

Estimating Architectural Technical Debt

A Design Research

Master’s thesis in Software Engineering

GUSTAV DAHL

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY & UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017:NN

Estimating Architectural Technical Debt

A Design Research

GUSTAV DAHL

Department of Computer Science and Engineering
Division of Software Engineering

Chalmers University of Technology & University of Gothenburg
Gothenburg, Sweden 2017

Estimating Architectural Technical Debt
A Design Research
GUSTAV DAHL

© GUSTAV DAHL, 2017.

Supervisor: ANTONIO MARTINI and JAN BOSCH, Department of of Computer
Science and Engineering
Examiner: ERIC KNAUSS, Department of Computer Science and Engineering

Master’s Thesis 2017:NN
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology & University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Graph showing the cost of refactoring will change over time.

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Estimating Architectural Technical Debt
A Design Research
GUSTAV DAHL
Department of Computer Science and Engineering
Chalmers University of Technology & University of Gothenburg

Abstract
Technical debt(TD) and the sub-category architectural technical debt (ATD) are two
software related buzzwords frequently used in both academia and in the software
industry. The purpose of these terms is to make it easier to understand that a
software decision might lead to an expected or unexpected consequence that could
have an impact in the long-run. Hence, the TD level in a project needs to be under
control. However, the common approach towards refactoring of a TD is to handle
it when it is too late and a crisis has emerged due to its presence. In order to solve
this and make the stakeholders able to determine when a TD should be refactored a
tool has been developed. This tool incorporates the newly developed AnaConDebt
model, which is an ATD refactoring decision model. The outcome from building
and evaluating this proof-of-concept is that there is potential for such a tool but it
is not yet there. The underlying model needs to be further developed incorporating
more info used by the industry.

Keywords: Technical debt, Architectural Technical debt, Software Architecture,
Refactoring, Refactoring decision

v

Acknowledgements
I would first and foremost like to thank my supervisors at Chalmers University
of Technology, Antonio Martini and Jan Bosch. They helped me from start to
end by guiding me in how to conducted the research in a scientific manner and
then summarizing it into the report you are currently reading. I would also like to
thank my supervisor Ali at the case company for setting a high bar for this thesis
and expecting nothing but excellence. Other people who deserves praise for their
contributions are the people at the case company, Christofer, Martin, Victor, Peter,
who has been helping me through out the thesis and made me feel very welcome.

Gustav Dahl, Gothenburg, June 2017

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Background 5
2.1 Domain background . 5

2.1.1 Stakeholders . 5
2.1.1.1 Developers . 5
2.1.1.2 Architects . 6
2.1.1.3 Product Owner . 6

2.2 Theoretical background . 6
2.2.1 Technical Debt . 6

2.2.1.1 Technical Debt Management 7
2.2.2 Architectural Technical Debt 8
2.2.3 Architectural Technical Debt Analyzation models 9

2.3 Technical Background . 10
2.3.1 AnaConDebt: Construction and Appliance 10

2.3.1.1 Generic Example of AnaConDebt 13
2.3.2 Tools for measuring code and software architecture quality . . 17

3 Methods 19
3.1 Design Research . 19
3.2 Case Study Research . 20
3.3 The Design Research . 21

3.3.1 Knowledge Base . 21
3.3.2 Environment . 21

3.3.2.1 Environment Case Study 21
3.3.3 Development . 23
3.3.4 Evaluation . 23

3.3.4.1 Evaluation Case Study 24

4 Results 29
4.1 Environment Case Study . 29
4.2 Artifact Development . 30
4.3 Evaluation Case Study . 32

ix

Contents

4.3.1 Questions before the session started 33
4.3.2 Questions after using the whiteboard 35
4.3.3 Questions after using the tool 37

5 Discussion 41
5.1 RQ1a: When taking a decision on ATD, is there a difference between

what aspects are used at the studied company and the ones suggested
by the TD theory? . 42

5.2 RQ1b: How can these aspects be combined? 44
5.3 RQ2: How does an ATD decision tool affect practitioners in making

refactoring decisions? . 45
5.4 RQ3: In what way does different stakeholders have different percep-

tions regarding ATD and its refactoring? 46
5.5 Implication for the Industry . 47
5.6 Implication for the Academia . 47
5.7 Limitations . 47
5.8 Threats to Validity . 48

5.8.1 Construct Validity . 48
5.8.2 Internal Validity . 48
5.8.3 External Validity . 48
5.8.4 Reliability . 48

5.9 Related work . 49
5.10 Future Work . 50

6 Conclusion 51

Bibliography 53

A Interview guide I
A.1 General Information . I

A.1.1 Goal with the Interview . I
A.1.2 Interview Type . I
A.1.3 Interview Phases . I

A.2 Guide . I
A.2.1 General info to establish with the interviewee before the in-

terview starts . I
A.2.2 ATD Identification . II

A.2.2.1 Open start questions II
A.2.2.2 Factors to Identify II

A.2.3 Principal . III
A.2.4 Interest . III

A.2.4.1 Propagation Factors III
A.2.4.1.1 Internal factors III
A.2.4.1.2 External Factors IV

A.2.4.2 Impacts . IV

B Design Research - Case Study Evaluation V

x

Contents

B.1 Questions to be answered before the session starts V
B.2 Questions after using the whiteboard(30 min) VI
B.3 Questions after using the tool(30 min) VI

C Images of the Tool IX

xi

Contents

xii

List of Figures

1.1 The technical debt landscape. The image is borrowed from Phillippe
Krutchen, Robert L.Nord and Ipek Ozkaya [2] 2

2.1 AnaConDebt method [4] . 13

3.1 The Design Research Framework that is used in this thesis 20
3.2 Venndiagram showing the relationship between factors used in prac-

tise and factors used in the theory . 25
3.3 Execution flow of the case study for evaluating the design research

artifact . 27

4.1 Man hours needed to conduct the refactoring 31
4.2 Number of components affected by the refactoring 31
4.3 Number of components that could be saved from being affected by

the refactoring if the refactoring is conducted 32
4.4 The cost of refactoring the ATD and the interest of not doing the

refactoring for different time-perspectives 32
4.5 How much knowledge did the participants feel that they have regard-

ing technical debt. 1 equals "not at all, while the highest score, 5
equals to "very well" . 35

4.6 How accurate did the participants think that the refactoring decision
by using the whiteboard was. The lowest score 1 equals to "not very
accurate" while the highest score, 5 implies "very accurate" 36

4.7 How accurate did the participants think that the output from the
tool was. The lowest end of the scale 1 represents "not accurate at
all" while the highest end of the scale, 5 represents "very accurate" . . 37

4.8 How useful did the participants feel that the factors used in the tool
was. The lowest grade 1, represents "not useful at all" while the
highest grade 5 equals to "very useful" 38

4.9 Did the tool give good feedback on the growth of the cost of refac-
toring. 1 is the lowest score and represents "the tool did not give any
good feedback at all". The highest score 5 equals to "the feedback
was excellent". 38

4.10 Would the output from the tool help communication with stakehold-
ers. The lowest score 1, represents "the tool would not help communi-
cation with other stakeholders at all" while the highest score 5 equals
to "that it would help a lot". 39

xiii

List of Figures

5.1 Diagram showing relationship between the factors used in practice
and in TD theory. The factors from the theory are taken from the
paper "An Empirically Developed Method to Aid Decisions on Ar-
chitectural Technical Debt Refactoring: AnaConDebt" by Antonio
Martini and Jan Bosch [4] . 42

C.1 The main page of the artifact . IX
C.2 The decision regarding if and when a refactoring should be done . . . IX
C.3 Charts showing the growth of the cost of refactoring over time X

xiv

List of Tables

2.1 Martin fowlers technical debt quadrant 7
2.2 Types of ATD and their Indication of Presence 9
2.3 Propagation factors . 11
2.4 The data for ATD A . 14
2.5 CRS ratio values that can be used in AnaConDebt calculation 15
2.6 CRI ratio values that can be used in AnaConDebt calculation 15
2.7 Principals values for ATD item A and ATD item B 15
2.8 Summary table for the growth of the source for ATD A 16

4.1 Identified ATD items from the interviews and how many of the inter-
view they where mentioned . 29

4.2 Grading of factors to take in consideration when prioritizing between
two items that need to be refactored. The lowest grade is 1 and
represents that it is not prioritized while the highest grade is 5 and
implies that it is very prioritized . 33

4.3 Grading of factors to take in consideration when prioritizing between
item that needs to be refactored and a new feature. The lowest grade
is 1 and represents that it is not prioritized while the highest grade
is 5 and implies that it is very prioritized 34

4.4 Factors that where considered on the whiteboard 36

xv

List of Tables

xvi

1
Introduction

In 1992, Ward Cunningham expressed the term technical debt(TD) for the first time.
He used it as a metaphor to explain the phenomena regarding releasing a software
project for the first time to the public. To be more precise, he aimed to explain how
the software release would affect the quality of the source code and as a result affect
the future development of the project. The comparison that the metaphor is trying
to make is that releasing code for the first time is like going into debt. The released
software might satisfy the customers needs at this point in time, but sub-optimal
code decisions done in order to meet the release date will lead to an extra cost for
the development in the future. [1]. In other words, meeting short-term goals often
leads to going into debt, and the interest is the costs of repairing it to meet long-
term goals. [3] TD is a flexible metaphor and a various amount of sub-categories
have been expressed in order to address different kinds of software related debts.
A few examples of these kind of sub-categories are Requirements debt, Document
debt and Architectural technical debt. [2] The scope for this thesis is Architectural
technical debt(ATD) and can be described as contraventions against the intended
and pre-defined software architecture. [6]

Figure 1.1 shows the current technical debt landscape as suggested by Phillipe
Krutchen, Robert L.Nord and Ipek Ozakaya. On the right side of the blue box
are code related attributes which shows themselves as quality issues in the product.
These issues can be found using static code analyzation tools. A few examples of
such code analyzers are NDepend or SonarQube. [18][19] On the other hand, to the
left in the red box are the architecture and structural issues with the evolvability
of the product. These types of issues are very common TDs in a software project
and it is therefore important to take care of them when developing larger projects
that will be supported after development has finished. However, these issues are
unfortunately not found using the common code analyzation tools. [2][11]

1

1. Introduction

Figure 1.1: The technical debt landscape. The image is borrowed from Phillippe
Krutchen, Robert L.Nord and Ipek Ozkaya [2]

In order to measure quality of the source code (the right side of figure 1.1) various
amounts of Software quality metrics and software quality models have been defined.
A software quality metric measures something very specific regarding the software.
A few examples of these metrics could be lines of code or coupling. [20] However,
it is important to be aware of that only using one metric for measuring software
quality does not provide a good picture. Several metrics should instead be used
together in order to triangulate the result. A software quality model is a definition
of Software characteristics that should be measured and together in total create
a credible software quality framework. Because of its complexity there are fewer
models developed for the architecture related software quality (the left side of figure
1.1)but one of the more commonly used example of such method is the Architecture
Tradeoff Analysis Method(ATAM). [21]

Even though the models developed are effective, none of them provide any reasoning
for whether it is a good decision to refactor from a cost-wise perspective. This is
something that the software industry has acknowledged as a major issue related to
technical debt. They can get an estimated cost of the technical debt, but how do
they know if it is actually worth spending time on fixing that particular TD? Will the
cost of refactoring be lower than the gained benefits? How will the cost of refactoring
change overtime? Its is all about the context of that particular TD. [2] In order to
address this ambiguity the researchers from Chalmers University of Technology have
developed an empirical model called AnaConDebt. With this model, the researchers
strived to help practitioners determine if it is worth refactoring the ATD and also if
it would be possible to determine how emergent it is to repay the debt. [4] Knowing
this would be of great importance since the decision making and knowing when to
implement certain features or paying back certain TDs will help increase the value of
the product to a minimum cost. It is also identified as the best way to minimize the
growth of TD, identifying the TD and what is causing it and thereafter managing
them one by one [2]

The paper "In search of a metric for managing Architectural Technical debt", pub-
lished at the 6th European conference on Software Architecture in 2012 stated that

2

1. Introduction

if technical debt is not taken care of, it will lead to increased development costs,
which will result in emerging technical issues related to the projects technology
base.[5] Unfortunately, one the of most common ways of managing TD is to handle
it ad hoc, meaning that it is taken care of when the crisis have already emerged. As
can be expected this is not the optimal solution for managing TD hence the best
time of refactoring has already passed. A major issue related to this is something
called contagious technical debt. Contagious technical debt is a TD that overtime
spreads across the system and is best managed by predicting its proliferation.[6] Re-
cent systematic mapping research has stated that more tools with the aim of helping
practitioners manage TD needs to be developed in order to make the process of keep-
ing track of the TD part of the daily routine [11] This statement is strengthen by
the theory that managing TD should be part of software development on the same
level as implementing new features or fixing bugs[14][2].

