
Towards Reasoning about State Transformer Monads
in Agda
Master of Science Thesis

in Computer Science: Algorithm, Language and Logic

Viet Ha Bui

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, July 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Towards Reasoning about State Transformer Monads in Agda

Viet Ha Bui

© Viet Ha Bui, July 2009.

Examiner: Peter Dybjer

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden July 2009

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, July 2009

Abstract

Wouter Swierstra showed in his PhD thesis how to implement stateful com-
putations in the dependently typed functional programming language Agda.
In particular he defined a notion of state which is parameterized by a list of
types indicating what kind of data are to be stored in the respective loca-
tions. He also showed how to define monadic state transformation over this
notion of state. In this thesis we extend Swierstra’s work with two new con-
tributions. The first is to implement a stateful version of Dijkstra’s algorithm
for the Dutch National Flag in Agda. We prove some properties of a func-
tion which swaps the contents of two locations, an important step towards
showing full correctness of the algorithm in Agda. The second contribution
is to formally prove (in Agda) some properties about monads suggested by
Plotkin and Power.

1

Contents

1. Introduction 4

2. Introduction to the dependently typed language Agda 5

3. Monads and side effects 9
3.1. Monad in Haskell . 9
3.2 Side effects in Agda . 11

4. The Dutch national flag problem and algorithm 16
4.1 Dutch national flag algorithm in Haskell 16
4.2 Simplify model of references . 19
4.3 The Dutch national flag algorithm in Agda. 21
4.4 Swaps properties . 23
4.5. Introduction to the correctness of the algorithm 28

5. Proving some axioms of Plotkin and Power 31

6. Conclusion 39

2

Acknowledgements

I would like to thank Professor Peter Dybjer for his excellent support and
guidance during my time in Sweden. I would also like to thank Dr Wouter
Swierstra for his wise advice and help during my thesis work.

3

1. Introduction

Dependently typed programming languages, which are based on ideas from
Martin Löf Type Theory and Lambda Calculus, have become well-known in
the programming language community. Their most interesting feature is the
program as a proof principle [6]. If we can express a programming problem
as a type in Martin Löf Type Theory, the solution of the problem consists of
giving a witness or proof of the specification.

This thesis will examine and illustrate these ideas in the dependently typed
programming language Agda [10]. The motivation to choose this subject is
both that the demand of knowledge of dependent types has increased and
that proving properties with dependent types is hard and fascinating.

Programming with dependent types is hard because it requires many logical
manipulations, much technical jargon, and different philosophical perspec-
tives. It is also not a main stream language such as C++ or Java.

Agda 2 is a current dependently typed programming language developed at
Chalmers [6]. Previous similar languages are Agda 1, ALF, or even Cayenne
[3, 7, 8]. It is also similar to Haskell, a typed functional programming lan-
guages. However, Agda has an even richer type system than Haskell.

The author of this thesis expects that readers have general knowledge of type
theory and functional programming languages. We will not be able to give
a full description of Agda. The reader is refered to Bove and Dybjer [3] and
Norell [8] for further understanding of Agda. The thesis will be organized
in several parts. Part 2 reviews the necessary syntax and functionalities of
Agda. Part 3 shows current developments of modeling imperative program-
ming languages inside Agda. It will introduce monads and Wouter Swier-
stra’s model of dependently typed memory. Part 4 implements the Dutch
national flag algorithm using this model and proves some of its properties.
Part 5 proves that the model validates several monadic Plotkin-Power’s ax-
ioms [1].

4

2. Introduction to the dependently typed lan-

guage Agda

As stated above, Agda is a dependently typed programming language with
a rich type system. This part will give a short guide to its use and syntax.

With dependent types, more conditions about a function can be described
in the type checking stage of the compiler. For example, a matrix Am,n can
be understood as having a type which depends on the number of rows n and
number of columns m. If we want to perform a multiplication mul of two
matrices Am,n and Bu,v, then we need to make sure that n equals u. By
using the dependently typed language Agda, we can define a type for the
mul function as follows to guarantee that n equals u.

mul : forall {m, n, v} -> Matrix m n -> Matrix n v -> Matrix m v

A first construct to notice when we program in Agda is inductive data types
[4]. To give an example, we look at the definition of the natural numbers:

data Nat : Set where

Zero : Nat

Succ : Nat -> Nat

This declaration can be interpreted as: the data type Nat (natural numbers)
consists of constructors Zero and Suc. Thus 0 equals Zero, 1 equals Succ

Zero, 2 equals Succ (Succ Zero), etc. We can see that the base case here
is Zero, and that the step case is Succ. Therefore, if we want to define a
function or prove some properties that depends on Nat, we can use pattern
matching to break it down into two cases.

In the above, we declared a data type in Agda by an inductive definition,
Agda also supports dependent data types. For a simple example, we can
declare a dependent data type as follows:

data Fin (n : Nat) : Set where

Base : forall {n} -> Fin (Succ n)

Step : forall {n} -> Fin n -> Fin (Succ n)

5

Fin n is a data type depending on a natural number n and it is a finite set
with n elements.

We can also choose implicit and explicit declaration technique by using brack-
ets and parenthesis respectively. For example, we have a explicit natural
number n in data type Fin (n : Nat). However, for the constructor Base
: forall {n} -> Fin (Succ n), we do not need to provide the natural
number n as an explicit argument of Base. The compiler can infer it later
[8].

Beside inductive dependent data types as above, we also have dependently
typed functions. We can take a polymorphic Identity function as an exam-
ple:

Identity : (A : Set) -> A -> A

Identity A x = x

If we use an implicit argument, we can define the Identity function as:

Identity : {A : Set} -> A -> A

Identity x = x

Both Identity functions above depend on the set A, a set which an element
x belongs to.

We can also use lambda notation as in Haskell. The Identity function
above, for instance, can be defined as:

Identity : {A : Set} -> A -> A

Identity = \x -> x

Agda also has another interesting feature, called case analysis by pattern
matching. The pattern matching structure always requires that we check all
the cases of the inductive definition of the data type. If we miss even one
case, the compiler does not allow us to pass the type check.

We can define a min function, a function that finds a minimum value of two
natural numbers as a simple example to illustrate the point here. If we want
to compare two parameters in the min function, we must declare all 4 cases:

6

min : Nat -> Nat -> Nat

min Zero Zero = Zero

min (Succ x) Zero = Succ x

min Zero (Succ x) = Succ x

min (Succ x) (Succ y) = min x y

One of the best ways to structure the program in Agda is using a with

construction. We use it to analyze the intermediate results from parameters.
Its role is similar to the case structure in Haskell. The syntax of with looks
as follows:

f p with d

f p | q1 = e1

:

f p | qn = en

q1,.., qn are all cases of d. In the general case, we can do case analysis
with respect to several things:

f p with d1 | ...| dm

f p1 | q11 | ... | q1m = e1

:

f pn | qn1 | ... | qnm = en

For example, we can build a function filter that produces a satisfied con-
dition list in a given list by using the with construction as follows:

data List (A : Set) : Set where

Nil : List A

Cons : A -> List A -> List A

filter : {A : Set} -> (A -> Bool) -> List A -> List A

filter p Nil = Nil

filter p (Cons x xs) with p x

filter p (Cons x xs) | True = Cons x (filter p xs)

filter p (Cons x xs) | False = filter p xs

Another important feature of Agda is a goal. It can only be used at the
right hand side of the function. By using a goal, it means that you put a

7

question mark ? on the right hand side of the functions for parts of the term
which are unknown yet. It deduces correct instances under the goals. In my
experience, this feature is extremely important when you need to work with
complicated programs in Agda.

