreased
in proportion to the intersection over union overlap.

In our experiments we have replaced NMS with Soft-NMS for the final output pre-
dictions of the model.

25

3. Methods

Figure 3.1: An example of non-maximum suppression. Image (a) shows the predic-
tions of the object detection system before the non-maximum suppression technique
has been applied. The thickness of the bounding boxes indicates the confidence
score. Image (b) shows result after non-maximum suppression, where overlapping
predictions have been removed.

Multi-Scale Testing

The objects in the maritime images dataset are composed of different structures at
different scales. Multi-scale testing is a technique where we predict bounding boxes
on an image at multiple scales. By predicting at multiple scales we can combine the
information from both courser and finer features to improve the final accuracy.

We have used multi-scale testing at three different scales, such that the shorter side
of the image is 480, 576 and 688 pixels.

3.3 Deformable Convolutions Experiments Model

In this section we present a baseline model and the architectural changes that have
been proposed to that model. Furthermore, we describe how the models have been
trained.

3.3.1 Baseline Model

Similarly to the maritime images experiments, we use a Faster R-CNN as a baseline
model. The feature extractor that we use is a ResNet-101 convolutional network
that has been pre-trained on ImageNet. The last three layers of the ResNet-101
convolutional network use deformable convolutions and the Rol-pooling layer uses
deformable Rol-pooling.

26

3. Methods

3.3.2 Atrous Spatial Pyramid Pooling

Atrous spatial pyramid pooling (ASPP)[42] combines the ideas of atrous convolution
and spatial pyramid pooling. In order to understand ASPP we first review these
two concepts.

In regular convolutional filters we have that the spatial sampling locations are one
spatial position apart. Atrous convolution is a type of convolution where the spatial
sampling locations are set apart by a dilation rate d, which gives us an equation for
two-dimensional convolution of the following form:

S(i,7)=>_> I(i+dxm,j+dxn)F(m,n) (3.1)

m n
Atrous convolution is also known as dilated convolution. Figure 3.2 illustrates the
difference between regular convolution and atrous convolution with a dilation rate

of 3.

——

**

,,

Figure 3.2: Illustration of the spatial sampling locations in a convolutional 3 x 3
filter. The left image illustrates the sampling locations of a regular convolutional
filter and the right image illustrates a dilated filter with a dilation rate of 3.

Spatial pyramid pooling is a technique that was used in the convolutional network
SPP-net[43]. It replaces a regular pooling layer with multiple pooling layers of
different scales which are then concatenated together. This gives us an aggregation
of coarser and finer features.

ASPP was proposed in the DeepLab[42] convolutional network for semantic segmen-
tation. Instead of multiple pooling layers it uses convolutional filters with multiple
dilation rates. The output feature maps are concatenated and then passed through
a 1 x 1 convolutional layer, see figure 3.3.

In this thesis we have combined the techniques of deformable convolutions with
ASPP in two ways. Firstly, we have applied ASPP to the entire deformable con-
volutional layer. Secondly, we have experimented with ASPP for just the offset
branch.

ASPP for Entire Deformable Convolutional Layer

A deformable convolutional layer consists of two parts, an offset branch and a main
branch. When applying ASPP to an entire deformable convolutional layer we have

27

3. Methods

3 x 3 Conv
Dilation: 2

3 x 3 Conv
Dilation: 4 Concatenate 1 x 1 Conv

/

/

3 x 3 Conv
Dilation: 8

Figure 3.3: Example of atrous spatial pyramid pooling. The feature maps from
three convolutional layers with different dilation rates are concatenated and finally
passed through a 1 x 1 convolutional layer.

replicated the offset branch and main branch for each level of the pyramid. Because
of the computational overhead, we have only used ASPP for the last deformable layer
in the feature extraction network. The original deformable layer uses 512 filters in
the main branch and 72 filters in the offset branch. Similarly, we have used 512
filters for the main branch and 72 offset filters for each level of the pyramid. The
final 1 x 1 convolutional layer has 512 filters in order to keep the output dimension
the same as in the original model. In our experiments we have tried ASPP with two
different dilation rates (2,4) and three different dilation rates (2,4,8). The offset
branch uses the same dilation rate as the main branch it is connected with.