The major research methodology used in this thesis is a design research. The purpose
of the design research is to develop a software tool based on an ATD decision model,
focused on the TDs in the red box in figure 1.1. This tool is to be evaluated by
practitioners using ATD items that are identified in the system that is part of the
investigation. The goal of this thesis is to investigate whether a tool of this kind
would help software practitioners in their working life with increasing the software
quality of their developed product. To be more precise, would the tool help them
monitor their ATD items and take strategic decisions with respect to their future
development in order to achieve a higher software quality. The research questions
that is going to be answered in this thesis are,

RQ1a : When taking a decision on ATD, is there a difference between what aspects
are used at the studied company and the ones suggested by the TD theory?

RQ1b :How can these aspects be combined?
RQ2 : How does an ATD decision tool affect practitioners in making refactoring

decisions?
RQ3 : In what way does different stakeholders have different perceptions regarding

ATD and its refactoring?

3

1. Introduction

4

2
Background

In this section will the required background knowledge be described more in depth.
The first part is about the environment for which this study is conducted. The
second part is about the theoretical knowledge that the reader needs to be aware of
for understanding what is being investigated in this thesis.

2.1 Domain background

This thesis is done in collaboration with a major product development company in
the Gothenburg region active the automotive industry. The software system under
investigation is an old system (development started in 1996) used for diagnostics of
different hardware products. As a result of the software application being a rather
aged system it has had several development cycles and iterations and therefore the
system consists of several different programming languages, including vb.NET, C,
C# and Java. During each life cycle different software design patterns have been
used and promoted. Because of this there are certain parts of the system under
maintenance just to keep the system working e.g. fixing critical bugs. This short
term fix is mostly motivated by the fact that there are no business values gained
from doing any major architectural changes, even though it might increase its overall
software architectural quality. In the same manner the system is using executable
files for which the source code no longer is available. To add even more complexity
there are certain software components in the application developed by a third party
developer.

2.1.1 Stakeholders
In this section the different stakeholders to the system under investigation will be
introduced. Moreover, their role to the system will be described and potential
individual benefits from this thesis will be presented.

2.1.1.1 Developers

The developers are the personnel who are developing the software system, including
bug fixes, feature development and maintenance. The results from this research
might not affect their work as they perform already approved changes by the business
side of the company.

5

2. Background

2.1.1.2 Architects

The architects in the domain are the stakeholders that have a higher level of knowl-
edge about the systems software architecture. The results of this research especially
has an effect on this group of stakeholders due to the fact that they are the ones
who have the greatest knowledge of both the the current state of the software ar-
chitecture and its ideal state. The tool would therefore help them by easily provide
an overview of an Architectural Technical Debt (ATD) which would help motivate
the refactoring decision for people on the business side of the company who has the
final call.

2.1.1.3 Product Owner

The product owner are the ones who is in charge of the application under investiga-
tion and have the final word when it comes to decision making. This implies that
any major refactoring needs to be approved by the product owner or other decision
makers within the company with the same mandate before they can be executed
by the engineering side. Hence, if the engineering side find a refactoring necessary,
they need to be able to show and motivate its necessity.

2.2 Theoretical background
In this section the theoretical base of this thesis will be described in depth to help
the reader acquire necessary knowledge and understanding. The sections will cover
the current state of the art research regarding technical debt, architectural technical
debt, models measuring architectural technical debt and tools for monitor technical
debt and software architecture quality.

2.2.1 Technical Debt
As mentioned in the introduction Ward Cunningham was the first to express the
term Technical Debt (TD) in 1992.[1] The meaning with the allegory is that solving
issues fast, but with sub-optimal solutions, is similar to going into financial debt.
The consequence of such decisions might be enhanced future costs. These postponed
costs are equivalent to a financial debts interest. [8] To reinforce the technical debt
metaphor, it is possible to state that the total debt is the distinction between the
current solution and the optimal solution. [9] However, it is important to be aware
of that not all technical debt is of a detrimental nature. There are situations where
technical debt under control can be beneficial. [10] One example of such benefit is
when a TD is continuously managed and under control from the beginning it can
make it easier to reach the market faster. A positive consequence of this would
be the possibility to get feedback from the customers in an early state, which then
could be used to improve the product. [14]

When it comes to the cost of a TD there are a few important terms. The first
one to understand is principal. The principal is the cost of doing the refactoring of

6

2. Background

the TD today, in other words, paying back the debt immediately. In the same eco-
nomical metaphor, the interest is the extra cost added to the software development
due to the existence of this TD. [8] Martin Fowler identified four types of TD distin-
guished by the mentality of the ones who created that debt. This is also known as
Martin Fowlers Technical Debt Quadrant and can be found in table 2.1. The factors
in the quadrant are Reckless, Prudent, Deliberate and Inadvertent. Together these
factors create a matrix of different implementation scenarios. In the first scenario
a TD is created Recklessly and Deliberate since the implementers don’t care about
the outcome but still carries it out. In the second scenario it is created Recklessly
and Inadvertently since they did not have sufficient knowledge in order to carry out
that specific task. In the third scenario it is created Prudent and Deliberate as they
are aware of the consequences but still continues since at that situation it is best
choice. Lastly it is created Prudent and Inadvertent since they don´t have another
choice at that time, but use the new knowledge acquired as a learning experience.
[15]

Reckless Prudent
Deliberate "There is no time for design" "it needs to be released now,

we deal with the conse-
quence later"

Inadvertent "What is MVC" "Looking back, we know
how to do it next time"

Table 2.1: Martin fowlers technical debt quadrant

2.2.1.1 Technical Debt Management

Recent study literary review (SLR) found that there are eight different TD man-
agement phases currently discussed in the software engineering community. These
phases are,[11]

• TD Identification
• TD Measurement
• TD Prioritization
• TD Prevention
• TD Monitoring
• TD Repayment
• TD Representation
• TD Communication

Research has stated that the majority of software professionals had no default strat-
egy in order to manage technical debt[12]. Research by (A.Martini, J.Bosch and
M.Chaudron) reinforces this statement. They claim that the current way of man-
aging the sub-category of TD, Architectural Technical Debt is ad hoc and is based

7

2. Background

on the emerging of a crisis. Hence, the ATD is refactored when the optimal point
in time to refactor has been missed. [6]

In contradiction to the aforementioned current way of handling refactoring, studies
indicate prevention as one of the key phases in order to manage the TD of a software
system. A recent SLR suggests a few counteractions in order to prevent the creation
of TD. For instance, there should exist knowledge among the employees in order to
minimize the TD that are created by mistake. Moreover, the development process
should counteract the supervention of TD. [11] One development process that could
counteract the creation of TD if used correctly is the Agile development process.
This is due to the fact that it is about continuously improving software quality.
Also suggested is that in order to prevent more TDs from being created the software
architecture should be modularized. Furthermore, the usage of automated testing
together with continuous integration is beneficial to minimize the risk of bugs being
created. [16]

2.2.2 Architectural Technical Debt
Architectural Technical debt(ATD) is a sub-discipline of Technical debt(TD) which
focuses on infringements on the intended software architecture. [6] ATD has also
been defined as strategic decisions regarding the software architecture that affects
internal software quality attributes.[11] One example of such quality attributes that
the software architecture could be measures against are the standard ISO-9126. Re-
cent research has investigated the emersion of ATDs and discovered that it depends
on a number of different factors. These factors are stated below. [6]

1. Business Factors
(a) Uncertainty of use cases in the beginning
(b) Business evolution creates ATD
(c) Time Pressure: deadline with penalties
(d) Priority of features over product
(e) Split of budget in project budget and Maintenance budget

2. Lack of specification on critical Architectural requirements
3. Reuse of legacy/third party/ open source
4. Parallel Development
5. Effects Uncertainty
6. Non-completed refactoring
7. Technology evolution
8. Human Factor

8

2. Background

There has also been research that strived to classify different kinds of ATD items
into different classes and map classes to the corresponding effect that indicates the
presence of that type of ATD in the system. This mapping can be found in table
2.2. The different indications of presence are related to either the effort experienced
by the programmer or the overall quality of the software being developed. For
example, ATD of the type Dependencies unawareness could indicate that the ATD
is contagious. This implies that there exist dependencies that are either not known
to the developers or they exist where they should not. As a result of this the ATD
spread across the system due to the creation of more unwanted dependencies. This
also creates something called hidden ATDs, meaning that it is not always obvious
that the ATD is spreading [6].

ATD class Indication of presence
Duplication-reuse Double effort and Repeated wrapping

Dependencies unawareness big deliveries
Non identified quality requirements quality issues

Non-uniformly policies quality issues
Temporal Behaviour properties confusion

Table 2.2: Types of ATD and their Indication of Presence

2.2.3 Architectural Technical Debt Analyzation models
When estimating a software project’s technical debt, it is of major importance that
the optimal level of software quality is defined and agreed upon with the stakeholder
of the project. At the same time there must also be an acceptable level of software
quality agreed upon. The software quality therefore needs to be between these
two levels. [17] In the same manner there must also be a consensus regarding
which software quality characteristics is the main focus for the application under
development. Not all characteristics are equally important to every project. A
commonly used standard for software quality characteristics is the ISO-9126.

The most frequently used way for measuring technical debt is using a calculation
model that in most cases are relying on source code as input. Another approach for
measuring technical debt is to relay completely on expert´s estimates [11]. There
currently exists a number of defined methods for analyzing the software architecture
quality, for example Architectural Trade-off Analysis Method(ATAM) and Scenario-
based Architecture Analysis Method(SAAM). The SAAM method is used to verify
that a systems software architecture satisfies both functional and non-functional
requirements. Moreover, it is also possible to analyze risks with that architecture.
ATAM is similar to SAAM in that it is mapping the software architecture to quality
attributes in order to elicitate strengths and weaknesses. [22] However, there is also
a newly developed model by Antonio Martini and Jan Bosch called the AnaCon-
Dept model. While the previously mentioned methods SAAM and ATAM map and
illuminate the architecture quality, this model takes well-defined ATD and suggests

9

2. Background

whether or not it should be refactored. If the result of the model point to a refactor-
ing, it also suggests when this refactoring should be done. Because of this distinct
feature this is the model that will be used in this thesis and it will be explained
more in depth in the next section. [4]

2.3 Technical Background
In this section, the technical base for this thesis will be presented. The section
primarily focus on the AnaConDebt model, its construction and how it should be
applied. The section will also cover the pre-existing tools for measuring software
quality.

2.3.1 AnaConDebt: Construction and Appliance
AnaConDebt is a calculation model developed by Antonio Martini and Jan Bosch
from Chalmers University of Technology. With this model the researchers strived to
help practitioners take strategic decisions regarding the refactoring of Architectural
Technical debts(ATD). To be more precise, to help the practitioners answering the
questions if an ATD should be refactored, and if it should be refactored, when would
it be more beneficial to conduct that refactoring[4].

