
On Dynamic Programming Technique
Applied to a Parallel Hybrid Electric
Vehicle

Farzad Irani

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden EX049/2009

To my parents who always support me with great love.

Abstract

Lack of fossil fuel supplies as well as greenhouse gases effect on the environment, have
motivated car manufacturers to introduce new generations of cars in order to cope with
fuel consumption and emissions issues. One of the most interesting structures that is
introduced recently to the production lines belongs to hybrid electric vehicles.

A hybrid electric vehicle powertrain, generally, contains an electric energy buffer and an
electric machine as well as the conventional internal combustion engine that can work
together in several different architectures known as series, parallel and series-parallel de-
pending on how the electric machine is coupled with the internal combustion engine. This
extra degree of freedom in the powertrain has raised several different research routes on
how to optimize the power split between the electric machine and the conventional internal
combustion engine.

The present work presents a Dynamic Programming approach that solves the optimal
power split between the internal combustion engine and the electric machine in parallel
hybrid electric vehicles in an efficient way, taking minimal fuel consumption considerations
into account. The power split must be carried out in such a way that in every moment the
demanding power on the final drive is fulfilled by either the internal combustion engine
alone, the electric machine alone or both together. Another important characteristic of
hybrid electric vehicles is the possibility to regenerate breaking energy that is dissipated
in conventional vehicles, by efficiently using the electric machine in generator mode while
braking, and storing this energy into the electric buffer for further use. This is also taken
into account while designing the optimal controller in the presented work.

This optimal control problem is complicated in the sense that the future driving demands
are not known a priori to the controller and hence the decision making is impossible if we
treat the problem in a simple way. What can be done to cope with this issue is to divide
the problem into two different cases. The first and the most straightforward case is the
deterministic case in which the whole driving cycle is known to the controller beforehand,
as is considered through the whole thesis. This can be applied efficiently to vehicles that
are driven through a specific route many times and have stop-and-go driving cycles such as
commuter busses or refuse vehicles. The second case that is much more complicated and
can be applied to any vehicle is the stochastic case that contains no predefined driving cycle
and instead uses different methods to predict or to estimate the future driving demands
depending on the specific technique that is applied. This can easily be realized having the
new GPS and GIS equipments in hand, though it is not covered in the presented work.

A Dynamic Programming-based (DP-based) algorithm has been developed as the con-
trol system design and applied to the derived vehicle model based on fully deterministic
driving profiles. The employed controller shows highly satisfactory reductions in the fuel
consumption compared to a simple non-hybrid model in simulations. This algorithm has
then been used as the heart of a newly developed toolbox to be working together with QSS
Toolbox under Matlab and Simulink environments for much easier further case studies.

iii

iv

Keywords: Hybrid Electric Vehicle, Powertrain Control, Energy Management Strategy,
Dynamic Programming, Toolbox.

Acknowledgments

First of all, I would like to acknowledge all the support from my supervisor, Prof. Bo
Egardt, who has always been the inspiration to carry on the research with his encourage-
ments and never left me alone either in the very hectic days of the research or in the days
that I was completely stuck facing many different problems. Thank you for not letting
me get discouraged by always emphasizing the fact that we could handle the problems in
the given time and reducing the stress during the whole project period and thank you for
all your directions that really made the project easy to deal with. It is pretty fruitful and
fun working with you.

Thanks also to Lars Johannesson for all his useful technical consultations and advices and
the data he provided me with, Lars Börjesson who helped me a lot in solving computer
problems and Madeleine Persson who provided me with many different documents during
the project.

Special thanks to Nicolce Murgovski for all his kind guidance to solve programming prob-
lems and also for his advices during the coffee time.

I would also like to express my gratitude for the great help from Anna Gharibi in graphic
design of the cover image during her very busy time.

Last but definitely not least, I want to thank my parents who always encourage me in life
with all their support and love from the bottom of their hearts. This work could not be
done without you all.

Göteborg, August 12, 2009

Farzad Irani

v

vi

CONTENTS

1 INTRODUCTION 5

1.1 Main Contributions . 6

1.2 Outline . 6

2 NOTATION 7

3 Hybrid Electric Vehicle Basics 9

3.1 Definition and Overview . 9

3.2 HEV Architectures . 10

3.2.1 Series HEV . 10

3.2.2 Parallel HEV . 11

3.2.3 Series-parallel HEV . 12

4 Parallel HEV Powertrain and Chassis Modeling 14

4.1 Chassis model . 14

4.2 Powertrain model . 16

4.2.1 Battery module . 17

4.2.2 Engine . 18

4.2.3 Electric machine . 18

4.2.4 Constraints . 18

5 Dynamic Programming Basics 20

5.1 Principle of Optimality . 20

5.2 Optimal Control Using DP . 23

5.3 A Simple Example . 24

6 DP Approach to HEV Fuel Consumption Optimization 31

6.1 Real HEV Data . 31

6.2 Control Algorithm . 32

vii

viii CONTENTS

6.3 Simulation Results . 32

6.3.1 A Japanese Standard Driving Cycle, 10 - Mode . 33

6.3.2 An American Standard Driving Cycle, FTP - HIGHWAY 36

6.3.3 Electric Machinery Sizing . 38

7 The Designed Toolbox 41

7.1 Toolbox Hierarchy . 41

7.1.1 Main GUI . 41

7.1.2 Simulink Model . 42

7.1.3 Sub-GUIs . 43

7.1.4 DP-based Cost Matrix Calculator . 47

7.1.5 System Simulation . 48

7.1.6 Plot Results . 48

7.2 Communication and Data Sharing . 49

8 CONCLUSION AND DISCUSSION 51

APPENDIX 55

A QSS Toolbox Review 55

A.1 The quasi-static approach . 55

A.2 The elements of the QSS Toolbox . 55

A.2.1 Driving Cycle . 56

A.2.2 Vehicle . 58

A.2.3 Manual Gear Box . 59

A.2.4 Combustion Engine (based on consumption map) 60

A.2.5 Electric Motor . 61

A.2.6 Battery . 62

A.2.7 Tank . 64

A.2.8 Controller (empty template) . 64

List of Figures

3.1 Series HEV Configuration . 11

3.2 Parallel HEV Configuration . 12

3.3 Power flow in a parallel HEV . 12

3.4 Series-parallel HEV . 13

4.1 Free-body diagram of a moving vehicle . 15

4.2 Parallel HEV architecture. PE stands for Power Electronics. 16

4.3 Simplified battery circuit . 18

5.1 Optimal paths in a 3-stage optimization problem . 20

5.2 A Multistage decision process . 21

5.3 Backward solution to the multistage decision process . 22

5.4 Resulting trajectory and cost with a sparse grid of state values. The total
cost is 0.7921 . 26

5.5 Resulting trajectory and cost with a dense grid of state values. The total
cost is 0.7343 . 27

5.6 Resulting trajectory and cost with a sparse grid of admissible controls. The
total cost is 3.25 . 28

5.7 Resulting trajectory and cost with a dense grid of admissible controls. The
total cost is 1.2358 . 29

5.8 LQ approach on the same system as that in Figure (5.5). The total cost is
improved to 0.6853 as shown in Figure (5.10). 29

5.9 Resulting state trajectory for the system in Figure (5.8). 30

5.10 Optimal control signal for the system shown in Figure (5.8). 30

5.11 Cost value for the system shown in Figure (5.8). 30

6.1 Japanese Standard Driving Cycle, 10 - Mode . 33

6.2 DP - Based Controller . 33

6.3 Propulsion System Operating points with constraints 34

6.4 Torque Split among ICE, EM and Friction Brake . 34

6.5 Electric Power flowing through the electric path . 34

6.6 Battery State of Charge during the driving cycle . 35

1

2 LIST OF FIGURES

6.7 American Standard Driving Cycle, FTP - HIGHWAY 36

6.8 DP - Based Controller . 36

6.9 Propulsion System Operating points with constraints 37

6.10 Torque Split among ICE, EM and Friction Brake . 37

6.11 Electric Power flowing through the electric path . 37

6.12 Battery State of Charge during the driving cycle . 38

6.13 DP - Based Controller . 39

6.14 Torque Split among ICE, EM and Friction Brake . 39

6.15 Battery State of Charge during the driving cycle . 40

7.1 Main GUI appearance . 42

7.2 Simulink model . 43

7.3 Drive Cycle GUI . 44

7.4 Vehicle GUI . 45

7.5 Gearbox GUI . 46

7.6 ICE GUI . 46

7.7 EM GUI . 47

7.8 Battery GUI . 47

7.9 Fuel Tank GUI . 48

A.1 The top level of the QSS Library . 56

A.2 Schematic presentation of the block ”Driving Cycle” . 57

A.3 The mask for the driving cycle block . 58

A.4 Vehicle block - first level . 58

A.5 The mask for the vehicle block . 59

A.6 Top level of the block ”Manual Gear Box” . 60

A.7 The mask for the vehicle block . 60

A.8 Top level of the model ”Combustion Engine” based on consumption map . . 61

A.9 The mask for the combustion engine based on consumption map block 61

A.10 Top level of the model ”Electric Motor” . 62

A.11 The mask for the electric motor block . 62

LIST OF FIGURES 3

A.12 Top level of the model ”Battery” . 63

A.13 The mask for the block ”Battery” . 63

A.14 Top level of the model ”Tank” . 64

A.15 The mask for the block ”Tank” . 64

4

1 INTRODUCTION

Hybrid electric vehicles are recently introduced to the automotive mass market as one
of the cleanest cars ever due to fuel economy and low greenhouse gases emissions. This
fact motivates researchers as well as car companies to think seriously about different ways
to approach the problem of reducing the fuel consumption and emissions and this close
competition of finding better and better solutions has given rise to many different new
ideas, methodologies, papers and patents, so far. As the nature of the problem is to
optimize some factors in a complex system, almost all of the suggested techniques are
based on optimization techniques.

Previous works that have been done use methods such as Fuzzy Logic as in (Montazeri
et al. 2008), (Schouten et al. 2002) and (Won and Langari 2002), Dynamic Programming
as in (Sciaretta and Guzzella 2007) and many other famous methods. Of course these
methods can be and have been mixed together with different control methods such as
adaptive control, robust control, different predictive approaches, etc., to achieve a much
better performance in hybrid electric vehicles depending on different aims and structures.

The motivation behind using Dynamic Programming method in the presented work is its
ability to be applied to nonlinear as well as linear systems with or without constraints.
This ability that can hardly be found in any other method allows the control engineers to
cope with challenging nonlinearities. The method suffers from the curse of dimensionality,
making it hard to be applied to complex systems unless using appropriate approximation
techniques.

Although using dynamic programming in hybrid electric vehicle fuel consumption opti-
mization is nothing new, in this thesis a new algorithm based on Parallel Hybrid Electric
Vehicle (PHEV) architecture has been developed. In this algorithm, the computational
burden is taken into considerations and the algorithm is written in a way that imposes
as low burden as possible to the computer by designing the controller in an off-line fash-
ion, i.e., calculating the cost matrix for the backwards DP-based controller off-line and
then applying this controller to the simulated propulsion system, online. Static memory
allocation is also used in different parts to reduce the computational burden.

