

Autonomous Driving in Crossings
using Reinforcement Learning
Master’s Thesis in Computer Science - Algorithms, Languages and Logic

ROBIN GRÖNBERG & ANTON JANSSON

Department of Electrical Engineering
Chalmers University of Technology
Gothenburg, Sweden 2017

Report No. EX096/2017

Master’s Thesis 2017

Autonomous Driving in Crossings using Reinforcement
Learning

Investigation of Action Value Based Reinforcement Learning for Autonomous
Vehicle Decision Control in Partially Observable Environments

ROBIN GRÖNBERG
ANTON JANSSON

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2017

Autonomous Driving in Crossings using Reinforcement Learning
Investigation of Action Value Based Reinforcement Learning for Autonomous Vehicle
Decision Control in Partially Observable Environments

ROBIN GRÖNBERG
ANTON JANSSON

c© ROBIN GRÖNBERG, ANTON JANSSON, 2017

Technical report no. EX096/2017
Supervisor: Tommy Tram, Zenuity
Examiner: Jonas Sjöberg, Department of Electrical Engineering
Master’s Thesis 2017
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

Cover: Stylized illustration of a car at a road crossing
Typeset in LATEX
Gothenburg, Sweden 2017

ii

Autonomous Driving in Crossings using Reinforcement Learning
Investigation of Action Value Based Reinforcement Learning for Autonomous Vehicle
Decision Control in Partially Observable Environments

ROBIN GRÖNBERG
ANTON JANSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract

Machine learning techniques such as artificial neural networks have recently shown very
promising results for decision control tasks when combined with reinforcement learning.
This thesis presents an applicable approach using longitudinal acceleration control for
autonomous vehicles driving through crossings in a simulated traffic environment. An
Acceleration Regulator, which controls the autonomous vehicle, is trained using rein-
forcement learning and attempts to take advantage of gaps between cars, while following
a pre-planned path along its lane. The results show that policies can be trained to
successfully drive comfortably through a crossing, avoiding collision with other cars and
being too passive. Comfortability is achieved by constraining jerk. The Acceleration
Regulator generalize over different types of traffic crossings and driver behaviors. In
95% of all attempts, the learned policy is able to handle traffic situations with a varied
number of cars having the same behavior on four types of crossings, involving several
lanes and turns. When other cars vary between four different behaviors, driving in only
one fixed crossing, the policy is successful in 97.2% of all attempts. Deep Q-learning
is used to find a policy for the Acceleration Regulator, that can solve this task. This
learning algorithm does not infer information over time. To enable this, a Deep Recur-
rent Q-Network is tested and compared to the Deep Q-learning approach. Results show
that a Deep Recurrent Q-Network succeeds in three out of four attempts where a Deep
Q-Network fails.

Keywords: autonomous driving, reinforcement learning, Deep Q-Network, neural net-
work, machine learning

iii

Acknowledgements

Both of us are grateful for all the support and help received during our work with this
thesis. A special thanks goes to Zenuity for recognizing our skills and to give us the op-
portunity to work on this project. We thank Mohammad Ali for continuously approach-
ing us in the afternoons, discussing how everything is coming together and providing
potential ideas how to proceed with the project. We also thank Samuel Scheidegger
for providing hardware used for training policies and running simulations. We specially
thank our supervisor at Zenuity, Tommy Tram, for helping us all the way with ideas,
thesis feedback and providing presentation sessions to ensure involvement of employees
at Zenuity making our work relevant. We thank our superviser, Prof. Jonas Sjöberg, for
providing helpful feedback on our thesis. We also thank our work colleagues for being
part of interesting discussions and good company. At last, we thank our family and
friends for their support.

Robin Grönberg and Anton Jansson, Gothenburg, May 23, 2017

v

Contents

List of Figures x

Glossary xii

Acronyms xiv

1 Introduction 1
1.1 Background . 1
1.2 Autonomous Driving in Crossings . 2
1.3 Approach . 3
1.4 Implementation Choices . 4

1.4.1 Traffic Scenarios . 4
1.4.2 Multi-Agent Traffic Environment 4
1.4.3 Short Term Goals as Actions . 5
1.4.4 Selection of Features Used for Decision Making 5

1.5 Scope . 6
1.6 Contributions . 6
1.7 Thesis Outline . 7

2 Machine Learning Background 8
2.1 Artificial Neural Networks . 8

2.1.1 Artificial Neuron . 9
2.1.2 Feed Forward Networks . 9
2.1.3 Optmizing Neural Networks . 11
2.1.4 Gradient Descent . 12
2.1.5 Backpropagation . 12
2.1.6 Weight Initialization . 13
2.1.7 Recurrent Networks . 14
2.1.8 Long Short-Term Memory . 16
2.1.9 Dropout to Prevent Overfitting . 17

vii

CONTENTS

2.2 Reinforcement Learning . 17
2.2.1 Markov Decision Process . 18
2.2.2 Reinforcement Learning Framework 18
2.2.3 Exploration and Exploitation . 19
2.2.4 Deep Q-Learning . 19

2.2.4.1 Deep Q-Learning Algorithm 20
2.2.4.2 Experience Replay . 21
2.2.4.3 Fixed Target Q-Network 21

2.2.5 Partial Observability . 22
2.2.6 Deep Recurrent Q-Network . 22

3 Traffic Simulator for Crossings 24
3.1 Episode Timeframe . 24
3.2 Coordinate System for Lanes . 24
3.3 Approximating Curved Lanes . 27
3.4 Car Model . 28
3.5 Car Agents with Different Behaviours . 28

4 Acceleration Regulator 30
4.1 System Design Choices . 30
4.2 Car Control using the Low-Level Controller 31

4.2.1 Regulators . 31
4.2.2 Low-Level Controller Implementation using Short Term Goals . . . 32

4.3 Actions Chosen by the High-Level Controller 32
4.4 Selected Features . 33

4.4.1 Target features . 33
4.4.2 Ego features . 35

4.5 Reward Function . 36
4.6 DQN Structures for the High-Level Controller 36

4.6.1 Fully Connected Deep Q-Network 36
4.6.2 Shared Weights Between Cars . 36
4.6.3 Deep Recurrent Q-Network . 37
4.6.4 Stochastic Sequence Length . 38
4.6.5 DQN with Multiple Observations 38

5 Result 41
5.1 Evaluation Metrics . 41
5.2 Single Car in Simple Crossing . 42
5.3 Shared Weights Between Cars . 42
5.4 Generalize a Policy Across Different Scenarios 43
5.5 Recognizing Behavior . 44

5.5.1 Network with Recurrent Layer . 44
5.5.2 DRQN or DQN with Multiple Observations 44
5.5.3 Fixed or Stochastic Sequence Length 45

viii

CONTENTS

6 Discussion 47
6.1 Future Work . 49

7 Conclusion 50

Appendices 55

A Hyper parameters 56

B Scenarios 60

ix

List of Figures

1.1 Aggressive and passive driver of target car 2
1.2 Four traffic scenarios . 3
1.3 Acceleration Regulator . 4
1.4 Intersection point and overlap points . 5

2.1 Artificial Neuron . 9
2.2 Artificial Neural Network . 11
2.3 Recurrent Neural Network . 14
2.4 Recurrent Neural Network, Unfolded in Time 15
2.5 Long Short Term Memory . 17
2.6 Build LSTM state during training . 23

3.1 Lane . 25
3.2 Two intersecting lanes with multiple intersection points and a vehicle’s

longitudinal position on another lane . 26
3.3 Overlapping lanes . 27
3.4 Curvature approximation . 27

4.1 Double crossing; distance between intersecting point and overlap point . . 35
4.2 Simple feed forward network . 37
4.3 Network with shared weights . 38
4.4 Network with a recurrent LSTM layer . 39
4.5 DQN stacked network . 40

5.1 Simple crossing; DQN and DRQN . 42
5.2 Shared weights result . 43
5.3 Multiple Scenarios; DRQN . 43
5.4 DRQN compared to DQN with single observation 44
5.5 DRQN compared to DQN with stacked observations 45
5.6 DRQN stochastic sequence length compared to fixed sequence length . . . 45
5.7 DRQN with preparing observations . 46

x

LIST OF FIGURES

A.1 Neural network neuron count . 58
A.2 Fully connected network neuron count . 59

xi

Glossary

Acceleration Regulator The function constructed in this thesis, controlling the ac-
celeration of the ego car. iii, 2–4, 6, 7, 30, 41, 48

action Actions are executed by agents, and can influence the environment. 1, 5, 7,
18–22, 30, 32, 33, 35–38, 41–43, 48, 50

action space The number of possible actions a system can have. 6, 18, 30, 48

adaptive cruise control A function extending the capabilities of cruise control by also
adjusting the velocity to the leading car. xiv, 5

agent An agent assumes the role of a driver, by controlling the vehicle’s acceleration
directly. For non-autonomous cars, a human takes the role of the agent. 2–7, 18,
19, 21, 22, 24, 28, 29, 34–38, 42–44, 47–49

cruise control A function used in vehicles to automatically adapt the velocity of ego
car to keep a certain speed. xii, xiv, 31

ego agent The agent that is learning a policy. The ego agent drives the ego car. 2–7,
29, 33, 35, 41, 44, 47, 48, 50

ego car The car that the learning agent drives. 2–6, 24, 33–35, 42, 47, 48, 50

ego lane The lane that the ego car is currently using. 3, 31, 33–35

episode A traffic scenario simulation ending when the agent either has passed the cross-
ing, collides with another car or is too passive. 4, 6, 21, 24, 42, 43

episodic reward The sum of all rewards given during an episode. 41, 42

experience memory Saved data from previous simulations that an agent can be trained
on. 21, 22

xii

Glossary

follow vehicle When an agent adjusts the velocity such that it will end up behind a
target vehicle. 32, 33, 36, 37

give way When an agent adjusts the velocity such that other cars with conflicting
planned trajectories have priority, and proceed before the ego car. 5, 28, 32, 33,
48

leadning car The car in front of the ego car. 5, 35

policy A set of rules an agent is using when making decisions. These rules could be
clearly defined, or completely obscure and hard to break down. 3, 7, 8, 18–21, 29,
41–43, 47, 48

reward A feedback signal to the agent, which describe how well the agent is performing
a task. 3, 7, 18–21, 30, 36, 41, 43, 48, 49

state An agent’s representation of the environment, based on its observations. 16–22,
33, 41, 45, 47, 49

state space The number of possible states a system can have. 3, 6, 18

take way When an agent adjusts the velocity of its car such that it has priority over
other cars with crossing planned trajectories. 5, 28, 32, 33, 43, 48

target car A car that is not the ego car, and is somehow of interest. 2–7, 24, 28, 29,
32–35, 37, 41–44, 47, 50

target lane The lane that a target car is currently using. 34, 35

xiii

Acronyms

ACC Adaptive Cruise Control. 5, 31, 32, Glossary: adaptive cruise control

CC Cruise Control. 31, 32, Glossary: cruise control

DQN Deep Q-Network. 5, 8, 18, 20–22, 30, 33, 36, 38, 40–42, 44, 45, 50, 56

DRQN Deep Recurrent Q-Network. 5, 7, 18, 22, 30, 36–39, 42–46, 49, 50, 56

LSTM Long Short-Term Memory. 8, 16, 17, 22, 23, 37, 39, 44–46

MDP Markov Decision Process. 17, 18, 20, 22, 30, 33, 37, 44

POMDP Partially Observable Markov Decision Process. 17, 18, 22, 30, 44

RNN Recurrent Neural Network. 8, 14–16

SGD Stochastic Gradient Descent. 12

STG Short Term Goal. 3–7, 28, 31–33, 35, 36, 48, 50

xiv

1
Introduction

This chapter will give a brief background to autonomous driving, why it is a hard problem
to solve and why reinforcement learning could potentially be used to solve parts where
previous state-of-the-art methods fail. The problem of autonomous driving in cross-
ings is given together with an overview of the implemented approach. The approach is
founded upon assumptions and limitations defined in the scope section. Thereafter, the
contributions from this thesis are presented and the last section gives an outline of the
chapters in this thesis.

1.1 Background

It is estimated that 10% of traffic deaths in the US were caused by lack of drivers’
attention [1]. Today, there exist safety systems that can step in when the driver lacks
the performance needed for a given situation, and assist in avoiding casualties [2]. In
the future, fully autonomous vehicles could further improve safety and also efficiency.
An experiment shows that a traffic crossing with only autonomous vehicles have the
potential to improve traffic flow, by making decisions and communicating faster than
humans while ignoring lanes and traffic signals without compromising safety [3]. In
order to achieve this in today’s traffic, an autonomous vehicle must be able to interpret
the intentions of both autonomous and human drivers.

The idea of autonomous vehicles has been around since at least 1939 [4], indicating
that it is a hard problem to solve. A possible explanation could be that it is difficult
to program a rule-based algorithm that can determine the correct action in all given
situations. This is shown in DARPA’s Urban Challenge, held in 2007, in which au-
tonomous vehicles attempted to drive in an isolated urban traffic environment. During
the challenge, almost half of all vehicles were removed from the race because of incor-
rect decision-making [5]. When solving problems where rule-based algorithms struggle,
machine learning techniques have in some cases shown great potential compared to the

1

INTRODUCTION

previous state-of-the-art methods [6, 7, 8, 9]. One such machine learning technique is
reinforcement learning, where an agent learns what to do by trial and error. Typically,
machine learning algorithms require large sets of training data. Reinforcement learn-
ing can utilize both existing training data and experiences generated from the agent’s
actions, which makes it flexible and cost efficient. Reinforcement learning algorithms
using artificial neural networks have shown promising results [7, 8, 10, 11, 12]. Two such
reinforcement learning algorithms are Deep Q-Network and Deep Recurrent Q-Network,
which are used in this thesis to implement decision-making for autonomous vehicles.