In order to make any conclusions the costs for the ATD item first needs to be
estimated in different time-perspectives. The total cost constitutes of two sub-cost,
principal and interest. These two terms have recently been recognized as vital parts
of TD management [11]. The principal is in economic terms the amount of money
that was borrowed and agreed to be repaid when the loan was permitted. [24].
Converting the economical term into a technical debt term, the principal is the cost
of repaying the technical debt today. It is estimated by calculating the costs of the
two following factors,[4]

• The cost of refactoring the source of the ATD (Where is the source of the
problem)

• The cost of refactoring all the related features/components which are affected
by the presence of the ATD (Other parts of the system that are affected)

The second term, the interest, is in economic terms the cost of borrowing the
principal[24]. This term means rather the same thing in technical debt terms. The
Interest is the additional cost that are added due to the existence of the ATD and
constitutes out of,

• Internal Propagation factors
• External Propagation factors

10

2. Background

• Internal Impact
• External Impact

These four aspects can be divided into two categories, Propagation factors and
Impact factors. Propagation factors are used to approximate how the ATD will
grow and spread across the system over time if the debt is not repaid. [4] A TD
that has propagation factors are also known as contagious technical debts. A table
of the different propagation factors can be found in table 2.3

Internal Propagation factors External Propagation
Factors

Growth of the source of the ATD Number of planned incre-
ments in the roadmap that
will affect the ATD

Growth of the source code complexity Number of external users

Table 2.3: Propagation factors

Impact factors are the additional cost of the interest. These so called Impacts can
be further divided into Internal and External impacts. Internal impacts are costs
related to the development and the maintenance of the product. External impacts
are the cost experienced by the end users of the software. The currently identified
Impacts are,

• Impact on Development Speed
• Impact on Maintainability
• Impact on qualities
• Impact on learning
• Non-completed refactoring
• Other Costs

The previously mentioned aspects are used to create these costs (Principal and
Interest) for the different time perspectives Current, Short-term, Medium-term and
Long-term. Using these perspectives or time intervals, two calculations can be done
in order to help practitioners take strategic decisions regarding their ATD. The first
calculation is to determine whether it is justifiable to refactor at all. Will the upfront
cost of refactoring today be lower than the potential worst case cost in the future?
Using the different time perspectives, it is possible to make a decision on when it is
more beneficial to make the refactoring. The calculation for making the decision if
an ATD should be refactored looks as the following,

11

2. Background

PrincipalCurrent

InterestT otal

< 1

This calculation constitutes out of the two variables, PrincipalCurrent and InterestT otal.
PrincipalCurrent is the cost of repaying the debt today while the InterestT otal the
worst case cost if the decision to refactor is postponed as long as possible. The
Total time-span is usually based upon the Long-term time perspective. However,
this is flexible and depends on how the time-spans have been previously defined. If
the resulting value of the division is greater than 1 it means that cost of refactoring
today dominates the cost of refactoring later. Therefore, there are no benefits cost
wise to refactor today. In fact, it will be cheaper to do it in the future. On the
contrary, if the value is closer to 0, it means that the cost of refactoring now is lower
than the cost of refactoring later and then a refactoring should be done. The third
alternative is that the value is very close to 1. This means that the cost of refactoring
now will be roughly the same as in the long term. Hence, it is unclear (according
to the formula) what is the best decision. In these situations, the final decision
needs to be based on other aspects known to the domain experts. The the result
from the calculation can then be used to support whatever decision made. The next
calculation though is the calculation for deciding when a refactoring should be done
and looks as the following,

PrincipalCurrent

InterestT otal − InterestF uture

− PrincipalCurrent

InterestT otal

< 0

The formula is a subtraction comparing the cost difference between two points in
time, where the subtrahend is the same as for the calculating if a refactoring should
be done at all. However, the minuend is the cost of refactoring in another point in
time that is earlier then the InterestT otal and later then the PrincipalCurrent from
the subtrahend. If the result is less than 0 it means that the cost of refactoring
today is larger than refactoring in the near future and it is therefore less convenient
to refactor later. On the other hand, if the result is greater than or close to 0, it
means that the cost of refactoring now or later will be roughly the same. Hence, it
is not an emergency to refactor and it can therefore be postponed. However, if the
difference is close to 0 there are a potential margin of error where the decision is not
obvious. A more explicit figure explaining the AnaConDebt model can be found in
figure 2.1

12

2. Background

Current Principal Future Principal

Future Interest Total Interest

Current Time Medium Term time Long term time

Should this TD be
refactored?

When should this
item be refactored? Better to refactor now

No emergency
to refactor

<=1?
No

>1? Yes

<0

>=0

Figure 2.1: AnaConDebt method [4]

2.3.1.1 Generic Example of AnaConDebt

In this section a generic example of the AnaConDebt in practice will be showcased.
The data used for this example is purely hypothetical and is not related to the
company for which this thesis is conducted. For this example, the AnaConDebt
model will be applied to an architectural technical debt(ATD) item called ATD
item A and its data can be found in table 2.4. For simplicity only the time-spans
Current, Short-term (6 months) and Long-term (18 months) will be used.

13

2. Background

ATD Item Current
Principal

Short-term
Principal

short-term
Interest

Total In-
terest

ATD A
Factors
Cost of Refac-
toring the
Source (CRS)

1000 (man
hours)

1200 (man
hours)

Nr of releated
features (CRI)

23 30 +7 features + 40 fea-
tures

Growth of Com-
plexity (GofC)

10% 30%

Impact on devel-
oper speed (IDS)

10% 30%

Impact on Main-
tainability (IM)

10% 40%

impact on
qualities(how
many?)(IQ)

2 3

Table 2.4: The data for ATD A

The principal, the cost of refactoring the ATD, is calculated by taking two factors
in consideration. The cost of refactoring the source (CRS), which means the cost
of refactoring the originated source of the ATD and the number of other features
who are affected by the existence of the ATD (CRI). In order to determine when
an ATD should be refactored it is necessary to estimate the principal for different
time perspectives. In this case those time-perspective are Now (current principal)
and Short-term principal (principal in six months).

As can be seen in table 2.4 the data is estimated using different scales. For instance,
the CRS is estimated in man hours while number of relate features are estimated
on the number of related features. The major question is how the values created
using different scales are weighted against each other. The solution is to convert
the scales so they are more compatible to each other. For instance, man hours can
be converted into a ratio between the different time spans, where the current ratio
is starting at 1. It is important to be aware of that these numbers are used for
simplicity. Hence, in other cases these values also should have weight attached to
them. As a result, the more important factors are valued higher. The CRS ratio for
ATD A would therefore be,

shortTermCRSAT DA

currentCRSAT DA

= 1000
1200 = 1, 2

The CRS values for ATD item A used in this example can be seen in table 2.5.

14

2. Background

ATD Current Ratio Short-term Ratio
ATD A 1 1,2

Table 2.5: CRS ratio values that can be used in AnaConDebt calculation

The same conversion needs to be done for the number of related features. As with
the CRS, the difference between the time-perspectives is the interesting part.

shortTermCRIAT DA

currentCRIAT DA

= 30
23 = 1.3043

The CRI values for ATD A can be seen in table 2.6.

ATD Current Ratio Short-term Ratio
ATD A 1 1,3043

Table 2.6: CRI ratio values that can be used in AnaConDebt calculation

The principal value for ATD A is then calculated by summarizing the CRS and CRI
for the different time-perspectives. The equation for calculating the principal for
these time-perspectives are,

PrincipalT imeP erspectiveAT DA
= CRST imeP erspectiveAT DA

+ CRIT imeP erspectiveAT DA

The principals calculated using the equations above for ATD A can be seen in table
2.7.

ATD Current Principal Short-term Princi-
pal

ATD A 2 2,5043

Table 2.7: Principals values for ATD item A and ATD item B

As mentioned in section 2.3 about AnaConDebt the interest is the additional costs
added to the principal as a result of the principal cost not being paid. Hence, the
interest need to be calculated for specific time-spans. In this case the time-spans are
Short-term and Long-term, where Long-term is called InterestT otal. This is due to
the fact that it is the longest time-span that is taken in consideration for this case.
These time-perspectives vary depending on who is defining them.

Just as with the principal there are a factor which needs to be converted to another
scale. To be more precise, the factor "Number of related features" needs to be
converted. It is important to recognize that the number of related features is in
some contexts a principal and in some an Interest. This depends on whether the
features are currently present in the system and are already affected or if the features

15

2. Background

will be added to system. As can be expected the current value also start at 1 and
the ratios are calculated in the same way. The ratios for ATD A can be seen in the
calculation below. However, a summary of the values can be seen in table 2.8.

NrOfFeaatureInLongTermAT DA

nrOfFeaturesShortTermAT DA

= 30 + 40
30 = 2, 333

NrOfFeaatureInLongTermAT DA

nrOfFeaturesCurrentlyAT DA

= 30 + 40
23 = 3, 043

ATD Current Ratio short ratio Total Ratio
ATD A 1 2,333 3,043

Table 2.8: Summary table for the growth of the source for ATD A

The interests (Short-term and Long-term) for ATD A can now be calculated by
adding all the factors which can be seen in the calculations below. However, it
is important to be aware of that for these values the weights for each factor are
overlooked. In a real case scenario these weights should be used in order to value
the most important factors.

shortTermInterestAT DA = 2, 333 + 1.1 + 1.1 + 1.1 + 2 = 7, 633

LongTermInterestAT DA = 3, 043 + 1.3 + 1.3 + 1.4 + 2 = 9, 043

From this resulting values it possible to calculate whether an ATD should be refac-
tored using the previously mentioned equation in the section 2.3 as following,

PrincipalCurrent

InterestT otal

< 1

The current principal is a combination between two different factors. One of these
factors is the cost of refactoring the source (CRS), meaning the cost of refactoring
the original source of the ATD. One example of this is when an API is not properly
defined before it is used by other components. The CRS would therefore be the cost
of fixing the API. The other factor that affects the current principal is the cost of
refactoring the increment(CRI). Using the same example, this would be to refactor
all the other components that are using the API in question. Using the previously
calculated data it is possible to determine if those ATDs should be refactored.

PrincipalCurrentAT DA

InterestT otalAT DA

= 2
9, 043 = 0, 2211

16

2. Background

The output from the previous division is the fraction 0,2211, which is clearly below
one. This implies that the cost of refactoring the source(the dividend) is lower than
the interest of not refactoring(the divisor). Hence, the cost of refactoring will be 4,5
times higher to do if the refactoring is postponed 18 months.

Now that it is determined that ATD A should be refactored, the question is when
it is most suitable to do that refactoring. This question could be answered using
the second equation in section 2.3 about AnaConDebt. The equations looks as the
following,

PrincipalF uture

InterestT otal − InterestF uture

− PrincipalCurrent

InterestCurrent

< 0

Applying the previously produced data to the equation results in the following,

2, 5043
9, 043 − 7, 633 − 2

9, 043 = 4, 8981

As can be seen both the fractions results in fairly high values. This implies that it
is more beneficial to refactor early. Hence, the ATD item should be refactored as
soon as possible.

2.3.2 Tools for measuring code and software architecture
quality

There currently exists a a number of different tools that strive to measure the soft-
ware quality according to some predefined software quality metrics. The common
approach for these tools are to use the technique static code analysis, or source
code analysis. Two widely used tools of this kind are SonarQube and NDepend.
There also have been attempts to develop tools that are more focused on the Soft-
ware architecture quality. For example, Piyusa Meheshwari and Albert Teoh tried
to develop a web based tool called ATAM Collaborative Environment(ACE) which
incorporates the ATAM method though without any major success. [23].

17

2. Background

18

3
Methods

In this chapter the methodology that was used to answer the research questions
stated in chapter 1 will be explained. The thesis constitutes out of a design research
which utilize two minor case studies. Section 3.1 focuses on the general knowledge
needed for conducting a design research and section 3.2 focuses on the info needed
for conducting case studies. Section 3.3 will then explain in depth how the design
research and case studies are interconnected and how they are performed in the
context of this thesis.

3.1 Design Research

Design research is a research methodology which focuses on solving problems by de-
veloping tailored software solutions. To be more precise, building an artifact(product)
using state-of-the-art research from the research community in order to counteract
the problem that the industry currently is experiencing. [13]

For this thesis the design research framework suggested by Alan Hevner, Salvatore
March, Jinsoo Park and Sudha Ram is used. Conducting design research according
to this framework constitutes out of a number of iterative steps. The first step is
to understand the business needs of the industry, which is also known as the design
research relevance. The second step is to gather knowledge from the knowledge base
such as theories and models that are applicable from the research community. The
third step is create an artifact (product or theory) that aims to solve the business
needs using state-of-the-art theories and the fourth and final step is to evaluate
the artifact using some-kind-of evaluation techniques such as experiments or case
studies. This process is also known to assess the artifact and the outcome of the
access process is then used to refine the artifact. This process is a cycle with no limits
on the number of iterations, but at least one iteration is required. The resulting
artifact is then released to the industry to solve their needs and the knowledge that
are gained are publicized to the knowledge base. A figure that explains this flow
can be seen in figure 3.1 [13]

19

3. Methods

Environment Knowledge
Base

Development

Evaluation

Needs from
the industry

Knowledge from
the academia

Gained knowledge
from the design
research

Application
used in the
environment

Design Research Framework

(Case Study)

1 iteration

(Case Study)

Figure 3.1: The Design Research Framework that is used in this thesis

3.2 Case Study Research

The usage of case studies as a research methodology are advantageous when factors,
variables and its context continuously varies, making it a convenient choice in the
field of software engineering. A case study consists out of several phases. First is
the planning phase, where the guidelines on how to conduct the case study is set.
Secondly the data collection phase, where the data for the case study is collected.
The third and last phase is the analysis phase where the collected data is analyzed
and dissected according to the rules specified in the planning phase.

