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Dynamic design of high-speed railway bridges 

Simplifications and guidelines 

Master’s Thesis in the International Master’s Programme Structural Engineering and 
Building Performance Design 

PATRIK ERIKSSON 
EMANUEL TROLIN 
Department of Civil and Environmental Engineering 
Division of Structural Engineering 
Concrete Structures 
Chalmers University of Technology 
 

ABSTRACT 

In 2006 the bridge code was updated to include a demand of dynamic analysis of 
railway bridges subjected to high-speed trains. This analysis includes several complex 
loads to be examined for a large range of train velocities and is therefore complicated 
and time consuming. The dynamic analysis’ complexity also makes it hard to 
establish guidelines for the early bridge design even with increased experience. There 
is hence a need today to introduce both guidelines for the early bridge design and 
simplifications for the advanced dynamic analysis of railway bridges. This master 
thesis provides an extensive study of railway bridges’ dynamic behavior and presents 
a method of guidance for the dynamic design. 

As a continuation of previous master theses, carried out at Reinertsen Sverige AB, a 
method for transforming a railway bridge into a single-degree-of-freedom (SDOF) 
system is examined in this thesis. It is shown that a railway bridge of several spans 
can be successfully transformed into a SDOF system that provides accurate results 
compared to a finite element analysis. 

A parameter study is performed in this thesis with the purpose of studying the 
individual bridge parameters’ effect on the dynamic response. It is shown that 
material parameters exert an describable effect, while the effect of geometric 
parameters is more complicated. The increased understandings concerning bridge 
parameters’ effect on the dynamic response and resonance phenomenon in railway 
bridges are used in the creation of a graphical calculation tool, referred to as a design 
curve. A design curve is a comprehensible presentation of an extensive number of 
finite element analyses from which it possible to obtain the designing vertical 
acceleration, independent of the choice of train velocity, material parameters and 
cross-section geometry.  

A comparison between 2D and 3D analyses of railway bridges is performed in this 
thesis. It is shown how the designing acceleration is altered as 3D geometry and hence 
bridge torsion and load eccentricity is considered. A discussion is presented on the 
possibility of creating guidelines and simplifications of railway bridges’ dynamic 
design with consideration to 3D effects. 

Keywords: Dynamics, Railway bridges, high-speed trains, HSLM, SDOF, eccentric 
loading, resonance, vibrations 
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Dynamisk design av järnvägsbroar utsatta för höghastighetståg 

Förenklingar och riktlinjer  

Examensarbete inom det Internationella mastersprogrammet Structural Engineering 
and Building Performance Design   
ERIKSSON PATRIK  
TROLIN EMANUEL 
Institutionen för bygg- och miljöteknik 
Avdelningen för betongbyggnad 
 
Chalmers tekniska högskola 
 

SAMMANFATTNING 

År 2006 uppdaterades bronormen till att inkludera krav på den dynamiska analysen av 
järnvägsbroar som är utsatta för höghastighetståg. En sådan analys inkluderar flera 
komplexa lastfall som ska undersökas för ett stort spann av hastigheter, vilket gör 
analysen komplicerad och tidskrävande. Komplexiteten i den dynamiska analysen gör 
det svårt att upprätta riktlinjer för brokonstruktionen i ett tidigt skede, även med ökad 
erfarenhet i ämnet. Idag finns det därför ett behov av riktlinjer för den tidiga designen 
och förenklingar av den avancerade dynamiska analysen av järnvägsbroar. Detta 
examensarbete består av en omfattande studie av järnvägsbroars dynamiska beteende 
och presenterar en metod med riktlinjer för dynamisk design. 

Som fortsättning på tidigare examensarbeten, utförda på Reinertsen Sverige AB, har 
en metod för att omvandla en järnvägsbro till ett enfrihetsgradssystem (SDOF) 
undersöks. Det visas att en järnvägsbro i flera span framgångsrikt kan förvandlas till 
ett SDOF system som ger tillförlitliga resultat jämfört med finita element analyser. 

En parameterstudie har genomförts med syfte att studera individuella broparametrars 
inverkan på den dynamiska responsen. Det visas att materialparametrar har beskrivbar 
inverkan medan effekten av de geometriska parametrarna är mer komplicerad. Den 
ökade förståelsen för hur olika broparametrar påverkar den dynamiska responsen och 
resonansfenomen i järnvägsbroar används för att skapa ett grafiskt beräkningsverktyg 
som kallas designkurvor. En designkurva är en jämförbar presentation av ett stort 
antal finita element analyser från vilka det är möjligt att erhålla den vertikala 
dimensionerande accelerationen oberoende av val av tåghastighet, materialparametrar 
och sektionens geometri.  