ASPP for Deformable Offset Branch

Figure 3.4 illustrates the structural changes when applying ASPP to the offset
branch. Since applying ASPP to the offset branch is computationally less expensive
than applying it to an entire deformable layer, we have applied ASPP to the offset
branch of all deformable layers. We have used the same number of filters for each
level of the pyramid as in the original offset branch, namely 72 filters. The final 1 x 1
convolutional layer has 72 filters as well. We have used the same number of different

28

3. Methods

dilation rates as in the other other ASPP experiment, i.e. (2,4) and (2,4,8). The
main branch of the deformable layer uses the original dilation rate of 2.

Atrous spatial pyramid pooling

————————————————————————————

Offset field
Offsets

KA >

t
/

/

Deformable convolution

Input feature map Output feature map

Figure 3.4: Example of atrous spatial pyramid pooling with three different dilation
rates for the parallel offset branch of a deformable convolutional layer.

Elementwise Adding

For both of the experiments above we have also substituted the concatenation step
with another fusion strategy, namely elementwise adding. We use the same number
of filters for all convolutions as in the experiments above. However, the final 1 x 1
convolutional is no longer needed since the output dimension is already correct after
the elementwise adding.

3.3.3 Multiple Filter Size

In the ASPP experiment we used several branches with different dilation rates and
then fused the results with either concatenation or elementwise summation. Draw-
ing inspiration from the Inception-block in the convolutional architecture of Szegedy
et. al.[44], we have also tried branches with different filter sizes in the final layer.
Similarly to the ASPP experiment we have used the fusion strategies of concatena-
tion and elementwise summation. The original kernel size of the last layer is 3 x 3. In
our experiments we have tried the following combinations of branches with different

29

3. Methods

kernel sizes: (3 x 3,5 x5),(1x1,3x3,5x5). Each branch with different filter size
comprises 512 filters. Furthermore, we have conducted experiments with a single
kernel size of 3 x 3 and 5 x 5 for reference. All experiments have been run for the
deformable model as well as its non-deformable counterpart.

3.3.4 'Training

The training parameters are for the most part similar to the default configuration for
the Faster R-CNN version of the official implementation of deformable convolutional
networks. The training dataset is the union of the PASCAL VOC 2007 trainval and
2012 trainval datasets and the images are resized to have a shorter side of 600 pixels.
The reason that we have chosen to perform these experiments on PASCAL VOC
instead of the maritime images dataset or the larger COCO dataset is that PASCAL
VOC contains enough images to give reliable results but is small enough to converge
after a reasonable amount of time given the computational resources available for
this project. The models have been trained for 7 epochs, where one epoch is one
pass through the entire training data.

We use the same learning rate scheme as the official implementation. First we use
a warmup learning rate of 5% 107> for 4000 iterations. After the warmup stage,
the learning rate is set to 5 * 107* and 5 * 107° in the first % and last % iterations,
respectively.

Due to running into issues with exploding gradients during training we have set a
gradient clipping value of 1. Gradient clipping limits the magnitude of the gradients
to protect against gradients from extreme cases, which can have a devastating effect
on the weights.

3.4 Evaluation

The evaluation metric that has been used is the mean average precision (mAP) score
as defined by PASCAL VOC]7]. The deformable convolutions experiments have been
evaluated on the PASCAL VOC 2007 test set. The improvements on the maritime
images experiments have been evaluated on the maritime images validation set and
then the final model has been evaluated once on the maritime images test set.

3.4.1 Mean Average Precision

The output of our model is a list of predictions where each prediction consists of
coordinates for the bounding box, a class and a confidence score. The confidence
score indicates how certain the model is that the bounding box contains the object
of interest.