For this thesis the frame of reference in how to conduct a case study is based upon
the research of Runeson and Höst. In their paper "Guidelines for conducting and
reporting a case study in Software engineering", they provide a number of bullet
points of aspects that creates the foundation for the case study plan. These aspects
are, [7]

1. Objective
2. The Case
3. Theory
4. Research questions
5. Methods
6. Selection Strategy

How these bullet points are used in the case studies are described more in depth in
the case study sections 3.3.2.1 and 3.3.4.1.

20

3. Methods

3.3 The Design Research
As mentioned in section 3.1 the design research done in this thesis follow the frame-
work suggested by Alan Hevner, Salvatore March, Jinsoo Park and Sudha Ram. The
purpose of this design research is to develop and evaluate a tool which embodies the
AnaConDebt model. For more information about AnaConDebt, see section 2.3. In
the following subsections all of the different aspects of the research framework will
be presented.

3.3.1 Knowledge Base
The first step when conducting this thesis was to find the current state-of-the-art
research regarding technical debt(TD) and especially architectural technical debt
(ATD). In order to do this a literature review was conducted and over 34 scientific
papers and articles were read and analyzed. The selection of the read papers was
done using the snowball principle which means starting with a few selected papers
that were deemed good. Then, by going through their references, finding more in
the same field, and so on until the base was complete [25] As previously mentioned
in section 3.1 the purpose of this phase is to identify theories and models which
can satisfy the issues discovered in the environment case study 3.3.2. The result
of the literature review was to investigate, evaluate and apply the newly developed
AnaConDebt framework to solve the business needs of the company as no such model
had been used before. See section 2.3 for more information about AnaConDebt.

3.3.2 Environment
The purpose of the environmental aspect of the design research framework is to
identify business needs in the industry that could be solved by the development of an
artifact that incorporates some theory or methodology from the research community
[13]. The question is therefore, how to identify the business needs of the company
in this context. For this thesis it was deemed that the best solution was to conduct
a case study.

3.3.2.1 Environment Case Study

As mentioned in section 3.2 a case study need to satisfy six aspects for the case
study to be regarded as a valid. To begin with, the case study needs to have a
clear objective. The primary objective for this case study is to identify the business
needs for conducting the overall design research, but there is also the objective of
identifying architectural technical debt(ATD) that currently lures in the system.

The second aspect is to have a clearly identified case. The case for this study is
a software development project active in the automotive industry. The system in
question is a widely used aftermarket system with over fifty thousand user´s world
wide and is currently undergoing an investigation about a major refactoring to be
planned in the near future. To be more precise, the software architecture will change

21

3. Methods

to be more modularized and therefore make it easier to rebuild or swap different
modules.

The third aspect is to define which theory to use for the case study. The defined
theory is based upon two theories. The previously mentioned case study structure
suggested by Runeson and Höst in the paper "Guidelines for conducting a case Study
in Software Engineering" and the theory behind AnaConDebt. See section 2.3 for
an in depth explanation about AnaConDebt.

The fourth aspect is to have clearly stated Research questions to be answered by
doing the case study. The research questions for this case study are,

1. What are the business needs regarding ATD?
2. Which are the major ATDs currently existing in the system?

The fifth aspect is the method for collecting data to answer the research questions.
The method chosen for this study landed on preforming a number of semi-structured
interviews with architects and senior developers. The interview structure followed
the structure suggested by Runeson and Höst in the paper "guidelines for conducting
a case study in Software Engineering". That the interview is semi-structured means
that the questions varied between open and closed questions The interviews also
followed the funnel principle, which implies that the order of the questions started
by being more open and then going into more closed questions. The interview guide
that created the foundation for the interview can be found in Appendix B.

The interviews constitute out of three phases. In the first and initial phase of the
interview the interviewer explained the purpose of the interview and its usage areas.
It was also of major importance to clarify the anonymity of the interviewee. When
all that has been settled, the interview started by asking some open questions to get
the conversation going.

The second phase was the main phase of the interview. This phase furthermore
consisted out of sub-phases. The goal of the first sub-phase was to identify Archi-
tectural technical debt(ATD) items that the interviewee knew existed in the system.
However, if the interviewee had difficulties in coming up with any applicable ATD
items, leading questions where asked so that ATD items that where identified in
previous interviews could be incepted to the interviewees mind. In the second sub-
phase was more concrete and focused on the identified ATD items. In this phase
the principal (cost of refactoring the source) and the interest (additional cost if
the ATD item is not refactored) for the different time-spans today, short-term (6

22

3. Methods

months) and long-term (18 months) were estimated. The third phase for collecting
data was to look through the systems backlog to identify already detected ATD
items and documentation from previous TD investigations conducted by some of
the architects.

The sixth and last aspect is the selection strategy for the case study. Meaning how
the case was selected for this thesis. The case was selected because of the plan of
a major refactoring of the system and that the collaboration company wanted to
know which components could be saved. Since the objective for this case study was
mainly to discover the business needs of the company and get as accurate values
as possible for the AnaConDebt model people from all over the organization were
used. The interviewees consisted of in total 10 people, ranging from developers,
architects responsible for different parts of the system and the product owner. Seven
of the interviews was done with people located in Gothenburg while three of where
conducted over Skype with people in Curitiba, Brazil.

3.3.3 Development
The purpose of the development phase of the design research is to build an artifact
or method that incorporates new theories from the research community in order to
solve some business needs for the industry. For this thesis a tool(artifact) will be
developed. This artifact is based upon an open source software tool which is re-
leased under the Apache v2 license. Unlike many other tools for managing technical
debt(TD), this tool does not relay on using source code as input. Instead, the data
is inserted by the users themselves. This software product is a web application that
is built on ASP.NET Web API and Angular.JS 1.3. The main reason for selecting
this repository as a foundation for the tool is that it is built on techniques that are
approved by the company where the thesis is conducted. There are more criteria for
the techniques that need to be fulfilled for it to be approved by the company. One
of the more important reason for this is that the software technologies has reached
a certain point of maturity. This requirement both ASP.NET and Angular.JS 1.3
achieves. Another reason that was taken in consideration while selecting this as a
base was that the ease of platform independence since a Web application can be
accessed by anyone as long as they have a functioning network access or running it
locally on their own machine.

3.3.4 Evaluation
One of the most important aspects of conducting a design research is the validation
part. Here questions like does the artifact fulfil the business needs that are specified
by the customer, how does the artifact relate to the previously stated hypotheses.
In the design research framework that is used for this thesis the techniques for
evaluating the artifact or theory suggested are as following,

23

3. Methods

1. Experiment
2. Field Study
3. Case Study
4. Analytical
5. Simulation

It was deemed that a case study was the best choice as an evaluation technique.
However, conducting an experiment was also taken in consideration, but eventually
deselected due to the complexity of achieving validity in an experiment in this specific
context. It would have required the experiment to be done in a closed environment
were only the desired variables were changed in a controller manner. Because of the
time constraints for conducting an experiment the most commonly used evaluation
technique of Case study was therefore decided instead.

3.3.4.1 Evaluation Case Study

As mentioned in section 3.2 about case studies a valid case study needs to have six
aspects covered. To begin with, it needs an objective. The objective for this case
study is to evaluate how a tool that is built incorporating the AnaConDebt model
is preforming in this context.

Secondly, it is necessary to have a clear case. The case for this case study is the
same as for environmental case study in section 3.2. A software development project
active in the automotive industry with over fifty thousand active users world wide.
This system is also about to be refactored in order to achieve a better software
architecture.

The third aspect is that it is required of the case study for it to be based upon
some kind of frame of reference, also known as theory. The case study framework is
the same as with the environmental case study, the case study framework suggested
by Runeson and Höst. Moreover, the hypothesis is that an estimated refactoring
decision is more accurate than others if it takes more factors in consideration. In
the same manner there is a hypothesis regarding distribution of different kinds of
factors which are considered when making a refactoring decision. Some factors are
only considered in practice by the industry, some factors are only considered in TD
theory and some factors are considered on both sides. Figure 3.2 visualizes this
phenomenon.

24

3. Methods

Information	
considered	
both	 in	

practice	and	
in	TD	theory

Information	
that	should	be	
used	according	
to	TD	theory

Information	 that
is	used	in	
practice

Figure 3.2: Venndiagram showing the relationship between factors used in practise
and factors used in the theory

The fourth aspect is that it needs to have clearly defined research questions which
will be answered by conducting the case study. The research question that is going
to be answered in this case study are,

• Does the tool help in making an ATD refactoring decision?
• Which factors from the TD theory are acctually used in practise as well?

The fifth aspect is the method for collecting the data. In order to do this the tool is
applied on one of the identified ATD items from case study 3.3.2.1 by practitioners
who have a vast knowledge about the system and the nature of the ATD item. In
total three people is going to participate, two architects and one senior developer.
They are going to participate in each structured interview, which was a combination
of practical work and answering a questionnaire. The questionnaire is designed so
that the results can be easily quantifiable. The questions are out of four different
types. Some questions yield yes and no answers while others the interviewee will
have to give an answer on an ordinal scale between 1 to 5, where the extreme values
represent the extreme opinions of the spectrum for the stated question. Another
type of question are questions where the interviewee is asked to rank different aspects
according to a ranking scale. The last question type of questions the interviewee is
requested to list suggestions. For more in depth information about the survey, see

25

3. Methods

appendix C.

As mentioned in the objective of this case study this one focuses on evaluating
the tool that is developed for this thesis. Hence, it is out of major significance
to investigate how well the tool preform in making correct estimations regarding
refactoring. In other words, there need to be some kind of comparison between
two different decisions. One decision from the tool and one decision from another
source. In this context the other source will be the top of the head knowledge by
one practitioner who has vast knowledge about the projects software architecture.
As a result of this the case study consists out of two phases. One phase where the
interviewee will be given no aid except a whiteboard to write down his reasoning and
one where he will use the tool. For both phases and all the different interviews, the
same ATD item will be the object of study. The phases were limited to a maximum
of 30 minutes each but before any of these phases could begin, was the interviewees
were required to answer some general questions in the questionnaire. After that
the process proceed with the phase were the interviewee only is allowed to use a
whiteboard. After 30 minutes or if the interviewee feels done before, some questions
related to the whiteboard phase were asked. A few examples of questions that were
asked are,

1. Should this ATD item be refactored? (yes/no)
2. Which factors did you consider to take this decision?
3. If you had more time, which other factors would you have considered as well?

After this, the next step was the phase in which the interviewee was allowed to use
the tool for the same ATD item. When the tool wizard had completed and the
tool showing its output the interviewee had some time to analyze the result. After
30 min the interviewee were required to answer some tool and comparison between
whiteboard related questions. A few examples of questions that were asked are,

1. Is the outputted suggestion from the tool different from your answer from using
the whiteboard? (yes/no) a scale 1(not accurate at all)-5(very accurate), how
accurate do you think the result of the tool was?

2. On a scale 1(not useful at all)-5(very useful), are the factors taken in consid-
eration in the tool any useful?

An image showing the execution flow evaluating case study can be seen in the
following image,

26

3. Methods

Answer initial
questions on the
questionnaire

Use the
whiteboard

Answer whiteboard
related questions on the
questionnaire

Use the tool

Answer tool related and
whiteboard comparison
questions on the questionnaire

Ex: Should this ATD
item be refactored?

Ex: Does the output from the
tool change your previous
refactoring decision

Figure 3.3: Execution flow of the case study for evaluating the design research
artifact

The sixth and last aspect of a case study is the case study selection. This study
was selected on the same reasons as the environment case study, the collaboration
company suggested this case since it is a need for refactoring. As mentioned previ-
ously was one architect, one former architect and one senior developer selected for
this evaluation. However, all of them had knowledge about the ATD in question.

27

3. Methods

28

4
Results

In this chapter the results of the design research are presented. The first part consists
of the result from the environment case study and the second part consists of the
result from the evaluation case study.

4.1 Environment Case Study

In this section are the results from the environmental case study stated. In this case
study, the business needs of the company related to ATD was investigated. In the
same manner was ATDs identified in their system.

The first step was to identify the business needs of the environment. The identified
needs are as following.

1. prioritize future improvements
2. find the source and stop the spread of TD
3. reduce the current level TD and as a result build a better product quality wise

The outcome of the interviews was also a set of ATD items that currently exists in
the system. The items that were collected and that were deemed appropriate in the
context of architectural technical debt can be seen in table 4.1.