Further, a need to have a more sophisticated tool than just an algorithm, specialized for
carrying out this research parts as well as further investigations on Hybrid Electric Vehi-
cles, has motivated developing a toolbox working in Matlab and Simulink environments in
order to be more flexible, accurate and relaxed when carrying out different scenarios and
studies on a hybrid electric vehicle. This toolbox is mainly inspired by the QSS Toolbox
developed at ETH, Zürich but the designed controller is completely new and is added to
the model. Also, a completely new graphical user interface is designed to cover the nat-
ural roughness of a piece of programmed algorithm. Since the toolbox uses the powerful
Graphical User Interface (GUI) design tool of Matlab, it is pretty user friendly and the
user absolutely does not need to know the DP algorithm used behind the toolbox deeply;
instead, by just modifying the parameters in a totally graphical environment and pushing
a couple of buttons, one can study the effect of different parameters on the fuel economy,
as well as doing component sizing and so forth in a user friendly environment.

5

6 Chapter 1 Introduction

1.1 Main Contributions

The main contributions of the presented work are as follows:

• An optimized dynamic programming algorithm has been developed to design con-
trollers for energy management in Parallel Hybrid Electric vehicles in predefined
routes.

• A useful toolbox has been developed to employ the above mentioned algorithm in
a much easier and more flexible way for the researchers to carry out investigations
and component sizing in parallel HEVs.

1.2 Outline

The presented material can be outlined as follows:

Chapter 2 introduces the reader to some useful notations and acronyms used throughout
this thesis. Chapter 3 is dedicated to describing the basic ideas behind hybrid electric
vehicles and explains different possible architectures and their pros and cons for a hybrid
electric vehicle. Chapter 4 describes the physical modeling approaches that are used to
model a parallel HEV chassis, powertrain and batteries. Chapter 5 spends a couple of pages
on explaining the Dynamic Programming method and goes into the principle of optimality
as well as basic DP-based optimal control formulation. A simple optimal control problem
and its DP-based solution together with some simulation results are given at the end.
Chapter 6 presents the main results of applying the developed DP algorithm, modified
from the simplistic algorithm, on the real data taken from a real hybrid vehicle. Chapter
7 goes through the developed toolbox and shows the facilities available in it. Chapter 8
is dedicated to a short discussion and concluding remarks on the thesis work and some
suggestions for further work. Finally, an appended chapter exposes a short overview on
QSS Toolbox and its abilities in vehicle studies to the reader.

2 NOTATION

Acronyms

BDP backwards dynamic programming
BT battery
DP dynamic programming
EB electric buffer
EM electric machine
EMS energy management strategy
FB friction brake
FC fuel cell
GB gearbox
GUI graphical user interface
HEV hybrid electric vehicle
ICE internal combustion engine
LQ linear quadratic (control)
PPU primary propulsion unit
RB regenerative brake
SISO single input single output
SoC state of charge
ZEV zero emission vehicle

Latin

A area (m2)
a vehicle acceleration (m/s2)
F force (N)
g gravitational acceleration (m/s2)
h sampling time (sec)
i electric current (A)
J cost function (-)
k time sample (sec)
m total vehicle mass (kg)
u input or control signal
x state variable

7

8 Chapter 2 Notation

Indexed Letters

Afront vehicle front area (m2)
Cd drag coefficient (-)
Fa aerodynamic friction force (N)
Fg gravitational force in non-horizontal roads (N)
Fr rolling resistance force (N)
Ft traction force (N)
Pdem demanding power on wheels (N.m)
Pelec electric power (W)
QBT battery total capacity (Ah)
rwheel wheel radius (m)
Rc/d battery charge/discharge internal resistance (Ω)
SoCk battery state of charge at sample k, scaled in [0,1] (-)
Tdem demanding torque on wheels (W)
TEM electric machine torque (N.m)
TFB friction brake torque (N.m)
TICE engine torque (N.m)
TRB regenerative braking torque (N.m)
Voc battery open-circuit voltage (V)
ωdem demanding rotational speed on wheels (rad/s)
ωEM electric machine rotational speed (rad/s)
ωICE engine rotational speed (rad/s)

Greek

θ road angle
ρ air density (kg/m3)
ν vehicle speed (m/s)

3 Hybrid Electric Vehicle Basics

The very concept of hybrid electric vehicles dates back to 1901 when Ferdinand Porsche
at Lohner Coach Factory designed the ’Mixte’, a series hybrid vehicle based on his earlier
electric vehicle. This hybrid vehicle contained a gasoline engine combined with an electric
generator and an electric motor with a small battery for more reliability. This trend
grew until the late 60s and early 70s and then turned into an HEV much more similar
to the contemporary HEVs when Viktor Wouk installed his prototype hybrid powertrain
into the Buick Skylark provided by GM in 1972 and earned the title ’Godfather of the
Hybrid’. This turning point ignited the very fast growing progress in HEVs as we can see
nowadays and branched in many different aspects such as regenerative braking issues, fuel
consumption considerations, emission, battery wear and so on.

3.1 Definition and Overview

Conventional vehicles are propelled by only igniting fossil fuel in a combustion chamber
inside and integral to the engine and converting the ignition energy into mechanical ro-
tation and translation. Hence, it is only the expansion of high pressure and temperature
gases that applies force to the movable components. In contrast, HEVs are characterized
by using some combination of a Primary Propulsion Unit (PPU) that can be a Fuel Cell
(FC) or an Internal Combustion Engine (ICE) and an Electric Buffer (EB) that can be
either an electrochemical storage system such as a battery or an electrostatic super capac-
itor (Guzzella and Sciarretta 2007). In addition to the above mentioned components, at
least one electric motor is also necessary in any HEV to help propel the vehicle either fully
or partially. This combination of electric and fossil fuel energy, supervised with a high
level controller called Energy Management Strategy (EMS), can improve the performance
of the vehicle from a fuel consumption and emission point of view. Comparing HEVs
with conventional vehicles shows that the former is more fuel efficient due to the engine
operation optimization and the possibility of recovering the kinetic energy during braking
(Chan 2007).

The electric motor(s) play the role of optimizing the efficiency of the ICE as well as energy
recovery during braking or coasting. It can also use the excess power of the engine to charge
the battery if the power demands on the final drive is lower than the power converted by
the engine. Another role can be to assist the ICE in the cases that the ICE alone cannot
fulfill the driver’s demands.

There are basically four main advantages in hybridizing a conventional vehicle as follows:

• Engine Downsizing: When we use both an electric motor and an ICE in one single
vehicle, it is possible to size the engine for the mean instead of the peak power
demand. In such a way, the electric buffer can compensate the lack of power in high
power demand periods of driving via the electric motor. Hence, having a smaller
ICE, the vehicle can be driven more efficiently in normal driving compared to having
a large ICE.

9

10 Chapter 3 Hybrid Electric Vehicle Basics

• Regenerative Braking possibility: The energy that is dissipated in conventional ve-
hicles during braking can be regenerated and stored in the electric buffer using the
electric machine in its generator mode.

• Pure Electric Drive: Having an Electric Machine (EM) together with the ICE has
also the advantage of letting the ICE shut down during the vehicle low speeds in
such a way that the controller shuts the engine down and makes the EM propel the
vehicle at a low speed. This can also reduce both fuel consumption and emissions
to a large extent.

• Improved control of the ICE: Since in HEVs the propulsion power demand is a mix
of power from the PPU and the EB, control of the ICE operating point, i.e., engine
torque and speed, can be carried out with higher degree of freedom compared to
a conventional vehicle and depending on which type of HEV we have at hand. In
addition, having an EM in the propulsion system responding to quick changes in
propulsion power demand due to its smaller time constant compared to that of the
ICE, gives the possibility to avoid transient ICE utilization.

Although HEVs have many advantages, they have some limitations as well. The first
issue is the increased cost due to the presence of electric motor, energy storage system,
electric converters and so on. Safety issues due to existence of high voltage electricity
and electromagnetic interference due to high frequency switching circuits are also other
problems in HEVs.

3.2 HEV Architectures

As mentioned before, any hybrid electric vehicle contains at least two sources of energy.
These two sources can be coupled together in several different combinations according to
the application. The most famous configurations are called series, parallel, series-parallel
and heavy HEV (Chan 2007). The latter is though not a separate category but either a
series or a parallel hybrid that is used in heavy delivery vehicles and can run on gasoline
or diesel. The following is a brief description of each configuration.

3.2.1 Series HEV

Series powertrain architecture is used in large vehicles such as locomotives and heavy duty
trucks and not in passenger vehicles according to efficiency problems due to their compo-
nent inefficiencies (Miller 2006). In this configuration, the ICE is not directly connected
to the final transmission but via two electric machines. In such architecture, the engine
mechanical output is first converted into electric energy using an electric generator and
then this electric energy can either charge the battery when needed or bypass the buffer
and propel the vehicle via a separate electric motor or a combination of these as is shown
in Figure (3.1). Regenerative braking is also possible using the traction motor in gener-
ator mode and storing the electric energy into the buffer. So a series HEV needs three
machines: one engine, one electric generator and one electric traction motor.

3.2 HEV Architectures 11

F E

G

PB M

T

Figure 3.1. Series HEV Configuration

B: Battery
E: ICE

F: Fuel tank
G: Generator

M: Motor
P: Power converter

T: Transmission(including brakes, clutches and gears)

3.2.2 Parallel HEV

Since the model that is used in this thesis is a parallel hybrid, it is described here in more
details. In parallel hybrid electric vehicles the propulsion energy is delivered to the final
drive by the EM and the ICE in two separate parallel paths. The ICE is though the
primary propulsion unit and the EM will be considered as an assistant to the PPU. As
shown in Figure (3.2), both the ICE and EM are coupled to the final transmission via
mechanical links in parallel HEVs. Also it is worth mentioning that each energy flow path
can have a separate clutch to engage/disengage the final transmission from either the ICE
and/or the EM. Hence, six different operating modes are possible for a parallel HEV as
follows:

1. Motor assist mode: Power from both the ICE and EM are mixed together to provide
the final drive power request. This can be the case in peak power demands. See
Figure (3.3) A.

2. Regenerative breaking mode: In this mode, the braking energy can be converted into
electric energy, using the traction motor working in generator mode, and be stored
into the electric buffer via the lower path. See Figure (3.3) B.

3. Power split mode: This is the case when the ICE delivers more power than the
power demand on final drive and the electric buffer is somehow empty (better say,
its charge is close to its lower limit). So, ICE power is split in such a way that it
drives the vehicle and the excess power charges the EB at the same time. In this
mode, the electric machine works in generator mode. See Figure (3.3) C.

4. Motor alone (ZEV) mode: In this mode, the ICE is turned off and the vehicle is
fully powered by the EM. In this case, no fuel is used and hence there is no emission.

12 Chapter 3 Hybrid Electric Vehicle Basics

This situation can happen mostly in idling or low power demand driving cases. See
Figure (3.3) D.

5. ICE alone mode: In ICE alone mode, the vehicle is propelled by the ICE and the
EM is switched off via an electric circuit. See Figure (3.3) E.

6. Stationary charging mode: In this mode, the vehicle is at standstill, all machinery
are off and the vehicle is plugged into the power outlet.

F E

PB M

T

Figure 3.2. Parallel HEV Configuration

As can be seen in Figure (3.2), one single electric machine can be used in parallel HEVs,
working either as a motor or an electric generator. This results in a decrease in expenses
as well as in total vehicle mass that can prevent an excess in fuel consumption due to the
vehicle weight. Different operating modes of a parallel HEV are shown in Figure (3.3).
Note that the arrowheads show the direction of power flow in each operating mode of the
vehicle powertrain.