The mean average precision is obtained by calculating the mean of the average
precision (AP) of all classes. In order to understand the average precision metric,
we first review the concepts of precision and recall. Precision and recall are computed

30

3. Methods

in the following way

.. true positives
precision = — — (3.2)
true positives + false positives

true positives

recall = (3.3)

true positives + false negatives

In the case of object detection, a positive prediction is when the confidence score of
the prediction exceeds a confidence threshold t. The prediction is a true positive if
the overlap ratio between the predicted bounding box and a ground truth bounding
box with the correct class exceeds an intersection over union (IoU) value v. The
prediction is a false positive if there is no ground truth bounding box with the correct
class that has an overlap ratio with the predicted bounding box which exceeds the
intersection over union value v. If there are multiple positive predictions satisfying
the overlap criterion for a certain ground truth object, the first prediction is counted
as a true positive and the other predictions are counted as false positives. A false
negative is when there is a ground truth objects which doesn’t satisfy the overlap
criterion with any positive prediction of the same class.

The intersection over union value is defined by the formula

area(B, N By,)

IoU =
¢ area(B, U By,)

(3.4)

where B, and By, are the predicted bounding box and ground truth bounding box,
respectively.

There is a trade-off between precision and recall. With a higher confidence threshold
we get a higher precision and with a lower confidence threshold we get a higher recall.
By plotting the precision against the recall we get a precision/recall curve that shows
the trade-off between precision and recall at all relevant confidence thresholds.
The average precision can be seen as a summary statistic of the precision/recall
curve. It is computed by taking the mean of the precision p at eleven recall levels r

1
AP = > plr) (3.5)

31

3. Methods

32

Chapter 4

Results

This chapter presents the results of the two types of experiments that have been
conducted. First, we show the results of the experiments on the maritime images
where the goal was to examine which performance could be achieved by applying
a range of techniques. Secondly, we show the results of the experiments where we
combined deformable convolutions with other techniques that affects the spatial
sampling locations of the convolutional filters.

4.1 Maritime Images Experiments

In this section we show the results of the experiments on the maritime images
dataset. We have trained a baseline model and then applied the following improve-
ments, deformable layers, online hard example mining, horizontal flip, soft-NMS
and multi-scale testing. The techniques have been applied incrementally in the or-
der listed above and the implementation details are listed in section 3.2. Table 4.1
shows the mAP score at the intersection over union thresholds of 0.5 and 0.7 when
the models have been tested on the maritime images validation set. We can see
that the biggest improvement comes from adding the deformable Rol-pooling and
deformable convolutional layers, especially for the mAP score at the loU threshold
of 0.7. Table 4.2 shows the mAP score at the intersection over union thresholds
of 0.5 and 0.7 for the model with all improvements when tested on the maritime
images test set. The score is a bit lower than the score on the validation set. This is
expected since the hyperparameters such as learning rate and number of epochs have
been tuned according to the performance on the validation set. A visual assessment
of the detections is given in the discussion section 5.1

The techniques that improve the mAP score come at a cost in terms of training and
test speed. Table 4.3 shows the training and test speed in images per second when
applying the aforementioned techniques. The hardware that has been used is listed
in section 3.1. As before, the techniques are applied incrementally. We note that
using deformable layers has the most impact on the training speed out of all the
listed techniques. However, it is also the technique that improves the mAP score the
most. Multi-scale testing significantly decreases the test speed, almost by a factor
equal to the number of different test scales. Worth noting is that the horizontal flip
doesn’t increase the training speed nor the test speed, but still gives a considerable

33

4. Results

Maritime Images Validation Set | mAP@0.5 | mAP@0.7
Baseline 78.0 60.6
+ Deformable layers 80.1 66.4
+ Online Hard Example Mining 81.1 66.5
+ Horizontal Flip 81.9 68.9
+ Soft-NMS 82.2 69.9
+ Multi-Scale Testing 83.7 70.4

Table 4.1: Detection mean average precision (mAP) at ToU thresholds 0.5 and 0.7
on the maritime images validation set. The table shows the result of applying a
range of techniques incrementally, i.e. at the final row all techniques are applied.

Maritime Images Test Set ‘ mAP@O0.5 ‘ mAP@O0.7
Final Model 799 | 579

Table 4.2: Detection mean average precision (mAP) at IoU thresholds 0.5 and 0.7
on the maritime images test set.

increase in mAP score.