En jämförelse mellan 2D och 3D analyser av järnvägsbroar utförs i detta 
examensarbete. Det visas hur den dimensionerande accelerationen förändras med 
olika geometrier, varför vridning och lastexcentricitet har undersökts. Slutligen 
presenteras en diskussion kring möjligheten att skapa riktlinjer och förenklingar för 
den dynamiska dimensioneringen av järnvägsbroar med hänsyn till 3D-effekter. 

Nyckelord: Dynamik, Järnvägsbroar, höghastighetståg, HSLM, enfrihetsgradssystem, 
excentrisklast, resonans, vibrationer 
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Notations 

Roman upper case letters 
A  Cross-section area [m2] 
2D  Two-dimensional 
3D  Three-dimensional 
C  Viscosity of the dashpot [Ns/m] �  Damping matrix [Ns/m] ��  Modal damping matrix �����  Reduced modal damping matrix ���	  Dynamic magnification factor [-] 
D  Coach length [m] 
  Dynamical matrix 
DOF  Degrees of freedom 
E  Young’s Modulus [N/m2] 
FE  Finite Element 
FEM  Finite Element Method 
HSLM  High-speed load model 
I  Moment of inertia [m4] 
K  Stiffness of the SDOF model spring [N/m] �  Stiffness matrix [N/m] ��   Modal stiffness matrix �� ���  Reduced modal stiffness matrix 
L  Beam/bridge length [m] 
Ltot  Beam/bridge total length [m] 
M  Mass [kg], mass of the SDOF model [kg] �  Mass matrix [kg] ��   Modal mass matrix �� ���  Reduced modal mass matrix 
N  Number of intermediate coaches [-] 
P  Point force [kN] 
R2

  Least square values [-] 
SDOF  Single Degree Of Freedom 
U  Amplitude [m]   Amplitude vector [m] ��  Static amplitude [m] ���	  Dynamic amplitude [m] 
 
Roman lower case letters �  Design acceleration 
b  Width of bridge [m] 
ccr  Critical damping coefficient 
ci  Viscosity of the dashpot [Ns/m] 
d  [m] 
e  Eccentricity [m] 
fi  Forces [N] ��  Eigenfrequency [Hz] ��,������ Eigenfrequency for single-span bridge [Hz] ����	  Eigenfrequency function 
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h  Height [m] 
l  Length of beam/bridge [m] ��  Mass [kg] �  Number of eigenvalue 
p(t)  Time dependent load [N] ����, �	 Load per unit length in location x at time t [N/m]  ��	  Time dependent load vector [N] 
p0  [N] 
r  Frequency ratio [-] 
u  Displacement/deflection [m] ���	��!" Load acting on SDOF model [N] #  Displacement vector [m] #$  Eigenvector for iteration s 
u&   First derivative of u with respect to time t, velocity [m/s] #%   First derivative of u, velocity vector [m/s] 
u&&   Second derivative of u with respect to time t, acceleration [m/s2] #&   Second derivative of u, acceleration vector [m/s2] 
u(t)  Total displacement in time [m] 
uc(t)  Homogenous solution of the general equation of motion [m] 
up(t)  Particular displacement solution of the general equation of motion [m] '��	��!" Displacement of SDOF system [m] '��	(����� Critical displacement in a  bridge [m] '% )  First derivative of up with respect to time t, velocity [m/s] '& )  Second derivative of up with respect to time t, acceleration [m/s2] 
x  Space coordinate *+  Root to the equation of motion for a SDOF system ,  Velocity [m/s], Poisson’s ratio [-] ,��� , �	 Displacements of a beam  -$  Un-scaled eigenfrequency for iteration s ,���!�.�/� Train velocity at which resonance effects occur [m/s] 
vcr  Critical velocity [m/s] 
vcr  Critical velocity [m/s] 
 
Greek upper case letters 
Ω  Load frequency [Hz] ∆�  Time step [s] 1  Modal matrix [-] 1���  Reduced modal matrix [-] 
 