F E

PB M

T

F E

PB M

T

F E

PB M

T

F E

PB M

T

F E

PB M

T

(A) (B) (C)

(D) (E)

Figure 3.3. Power flow in a parallel HEV

3.2.3 Series-parallel HEV

As shown in Figure (3.4) a third configuration of HEVs can be realized by just adding
another power flow path to the parallel architecture having the features of both series and

3.2 HEV Architectures 13

F E

PB M

T
G

Figure 3.4. Series-parallel HEV

parallel HEV. In this configuration, an extra electric machine is added to the system via a
mechanical and an electrical link so that all advantages of series and parallel hybrids can
be kept together in one single vehicle. The disadvantage of series-parallel HEVs is though
their complexity and costly structure, though they are still preferred to be employed in
some special cases.

4 Parallel HEV Powertrain and Chassis Mod-
eling

In this chapter, the chassis and powertrain models that are used in this work are presented.
Chassis model is the model of a parallel HEV based on the Newton’s second law. Pow-
ertrain model is based on the demanding power on vehicle wheels and how this power is
delivered to the wheels from the prime movers. These models are then used in backwards
simulations in the sense that the driving profile is given a priori and based on this profile
and the vehicle specifications, the fuel consumption will be calculated and optimized by
the energy management strategy.

4.1 Chassis model

To derive the longitudinal dynamics of a vehicle on a road one can use the Newton’s second
law as follows:

ma = Ft − 1
2
ρν2CdAfront −mg sin(θ)− frmg cos(θ) (4.1)

where m is the vehicle total mass, a is the vehicle acceleration, Ft is the traction force
from the prime mover(s) minus the force used for accelerating the rotating parts minus all
friction losses in the powertrain, ρ is the ambient air density, ν is the vehicle speed or the
speed profile, Cd is drag coefficient, Afront is the vehicle front area, g is the gravitational
acceleration, θ is the road angle and fr is rolling resistance. Note also that no disturbance
is taken into account in this formulation. Note that in calculating the Equation (4.1), a
reversal in causality has been considered while modeling the chassis. This means that in
contrast to the real world that the speed and acceleration of a vehicle are effects of the
traction force, in this work, the road profile, vehicle speed and consequently acceleration
profile are causes of the traction force. In other words, having speed, acceleration and road
profile, the demanded force, torque and power are calculated. Another important issue to
be pointed out is using a quasi-static approach in modeling the vehicle, i.e., considering
fast dynamics to be static for simplicity reasons.

In order to be able to make a comparison between the Equation (4.1) and the Figure(4.1)
let’s name every component of the above mentioned force as the following:

• Aerodynamic friction: Fa = 1
2ρν2CdAfront

• Rolling friction: Fr = frmg cos(θ)

• Gravitational force in non-horizontal roads: Fg = mg sin(θ)

Note that in Equation (4.1) the aerodynamic friction force is calculated considering the
vehicle to be approximately a prismatic body with the front area Af . Af is an approximate

14

4.1 Chassis model 15

V
Fa

Ft

Fg

M.g
Fr

Figure 4.1. Free-body diagram of a moving vehicle

for car body effect, wheel housings effect, side mirror effect, window housings effect, engine
ventilation, antennas etc (Guzzella and Sciarretta 2007).

Another simplification is to consider the drag coefficient, Cd, as a constant regardless of the
vehicle speed. This parameter is usually estimated using CFD programs or by experiments
in wind tunnel (Guzzella and Sciarretta 2007).

The other important component of the Equation (4.1) is the rolling resistance, fr, that is
also considered to be constant for simplicity reasons. This parameter is in fact a function
of vehicle speed, tires pressure and road surface. For moderate speed variations it is a
reasonable approximation to consider fr as constant though.

Having calculated the traction force, Ft, and having the speed profile at hand, it is pretty
straightforward to calculate the speed, torque and power demand on the final drive using
the Equations (4.2) through (4.4) :

Tdem = Ft/rwheel (4.2)

in which rwheel is the average wheel radius.

ωdem = ν/rwheel (4.3)

Pdem = Tdemωdem (4.4)

with efficiency of the final drive to be equal to 1.

The power demand on the final drive can be either positive or negative depending on the
driving conditions. A positive power demand on the final drive means a power request
from prime mover(s) and a negative one means an extra power that can be regenerated
and saved in an EB as described in Chapter 3. The lower limitation on Pdemand due to
avoid locking the wheels is not taken into account in this work.

16 Chapter 4 Parallel HEV Powertrain and Chassis Modeling

4.2 Powertrain model

The powertrain model that is used in the presented work is as mentioned before the
model of a parallel hybrid electric vehicle as shown in Figure (4.2). As can be seen,
the architecture is in such a way that having the clutch engaged, there will be the same
speed on both ICE and EM. With this architecture as we saw in Section 3.2.2 there are
six different possible operating modes. These six operating modes are taken into account
when modeling the powertrain.

ICE EM

BT

PE PE

GB

TICE

ICE

Clutch

EM

T

Dem

DemTEM

Figure 4.2. Parallel HEV architecture. PE stands for Power Electronics.

The aim of the powertrain is to deliver the demanded power, Pdemand, to the wheels via
its two paths, i.e., the engine path and the electric machine path, to absorb the excess
energy from the internal combustion engine and save it in the electric buffer and finally
to convert the extra braking energy via the electric machine working in generator mode
to electric energy and save it into the battery.

The mechanical power is transferred from/to the final drive via a 5-stepped gearbox and
a differential gear and the gearbox efficiency is considered to be the same for all different
gears. There is only one clutch in the powertrain that is located between ICE and EM.
As can be seen in Fig (4.2), there are two separate electric paths between the electric
machine and the electric buffer (battery in this case), that are not modelled here and
are simplified to have only switching behavior to switch according to the electric machine
operating region.

The signals Tdem and ωdem are inputs to the controller coming from powertrain and TICE ,
ωICE , TEM and ωEM are outputs from the controller to the powertrain. Note that ac-
cording to the proposed powertrain architecture, ωICE and ωEM are equal as long as the
clutch is engaged. The engine efficiency is given by linear interpolation in a static engine
efficiency map and the fuel mass rate, c(ωICE , TICE), will be determined having the engine
efficiency, engine speed and engine torque at every sample using the interpolation in a fuel
mass rate map. There is no limitation on gear shifts and the gear changes are calculated
off-line by the controller taking into account a known drive cycle and road profile. Tdem is
defined to be positive when power is delivered to the final drive and negative when power
can be absorbed from the final drive. Taking all these conventions into account and using
Equations (4.5) through (4.7) the torque split problem can be handled:

4.2 Powertrain model 17

ωEM = rgωdem (4.5)

TICE − TEM =
ηgTdem

rg
, Tdem ≤ 0 (4.6)

TICE − TEM =
Tdem

ηgrg
, Tdem > 0 (4.7)

where ηg and rg represent the gearbox mechanical efficiency and gear ratio at the selected
gear, respectively. Note that TEM is defined as negative in generator mode.

4.2.1 Battery module

The battery module is modelled simply with a resistive circuit and the open circuit
voltage,Voc , is dependent on the SoC of the battery at every moment. The battery
resistance, Rc/d, depends on if the battery is in charge or discharge mode and is calculated
at every sample from linear interpolation in a static charge/discharge vector. Hence, the
next state of charge of the battery in every sample can be determined given the electric
machine torque, the electric machine speed, the battery total capacity, and the current
state of charge as shown in Equation (4.8) :

SoCk+1 = SoCk +
hi(TEM , ωEM)

QBT
(4.8)

where h is the time step (sampling time in seconds in this case), i is the battery current
that can be either positive or negative, and QBT is the battery total physical capacity.
All signals are considered to be stationary during the period h. Figure (4.3) shows the
simplified model of the battery.

Battery current can also be calculated at every sample using Equation (4.9) and linear
interpolation in the battery open circuit voltage vector as well as battery charge/discharge
resistance vectors based on the current state of charge of the battery.

i =
Voc(SoC)

2Rc/d
+

√
V 2

oc(SoC)
2Rc/d

+
Pelec(SoC)

Rc/d
(4.9)

in which Pelec represents the electric consumption/generation of the electric machine at
every sample. In fact, Pelec is a function of ωICE , TICE and the SoC of the battery.

18 Chapter 4 Parallel HEV Powertrain and Chassis Modeling

V (SoC)
OC

R (SoC)
C

R (SoC)
D

I

V
BT

+

-

Figure 4.3. Simplified battery circuit

4.2.2 Engine

The internal combustion engine model that is utilized in this work is primarily a simpli-
fied model of Atkinson 43 kW ICE (Johannesson 2006), though it can be replaced with
any other engine as long as the constraints be taken into consideration in the dynamic
programming algorithm. The simplification is done in such a way that the fuel mass rate
is considered to be only a function of engine speed and torque and can be calculated at
each sample by linear interpolation in a static fuel mass rate map. The engine efficiency
is also considered when interpolating in the fuel mass rate map. The maximum torque
that the engine can deliver to the engine flywheel is considered to be dependent only on
the engine speed and this can be calculated from linear interpolation in a one dimensional
map. Below a certain speed, i.e, the idling speed the engine is considered to be in idling
mode and a small value of fuel consumption is taken into account.

4.2.3 Electric machine

The electric machine can work in either motor or generator regions depending on the
direction of the torque on its shaft. The model that is used here is a simplified model
of a 20 kW machine with its efficiency considered to be dependent only on the electric
machine torque and speed. This can be calculated again with a quasi-static approach in
terms of linear interpolation in an efficiency map of the electric machine that is used in
Toyota Prius I. The maximum and minimum torque that can be delivered to/regenerated
from the electric machine is also simplified to be solely dependent on the electric machine
speed and not on the cooling conditions and temperature of the EM (Krause et al. 2002).
The electric machine model can also be replaced with any other model as long as the
constraints be taken into consideration in the dynamic programming algorithm.

4.2.4 Constraints

There are also a couple of constraints that should be taken care of while dealing with the
powertrain model as follows:

4.2 Powertrain model 19

• The battery power is limited according to the battery type as is shown in (4.10a).

• The SoC is limited according to (4.10b). Note that this is a physical limitation on
the battery showing ”Empty” and ”Fully Charged” states for the battery.

• The internal combustion engine power is limited according to (4.10c).

• The internal combustion engine torque and the electric machine torque are also
constrained according to (4.10d) and (4.10e), respectively.

pBT ∈ [pBT,min, pBT,max], (4.10a)
SoC ∈ [0, 1], (4.10b)

pICE ≤ pICE,max, (4.10c)
TICE(ωICE) ≤ TICE,max(ωICE), (4.10d)

TEM (ωICE) ∈ [TEM,min(ωICE), TEM,max(ωICE)], (4.10e)

5 Dynamic Programming Basics

A very powerful method for input shaping and trajectory optimization of the systems that
can be broken into several stages is dynamic programming developed by Richard Bellman
(Luus 2000). The very essence of this technique is based on the principle of optimality.
Generally speaking, having a dynamical process and the corresponding performance func-
tion, there are two ways to approach the optimal solution to this problem; one is the
Pontryagin maximum principle and the other is Bellman’s dynamic programming (Naidu
and Naidu 2002). The latter is the focus of this chapter and has the advantage of being
applicable to both linear and nonlinear systems as well as constrained and unconstrained
problems. Having such powerful benefits, it also suffers from an important disadvantage
called curse of dimensionality. This means that if the dimension of the problem grows,
in sense of the number of states, e.g., the computational burden of this method grows
drastically in such a way that it might even not be implementable on today’s computers.
This limitation keeps dynamic programming away from complicated systems and only
applicable to some simple optimal control problems.