Training Speed Test Speed
Maritime Images (images/second) | (images/second)
Baseline 3.89 10.5
+ Deformable layers 3.35 9.35
+ Online Hard Example Mining 3.31 9.35
+ Horizontal Flip 3.31 9.35
+ Soft-NMS 3.31 9.30
+ Multi-Scale Testing 3.31 3.09

Table 4.3: Training speed and test speed in images per second on the maritime
images. The techniques listed in the table are applied to the baseline model incre-
mentally.

Figure 4.1 shows a sample of maritime images from the test set with detections
generated by the final model. Detections with a confidence score higher than 0.7
are shown.

4.2 Deformable Convolutions Experiments

In this section we show the results of applying atrous spatial pyramid pooling and an
Inception-like layer of multiple filter sizes to a model with deformable convolutions.
All results are shown with an intersection over union threshold of 0.5 and 0.7. An
analysis of the results is given in the discussion section 5.2.

34

4. Results

Figure 4.1: Sample maritime images from the test set with detections generated
by the final model.

35

4. Results

4.2.1 Atrous Spatial Pyramid Pooling

Two types of atrous spatial pyramid pooling (ASPP) experiments have been per-
formed. ASPP on the entire deformable convolutional layer and ASPP on the offset
branch exclusively. See section 3.3.2 for a detailed description.

ASPP on Entire Deformable Convolutional Layer

Table 4.4 shows the result of adding ASPP to the last convolutional layer in the
feature extraction network. We compare the results of using ASPP on a regular
convolutional network and a deformable convolutional network. We can see that
the mAP score of the deformable models with ASPP is similar to the mAP score
of the non-ASPP deformable model. However, ASPP offers a slight improvement in
mAP score at both IoU thresholds for the models with regular convolution.

ASPP Last Convolutional Layer | mAP@0.5 | mAP@Q.7
Regular Conv Baseline 78.0 60.4
Regular Conv + Concat (2,4) 78.6 61.0
Regular Conv + Concat (2,4.,8) 78.4 61.2
Regular Conv + Add (2,4) 78.3 61.2
Regular Conv + Add (2,4,8) 78.3 62.0
Deformable Conv Baseline 80.0 66.7
Deformable Conv + Concat (2,4) 80.2 66.5
Deformable Conv + Concat (2,4,8) 80.0 66.5
Deformable Conv + Add (2,4) 79.7 66.9
Deformable Conv + Add (2,4,8) 80.1 66.6

Table 4.4: Detection mean average precision (mAP) at IoU thresholds 0.5 and 0.7
on VOC 2007 test. The table shows the result of applying atrous spatial pyramid
pooling to the last convolutional layer when regular convolution and deformable
convolution is used. The table shows the result for two different dilation rates (2,4)
as well as three different dilation rates (2,4,8). Two different fusion strategies have
been used, concatenation with 1 x 1 convolution (Concat) and elementwise adding

(Add).

ASPP on Deformable Offset Branch

Table 4.5 shows the result of adding ASPP to the offset layer of all three deformable
convolution layers in the feature extraction network. From the table we can see
that the ASPP with elementwise adding gives slightly better results at the IoU
threshold of 0.5, but slightly worse results at the IoU threshold of 0.7. As for the

other fusion strategy of concatenation, we have a decrease in performance for both
IoU thresholds.

36

4. Results

ASPP Offset Layers mAP@0.5 | mAP@0.7
Deformable Conv Baseline 80.0 66.7
Deformable Conv + Offset Concat (2,4) 79.8 65.9
Deformable Conv + Offset Concat (2,4,8) 79.4 65.6
Deformable Conv + Offset Add (2,4) 80.4 66.3
Deformable Conv + Offset Add (2,4,8) 80.3 66.6

Table 4.5: Detection mean average precision (mAP) at IoU thresholds 0.5 and 0.7
on VOC 2007 test. The table shows the result of applying atrous spatial pyramid
pooling to the offset layer in all three deformable convolutional layers. The table
shows the result for two different dilation rates (2,4) as well as three different dilation
rates (2,4,8). Two different fusion strategies have been used, concatenation with 1x 1
convolution (Concat) and elementwise adding (Add).