1.2 Autonomous Driving in Crossings

In this thesis, a function controlling the longitudinal acceleration of an autonomous car
is constructed. This function is referred to as Acceleration Regulator. The Acceleration
Regulator is used to drive the autonomous car through a crossing by finding gaps between
surrounding cars, referred to as target cars. The controlled car is referred to as the ego
car, and an ego agent drives the ego car by using the Acceleration Regulator. The ego
car follows a pre-planned path along its own lane, approaching the crossing, and the ego
agent makes decisions on how to drive through the crossing without colliding. The ego
agent does not consider any traffic rules when making decisions, but instead it observes
the movements of the target cars. The target cars are also driven by agents, which can
have different behaviors, as seen in Figure 1.1. Some of these target car agents slow down
before the crossing, providing more time for the ego agent to pass, while others do not.
The ego agent can differentiate between target car agents to make different decisions
by observing their behavior over time. This enables the ego agent to collaborate with
the target cars. The ego agent can collaborate with four different agents, described in
Section 3.5 and is able to drive in four different crossings, each modelled by a traffic
scenario, presented in Figure 1.2, without explicit knowledge of which of the crossing it
drives in.

Figure 1.1: The figure illustrates different driver behaviors of a target car’s agent. The ego
car is red, and the target car is blue. Left: The target car’s agent is passive, and gives way
to the ego car. Therefore, the ego agent decides to drive. Right: The target car is aggressive
and takes way. Therefore, the ego agent decides to stop.

2

INTRODUCTION

Figure 1.2: Four traffic scenarios that the ego agent is able to drive in. The ego car is
represented by a red box while target cars are represented with blue boxes. Top left: a
simple crossing. Top and bottom right: two crossings with two crossing lanes, which forces
the ego agent to plan its trajectory to make sure it can stop for the second crossing lane if
needed. Bottom left: a scenario where the ego lane turns left in the crossing and merges
onto a target lane. The turn implies that a lower speed must be held by the ego car. Since
the ego lane is merging onto another lane, the ego car must adjust to the traffic flow in that
lane. It must also drive across the first lane partly against the traffic direction.

1.3 Approach

The Acceleration Regulator is divided into two separate parts: a high-level controller and
a low-level controller, as seen in Figure 1.3. The high-level controller makes high-level
decisions such as ”Take Way” or ”Give Way”, referred to as Short Term Goals (STGs).
The low-level controller regulates the acceleration of the ego car based on the selected
STG. A policy is a function that defines how an agent drives. The ego agents’s policy is
defined by the Acceleration Regulator.

The high-level controller is constructed using reinforcement learning, by iteratively
training the ego agent to drive comfortably through crossings using a traffic simulator.
During training, the ego agent’s policy is improved by receiving a feedback signal from
a reward function. The defined reward function gives positive feedback to the ego agent
when it has successfully driven through the crossing and negative when the ego car col-
lides or is too passive. The ego agent explores the traffic environment by using ε-greedy,
which sometimes chooses a random STG, to search the available state space. Reinforce-
ment learning is described in more detail in Section 2.2. To maintain comfortability,
low jerk is desired [13], which is achieved by limiting jerk in the traffic simulator and
reducing the reward when jerk is high, as seen in Section 3.4 and 4.5.

3

INTRODUCTION

v High-Level
Controller

Low-Level
Controller

Traffic
Simulator

a

Acceleration Regulator

4 Hz 30 Hz

STG

Selected Features

Figure 1.3: The Acceleration Regulator interacts with the traffic simulator by controlling
the acceleration a of the ego car. The high-level controller chooses an STG, 4 times every
second, based on the selected features that describes the traffic environment. The selected
features contains speeds and distances to reference points in the crossing for the ego car and
all target cars, described in Section 1.4.4. The low-level controller computes the acceleration
based on the selected STG and is executed 30 times per second. The reference signal v
determines the ego car’s desired velocity and is set to its maximum speed.

1.4 Implementation Choices

This section presents more specifically what a traffic scenario is. Thereafter, why the
traffic is a multi-agent environment, and what algorithm is chosen because of that, is
described. The different STGs are presented and explained. The last section presents
how the features that the agent uses to make decisions are defined using a coordinate
system implemented by the traffic simulator.

1.4.1 Traffic Scenarios

There are four traffic scenarios, shown in Figure 1.2, which are used to construct the
training data. Each traffic scenario is defined by configurations of lanes and target cars,
and is simulated over the course of one episode. The training data contains the results
from many simulated episodes. In a traffic scenario, the ego car, and up to four target
cars, are placed onto lanes with initial values for position and speed. To achieve variation
in the training data, the initial values are sampled at random within a specified interval
defined by the traffic scenario, and are re-sampled each time a new episode starts. The
ego agent is able to drive in the four types of crossings, after many episodes of training.

1.4.2 Multi-Agent Traffic Environment

Traffic is a multi-agent environment, meaning that not only the ego agent’s decisions in-
fluence the environment, but also decisions taken by target cars. Therefore, the Markov
property assumption described in Section 2.2.1 does not hold for traffic environments
[14]. To solve this under the Markov property assumption, the target cars’ behaviors
must be part of the underlying system state, which makes the environment partially ob-
servable. Therefore, two reinforcement learning algorithms, described in Chapter 2.2, are

4

INTRODUCTION

implemented and compared: Deep Q-Network (DQN), and Deep Recurrent Q-Network
(DRQN), which is an extension to DQN that supports partially observable environments.
Motivation for the choice of DQN and DRQN is described in Section 4.1. Results show
that by using a DRQN, the ego agent can better respond to different behaviors of target
cars, compared to a DQN with one observation. The DRQN succeeds in three out of
four attempts where the DQN fails, as shown in Section 5.5.1. However, when using
several observations in a DQN, the performance is similar between the two.

1.4.3 Short Term Goals as Actions

The high-level controller chooses between six discrete actions, defined by STGs. The
STGs are high-level choices passed to the low-level controller, which computes an accel-
eration based on regulators typically used in autonomous driving today. The low-level
controller makes sure that each action slows down in curved lanes, and adjusts to lead-
ning cars using Adaptive Cruise Control (ACC). The actions allow the agent to give way
or take way, which are two options that human drivers typically face when approaching
a crossing. The actions also allow the agent to follow behind a specific target car, en-
abling proper timing when passing crossings and merging lanes. Further details about
how STGs are used as actions is presented in Section 4.3, while details about how the
low-level controller works is described in Section 4.2.2.

1.4.4 Selection of Features Used for Decision Making

The selected features consists of 8 target features for each target car and 7 ego features,
only related the ego car. These are high-level features that are computed from a one-
dimensional coordinate system representing the lanes along their longitudinal axes. This
coordinate system makes abstractions, hiding some irrelevant dissimilarities between
different lanes and types of crossings, which can make generalization among them easier.
For example, merging lanes and roundabouts can be modelled the same way as crossings.
The coordinate system is described in Section 3.2.

The selected features are computed using three reference points on the ego car’s and
each target car’s crossing lanes, shown in Figure 1.4. The features include the ego and
target car’s speeds and relative positions to the three reference points. The list of all
features is presented in Section 4.4.

Overlap point for target car

Overlap point for ego car

Intersection point

Figure 1.4: An illustration of
the intersection point and overlap
points for the ego car and target
car. The ego car is illustrated by a
red car, while target car is blue.

5

INTRODUCTION

The focus in this thesis is not to evaluate the importance of the selected features,
which is why the selected high-level features were chosen as they provide enough infor-
mation for the ego agent to drive in the four defined traffic scenarios.

1.5 Scope

The traffic simulator, described in Chapter 3, models vehicles and no other road users.
It is assumed that these vehicles use a set of ideal sensors that capture the information
needed to compute the features described in Section 4.4. Even if ideal sensors are used,
the environment could totally obscure other vehicles, for instance by large buildings close
to the crossing. Such traffic scenarios are not considered.

Only the longitudinal position along the road will be considered. In practice, lateral
position could be considered equally important. Each car is always positioned in the
center of its lane and is angled in the lane’s direction. By disregarding lateral positions,
the problem is simplified, which reduces the state- and action spaces.

The ego agent is not required to handle emergency situations or other unpredictable
occurrences. However, the ego agent should not be careless while driving. A recent
study shows that reinforcement learning algorithms generally have problems avoiding
casualties [15]. In order to guarantee total safety, reinforcement learning is insufficient.
Requirements for guaranteed safety are out of scope for this research, and are assumed
to be handled on another level with methods that can guarantee safety.

The number of target cars is assumed to be constant throughout a whole episode.
This means that no cars enters or leaves the traffic environment during an episode. The
agent also assumes that there are no more than 4 target cars in the traffic environment.

1.6 Contributions

A method for constructing the Acceleration Regulator that plan the ego car’s longitudinal
acceleration in crossings is implemented. This solution uses a high-level controller, which
utilize Deep Q-Learning and Deep Recurrent Q-Learning. The high-level controller uses
features such as speeds and distances to the intersection for each vehicle to choose an
STGs. The low-level controller uses the chosen STG to compute the desired acceleration.
This thesis presents the following contributions:

• The ego agent can drive in all four scenarios in Figure 1.2, without including the
type of crossing the ego car drives in as part of the high-level features described in
Section 4.4.

• The ego agent can make decisions based on target cars’ behaviors rather than
following traffic rules, as seen in Section 5.5.

• The agents choose between different STGs using a high-level controller, rather than
controlling the acceleration directly. Details about these STGs are found in Section
4.2.2.

6

INTRODUCTION

• The learning process converge faster by introducing an artificial neural network
structure where some network parameters are shared between target cars. More
details about the neural network structures are presented in Section 4.6.

• A stochastic sequence length used when training the DRQN is compared to a fixed
sequence length. However, results indicate similar performance between the two.
Stochastic sequence length is described in Section 4.6.4.

The results for the Acceleration Regulator are evaluated by measuring the success rate,
which is how often the ego agent is able to drive to the other side of the crossing without
colliding or being too cautious. For DRQN, the success rate is 95% when driving in
different crossings, and 97.2% when target cars have different behaviors.

1.7 Thesis Outline

• Chapter 2. Machine Learning Background explains machine learning back-
ground needed to understand theory and concepts used throughout this thesis.
In particular, artificial neural networks and reinforcement learning algorithms are
described.

• Chapter 3. Traffic Simulator for Crossings presents the traffic simulator, the
lane coordinate system, the car mechanics and the different agents.

• Chapter 4. Acceleration Regulator explains how the Acceleration Regulator
is implemented and discusses the choice of reinforcement learning algorithm. It
presents the selected features for desicion making, the actions chosen by the high-
level controller, how the low-level controller is implemented for all STGs, and
the reward function. It also proposes different neural network structures that are
evaluated in the Result chapter.

• Chapter 5. Result presents graphs for trained policies for different simulation
setups, including the four crossings in Figure 1.2 and comparison between shared
and unshared weights.

• Chapter 6. Discussion discusses the results and implications of made choices.
Additions to the proposed method is briefed about, as well as other possible ap-
proaches to solve the problem.

• Chapter 7. Conclusion concludes the result and the contribution made in this
thesis.

7

2
Machine Learning Background

In the first section of this chapter, the basics of artificial neural networks will be ex-
plained, as well as how to train them. This section covers three particular structures
of artificial neural networks: feed forward neural networks, Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks. The neural networks are used
together with reinforcement learning algorithms, which are also presented in this chap-
ter. The basics of reinforcement learning will be presented, together with an explanation
of Q-learning. The DQN algorithm will be explained, as well as potential inconsistency
issues, and how to reduce potential fluctuations in the policy due to these issues. How
to support reinforcement learning for partially observable environments is discussed at
the end of this chapter.

2.1 Artificial Neural Networks

Biological neural networks enables translation of raw information from signals, such as
human senses, into performing complex tasks [16]. These networks consists of neurons
connected to each other. As early as 1943, a model representing a biological neuron
was proposed, referred to as an artificial neuron [17]. The following sections describe
the basics of artificial neurons and how to connect them together in layers to form a
feed forward network, which is an efficient model to solve statistical pattern recognition
tasks. Furthermore, gradient descent and backpropagation are introduced, which are
used to train feed forward networks. How initial weights are properly selected, for stable
training sessions, is presented. Two alternative neural network structures are presented,
recurrent networks and LSTMs, which extend feed forward networks with support for a
sequence of inputs. At last, overfitting is explained along with how to reduce its effect
with dropout.

8

MACHINE LEARNING BACKGROUND

2.1.1 Artificial Neuron

An artificial neuron is defined to return a value ζ for a given input vector ξ = (ξ1, ..., ξp)
T

of size p. The return value is computed as a weighted sum using a weight vector w =
(w1, ..., wp)

T and a bias value b. The weights define the connection strength between an
input signal ξ and the artificial neuron. The bias defines how strong output signal ζ the
artificial neuron will transmit to other artificial neurons. The output signal is defined
by the following function [18]:

ζ =

p∑
i=1

wiξi + b (2.1)

The equation can be presented as a graph, as seen in Figure 2.1.

ζ

ξ1

ξ2

...

ξp 1

w1

w2

wp
b

Figure 2.1: The image describes the artificial neuron and how the inputs ξ are used to
compute the output ζ. Neurons are represented by circles. The value at the start of each
arrow is multiplied with the value presented beside the arrow, and then summed together at
the end, together with other arrows pointing towards the same neuron. The arrows represent
connections between the input ξ and output ζ with its connection strength presented by
its weight w. The bias connection is sometimes omitted when presenting artificial neural
networks using this notation.

2.1.2 Feed Forward Networks

A feed forward network consists of several layers of neurons, where each layer’s neurons
are connected to every neuron in the next layer. Such connection between layers are
referred to as fully connected layers. This network of neurons can be used for function
approximation. The goal with a neural network is to find parameters θ such that the
network with output o = f(ξ | θ) approximates o ≈ ζ as close as possible, where ζ is the
target value to approximate for input ξ. A network’s parameters θ include all weights
and biases for the neurons in the network [18].