5.1 Principle of Optimality

The principle of optimality can be stated as follows:

An optimal control strategy has the property that at any state along the optimal path, the
remaining path must be optimal with respect to that state, regardless how it was reached.

Many systems in the world are in the form of individual stages or can be broken into some
sub-systems that each one can be considered as a single or multi-stage system. This quality
can give rise to the idea of using the principle of optimality to optimize such problems by
breaking a complex system into a number of sub-systems and solve the optimal control
problem for each sub-system individually while still getting to the global optimal solution,
if there is any. Note that the existence of an optimal solution is not of any concern in
this thesis and is just taken for granted here. Since optimal control problems involving
optimization over a trajectory, as that of a hybrid vehicle fuel consumption optimization,
can be broken into a sequence of time stages, it turned out that dynamic programming
can be a good solution to these family of problems.

To illustrate this, consider a simple 3-stage optimization problem as shown in Figure (5.1).

J
AC

J
CB

A

BC

Figure 5.1. Optimal paths in a 3-stage optimization problem

If the optimal path to go from A to B passes through C with the partial costs JAC and

20

5.1 Principle of Optimality 21

JCB and with the total optimal cost of (5.1), then the optimal cost to go from C to B will
be JCB.

JAB = JAC + JCB (5.1)

In other words, having the optimal cost to go from C to B one can find the optimal cost
to go from A to B by just adding the cost to go from A to C to the optimal cost to go
from C to B and this can easily be expanded to larger problems with many stages.

As can be seen in Figure (5.1), the whole problem can be broken into two sub-problems
and having the optimal cost to go from A to C on the entire route AB, we can conclude
that JCB is the optimal cost of the remaining segment CB. In other words, if one can find
the optimal solution for each sub-system, it will be possible to find the optimal solution
to the whole complex system having all sub-optimal solutions at hand.

There are basically two ways to approach these types of problems called Backward so-
lution and Forward solution depending on which starting point we choose to start our
calculations from. In this thesis, the backward approach is applied to the hybrid vehicle
fuel consumption optimization problem and hence it will be illustrated here.

Let’s take a look at a larger example. Consider a more complex system that can be
broken into several stages as shown in Figure (5.2) (Naidu and Naidu 2002). This can
be for example the different paths to go from Washington to Texas for an aircraft and
the costs can be the fuel consumption for each single flight between any two states. The
optimization problem will then be to find the best route to go from WA to TX considering
the lowest possible fuel consumption. Note that to go from WA to TX only movements to
the right are allowed. The backward approach to solve the optimization problem works
as follows:

NM

TX

OK

WY

ID

OR

AZ

UT

WA

2

5 3

3

2

3 6

2

4

4

4

5

Figure 5.2. A Multistage decision process

Consider WA as system’s first stage and TX as the last stage. Now if we start from TX,

22 Chapter 5 Dynamic Programming Basics

go backwards and check different paths’ costs until we reach WA and find the optimal
path to go backwards from TX to WA, we actually find the total optimal solution using
backward method.

We have 5 stages here from k = 0 to k = kf = 4. The backward dynamic programming
solution is shown in Figure (5.3). In this figure, the numbers on each connecting path
show the cost involved to go from each state to the other one via the corresponding route.

NM

TX

OK

WY

ID

OR

AZ

UT

WA

2

5 3

3

2

3 6

2

4

4

4

5

(3)

(0)

(2)

(5)

(9)

(7)

(11)

(9)

(6)

Figure 5.3. Backward solution to the multistage decision process

Stage 5: k = kf = 4

The starting point; no cost involved (Total cost to go from TX to TX will be 0 as is written
under TX).

Stage 4: k = 3

At this stage, there are two states to fly from; NM and OK and to go from either of these
states to TX, there is only one route to choose from, i.e., NM,TX or OK,TX. Since there
is no other option both routes will be considered as partially optimal for now. This is
shown with bold lines between NM and TX and also between OK and TX. The resulting
cost to go from NM will be 2+0 while that of starting from OK will be 3+0. These costs
are also written under the corresponding states in Figure (5.3).

5.2 Optimal Control Using DP 23

Stage 3: k = 2

At stage 3, we have the possibilities to fly from AZ, UT and WY to TX through NM and
OK. Let’s explore each possibility individually. Consider AZ first; the only possible route is
AZ,NM,TX and the cost will be 4+2=6. So again this route is bolded and the only possible
cost is written under AZ. From UT we have two different options; one going through NM
and the other passing through OK. The former costs 2+3=5 and the latter costs 3+5=8.
Hence the optimal route will be UT,NM,TX with the cost equal to 5 that is written under
UT. From WY though we have only one option of going through WY,OK,TX with the
cost equal to 6+3=9. Hence the corresponding route is bolded and the involved cost is
written under WY.

Stage 2: k = 1

With the same procedure as described above, the optimal cost to go from OR to TX will
be 9 through the route OR,UT,NM,TX and from ID to TX will be 7 through the route
ID,UT,NM,TX.

Stage 1: k = 0

Here from WA there will be two options with the same total cost 11. Hence, we conclude
that both paths WA,OR,UT,NM,TX and WA,ID,UT,NM,TX are optimal paths with the
same total cost 11. Such problems are categorized under the so called ”Shortest Path
Problems” (Bertsekas 2000).

5.2 Optimal Control Using DP

Consider a system described by the following discrete time model:

x(k + 1) = f(x(k), u(k)) (5.2)

where k is the discrete time index, x is the state vector, u is the input vector and f is a
function (generally, a nonlinear function) of both the state and input vectors.

The objective is then to find an optimal controller to generate the best control sequence
{u(k)}, using the principle of optimality, that minimizes the following cost function:

J0(x(0)) = J = S(x(kf), kf) +
kf−1∑

k=0

V (x(k), u(k)) (5.3)

in which J represents the cost function value that has to be minimized, the first term is the
cost function over the final state and the second term is the sum of cost to go from every
stage to the next stage as a function of the current state and control. So we have to find
the optimal control sequence {u∗(k)} which is applied to the system described by (5.2)
and minimizes the cost function (5.3) over the optimal trajectory x∗(k). Assume that we
have evaluated the optimal control, state and cost for all values starting from k + 1 to kf

, at any time or stage k; then using the principle of optimality we can write (Naidu and
Naidu 2002):

24 Chapter 5 Dynamic Programming Basics

J∗k (x(k)) = minu(k)[V [x(k), u(k)] + J∗k+1(x
∗(k + 1))] (5.4)

This is called functional equation of dynamic programming and means that if one had
found the optimal control, state and cost from any stage k + 1 to the final stage kf , then
one can find the optimal values for any stage k to the end stage kf .

Note that for a continuous time system we must first convert the system into a discrete time
system using some sampling method and then apply the dynamic programming technique
into the equivalent discrete time model of the system.

Note also that another disadvantage of dynamic programming method pops up when it
comes to nonlinear systems. In such cases, the interpolation between grid points sometimes
does not exactly reach a grid point in the next stage. This is called menace of the expanding
grid (Luus 2000).

5.3 A Simple Example

As the starting point, consider the discrete time model of a dynamic system described as
follows:

x(k + 1) = −ax(k) + u(k); a ∈ {−1,−0.5} (5.5)

For the sake of simplicity, the number of discrete states is considered to be one and the
system is considered to be SISO. Note that one system is marginally stable due to having
the state matrix equal to -1 and the other one is asymptotically stable. The cost function
to be minimized is in the following form:

J =
1
2
x2(kf) +

1
2

kf−1∑

k=0

(x2(k) + u2(k)) (5.6)

where kf is the final time for the DP algorithm, the first term is the cost function over
the final state and the second term is the total cost to go through the rest of the states
via the control sequence.

The example is based on the following assumptions:

• Admissible state values are considered to be in the interval [-1,2]. The DP algorithm
is tested on two different numbers of admissible states, one in a sparse grid (5 different
values) and the other in a dense grid (1001 linearly spaced discrete state values).
The resulting total cost turned to be almost the same and raised the idea that a
rather sparse grid of states can work perfectly and there is no need of too many
state values that can cause computational burdens. See Figures (5.4) and (5.5)
for comparisons. Note that this is done on an asymptotically stable version of the
system with the state matrix equal to -0.5 to get rid of the oscillations. It will be
discussed in the next figures.

5.3 A Simple Example 25

• Admissible control sequence is considered to be picked from the interval [-1,1]. To
make a comparison, a sparse set of admissible controls is chosen (containing 5 dif-
ferent values) and resulting trajectories and cost value are compared with those of a
much denser set of admissible controls (1001 linearly spaced values). The result was
that a sparse set of admissible controls can cause oscillations in the state value due
to the fact that the control signal reaches zero before settling the state value to the
final value (zero in this case) and since the system is inherently marginally stable, it
starts oscillating around the final value in the absence of control signal. See Figures
(5.6) and (6.4) for comparisons.

The controller’s algorithm is written in such a way that the least number of calculations
take place inside the dynamic programming iterations to lighten the computational burden
of the whole task and those calculations are done outside the iteration loop (Johannesson
and Egardt 2008). Matrix power is also employed as much as possible to avoid unnec-
essary time consuming loops. Static memory allocation is another important fact that
is considered in order to use the memory as efficiently as possible. Finally a comparison
between this DP approach and an LQ controller is carried out that resulted in having
a better performance in applying LQ regulator to this problem. Even manipulating the
density of the state values grid or that of the admissible controls cannot result in a better
performance than the LQ controller. Making the grid denser will naturally increase the
computational burden and does not necessarily give lower costs. See Figures (5.8) through
(5.11).

Figure (5.4) shows the simulation results for the asymptotically stable system described
in Equation (5.5) with state matrix equal -0.5, a sparse grid of possible state values and
a sparse grid of possible controls with an initial state equal to 1.1. As can be seen, the
cost to go function has an extremum at state equal to 0. Note that in the down right part
of the Figure (5.4), admissible state value 1 represents -1 in the admissible state values
[-1,2]. Hence, 1 through 5 in this figure represent state values -1.0 0.0 0.5 1.0 2.0 as defined
in the algorithm. The total cost is 0.7921.

Figure (5.5) is the result of simulating the same system as the one in the previous example
but with a very dense grid of state values. This grid is defined to have 1001 values linearly
spaced between -1 and 2 to see how this can affect the total cost to go. As can be seen the
total cost to go does not differ much from that of the previous example. In fact a sparse
grid of state values can work as well as a dense grid and with much less computation.

In Figure (5.6), the simulation is done on the marginally stable version of the system
described in Equation (5.5). A sparse grid of possible state values as well as a sparse grid
of possible control values is chosen and the same initial state as all other simulations is
applied. As can be seen, the state trajectory falls into oscillations since basically having
a marginally stable system with a very limited number of admissible control values, the
control signal reaches zero and gets stuck there (to keep the cost low) before the state
reaches zero. Now let see how a dense admissible control can improve this.

As can be seen in Figure (5.7), adding more admissible control values solves the problem.
This is the simulation result of the same system as the one in the previous example but
having a dense admissible control of 1001 values linearly spaced between -1 and 1.