 
Greek lower case letters 2  Phase angle [-] 
β   
β* 3  Describes the span relation of a three-span bridge 3�  Modal coordinate of mode i 4  Modal coordinates 4���  Reduced modal coordinates 4%   Modal velocity vector 
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4&   Modal acceleration vector 5  Describes the geometry of a three-span bridge 67  Eigenvalue 
ζ  Viscous damping factor [%] �  Span ratio for a two span bridge 
π  Mathematical constant 3.14159… 
ρ  Density of material [kg/m3] 
τ   
ωn  Undamped natural frequency [rad/s] 
ωi  Natural frequency or Eigenfrequency [rad/s] 
ωd   Damped natural frequency [rad/s] 8��!" 9:  Natural mode or eigenvector [-]  
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1 Introduction 

1.1 Background 

The interest in design of railway bridges that allows travelling of high-speed trains has 
increased in recent years. In 2006 the Swedish railway administration updated their 
bridge code regarding the dynamic design of these railway bridges. Before this update 
the dynamic aspects were only considered through a dynamic amplification factor in 
static analysis. The new requirements though demand an additional extensive dynamic 
analysis to be performed for all bridges subjected to high-speed trains travelling in a 
speed faster than 200 km/h. The demand is in line with the requirements and 
recommendations from the annex used in connection with Eurocode. 

The additional requirement of dynamic analyses means that both static and dynamic 
analyses are required for the design of railway bridges today. It is possible that 
bridges that are structural sound when statically loaded are not acceptable when 
considering its dynamic response. If the dynamic analysis proves unsatisfactory both 
static and dynamic analyses have to be re-made making the design process time 
consuming and expensive.  

Dynamic analysis is very time consuming to execute since the code specifies several 
complex train loads to be used for a range of train velocities. Hence, there is a need 
for simplifications and guidelines for the dynamic analysis to make it more time 
efficient. There is also a need for guidelines in the design process that considers the 
dynamic aspects, to be used parallel to static analysis and to prevent complications 
that arise when dynamic criteria proves unfulfilled.   

1.2 Previous work 

This master thesis is a continuation from three projects carried out at Reinertsen 
Sweden AB during 2007 and 2008. In these theses it has been shown that it is possible 
to simplify a single-span bridge structure with a single-degree-of-freedom system 
(SDOF) and attempts have been made to create guidelines for the dynamic analysis of 
railway bridges through FE-analyses, graphical presentation and the SDOF model. 

In Ekström and Kieri (2007) focus was put on the comparison of displacements and 
accelerations for a SDOF system subjected to various types of loading. It was shown 
that a SDOF system can be used to approximate the acceleration response by 
comparing the result with a FE-model. The continuation of this thesis, performed by 
De Leon and Lasn (2008), treated the transformation procedure of railway bridges 
into a SDOF model by using an alternative procedure called the force scaling 
approach. This approach is more compatible with complex structures and was also 
successfully applied on portal frames. De Leon and Lasn (2008) also made an attempt 
to establish a graphical guideline with its basis in the SDOF model. In both Ekström 
and Kieri (2007) and De Leon and Lasn (2008) calculations were made to increase the 
understanding of the dynamic response behaviour of railway bridges. 

In Gustafsson (2008) an attempt to build a 2D FE-model in Matlab was successfully 
made. It was stated that the FE program reduces the calculation time required to make 
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a 2D analysis with a certain set of predefined geometrical and material parameters and 
hence could be used to simplify the dynamic calculations. Different methods of 
modelling the train load were also examined. 

1.3 Aim 

The overall aim of this master thesis was to find guidelines and simplifications for the 
dynamic response for railway bridges subjected to high speed trains. This includes 
easier and faster calculations procedures, guidance to suitable parameter combinations 
and tools for verification of the advanced calculations. 

This thesis aims to investigate the compatibility of the previous developed SDOF 
model on multi-span bridges. The investigation includes how such a simplification 
shall be carried out and what possibilities and limitations the model has.  

The thesis aims also to increase the understanding of the dynamic response in railway 
bridges and the differences between 2D and 3D analysis.  

1.4 Method 

An extensive literature study has been performed in the beginning of the master thesis 
to increase the knowledge about design and dynamic behaviour of railway bridges. 
Several master theses have been written at the technical universities of Chalmers, 
KTH and Lund about dynamic design of railway bridges during the last years which 
all have been studied. Further, Swedish and European design codes have been studied 
to increase the knowledge of demands and requirements for the dynamic behaviour of 
railway bridges subjected to high-speed trains.  

The advances made in creating a SDOF system by Ekström and Kieri (2007) and De 
Leon and Lasn (2009) was used as a basis for the development of a SDOF model that 
is compatible with multi-span bridges.  