Hidden layers are the layers between the input layer ξ and the output layer o. They
are required to approximate non-linear functions. Each layer becomes a function for
which its result is passed as input into the next layer. The first hidden layer consists
of neurons taking ξ as input. A network with two hidden layers can be represented by
three chained functions, one for each hidden layer f (1), f (2) and one for the output layer
f (o) [18]:

9

MACHINE LEARNING BACKGROUND

o = f(ξ | θ) = f (o)
(
f (2)

(
f (1)(ξ | θ) | θ

)
| θ
)

When a network has several layers, an activation function g is used to compute
the hidden values between the layers. An activation function must be monotonic and
differentiable. When using activation functions and at least one hidden layer, a neural
network can approximate any non-linear function [19]. The output of a neuron in the

first hidden layer h(1) = (h
(1)
1 , . . . , h

(1)
n)T is computed as in Equation 2.2. The superscript

of h(l) denotes the layer.

h
(1)
j = g

(
p∑
i=1

w
(1)
ji ξi + b

(1)
j

)
(2.2)

The weight values w
(1)
ji becomes a matrix W (1) weighting each component of ξ to

each component of h(1), and bias values b
(1)
j becomes the vector b(1) representing the

threshold for each neuron in the hidden layer h(1):

W (1) =

w

(1)
11 w

(1)
12 . . . w

(1)
1p

w
(1)
21 w

(1)
22 . . . w

(1)
2p

...
...

. . .
...

w
(1)
n1 w

(1)
n2 . . . w

(1)
np

 b(1) =

b
(1)
1

b
(1)
2
...

b
(1)
n

Using matrix notation, Equation 2.2 is equivalent to:

h(1) = g
(
W (1)ξ + b(1)

)
Two examples of activation functions are the sigmoid function that transforms x into

a value between 0 and 1, or tanh returning a value between -1 and 1.

sigmoid: g(x) = 1
1+e−x : R→ (0,1)

tanh: g(x) = tanh(x) : R→ (−1,1)

The output vector o = (o1, ..., on)T is computed using the values from the last hidden

layer h(d−1) = (h
(d−1)
1 , ..., h

(d−1)
q)T , where d is the depth of the neural network:

10

MACHINE LEARNING BACKGROUND

ok =g

 q∑
j=1

w
(d)
kj h

(d−1)
j + b

(d)
k

o =g

(
W (d)h(d−1) + b(d)

)
A neural network with two hidden layers can be expressed as in Equation 2.3 and

2.4. The same neural network is also presented in Figure 2.2 as a graph.

ok =g(o)

 j∑
j′=1

w
(o)
kj′g

(2)

 i∑
i′=1

w
(2)
j′i′g

(1)

 p∑
p′=1

w
(1)
i′p′ξp′ + b

(1)
i′

+ b
(2)
j′

+ b
(o)
k

 (2.3)

o =g(o)
(
W (o)g(2)

(
W (2)g(1)

(
W (1)ξ + b(1)

)
+ b(2)

)
+ b(o)

)
(2.4)

ξ1

ξ2

...

ξp

ξ

h
(1)
1

h
(1)
2

...

h
(1)
i

h(1)

h
(2)
1

h
(2)
2

...

h
(2)
j

h(2)

o1

o2

...

ok

oW (1) W (2) W (o)

Figure 2.2: A neural network representing a function f(ξ|θ) = o, with two hidden layers;
h(1), with i hidden neurons, and h(2), with j hidden neurons, where f : Rp → Rk and
θ = {

(
W (1), b(1)

)
,
(
W (2), b(2)

)
,
(
W (o), b(o)

)
}. Biases are omitted in this figure.

2.1.3 Optmizing Neural Networks

The neural network parameters θ are learned by minimizing a loss function L(θ). The loss
function give a value for how large the difference is between the network’s approximation
o(µ) and the target value ζ(µ) it approximates, where µ identifies a training instance.
Sum of squared errors, one of many loss functions, is used. With N number of instances
to approximate, where the superscript denotes the instance, the loss function is defined
by [18]:

11

MACHINE LEARNING BACKGROUND

L(θ) =
1

2N

N∑
µ=1

||o(µ) − ζ(µ)||2 (2.5)

where o(µ) = f(ξ(µ)|θ)

2.1.4 Gradient Descent

The network parameters θ that minimize L(θ) are found by computing the gradients of
L with respect to θ, ∇θL(θ), for all instances in the training set. The weights and biases
are iteratively updated in the direction of the negative gradient, with a small learning
rate 0 < η � 1 [20]:

θt = θt−1 − η∇θt−1L(θt−1) (2.6)

where t is the training iteration. Batch gradient descent, as the method is called, is
proven to converge to the global minimum only on convex problems, which neural net-
works typically are not [18]. Calculating the gradients using batch gradient descent can
also be slow for large datasets. Many training instances can be similar, which makes
some gradient computations in every update redundant. Instead, the gradients can be
calculated for a sampled set of training instances, using Stochastic Gradient Descent
(SGD). Let the sample size of training instances be B ∈ [1,N]. The update formula for
SGD is then given by [18]:

θt = θt−1 − η∇θt−1L
(
θt−1 |

{
(ξ(1), ζ(1)), ..., (ξ(B), ζ(B))

})
SGD updates have a higher variance than the batch gradient descent update. This

means that L(θ) can fluctuate, which increases the chance of not getting stuck in a poor
local minimum. However, the global minimum will also be more difficult to converge to.
By decreasing the learning rate over time the variance can be reduced [18].

2.1.5 Backpropagation

Backpropagation is an algorithm for computing derivatives for L(θ) with respect to θ.
With these derivatives, an optimization method such as gradient descent is used to
update the network’s weights and biases to minimize L(θ). The gradients are partial
derivatives for L(θ) with respect to each weight and bias parameter. Equation 2.6 from

gradient descent can be applied for a single weight parameter w
(l)
ji , which creates the

update rule for that weight [21]:

w
(l)
ji,t = w

(l)
ji,t−1 − η

∂L

∂w
(l)
ji,t−1

The partial derivative of w
(l)
ji in layer l is defined using the chain rule as:

12

MACHINE LEARNING BACKGROUND

∂L

∂w
(l)
ji

=
∂L

∂h
(l)
j

∂h
(l)
j

∂w
(l)
ji

Deriving the full gradient for all weights and biases in all layers can simply be done using
the chain rule. Therefore, the loss function and network function to approximate must
be differentiable. Backpropagation assumes that the loss function can be computed for
each training instance separately and averaged over the mini-batch. Backpropagation is
presented in algorithm 1 [22, pp. 241-245].

Data: A minibatch B̂ = {(ξ(1), ζ(1)), . . . , (ξ(B), ζ(B))} and network parameters

θt−1 = {(W (1)
t−1, b

(1)
t−1), . . . , (W

(m)
t−1 , b

(m)
t−1)}

Result: Updated network parameters θt
Compute output o(µ) from ξ(µ) for all instances µ ∈ [1,B]
for layer l in all m layers do

Compute ∂L

∂w
(l)
ji,t−1

and ∂L

∂b
(l)
j,t−1

using target values ζ(µ) and output values o(µ)

end
for layer l in all m layers do

Update all weights and biases in layer l, element-wise:

w
(l)
ji,t = w

(l)
ji,t−1 − η

∂L

∂w
(l)
ji,t−1

b
(l)
j,t = b

(l)
j,t−1 − η

∂L

∂b
(l)
j,t−1

end

θt = {(W (1)
t , b

(1)
t), . . . , (W

(m)
t , b

(m)
t)}

Algorithm 1: Backpropagation

2.1.6 Weight Initialization

Since the optimization problem is non-linear with respect to the network parameters θ,
there can be several local minima. The initial values for θ can determine what local
minimum the algorithm finds and how quickly it converges [18]. By trying different
initial parameter values for θ, the chance of finding a good local minimum increases.
Also, too large parameter values can cause the optimization problem to be numerically
ill-conditioned. This can be solved by for instance using regularization techniques [23],
or by generating an initial value from a uniform distribution U [−a, a] where the weights
are scaled by each neuron’s number of input connections nin, called fan-in size [24]:

wji ∼ U
[
− 1
√
nin

,
1
√
nin

]

13

MACHINE LEARNING BACKGROUND

2.1.7 Recurrent Networks

RNNs are used when the output is computed from a sequence of inputs. In contrast to
a feed forward network, neuron connections in an RNN can form loops that allow the
network to persist information between inputs in the input sequence. In other words,
the output is not only determined by the fed input, but also from previous inputs [25].

An RNN with input sequence (ξ1, ..., ξt) have an output sequence (o1, ...,ot). Let
ht be a layer of neurons that is connected to a previous layer in the network, creating
the feedback loop. In a simple example of a recurrent network, the previously computed
values ht−1 can be combined with the current input ξt and used to compute ot. Let zt
be the concatenation of ξt and ht−1 of size j = ||ξt|| + ||ht−1||, i = ||ht||, and g(h), g(o)

arbitrary activation functions. Let W (h) and b(h) be the weights and biases between zt
and ht for any t. Likewise, let W (o) and b(o) be the weights and biases between ht and
the output ot. Then the network will be defined as [26]:

ht = g(h)
(
W (h)zt + b(h)

)
ot = g(o)

(
W (o)ht + b(o)

)
The feedback layer ht can be connected to any previous layer. The recurrent network

example is presented as a graph in Figure 2.3.

ξt,1

...

ξt,p

ht−1,1

...

ht−1,i

zt

ht,1

...

ht,i

ht

ot,1

...

ot,k

otW (h) W (o)

Figure 2.3: A RNN with input ξt = (ξt,1, . . . ,ξt,p)
T , one hidden layer ht = (ht,1, . . . ,ht,i)

T

and the output layer ot = (ot,1, . . . ,ot,k)T where every neuron in the hidden layer is recurrent.

14

MACHINE LEARNING BACKGROUND

When running backpropagation on a recurrent network, the network needs to be
unrolled a fixed number of steps in order to calculate the derivatives. Unrolling can
be seen as copying the part of the network that exists within the loop, and placing
the copies in a sequence, each connected to the next one. The last unrolled step, h1 =
(h1,1 . . . h1,i)

T , will contain some inputs with no values. To solve this, these values can be
initialized with a default value of 0. An unrolled RNN over three time steps is presented
in Figure 2.4. Calculating derivatives for backpropagation is then no different than for
a feed forward network [25].

ξ1,1

...

ξ1,p

h1,1

...

h1,i

o1,1

...

o1,k

ξ2,1

...

ξ2,p

h2,1

...

h2,i

o2,1

...

o2,k

ξ3,1

...

ξ3,p

h3,1

...

h3,i

o3,1

...

o3,k

ξt W (1) ht W (o) ot

ξ1

ξ2

ξ3

h1

h2

h3

o1

o2

o3

Figure 2.4: To the left; an unfolded RNN, where every neuron in the hidden layer is
recurrent. The network is unfolded three time steps, with input ξt = (ξt,1, . . . ,ξt,p), one
hidden layer ht = (ht,1, . . . ,ht,i) and the output layer ot = (ot,1, . . . ,ot,k), where t is the
time step. Note that the same network weights are used each time step. The same neural
network is presented on the right, where each box represents a neural network layer, and
each arrow represents input and output data used by the layer.

15

MACHINE LEARNING BACKGROUND

2.1.8 Long Short-Term Memory

An LSTM is a recurrent network constructed for tasks with long-term dependencies. A
regular RNN struggle to remember longer sequences due to vanishing gradients, which
means that the gradients decrease exponentially for each unrolled time step. This is not
the case for LSTM networks, due to their internal structure. LSTM networks attempt to
mimic a Turing complete machine, by storing memory in cells, and modify this memory
by using insert and forget gates. During training, the network learns how to control
these gates. As a result of this, both newly seen observations and observations seen a
long time ago can be stored and used by the network [27].

A hidden layer in an LSTM consists of four fully connected internal layers that
together creates an output ht and an internal cell state Ct, which are both remembered
between observations. The cell state is modified by inserting data to it or by removing
remembered data. Two of the internal layers are the forget gate layer ff and the insert
gate layer fi. They both return a vector containing values between 0 and 1, where each
value describes how important that element is in Ct. For the forget layer, a 1 will keep
the remembered data and a 0 will forget it. The layers are using a sigmoid activation
function σ(x) and will later be used for an element-wise multiplication (denoted by �)
with the cell state [27]:

ff = σ(Wfzt + bf)

fi = σ(Wizt + bi)

A candidate for the new cell state, C̃t, is computed from zt = (ξt ||ht−1), where ||
denotes a concatenation. The cell state Ct is updated by passing the old cell state Ct−1

through the forget gate and the candidate cell state C̃ through the insert gate [27]:

C̃t = tanh(WCzt + bC)

Ct = ff �Ct−1 + fi � C̃t

The output of the cell, ht, contains selected values from the cell state. Another
sigmoid layer, fo, is used to filter what parts of Ct to include in the output [27]:

fo = σ(Wozt + bo)

ht = fo � tanh(Ct)

A memory for Ct and ht stores these values for the next observation. A network
can contain multiple LSTM cell layers. In that case, each cell has its own memory
and computes ht based on its own Ct−1 and ht−1. The parameters for an LSTM cell
are θ = {Wf ,Wi,WC ,Wo, bf , bi, bC , bo}, which are trained using backpropagation by
unrolling each layer over time, similar to a normal RNN [27]. A graphical representation
for an LSTM is presented in Figure 2.5.

16

MACHINE LEARNING BACKGROUND

ξt ot

ff fi C̃t fo

×

× +

×

tanh

Ct−1

ht−1

Ct

htzt

Figure 2.5: The internal structure of an LSTM cell. The picture shows how to take the
input ξt, the previously hidden state ht−1 and the previous cell state Ct−1, and compute
the output ot, the new hidden state ht, and the new cell state Ct. Two merging arrows
denotes a concatenation. Two splitting arrows propagate the same data to every output.
Circles denotes a simple mathematical operation. A rectangle represents a fully connected
neural network layer.