26 Chapter 5 Dynamic Programming Basics

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Optimal State Trajectory

time sample (k)

S
ta

te
 V

a
lu

e
 X

*(
k)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Optimal Cost for each state at each sample

time sample (k)

J*
(k

)
(o

p
tim

a
l c

o
st

 t
o

 g
o

 f
ro

m
 X

(k
)

to
 X

(k
+

1
))

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5
Optimal Control Sequence

time (t)

O
p

tim
a

l C
o

n
tr

o
l E

ff
o

rt
 u

*(
t)

0

20

40

0

2

4

6
0

1

2

3

Time (k)

Grid points cost to go to the final state

Admissible States

C
o

st
 t

o
 g

o

Figure 5.4. Resulting trajectory and cost with a sparse grid of state values. The total
cost is 0.7921

5.3 A Simple Example 27

Figure 5.5. Resulting trajectory and cost with a dense grid of state values. The total
cost is 0.7343

28 Chapter 5 Dynamic Programming Basics

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Optimal State Trajectory

time sample (k)

S
ta

te
 V

al
ue

 X
*(

k)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Optimal Cost for each state at each sample

time sample (k)

J*
(k

)
(o

pt
im

al
 c

os
t t

o
go

 fr
om

 X
(k

)
to

 X
(k

+
1)

)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Optimal Control Sequence

time (t)

O
pt

im
al

 C
on

tr
ol

 E
ffo

rt
 u

*(
t)

0

20

40

0

5
0

1

2

3

4

Time (k)

Grid points cost to go to the final state

Admissible States

C
os

t t
o

go

Figure 5.6. Resulting trajectory and cost with a sparse grid of admissible controls.
The total cost is 3.25

5.3 A Simple Example 29

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5
Optimal State Trajectory

time sample (k)

S
ta

te
 V

a
lu

e
 X

*(
k)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Optimal Cost for each state at each sample

time sample (k)

J*
(k

)
(o

p
tim

a
l c

o
st

 t
o

 g
o

 f
ro

m
 X

(k
)

to
 X

(k
+

1
))

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Optimal Control Sequence

time (t)

O
p

tim
a

l C
o

n
tr

o
l E

ff
o

rt
 u

*(
t)

0

20

40

0
2

4
6
0

1

2

3

4

Time (k)

Grid points cost to go to the final state

Admissible States

C
o

st
 t

o
 g

o

Figure 5.7. Resulting trajectory and cost with a dense grid of admissible controls.
The total cost is 1.2358

Figure 5.8. LQ approach on the same system as that in Figure (5.5). The total cost
is improved to 0.6853 as shown in Figure (5.10).

30 Chapter 5 Dynamic Programming Basics

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Optimal State Trajectory

time (s)

O
pt

im
al

 X
(k

)

Figure 5.9. Resulting state trajectory for the system in Figure (5.8).

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Optimal Control Trajectory

time (s)

O
pt

im
al

 U
(k

)

Figure 5.10. Optimal control signal for the system shown in Figure (5.8).

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X: 29
Y: 0.6853

Cost Value

time (s)

O
pt

im
al

 C
os

t V
al

ue
 J

(k
)

Figure 5.11. Cost value for the system shown in Figure (5.8).

6 DP Approach to HEV Fuel Consumption
Optimization

In this chapter, the reader will get acquainted with the method used in the presented thesis
to optimize the fuel consumption in a parallel hybrid electric vehicle based on Dynamic
Programming.

Inspired by the very simple model from Section 5.3 and having the real data from Toyota
Prius I, the deterministic case is considered where the whole drive cycle is known to the
controller beforehand. Such cases as mentioned before are applicable to vehicles that
travel in predetermined routes many times and have stop-and-go characteristics. In such
vehicles, there are not drastic differences among different travels and hence a predefined
drive cycle can work acceptably.

6.1 Real HEV Data

Having studied all these chapters, it is time to apply the developed Dynamic Programming
algorithm to a much more real case to see the effect of different limitations and constraints
in a real hybrid electric vehicle, of course limited in such a way that it fits the scope of
the presented work. To do so, engine, electric machine, battery and vehicle data are taken
from real machines.

As our experiment, let’s consider the following information as the given data for these
machines to see how the algorithm performs. The data are given in the following tables.

Vehicle Data
Mass (kg) 1500
Wheel Inertia 0
Wheel Base (m) 2.55
Vehicle Front Area (m2) 1.746
Wheel Radius (m) 0.2870
Air Density (kg/m3) 1.2
Rolling Resistance (-) 0.009
Drive (-) 4WD

EM Data
Nominal Power (kW) 20
Max. Torque (N.m) 55
Max. Speed (rpm) 5500

ICE Data
Nominal Power (kW) 43
Max. Torque (N.m) 101.97
Max. Speed (rpm) 4000

31

32 Chapter 6 DP Approach to HEV Fuel Consumption Optimization

Battery Data
Max. Continuous Current (A) 125
Max. Transient Current (A) 250
Capacity (Ah) 7.5
Number of cells in series 125
Number of cells in parallel 1

As can be seen, this is a fairly light vehicle that can be categorized under the passenger
vehicles family.

6.2 Control Algorithm

In order to treat the problem of optimal DP-based controller design and applying it to the
system model, the following considerations are taken into account. It is considered at the
following simulations that the engine works with gasoline and the whole pre-assumptions
about a hybrid electric vehicle, such as regenerative braking option, power assist mode,
zero emission mode, etc., as explained in Chapter 3 are taken into considerations. The
driving cycle is taken from standard driving cycles and the initial charge of the battery
is considered to be 50% of the total charge. Note that the time vector in the following
figures is given as the sample instead of time, though since the sampling time is 1 second
in all the simulations, the time axis in samples corresponds exactly to the time axis in
seconds. The battery is allowed to work only in a region of 15% of the whole battery
capacity placed symmetrically around the 50% of the battery capacity for battery wear
considerations (Johannesson 2006). Another issue to be pointed out is that the 15% stripe
in the middle of the battery capacity is quantized into 16 different linearly spaced values
between the SoC boundaries.

Since the route and the speed profile are known a priori, the controller is designed in such a
way that the algorithm starts from the end of the driving cycle and having torque demand,
speed demand, engine and the electric machine torque and speed limitations it is pretty
straightforward to find a set of different possible gears that can handle the demands. In
this phase, based on the engine fuel consumption map the optimal gear number for every
sample can be found. Now having all these data at hand together with the constraints
over the battery current and state of charge, it will be possible to look for the best mix
of EM and ICE torque that can deliver the driver demands to the final drive. Finally, for
the selected torque and speed, some cost will be calculated and assigned to each specific
sample based on the fuel consumption at that sample. In such a way, going once from
the end of the driving cycle to the starting point in an off-line fashion gives a map as the
designed controller to the computer to be used as a reference (look-up table), in the online
application. Hence, applying this controller to the simulated system will be nothing but
a look-up table to check the best solution for this optimal control problem.

6.3 Simulation Results

In this section the results of applying the developed control algorithm on the real vehicle
data with two different standard driving cycles are presented. The first driving cycle is

6.3 Simulation Results 33

picked from Japanese standard cycles and the second one is one from American standard
cycles.

6.3.1 A Japanese Standard Driving Cycle, 10 - Mode

Given the data and algorithm presented above, it is desirable to test the designed controller
with a standard driving cycle. Here as the first example, a Japanese cycle is chosen from
QSS Toolbox.

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12
Vehicle Speed Profile

Time (k)

S
pe

ed
 (

m
/s

)

Figure 6.1. Japanese Standard Driving Cycle, 10 - Mode

0

50

100

150

0

5

10

15

20
0

200

400

600

800

Time (k)

Grid points cost to go to the final state

Admissible States

C
os

t t
o

go

Figure 6.2. DP - Based Controller

34 Chapter 6 DP Approach to HEV Fuel Consumption Optimization

0 1000 2000 3000 4000 5000 6000
−80

−60

−40

−20

0

20

40

60

80

100
Propulsion System Operating Points

speed (rpm)

T
or

qu
e

(N
.m

)

Operating Point
EM Max. Torque
EM Min. Torque
ICE Max. Torque

Figure 6.3. Propulsion System Operating points with constraints

0 20 40 60 80 100 120 140
0

50

100
Internal Combustion Engine Torque

Time(k)

T
or

qu
e(

N
.m

)

0 20 40 60 80 100 120 140
−100

0

100
Electric Machine Torque

Time(k)

T
or

qu
e(

N
.m

)

0 20 40 60 80 100 120 140
−100

−50

0
Friction Brake Torque

Time(k)

T
or

qu
e(

N
.m

)

Figure 6.4. Torque Split among ICE, EM and Friction Brake

0 20 40 60 80 100 120 140
−6000

−4000

−2000

0

2000

4000

6000

8000
Electric Power Consumption/Generation

Time(k)

P
(W

at
ts

)

Figure 6.5. Electric Power flowing through the electric path

As can be seen in Figure (6.1), the driving cycle to be driven is a fairly smooth one

6.3 Simulation Results 35

0 20 40 60 80 100 120 140
0.488

0.49

0.492

0.494

0.496

0.498

0.5

0.502

0.504
Optimal State Trajectory

time sample (k)

S
ta

te
 V

al
ue

 X
*(

k)

Figure 6.6. Battery State of Charge during the driving cycle

containing acceleration, deceleration, constant speed and standstill phases. This is chosen
for the sake of readers to be able to follow the cycle easily. Since it is desirable to have
the same SoC value at the end of a driving cycle as that of the starting point (charge
sustainability), i.e., 50% at the simulations presented here, the controller is designed with
a high penalty over the deviations of the SoC value from the desired final value. This
can be seen in Figure (6.2) where the controller map has a very deep parabolic shape.
The rest of the controller map also has the same characteristics but with a much lower
penalty over the deviations from the SoC middle value. However, the state of charge is
never allowed to cross the hard constraints and go beyond them and will be kept within
the boundaries. Please note that the controller algorithm is written in such a way that
the state equal to 1 according to Figure (6.2) corresponds to the lower bound of the SoC
and the state equal to 16 in the same figure corresponds to the upper bound of the SoC,
i.e., SoC = 43% and SoC = 58%, respectively.

Figure (6.3) shows the power distribution in the propulsion system together with the
torque limitations in the ICE and the EM. The interpretation from this figure is that
the selected torque has never hit the constraints. Note that there are two points in the
figure that are located under the EM minimum torque. These points correspond to the
FB torque that are not limited to these constraints. The total power has also never hit
any constraint (the maximum power delivery according to the Figure (6.3) is 14.425 kW).

Figure (6.4) shows the torque split among the two prime movers as well as the friction
brake, based on the designed DP-based controller. The considerable percentage of Regen-
erative Braking (RB) over Friction Braking (FB) can be seen easily. There is only some
short time at the end of the driving cycle that the FB has been seriously used and that
is because of both the hard penalty over the battery final state which must be kept at
50 percent and the steep deceleration at the end of the driving cycle. The electric power
flow is also shown in Figure (6.5) especially to show the peak values of the electric power
during the cycle.

Finally, Figure (6.6) shows the most important value in the whole system, that is the SoC
of the battery. As can be seen, it is well located in the allowed boundaries; it starts from
0.5 and ends in 0.5 (remember the SoC quantization between [0,1]). The charge/discharge

36 Chapter 6 DP Approach to HEV Fuel Consumption Optimization

phases are shown clearly and can be compared with the electric power flow, torque split
and speed profile plots.