4.2.2 Multiple Filter Size

Table 4.6 shows the result of modifying the last convolutional layer in the feature
extraction network to be Inception-like with multiple filter sizes. We compare the
results of using the modified layer on a regular convolutional network and a de-
formable convolutional network. We can see that the mAP score of the deformable
models with the modified layer with multiple filter sizes is slightly worse than the
mAP score of the original deformable model. There is a single configuration "De-
formable Conv + Concat(3 x 3,5 x 5)" for which the baseline is beaten at the IoU
threshold of 0.5, the score is however slightly worse at the IoU threshold of 0.7. The
modified layer with multiple filter sizes offers a slight improvement in mAP score at
both IoU thresholds for the models with regular convolution.

37

4. Results

Table 4.6: Detection mean average precision (mAP) at IoU thresholds 0.5 and
0.7 on VOC 2007 test. The table shows the result of using multiple filter sizes on
the last convolutional layer when regular convolution and deformable convolution
is used. The table shows the result for two different combinations of filter sizes
(3 x3,5x5),(1x1,3x3,5x05). Furthermore, the results of experiments with
two different single filter sizes of 3 x 3 and 5 x 5 are also shown. Two different
fusion strategies have been used, concatenation with 1 x 1 convolution (Concat) and

Multiple Filter Sizes mAP@0.5 | mAP@0.7
Regular Conv (3 x 3) 78.0 60.4
Regular Conv (5 x 5) 78.3 61.0
Regular Conv + Concat (3 x 3,5 x 5) 78.3 61.2
Regular Conv + Concat (1 x 1,3 x 3,5 x 5) 78.3 61.0
Regular Conv + Add (3 x 3,5 x 5) 78.4 61.1
Regular Conv + Add (1 x 1,3 x 3,5 x 5) 78.5 61.4
Deformable Conv (3 x 3) 80.0 66.7
Deformable Conv (5 x 5) 79.9 66.4
Deformable Conv + Concat (3 x 3,5 X 5) 80.4 66.6
Deformable Conv + Concat (1 x 1,3 x 3,5 X 5) 79.9 66.3
Deformable Conv + Add (3 x 3,5 x 5) 79.7 66.6
Deformable Conv + Add (1 x 1,3 x 3,5 x 5) 80.0 66.5

elementwise adding (Add).

38

Chapter 5

Discussion

In this chapter, we first do a visual assessment of the detections on the maritime
images test set. Secondly, we analyze the results of the deformable convolution
experiments and try to understand why some techniques work with regular convolu-
tional networks, but not with deformable convolutional networks. We conclude the
chapter with a further work section.

5.1 Visual Assessment of Detections on Maritime
Images

In this section we visually assess the detections on the maritime images test set to
see what kind of errors the model makes. For all the images in this section, we
have chosen to include detections with a confidence score above 0.7. This threshold
has been chosen to balance between false positives and false negatives. We start by
looking at images where the model has failed to detect boats with a ground truth
label. Two of the main reasons that a boat is not detected by our model are occlusion
and clutter. Figure 5.1 shows a few images where ground truth objects does not have
a matching detection due to occlusion and clutter. For cluttered objects, the model
may consider the entire collection of cluttered objects as a single instance, with a
bounding box encompassing all of the cluttered objects. However, in some instances
the model just detects one of the cluttered objects. Distinguishing cluttered objects
of the same class with duplicate detections of the same object is a general problem
that object detection systems that use non-maximum suppression struggles with.
A second type of error that our model makes is that it detects boats that are not
boats at all. Figure 5.2 shows a few images illustrating this kind of error. Two of
the false positives seem to have a mast-like appearance, which may explain why the
model may have thought that they are boats. If this kind of error is considered more
serious than a potential increase in false negatives, then the confidence threshold
can be increased.