2.1.9 Dropout to Prevent Overfitting

Overfit neural networks have bad generalization performance [28]. Dropout is used to
help reduce overfitting. The idea with dropout is to temporarily remove random hidden
neurons with their connections from the network, before each training iteration. This is
done by, independently, for each neuron, setting its value to 0 with a probability p [29].
Let m(l) be a mask where each element is 1 with probability p and 0 otherwise. The
function for a hidden layer defined in section 2.1.2 is updated to the following equation:

h(l) = m(l) � g
(
W (l)ξ + b(l)

)
The backpropagation algorithm is updated accordingly. A network used in a training

iteration will contain a subset of the neurons from the full neural network. There are an
exponential number of these subsets, and backpropagation with dropout can be seen as
an algorithm training all those sub-networks. The final network will become an average
of all sub-networks. During validation, all neurons are present but their weights are
multiplied by p. This makes the expected output of the network during validation the
same as during training [29].

2.2 Reinforcement Learning

This section introduces the Markov Decision Process (MDP) model followed by the
fundamental framework of reinforcement learning, as well as explanations to exploration
and exploitation. Thereafter, Deep Q-Learning algorithm and its stability issues are
presented, together with how to solve them. Partially Observable Markov Decision

17

MACHINE LEARNING BACKGROUND

Process (POMDP), an extension to MDP, is introduced. At last, DRQN is presented,
which extends DQN for partially observable environments by using a POMDP.

2.2.1 Markov Decision Process

Reinforcement learning algorithms described in this chapter require the problem to be
modeled as a MDP.

Definition 1. An MDP for some environment E is described by a 5-tuple
(S,A,P,R, γ), where S is the finite state space, A is the finite action space, P
is the transition probability distribution for traversing from state st ∈ S to another
state st+1 ∈ S given an action at ∈ A. The reward rt = R(st, at) ∈ R is the
real-valued immediate rewards, given that action at was taken at state st. The last
parameter γ ∈ (0, 1], which is the discount factor, is used to weight short term and
long term rewards.

The MDP model assumes that a state st+1 only depends on the previous state st and
action at. This is known as the Markov property [30].

2.2.2 Reinforcement Learning Framework

Reinforcement learning is an optimization problem where an agent learns a policy by
trial and error. Using the MDP model, an agent receives an observation ot at time t from
an environment E . These observations can be fully observable or partially observable of
the full environment. The environment could be deterministic or stochastic. From a set
of observations, a state st is constructed, e.g st = f(o0, o1, ..., ot) for some function f .
The agent chooses an action at, given the state. The action impacts the environment to
some degree, which is then used to obtain a new observation ot+1 and construct another
state st+1. Some states are terminating states, meaning they have no outgoing actions,
and no new states can be constructed [31]. In order to capture both stochastic and
deterministic environments, a transition function; TE(st,at,st+1) ∼ P is used to describe
the probability to transition from state st to st+1 given that action at was taken.

To determine whether an action is good or bad, the agent receives a reward rt =
R(st,at) after choosing an action at in a state st. The reward function returns either a
positive value to reward the agent when choosing good actions, or a negative value to
punish it. The agent tries to maximize the reward it gets. The function R(st,at) must
be defined in the model before the learning starts. The definition of the reward function
R(st,at) influences the behavior of the learned policy, as it defines the goal of the task.

A policy π defines the behavior of an agent, by specifying what actions the agent
takes. The goal of reinforcement learning is to converge towards the optimal policy π∗.
A policy function can be modeled in two ways:

18

MACHINE LEARNING BACKGROUND

• A deterministic policy π : S → A, is a function describing which action the agent
will take, given a state.

• A stochastic policy π : S × A → [0,1], is a function describing the probability for
taking an action given a state.

In order to learn the optimal policy, two functions; Vπ : S → R and Qπ : S × A → R
are used. The value function; Vπ(st), describes the expected future reward given a state
st using policy π. The action value function; Qπ(st,at), describes the expected future
reward for taking an action at in a state st using the same policy. Comparing Qπ(st,at)
to the reward function R(st,at), the functions are similar, except the Qπ-function also
takes expected future rewards into consideration.

The optimal policy π∗ takes actions according to an optimal Qπ(st,at) function,
denoted Qπ∗(st,at). The policy π is updated by iteratively reevaluating all Qπ-values
according to the following Bellman equation, resulting in a new policy π′:

Qπ′(st,at) = rt + γ
∑

st+1∈S
TE(st,at,st+1)Vπ(st+1) (2.7)

where Vπ(st) is the value function for the old policy π, defined as:

Vπ(st) = max
at

Qπ(st,at)

For a policy π, actions are taken according to the highest Qπ-value [32]:

π(st) = arg max
at

Qπ(st,at)

When the Qπ-function is iteratively updated, Qπ → Qπ∗ as the number of updates goes
to infinity [32].

2.2.3 Exploration and Exploitation

The agent takes actions by exploiting the knowledge it has previously gained, by choosing
actions according to its policy. By only exploiting its policy, the agent explores a limited
set of states in the environment. There can be unexplored states that give a higher
reward unknown to the current policy. By using ε-greedy, the agent chooses a random
action with probability ε and otherwise follows the policy, thus utilizing exploration.
The balance between exploration and exploitation can be adjusted by setting ε. In the
beginning of a training session, ε is close to 1, and then decreased over time [31].

2.2.4 Deep Q-Learning

This section presents the Deep Q-Learning algorithm. Two solutions handling stabil-
ity issues with Deep Q-Learning, experience replay and fixed target network, are also
explained.

19

MACHINE LEARNING BACKGROUND

2.2.4.1 Deep Q-Learning Algorithm

The Deep Q-Learning algorithm is a reinforcement learning algorithm that uses a neural
network as a function approximator for the Qπ-function [10]. This neural network is
called DQN. The Qπ-function approximated by the DQN is denoted as Q(st,at|θπ),
where θπ are the neural network parameters for policy π. When using a DQN, the
reward function is optimally distributed around [−1, 1]. If the defined reward values are
too large, the Qπ values can become large and cause the gradients to grow [33].

Deep Q-Learning is a model-free reinforcement learning algorithm, which means that
the transition function TE(st,at,st+1) for the MDP is unknown. By conducting exper-
iments and receiving experiences e from the environment E , the transition function
TE(st,at,st+1) is embedded inside the Qπ values. Actions are taken according to the
ε-greedy strategy, and experiences from taken actions are recorded [10]. An experience
e is defined as a tuple of the current state st, taken action at, observed reward rt and
the new state st+1; e = (st,at,rt,st+1). These experiences are stored in an experience
memory E and are used for training the neural network. The neural network trains its
weights and biases θπi , where πi is the policy for training iteration i. In order to train
the DQN, Qtargeti is computed from an experience, which is the real immediate reward
and predicted future rewards for iteration i, derived from Equation 2.7:

Qtargeti =

rt if st is terminating the episode

rt + γmaxat+1 Q(st+1, at+1|θ−) otherwise

A separate set of network parameters θ−, which are computed from θπi−1 , is used for
computing Qtargeti . This is called a fixed target network, and is introduced to make
Qtargeti independent from θπi to make DQN updates more stable [11]. How to set the
target network parameters θ− is found in Section 2.2.4.3.

The loss function L(θπi), for a DQN with network parameters θπi , measures the dif-
ference between the real reward and the DQN’s predicted reward, which is implemented
by computing the sum of squared errors between Q(st,at|θπi) and Qtargeti [10]:

L(θπi) =
1

2N

∑
(st,at)∼ρπ

(
Q(st, at|θπi)−Qtargeti

)2
(2.8)

where ρπ is a probability distribution over states st and actions at for policy π, which is
used to sample N state and action pairs from the experience memory E. Using the loss
function, the following gradient is computed, which is the gradient used when performing
backpropagation on the DQN [10]:

∇θπiL(θπi) =
1

N

∑
(st,at)∼ρπ ;st+1∼E

(
Q(st, at|θπi)−Qtargeti

)
∇θπiQ(st, at|θπi) (2.9)

The Deep Q-Learning algorithm, using a fixed target Q-network, is presented below
[10].

20

MACHINE LEARNING BACKGROUND

Data: An environment E , Reward function R and actions A
Result: Trained neural network parameters θπ

Initialize experience memory E with capacity N
Initialize random weights θπ = θ− for the neural networks
for training episode 1 to M do

Initialize environment and receive initial state s1

for t=1 to T do
Select random action at with prob ε otherwise set at := arg maxaQ(st,a|θπ)
Execute action at, receive reward rt and observe the new state st+1

Store experience et := (st,at,rt,st+1) in E
Sample B experiences E′ from E
for ej = (sj , aj , rj , sj+1) in E′ do

Qtarget :=

rj if sj is a terminating state

rj + γmaxaj+1 Q(sj+1,aj+1|θ−) otherwise
Learn from experience ej by minimizing L from the gradient in
Equation 2.9 using gradient descent, and thus compute new network
weights θπ

Update target network parameters θ− by using the main network
parameters θπ with Equation 2.10 or 2.11

end

end

end
Algorithm 2: Deep-Q Learning

2.2.4.2 Experience Replay

A problem with Deep Q-Learning is that with a small change in the action-value function,
the policy can drastically change, due to the ε-greedy policy rule. The distribution of
future training samples will be greatly influenced by the updated policy. If the network
only trains on recent experiences, a biased distribution of samples is used. Such behavior
can cause unwanted feedback loops which can lead to divergence of the trained network
[34].

In order to make DQN more robust, the agent can sample experiences E′ from the
experience memory E. The sampled experiences are fed to the gradient decent algorithm
as a mini-batch. Thus, the agent learns on an average of the experiences in E and is
likely to train on the same experiences multiple times, which can speed up the network’s
convergence and reduce oscillations [10, 35].

2.2.4.3 Fixed Target Q-Network

The target network, with weights and biases θ−i , for training iteration i, has the same
structure as the main Q network, with weights and biases θπi . The target network is

21

MACHINE LEARNING BACKGROUND

updated at a slower pace than the main network, which reduce oscillations [11]. Two
different update strategies for the target network’s parameters can be used:

1. With interval C: θ−i = θπi (2.10)

2. Every network update: θ−i = τ · θ−i−1 + (1− τ) · θπi (2.11)

where i is the update iteration. For the interval update (1), C determines how frequently
the target network is updated. A smooth update (2) can also be used, where τ represents
how much to interpolate the target network for the last update with the current main
network [11, 36].

2.2.5 Partial Observability

DQN relies on the MDP model described in Definition 1. When dealing with partially
observable environments, a model can be constructed by using a partially observable
MDP model. The problem is still assumed to be an MDP, except that parts of the state
are hidden from the agent [14].

Definition 2. A POMDP for some environment E is described by a 6-tuple
(S,A,P,R,Ω, O), where S, A, P and R represents an MDP. An observation ot ∈ Ω
is observed, where Ω is the finite observation space. Finally, O(st) is the proba-
bility distribution for receiving observation ot given an underlying hidden state st:
ot ∼ O(st).

2.2.6 Deep Recurrent Q-Network

A DRQN is a DQN with an LSTM cell added after the last hidden layer, before the
output layer, enabling support for POMDP environments [12]. The LSTM layer adds
a recurrence over time, such that the network’s output for observation ot depends on a
history of previously seen observations. The LSTM’s internal cell state keeps information
about this observation history. Thus, only the current observation ot needs to be fed to
the network to make a prediction. By using a history of observations, DRQN can better
estimate the underlying system state of the POMDP. The internal cell state is reset to
zeros at the start of a new episode.

A DRQN is trained by feeding a sequence of observations ot−l+1, . . . , ot to the un-
rolled neural network, where l is the sequence length, and ot+1 as the next observation.
The LSTM’s internal cell state is not stored in the experience memory, as it is depen-
dent of the network parameters θ. An experience is redefined to contain sequences of
observations, actions and rewards; e = (ot−l+1 . . . ot, at−l+1 . . . at, rt−l+1 . . . rt, ot+1) [12].
Before each training update, the LSTM’s internal state is zeroed. This method preserve
random sampling from the experience memory, described in Section 2.2.4.2, which makes
the recurrent update stable.

22

MACHINE LEARNING BACKGROUND

This method is extended by using the first h observations of an experience to build
the LSTM layer’s cell state. Only the rest of the observations, ot−l+h+1, . . . , ot, are
trained on [37]. Figure 2.6 visualizes how these observations are used.

ξt−l+1 ξt−l+h ξt−l+h+1 ξt

0 ht−l+1 . . . ht−l+h ht−l+h+1 . . . ht

ot−l+1 ot−l+h ot−l+h+1 ot

build hidden state

train

Figure 2.6: Use h number of observations in a sequence to build the LSTM’s cell state.
The rest l−h number of observations are trained on. The observations are fed as inputs ξt.
The initial cell state of ht−l+1 is zero.

23

3
Traffic Simulator for Crossings

This chapter describes the fundamental mechanics of the simulator. This includes an
episode’s terminating conditions. The coordinate system for lanes is defined together
with how lanes relate to each other in the coordinate system. Furthermore, the repre-
sentation of curved lanes is explained. Thereafter, the parameters that the car model
use, as well as its mechanics are presented. At last, the agents that drives target cars
are presented.

3.1 Episode Timeframe

Each time the traffic simulator starts a new episode, it initializes a traffic scenario with
cars and lanes, as described in Section 1.4.1. The episode ends when one of the following
terminating conditions are fulfilled:

• The ego car has successfully arrived at its target destination along the lane, spec-
ified in the traffic scenario.

• The ego car has collided with another car. A vehicle is shaped like a rectangle, and
overlapping of two such rectangles results in a collision between the two vehicles.

• A timeout has occurred; t > tm where t is the current time from the start of the
current episode, and tm is the maximum amount of time allowed for that episode,
specified by the scenario.

3.2 Coordinate System for Lanes

A coordinate system 1 models crossings and merging lanes, such as the scenarios de-
scribed in section 1.3. A lane L is defined as a sequence of coordinates L := (ψ1 =

1The coordinate system is proposed by Mohammad Ali at Zenuity.