We also have other features such as records and modules, wild cards, etc. If
the reader wants to have a deeper knowledge of Agda, he/she can look at its
documentations in the references [3, 8].

8

3. Monads and side effects

3.1 Monads in Haskell

The main advantage of functional programming languages compared to other
ones is their purity. There are no side effects. Thus, programs are easier to
understand and reason about.

However, purity also causes big problems in functional programming. By
using pure functions only, we cannot always execute programs efficiently.
This problem increases significantly if we build a large program where exe-
cution time is an important factor. On the another hand, impure code and
side effects, such as direct interface functions to low level memory, deal very
well with this problem. In order to implement impure code in functional pro-
gramming languages, monads have been introduced to capture side effects.
So we can have both pure and impure code in functional programming.

Monads originated in category theory. In 1991, Moggi used monads to struc-
ture program semantics [16].

In order to give a simple introduction to this idea, I will show the definition
of a monad as a Haskell class.

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

fail :: String -> m a

The monad consists of a type construction m, a return function and a bind
operation >>= . A type constructor m means that if a is a data type, then the
corresponding monadic type is m a. A return function lifts a specific type
to a corresponding monadic type. It has a polymorphic type :

return :: a -> m a

A bind operation has a polymorphic type:

(>>=) :: m a -> (a -> m b) -> m b

9

It means that if we have a value of monadic type m a, and we have a function
that transforms an element of type a to a monadic type m b. Then the result
is a value in the new monadic type m b.

Except the type construction, the return function, and the bind operation
in the class, we also have a >> operation . The meaning of the >> operation
is exactly the same as the bind operation, except that the function, the sec-
ond parameter of the bind operation, ignores the value of the first monad
operation. We also remark that the monad class should satisfy the following
monad laws, called left identity, right identity, and associativity respectively:

return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h

To have a concrete understanding of this idea, we show an example of the
Maybe monad in Haskell.

data Maybe t = Just t | Nothing

Then we can declare a return function as:

return x = Just x

>>= : Maybe a -> (a -> Maybe b) -> Maybe b

Nothing >>= _ = Nothing

Just x >>= f = f x

>> : Maybe a -> Maybe b -> Maybe b

Nothing >> _ = Nothing

Just x >> f = f

Another useful example is the state transformer monad [19].

Type statetrans s v = s -> (v, s).

In here, s and v stand for state and value respectively. Then we can define
the return function and bind operation in the state transformers monad as:

return x = \s -> (s, x)

m >>= f = \r -> let (x, s) = m r in (f x) s

Hence, we can define several useful state transformers functions:

10

readState = \s -> (s, s).

The readState function returns the current state of a computation as a
value.

writeState x = \s -> ((), x).

The writeState function replaces a current state by the state x.

In Haskell, we can replace the bind operator >>= by do notation in order to
have sugared syntax in a program. For example, the following code can be
understood as: taking a result called a from monad m, passing a to a function
f, then returning a result which is the sum of a and the return value of f a.

m >>= \ a ->

f a >>= \ b ->

return (a + b)

Instead of using the bind operation >>= , we can use the do notation as
follows with the same meaning:

do

a <- m

b <- f a

return a + b

Another thing to note is that you cannot safely escape from the monad.
We have a return function that lifts a type to a monadic type. But we do
not have a safe function that changes the value from monadic value to the
underlying value of the monad.

3.2 Side effects in Agda

Influenced by the way side effects are introduced by using monads in the
functional programming Haskell, Wouter Swierstra introduced his model of
side effects in Agda by using monads in his thesis in 2008 at Nottingham
University [2].

First, he declares a reference monad module which is parameterized by a
universe. A universe consists of a pair U and a function el from U to a set.

11

module Refs (U : Set) (el : U -> Set) where

We can think of U as a set of reference types we want to store while el a

is the set of elements of reference type a. For example, if the universe with
U contains type Bool then el Bool may have true and false values. Notice
that we declared this module as a dependent module. Therefore, if we want
to use this module, we need to define and instantiate a universe.

Another example which we will need for the Dutch national flag algorithm, we
have references containing objects of type Colour which has three elements:
red, white, blue. Then we can define a universe U with one constructor called
COLOUR, and an el function which transfers U to Colour. So the universe
should be:

data Colour : Set where

red : Colour

white : Colour

blue : Colour

data U : Set where

COLOUR : U

el : COLOUR -> Set

el _ = Colour

After we defined a universe in the module, we can define a notation of shape
that a heap and a reference depends on. A shape is a list of types in the
universe.

Shape : Set

Shape = List U

After we defined a shape, we can define what it means to be a heap of a
certain shape. A heap is a list of elements that have exactlyte types that we
declared in a shape.

data Heap : Shape -> Set where

Empty : Heap Nil

Alloc : forall {u s} -> el u -> Heap s -> Heap (Cons u s)

12

The Empty heap has a shape which is an empty list. If we want to add a
new element of type u to the heap, we need to allocate a new location of
the right type u in a shape for it. Thus, we can see the dependent relation
between a heap and a shape in here. For example, a heap contains 3 colors
red, white, blue can be defined as : Alloc red (Alloc white (Alloc blue

Empty)). Then, the corresponding shape would be Cons COLOUR (Cons

COLOUR (Cons COLOUR Nil)).

After constructing the heap, another question is how we can access the el-
ements of the heap. We can use references which is modeled as a stack for
this purpose. Thus, we can define a reference as below. The reference data
type is essentially the same as Fin n if all elements of the shape have the
same type.

data Ref : U -> Shape -> Set where

Top : forall {u s} -> Ref u (Cons u s)

Pop : forall {u v s} -> Ref u s -> Ref u (Cons v s)

We can now define syntactic operations on the heap called IO operations.
An element of the IO a s t data type is an operation that changes a heap
depending on a shape s to a heap depending on a shape t with a return value
of type a.

We define four operations: Return, Write, Read, and New. A Return

function lifts a value to the corresponding IO value. A Read function reads
a value from a specific reference without changing the IO. A Write function
replaces a value from a specific location. And finally, the New function adds
a new reference to a shape and then links it to a new value.

data IO (a : Set) : Shape -> Shape -> Set where

Return : forall {s} -> a -> IO a s s

Write : forall {s t u} -> Ref u s -> el u -> IO a s t ->

IO a s t

Read : forall {s t u} -> Ref u s -> (el u -> IO a s t) ->

IO a s t

New : forall {s t u} -> el u -> (Ref u (Cons u s) ->

IO a (Cons u s) t) -> IO a s t

13

After defining the IO data type, we can define the monad operations, which
consists of return function and bind operation, as follows:

return : forall {s a} -> a -> IO a s s

return = Return

>>= : forall {s t u a b} -> IO a s t -> (a -> IO b t u) ->

IO b s u

Return x >>= f = f x

Write l d wr >>= f = Write l d (wr >>= f)

Read l rd >>= f = Read (\d -> rd d >>= f)

New d io >>= f = New d (\l -> io l >>= f)

infixr 10 _>>=_

The return function and bind operation have the same meaning in section
3.1. A return function lifts a value to an IO operation and leaves the shape
of the heap unchanged. The bind operation composes two monadic compu-
tations.