Although some of the false positives are not boats at all, most of the false positives
are actual boats that have not been annotated as boats due to the criterias listed
in section 2.4.1. Figure 5.3 shows a few examples of where the model detected
boats that do not have a matching ground truth object. We can see that most of

39

5. Discussion

Figure 5.1: Images with missing or inaccurate detections due to occlusion and
clutter. Detections are shown as solid red rectangles and ground truth objects as
dashed green rectangles.

Figure 5.2: Images with detections of non-boats as boats. Detections are shown
as solid red rectangles and ground truth objects as dashed green rectangles.

the examples are boats in the background and are examples that almost meet the
criteria of being in the annotation set. We can also see an example of a rubber boat
that is on the back of a sailboat. When the rubber boat is attached to the boat, it
is considered to be part of the boat and not an instance in itself. However, when
the rubber boat is floating in the water, then it has been labeled as an individual
object. There are just a few examples with these conditions and the model has not
learned these fine nuances.

Except for the problems that are mentioned above, the model makes a few other
mistakes. The model has learned quite well to match the masts with the boats.
However, there are a few instances where the model either does not include the
mast or the model returns one prediction for the boat excluding the mast and one
prediction for the boat including the mast. Figure 5.4 illustrates the problem of
duplicate detections for sailboats.

40

5. Discussion

Figure 5.3: Images with detections of boats that are not in the annotation set.
Detections are shown as solid red rectangles and ground truth objects as dashed
green rectangles.

Figure 5.4: Images with duplicate detections of sailboats. Detections are shown
as solid red rectangles and ground truth objects as dashed green rectangles.

5.2 Analysis of the Results of Deformable Convo-
lution Experiments

From the results we can see that using multiple dilation rates and using multiple filter
sizes in the last layer of a regular convolutional network improved the performance.
However, neither techniques had a significant improvement on the convolutional
network with deformable layers. To understand why this might be, we study the
spatial sampling locations of the last three layers for a particular position in an
image of the PASCAL VOC 2007 test set. The intuition behind using multiple
dilation rates and multiple filter sizes is that we would like to capture information
that is distributed in a small area with convolutions that have a small dilation
rate or small filter size and information that is distributed in a larger area with
convolutions that have a larger dilation rate or larger filter size. Figure 5.5 shows
the sampling locations when using dilation rates 2, 4 and 8 in the last convolutional
layer in both a regular and deformable convolutional network. It is hard to establish
why the multiple dilation rates don’t work as well for the deformable convolutional
network, but one theory is that the deformable convolutional layer with dilation rate
2 already adapts quite well to the object of interest making the other deformable

41

5. Discussion

convolutional layers with other dilation rates superfluous.

Figure 5.6 shows the sampling locations when using filter sizes 3 x 3 and 5 x 5 in
the last convolutional layer in both a regular and deformable convolutional network.
Similarly to the multiple dilation case, we can see that the deformable sampling
locations already cover the object quite well for the filter with size 3 x 3. This might
explain why we do not get a performance increase when adding or concatenating
the outputs of convolutional layers with both filter sizes.

5.3 Further Work

In this section we present other techniques that can improve the mAP score of the
network in the maritime images experiments. Furthermore, we give a suggestion of
how to improve the deformable convolution operator which we call learnable dilation.

5.3.1 Other Techniques to Improve mAP Score

One of the main issues with the maritime images dataset is that it does not contain
many examples. Gathering more data would probably the most effective measure
to increase the mAP score. Another option is to use more data augmentation tech-
niques. Except for the flipping, rotation and cropping mentioned in the methods
section, we can add gaussian noise or use more advanced techniques such as Gen-
erative Adversial Networks[45] to create synthetic examples. Data augmentation is
not limited to the training phase but can also used in the test phase similar to how
we used multi-scale testing.

Changing the architecture is another way to improve the model. Deeper archi-
tectures generally perform better. In our experiments we used a ResNet feature
extractors with 101 layer, but by increasing it to 152 layers we might see a small
increase in performance. The performance gains of the depth comes at the cost
of increased training speed and memory requirements. Changing the architecture
entirely might also provide a boost in performance. DenseNet[46], ResNeXt[47],
Xception[48] and Inception-ResNet[49] are popular alternatives to the ResNet and
they also use residual connections. To improve the mAP score even further, we
can combine these feature extractors with the feature pyramid network technique
illustrated in section 2.2.3.