24

TRAFFIC SIMULATOR FOR CROSSINGS

(x1,y1),ψ2 = (x2,y2), . . .) and a lane width w(L), constructing a sequence of straight
lane segments that cars can drive on. A lane segment is denoted as (ψi,ψi+1);ψi ∈
L ∧ψi+1 ∈ L. An illustration of a lane and its lane segments is presented in Figure 3.1.
An intersection point between two lanes L and L′ is denoted by ψ× and exists if the two
lanes have a common point:

ψ× ∈ L ∧ψ× ∈ L′

ψi−1

ψi

ψi+1

Segment (ψi,ψi+1) w(L)

Figure 3.1: An illustration of three con-
secutive points ψi−1,ψ1 and ψi+1 for a lane
L. The lane has two segments with one of
the segments (ψi,ψi+1) explicitly shown at
the end of the dotted arrow. The lane width
w(L) is also shown in the figure.

The longitudinal position along a lane is described by φ
(L)
i where i identifies a point

ψi along the lane L. The longitudinal position up to a certain point along the lane is
defined recursively as follows:

φ
(L)
1 = 0

φ
(L)
i = ||ψi −ψi−1||+ φ

(L)
i−1

The lane length is φ
(L)
l where l identifies the last point ψl on the lane. For any point ψ,

its longitudinal position along the lane L is described by φ(L), and can be any number

in the interval [0,φ
(L)
l]. All lanes have a driving direction which increase longitudinal

positions as the car moves forward along the lane. Cars can only traverse forward on
lanes. A car’s longitudinal position can be described from lanes other than its current
lane. Let Lc denote the current lane for a car c, and let Lo denote another lane. Then,
the car has a longitudinal position along lane Lo if and only if there exists an intersection
point ψ× between the two lanes, and this point is ahead of the car. Formally:

ψ× ∈ Lc ∧ψ× ∈ Lo ∧ φ(Lc)
× ≥ p(c,Lc)

t

where p
(c,Lc)
t denotes the longitudinal position of the car c along its lane Lc at time step

t, and φ
(Lc)
× is the longitudinal position of the intersection point between the lanes Lc

and Lo along the lane Lc. When a longitudinal position of car c on another lane Lo is
calculated, the first intersection point is always used. If there are multiple intersection

25

TRAFFIC SIMULATOR FOR CROSSINGS

points, the two lanes merge. The first intersection point is the one with the lowest

longitudinal position φ
(L)
× . Figure 3.2 (left) presents two intersecting lanes with multiple

intersection points, and shows the first and the last intersection points. The car c’s

position along another lane Lo, p
(c,Lo)
t , is calculated such that the longitudinal distance

to the first intersecting point ψ× is the same on both lanes Lc and Lo, by using Equation
3.1. Figure 3.2 (right) displays an example of the longitudinal position of the same car
on two different intersecting lanes.

p
(c,Lo)
t = φ

(Lo)
j − φ(Lc)

i + p
(c,Lc)
t ; ψi ∈ Lc,ψj ∈ Lo,ψi = ψj (3.1)

ψi−1ψj−1

ψi = ψj = ψ×

ψi+1 = ψj+1

ψi+2 = ψj+2 = ψ′×

ψi+3ψj+3

ψi−1

ψi = ψj = ψ×

ψi+1

Lo

ψj−1

ψj+1

Lc

p(Lc)

p(Lo)

Figure 3.2: Left figure: Two lanes merge and then diverge again. There exists three
intersection points between the two lanes, where the first intersection point is denoted ψ×
and the last intersection point is denoted ψ′×. Right figure: Two lanes Lc and Lo intersect

at ψ×. A car c in front of the intersection has a position p(Lc) on lane Lc and p(Lo) on lane
Lo

In order to determine if any point ψ is on a specific lane, ψ is projected onto every
segment of the lane. If the distance between the original point ψ and the projected
point is less than half the lane width w(L), the point is considered to be on the lane. An

overlap point ψ
(L)
◦ is defined between two lanes L and L′ if and only if there exists at

least one point ψ that is on both lanes. The overlap point for lane L is the projected
point from the set of all points on both lanes with the lowest longitudinal position. Let

φ
(L)
◦ denote the longitudinal position of such a projected point, then

φ
(L)
◦ = minφ(L)

where φ(L) comes from the set of all projected longitudinal positions, which are projected
from every point ψ that are on both the lanes L and L′. Figure 3.3 presents two lanes,
with the set of all points that are on both lanes (potential overlap points, marked in

grey) as well as the overlap point ψ
(L)
◦ .

26

TRAFFIC SIMULATOR FOR CROSSINGS

ψi−1

ψ×

ψi+1

ψj−1

ψj+1

ψ
(L)
◦

φ
(L)
◦

Figure 3.3: Two overlapping lanes L and L′.
The grey area is the set of all points which are
considered on both lanes. The overlapping point

ψ
(L)
◦ for lane L is presented at the center of a

circle. The longitudinal distance of the overlap

point along the lane L; φ
(L)
◦ is also presented.

Note that the overlap point for lane L′; ψ
(L′)
◦

might not always be the same point as ψ
(L)
◦ .

3.3 Approximating Curved Lanes

Curved lanes are modeled by multiple segments. The curvature ci is defined for each
coordinate ψi ∈ L. The curvature is approximated by constructing a fictive radius ri of
the curve, given the angle βi between the two segments around ψi and the length of the
shortest segment. This is shown in Figure 3.4 and in the following equation:

ri =
min(||ψi −ψi−1||, ||ψi+1 −ψi||)

2 arctan(βi2)

ci =
1

ri

ri

ψi

ψi−1

||ψi−ψi−1||
2

ψi+1

βi
2

Figure 3.4: Curvature approximation between two straight lane segments (ψi−1,ψi) and
(ψi,ψi+1). Assuming (ψi−1,ψi) is the shortest of the two, the radius is computed using

arctan(βi

2) and ||ψi−ψi−1||
2 . If (ψi,ψi+1) is the shortest, ||ψi+1−ψi||

2 is used instead.

27

TRAFFIC SIMULATOR FOR CROSSINGS

3.4 Car Model

A vehicle c is described by these parameters at time t:

p
(c)
t :

The longitudinal position of the vehicle along its lane, positioned at the

rear axle.

v
(c)
t : The speed along the direction of the vehicle.

a
(c)
t : The acceleration along the direction of the vehicle.

s(c) =

[
s

(c)
1

s
(c)
2

]
: The width and length of the vehicle.

A vehicle’s position, speed, and acceleration are updated according to the following
equations:

a
(c)
t+1 = a

(c)
t + j

(c)
t+1∆t

v
(c)
t+1 = v

(c)
t + a

(c)
t+1∆t− 1

2
j

(c)
t+1∆t2

p
(c)
t+1 = p

(c)
t + v

(c)
t+1∆t− 1

2
a

(c)
t+1∆t2

where j
(c)
t is the jerk along the lane, defined as j

(c)
t := max(min((â

(c)
t −a

(c)
t)/∆t), jmax,−

jmax), with jmax as max jerk, â
(c)
t is the desired acceleration, used to control the vehicle,

and ∆t denotes the time between two simulation updates, thus approximating continuous
time with discrete updates. Max jerk jmax is used to limit the acceleration control signal,
thus making sure agents are limited by artificial inertia. Whenever a car reach the end
of its lane, it is instantly put at the start of the lane, to keep the same number of cars
throughout the episode.

3.5 Car Agents with Different Behaviours

The following agents are defined as drivers for target cars. Each agent have manually
defined STGs which are passed to the low-level controller. How to compute the desired
acceleration from an STG is defined is described in Section 4.2.2:

• Take way agent. An agent always driving according to the take way STG.

• Give way late agent. The agent initially has the same behavior as the take way
agent, but very late decides to stop at the next crossing using the give way STG.

• Cautious agent. The agent initially has the same behavior as the take way agent,
but slows down before the crossing. In contrast to the give way late agent, the agent
does not stop, and switches to the take way STG when it is close to the crossing.
A parameter determining how much the agent slows down when approaching a
crossing is configurable, and is referred to as cautiousness.

28

TRAFFIC SIMULATOR FOR CROSSINGS

• Trained agent. An agent using a policy from a previously trained ego agent.
The policy of this agent depends on how it was trained. The trained agent differs
from an ego agent because it cannot further update its policy, and is used to drive
target cars.

29

4
Acceleration Regulator

This chapter discusses the how the Acceleration Regulator works and motivates the
algorithm choices. Both the high- and low-level controller presented in Section 1.3 are
described. Furthermore, all the features that the high-level controller base its decisions
on are presented. The reward function used to train the high-level controller is presented.
At last, the different DQN structures the high-level controller is trained and tested with
in the Result chapter are presented.

4.1 System Design Choices

As mentioned in Section 1.3, the Acceleration Regulator is divided into a high- and low-
level controller. The high-level controller chooses between discrete actions, which the low-
level controller use to compute the final acceleration. This architecture enables the high-
level controller to use a reinforcement learning algorithm with discrete outputs. A policy-
based or an actor-critic method could be used without the need for a low-level controller,
as it supports continuous output [38, 39]. However, an approach with discrete outputs
reduces the action space, by constraining the possible output acceleration distribution.
Also, a model-free reinforcement learning algorithm is necessary to avoid creating a
manual model for the MDP of the traffic environment. DQN and DRQN, presented in
Sections 2.2.4.1 and 2.2.6, are both model-free and use discrete actions. DQN, however,
relies on the Markov property assumption, which [14] argue does not hold for traffic
environments. DRQN solves this problem by using a POMDP environment instead of
an MDP [12]. Both DQN and DRQN are chosen as implementation for the high-level
controller, and compared to see if POMDP is necessary.

30

ACCELERATION REGULATOR

4.2 Car Control using the Low-Level Controller

The low-level controller computes a vehicle c’s desired acceleration â
(c)
t at time t, for an

STG, using regulators. These regulators and how the low-level controller computes the
desired acceleration from STGs, are defined in the following sub-sections.

4.2.1 Regulators

There are three regulators that can be used by the low-level controller, where each
regulator returns an acceleration:

• Cruise Control (CC). Accelerates or decelerates the car to a desired speed vdesired

and then keeps that speed. The regulator function takes a relative speed vrel,t as
argument and returns an acceleration:

CC(vrel,t)

where vrel,t = vdesired − v
(c)
t

• Adaptive Cruise Control (ACC). Used for keeping a desired distance to a selected
target, for instance a leading car or a crossing. The car will accelerate or decelerate
to reach a relative distance and relative speed of 0 to the target. The regulator
takes a relative distance drange,t and relative speed vrel,t:

ACC(drange,t, vrel,t)

• Curve Speed Adaptation. Limits the speed in a curve. Given curvatures ci (de-
scribed in Section 3.3) for all future sample points ψi on the ego lane Lc, the
maximum speed for every point is calculated. The maximum longitudinal acceler-
ation for the regulator is given by limiting the vehicle’s speed in each sample point,
where alat is the maximum allowed lateral acceleration:

CSA(p
(c)
t , v

(c)
t) = min

i
ACC

(
φ

(Lc)
i − p(c)

t ,

√
alat

ci
− v(c)

t

)
where ψi ∈ Lc ∧ φ(Lc)

i > p
(c)
t

A common notation is used for constraining the vehicle acceleration according to the
three given regulators. If a car c has a leading car l, the acceleration is limited by an
ACC regulator with the leading car l as target. It also takes the curvature of the lane
into account, in order to make sure that the car does not experience too much lateral

acceleration. The constrained acceleration ā
(c)
t in time step t, is defined as

ā
(c)
t =

min
(
ã, ACC(p

(l)
t − p

(c)
t − s

(c)
2 − doffset, v

(l)
t − v

(c)
t)
)

if leading car exists

ã otherwise

(4.1)

31

ACCELERATION REGULATOR

ã = min
(
amax, CC(vmax − v(c)

t), CSA(p
(c)
t , v

(c)
t)
)

where amax denotes the maximum amount of acceleration, vmax is the maximum allowed

speed, doffset is the desired distance to the leading car, and ā
(c)
t denotes the constrained

acceleration for car c.

4.2.2 Low-Level Controller Implementation using Short Term Goals

As seen in Section 1.4.3, the low-level controller use regulators, defined in Section 4.2.1,
to adjust the acceleration for a vehicle c according to an STG. It outputs a desired accel-

eration â
(c)
t , which the car model in Section 3.4 use to update the vehicle’s acceleration

a(c). The low-level controller is defined as follows for each STG:

• Take way. Aims to keep a specified maximum speed vmax, using a CC regulator.

The desired acceleration â
(c)
t is defined by the constrained acceleration ā

(c)
t , defined

in Equation 4.1 for a car c:

â
(c)
t = ā

(c)
t

• Give way. Stops the car at the next intersection, located at ψi on the car’s lane

Lc. The desired acceleration â
(c)
t is limited by both the constrained acceleration

ā
(c)
t and an ACC regulator targeted on a stopping point in front of the intersection.

Define the distance to the stopping point as:

d
(c)
i = φ

(Lc)
i − p(c)

t − s
(c)
2 − dmargin

where dmargin is the distance from the intersection i to the desired stopping point.

The desired acceleration â
(c)
t is then given by:

â
(c)
t = min

(
ā

(c)
t , ACC(d

(c)
i ,−v(c)

t)
)

• Follow vehicle. Using an ACC regulator targeted on a target car o, to keep the same

speed v
(o)
t and a desired distance doffset to that target car. The desired acceleration

â
(c)
t is given by:

â
(c)
t = min

(
ā

(c)
t , ACC(p

(o)
t − p

(c)
t − s

(c)
2 − doffset, v

(o)
t − v

(c)
t)
)

4.3 Actions Chosen by the High-Level Controller

The high-level controller chooses one of 6 actions {α1, . . . , α6} ∈ A. As described in
Section 1.4.3, an action is defined to be an STG, used by the low-level controller to
compute the desired acceleration. The 6 actions are:

32

ACCELERATION REGULATOR

• α1: Take way STG.