Identified ATD Item Number of Mentions
Component had to much responsibility which should be
extracted to its own component

5

Business logic were placed in wrong components 4
Unwanted dependencies between two components 1
Code standards are not consistent 2
Unwanted code duplication 1
Wrong software pattern which should be changed 2

Table 4.1: Identified ATD items from the interviews and how many of the interview
they where mentioned

29

4. Results

The table consists out of two columns. The first one describing the ATD item and
the second one contains the number of interviews in which this particular ATD item
was mentioned by the interviewees. The vast majority of the identified ATD items
are relating to the software component which provides the system with its main
functionalities.

4.2 Artifact Development

As previously mentioned the tool developed in this thesis aims to investigate whether
a tool incorporating the AnaCoDebt model could solve the identified business needs
of the company. See section 2.3 for more information about AnaConDebt and section
4.1 for more information about the identified business needs.

The tool is based upon an open source project which are released under the Apache
v2 licenses on Github. The first thing that a user is prompted to do is to create a
new Architectural technical debt(ATD) which are then added to a side menu. When
an ATD item is selected, the editor view is displayed. When in editor view, there
are two new major components showing, the toolbox and the canvas. In the toolbox
there are a number of components which represents the factors from the ATD theory
which are currently believed to affect the cost of refactoring an ATD. These factors
can then be added to the canvas. In the canvas there are boxes representing the
equations for calculating the cost of refactoring for different time perspectives. When
all the equations have the right factor components and the right values, the user can
press the calculate button which then takes the factor components and prints the
result of the models decision (if and when the ATD should be refactored) together
with a number of charts to motivate the decision. These charts are the number
of estimated hours that would be needed to do the refactoring, how many other
components that would be affected by the refactoring, the number of components
that could be saved by doing the refactoring and the cost of refactoring and the
interest at that time. This can be seen in the figure 4.1, 4.3, 4.3 and 4.4. However,
the process of knowing which factor components to use for different time perspectives
and which values and weights are quite time consuming. As a result of this the user
can also choose to use the provided wizard. Images of the final version of the tool
can be found in appendix D.

30

4. Results

Figure 4.1: Man hours needed to conduct the refactoring

Figure 4.2: Number of components affected by the refactoring

31

4. Results

Figure 4.3: Number of components that could be saved from being affected by the
refactoring if the refactoring is conducted

Figure 4.4: The cost of refactoring the ATD and the interest of not doing the
refactoring for different time-perspectives

4.3 Evaluation Case Study
In this section the result from the evaluation sessions of the artifact of the design
research is displayed. As mentioned in section 3.3 explaining the implementation of
the evaluation are the main focus one of the identified ATD items from table 4.1.
To be more precise, the ATD item that is used for this evaluation is called "Compo-
nent had to much responsibility which should be extracted to its own component".
However, for simplicity, this ATD is item from now on called ATD item A. This
section constitutes out of three major parts, the questions that were asked before
the interview started, the questions asked after using the whiteboard and questions
asked after using the tool.

32

4. Results

4.3.1 Questions before the session started
The initial questions in the interview focused on the participant and their current
strategy to technical debt management and refactoring. The first question is about
if there currently exists a strategy for deciding if something should be refactored.
However, there was some ambiguity in their response. It was mentioned from two
of the participants that there where no real strategy towards deciding if something
should be refactored. The third participant contradicted this statement and ex-
pressed that a such a strategy did in fact exist. The same inconsistency appeared
when the participants where required to answer if there currently exists a strategy
for deciding when something should be refactored. Two participants expressed that
it exists, while the third one said that it did not.

Another thing that was investigated was which factors that would affect the par-
ticipant’s decision for conducting a refactoring. In order to do so the participants
were allowed to rank a number of different aspects that affect the prioritization of
an ATD that were extracted from the published paper "Towards Prioritizing Archi-
tecture Technical Debt: Information Needs of Architects and Product Owners", by
Antonio Martini and Jan Bosch. The following tables shows how the participants
prioritized the different aspect. Table 4.2 shows prioritization between refactoring
an ATD item and implementing a new feature and table 4.3 shows prioritization
between two different ATD items.

Prioritization
Aspects

Person 1 Person 2 Person 3 Average

Competitive Ad-
vantage

3 1 3 2.33

Specific Cus-
tomer Values

2 1 3 2

Market Attrac-
tiveness

4 3 3 3.33

Lead time 3 3 3 3
Maintenance
Cost

2 4 4 3.33

Customer long-
term satisfaction

4 Not answered 3 Not applica-
ble

Risks 4 5 5 4.66
Penalties 5 5 3 4.33

Table 4.2: Grading of factors to take in consideration when prioritizing between
two items that need to be refactored. The lowest grade is 1 and represents that it
is not prioritized while the highest grade is 5 and implies that it is very prioritized

33

4. Results

Prioritization
Aspects

Person 1 Person 2 Person 3 Average

Competitive Ad-
vantage

4 1 4 3

Specific Cus-
tomer Values

3 1 4 2.66

Market Attrac-
tiveness

4 3 3 3.33

Lead time 2 3 5 3.33
Maintenance
Cost

2 4 3 3

Customer long-
term satisfaction

4 Not An-
swered

4 Not applica-
ble

Risks 4 5 5 4.33
Penalties 5 5 3 4.33

Table 4.3: Grading of factors to take in consideration when prioritizing between
item that needs to be refactored and a new feature. The lowest grade is 1 and
represents that it is not prioritized while the highest grade is 5 and implies that it
is very prioritized

From looking at the tables 4.2 and 4.3 it is possible to see that data is fairly consistent
between participant 1 and 3. However, the responses of participant 2 has some out-
liners. For instance, participant 2 would not prioritize competitive advantage and
specific customer values as he ranked them with the lowest score in comparison
with person 1 and 2 who gave these two aspects the rank 4, the second highest.
Also the grade Customer satisfaction was not provided by participant 2 while the
others gave it a ranking of 4. Despite the differences between the participants it
can be seen is that there is no major difference in prioritization between two items
to be refactored, or between one item to refactor and implementing a new feature.
Even though the values are not necessarily the same, if they where high in table 4.2
they where also high in 4.3 and vice versa. By looking at the data it is possible to
draw the conclusion that the risk of doing the refactoring, the potential penalties,
long-term customer satisfaction and market attractiveness was the most important
aspects according to the participants.

All of the participants in the case study had a fairly good knowledge about the term
technical debt, its meaning and its purpose. This is something that can be seen in
table 4.5. In this case the lowest rank 1 is equal to "not at all" and the highest and
5 is equal to "very well". However, no one deemed themselves to be experts on the
topic.

34

4. Results

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	aware	are	you	about	the	term	Technical	
Debt?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	accurate	do	you	think	the	refactoring	
decision	 done	in	the	whiteboard	was?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	accurate	do	you	think	the	refactoring	
decison	done	in	the	tool	was?

Figure 4.5: How much knowledge did the participants feel that they have regarding
technical debt. 1 equals "not at all, while the highest score, 5 equals to "very well"

It was also inquired if there currently were any tools in use with the purpose of
monitor the quality of the software architecture and how satisfied they where with
it. All of the participants mentioned that they were using NDepend to monitor the
source code quality. However, they did not have a fair opinion about it and could
not express how satisfied they were with it since it had just been implemented to
the project.

4.3.2 Questions after using the whiteboard

After using the whiteboard, the first question was if they would refactor that ATD
item. This was a question that induced a wide spread of answers. One partici-
pant said that he would refactor this ATD, while another was quite unsure and said
that it depended on the planned future of the component that inherited the ATD
item. If the plan would be to make the component more generic, then he would
refactor. However, if the component would fill the purpose as it currently possesses,
he would not refactor since it is quite stable. The third participant also expressed
that this ATD item is something that should be refactored. The participants were
then encouraged to write down the factors that they used to make their refactoring
decisions. Table 4.4 exhibits the different factors that each of the interview partic-
ipants used in order to take the decision. As can be seen participant 1 considered
five different factors, participant 2 six factors and participant 3 four factors. As can
be expected some of the factors are the same, but with some difference in phrasing.
The risk of refactoring was something that they all took in regard. Same as the
costs of doing the refactoring and the potential gain.

35

4. Results

Person 1 Person 2 Person 3
Risk Risk Risk
Value for Money Future Business Value Improvements (func-

tional and non-
functional)

Lead Time Does it give an extra
value

Maintenance

Maintenance Amount of Business
Value

Customer affects

Customer Satisfaction Other Components
The code today

Table 4.4: Factors that where considered on the whiteboard

After the whiteboard session the participants were asked whether they would have
had considered any more factors if they would have had more time. Two of them
expressed that they would do so, but none of them mentioned the same factors. One
participant would look more into the complexity and another would look into if they
really had a problem with the ATD today. To be more precise, if the component is
stable even with the ATD, it may not be worth conducting the refactoring and thus
increase the chance of making it unstable. The third participant expressed that he
would not have considered anymore factors, even if he had more time to do so.
The final question to be answered was how accurate they thought their estimations
was. The result of this can be seen in the figure 4.6, where 0 means "not accurate
at all" and 5 means "very accurate". As can be seen it is a rather wide spread in
how accurate the participants felt that their own estimation where. As can be seen
in the following figure where the result where 4, 3 and 2 on a 1-5 scale.

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	aware	are	you	about	the	term	Technical	
Debt?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	accurate	do	you	think	the	refactoring	
decision	 done	in	the	whiteboard	was?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	accurate	do	you	think	the	refactoring	
decison	done	in	the	tool	was?

Figure 4.6: How accurate did the participants think that the refactoring decision
by using the whiteboard was. The lowest score 1 equals to "not very accurate" while
the highest score, 5 implies "very accurate"

36

4. Results

4.3.3 Questions after using the tool

The first thing that the participants where supposed to look at after using the tool
was the tools refactoring decisions and compare with their decision from previously
using the whiteboard. Two participants did get the same decision as they previously
came up with, that the ATD item should be refactored. However, the third partic-
ipant did not get same as he had decided not to refactor while the tool suggested
the opposite. However, the output from the tool did not change his mind and he
would still not refactor.

After that the participants was supposed to estimate how accurate they thought
that the output from the tool was. The result can be seen in figure 4.7 where 1
represents "not accurate at all" and 5 represents "very accurate". As can be seen
all of the participants gave a 3 on this scale. Hence, it was regarded as sort of
accurate. It was mentioned that the tool was sort of accurate with respect to the
factor currently considered but in order for it to be more accurate should it should
also consider the risk of doing the refactoring and as well as the components lifespan.

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	aware	are	you	about	the	term	Technical	
Debt?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	accurate	do	you	think	the	refactoring	
decision	 done	in	the	whiteboard	was?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	accurate	do	you	think	the	refactoring	
decison	done	in	the	tool	was?

Figure 4.7: How accurate did the participants think that the output from the tool
was. The lowest end of the scale 1 represents "not accurate at all" while the highest
end of the scale, 5 represents "very accurate"

The factors that the tool was currently using were deemed rather useful as can be
seen in figure 4.8, which utilizes the a scale on 1-5 were 1 represents "not useful at
all" and 5 represents "very useful". One participant ranked the factors 4 while the
other two participants gave them an average of 3.

37

4. Results

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	useful	 do	you	think	the	factors	that	were	
taken	in	concideration	in	the	tool	was?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

Did	the	tool	give	good	feedback	on	the	growth	of	
the	cost	of	refactoring?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

Would	 the	output	help	the	communication	with	
stakeholders

Figure 4.8: How useful did the participants feel that the factors used in the tool
was. The lowest grade 1, represents "not useful at all" while the highest grade 5
equals to "very useful"

When it comes to the difference between the factors taken in consideration in the
tool and on the whiteboard two of the participants felt that all of their factors should
be used in the tool as well. Meanwhile the third one thought that only a few of them
should be part of the tool. However, the implementation of the factors in the tool
could have been fundamentally better. The participants also found that the output
from the tool was not good enough since they did not think it showed the growth of
refactoring cost rather well as can be seen in figure 4.9. As with the other diagrams
it is based upon a scale 1-5 where 1 implies that it did not give any good feedback at
all, while a 5 implies that the feedback was excellent. As can be seen this feedback
lies around the lower end of the scale since the values where 2,1 and 3.0

0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	useful	 do	you	think	the	factors	that	were	
taken	in	concideration	in	the	tool	was?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

Did	the	tool	give	good	feedback	on	the	growth	of	
the	cost	of	refactoring?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

Would	 the	output	help	the	communication	with	
stakeholders

Figure 4.9: Did the tool give good feedback on the growth of the cost of refactoring.
1 is the lowest score and represents "the tool did not give any good feedback at all".
The highest score 5 equals to "the feedback was excellent".