We can also use an ensemble of different models and average their predictions to
increase performance. The idea behind ensembling is that the models make differ-
ent types of mistakes, and that the majority of them should get their prediction
right. In order for the models not to make the same kind of mistakes, we can use
different architectures and train them on different folds of the training data. While
an ensemble of models may perform better, it can take a long time to train them.
Instead of averaging over the predictions, we can also average over the weights in a
network. Stochastic weight averaging[50] takes the average of the weights in a single
model at different iterations. Weight averaging leads to finding a wider minima and
better generalization.

Object detection is an active research area. Other than the techniques mentioned
above, there are several other ways to improve a model, and several more to come.

42

5. Discussion

(e) (f)

Figure 5.5: The red dots show the sampling locations of the final three layers
of a deformable convolutional network for the neuron located at the green dot. In
the left images we have the spatial sampling locations for a network with regular
convolutions where the dilation rate in the last layer is 2, 4 and 8 in subfigure (a),
(c) and (e) respectively. In the right images we have the spatial sampling locations
for a network with deformable convolutions where the dilation rate in the last layer
is 2, 4 and 8 in subfigure (b), (d) and (f) respectively. The number of spatial
sampling locations are the same in all images, but there is a significant overlap for
the locations in the networks using regular convolutions.

43

5. Discussion

(c) (d)

Figure 5.6: The red dots show the sampling locations of the final three layers of a
convolutional network for the neuron located at the green dot. In the left images we
have the spatial sampling locations for a network with regular convolutions where
the filter size in the last layer is 3 in subfigure (a) and 5 in subfigure (c). In the
right images we have the spatial sampling locations for a network with deformable
convolutions where the filter size in the last layer is 3 in subfigure (b) and 5 in
subfigure (d).

44

5. Discussion

5.3.2 Learnable Dilation

Deformable convolution adds an offset height and width parameter for each filter
element for each spatial location. For a 3 x 3 filter this gives us 3 x 3 x 2 parameters
for each spatial location. An interesting modification of this would be to redesign the
deformable convolution operator to learn a height and width dilation offset. That
would give us 2 parameters per filter for each spatial location instead. Figure 5.7
illustrates the difference between regular deformable convolution and the modified
learnable dilation version.

——

fff

,,

Figure 5.7: Illustration of the spatial sampling locations in a convolutional 3 x 3
filter. The left image illustrates the sampling locations of a learnable dilation filter
with the dilation offset represented by the arrows. The right image illustrates a
deformable filter with offsets represented by the arrows. Note that there are only
two learnable parameters for the learnable dilation filter, namely the horizontal and
vertical dilation rate. For the deformable convolution we have 2 parameters for each
element of the filter.

In section 5.2 we looked at the spatial sampling locations of the last three layers of
a deformable convolutional network. From the figures it can be seen that the offsets
primarily learns the scale and proportions of the objects. Our hypothesis is that the
modified learnable dilation version should give comparable accuracy while reducing
the number of offset parameters as well as the training speed.

45

5. Discussion

46

Chapter 6

Conclusion

In this thesis, we examined what accuracy we could achieve when detecting boats
in small boat marinas. Furthermore, we have looked deeper into the interplay of
deformable convolutional networks and other techniques that affect the spatial sam-
pling locations of convolutional filters.

For the deformable convolution experiments, we examined the results of deformable
convolutions with atrous spatial pyramid pooling and an inception-like block of mul-
tiple filter sizes. We compared the findings with the results of applying the atrous
spatial pyramid pooling and the inception-like block of multiple filter sizes to a reg-
ular convolutional network without deformable convolutions. The results showed
that the atrous spatial pyramid pooling and inception-like block gave a consistent
increase in mAP score for the regular convolutional network. However, when com-
bining atrous spatial pyramid pooling and the inception-like block with deformable
convolutions, the mAP score did not improve. We conclude that deformable convo-
lutions are not compatible with these techniques.