6.3.2 An American Standard Driving Cycle, FTP - HIGHWAY

Let’s take a look at another standard driving cycle. This time an American cycle (FTP-
HIGHWAY) is picked from the QSS toolbox cycles. As can be seen, all the above general
conclusions can be made based on these simulation results as well. One major difference
is for example the charge/discharge behavior of the battery, which has a major charging
phase at the beginning of the driving as can be seen in Figure (6.12), that totally depends
on the speed profile characteristics, or better say, on the driving demands. The rest of the
conclusions hold in these simulations as well.

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30
Vehicle Speed Profile

Time (k)

S
pe

ed
 (

m
/s

)

Figure 6.7. American Standard Driving Cycle, FTP - HIGHWAY

0
200

400
600

800

0

5

10

15

20
0

200

400

600

800

Time (k)

Grid points cost to go to the final state

Admissible States

C
os

t t
o

go

Figure 6.8. DP - Based Controller

6.3 Simulation Results 37

0 1000 2000 3000 4000 5000 6000
−150

−100

−50

0

50

100
Propulsion System Operating Points

speed (rpm)

T
or

qu
e

(N
.m

)

Operating Point
EM Max. Torque
EM Min. Torque
ICE Max. Torque

Figure 6.9. Propulsion System Operating points with constraints

0 100 200 300 400 500 600 700 800
0

100

200
Internal Combustion Engine Torque

Time(k)

T
or

qu
e(

N
.m

)

0 100 200 300 400 500 600 700 800
−100

0

100
Electric Machine Torque

Time(k)

T
or

qu
e(

N
.m

)

0 100 200 300 400 500 600 700 800
−200

−100

0
Friction Brake Torque

Time(k)

T
or

qu
e(

N
.m

)

Figure 6.10. Torque Split among ICE, EM and Friction Brake

0 100 200 300 400 500 600 700 800
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4 Electric Power Consumption/Generation

Time(k)

P
(W

at
ts

)

Figure 6.11. Electric Power flowing through the electric path

38 Chapter 6 DP Approach to HEV Fuel Consumption Optimization

0 100 200 300 400 500 600 700 800
0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0.525
State of Charge of the Battery Module scaled in [0,1] interval

Time (sec)

S
oC

Figure 6.12. Battery State of Charge during the driving cycle

6.3.3 Electric Machinery Sizing

As an example to see how the developed algorithm together with the toolbox power can
help a researcher investigate the effect of different parameters and components, let’s in-
vestigate the effect of electric machine downsizing. Basically, the electric machine weight
(and cost as a direct result) are of quite importance in any hybrid electric vehicle design.
Hence, having a tool to ease these investigations is crucial. Here, utilizing the toolbox
power, the effect of using a considerably smaller electric machine in the same vehicle as
we had in the previous sections is illustrated. Since a smaller electric machine is used, the
first thing that comes into mind is to downsize the battery pack as well because battery
is another expensive part of any hybrid vehicle. Therefore, the battery total capacity is
decreased as summarized in the following table. Note that ”EXP1” corresponds to the
experiment in section 6.3.2 in which the American standard driving cycle FTP-HIGHWAY
was applied to the vehicle with the previously explained parameters. ”EXP2” on the other
hand, is the new experiment on the same vehicle and with the same driving cycle but with
a smaller EM and BT pack as pointed out in the following table.

Parameter EXP1 EXP2
Driving cycle FTP - HIGHWAY FTP - HIGHWAY
EM scaling factor (-) 1 0.5
Battery capacity (Ah) 7.5 3.75
of battery cells in series (-) 125 125
of battery cells in parallel (-) 1 1

As can be seen, the new electric machine in EXP2 is half the one in the previous experiment
and so the battery pack is. Now let see how these two together with the same ICE perform.

The new DP-based controller (cost matrix) in Figure (6.13) seems almost the same as that
of the previous experiment shown in Figure (6.8) with slightly different parts especially at
the final 200 samples. Based on the new controller, the total torque demand is requested
from ICE, EM and FB as shown in Figure (6.14). As can be seen, the torque distribution

6.3 Simulation Results 39

is different from that of EXP1 shown in Figure (6.10). The reason is first having a
smaller EM that obviously can provide lower torque and power and also having lower
battery energy.

Looking at the state of charge trajectory Figure (6.15), one can easily see that in EXP2
having lower battery capacity is resulted in having the battery work mostly below the 50%
while in EXP1 the battery mostly works above the 50%. It is also important to mention
that this issue affects the fuel consumption as well, since it affects the ICE torque directly.
In fact the experiment shows 0.53% increase in fuel consumption that is the cost of having
smaller electric parts.

0
200

400
600

800

0

5

10

15

20
0

200

400

600

800

Time (sec)

Cost Matrix vs. the number of SoC values vs. simulation time

SoC value

C
os

t t
o

go

Figure 6.13. DP - Based Controller

0 100 200 300 400 500 600 700 800
0

50

100
Engine Torque vs. time

Time (sec)

To
rq

ue
 (N

.m
)

0 100 200 300 400 500 600 700 800
−50

0

50
Electric Machine Torque vs. time

Time (sec)

To
rq

ue
 (N

.m
)

0 100 200 300 400 500 600 700 800
−200

−100

0
Friction Braking Torque vs. time

Time (sec)

To
rq

ue
 (N

.m
)

Figure 6.14. Torque Split among ICE, EM and Friction Brake

40 Chapter 6 DP Approach to HEV Fuel Consumption Optimization

0 100 200 300 400 500 600 700 800
0.44

0.46

0.48

0.5

0.52

0.54

0.56
State of Charge of the Battery Module scaled in [0,1] interval

Time (sec)

S
oC

Figure 6.15. Battery State of Charge during the driving cycle

7 The Designed Toolbox

Having a fully functional algorithm as a piece of code, it feels more natural to develop it
in such a way that it can be used by future researchers in their investigations on hybrid
electric vehicle fuel consumption optimization. This fact inspired the idea to design and
develop a toolbox that uses the DP algorithm as its beating heart in order to both apply
the DP algorithm and let the users work with it in a much easier way. This is done by
utilizing the GUI design power of Matlab together with handy tools of Simulink and QSS
Toolbox. Although this toolbox is designed in such a way that it works with this specific
architecture that is used throughout this thesis work, i.e., this parallel HEV, it can be
modified to be used with any other architecture or even with a library of different existing
architectures provided that the programmer has enough insight of how this toolbox is
written, organized and working. This chapter goes through the developed toolbox and its
abilities in hybrid electric vehicle studies.

7.1 Toolbox Hierarchy

The toolbox appearance contains a main GIU and this main graphical user interface
consists of some sub-GUIs, each one responsible for some pre-specified task(s). The toolbox
alone contains 68 different files in 5 folders and together with the QSS toolbox with 82
files will deal with around 150 different files. The total number of Matlab code lines
for the toolbox alone is something around 3400 lines. Having so much information and
the fact that the toolbox has to deal with Matlab, Simulink and QSS almost at the same
time makes having an accurate communication among different workspaces and data types
vital. This will be explained further.

In order to be able to give the reader a clear understanding of how the toolbox works,
let’s have a closer look at each part of the toolbox separately.

7.1.1 Main GUI

The first and somehow the most important part of the toolbox is its main GUI. This major
user interface pops up upon user request via Matlab command line as:

>> MainGUI

or by simply double-clicking on its corresponding icon in the toolbox folder. As any other
command in Matlab, this one is also case sensitive and in case of misspelling the user may
get Matlab warnings or even errors in different cases. The Main GUI is actually a palette
containing four separate sub-palettes as can be seen in Figure (7.1).

41

42 Chapter 7 TheDesignedToolbox

Figure 7.1. Main GUI appearance

These four separate sub-palettes are as follows:

1. System Specification

2. Backwards DP-based Cost Matrix Calculation

3. System Simulation

4. Plot Results

Each one of these palettes will be described in the following sections. The main role of the
Main GUI is to gather all the so called sub-GUIs as well as their push buttons, edit boxes
and so on together in a single unit and this makes accessing all features of the toolbox
much easier for the user.

In the Main GUI, four separate steps are illustrated to be done one after the other as
shown in Figure (7.1). The order should be followed as described in order to make a
complete simulation from system specification to results plots. However, starting from a
step other than step 1 right after running the toolbox is also possible in cases that the
previous steps are done beforehand in previous runs, since basically the structure of the
toolbox allows data saving and reload from previous simulation runs. This mechanism
will be described later.

7.1.2 Simulink Model

Together with the Main GUI, the system model as a Simulink .mdl file is also loaded
automatically. This is the model of the previously described parallel HEV together with
the DP-based controller as a Matlab function added to the system as can be seen in Figure
(7.2).

7.1 Toolbox Hierarchy 43

Figure 7.2. Simulink model

This model contains QSS blocks representing different parts of the HEV model including
drive cycle generator, vehicle model, gearbox model, engine model, electric machine model,
battery model and fuel tank model. There is also another block added as the control unit
that is basically a Matlab function working as the DP-based control generator. Other
blocks are commonly used sources and sinks borrowed from Simulink to make a more
systematic model.

This model can actually be run by the user command from the main GUI after calculating
the backwards DP-based optimal cost matrix. Having this simulation run, some data will
be available in separate .mat files as can be seen in Figure (7.2) for further use in the
toolbox. All masked parameters as well as simulation results can also be viewed via the
Simulink model scopes.

7.1.3 Sub-GUIs

In the main GUI and on the ”System Specification” palette, there are seven different push
buttons corresponding to different blocks in the Simulink model discussed in the previous
section. Each one of these push buttons opens a sub-GUI as it is clicked on by the user.
Each sub-GUI is responsible for gathering the main data from the user and make them
available to the DP algorithm, the Simulink model and any other part of the toolbox that
is going to use those data. These push buttons are responsible for gathering data for
different parts of the model as following:

• Drive Cycle Data

• Vehicle Data

• Gearbox Data

44 Chapter 7 TheDesignedToolbox

• ICE Data

• EM Data

• Battery Data

• Fuel Tank Data

Drive Cycle Data sub-GUI

This sub-GUI allows the user to choose a standard drive cycle among 17 available cycles in
the toolbox, as well as to define the step size for the whole toolbox and simulation model
and also has the option to stop or not to stop the simulation after the end of the driving
cycle. These options are provided using a popup menu, an edit box and a check box as is
shown in Figure (7.3).

Figure 7.3. Drive Cycle GUI

Note that the default value for the step size is 1 sec and must not be changed unless the
user is fully familiar with the QSS TB and the toolbox program.

After entering all the data, pushing ”Save” button saves the selected data as structure in
a .mat file and also assigns those parameters in the corresponding Simulink block (Drive
Cycle block in this case). This strategy goes for all other six push buttons/sub-GUIs.

Vehicle Data sub-GUI

This sub-GUI is responsible for gathering the vehicle data via its six edit boxes as shown
in Figure (7.4). These data are vehicle mass, rotating mass, vehicle cross section area,
wheel diameter, drag coefficient and rolling friction coefficient. Again, having entered all
these data, pushing ”Save” button saves the data as structure in their corresponding .mat
file to be accessible to other parts of the toolbox as well as the Simulink model.