How the participants would use a tool of this type varied. One of the participants
would use it for educational and informational purpose. Another one said that it

38

4. Results

would be good for decision making together with architects and stakeholders on the
business side if it would be possible to generate a report that could be attached in
the backlog. The third participant would not use it at all, mainly because he had
difficulties understanding the output from the tool. This is strengthened by looking
at the following chart where the participant was allowed to grade on how much
they felt that the tool would help communication with other stakeholders. As with
previous charts implies it would not help at all, while a 5 would say that it helps a
lot.

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

How	useful	 do	you	think	the	factors	that	were	
taken	in	concideration	in	the	tool	was?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

Did	the	tool	give	good	feedback	on	the	growth	of	
the	cost	of	refactoring?

0
0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

Person	1 Person	2 Person	3

Would	 the	output	help	the	communication	with	
stakeholders

Figure 4.10: Would the output from the tool help communication with stakehold-
ers. The lowest score 1, represents "the tool would not help communication with
other stakeholders at all" while the highest score 5 equals to "that it would help a
lot".

As can be seen in figure 4.10 one of the participant felt that the tool would help
in the communication with other stakeholders while another did not see how this
would useful for that purpose at all. It was also mentioned that the tool was not
user friendly enough, but it could help communication with stakeholders if it used
the right factors and presented them more clearly. The same can be seen in if they
felt that the output from the tool would help them in the planning process when to
decide what to do next. One participant did not see that this would help him at all
while the others said that it would be useful with some minor modifications.

The final step was for the participants to give their feedback on how the tool could
be improved. What was mentioned was that the participants wanted more quality
attributes to be considered in the tool. It was also mentioned that the tool should
consider the risk of doing the refactoring and the components life span. However,
they also expressed that the tool gave insights about areas not thought of before.

39

4. Results

40

5
Discussion

In this section the results from the chapter 4 will be discussed in order to answer
the research questions stated in the chapter 1. Also the implication to the industry
and academia will be debated. Lastly related work will be presented and potential
future work suggested to guide research within this topic.

Recent research has identified factors which should be taken in consideration when
taking a refactoring decision for an Architectural Technical Debt(ATD). However,
the hypothesis used for this thesis is that there is a difference between the factors
identified in the academia and those used in the industry. This hypothesis can
be seen in figure 3.2. As can be expected not all the factors suggested from the
academia, hence being incorporated in the tool, where used in practice by the in-
dustry. In the same way not all the factors used in practice where identified in
the theory. Nevertheless, there was a union of factors. Using the whiteboard, the
domain experts identified 5, 6 respectively 6 factors they would investigate in order
to be able to make their decision. These factors can be found in table 4.4. From
this is it possible to see that the number of factors taken in consideration by the
domain experts were fewer than the factors used in the tool, which took 7 factors in
consideration using the AnaConDebt model. More information about AnaConDebt
can be found in section 2.3.

Figure 5.1 displays the relationship between the factors used in the whiteboard
sessions and the the factors used in tool. On the left side of the figure all the factors
used in the whiteboard sessions are presented. However, it is important to be aware
of that this image is just a summarization. Hence, not all the factors that were
used in practice where used at the same time. On the contrary, it is a merge of all
the factors used by the participants during the three evaluation sessions. On the
right side all the factors that are used in the tool are displayed and in the middle
section all the factors that were used in both. The factors in this figure can either
be yellow or white. All factors that were specific to either the TD theory or the
industry is yellow. White factors imply that it was considered in both TD theory
and in practice. Between the white factors, there are black and dotted grey arrows.
The black arrows imply that the factors were a direct match to factors provided
in the AnaConDebt theory. The dotted grey arrow indicates that the factor used
during the white board session was approximately the same as one provided in the
theory. In total were 11 unique factors provided during three whiteboard sessions,

41

5. Discussion

7 factors where taken in consideration in the tool and only 4 were in common.

Customer
Satisfaction

Maintenance

Affected quality
attributes

Related
Components

Cost of refactoring
the source

Impact on
development speed

Impact on
complexity

Number of new hires

Risk of refactoring

Value for Money

Lead Time

Does it give extra
value

Business Value

The Code today

Customer
satisfaction

Factors used in
practice Factors used in

practise and in
TD theory

Factors used in
theory

Related
Components

Affected quality
attributes

Affected quality
attributes

Maintenance

Related
Components

Impact on
Maintainability

Impact on
development speed

Figure 5.1: Diagram showing relationship between the factors used in practice and
in TD theory. The factors from the theory are taken from the paper "An Empirically
Developed Method to Aid Decisions on Architectural Technical Debt Refactoring:
AnaConDebt" by Antonio Martini and Jan Bosch [4]

5.1 RQ1a: When taking a decision on ATD, is
there a difference between what aspects are
used at the studied company and the ones
suggested by the TD theory?

When making a decision regarding refactor, several factors are taken in consideration
to determine if it is a good investment of resources. In order make such a decision,
the academia suggest a number of different factors to be considered. It is interesting
to investigate the intersections and differences between factors that are used in
practice and those used in the academia. Looking at figure 5.1 only four factors

42

5. Discussion

from TD theory was also used in practice. Those four were,

1. Impact on Maintainability
2. Related components
3. Affected Quality attributes
4. Lead Time/impact on development Speed

The question is, why did these four exist in the intersection between the TD theory
and the domain knowledge in the industry? To fully analyze this, it is important
to be aware of that there is a difference between the point of view of performing a
refactoring between the industry and the point of view in the tool regarding risk.
The tool is focused on the risks of not doing the refactoring compared to the industry
which is more fixated on the risks of doing the refactoring.

Beginning with the impact on maintainability, which could be translated to the risk
of bugs being created. It is quite obvious this was something that the industry felt
was out of major importance. Hence, they do not wish to create more bugs by doing
a refactoring of something that will not give any new features to their users. As
mentioned previously the academia takes the other approach, what is the risk of bugs
being created if the reconstruction is not done. Furthermore, both the TD theory
and the industry recognizes the importance of knowing how big of an effort it would
be to carry through the refactoring. They both also recognize the importance of
knowing how inter-connected this component and its Architectural Technical Debt
(ATD) with other components in the system. In other words, is the ATD isolated
so that it will affect only a few other components or is it so complex that it would
basically lead to a total reconstruction of the system? As the refactoring will not give
any other features to the end users, it is important that they are given something
else. This can be validated as both the industry and the academia considered the
affected quality attributes. For instance, will the system be faster or more reliable
after the refactoring? This is also related to the last factor in the intersection, the
lead-time/impact on development speed. Will the refactoring lead to that future
features can be developed faster and with less effort?

As mentioned before 4 out of 7 factors from the theory were used in practice. The
theory specific factors specific were,

1. Cost of Refactoring the Source
2. Number of new hires
3. Impact on Complexity

43

5. Discussion

Looking at these three factors, it might seem strange that at least cost of refactoring
the source and impact on Complexity was not mentioned in any of the whiteboard
sessions. One reason for this could be that the whiteboard sessions had a time
restriction and making the participants forget to mention them. It could also be that
they seem obvious and therefore making the participants forget to mention them.
However, the number of new hires is not obvious. Will a postponed refactoring force
new hires to learn the software architecture and the source code twice, before and
after the refactoring?

5.2 RQ1b: How can these aspects be combined?

As mentioned in the section 4.3.3 two of the participants felt that all the factors they
considered should be in the tool, and as a result the TD theory as well, while one
only said that a few of them should. However, as mentioned in section 5.1 a few of
the factors already exists in both theory and in practice as can be seen in figure 5.1.
Looking at table 4.8 it is possible to see that the evaluators thought that the factors
in the tool was useful. Likewise, from table 4.7 they thought that the decision from
the tool was somewhat accurate with respect to the factors that it is currently using.
However, it was mentioned that the model in the tool did not consider three key
factors that all of the participants felt was out of major importance when deciding
if something should be refactored. Those factors were,

1. The risk of doing the refactoring
2. The maturity of of the component which encapsulates the ATD
3. The life span of the component which encapsulates the ATD

To be more precise, is the component so vital that the risk of refactoring might
lead to creating new bugs that out weights their current issue? This is the major
difference between the practitioners and the academia. In the academia, the risk
refers to the risk of bugs being created by not refactoring and for the industry it is
the opposite. Another thing the practitioners felt that the theory should consider is
the components maturity. Even though the component does not have the optimal
software architecture from a quality perspective, is it stable with a few major features
to be implemented that the ATD will not be a problem? And what is the plan for
the component in the future? All of the participants suggest that these three factors
should also be part of the model, and as a result, also the tool. Looking back, it is not
feasible to validate whether or not all the factors that the participants considered
on the whiteboard should be in the method. However, it is fair to say that the
missing key factors should be included as they where mentioned explicitly by all
three evaluators.

44

5. Discussion

5.3 RQ2: How does an ATD decision tool affect
practitioners in making refactoring decisions?

To begin with the participants felt that refactoring cost over time was not clearly
stated. This can be seen in figure 4.9, where all of the participants graded it average
or below, where one gave it the lowest score. However, this does not imply that
such a tool is not useful. Instead, it proves that it is out of major importance to
make the outcome of the tool more understandable. One of the participants saw
potential and said it could help with decision making involving other architects
and stakeholders. In the same manner two of the participants expressed that it
could be used for informational purposes. One of the persons clarified that if the
tool could generate a good report, it could be attached to the backlog and serve
as background information. This is validated by looking at figure 4.10, where two
of the three participants expressed that it could help them in their communication
with other stakeholders. As can be seen the participants ranked the output of the
tool to 4,3 and 1 on scale between 1-5. Hence, one participant did not see that it
would help communicate with stakeholders. It was also deemed from two of the
three participants that the tool could help them in the planning process of what to
do next after some modifications to the tool. Examples of those changes are the
missing key factors discussed in section 5.2. It was also mentioned from some of
the participants that the tool gave them new insights in regard to what to take in
consideration when making a refactoring decision.

What more can be seen is that the overall average value for the estimated accuracy
for the whiteboard and the tool is the same. Looking at figure 4.7 all the participants
estimated the accuracy of the tool to 3 on a scale between 1 and 5. However, looking
at the accuracy of the decision done on the whiteboard in figure 4.6 each participant
gave it a unique grade, 4, 3 and 2. Resulting in an average of 3. Looking at this is it
possible to say that there was a more uniform belief in the tools accuracy compared
to their own estimations. However, this does not imply that the tool was more
accurate. The difference in the belief of the whiteboards sessions could be due to
time constraints.

To conclude, does an ATD tool of this type help practitioners make refactoring
decisions? There was a varied opinion about the tool as have been previously dis-
cussed. However, two of the three participants was more well disposed towards the
tool while one was not. As the two participants who where more positive actually
were software architects, which is the intended key users of this tool, it is possible to
say that the tool would help making refactoring decisions. But it would need more
development and to be more refined.

45

5. Discussion

5.4 RQ3: In what way does different stakeholders
have different perceptions regarding ATD and
its refactoring?

In the evaluation process different attitudes did emerge regarding ATDs, its refactor-
ing and a tool which aims to help making these decisions. In the evaluation process
three participants were involved, one Architect, one former architect and one senior
developer.

Starting with the tool, it was possible to see that the developer was more skeptical
towards the usefulness of the tool. Even if the implementation was not perfect, both
architects stated that the tool gave somewhat of an indication on the growth of the
cost of refactoring, whilst the developer stated the opposite. Another distinction
that was obvious between the different participants regarding the tool was how well
it could be used for communicating about the ATD to other stakeholders. The
architects gave it 3 and 4 on a scale between 1-5 while the developer gave it a 1(the
lowest score). There are several reasons that could explain these distinctions. To
begin with it could be that the tool shows quite a lot of information on the same
time and was difficult to understand. Hence, the result might have been more in
line if the graphical user interface was more intuitive and easier to grasp. Another
explanation could be that the developer did not have the same perspective on the
software architecture as the architects. Hence, the need to motivate a refactoring
decision would not be a part of his working routine. The architect’s role is to
assess and question implementations, while the developer to some extent is the one
responsible for fixing short comings in the code.

Another thing that was interesting can be seen in the figures 4.2 and 4.3. The num-
bers here are fairly consistent on how they would prioritize the factors which would
affect their prioritization when choosing between two things to refactor. However,
there are a few factors that varies quite a bit. For instance, the products competi-
tive advantage or specific customer values. In this two areas two of the participants
graded them average or higher on whether or not they were important to prioritize
while the third gave it the lowest score.