• α2: Give way STG.

• α3: Follow vehicle STG, 1.

• α4: Follow vehicle STG, 2.

• α5: Follow vehicle STG, 3.

• α6: Follow vehicle STG, 4.

The four follow vehicle STG actions, α3, . . . , α6; one for each target car, are used to
improve the ego car’s timing in a crossing or a lane merge. The intended use of the follow
vehicle action is to follow the traffic flow in the target car’s lane. Each follow vehicle
action is only valid if its target car is visible to the ego agent. The low-level controller’s
output is undefined for invalid follow vehicle actions. If an invalid follow vehicle action
is chosen, the acceleration from the take way action is used instead.

4.4 Selected Features

The features used for the high-level controller’s decision making include features concern-
ing the ego car e and up to 4 target cars in the environment. These features represent
the MDP state st = (ξ1, . . . , ξp) ∈ S which Deep Q-Learning base its decisions on, de-
scribed in Section 2.2.1. As mentioned in Section 1.4.4, there are 32 target features, 8
for each target car, and 7 ego features. Motivations for the features are presented after
the features are defined.

4.4.1 Target features

Target features include all features related to a specific target car c and is repeated for
each car visible to the ego car. Because the features are used as input to a DQN, the
number of features must be fixed. The features were therefore decided to support up
to 4 target cars, as mentioned in Section 1.5, but the approach can support more by
simply expanding the number of target cars. A target car is visible to the ego car if
the two cars have a common point ψ on their respective lanes, ahead of the ego car:

φ(Le) > p
(e)
t , where φ(Le) is the longitudinal position of the common point ψ along the

ego lane Le. Thus, target cars driving on already passed lanes are not visible. This
means that a traffic scenario can have less than 4 visible target cars, which can leave
empty target features. In such cases, the empty target features are set to -1. All target
features are scaled to be a value between or close to [−1,1] by using a car’s sight range
pmax, maximum speed vmax and maximum acceleration amax.

Let ψ× ∈ Le be the intersection point between the ego lane Le and the target car’s

lane Lc, with the longitudinal position φ
(Le)
× along the ego lane. Let ψ

(Le)
◦ and ψ

(Lc)
◦ be

the overlap points for Le and Lc respectively, between the two lanes, with a longitudinal

position of φ
(Le)
◦ and φ

(Lc)
◦ respectively. The target features are listed below:

33

ACCELERATION REGULATOR

• ξ1: Target car’s position relative to ego car, using the target car’s position
along the ego lane:

p
(c,Le)
t − p(e)

t

pmax

• ξ2: Target car’s speed,
v
(c)
t

vmax

• ξ3: Ego car’s distance to the first intersection point ψ×. If Lc = Le, the
distance is set to be 0, otherwise:

φ
(Le)
× − p(e)

t

pmax

• ξ4: Ego car’s speed,
v
(e)
t

vmax

• ξ5: Ego car’s acceleration,
a
(e)
t

amax

• ξ6: Remaining joined distance of ego lane after ψ×. The distance from the

first intersection point φ
(Le)
× to the last intersection point φ

′(Le)
× for lanes Le and

Lc. For a crossing, this value is 0. The distance is calculated from ψ×, or from the
ego car, if it has passed ψ×,

min

(
φ
′(Le)
× −max(φ

(Le)
× , p

(e)
t)

pmax
, 1

)

• ξ7: Target car’s distance to overlap with ego lane. The distance between
the target car and the overlapping point between both lanes along the target car’s
lane Lc, defined as:

φ
(Lc)
◦ − p(c)

t

pmax

• ξ8: Ego car’s distance to overlap with target lane. The distance between
the ego car and the overlapping point between both lanes along the ego car’s lane
Le, defined as:

φ
(Le)
◦ − p(e)

t

pmax

The first four features ξ1, . . . , ξ4, which include speeds and positions relative to the inter-
section point for the ego car and the target car, are included to let the agent infer when
the cars will arrive at the intersection, which is essential to the problem. The ego car’s
acceleration ξ5 is needed to determine how each action will affect the acceleration, which
is essential to minimize jerk. The remaining joined distance ξ6 is used to differentiate
whether the target- and ego lane merge or not. The last two features ξ7 and ξ8 are used

34

ACCELERATION REGULATOR

to determine the distance that the ego car travels on the target lane, in combination
with ξ3, and vice versa for the target car in combination with ξ1. Figure 4.1 shows an
example of where this is important, since the distance in the turning scenario is longer
than in the straight crossing (as given by ξ7 + ξ1 − ξ3).

Figure 4.1: In a turning scenario (left), the longitudinal distance between the intersection

point ψ× and the target car’s first overlapping point ψ
(Lc)
◦ is larger than in a straight crossing

(right).

4.4.2 Ego features

The ego features include inputs that are not related to any target cars. These features
tell the ego agent what happens when a specific action is chosen. The ego features are
scaled the same way as target features.

• ξ33: Distance to next intersection. The distance between the ego car and the
intersection point for the closest intersecting lane. Let L1, L2, . . . be all lanes that
intersect with ego lane Le. Then, the distance is defined as:

min
i

(
φ

(Le)
× − p(e)

t

pmax

)
where φ

(Le)
× > p

(e)
t ∧ψ× is intersection point for (Le, Li)

• ξ34:39: Acceleration for given action. The acceleration that an action will
return if it is chosen. There is one feature for each action in A, scaled using amax.

If there are multiple lanes intersecting with the ego lane, give way STG will stop the
ego car in front of the closest intersecting lane. Feature ξ33 provides the ego agent with
the distance to that intersection. Features ξ34:39 give information about the acceleration
for each action, used for the agent to sense acceleration restrictions that originate from
curved lanes or leadning cars. It also helps to minimize jerk.

35

ACCELERATION REGULATOR

4.5 Reward Function

The reward function is defined as follows:

rt = r̂t+

1− t
tm

on success,

−2 on collision

−0.1 on timeout, i.e. t ≥ tm

−
(

j
(e)
t
jmax

)2
∆t
tm

on non-terminating updates

where r̂t =

−1 if chosen at is not valid

0 otherwise

The actions α3, . . . , α6 (follow vehicle) described in Section 4.3 should only be selected
when they are valid. To learn when these actions are valid, the agent gets punished
on invalid choices using r̂t. The reward function also punishes the agent when the jerk
is large. Accelerations returned by the low-level controller for different STGs can vary,
which increases jerk and can make the ride uncomfortable.

4.6 DQN Structures for the High-Level Controller

This section presents and motivates the neural network structures that are used by the
high-level controller. First, a simple feed-forward neural network structure is presented,
followed by a network using shared weights. Two network structures handling multi-
ple observations are presented: a DRQN and a DQN with stacked observations. For
these two networks, a sequence length l determines the number of observations used
for training. The section also explains how stochastic sequence length can be used for
DRQN.

4.6.1 Fully Connected Deep Q-Network

The simplest DQN that is used consists of three fully connected hidden layers followed
by the output layer. The selected features from Section 4.4 are fed as input ξ and the
network outputs Q-values for all actions α1, α2, . . . as a vector o. This network structure
is used to compare to other more complicated network structures. It is visualized in
Figure 4.2.

4.6.2 Shared Weights Between Cars

To make the learning process faster and to improve performance, the network structure
is modified to share some network weights. This means that the same weight parameter
are used for multiple neurons in the network. The output of the network should be

36

ACCELERATION REGULATOR

ξ h(1) h(2) h(3) o

W1 W2 W3 Wo

Figure 4.2: A simple feed forward neural network with two hidden layers. A box represents
a layer in the network. The network consists of hidden layers h(1), h(2) and h(3) denoted
on each the box. Arrows represents the feed forward data flow direction using the network
weights W1,W2, W3 and Wo which are denoted next to each arrow.

independent of the order of the target cars in the input ξ. In other words, whether a car
is fed into ξ1, . . . ,ξ8 or into ξ17, . . . ,ξ24, the network should optimally result in the same
decision, only based on the features’ values. However, since the follow vehicle actions
α3, . . . , α6 depend on the order of the target cars in st, the weights for the last layer
cannot be shared.

The network is structured such that target features of one car, for instance ξ1, . . . ,ξ8,
are used as input to a sub-network with two layers. Each target car has a copy of this
sub-network, resulting in them sharing weights (W1 and W2). The output of each sub-
network is fed as input into a third hidden layer. The different sub-networks’ outputs
are multiplied with different weights W31, . . . ,W34 in order to distinguish different cars
for different follow car actions. The ego features are also fed into layer 3 with its own

weights W
(ego)
2 . The network structure is visualized in Figure 4.3. The neurons in layer

h(3) combine the inputs by adding them together as in Equation 4.2.

h(3) = g

(
W

(ego)
2 h(ego) +

4∑
c=1

W3c h
(2,c)

)
(4.2)

where h(2,c) is the sub-network output for car c

The initial values of W31, . . . ,W34,W
(ego)
2 must be smaller than their individual fan-

in size based values, described in Section 2.1.6. The sum in Equation 4.2 can be seen
as taking the output of each sub-network and concatenate them into a larger vector,
together with the ego features. The input for layer h(3) will be the concatenated vector
with a size of 4 · ||h(2,c)||+ ||h(ego)||. This is the fan-in size nin to use for weight initializa-

tion for weights W31, . . . ,W34 and W
(ego)
2 . The sub-network’s weights will be updated

using an average of the back-propagated gradients for all target cars’ inputs.

4.6.3 Deep Recurrent Q-Network

As described in Section 4.1, the MDP model can cause issues for an autonomous driving
agent. A DRQN is used to solve this, as mentioned in Section 1.4.2. As before, the
network contains separate weights for target cars and ego features. The only difference
from the network in Figure 4.3 is that an LSTM cell is added as the last hidden layer.
The new network structure is shown in Figure 4.4.

37

ACCELERATION REGULATOR

ξ1:8 h(1,1) h(2,1)

ξ9:16 h(1,2) h(2,2)

ξ17:24 h(1,3) h(2,3)

ξ25:32 h(1,4) h(2,4)

W1 W2 W31

W1 W2 W32

W1 W2 W33

W1 W2 W34

ξ33:39 h(ego)

W
(ego)
1 W

(ego)
2

h(3) o

Wo

Figure 4.3: The network structure for the neural network with shared weights. A box
represents a layer in the network, with the hidden layer h(·) denoted on each box. Arrows
represents the feed forward data flow direction using the network weights W which are
denoted next to each arrow. The weights W1 and W2 are shared for all the different cars.
The dashed arrows represent that these weights are shared and identical.

4.6.4 Stochastic Sequence Length

As described in Section 2.2.6, a DRQN utilizes a sequence length l that determines the
number of time steps to use when training the network. Stochastic sequence length uses
a random sequence length l for each training update. With a DRQN, decisions are based
on the full history of observations used for training. When exploring, this action could be
correct for similar observations with different histories. Using stochastic sequence length,
the agent could better utilize exploration, by sometimes training on shorter histories,
while still being able to learn actions dependent on histories with longer sequences.

4.6.5 DQN with Multiple Observations

A DQN without a recurrent layer is able to take decisions based on a sequence of ob-
servations ot−l+1, . . . , ot. This is done by stacking the observations in the network’s
input state, such that st = (ot−l+1, . . . , ot) = (ξt−l+1, . . . , ξt). In contrast to a recurrent
network, the sequence length l must be constant. In both training and prediction, l
observations must be fed to the network, since the network has no internal memory.

38

ACCELERATION REGULATOR

ξ1:8 h(1,1) h(2,1)

ξ9:16 h(1,2) h(2,2)

ξ17:24 h(1,3) h(2,3)

ξ25:32 h(1,4) h(2,4)

W1 W2 W31

W1 W2 W32

W1 W2 W33

W1 W2 W34

ξ33:39 h(ego)

W
(ego)
1 W

(ego)
2

h(3)

h
(4)
t−1

h
(4)
t

h
(4)
t+1

o

Wo

Figure 4.4: The network structure for the neural network with shared weights, and a
recurrent LSTM layer before the output layer. The dashed boxes are LSTM layers for the
previous and next timestep.

The network structure is similar to the recurrent network in Figure 4.4. Layers h(1,c)

to h(3) computes an output for a single observation, resulting in a vector of size ||h(3)||.
This calculation is performed l times, once for each fed observation. The results of those
l calculations are stacked and fed into a new hidden layer h(4), replacing the recurrent
layer in DRQN. The layer combines the observations of a full sequence, with l||h(3)||
number of input connections. Thus, the parameter size of this network grows with the
number of observations. The network is presented in Figure 4.5.

39

ACCELERATION REGULATOR

h
(3)
t−l+1

. . .ξt−l+1

...

h
(3)
t−1

. . .ξt−1

h
(3)
t

. . .ξt

h
(4)
t

o

Wo

Figure 4.5: DQN stacked network structure, where l observations are used as input. Each
observation is fed into a network with the same structure as the shared weights network

(Figure 4.3), but h
(4)
t is added before the output layer, which merges all l observations. The

horizontal dots is a shorthand for the entire shared weights structure.

40

5
Result

This chapter presents the performance of the Acceleration Regulator when it is used
to comfortably drive a car, across multiple traffic crossings and with target cars with
different drivers’ behaviors, as described in Section 1.2 and 1.3. In Section 1.6, success
rate was mentioned to be used for evaluation of the Acceleration Regulator. The first
section in this chapter describes all the metrics used for evaluating the performance of
the Acceleration Regulator. The next section presents the result for a simple crossing
with one car. Thereafter, shared weights between cars is compared to a standard fully
connected feed forward network. The following section shows how well the agent is
able to generalize between different scenarios. The last section presents how well the
ego agent can recognize other agents’ behaviors, by using several observations, and thus
improve the policy. The hyper-parameters used for each scenario, as well as more details
about target cars, which are not explicitly stated next to the results, can be found in
Appendix A and Appendix B.