7.1 Toolbox Hierarchy 45

Figure 7.4. Vehicle GUI

Gearbox sub-GUI

The Gearbox sub-GUI gathers the gearbox data through its nine edit boxes. These data
are gear ratios, gearbox efficiency (equal for all gears), idling losses and minimum wheel
speed beyond which losses are generated as shown in Figure (7.5). It goes without saying
that pushing ”Save” button works as in other sub-GUIs.

One big difference here is that in the Simulink model two separate gearbox models are
used because of QSS restrictions. The data given in the Gearbox sub-GUI is hence applied
to both gearbox models in the same way (as they are practically one single gearbox).

It must also be mentioned that the gear ratios are calculated based on the driving cycles
demand and standards. Hence, manipulating the gear ratios especially for the highest and
the lowest gears must be done carefully, otherwise this may even stop the whole toolbox
from working.

ICE sub-GUI

This graphical user interface lets the user choose the engine type if it is Otto or Diesel
as well as set the engine parameters such as engine displacement, engine scaling factor,
engine inertia, engine idling speed, engine idling power, power required by the auxiliary
equipments and fuel cutoff features via its edit boxes, popup menu and check box as is
shown in Figure (7.6). These data are partly used in the DP algorithm and fully in the
Simulink model. The fuel cutoff option makes it possible to have a more realistic model
of the system by cutting off the fuel injection to the engine in low torque demands. For
further information refer to (Guzzella and Sciarretta 2007)

EM sub-GUI

The electric machine data user interface is simply gathering the data for the electric
machine model as scaling factor, motor inertia and power required from the auxiliaries.

46 Chapter 7 TheDesignedToolbox

Figure 7.5. Gearbox GUI

Figure 7.6. ICE GUI

EM GUI is shown in Figure (7.7). The scaling factor allows using smaller or larger electric
machines in sense of power consumption/generation.

Battery sub-GUI

Battery GUI is a simple interface for gathering the battery data from the user. These data
are the battery capacity, battery initial charge, number of battery cells in series, number
of battery cells in parallel and battery current limit. The battery initial state of charge
is chosen to be 50 % due to the application in this thesis work though it can be changed
easily via its user interface. You can see the interface in Figure (7.8). The battery model

7.1 Toolbox Hierarchy 47

Figure 7.7. EM GUI

is basically inspired by that of the QSS toolbox but modified to a large extent to match
the control algorithm used in this work. In fact, the battery model is a much simpler one
compared to that of the QSS toolbox.

Figure 7.8. Battery GUI

Fuel Tank sub-GUI

Last but not least is the graphical user interface for the fuel tank. This GUI allows the user
to pick the fuel type from a list of three different fuels, i.e., gasoline, diesel or hydrogen
from a popup menu. It is also possible to choose if cold start losses are taken into account
or not via a check box. Obviously, considering cold start losses will increase the total
average fuel consumption in long run. The fuel tank GUI is shown in Figure (7.9).

7.1.4 DP-based Cost Matrix Calculator

The second palette in the main GUI belongs to the very heart of the toolbox, the dynamic
programming algorithm. As can be seen in Figure (7.1), the number of SoC quantized
values is available to the user to choose from the main GUI. This parameter is described in
Chapter 6. Pushing the ”Calculate Optimal Cost Matrix” loads the whole data required

48 Chapter 7 TheDesignedToolbox

Figure 7.9. Fuel Tank GUI

by the DP algorithm to this push button’s workspace, initializes all Simulink blocks by
running their initialization files from QSS TB, models the chassis and powertrain and loads
their data from their structures into its local workspace, finds the optimal gear shift map
taking minimum fuel consumption into account and finally calculates the optimal cost
matrix using Backwards Dynamic Programming (BDP) algorithm and saves the resulting
data into a separate .mat file as well as sharing them with Matlab base workspace for
further use. More details on communication and data sharing will be given later.

7.1.5 System Simulation

The third step in using the toolbox is simulating the system using the DP-based optimal
cost matrix calculated in step 2. This is done using the push button in the third palette
coined ”Simulate” as can be seen in Figure (7.1). Pushing this button simply runs the
Simulink model to apply the designed controller to the system model and to run it through
the driving cycle. A parameter ’time’ is also defined for some calculation purposes that
must be set to zero before and after each run for synchronization reasons between the
toolbox and the Simulink model. This is also done automatically upon ”Simulate” button
press.

7.1.6 Plot Results

The last step in every run is to look at the simulation results for analysis reasons. This
has been realized in the fourth palette of the main GUI. This palette as shown in Figure
(7.1) contains a series of push buttons together with their corresponding radio buttons.
Each push button is responsible for loading their own data from .mat files into their own
local work spaces and making them available to the user as output figures. These figures
can be plots, meshes, sub-plots, etc., as shown in Figure (7.1). The radio buttons are just
responsible for turning the grid option on/off for every figure. These push buttons in the
”Plot Results” palette function respectively as follows:

• Vehicle speed profile plot

7.2 Communication and Data Sharing 49

• Vehicle acceleration profile plot

• Torque demand on wheels plot

• Backwards DB-based optimal cost matrix mesh

• ICE/EM/FB Torque plots

• ICE/EM rotational speed

• FB vs RB torque plots

• ICE/EM power plots

• Selected gear scattered as a function of speed and torque blend of the ICE and EM
just before entering Gearbox

• Battery SoC plot

7.2 Communication and Data Sharing

Working with a rather large program and having many different variables, functions, sub-
functions, work spaces, etc., especially when it comes to matching two or more different
programs together, like the problem we have at hand, make it vital to decide on choosing
a reliable strategy to share all these data among different parts of those programs and to
communicate among them. Here in our case, we have as mentioned before, a toolbox work-
ing in Matlab environment together with Simulink and QSS toolbox. The toolbox alone
has around 180 functions and subfunctions that many of them have their own work spaces,
i.e., their local variables will not be accessible to the other work spaces and functions. QSS
TB has also its own functions, variables and work spaces.

One solution that may come to mind is to declare local and global variables in such a way
that shared variables can be accessible among all corresponding work spaces. Although
this is a feasible solution, it takes a lot of time separating different variables and thinking
of which variable is going to be used by which workspace. The risk of altering the data
due to wrong declaration and overwriting on existing data is also very high in this way.
This is specially dangerous since the toolbox works with the QSS library and if this library
gets corrupted then everything loaded from that will not be correct and standard data
and hence the whole simulation will be jeopardized, if it works at all!

The remedy that is chosen in this work is to use files to save some specific data and
then to load them wherever they are needed. This solution together with local/global
declarations, when necessary but as few as possible, are applied to the toolbox to let the
different work spaces access the shared data. These data are saved in .mat files in either
arrays or structures depending on the data type. Whenever there are some data related
to a single machine, like electric machine data e.g., those data are saved as structures.
Hence, accessing any data at any time will be plausible for any function by using Matlab
load/save commands. This is also done inside the toolbox code and therefore the user will
not need to deal with or even think of data sharing issues and can have a seat and think
of the main problem that he/she is dealing with.

Basically, the data in this toolbox are saved in three different ways:

50 Chapter 7 TheDesignedToolbox

• Right upon push button press

• During the program run

• Simulink sinks ”To File”

The first and the second ways are basically the same, but in the first case, the objective
of pressing a push button is specifically to save the data and this will be run right away
after releasing the push button, like what is done in ”Save” buttons. In the second case,
instead, the objective is to carry out some other task but in the meanwhile, there are some
data that need to be saved in .mat files. This can be found in ”Calculate Optimal Cost
Matrix” button for example. In either cases, Matlab ”save” is used to save the data in
the appropriate location. Note that all these files will be saved to/loaded from the current
Matlab directory. So, setting the current directory to ”. . .My Toolbox\System Settings”
is a necessity. The third case is using Simulink sinks called ”To File”. This option allows
the data to be saved in a .mat file as an array of two rows. The first row will be time
vector and the second row will contain the actual data.

Those data that are needed to be loaded as default values into the toolbox upon first time
runs of the toolbox are loaded from the previously saved data. This is done automatically
using Matlab ”load” command whenever applicable.

There is also an m-file called ”startup.m” that declares the rest of the global variables for
the whole complex of programs. This file must be either run before running the toolbox
or be added to Matlab ”autorun” part to be run by default whenever Matlab is launched.

8 CONCLUSION AND DISCUSSION

The problem to optimize the fuel consumption in a hybrid electric vehicle subject to engine
constraints, electric machine constraints and battery constraints and with pre-defined
driving profiles is treated formally. This is based on developing a dynamic programming
based algorithm to be applied to the vehicle and powertrain model.

To do so, some studies have been done on hybrid electric vehicles in general and more
specifically on parallel HEVs. Based on these studies, mathematical models for chassis
and powertrain have been derived and used for simulation and control design purposes.
Another subject to be studied was Dynamic Programming method which was the under-
lying methodology to approach this problem. This has been done as well as some more
sophisticated methods known as Approximate Dynamic Programming techniques that can
be utilized in similar but much more complex problems in order to reduce the so called
curse of dimensionality, though these methods have never been used in the developed
algorithm.

Finally, the control algorithm has been applied to the hybrid electric vehicle model and
many different simulations have been carried out on the model. The simulations show sat-
isfactory results in fuel consumption of the vehicle model. Then, a toolbox working under
Matlab and Simulink environments together with the QSS Toolbox has been developed to
employ the algorithm in a more flexible environment with a graphical user interface for
the sake of the user to be able to manipulate the parameters and data more easily and to
carry out further investigations on the subject.

All the investigations ended in the conclusion that the developed algorithm can satisfac-
torily be applied to deterministic optimization cases such as that of the commuter buses
or refuse trucks that have almost the same stop-and-go driving profile all the time.

As future work, one natural step to be taken is to extend the problem to a more complicated
stochastic one or one with higher number of state variables and to employ appropriate
approximation techniques to overcome the hardships of the curse of dimensionality. Fur-
ther, some investigations on sensitivity and robustness of the controller can also be carried
out.

51

52 Chapter 8 Conclusion and discussion

Bibliography

Bertsekas, Dimitri P. (2000). Dynamic Programming and Optimal Control. Athena Scien-
tific. 2nd edn. Athena Scientific. Belmont, MA., USA.

Chan, C. C. (2007). The state of the art of electric, hybrid, and fuel cell vehicles. Proceed-
ings of the IEEE, 95(4), 704–718.

Guzzella, L. and Amstutz, A. (2005). The QSS Toolbox Manual. IMRT - ETH. ML K 32.3,
Sonneggstrasse 3, 8092 Zürich, Switzerland.

Guzzella, L. and Sciarretta, A. (2007). Vehicle Propulsion Systems, Introduction to Mod-
eling and Optimization. Springer. 2nd edn. ETH. Zürich.

Johannesson, L. (2006). On Energy Management Strategies for Hybrid Electric Vehicles.
PhD thesis. Chalmers University of Technology. SE-412 96 Göteborg, Sweden.

Johannesson, L. and Egardt, B. (2008). Approximate dynamic programming applied to
parallel hybrid powertrains. Proceedings of the 17th IFAC World Congress.

Krause, Paul C., Wasynczuk, Oleg and Sudhoff, Scott D. (2002). Analysis of Electric
Machinery and Drive Systems. IEEE Press. 2nd edn. Wiley. USA.

Luus, R. (2000). Iterative dynamic programming, electronic resource. 1st edn. Chapman
and Hall/CRC. USA.