For the next part, I will explain the direct computations to the heap. If
readers want to know more about this module, such as automatic weaken-
ing, restriction in this model, they can look at chapter 6 of Wouter Swierstra’s
thesis [2].

! : forall {s u} -> Heap -> Ref u s -> el u

! Empty ()

Alloc x _ ! Top = x

Alloc _ h ! Pop k = h ! k

update : forall {s u} -> Heap s -> Ref u s -> el u -> Heap s

update Empty () d

update (Alloc _ heap) Top d = Alloc d heap

update (Alloc x heap) (Pop i) d = Alloc x (update heap i d)

run : forall {a s t} -> IO a s t -> Heap s -> Pair a (Heap t)

run (Return x) h = (x , h)

run (Write loc d io) h = run io (update h loc d)

run (Read loc io) h = run (io (h ! loc)) h

14

run (New d io) h = run (io Top) (Alloc d h)

The look up (!) function reads and returns a value in the heap at the specific
reference. The update changes a value stored at the specific location. The
run function executes an IO operation of type IO a s t in a given initial
heap of shape s and returns a pair consisting of an element of type a and a
heap of shape t.

15

4. The Dutch national flag problem and algo-

rithm

The Dutch national flag problem is a famous programming problem proposed
by Dijkstra [3]. The Dutch flag has three colors: red, white and blue. We
have objects of these colors in a list randomly. The question is, how can we
sort them so that objects of the same color are adjacent, with the colors in
the order red, white, and blue respectively. We pick this algorithm because it
is a good example to illustrate the use of invariant properties and side effects.
The algorithm can be extended to find the best k values in an unsorted array
[23]. However, to illustrate the side effects, the sorting algorithm for three
colors is enough.

We can split an array a into 3 sections: a [0.. lo-1] is a space for red
objects, a[lo.. mid -1] is a space for white objects , and a[Hi .. N]

is a space for blue objects. Note that a[mid .. Hi-1] contain arbitrary
colors. Then our solution algorithm can be described with pseudo code as
follows:

Lo := 0; Mid := 0; Hi := N;

while Mid leq Hi do

case a[Mid] of

Red: swap a[Lo] and a[Mid]; Lo++; Mid++

White: Mid++

Blue: swap a[Mid] and a[Hi]; Hi--

We assume that at the initial state, we have no red, white and blue objects
in their correct places, i.e. Lo = Mid = 0 and Hi = N. Then we check the
objects simultaneously, from a[0] to a[N] by the indexed variant called Mid.
We stop our algorithm when Mid is greater than Hi. At each step, we either
increase Mid by one or decrease Hi by one. Therefore, this algorithm has
totally N checking steps.

4.1 The Dutch national flag algorithm in Haskell

I will implement the Dutch national flag algorithm in Haskell. We already
have a monad of references implemented as a module in Haskell. For using
this, we just need to import it.

16

import Data.IORef

For short, we can declare data color as:

data Colour = Red | White | Blue

Then we can declare two generic functions: one swaps the contents of two
references, and another one swaps two indexed values in an array as follow:

swap :: IORef a -> IORef a -> IO ()

swap m n = do

valueM <- readIORef m

valueN <- readIORef n

writeIORef m valueN

writeIORef n valueM

swapList :: [IORef a] -> Int -> Int -> IO [IORef a]

swapList io x y = do

swap a b

return io

where

a :: IORef a

a = io !! x

b :: IORef a

b = io !! y

The swap function swaps the content of two given references under the as-
sumption that both of them have the same type a. A readIORef reads the
content at the specified reference, and the writeIORef writes the content to
the location as discussed in section 3.2.

The swapList function swaps the values of two given locations where pa-
rameters are the array of object references and two specified positions. As
we expected, we just use the swap function to define this function.

By using the swapList function, we can simulate the Dutch national flag
algorithm with the condition that we should give lo, mid, and hi values in
order to help this algorithm working recursively.

17

continueSort :: [IORef Colour] -> Int -> Int -> Int -> IO ()

continueSort as lo mid hi = do

if (mid > hi)

then return

else do

tmp <- readIORef (as !! mid)

case tmp of

Red -> do

as <- swapList as lo mid

x <- continueSort as (lo+1) (mid+1) hi

return

White -> do

y <- continueSort as lo (mid+1) hi

return

Blue -> do

as <- swapList as mid hi

z <- continueSort as lo mid (hi -1)

return

The continueSort function takes a list of color references and lo, mid and
hi as parameters. It works recursively by changing three parameters lo,

mid and hi and used the swapList function if needed. The function stops
when the mid value is greater than the hi value.

Thus, the Dutch national flag problem can be solved by instantiating the
continueSort function. Lo and mid values are Zero while the hi value is
the number of element in the array. We also need to defined a function
listToIORef that lifts colors from an array input to a list of IORef monad
in a continueSort function.

dutchNationalFlag :: [Colour] -> IO ()

dutchNationalFlag xs = do

as <- listToIORef xs

continueSort as 0 0 ((length xs)-1)

listToIORef :: [Colour] -> IO [IORef Colour]

listToIORef [] = return []

listToIORef (x :xs) = do

18

a <- newIORef x

as <- listToIORef xs

return (a : as)

4.2 Simplified model of references in Agda

I will rewrite the reference module for a short implementation of Dutch na-
tional flag algorithm in Agda. Since our heap only contains one type of
values (colors), we do not need to parameterize our heap by a shape of dif-
ferent types.

module RefsToDutchFlag where

Instead of using the shape, we use a natural number as every color has the
same amount of storage space. The heap should be a list of colors, and
the type of references should be indexed by a natural number which is the
number of elements in the heap.

data Colour : Set where

red : Colour

white : Colour

blue : Colour

data Heap : Nat -> Set where

Empty : Heap Zero

Alloc : forall {m} -> Colour -> Heap s -> Heap (Succ m)

data Ref : Nat -> Set where

Top : forall {m} -> Ref (Succ m)

Pop : forall {m} -> Ref s -> Ref (Succ m)

Thus we define the data type IO again as follows:

data IO (a : Set) : Nat -> Nat -> Set where

Return : forall {s} -> a -> IO a s s

Write : forall {s t} -> Ref s -> Colour -> IO a s t ->

IO a s t

Read : forall {s t} -> Ref s -> (Colour -> IO a s t) ->

IO a s t

19

New : forall {s t} ->

(u : Colour) -> (Ref (Succ s) -> IO a (Succ s) t) ->

IO a s t

The monad laws are still the same.

return : forall {s a} -> a -> IO a s s

return = Return

>>= : forall {s t u a b} -> IO a s t-> (a -> IO b t u) ->

IO b s u

Return x >>= f = f x

Write l d wr >>= f = Write l d (wr >>= f)

Read l rd >>= f = Read l (\d -> rd d >>= f)

New d io >>= f = New d (\l -> io l >>= f)

infixr 10 _>>=_

In order to manipulate the heap, such as reading a value at a specific location
in the heap or updating a value in the heap at a specific location, we need
to redefine a lookup and update functions again because it affects the heap.