5.1 Evaluation Metrics

In traditional machine learning, the training progress can be evaluated by using the loss
function. With a DQN, the policy can improve even if the training loss is increasing [10].
For instance, predicting actions for unexplored states will typically increase loss, even if
progression is made. Therefore, the training loss is not necessarily an indicator of the
learning progress and several other measurements are necessary.

Three metrics were selected for measurement of a training session: success rate,
average episodic reward and collision to fail ratio. With these metrics, the distribution
between the three terminating states can be analyzed. The success graph presents the
success to fail ratio averaged over the last 100 episodes. Both collisions and timeouts
are considered as failures. Average episodic reward is the summed reward over a whole
episode, then averaged over 100 episodes. The collision to fail ratio displays the ratio

41

RESULT

between the number of collisions and unsuccessful episodes for the last 100 episodes.
From the success rate and collision to fail ratio, a final collision rate is computed, which
is the amount of episodes resulting in a collision, averaged over 100 episodes. In each
graph, there is a faded colored line that show actual sampled values, and a thick line that
acts as a trend line. The measurements from the training episodes are not completely
representative for the performance of a policy, as a result of the random actions taken
in the training algorithm. To evaluate a policy at any given time step, the agent is
simulated on evaluation episodes, which mean that the network is not learning during
evaluation, and the probability for random actions is 0. The graphs presented in this
chapter are only using evaluation episodes. Every 300 episode, the trained network is
evaluated over 300 evaluation episodes.

5.2 Single Car in Simple Crossing

In this scenario, the ego car and one target car are driving on two separate lanes in
the simple crossing scenario presented in the upper left of Figure 1.2. The target car is
assigned a take way agent. Both DQN and DRQN are tested and results are presented in
figures 5.1 respectively. Since the scenario has only one predictable agent, the difference
between a DQN and a DRQN network is negligible. The trend lines of both networks
reach a success rate of about 99.5%, thus resulting in a collision rate at around 0.1%,
after 104 training episodes.

su
cc
es
s
ra
te

� DRQN

� DQN

training episode

a
ve

ra
g
e
ep

is
o
d
ic

re
w
ar
d

� DRQN

� DQN

training episode

co
lli
si
o
n
to

fa
il
ra
ti
o

� DRQN

� DQN

training episode

Figure 5.1: Graphs presenting the performances of a DQN and a DRQN agent learned
to drive through the simple crossing scenario, with only one target car, over a total of 104

training episodes, using a single observation to make decisions. From left to right; the success
rate, total episodic reward, and collision to fail ratio. Comparing the faded line, with raw
sampled data, to the trend line shows that the variance is notably higher for collision to fail
ratio compared to success rate and average episodic reward.

5.3 Shared Weights Between Cars

When introducing multiple cars in the scenario, the success rate converged considerably
slower. Using the network structure that share weights between cars, as described in
Section 4.6.2, significantly improved how fast the network converged compared to the
fully connected DQN (Section 4.6.1). The test was performed using the simple crossing

42

RESULT

scenario with a varied number of target cars, all using a take way agent. See Table B.1 in
appendix for the complete list of scenarios. The success rate for the trend line converges
to 96% after 4 · 104 episodes for shared weights, which is better than 82% after 4 · 104

episodes for the fully connected neural network structure. The evaluation graphs for
both networks are shown in Figure 5.2. Note that the rewards are similar between both
networks, which means that there is room for improving the reward function.

su
cc
es
s
ra
te

� Shared

� Unshared

training episode

a
ve

ra
g
e
ep

is
o
d
ic

re
w
ar
d

� Shared

� Unshared

training episode

co
lli
si
o
n
to

fa
il
ra
ti
o

� Shared

� Unshared

training episode

Figure 5.2: The figure shows that the success rate for a network with shared weights
(brown line) converge faster than the fully connected network structure which do not share
weights (turquoise line).

5.4 Generalize a Policy Across Different Scenarios

An agent is tested to learn on all crossing scenarios described in Section 1.4.1, to evaluate
whether the same agent can generalize its policy across multiple scenarios. The complete
list of scenarios is given in Table B.2 in the appendix. A network starting to learn
from random weights did not perform well on these scenarios. Therefore, a network
is first trained on only the simple crossing scenario with a varied number of cars for
8 · 104 episodes. Once the network solves a simple crossing, the learning process is then
restarted, with the same network, but trained on all crossing scenarios, and with an
empty experience memory. The probability for taking random actions starts at 30%
instead of 100% since the network is not initialized with random weights. The network
converge to a success rate of about 95% after training on all crossing scenarios, for 5 ·104

episodes. The corresponding graphs for the result is presented if Figure 5.3.

su
cc
es
s
ra
te

training episode

a
ve

ra
g
e
ep

is
o
d
ic

re
w
ar
d

training episode

co
lli
si
o
n
to

fa
il
ra
ti
o

training episode

Figure 5.3: Graphs presenting the performance of a DRQN agent learned to drive through
the all scenarios with 1 to 4 target cars.

43

RESULT

5.5 Recognizing Behavior

The following sections describe how the different network structures performed when
learning different target car behaviors, while driving in the simple crossing from Figure
1.2. Specifically, the results for DQNs with one or multiple observations, and DRQNs
with different sequence lengths and observations used only for preparing the LSTM cell’s
state are shown. Table B.3 in the appendix lists the scenarios used for all tests in the
following sections.

5.5.1 Network with Recurrent Layer

There was a significant performance improvement in using a DRQN instead of a DQN
with a single observation. In other words, the environment for these scenarios is better
modeled as a POMDP instead of an MDP, as described in Section 1.4.2, and the ego
agent needs multiple observations in order to draw enough conclusions about other cars’
behaviors. The trend lines for DRQN converges towards a success rate of around 97.2%
and a 0.85% collision rate, compared to a success rate of 87.5% and a collision rate of
1.75% for DQN. The graphs for these two networks are shown in Figure 5.4.

su
cc
es
s
ra
te

� DRQN

� DQN

training episode

a
ve

ra
g
e
ep

is
o
d
ic

re
w
ar
d

� DRQN

� DQN

training episode

co
lli
si
o
n
to

fa
il
ra
ti
o

� DRQN

� DQN

training episode

Figure 5.4: Graphs presenting the performance of a DRQN (dark blue) compared to a
DQN with a single observation (turquoise), running on scenarios with cars that have different
behaviors. When compared a DRQN succeeds in 3 out of 4 attempts, where a DQN fails.

5.5.2 DRQN or DQN with Multiple Observations

According to [12], a DQN with a stacked history of observations can perform as well as a
DRQN, with an LSTM layer, in the aspect of Q-value accuracy [12]. The results support
this statement. The DRQN was compared to the network described in Section 4.6.5,
that uses a DQN with 4 stacked observations. Even though the policy’s performances are
equal, the computational complexity of a DQN with stacked observations is higher, which
makes a DRQN preferable. The lower computational complexity in LSTM is a result
of its internal memory, which lead to the network requiring only a single observation to
compute an output [12, 27]. The agents’ performances for the two networks are compared
in Figure 5.5.

44

RESULT
su
cc
es
s
ra
te

� DRQN

� DQN stacked

training episode

a
ve

ra
g
e
ep

is
o
d
ic

re
w
ar
d

� DRQN

� DQN stacked

training episode

co
lli
si
o
n
to

fa
il
ra
ti
o

� DRQN

� DQN stacked

training episode

Figure 5.5: The performances of a DRQN (blue) and a DQN with 4 stacked observations
(green) are very similar, as suggested by Hausknecht and Stone’s theory.

5.5.3 Fixed or Stochastic Sequence Length

The DRQN network was run with different combinations of sequence lengths and number
of preparing observations (as described in Section 2.2.6). Figure 5.6 shows the difference
between using a fixed sequence length l = 4, trained on the last single observation,
compared to a stochastic sequence length between 1 and 4, also trained on the last
observation. The results show that the trend lines for the success rate between these
two setups are negligible. From the trend lines, both networks converge to a success rate
of 97.2%, resulting in a collision rate of about 0.85% for stochastic sequence length and
0.95% for fixed sequence length.

su
cc
es
s
ra
te

� Stochastic l

� Fixed l = 4

training episode

a
ve

ra
g
e
ep

is
o
d
ic

re
w
ar
d

� Stochastic l

� Fixed l = 4

training episode

co
lli
si
o
n
to

fa
il
ra
ti
o

� Stochastic l

� Fixed l = 4

training episode

Figure 5.6: This is the result between DRQN using stochastic sequence length, randomized
between 1 and 4 at each training step, compared to a fixed sequence length of 4. In both
cases, only one observation was trained on.

The performance of having observations to build the LSTM’s cell state before training
was also measured. Given a sequence length of 4, where the algorithm uses observations
(o1, o2, o3, o4), the DRQN in the last paragraph trains only on o4, and o1, o2, o3 are used
to prepare the cell state. Another network was trained using a sequence length of 4,
training on all 4 observations instead of only the last one. This makes the initial LSTM
state zero in every training update. As can be seen in Figure 5.7, this network performed
worse compared to the DRQN training on only the last observation.

The results show that the best performing network for the scenarios with multiple
behaviors is a DRQN training only on the last observation. The learning algorithm used
a stochastic sequence length and got a success rate of 97.2% and collision rate of 0.85%.
Even if DQN with stacked observations achieved about the same performance, the DRQN

45

RESULT
su
cc
es
s
ra
te

� Train on last o

� No preparing o

training episode

a
ve

ra
g
e
ep

is
o
d
ic

re
w
ar
d

� Train on last o

� No preparing o

training episode

co
lli
si
o
n
to

fa
il
ra
ti
o

� Train on last o

� No preparing o

training episode

Figure 5.7: Compares a DRQN training on only the last observation (blue) to a DRQN
training on all observations (light green), i.e. without any observations preparing the LSTM
state.

approach shows other benefits, such as network complexity scaling independently of the
number of observations.

46

6
Discussion

The results show a success rate of around 97.2% for recognizing behaviors, and 95%
when driving in all four crossings. However, the ego car still collides too often. The ego
car is limited to drive comfortably, meaning that in some cases, the ego agent is not
allowed to break hard enough. In a complete system, a collision avoidance procedure,
which does not have comfortability constraints, would need to take over the control to
ensure a safe ride. However, the probability of this to happen must be much lower, which
indicates the need for further improvements to be made before deployment. Even if the
collision avoidance systems can take care of emergency situations, the policy learned by
reinforcement learning should not have knowledge of these. The policy’s goal should be
to plan a safe and comfortable trajectory, without having the option to rely on emergency
systems.

The choice of scenarios used for training the agent greatly influence the learned
policy. For example, during testing, the ego agent sometimes did not learn to accelerate
after it had stopped before a crossing. A possible explanation could be that the agent
typically timed other cars very well, and thus rarely ended up in a situation where it
had to fully stop before the crossing. It would not learn how to continue from that state,
simply because it was rare for the agent to visit that state. In order to test if this was
the case, a new configuration to the same scenario was added, where the ego car started
in this state; standing still at the crossing. This increased the distribution of such states,
and the agent successfully learned how to continue from a state where the ego car is
standing still in front of the crossing.

Since the environment in this project is built for reinforcement learning in mind, it
might be biased in its construction, and this could be a problem. Whenever a target
car reaches the end of its lane, it is immediately put at the start of its lane. This car
is considered a new car, since the old one left the observable area for the ego car, and
a new car entered the observable area at the start of the lane. This might be one such
biased artifact, and could cause unwanted artifacts to the learning algorithm, as the

47

DISCUSSION

policy might exploit that new cars always appear when old ones disappear.
Running reinforcement learning for autonomous driving in a simulator is very fast

and cost effective, compared to real traffic. However, in real traffic, where sensors are
not ideal, cars might pop up, or disappear anywhere, while our trained agent learns that
new vehicles only pop up at the start of the lane. This could possibly have been avoided
by, for instance, stochastically spawning cars or adding noise to the input in the traffic
simulator. Continuing, actual human behavior probably differ from the programmed
behaviors added to the simulator. It might even be so, that the wanted behavior of those
agents could be the policy that the ego agent is trying to learn. The difference between
the simulator and real world traffic should therefore be minimized, for deployment in
real traffic.

Reducing the action space for the high-level controller by choosing discrete actions
could be an advantage, as described in Chapter 4. Though, actions that can be performed
by the ego agent are limited by how the actions are implemented. To include more
freedom, more actions with different strengths must be added. Also, the ego agent often
learned to quickly switch between the two actions take way and give way, for keeping
a constant acceleration. This introduces jerk. A policy gradient or actor-critic method
could instead control the acceleration directly, and therefore have more control over the
vehicle.

Initially, the Acceleration Regulator consisted of a high-level only choosing between
two discrete actions, which either increased or decreased the ego car’s acceleration lin-
early, instead of using the implemented STGs. This led to high jerk. A zero-jerk action
was therefore introduced, used to maintain the current acceleration. By including this
action, however, the agent did not learn how to drive. The reason for this is unclear,
and further testing is needed to make a conclusion.

The definition of the reward function plays a large role in what agents attempt to
learn. However, the policy is typically not improved by tuning the reward function, as
it only tells what goal the agent should achieve. For example; the reward function used
in this thesis project attempts to solve the solution as fast as possible. An alternative
solution is to punish inactivity, by punishing low velocities. This reward function teaches
the agent that it is good to never stop. It will be good at timing the gaps between cars,
but when there is no gap, it would rather collide than stop in front of the crossing. If
the agent does not learn, or learns to solve the wrong problem, as in the example, then
adjusting the reward function is correct.

When learning on multiple traffic crossings (Section 5.4), a network with random
initial weights did not learn how to drive. However, when the agent was initiated with
an already learned, simpler policy, the agent could improve to actually learn the more
difficult problem. To not start from zero, but to take advantage of an already learned
policy, is a good idea. This leads to another technique called imitation learning [8],
where a policy is initiated by copying parts of another agent’s behavior before starting
the reinforcement learning loop.