To conclude, there were a vast difference on how practitioners approached an ATD
refactoring and a tool incorporating such a decision model. The developer was
continuously more skeptical while the architects saw some potential for its useful-
ness. Moreover, it is possible to say that there is a distinction in how developers
and architects approach prioritization between features to implement and ATDs to
refactor.

46

5. Discussion

5.5 Implication for the Industry
Since it has been acknowledged by the research community in this field that a tool
of this kind might help the industry make important decisions, this research is con-
tributing by building and then examining the tool from user’s different perspectives.
As it turned out software developers and architects had different opinions regarding
refactoring’s of ATDs and its prioritization. This tool was in this context not useful
for the senior developer and his working routine. On the contrast it could help the
architects express the necessity for the people on the business side of the company
who has the final call in making the decisions. This is due to the fact that the
purpose of such a tool is to make something that is obvious to them with their level
of domain knowledge visible and understandable for non-technical people.

5.6 Implication for the Academia
The implication for the academia is that from the results of this thesis it could be
concluded that their model AnaConDebt is not quite there yet for it to be useful in
the industry. From this evaluation was three additional factors emerged as important
to consider,

1. The risk of doing the refactoring
2. The maturity of of the component which encapsulates the ATD
3. The life span of the component which encapsulates the ATD

Moreover, it is stated from the intended key users of such a tool, the software
architects, that there is a potential future for such a tool in the industry. Hence,
there is a motivation from the industry to continue research on this topic. One
implication to this, that also was not obvious before, is that in this context there is
a difference in the mindset towards ATD between software architects and developers.
This is therefore something that needs to be considered in future research.

5.7 Limitations
It is important to be aware of that this is a design research. Thus, the goal of the
provided tool is not to be a tool that solves all of the business needs from company.
On the contrary, the aim is to solve some of their business needs using state-of-the-
art theories. In this case, the recently developed AnaConDebt model. Hence, the
provided artifact is a proof-of-concept of a tool that incorporates an Architectural
technical debt (ATD) decision framework. Thus it is more about evaluating the
concept of such a tool rather then build the perfect tool at this moment. Moreover,
all the data provided in this thesis is coming from only one company. The opinions
regarding the pros and cons of the tool is coming from only one certain type of
company and does not necessarily reflect the absolute truth. Hence, the opinions

47

5. Discussion

might be different if the research would have been performed at other companies as
well.

5.8 Threats to Validity
In this section different types of threats to the validity of this thesis will be discussed.
In the context of this thesis the threats are divided into four sub-types as suggested
by Runeson and Höst [7].

5.8.1 Construct Validity
To begin with there are some issues with construct validity in both in the envi-
ronmental case study 3.3.2.1 and in the evaluative case study 3.3.4.1. In both of
these interviews were conducted which opens up for misinterpretation between the
interviewee and the interviewer regarding the asked questions. Moreover, both case
study interview sessions involved questions asking for estimations. It is not possible
for the researcher to validate these estimations. It is therefore possible that the par-
ticipants gave more optimistic estimations to make the situation look better than it
actually is or vice versa. However, in order to minimize this effect, the researcher
ensured the participant that all the data where totally confidential. Furthermore,
three people were involved in this process in order to triangulate the results.

5.8.2 Internal Validity
One Internal threat to validity is present in the evaluation case study in section
3.3.4.1. This threat is related to whether the interviewee already had made up is
mind before hand and only mentioned factors to strengthening this reasoning and
avoided those who would contradict this. This is almost impossible to avoid due to
to the fact that the researcher strived to be unbiased and as a result did not mention
factors that other participants had used.

5.8.3 External Validity
This design research was conducted with only one company and focusing on only
one of their systems. In the same manner the evaluation was done only with parts
of one of the team involved in the development of that particular system. This is
an external validity threat. Hence, if there would have been more time, involving
people from other teams would have been preferable in order to further triangulate
the results. It would have been even more beneficial to involve several companies in
this research. Due to this uniformity, it is not obvious that the results would have
been the same if more people was involved.

5.8.4 Reliability
There exist one obvious threat of validity regarding the reliability of this research
that is present in the evaluation case study described in section 3.3.4.1. When

48

5. Discussion

conducting interviews, there is a possibility that the researcher might influence the
participants reasoning. This is obviously something that is almost impossible to
avoid. However, in order to minimize this effect, the researcher strived to avoid
unnecessary conversation with the interviewee during the session. Some conversation
was needed though in order to explain what the participants should do and clarify
if the participant had difficulties understanding the task.

5.9 Related work
It is a common practice to use some kind of mathematical model in order to measure
and quantify the software quality of system. A common approach is to use tools
that incorporates models and rules which is based on inaccuracies on the actual
code. Examples of such tools are SonarQube and Ndepend. However, the process
of measuring architectural technical debt (ATD) is a bit more complicated and re-
source demanding. A common method for these kinds of tasks are the Architecture
Trade-off Analysis method(ATAM). ATAM constitutes out of four major phases.
These four phases are described in broad terms below, [26]

1. Presentation:
In the beginning of this phase the ATAM method is described to the stake-
holders. After that the business goals that motivates the necessity of this
evaluation are presented by the project manager. Lastly the suggested soft-
ware architecture that aims to satisfy the business needs are presented by the
architects

2. Investigation and Analysis:
In this phase different approaches to achieve the suggested architecture are
identified. The quality factors that are currently affecting the system in a
negative manner are collected and the different scenarios where these are an
issue are also analyzing. The highest ranked quality factors are then mapped
to the architectural approaches. These approaches are then further analyzed
to discover strengths and weaknesses.

3. Testing
This phase is rather similar to the previous phase with the difference that
all the stakeholders are present. Different scenarios are identified that are
affecting the quality attributes and are then prioritized. The highest prioritized
scenarios are then used as test cases for the identified architectural approaches.

4. Reporting:
In this last phase the ATAM team presents the result of the evaluation. They
can also conduct a report of the findings and suggested methods to shift to
the new architecture.

However, this process is rather time-consuming and requires a lot of participants
[21]. The basis for the ATAM model and the AnaConDebt model used in this thesis
is rather similar. Both takes an ATD and strives to estimate a cost of repaying that
debt. The major difference is that AnaConDebt takes it a step further and tries to

49

5. Discussion

answer if the debt should be repaid and when refactoring should be done compared
to ATAM which shows the cost and how it is related to specified quality attributes.
There has been attempts to build tools upon these models. For example, in 2005
Piyush Maheshwari and Albert Teoh tried to build a tool based on ATAM called
ATAM Collaborative Environment (ACE). However, it was unsuccessful and was
never completed. It was mentioned that the major issue with the tool was the make
it easy to do an ATAM evaluation interacting with a computer [23]

5.10 Future Work
Regarding potential future work there are several aspects that could be looked into.
To begin with it would be interesting to investigate how to re-engineer the Ana-
ConDebt model and a corresponding tool so that it would also assess the risk and
stability of the system in consideration. It would also be interesting to build a tool
even more focused on the user experience in order to make it more user friendly and
as a result might lower the difficulty threshold. One area that should be further
investigated related to ATD is the sensitivity in extracting information about these
items. This is because knowledge about certain points in the architecture might lead
in the direction of different interviewees. It would be interesting to investigate how
to minimize this effect since the lack of transparency leads to completely different
outcomes of an architectural assessment. This is also regardless of tools and models.
Lastly, it would be interesting to investigate how to integrate the ATD tool with
the actual refactoring. In other words, how should this tool be used in collaboration
with the architects in their daily work.

50

6
Conclusion

Today, it is becoming more and more expensive to develop software. The buyers
require a higher quality of the software as their own knowledge regarding software
increases and they often wish to have a leverage towards their market competitors.
In the same manner it is often a desire that the software is easily maintainable in
order to be able to keep this advantages in the future. To address this issue software
companies have started using agile development methodologies which encourages
the developers to be alert and flexible to changes, compared to the waterfall model
where the requirements are locked before the development begins.

The usage of agile methodologies encourages the necessity of frequent refactoring
and as a result of this it is not only required to know what should be refactored, but
also, it is feasible to do it from a cost-perspective. Would the time required to do
the refactoring result in gained value that out weights the cost of doing the refac-
toring. In order to simplify this Ward Cunningham coined the metaphor technical
debt(TD), which solves this using the economical concept of debt. In this metaphor
all implementations that are not optimal represent a debt which has an interest.
The interest could be described as the additional cost of having this debt in the
system. The TD notion contains a subset of sub TDs and the focus in this report
is the one called Architectural technical debt (ATD). ATD is architectural inaccu-
racies, meaning that the software architecture is currently implemented in way that
is sub-optimal according to its ideal state.

The process of analyzing the ATD is currently quite time-consuming and requires a
lot of resources. One example of an established method for measuring the quality of
software architecture is the Architecture Trade-off and Analysis Method(ATAM). In
ATAM, risks in the software architecture are mapped to different quality attributes
which then are compared to each other in order to find weaknesses that should be
focused on during the development. However, in this thesis, an alternate model is
investigated, the AnaConDebt model. In this model an ATD is analyzed in order
to help practitioner take the decision if it should be refactored and when that refac-
toring should be done. Recent research has also expressed the necessity of tools for
these kinds analyzes. In this thesis a tool was developed to investigate this using the
AnaConDebt model. The tool developed was incorporating the AnaConDebt model
and was evaluated with a system at a company that is planned to undergo refactor-
ing in the near-future. In this thesis four research questions were then investigated

51

6. Conclusion

and the findings were,

• RQ1a: When taking a decision on ATD, is there a difference be-
tween what aspects are used at the studied company and the ones
suggested by the TD theory?
In total four factors from the ATD theory were also used in practice. Those
four where,
1. The impact on maintainability
2. The components related to the ATD
3. How different quality attributes are affected
4. The impact on development speed.

• RQ1b: How can these aspects be combined?
Three factors used in practice should according to the interviewed industrial
professionals be added to the theory. Those three where,
1. The risk of doing the refactoring
2. The maturity of of the component which encapsulates the ATD
3. The life span of the component which encapsulates the ATD

• RQ2: How does an ATD decision tool affect practitioners in making
refactoring decisions?
This kind of tool does help architects communicate the severity of an ATD to
other stakeholders and make refactoring decisions. However, the tool needs
some improvements, for example regarding user friendliness.

• RQ3: In what way does different stakeholders have different percep-
tions regarding ATD and its refactoring?
There is a vast difference between architects and developers in their approach
towards ATD, refactoring and ATD refactoring decision tools. The developer
was in general more skeptical while the architects saw potential.

From this it is possible to see that some of the most vital factors from the ATD theory
are in fact used in practice as well but there were three other factors suggested by
the industry that should be added to the AnaConDebt model. The industry needs
it to consider the risk of doing the refactoring, how mature the component is and
the planned road map for the component. Another interesting discovering is that
there is clear difference between software architects and software developers in their
approach towards ATD and its refactoring.

In summary, in this thesis was a proof-of-concept of an ATD decision tool developed.
It was deemed from the intended key users, the architects, that it had potential
to help make a refactoring decision for an ATD and spread information to other
stakeholders. However, it needs improvements for it to be useful. If the tool is made
more simple to use and the ATD model it relies on considers more factors a tool of
this type could help the industry take the next step in solving the problem of ATDs
that are now current.

52

Bibliography

[1] Cunningham, W. (1992) The WyCash Portfolio Management System
[2] Kruchten, P., Nord, R. L., Ozkaya, I. (2012). Technical debt: from metaphor

to theory and practice. IEEE Software, (6), 18-21
[3] A. Martini and J. Bosch, “The danger of architectural technical debt: Conta-

gious debt and vicious circles,” in Software Architecture (WICSA), 2015 12th
Working IEEE/IFIP Conference on, May 2015, pp. 1–10.

[4] A.Martini and J. Bosch, "An Empirically Developed Method to Aid Decisions
on Architectural Technical Debt Refactoring: AnaConDebt" (2016)

[5] Robert L. Nord, Ipek Ozkaya, Phillippe Kruchten, Marco Gonzalez-Rojas, "In
Search of a Metric for Managing Architectural Technical Debt" (2012) Joint
Working Conference of Software Architecture 6th European Conference on
Software Architecture.