! : forall {s} -> Heap s -> Ref s -> Colour

! Empty ()

Alloc x _ ! Top = x

Alloc _ h ! Pop k = h ! k

update : forall {s} -> Heap s -> Ref s -> Colour -> Heap s

update Empty () d

update (Alloc _ heap) Top d = Alloc d heap

update (Alloc x heap) (Pop i) d = Alloc x (update heap i d)

We can execute an IO monad with an initial heap by the run function.

run : forall {a s t} -> IO a s t -> Heap s -> Pair a (Heap t)

run (Return x) h = (x , h)

run (Write loc d io) h = run io (update h loc d)

run (Read loc io) h = run (io (h ! loc)) h

run (New d io) h = run (io Top) (Alloc d h)

20

In order to program with the monadic function, we declare read and write

functions. They are special cases of Read and Write where the previous IO

is Return

write : forall {s} -> Ref s -> Colour -> IO Unit s s

write ref d = Write ref d (Return unit)

read : forall {s} -> Ref s -> IO Colour s s

read ref = Read ref Return

4.3 The Dutch national flag algorithm in Agda.

Now we present the Dutch national flag algorithm in Agda by using the
monadic IO and references as we presented in section 4.2. First, we can
define a swap function in the same way as the swap function in Haskell. Note
that the type of a reference depends on a size of the heap in order to keep the
reference not out of bound. Further note that we do not have do notation in
Agda. However, the read and write functions have nearly the same syntax
as those one in Haskell.

swap : (s : Nat) -> Ref s -> Ref s -> IO Unit s s

swap s ref1 ref2 = read ref1 >>= \val1 ->

read ref2 >>= \val2 ->

write ref1 val2 >>= _ ->

write ref2 val1

There are two kinds of reference traversals. One is increasing and one is
decreasing a reference location. The decreasing function has a simple formula.
It takes a reference in a shape, and Pop it if it is not the end of shape or the
shape has only one element.

dec : (s : Nat) -> Ref s -> Ref s

dec Zero ()

dec (Succ Zero) Top = Top

dec (Succ (Succ x)) Top = Pop Top

dec (Succ s) (Pop r) = Pop (dec s r)

The increasing function is a little bit harder, as each time we remove a Pop

from a reference, the shape of the reference is also changed. If we want to

21

keep the shape constant, we need to use a stepUp function to change the
shape to the original status again.

stepUp : (s : Nat) -> Ref s -> Ref (Succ s)

stepUp Zero ()

stepUp (Succ s) Top = Top

stepUp (Succ s) (Pop xs) = Pop (stepUp s xs)

inc : (s : Nat) -> Ref (Succ s) -> Ref (Succ s)

inc Zero x = x

inc (Succ s) Top = Top

inc (Succ s) (Pop xs) = stepUp (Succ s) xs

After defining these help functions, we can define a sorting algorithm that is
similar to the continueSort function in the Dutch national flag algorithm.
We need two conditions to make sure that the algorithm works correctly,
namely, terminating when mid > hi, and sometimes performing the swap

function in each case of reading the value of the heap at a reference mid .

There are several ways to solve the problem. I follow a simple one. We add
an extra parameter to make sure that the function terminates. I call it a
counter here. Each time by running the continueSort function one, the
counter automatically reduces one. We can see that the number of checking
steps of the Dutch national flag algorithm is invariant to N. Therefore, if we
set the counter to be n at the beginning, we can ensure the continueSort

function terminates and the sorting algorithm finishes when counter equals
Zero.

continueSort : (s : Nat) (lo mid hi : Ref (Succ s)) -> Nat

-> Heap (Succ s) -> IO Unit (Succ s) (Succ s) ->

IO Unit (Succ s) (Succ s)

continueSort s lo mid hi counter h io with (h ! mid)

continueSort s lo mid hi Zero h io | _ = Return unit

continueSort s lo mid hi (Succ counter) h io | red =

swap (Succ s) lo mid >>= \ _ ->

continueSort s (dec (Succ s) lo) (dec (Succ s) mid)

hi counter h io

22

continueSort s lo mid hi (Succ counter) h io | white =

continueSort s lo ((dec (Succ s)) mid) hi counter h io

continueSort s lo mid r (Succ counter) h io | blue =

swap (Succ s) mid r >>= \ _ ->

continueSort s lo mid (inc s r) counter h io

Hence, we can write the Dutch national flag algorithm as follows. We store
the result directly on the heap.

dutchNationalFlag : (s : Nat) -> Heap (Succ s) ->

IO Unit (Succ s) (Succ s)

dutchNationalFlag Zero _ = return unit

dutchNationalFlag (Succ xs) h =

continueSort (Succ xs) Top Top (heapToRef (Succ xs) h)

(Succ xs) h (Return unit)

For the final Dutch national flag algorithm, we need to initialize the continueSort
function. First, the lo and mid values, they should be both the Top reference.
Then the counter, and the hi value are the number of elements in the heap.
Both of them will be defined by using a function RefToNat that changes a
reference to a corresponding natural number.

refToNat : {a : Nat} -> Ref a -> Nat

refToNat Top = Zero

refToNat (Pop i) = Succ (refToNat i)

4.4 Properties of swap function

As we have seen in the previous parts that we can construct general func-
tions and algorithms in Agda. This part will be about proving properties of
algorithms in Agda. First we use the definition of equality as the follows in
Agda:

data _==_ {A : Set} (x : A) -> (y : A) -> Set where

Refl : x == x

Two elements x, y of the same set A are equal (==) if we can use Refl to
construct a canonical proof of x == y. For example, the witness, or program
for Zero == Zero, One == One, should be Refl when A is Nat. We cannot

23

construct a witness for Zero == One since it is not true.

As we can define an equality data type, then we can define a difference as a
function from equality to an Empty set. This is the intuitionistic notation of
negation.

<> : {A : Set} -> A -> A -> Set

x <> y = (x == y) -> Empty

There are several properties of equality such as transitivity, symmetry, con-
gruence or substitution. However, at this point, we just need to use congru-
ence.

cong : {A B: Set} -> {x y : A} -> (f : A -> B) -> x == y ->

f x == f y

This cong function means that if x and y are two elements of the set A, f is
function from A to B, then f x should equal to f y if x equals to y in A. The
witness is simple :

cong f Refl = Refl

For the convenience of the reader, we define several help functions. First, we
can define an executing function exec which runs an IO operation with an
initial heap. It take the second argument of the result, i.e the heap, after
running the run function by the IO and the initial heap.

exec : forall {s t : Nat} -> IO Unit s t -> Heap s -> Heap t

exec io h = snd (run io h)

We can also define an and function with the symbol /\ . It is another name
of a Pair function in the standard Agda library.