48

DISCUSSION

6.1 Future Work

To be able to apply this solution in traffic, the agent must be able to control the lateral
position. There might be situations where the agent need to position the car at any side
of the lane in order to drive around other vehicles or to better take advantage of gaps.
Also, the proposed solution could be extended to work on other areas than crossings.
One such area could be to learn how to use both longitudinal and lateral control in order
to change from one lane to another.

To make reinforcement learning safer, Shalev-Shwartz et al. propose a method of
decreasing the (negative) reward r for an accident if the probability p of that accident
happening is low, such that r < −1

p [8]. The expected reward can otherwise become
insignificant on very unlikely accidents. The solution, however, introduces high variance.
Another method suggested by Lipton et al., called intrinsic fear, is to let a second neural
network learn how dangerous a state s ∈ S is. That network can be used to avoid ending
up in dangerous situations by making the agent fear them. The learning algorithm then
does not only maximize reward, it also minimizes the danger level of a state [40].

In this thesis, features used in the state were manually selected. The learning algo-
rithm used, DRQN, can also make use of lower level of observation data, such as raw
sampled data points of the road. A solution using such features could eliminate manual
feature selection. A technique applicable when using lower level features, presented in
[37], is to force the agent to learn specific selected high level features, needed to take
correct actions during training, such as known traffic rules. The agent is guided to learn
and identify this information, which can improve performance [37].

49

7
Conclusion

In this thesis, Deep Q-Learning has been implemented in the domain of autonomous
vehicle control. The goal of the ego agent is to drive through different crossings, by
adjusting longitudinal acceleration using STGs. High-level features computed from a
coordinate system are used as observations in order to achieve this. These features were
divided into target car features, fed once for each target car, and ego features, dependent
only on the ego car. Convergence of the neural network was shown to be improved by
sharing weights between the first layers to which the target car features are fed, compared
to a fully connected neural network structure.

The results also show that trained policies can generalize over different types of traffic
crossings and driver behaviors. The same learned policy is able to respond to target cars’
actions and handle traffic scenarios with a varied number of cars and different types of
crossings, without knowing traffic rules or the type of crossing it drives in. Multiple
observations are needed in order to recognize cars’ behaviors, and can be utilized by for
instance a DRQN. A DQN with stacked observations is considered to have comparable
performance, but it requires a fixed sequence length and more parameters than the
DRQN. A stochastic sequence length for DRQN was compared to a fixed sequence length.
However, results indicate similar performance between the two.

The results are still limited to the tested traffic scenarios and driver behaviors, and
expanding the domain beyond a simulator is a natural next step. The selected features
are also limited to crossings. Utilization of lower level data could extend the solution
beyond crossings without further handcrafting of additional features.

50

Bibliography

[1] NHTSA, “Distracted driving 2013,” NHTSA’s National Center for Statistics and
Analysis, 2015.

[2] M. Distner, M. Bengtsson, T. Broberg, and L. Jakobsson, “City safety—a system
addressing rear-end collisions at low speeds,” in Proc. 21st International Technical
Conference on the Enhanced Safety of Vehicles, no. 09-0371, 2009.

[3] W. Kabbaj, “What a driverless world could look like,” TED@UPS Atlanta, 2016.

[4] Google, “Google self-driving car project, on the road,” https://www.google.com/
selfdrivingcar/where/, 2016, accessed: 2016-11-25.

[5] DARPA,“Darpa urban challenge,” http://archive.darpa.mil/grandchallenge/, 2007,
accessed: 2017-06-26.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering
the game of go with deep neural networks and tree search,” Nature, vol. 529, no.
7587, pp. 484–489, 2016.

[8] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent, reinforcement
learning for autonomous driving,” CoRR, vol. abs/1610.03295, 2016.

[9] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to end learning for self-driving
cars,” arXiv preprint arXiv:1604.07316, 2016.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

51

https://www.google.com/selfdrivingcar/where/
https://www.google.com/selfdrivingcar/where/
http://archive.darpa.mil/grandchallenge/

BIBLIOGRAPHY

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” CoRR, vol.
abs/1509.02971, 2015. [Online]. Available: http://arxiv.org/abs/1509.02971

[12] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable
mdps,” arXiv preprint arXiv:1507.06527, 2015.

[13] I. D. Jacobson, L. G. Richards, and A. R. Kuhlthau, “Models of human com-
fort in vehicle environments,” HUMAN FACTORS IN TRANSPORT RESEARCH
EDITED BY DJ OBORNE, JA LEVIS, vol. 2, 1980.

[14] S. Shalev-Shwartz, N. Ben-Zrihem, A. Cohen, and A. Shashua, “Long-term planning
by short-term prediction,” arXiv preprint arXiv:1602.01580, 2016.

[15] Z. C. Lipton, J. Gao, L. Li, J. Chen, and L. Deng, “Combating reinforcement
learning’s sisyphean curse with intrinsic fear,” arXiv preprint arXiv:1611.01211,
2017.

[16] M. Wahde, Biologically inspired optimization methods: an introduction. WIT press,
2008.

[17] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” Bulletin of Mathematical Biology, vol. 5, pp. 115–133, 1943, classics of
Theoretical Biology.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[19] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural
networks, vol. 4, no. 2, pp. 251–257, 1991.

[20] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR, vol.
abs/1609.04747, 2016.

[21] M. A. Nielsen, “Neural networks and deep learning,” Determination Press, 2015.

[22] C. M. Bishop, “Pattern recognition,” Machine Learning, vol. 128, pp. 1–58, 2006.

[23] J. Sjöberg and L. Ljung, “Overtraining, regularization and searching for a minimum,
with application to neural networks,” International Journal of Control, vol. 62, no. 6,
pp. 1391–1407, 1995.

[24] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks.” in Aistats, vol. 9, 2010, pp. 249–256.

[25] P. J. Werbos, “Backpropagation through time: what it does and how to do it,”
Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

52

http://arxiv.org/abs/1509.02971
http://www.deeplearningbook.org

BIBLIOGRAPHY

[26] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully
recurrent neural networks,” Neural computation, vol. 1, no. 2, pp. 270–280, 1989.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[28] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.

[29] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting.” Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[30] S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and C. Szepesvári,
“Convergent temporal-difference learning with arbitrary smooth function approxi-
mation,” in Advances in Neural Information Processing Systems, 2009, pp. 1204–
1212.

[31] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A
survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[32] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press
Cambridge, 1998, vol. 1, no. 1.

[33] H. V. Hasselt, A. Guez, M. Hessel, and D. Silver, “Learning functions across many
orders of magnitudes,” CoRR, vol. abs/1602.07714, 2016.

[34] J. N. Tsitsiklis, B. Van Roy et al., “An analysis of temporal-difference learning with
function approximation,” IEEE transactions on automatic control, vol. 42, no. 5,
pp. 674–690, 1997.

[35] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning
and teaching,” Machine learning, vol. 8, no. 3-4, pp. 293–321, 1992.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[37] G. Lample and D. S. Chaplot, “Playing FPS games with deep reinforcement learn-
ing,” CoRR, vol. abs/1609.05521, 2016.

[38] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour et al., “Policy gradient
methods for reinforcement learning with function approximation.” in NIPS, vol. 99,
1999, pp. 1057–1063.

[39] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms.” in NIPS, vol. 13, 1999,
pp. 1008–1014.

53

BIBLIOGRAPHY

[40] Z. C. Lipton, A. Kumar, J. Gao, L. Li, and L. Deng, “Combating deep rein-
forcement learning’s sisyphean curse with reinforcement learning,” arXiv preprint
arXiv:1611.01211, 2016.

54

Appendices

55

A
Hyper parameters

This appendix states the hyper parameters used during training. The parameters pre-
sented in table A.1 are the default parameters, used for all training sessions presented
in the Result chapter, unless where other values are specified. Figure A.1 presents the
number of neurons existing in each layer of the DRQN and DQN network. Figure A.2
shows the number of neurons used in the tested fully connected network that does not
contain shared weights. When the experience memory is full, a random experience is
replaced with the new experience.

56

HYPER PARAMETERS

Name Notation Value

Exploration ε max
(

0.1, e
ln(0.5)i
2000

)
; where i is the episode counter

Discount Factor γ 0.99

Car Size s(c) [2,4]T

Max Lateral Acceleration alat 1.5

Distance to Intersection dmargin 1

Distance to Front Car doffset 6

Sight Range pmax 50

Max Speed vmax 30

Max Acceleration amax 5

Max Jerk jmax 3

Learning Rate η 10−3

Batch Size B 64

Update Interval ∆t 1000
30

Experience Memory Size N 106

Dropout Probability p 0.75

Sequence Length l l ∼ U [1,4]; l ∈ N; Randomized each update.

Build LSTM state h l − 1

Target Network Parameter τ 0.99

Table A.1: Default values used for simulation in the scenarios presented in the Result
chapter.

57

HYPER PARAMETERS

ξ1:8 32 16

ξ9:16 32 16

ξ17:24 32 16

ξ25:32 32 16

ξ33:39 16

64

32

32

32

o

Figure A.1: The number of neurons used at each layer of the network. The last layer is
the LSTM layer with 32 neurons. The same neuron count was used in all tests presented
in the Result chapter, except the fully connected network, which used an entierly different
structure, presented in Figure A.2.

58

HYPER PARAMETERS

ξ 144 80 64 o

32

32

32

Figure A.2: The number of neurons used at each layer in the fully connected network.
The last layer with 32 neurons is an LSTM layer.

59

B
Scenarios

This appendix chapter describes the scenarios that the agent is trained on. Each scenario
is presented in Figure 1.2.

All scenarios used for testing generalization over multiple crossings are listed in table
B.2. The target cars in these scenarios are assigned a take way agent. A subset of these
scenarios, are used when comparing the performance of the shared network structure to
the fully connected network structure. These scenarios is presented in table B.1. All
scenarios used for testing generalization over multiple behaviors are listed in table B.3.

Crossing Cars Description

Simple Crossing 1

Simple Crossing 1 Ego car starts still at crossing.

Simple Crossing 2

Simple Crossing 2 Ego car must stop for crossing cars.

Simple Crossing 3

Simple Crossing 3 Ego car must stop for crossing cars.

Simple Crossing 4

Simple Crossing 4 Ego car must stop for crossing cars.

Simple Crossing 4 Ego car starts still at crossing.

Table B.1: Scenarios used when comparing shared network structure to a fully connected
network structure.

60

SCENARIOS

Crossing Cars Description

Simple Crossing 1

Simple Crossing 1 Ego car starts still at crossing.

Simple Crossing 2

Simple Crossing 2 Ego car must stop for crossing cars.

Simple Crossing 3

Simple Crossing 3 Ego car must stop for crossing cars.

Simple Crossing 4

Simple Crossing 4 Ego car must stop for crossing cars.

Simple Crossing 4 Ego car starts still at crossing.

Two Separated Crossings 4 Two cars on each crossing lane.

Turn 1 One car on crossing lane.

Turn 2 One car on each crossing/merging lane.

Turn 2 Two cars on merging lane.

Turn 3 One car on crossing lane, two on merging.

Two-Lane Crossing 4 Two cars on each crossing lane.

Table B.2: Scenarios used for testing multiple types of crossings.

61

SCENARIOS

Crossing Cars Target Car Behaviours / Description

Simple Crossing 1 Take way.

Simple Crossing 1 Give way.

Simple Crossing 1 Trained to give way.

Simple Crossing 1 Take way. Ego car starts still at crossing.

Simple Crossing 2 Take way.

Simple Crossing 2 Take way. Ego car must stop for crossing cars.

Simple Crossing 2 Cautious agents.

Simple Crossing 2 Give way.

Simple Crossing 3 Take way.

Simple Crossing 3 Take way. Ego car must stop for crossing cars.

Simple Crossing 4 Take way.

Simple Crossing 4 Take way. Ego car must stop for crossing cars.

Simple Crossing 4 Take way. Ego car starts still at crossing.

Simple Crossing 4 One cautious agent, three take way.

Table B.3: Scenarios used for testing multiple behaviors. To make the problem fair, the
driving behaviors and properties such as speeds and positions of target cars are similar on
average at the start of each episode.

62

	List of Figures
	Glossary
	Acronyms
	Introduction
	Background
	Autonomous Driving in Crossings
	Approach
	Implementation Choices
	Traffic Scenarios
	Multi-Agent Traffic Environment
	Short Term Goals as Actions
	Selection of Features Used for Decision Making

	Scope
	Contributions
	Thesis Outline

	Machine Learning Background
	Artificial Neural Networks
	Artificial Neuron
	Feed Forward Networks
	Optmizing Neural Networks
	Gradient Descent
	Backpropagation
	Weight Initialization
	Recurrent Networks
	Long Short-Term Memory
	Dropout to Prevent Overfitting

	Reinforcement Learning
	Markov Decision Process
	Reinforcement Learning Framework
	Exploration and Exploitation
	Deep Q-Learning
	Deep Q-Learning Algorithm
	Experience Replay
	Fixed Target Q-Network

	Partial Observability
	Deep Recurrent Q-Network

	Traffic Simulator for Crossings
	Episode Timeframe
	Coordinate System for Lanes
	Approximating Curved Lanes
	Car Model
	Car Agents with Different Behaviours

	Acceleration Regulator
	System Design Choices
	Car Control using the Low-Level Controller
	Regulators
	Low-Level Controller Implementation using Short Term Goals

	Actions Chosen by the High-Level Controller
	Selected Features
	Target features
	Ego features

	Reward Function
	DQN Structures for the High-Level Controller
	Fully Connected Deep Q-Network
	Shared Weights Between Cars
	Deep Recurrent Q-Network
	Stochastic Sequence Length
	DQN with Multiple Observations

	Result
	Evaluation Metrics
	Single Car in Simple Crossing
	Shared Weights Between Cars
	Generalize a Policy Across Different Scenarios
	Recognizing Behavior
	Network with Recurrent Layer
	DRQN or DQN with Multiple Observations
	Fixed or Stochastic Sequence Length

	Discussion
	Future Work

	Conclusion
	Appendices
	Hyper parameters
	Scenarios