For the maritime images experiments, we have collected and annotated 1000 training
images and evaluated them on 250 test images. The techniques that were employed
and evaluated were deformable layers, data augmentation, online hard example min-
ing, soft-NMS and multi-scale testing.

A visual assessment of the results showed that the model did well on boats that
were clearly visible in the foreground. However, the model struggled with cluttered
and occluded objects as well as objects far in the background. The mean average
precision of the final model was 79.9 and 57.9 at the intersection over union thresh-
olds 0.5 and 0.7 respectively. The results showed that adding deformable layers
significantly improved the model with an increase in mean average precision of 5.8
at the intersection over union threshold 0.7.

47

6. Conclusion

48

Bibliography

[1]
2]

[11]

[12]

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade
of simple features. In null, page 511. IEEE, 2001.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of com-
puter vision, 115(3):211-252, 2015.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-
tection. In international Conference on computer vision € Pattern Recognition
(CVPR’05), volume 1, pages 886-893. IEEE Computer Society, 2005.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105, 2012.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro-
ceedings of the IEEFE conference on computer vision and pattern recognition,
pages H80-H87, 2014.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-
tional journal of computer vision, 88(2):303-338, 2010.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440-1448, 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91-99, 2015.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-
based object detectors with online hard example mining. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 761-769,
2016.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and
Yichen Wei. Deformable convolutional networks. In Proceedings of the IEEE
international conference on computer vision, pages 764-773, 2017.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. Feature pyramid networks for object detection. In Pro-

49

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

50

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2117-2125, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Common
objects in context. In European conference on computer vision, pages 740-755.
Springer, 2014.

Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Scale-aware
trident networks for object detection. arXiv preprint arXiv:1901.01892, 2019.

Bharat Singh, Mahyar Najibi, and Larry S Davis. Sniper: Efficient multi-scale
training. In Advances in Neural Information Processing Systems, pages 9310—
9320, 2018.

Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation
network for instance segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8759-8768, 2018.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
Furopean conference on computer vision, pages 21-37. Springer, 2016.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779-788, 2016.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall

PTR, 1994.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807-814, 2010.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning
representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature
pooling in visual recognition. In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 111-118, 2010.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278-2324, 1998.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770-778, 2016.

Bibliography

28]

[29]

[30]

[34]

[35]
[36]
[37]

[38]

Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. IEEFE trans-
actions on pattern analysis and machine intelligence, 32(9):1627-1645, 2010.
Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International journal of
computer vision, 104(2):154-171, 2013.

Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang
Yu, and Jian Sun. Megdet: A large mini-batch object detector. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
6181-6189, 2018.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961-2969, 2017.

Rich Caruana. Multitask learning. Machine learning, 28(1):41-75, 1997.
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Fo-
cal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 29802988, 2017.

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Pro-
ceedings of the IEEFE conference on computer vision and pattern recognition,
pages 72637271, 2017.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2:
More deformable, better results. arXiv preprint arXiv:1811.11168, 2018.
David G Lowe. Object recognition from local scale-invariant features. In iccu,
page 1150. Ieee, 1999.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in neural information processing systems, pages 2017—
2025, 2015.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

Kah K Sung and Tomaso Poggio. Example based learning for view-based hu-
man face detection. Technical report, MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB, 1994.

Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-
nms—-improving object detection with one line of code. In Proceedings of the
IEEFE International Conference on Computer Vision, pages 5561-5569, 2017.
Liang-Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEFE transactions on pattern
analysis and machine intelligence, 40(4):834-848, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. IEEFE transac-
tions on pattern analysis and machine intelligence, 37(9):1904-1916, 2015.

51

Bibliography

[44]

[45]

52

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1-9, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672-2680, 2014.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4700-4708, 2017.
Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggre-
gated residual transformations for deep neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1492—-1500,
2017.

Francois Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1251-1258, 2017.

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learn-
ing. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson. Averaging weights leads to wider optima and better
generalization. arXiv preprint arXiv:1805.05407, 2018.