/ : Set -> Set -> Set

/ a b = Pair a b

infixr 20 _/_

Next, we need to prove the property called trivialProp which states that
if two references are different, then their increased values are also different.
More explicitly, if Pop ref1 and Pop ref2 are two different references, then
ref1 is different from ref2:

24

trivialProp : {s : Nat} -> {r1 r2 : Ref s} -> Pop r1 <> Pop r2

-> r1 <> r2

trivialProp f Refl = f Refl

Finally, we have the property called alwayTrue which expresses that, if Top
is different with Top then everything is equal.

alwayTrue : {s : Nat} {a : Set} -> (x y : a) -> Top <> Top

-> x == y

alwayTrue x y f = magic (f Refl)

Let us come back to swap’s properties. We prove one property of the update
function. It can be stated that the given color should equals one we read
from a specific location. The location is a place where we just updated it
with a given color. We see this statement translated into the dependent type
as follows:

updateProp : (s : Nat) -> (h : Heap s) -> (r : Ref s) ->

(c : Colour) -> c == ((update h r c) ! r)

For the proof of this property, we just pattern match on the heap and the
location of the reference.

updateProp Zero h () c

updateProp (Succ s) (Alloc x h) r c with r

updateProp (Succ s) (Alloc x h) r c | Top = Refl

updateProp (Succ s) (Alloc x h) r c | (Pop k) =

updateProp s h k c

We also need another property of the update function. It can be expressed as
if we have two different references in a heap and we update the first reference
with a specific value, then the value of the second reference is unchanged.
We can translate this statement into Agda as follow:

updateProp’ : (s : Nat) -> (h : Heap s) -> (r r1 : Ref s) ->

r <> r1 ->(c : Colour) -> let h’ = update h r1 c in

(h ! r) == (h’ ! r)

25

We solved it by pattern matching on two references. When we pattern match
on two references, there is a case where both references are Top as the re-
quirement that all cases should be listed. For the solution at this case, we
use the alwayTrue function.

updateProp’ Zero h () () f c

updateProp’ (Succ s) (Alloc x h) Top (Pop k) f c = Refl

updateProp’ (Succ s) (Alloc x h) Top Top f c = alwayTrue x c f

updateProp’ (Succ s) (Alloc x h) (Pop k) Top f c = Refl

updateProp’ (Succ s) (Alloc x h) (Pop k) (Pop k’) f c =

updateProp’ s h k k’ (trivialProp f) c

Finally, we have another property of the update function. It can be expressed
as if we update a heap in two other different references than the specified one,
then the value at the specified reference is not changed. It is an extension of
the previous property. We can state in Agda as follow:

updateProp’’ : (s : Nat) -> (h : Heap s) -> (r r1 r2 : Ref s) ->

r <> r1 -> r <> r2 -> (c1 c2 : Colour) -> let h’ =

update h r1 c1 in let h’’ = update h’ r2 c2 in

(h ! r) == (h’’ ! r)

The only way we can prove it is to divide it into cases using pattern matching.
However, The proof of this property is quite long due to we need to deal with
all the cases of pattern matching parameters. In this property, we need 8
cases.

updateProp’’ Zero h () _ _ _ _ _ _

updateProp’’ (Succ s) (Alloc x h) Top Top f1 f2 c1 c2 =

alwayTrue x c2 f2

updateProp’’ (Succ s) (Alloc x h) Top Top (Pop k) f1 f2 c1 c2 =

alwayTrue x c1 f1

updateProp’’ (Succ s) (Alloc x h) Top (Pop k) Top f1 f2 c1 c2 =

alwayTrue x c2 f2

updateProp’’ (Succ s) (Alloc x h) Top (Pop k) (Pop k’) f1 f2 c1

c2 = Refl

updateProp’’ (Succ s) (Alloc x h) (Pop k) Top Top f1 f2 c1 c2

= Refl

updateProp’’ (Succ s) (Alloc x h) (Pop k) Top (Pop k’) f1 f2 c1

26

c2 = updateProp’ s h k k’ (trivialProp f2) c2

updateProp’’ (Succ s) (Alloc x h) (Pop k) (Pop k’) Top f1 f2 c1

c2 = updateProp’ s h k k’ (trivialProp f1) c1

updateProp’’ (Succ s) (Alloc x h) (Pop k) (Pop k1) (Pop k2) f1

f2 c1 c2 =

updateProp’’ s h k k1 k2 (trivialProp f1) (trivialProp f2) c1 c2

From the above update properties, we can prove the first property of of the
swap function: if we swap two references ref1 and ref2 with the property
that both of them differ from reference r,then the value at reference r is
invariant.

swapProp1 : (s : Nat) -> (ref1 ref2 : Ref s) -> (h : Heap s) ->

let h’ = exec (swap s ref1 ref2) h in

(r : Ref s) -> r <> ref1 -> r <> ref2 -> (h ! r) == (h’ ! r)

The solution for this lemma is quite simple, we just apply the third property
of the update function.

swapProp1 Zero () () _ _ _ _

swapProp1 (Succ s) ref1 ref2 h r f1 f2 = let c’ = h ! ref1 in

let c’’ = h ! ref2 in

updateProp’’ (Succ s) h r ref1 ref2 f1 f2 c’’ c’

We can also prove a second property of the swap function. If we swap the
content of two references ref1 and ref2, then the contents at these two
references should be exchanged.

swapProp2 : (s : Nat) -> (ref1 ref2 : Ref s) -> (h : Heap s) ->

let h’ = exec (swap s ref1 ref2) h in

(h ! ref1) == (h’ ! ref2) /\ (h ! ref2) == (h’ ! ref1)

We prove this property by pattern matching on the heap and the explicit
value of ref1 and ref2. Therefore, we need 8 cases to match.

swapProp2 Zero () () _

swapProp2 (Succ Zero) ref1 ref2 (Alloc x Empty) with ref1 | ref2

swapProp2 (Succ Zero) ref1 ref2 (Alloc x Empty) | Top | Top

= Refl , Refl

swapProp2 (Succ Zero) ref1 ref2 (Alloc x Empty) | Top | Pop ()

27

swapProp2 (Succ Zero) ref1 ref2 (Alloc x Empty) | Pop () | Top

swapProp2 (Succ Zero) ref1 ref2 (Alloc x Empty) | Pop () | Pop ()

swapProp2 (Succ (Succ s)) ref1 ref2 (Alloc x h) with ref1 | ref2

swapProp2 (Succ (Succ s)) ref1 ref2 (Alloc x h) | Top | Top =

Refl , Refl

swapProp2 (Succ (Succ s)) ref1 ref2 (Alloc x h) | Top | Pop k =

updateProp (incS s) h k x , Refl

swapProp2 (Succ (Succ s)) ref1 ref2 (Alloc x h) | Pop k | Top =

let h’’ = update h k x in let c’ = h ! k in

let h’’’ = update h’’ Top c’ in Refl , updateProp (incS s) h k x

swapProp2 (Succ (Succ s)) ref1 ref2 (Alloc x h) | Pop k | Pop k’

= swapProp2 (incS s) k k’ h

As we can see, the properties of swap function are a combination of those two
previous properties. More clearly, if we swap two references ref1 and ref2

such that both of them differ from a reference r, then the value at a reference
r is invariant. On the another hand, if we swap the content of two references
ref1 and ref2, then the contents at two references should be exchanged.

swapProp : (s : Nat) -> (ref1 ref2 : Ref s) -> (h : Heap s) ->

let

h’ = exec (swap s ref1 ref2) h in

(r : Ref s) -> r <> ref1 -> r <> ref2 -> (h ! r) == (h’ ! r)

/\ (h ! ref1) == (h’ ! ref2) /\ (h ! ref2) == (h’ ! ref1)

The solution is simple, as we expected, we just combined the two properties
of the swap function above.

swapProp s ref1 ref2 h r f1 f2 =

swapProp1 s ref1 ref2 h r f1 f2 , swapProp2 s ref1 ref2 h

4.5 Correctness of the algorithm

In the previous section, we constructed proofs of some properties of the swap
function. In this section, I will introduce the correctness property of the
sorting algorithm. First of all, I will introduce some help functions.