Miller, John M. (2006). Propulsion Systems for Hybrid Vehicles. 1st edn. IET. UK.

Montazeri, M., Ahmadi, A. and Asadi, M. (2008). Driving condition recognition for
genetic-fuzzy hev control. 3rd international workshop on genetic and evolving sys-
tems.

Naidu, Subbaram and Naidu, D. S. (2002). Optimal Control Systems. 1st edn. CRC Press.
USA.

Schouten, N. J., Salman, M. A. and Kheir, N. A. (2002). Fuzzy logic control for parallel
hybrid vehicle. IEEE transactions on control systems technology, 10(3), 460–468.

Sciaretta, A. and Guzzella, L. (2007). Control of hybrid electric vehicles. IEEE Control
Systems Magazine, 27(2), 60–70.

Won, J. S. and Langari, R. (2002). Fuzzy torque distribution control for a parallel hybrid
vehicle. The international of knowledge engineering and neural networks, 19(1), 4–10.

53

54 BIBLIOGRAPHY

Appendix A

QSS Toolbox Review

app:QSSTB

In this appended chapter, a short introduction to QSS Toolbox, developed and written in
the Measurement and Control Laboratory of Swiss Federal Institute of Technology, Zürich
(ETH) is presented. Although the aim is not to make a QSS expert out of the reader, it
gives the readers a glimpse of what is going on inside the QSS Toolbox and gives them
the clue for further use of the toolbox. It mostly covers the general scheme of the QSS
toolbox and the components that are used in the presented work. It is based on the second
version of the Quasi-Static Simulation Toolbox which provides the user with a fast and
simple estimation of the fuel consumption for various powertrain and architectures. Since
this toolbox is working together with the toolbox which is designed in this thesis work,
this approach is followed in that toolbox as well.

A.1 The quasi-static approach

As mentioned before, the method that the QSS Toolbox is based on is the quasi-static
approach. The idea behind the quasi-static approach is to reverse the cause and effect
direction in a physical model. In a vehicle moving procedure for example, traditionally the
cause is the force applied from the prime movers and the effect is the vehicle speed, but
in the QSS Toolbox, this is completely reversed; cause is the speed given at any time and
the effects are mean speed, acceleration and driving force (Guzzella and Amstutz 2005).

A.2 The elements of the QSS Toolbox

As shown in Figure (A.1), different elements available in the QSS Toolbox are grouped
together according to their functions.

55

56 Appendix A

Figure A.1. The top level of the QSS Library

Under each block there are different elements belonging to that specific group of elements
that can be reached by double clicking on each main block. Among all these elements
located under these blocks, those are used in this thesis work will be explained here.
These elements are as the following:

• Driving Cycle

• Vehicle

• Manual Gear Box

• Combustion Engine (based on consumption map)

• Electric Machine

• Battery

• Tank

• Controller (empty template)

These elements are described in more details in the following subsections.

A.2.1 Driving Cycle

In the driving cycle tool of the QSS toolbox, there are a bunch of different standard test
cycles are available to the user. These driving cycles are picked from famous European,
American and Japanese test cycles.

Each cycle is defined by at least two vectors (Guzzella and Amstutz 2005):

1. A time vector

2. A vehicle speed vector vf (k.h)

Based on the given speed profile as mentioned before, the acceleration is calculated with
the following equation:

A.2 The elements of the QSS Toolbox 57

af (k.h) =
vf (k.h + h)− vf (k.h)

h
, k = 1, ...kmax − 1, af (kmax) = 0, (A.1)

The gear shift points are also defined in EU cycles in a separate vector but this does not
go for FTP cycles, though these predefined gear shift points are never used in this thesis
work and as mentioned before, the gear selection routine is a part of control design.

Hence, there will be generally 4 vectors available as outputs of the driving cycle block.
These outputs are as the following:

1. Tz.mat : Time vector

2. Vz.mat : Speed vector

3. Gz.mat : Gear shift vector

4. Dz.mat : Acceleration vector

There is also the possibility to define your own driving cycles easily and add them to the
toolbox library. To see a schematic diagram of the driving cycle generator see Fig. (A.2).

Speed

4

x_tot

3

i

2

dv

1

v

i

v

dv

x_tot

t

0

Time

V_z x_tot

Integration

V_z D_z

Differentiation

Demux[T_z, V_z, D_z , G_z]

Cycle data

Clock

Gear ratio

Figure A.2. Schematic presentation of the block ”Driving Cycle”

This system is masked and only 3 parameters are available to the used to choose the
driving cycle, the step size and if automatic simulation stop at the end of each driving
cycle is allowed or not. See the mask in Figure (A.3). Note that the data shown as
the masks parameters throughout this appendix are not necessarily the ones used in the
simulations in previous chapters.

58 Appendix A

Figure A.3. The mask for the driving cycle block

A.2.2 Vehicle

The vehicle block actually converts the driving cycle speed and acceleration, or better say,
the vehicle speed and acceleration into those of the wheels. This is done by utilizing all
the forces included in Equation (4.1). The underlying system behind the vehicle block
and the mask used in QSS Toolbox are shown in Figures (A.4) and (A.5), respectively.

3

T_wheel

2

dw_wheel

1

w_wheel

r_wheel

Wheel radius

Total resistances

P_aero

P_iner

P_wheel

T_wheel

P_roll

w_wheel

m_f*g*mu

Rolling resistance

d_v F_iner

Inertia

1/r_wheel

1/r_wheelv v_a

Average speed

v F_aero

Aerodynamic resistance

2

dv

1

v

Figure A.4. Vehicle block - first level

A.2 The elements of the QSS Toolbox 59

Figure A.5. The mask for the vehicle block

It must be noted that the vehicle inertia reflects the mass of the vehicle without wheels
plus the wheel inertia data (parameter ”Rotating mass” in the mask), as follows:

mf + 4.θwheel/r2
wheel (A.2)

Notice also that any additional inertia such as engine, flywheel, etc., are included in their
own blocks.

A.2.3 Manual Gear Box

The top schematic diagram of Manual Gear Box is shown in Figure (A.6). It is possible
to define fixed gear ratios (5 stepped gear in our case) in this block and to shift among
them. The block ”Power Flow” allows the power to be flown bidirectionally, i.e., from/to
the wheels and this fact allows the simulation to flow the energy in both directions. In
our case, this can be very useful when dealing with one single electric machine to work in
motor or generator modes and be connected to only one single gearbox.

60 Appendix A

3

T_MGB

2

dw_MGB

1

w_MGB

P_MGB

w_MGB

T_MGB

w_wheel

T_wheel

gear

T_MGB

Power flow

Mux

Mux

MATLAB

Function

Manual Gear Box

i_diff

i_5

i_4

i_3

i_2

i_1

inf

4

i

3

T_wheel

2

dw_wheel

1

w_wheel

Figure A.6. Top level of the block ”Manual Gear Box”

The masked parameters for manual gear box block are shown in Figure (A.7).

Figure A.7. The mask for the vehicle block

A.2.4 Combustion Engine (based on consumption map)

The combustion engine model is located under ”Energy converter” block in the QSS
Toolbox. This engine model is based on a static fuel consumption map, i.e., the engine
power is calculated from a look-up table consisting of the fuel consumption of the engine
based on given torque and speed at every sample. There are also some constraints on
engine speed and torque as well that can be seen in Figure (A.8) as a block named

A.2 The elements of the QSS Toolbox 61

”Detect overload and over speed”. The mask parameters for the combustion engine are
also shown in Figure (A.9).

1

P_CE

Total torque

Total power

P_CE

w_CE

T_CE

Lower limit

(speed at idle)

Lower limit

(fuel cutoff)

H_u

Fuel lower

heating valuetheta_CE

Engine inertia

Engine consumption map

V = f(w, T)

[kg/s]

w_CE

T_CE

Detect overload

and overspeed

P_CE_fuel

w_CE

T_CE

P_CE

Detect idle

P_CE_fuel

T_CE

P_CE

Detect fuel cutoff

P_aux

3

T_gear

2

dw_gear

1

w_gear

Figure A.8. Top level of the model ”Combustion Engine” based on consumption map

Figure A.9. The mask for the combustion engine based on consumption map block

A.2.5 Electric Motor

The electric motor is also a component under energy converter block in the QSS Toolbox.
The model is similar to that of the ICE, i.e., the inputs consist of the demanded torque
and rotational speed and the output will be the electric motor that is calculated based
on the inputs and an efficiency map. The electric machine can work in either of its two

62 Appendix A

quadrants, i.e., motor/generator mode. Top level model of the electric machine is shown
in Figure (A.10). As can be seen in this figure, there are constraints on the speed and
torque of the electric machine modelled in the block ”Detect overload and over speed”.
The mask parameters can also be found in Figure (A.11).

Total power

1

P_EM

Total torque

P_EM

T_EM

w_EM

theta_EM Efficiency

eta = f(w, T)

w_EM

T_EM

Detect overload

and overspeed

P_aux

3

T_gear

2

dw_gear

1

w_gear

Figure A.10. Top level of the model ”Electric Motor”

Figure A.11. The mask for the electric motor block

A.2.6 Battery

Battery model is given under the ”Energy Buffer” block. This is a dynamic model as
shown in Figure (A.12) containing an integrator to makes the battery charge calculations

A.2 The elements of the QSS Toolbox 63

possible. The electric power flows into the battery (negative when loading and positive
during discharge) plays the role of input to the battery and the battery actual charge as
well as the battery voltage are outputs of the battery block as also shown in the schematic
diagram of the battery in Figure (A.12).

2

V_BT

1

Q_BT

P_BT

Q_BT

I_BT

U_BT

q_BT1/Q_BT_0

U_BT_0/3.6e1

h

Q_BT_IC

Q_BT

P_BT

U_BT

I_BT

Battery voltage

z

1

Battery charge

2

x_tot

1

P_BT

Figure A.12. Top level of the model ”Battery”

There is a gray shaded block in Figure (A.12) that represents the model to calculate the
amount of electric power (in kWh/100 km) drawn up to a certain instance (Guzzella and
Amstutz 2005). There are a couple of constraints also taken care of under the shaded
block on battery max. current and voltage. The mask parameters of the battery block
are also shown in Figure (A.13).

Figure A.13. The mask for the block ”Battery”

64 Appendix A

A.2.7 Tank

Tank block models the fuel source of the vehicle that supplies the combustion engine with
the demanded fuel. As the quasi-static convention of the QSS Toolbox, the inputs to
the tank block are the power required from the tank and the total distance that must be
travelled and the output that is the fuel consumption over 100 km will be calculated as
shown in Figure (A.14). The parameters for the tank are also masked as shown in Figure
(A.15).

1

liter/100 km

V_liter

P_fuel m_fuel

Integration 1e5

1/rho_f

k_cs

Factor for cold start
2

x_tot

1

P_fuel

Figure A.14. Top level of the model ”Tank”

Figure A.15. The mask for the block ”Tank”

A.2.8 Controller (empty template)

The empty template for the controller is chosen in this thesis basically because the con-
troller is a brand new design specified for this application in the thesis work. Hence, there
is not much to talk about based on the QSS Toolbox on this block. Instead the design
and structure of this block is brought in Chapter 7 when describing the toolbox designed
for this thesis work.

For further information about QSS Toolbox refer to (Guzzella and Amstutz 2005).