[6] A. Martini, Jan Bosch and Michel Chaudron, "Architecture Technical Debt:
Understanding Causes and a Qualitative Model"(2015)

[7] P.Runeson and M.Höst, "Guidelines for conducting and reporting case study
research in software engineering" Empir Software Eng (2009) 14:131–164

[8] http://martinfowler.com/bliki/TechnicalDebt.html, (2003),Martin Fowler
[9] A.Nugroho, J.Visser and T.Kuipers, "An Empirical Model of Technical Debt

and interest" (2011)
[10] E.Allman, "Managing Technical Debt - Shortcuts that save money and time

today can cost you down the road.", (2012), ACM 55(5), 50-55
[11] Z.Li, P.Avgeriou and P.Liang, "A Systematic mapping study on technical detb

and its management" (2014) The Journal of Systems and Software 101(2015)
193-220

[12] N.Ernst, S.Bellomo, I.Ozkaya, R.Nord, I.Gorton "Measure it? Manage it? Ig-
nore it? Software Practioneers and Technical Debt", (2015)

[13] Alan R. Hevner, Salvatore T. March, Jinsoo Park and Sudha Ram, MIS Quar-
terly Vol. 28, No. 1 (Mar., 2004), pp. 75-105, “DESIGN SCIENCE IN INFOR-
MATION SYSTEMS RESEARCH”

[14] P.Krutchen, R.Nord, I.Ozkaya and D.Falessi "Technical Debt: Towards a
Crisper definition" Report on the 4th International Workshop on Managing
Technical Debt, (2013) September, volume 38 number 5

[15] M.Fowler, "http://martinfowler.com/bliki/TechnicalDebtQuadrant.html",
(2014) 20 november, accessed 2016-10-08

[16] D.Radigan, "https://www.atlassian.com/agile/technical-debt", (2016)

53

Bibliography

[17] J.-L. Letouzey, "The Scale Method for evaluating Technical Debt" in Proceed-
ings of the Third Internationa Workshop on Managing Technical Debt, Piscat-
away, NJ, USA (2012), pp 31-36

[18] Patrick Smacchia, Improve your .NET code quality with NDepend,
"http://www.ndepend.com", (2004), accessed 2016-07-13

[19] SonarQube, http://www.sonarqube.org/, (2008), accessed 2016-07-14
[20] "Software Quality Metrics", http://www.sqa.net/softwarequalitymetrics.html,

accessed 2016-09-19
[21] "http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm", Software

Engineering Institure, Carneiege Mellon, accessed 2016-10-09
[22] Liliana Dobrica, Eila Niemelä, "A Survey on Software Architecture Analysis

Methods", (2002)
[23] Piyush Maheshwari, Albert Teoh, "Supporting ATAMwith a collaborative Web-

based software architecture evaluation tool", (2005)
[24] Consumer Financial Protection Bureau, "What is the difference be-

tween paying interest and paying off my principal in an auto loan?"
"http://www.consumerfinance.gov/askcfpb/845/what-difference-between-
paying-interest-and-paying-my-principal.html", accessed 2016-10-10

[25] Snowball versus Respondent-Driven Sampling, Douglas D. Heckathorn
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250988/, accessed 2017-01-
08

[26] R.Kazman, M.Klein, P.Clements, "ATAM: Method for Architecture Evalua-
tion", (2000)

54

A
Interview guide

A.1 General Information

A.1.1 Goal with the Interview
• Gain general information about the system
• Identify ATD items
• Get principal and Interest for the identified ATD items.

A.1.2 Interview Type
• Semi-structured interview
• Funnel-model(beginning with open questions and then becoming more specific)

A.1.3 Interview Phases
1. First phase

• present objectives of the interview and case study, how will the data
extracted from the interview will used, get permission to record the in-
terview, ask some simple introduction questions

2. Second phase
• main interview questions

3. Third phase
• summarize the major findings, and make the interviewee confirm that it is

correctly understood, identity misunderstandings and possible feedback
on the questions/answers or the structure of the interview.

A.2 Guide

A.2.1 General info to establish with the interviewee before
the interview starts

• Explain the topic, ATD, What I wish the get from this interview, what the
outcome will be and that they are anonymous

• Let them describe themselves, what is their role, how long they have been
working with system etc

I

A. Interview guide

• Let them describe themselves, what is their role, how long they have been
working with system etc

A.2.2 ATD Identification

A.2.2.1 Open start questions

• In which components in the system have you been working on the last year?
• Which are the five most complex areas in the system to make software related

changes?
• Are there parts of the architecture that you are considering to be sub-optimal?
• What are the extra-cost that occurs due to this?
• What are the worst architectural parts of this system?

A.2.2.2 Factors to Identify

Goal: Identify code duplication
Explanation: Identify presence of similar code in different parts of the system,
managed separately and not grouped into reusable components.
Example Question:

• Do you have any unwanted double maintenance (at least two components that
are similar, but with small changes)

Goal: Identify unwanted dependencies
Explanation: TODO: Skriv något snyggt här
Example Question:

• Do you have any unwanted ripple effects? (meaning that a change in one place,
leads that you need to change somewhere else that was not intended with the
architecture)
– Could this be because of unwanted depencies?

Goal: Identify unwanted architectural patterns(patterns and policies that are not
kept consistent)
Explanation: TODO: Skriv något snyggt här
Example Question:

• Is it difficult to understand the system?
• What architectural patterns currently exist in the system?

– Any of them you want to remove?

Goal: identify non-functional requirements that were not taken in consideration at
the beginning of the development
Explanation: TODO: Skriv något snyggt här
Example Question:

II

A. Interview guide

• Give examples on non-functional requirements. Are you experiencing issues
regarding these requirement types?

• Do you have any issues with software quality?

Goal: Identify temporal properties of interdependent resources
Explanation: concurrent and non deterministic interaction with the resource by
different components. EX: convention of only having synchronous calls to a certain
component. However, one of the teams used forbidden asynchronous calls.
Example Question:

A.2.3 Principal

Goal: Find the cost of refactoring the debt(refactoring away the ATD) ex in man
hours
Explanation:
Example Question:

• what do you need to do in order to refactor this item?
• how much time do you estimate that it will take? (man hours)

A.2.4 Interest

Need to determine values for short and long term.

A.2.4.1 Propagation Factors

Factors that causes the ATD to propagate to other parts of the system

A.2.4.1.1 Internal factors Goal: Find the number of functionalities that will
involve the ATD in the chosen lifespan
Explanation: if the ATD was included in a single component, estimate how
many new functionalities would be included in the component in the chosen life
span(short,medium,long)
Example Question:

Goal: Estimate how the complexity will grow over the chosen life span
Explanation: as a multiplier
Example Question:

• How much more difficuly will it be to develop something due to the existence
of the ATD?

III

A. Interview guide

A.2.4.1.2 External Factors Goal: find number of increments in the roadmap
that will include the ATD
Explanation: for those features that will involve/interact the ATD, estimate a
refactoring cost for those features as well. (man hours)
Example Question:

Goal: number of external users in the system?
Explanation:
Example Question:

• How will the usage of the tool increase/decrease in the chosen lifespan?

A.2.4.2 Impacts

Goal: Find the impact on development speed(%)
Explanation:
Example Question:

• Use the propagation factor number of increments(roadmap), how much will
the development teams spend in extra effort?

Goal: find the impact on maintainability ((%)
Explanation:risk of bugproness and the consequences extra cost in fixing the bugs.
(ex overhead is growing with 10
Example Question:

Goal: find the impact on quality (ISO-9126)
Explanation:give a list of qualities, ask them which are more important. How
would an such quality be affected?
Example Question:

Goal: find the impact on learning
Explanation:if the refactoring would be postponed, new hires would need to learn
the system twice.
Example Question:

Goal: Impact in revenues
Explanation: waiting to refactor would block the possibility of selling features
separately.
Example Question:

IV

B
Design Research - Case Study

Evaluation

B.1 Questions to be answered before the session
starts

• On a scale 1(just began) -5(extremely familiar) how much experience do you
have with the project?

• Do you currently have a strategy for deciding what to refactor in your project(yes/no)

• Do you currently have a strategy for deciding when something should be refac-
tored(yes/no)

• Rank the following aspects, 1(not important at all) - 5(extremely important),
which of them are important to take in consideration when prioritizing between
two items that needs to be refactored, but only one can be refactored right
now?
– Competitive advantages
– Specific customer values
– Market attractiveness
– Lead time
– Maintenance cost
– Customer long-term satisfaction
– Risks
– Penalties

• Rank the following aspects 1(not important at all-5 (extremely important),
which of them are important to take in consideration when prioritizing between
one item that needs to be refactored and implementing a new feature,
– Competitive advantages
– Specific customer values
– Market attractiveness
– Lead time
– Maintenance cost

V

B. Design Research - Case Study Evaluation

– Customer long-term satisfaction
– Risks
– Penalties

• On a scale 1(not at all) - 5(very well), how aware are you about the term
"technical debt?"

• Are you currently using any tools to monitor the quality of the software ar-
chitecture today?
– it yes, on a scale 1(not at all)-5(very much), how satisfied are you with

that tool?

B.2 Questions after using the whiteboard(30 min)

• Based on your estimation, would you refactor this ATD item?(yes/no)

• Which factors did you concider?

• Would you have concidered more factors if you had more time? (yes/no)
– if yes, make a list of those factors

• on a scale 1(not accurate at all)-5(very accurate), how accurate do you think
the result of using the whitebaord was?

B.3 Questions after using the tool(30 min)
• Is the outputted suggestion from the tool different from your answer from

using the whiteboard? (yes/no)
If the output from the tool is different from the decision you took while
using the whiteboard, does the tool change your mind? (yes/no)

• On a scale 1(not accurate at all)-5(very accurate), how accurate do you think
the result of the tool was?

• On a scale 1(not useful at all)-5(very useful), are the factors taken in consid-
eration in the tool any useful?
– In hindsight, would you have have used them on the whiteboard? If no,

why not?

• If you made a list of factors before, are any of these in the tool? (if yes, which
one?)

VI

B. Design Research - Case Study Evaluation

• On a scale 1(absolutely nothing)-5(yes, very much), would you use the tool in
your daily work?
– If, 1, what would need to be changed so that it would be useful? (max 3

things)

• On a scale of 1 (none) - 5(all of them), Should the factors that were not con-
sidered in the tool, but on the whiteboard be included in the tool

• On a scale 1(bad)-5(excellent), how did the tool give feedback on the severity
of the growth of cost of refactoring?

If, 1, could you give an concrete example of something that could be
changed?

• How would you use the results from the tool(ex discuss with architects/devel-
opers)

• On a scale 1(not at all)-5(very much), would the output help the communica-
tion with stakeholders?

• On a scale 1(not at all)-5(very much), would the output from the tool aid you
in the planning process of “what to do next” in the development?
– If 1, give a concrete example of how this could be done instead.

• What other features would you like from the tool?

VII

B. Design Research - Case Study Evaluation

VIII

C
Images of the Tool

Figure C.1: The main page of the artifact

Figure C.2: The decision regarding if and when a refactoring should be done

IX

C. Images of the Tool

Figure C.3: Charts showing the growth of the cost of refactoring over time

X

	List of Figures
	List of Tables
	Introduction
	Background
	Domain background
	Stakeholders
	Developers
	Architects
	Product Owner

	Theoretical background
	Technical Debt
	Technical Debt Management

	Architectural Technical Debt
	Architectural Technical Debt Analyzation models

	Technical Background
	AnaConDebt: Construction and Appliance
	Generic Example of AnaConDebt

	Tools for measuring code and software architecture quality

	Methods
	Design Research
	Case Study Research
	The Design Research
	Knowledge Base
	Environment
	Environment Case Study

	Development
	Evaluation
	Evaluation Case Study

	Results
	Environment Case Study
	Artifact Development
	Evaluation Case Study
	Questions before the session started
	Questions after using the whiteboard
	Questions after using the tool

	Discussion
	RQ1a: When taking a decision on ATD, is there a difference between what aspects are used at the studied company and the ones suggested by the TD theory?
	RQ1b: How can these aspects be combined?
	RQ2: How does an ATD decision tool affect practitioners in making refactoring decisions?
	RQ3: In what way does different stakeholders have different perceptions regarding ATD and its refactoring?
	Implication for the Industry
	Implication for the Academia
	Limitations
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Related work
	Future Work

	Conclusion
	Bibliography
	Interview guide
	General Information
	Goal with the Interview
	Interview Type
	Interview Phases

	Guide
	General info to establish with the interviewee before the interview starts
	ATD Identification
	Open start questions
	Factors to Identify

	Principal
	Interest
	Propagation Factors
	Internal factors
	External Factors

	Impacts

	Design Research - Case Study Evaluation
	Questions to be answered before the session starts
	Questions after using the whiteboard(30 min)
	Questions after using the tool(30 min)

	Images of the Tool