28

replicateWhite : (n : Nat) -> Heap n

replicateWhite Zero = Refs.Empty

replicateWhite (Succ m) = Alloc white (replicateWhite m)

replicateBlue : (n : Nat) -> Heap n

replicateBlue Zero = Refs.Empty

replicateBlue (Succ m) = Alloc blue (replicateBlue m)

replicateRed : (n : Nat) -> Heap n

replicateRed Zero = Refs.Empty

replicateRed (Succ m) = Alloc red (replicateRed m)

These replicate functions make a heap with all elements in the heap to be
white, red, and blue respectively.

In contrast to the replicate functions, we defined numred, numblue and
numwhite functions to count the number of red, blue, and white elements
in the heap.

numRed : (s : Nat) -> Heap s -> Nat

numRed Zero _ = Zero

numRed (Succ s) (Alloc red h) = Succ (numRed s h)

numRed (Succ s) (Alloc _ h) = numRed s h

numWhite : (s : Nat) -> Heap s -> Nat

numWhite Zero _ = Zero

numWhite (Succ s) (Alloc white h) = Succ (numWhite s h)

numWhite (Succ s) (Alloc _ h) = numWhite s h

numBlue : (s : Nat) -> Heap s -> Nat

numBlue Zero _ = Zero

numBlue (Succ s) (Alloc blue h) = Succ (numBlue s h)

numBlue (Succ s) (Alloc _ h) = numBlue s h

The heap is correctly sorted if it can be divided into red, white and blue
parts respectively. Therefore, we can declare a new data type to make sure
that a heap is correct sorted.

29

infixr 90 _+++_

+++ : {s1 s2 : Shape} -> Heap s1 -> Heap s2 ->

Heap (s1 ++ s2)

Refs.Empty +++ h = h

(Alloc h hs) +++ h2 = Alloc h (hs +++ h2)

data Issorted : {s : Nat} -> Heap s -> Set where

Sorted : (m n k : Nat) ->

Issorted ((replicateRed m) +++ (replicateWhite n)

+++ (replicateBlue k))

Thus, we can state the correctness of the sorting algorithm as:

correctness : (s : Nat) -> (h : Heap (Succ s)) ->

Issorted (snd (run (dutchNationalFlag s h) h))

The witness for the above statement would be:

correctness s h =

Sorted (numRed (Succ s) h) (numWhite (Succ s) h)

(numBlue (Succ s) h)

However, I was not able to prove this property.I could not prove that the
length n of the heap h is not equals to the sum of the length of the number
of red, white, blue elements in the heap h.

I however believe that the algorithm is correct because i have run it on a
number of test cases and it has always performed correctly.

30

5. Proving some axioms of Plotkin and Power

In the previous chapter, we see the advantages of Agda in proving the swap

properties. We prove it by using the idea of Martin Löf type theory. We for-
mulate the properties in the dependent typed constraints. Then, the body of
the type is a proof for the properties. In this part, I will use a proof system
in Agda to prove some axioms stated in the article about computation de-
termine monads by Gordon Plokin and John Power [1] for Swierstra’s notion
of dependently type state transformer monad.

These axioms have quite strong results in the monadic theory. For an ar-
bitrary monadic system, if we prove that it satisfies these axioms, then any
theorem you can prove about state monadic properties of the system will
follow from these axioms. It is a consequence from several theorems in the
paper. Therefore, instead of designing properties to prove as we have in swap

function, we just need to prove that the system satisfy these given axioms.

For this part, I will prove that the reference IO monad above satisfies the
first 7 axioms of look up and update functions in state transformer monads.

First of all, we need to extend the equality module in Agda. As we have
seen in section 4.4, an equality of two elements in the same set is a data
type with one constructor named Refl. Here, we extend an equality (het-
erogenous equality) to two elements in different sets. The reason to modify
the equality data type is that we need to compare reference locations. The
reference data type is a dependent function that depends on the type of the
containing element and the shape. Therefore, even they are just represent
by Top and Pop constructors, they may belong to different sets. Thus, the
data type equality defines as follows:

data _==_ {A : Set} (x : A) : {B : Set} -> (y : B) -> Set where

Refl : x == x

As we have a different equality, we can redefined distinctness as a function
from an equality to an Empty set.

<> : {A B : Set} -> A -> B -> Set

x <> y = (x == y) -> Empty

31

5.1 Proof for Plotkin and Power axioms in the model

There are totally 7 axioms about look up and update functions in this paper.
These axioms are listed below, the proof will be discussed latter on.

1) l(loc, u(loc, v, a)) = a

2) l(loc, (l(loc, a v v) = l(loc, a v v)

3) u(loc, v, u(loc, v, a) = u(loc, v, a)

4) u(loc, v, l(loc, a v)) = u (loc, v, a v)

5) l(loc, (l(loc’, a v v’)) = l(loc’, l(loc, a v v’))

where loc is different with loc’

6) u(loc, v, u(loc’, v’, a) = u(loc’, v’, u(loc, v, a)

where loc is different with loc’

7) u(loc, v, l(loc’, a v’)) = l(loc’, (u(loc, v, a v’))

where loc is different with loc’

u means an update function and l means a look up function.

As we prove in the general case of references, we need to embed a universe
into the proof. We can do this by putting it into the declaration of the
module.

module Axioms (U : Set) (el : U -> Set) where

import Refs

open Refs U el public

Similar to the proof of the properties of the swap function, we also need
several support functions such as trivialProp and alwayTrue.

trivialProp :{u1 u2 u3 u4 u : U} {s : Shape} {r1 : Ref u1 s}

{r2 : Ref u2 s} -> Pop r1 <> Pop r2 -> r1 <> r2

trivialProp f Refl = f Refl

The trivialProp states that if r1 is a reference for a type u1, r2 is a reference
for a type u2 in a shape s and Pop r1 is different from Pop r2 then r1 is
distinct from r2.

The alwayTrue and updateProp functions have the same meaning as we had
in the section 4.4. Except that a dependent shape is in a general case rather
than in a specific case Nat.

32

alwayTrue: {A : Set} (a b : A) -> (Top <> Top) -> a == b

alwayTrue a b f = magic (f Refl)

updateProp : {u : U} (s : Shape) -> (h : Heap s) ->

(r : Ref u s) -> (c : el u) -> c == ((update h r c) ! r)

updateProp Nil h () c

updateProp (Cons u s) (Alloc x h) r c with r

updateProp (Cons u s) (Alloc x h) r c | Top = Refl

updateProp (Cons u s) (Alloc x h) r c | (Pop k) =

updateProp s h k c

The next support functions are called equal and equal’. the equal function
states that if two heaps h1 and h2 are equal, then we still have the equal
result if we run it in an arbitrary IO. The equal’ function has a similar
meaning as the equal function except that we change the role of an IO and
a heap. We define the equal’ function in order to prove axiom 4.

We also need to define the run’ function in order to support the equal’

function. The run’ functionality is exactly the same as run function, except
that we permute the order of two parameters in the run function.

equal : forall {a s t} -> {h1 h2 : Heap s} -> (io : IO a s t)

-> h1 == h2 -> run io h1 == run io h2

equal io v = cong (run io) v

run’ : forall {a s t} -> (h : Heap s) -> IO a s t ->

Pair a (Heap t)

run’ h io = run io h

equal’ : forall {a s t} -> {h : Heap s} -> (io1 io2 : IO a s t)

-> io1 == io2 -> run io1 h == run io2 h

equal’ {a} {s} {t} {h} io1 io2 v = cong (run’ h) v

We can also extend an equality of two elements in sets to the equality of
two IO monads. Two IO monad io1 and io2 are called equal (represent by

33

symbol ===) if and only if we have run io1 h == run io2 h for every heap
h.

data _===_ {a : Set} {s t : Shape} : IO a s t -> IO a s t -> Set

where

IOEqual : forall {a s t h io1 io2} -> run io1 h == run io2 h ->

io1 === io2

Using this definition, the axiom1: l(loc, u(loc, v, a)) = a can be stated as:

lemma1 : forall {u : U} (s t : Shape) (h : Heap s) ->

(ref : Ref u s) -> (io : IO (el u) s t) ->

Read ref (\v -> Write ref v io) === io

lemma1 s t h ref io = IOEqual (equal io (lemma11 s h ref))

It means that when we look up the value in the location loc after we update
this location by the value a, then the result should be a. The proof for this
lemma is simple. We prove an equality in data type === by constructing
a constructor IOEqual from them. Then the problem reduces to construct-
ing the equality of run io1 h and run io2 h, or run io1 h == run io2 h

where io1, io2 monads are Read ref (v -> Write ref v io) and io.
This problem can be constructed by using the equal function, the function
translates from h1 == h2 to run io h1 == run io h2, where h1, h2 are
two equal heaps. However, h1 == h2 at this lemma1 can be proved by using
the supporting function lemma11.

lemma11 :{u : U} (s : Shape) -> (h : Heap s) ->

(ref : Ref u s) -> update h ref (h ! ref) == h

The lemma11 means that if we update the heap h at location ref with the
value that we have read from ref, then the heap is unchanged. We prove
this lemma by pattern matching on ref.

lemma11 Nil h ()

lemma11 (Cons u s) (Alloc x h) ref with ref

lemma11 (Cons u s) (Alloc x h) ref | Top = Refl

lemma11 (Cons u s) (Alloc x h) ref | (Pop k) =

cong (Alloc x) (lemma11 s h k)

34

Next, we can restate the axiom 2 l(loc, (l(loc, a v v) = l(loc, a v v) as:

lemma2 : forall {u : U} (s t : Shape) (h : Heap s) ->

(ref : Ref u s) -> (io : el u -> el u -> IO (el u) s t) ->

Read ref (\v’ -> Read ref (\ v -> io v v’)) ===

Read ref (\v -> io v v)

lemma2 s t h ref io =

IOEqual (equal (io (h ! ref) (h ! ref)) Refl)

Axiom 2 states that if we look up at the location loc twice then it is the
same as we look up it once. So, we translate it to Agda as follows: for the
reference ref of type u in a shape s, io is a function from pair of elements
of u to the IO monad IO (el u) s t. If the IO monad is a double reading
from the location ref, then it should equal to the one if we read it once. The
proof for this lemma is similar to lemma1

With the similar expression as axiom 2, the axiom 3 u(loc, v, u(loc, v, a) =
u(loc, v, a) can be stated as :

lemma3 : forall {u : U} (s t : Shape) (h : Heap s) ->

(ref : Ref u s) -> (v1 v2 : el u) -> (io : IO (el u) s t) ->

Write ref v1 (Write ref v2 io) === Write ref v2 io

lemma3 s t h ref v1 v2 io =

IOEqual (equal io (lemma31 s h ref v1 v2))

The type condition means that for every location ref, and two value v1, v2

that can be stored in ref. If we write to the ref value v1 and then v2, then
it is the same as we write to the ref location value v2 only.

We prove it by using a supporting lemma31 and using the equal function as
for two previous axioms. lemma31 can be stated as: if we update the heap
in a location ref twice by values v1 and v2, then the heap is the same as we
update the heap at ref by the last value.

lemma31 : {u : U} (s : Shape) -> (h : Heap s) -> (ref : Ref u s)

-> (v1 v2 : el u) ->

update (update h ref v1) ref v2 == update h ref v2

35

As it is similar to update property, we prove it by pattern matching on ref.

lemma31 Nil h () _ _

lemma31 (Cons u s) (Alloc x h) ref v1 v2 with ref

lemma31 (Cons u s) (Alloc x h) ref v1 v2 | Top = Refl

lemma31 (Cons u s) (Alloc x h) ref v1 v2 | (Pop k) =

cong (Alloc x) (lemma31 s h k v1 v2)

In a similar manner, we can express axiom 4, i.e u(loc, v, l(loc, a v)) = u
(loc, v, a v) in Agda as:

lemma4 : forall {u : U} (s t : Shape) (h : Heap s) ->

(ref : Ref u s) -> (v : el u) -> (io : el u ->

IO (el u) s t) ->

Write ref v (Read ref (\ v -> io v)) ===

Write ref v (io v)

The axiom means that if we update the reference ref with the value v then
we read the result from this location. it equals the action that we just
update the location ref with the value v. The solution for this axiom is
quite interesting. The solution is similar to the lemma1. However, instead of
using a heap equality and the equal function, we use an IO monad equality
and the equal’ function.

With similar proof as for the above axioms, we reduce the === relation to the
equal’ function. We use the equal’ function instead of the equal function
because of the direct interface of the IO function and Write, Read monadic
functions to the monad. We cannot have the same monad in order to use the
equal function here. An equal’ function takes 3 argument, two monads and
one equality between them. Here, two IO monads are (io (update h ref

v ! ref)) and (io v). The element of the equality data type between
two monads has been constructed by using the congruence function from an
IO function and an equality in updateProp function followed by a symmetry
function to permute the order of two monads. We use the sym function
to avoid redeclaring a function, which has exactly the same meaning as an
updateProp function except the order of values in the equality module.

lemma4 s t h ref v io =

IOEqual (equal’ (io (update h ref v ! ref)) (io v)

(sym (cong io (updateProp s h ref v))))

36

Axiom 5, l(loc, (l(loc’, a v v’)) = l(loc’, l(loc, a v v’)) means that if two
references loc and loc’ are different, then the IO monad obtained by reading
from the loc and loc’ respectively is equal to the IO monad by reading in
the opposite order, i.e reading from loc’ then from loc. We also can prove
it in a similar way to axiom1.

lemma5 : forall {u : U} (s t : Shape) (h : Heap s) ->

(ref1 ref2 : Ref u s) -> ref1 <> ref2 ->

(io : el u -> el u -> IO (el u) s t) ->

Read ref1 (\ v -> Read ref2 (\ v’ -> io v v’)) ===

Read ref2 (\ v’ -> Read ref1 (\ v -> io v v’))

lemma5 s t h ref1 ref2 f io =

IOEqual (equal (io (h ! ref1) (h ! ref2)) Refl)

For the axiom 6, we need another property of update, I call it lemma6’.

lemma6’ : forall {u1 u2 : U} (s t : Shape) (h : Heap s) ->

(ref1 : Ref u1 s) -> (ref2 : Ref u2 s) -> ref1 <> ref2 ->

(v : el u1)

-> (v’ : el u2) -> update (update h ref1 v) ref2 v’ ==

update (update h ref2 v’) ref1 v

The above type means that the result of updating the heap with two separate
references are the same, regardless of the order of the updating. The proof
uses pattern matching on two reference.

lemma6’ Nil t _ () () f v v’

lemma6’ (Cons u s) t (Alloc x h) ref1 ref2 f v v’

with ref1 | ref2

lemma6’ (Cons u s) t (Alloc x h) ref1 ref2 f v v’

| Top | Top =

alwayTrue (update (update (Alloc x h) Top v) Top v’)

(update (update (Alloc x h) Top v’)Top v) f

lemma6’ (Cons u s) t (Alloc x h) ref1 ref2 f v v’

| Top | Pop k

= Refl

lemma6’ (Cons u s) t (Alloc x h) ref1 ref2 f v v’

| Pop k | Top

= Refl

37

lemma6’ (Cons u s) t (Alloc x h) ref1 ref2 f v v’

| Pop k | Pop k’

= cong (Alloc x) (lemma6’ s t h k k’ (trivialProp f) v v’)

Thus, the axiom 6 can be stated as:

lemma6 : forall {u1 u2 u : U} (s t : Shape) (h : Heap s) ->

(ref1 : Ref u1 s) -> (ref2 : Ref u2 s) -> ref1 <> ref2 ->

(io : IO (el u) s t) -> (v : el u1) -> (v’ : el u2) ->

Write ref1 v (Write ref2 v’ io) ===

Write ref2 v’ (Write ref1 v io)

The proof of this lemma is similar to the lemma1, except that we use the
support function lemma6’.

lemma6 s t h ref1 ref2 f io v v’ =

IOEqual (equal io (lemma6’ s t h ref1 ref2 f v v’))

Finally, the axiom7 u(loc, v, l(loc’, a v’)) = l(loc’, (u(loc, v, a v’)), means
that if two location loc and loc’ are different then the update and look up
functions at two location giving the same IO monad, regardless of order. In
a similar way to axiom 1, we can state and proved the axiom 7 as follows:

lemma7 : forall {u : U} (s t : Shape) (h : Heap s) ->

(ref1 ref2 : Ref u s) -> (io : el u -> IO (el u) s t) ->

(v : el u) ->

Write ref1 v (Read ref2 \v’ -> io v’) ===

Read ref2 (\v’ -> Write ref1 v (io v’))

lemma7 s t h ref1 ref2 io v =

IOEqual (equal (io (h ! ref2)) Refl)

38

6. Conclusion

In conclusion, there are several contributions in this thesis. By extending
the work in Swierstra’s thesis [2] the author gave the Dutch national flag
algorithm as an example of Swierstra’s model of functional specification of
side effects in Agda. The author also proved some properties of the swap

function. Furthermore, the author validates some of Plotkin and Power’s [1]
axioms for the model.

As dependently typed languages are still under development, it is quite hard
for beginners to use them. The supporting environment, for example, is quite
limited at the moment. Therefore, setting up and running test cases in Agda
takes more time than in usual programming languages.

However, we can see the advantage of programs as proofs as a philosophical
idea in dependently typed languages. In functional programming languages
such as Haskell, we can model some side effects by using monad. However,
we cannot prove the properties of the system, or guarantee that the system
works correctly. In contrast, we can do this using dependent types.

39

References

[1] Gordon Plotkin and John Power (2003). Notions of computation deter-
mined monads. FOSSACS 2002. Lecture Notes in Computer Science.

[2] Wouter Swierstra (2008). A functional specification of effects. PhD the-
sis. Nottingham university.

[3] Ana Bove, Peter Dybjer. Dependent type at work. Summer School on
Language Engineering and Rigorous Software Development (LerNet).
Piriapolis. Uruguay. February - March 2008.

[4] Peter Dybjer (1994). Inductive Families. Formal Aspect of Computing.
6(4). 440-465.

[5] Thorsten Altenkirch, Conor McBride, Wouter Swierstra (2007). Obser-
vational equality, now!. Proceedings of the 2007 workshop on Program-
ming Languages Meets Program Verification. 57 - 68.

[6] Bengt Nordström,Kent Petersson, Jan M. Smith (1990). Programming
in Martin Lof type theory. Oxford University Press.

[7] Ana Bove (2002). General Recursion in Type Theory. PhD thesis.
Chalmers university.

[8] Ulf Norell (2007). Towards a practical programming language based on
dependently type theory. PhD thesis. Chalmers University of Technology.

[9] Epigram home page. http://www.e-pig.org/

[10] Agda home page. http://wiki.portal.chalmers.se/agda/

[11] Simon Thompson (1999). Haskell The Craft of Functional Programming.
Addison-Wesley. ISBN 0-201-34275-8.

[12] Benjamin C. Pierce (2002). Types and Programming Languages. The
MIT Press. ISBN 0-262-16209-1.

[13] Qiao Haiyan (2003). Testing and Proving in Dependent Type Theory.
Phd thesis. Chalmers university.

40

[14] Peter Morris (2007). Constructing universes for generic programming.
PhD thesis. Nottingham university.

[15] John Robert Harrison (1996). Theorem Proving with the Real Numbers.
PhD thesis. Cambridge university. 1996

[16] Eugenio Moggi (1991). Notions of Computation and Monads. Informa-
tion and Computation. 93(1): 5592.

[17] Roland Backhouse (2001). The Dutch national flag problem. From
http://www.cs.nott.ac.uk/ rcb/G51MPC/slides/DutchNationalFlag.pdf

[18] Colin L. McMaster (1978). An analysis of algorithms for the Dutch Na-
tional Flag Problem. Communications of the ACM. 842 - 846. Volume
21. Issue 10.

[19] Mark P. Jones. Functional Programming with Overloading and Higher-
Order Polymorphism. First International Spring School on Advanced
Functional Programming Techniques. Sweden. Springer-Verlag Lecture
Notes in Computer Science 925. May 1995

41