Examination of the individual influence of bridge parameters on the dynamic response 
was made to increase the understanding of the dynamic behaviour in railway bridges. 
This increased understanding together with accumulated knowledge of simplified FE 
modelling, the possibilities in SDOF systems and graphical presentation was used in 
the development of possible guidelines and simplifications of the dynamic 
calculations.    

Differences between the dynamic response in 2D and 3D were studied by examining 
single-span bridges subjected to eccentric loading and with variation in width.   

Matlab was used to create programs for the required SDOF and FE calculations. The 
commercial software ADINA was used to verify the created Matlab programs. 

1.5 Limitations 

To manage the thesis over the limited time schedule several limitations have been 
made. Some of these limitations are defined by the national bridge code BV Bro 
Banverket (2006) as this thesis is limited to the required calculation procedure 
described in this code. 
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The train load was assumed to be the HSLM model described in BV Bro. This model 
treats the train load as moving point loads and consequently the train mass, rail 
irregularities and interaction between train and rail have not been considered. 

In the bridge code there are demands on the dynamic response of railway bridges 
concerning vertical deflection, vertical acceleration, horizontal transverse deflection, 
twist of the bridge deck and uplifting of the bearings. Here the studied response was 
the vertical acceleration as this design criterion often governs the dynamic aspect of 
railway bridge design. 

Throughout the thesis the material parameters are chosen to resemble concrete. A 
linear viscoelastic material model is consequently used. The section is hence treated 
as uncracked and the reinforcement in the bridge is neglected.   

1.6 General layout 

The outline of the report consists of three major Chapters. Chapter 2 and 3 are 
together an introduction to the field of structural dynamics and the railway bridge 
code relevant to this thesis. 

In Chapter 4 dynamic analyses in 2D for railway bridges are investigated extensively. 
The Chapter treats the determination of eigenfrequencies for multi-span bridges, the 
transformation of multi-span bridges to a SDOF model, individual examinations of 
bridge parameters effect on the acceleration response and finally an attempt to create 
guidelines for the dynamic design of railway bridges considering 2D analyses.   

Chapter 5 treats dynamic analysis of railway bridges in 3D. The Chapter shows the 
additional complications that arise when 3D geometry is considered. 

More extensive presentations of the layouts in Chapter 4 and 5 are presented in the 
introduction of each Chapter. A summary, discussion and suggestions for further 
studies are presented in the end of the thesis.  
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2 Basic Dynamics 

This chapter treats fundamental theory of structural dynamics that is vital for the 
examinations made in this thesis. Theory behind discrete parameter models described 
by one and multiple degrees of freedom is presented, together with application of the 
so called mode superposition method which is very important for model reduction 
with consideration to railway bridge dynamics. Some short comments on numerical 
integration and continuous models are also presented and the dynamic resonance 
phenomenon is explained. 

2.1 SDOF systems 

A system that consists of a single-degree-of-freedom is called a SDOF system. The 
SDOF system is a good application for understanding the fields of dynamics. Since 
mode superposition (which is introduced in section 2.5) basically is a way to 
transform larger systems into independent SDOF systems, its solution is also vital for 
the fields of dynamics.  A mass-spring-dashpot model is a good example of a SDOF 
system and will be used in the following section, see Figure 2.1. 

 

Figure 2.1  SDOF system in the form of a mass-spring-dashpot model.  

Newton’s second law is required for the derivation of the equation of motion for the 
SDOF system and is defined as 

 ; < = >'&   (2.1) 

Figure 2.2 shows all forces acting on the mass in Figure 2.1. 

 

Figure 2.2  Forces acting on the mass in the mass-spring-dashpot model 

The forces in Figure 2.2 and Newton’s second law in equation (2.1) give together the 
equation of motion for a single degree of freedom system as 

M 

p(t) 
Ku 

C'%  
 

M 

K u(t) 

p(t) 

C 
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 >'& ? @'% ? A' = ���	  (2.2) 

Solving the equation of motion can be done either analytically or numerically. Often it 
is not possible to solve more complex systems analytically. However it is possible for 
a SDOF system subjected to a sinusoidal load, and this analytical solution will for the 
purpose of explaining the fundamentals in structural dynamics be presented in the 
upcoming section.  

2.2 Analytical solution of an SDOF 

The analytical solution to a SDOF system subjected to a sinusoidal load differs 
whether damping is considered or not. The derivation procedure is also somewhat 
different and therefore independent sub-sections will treat the undamped and damped 
case respectively in this   section. 

2.2.1 Undamped SDOF system 

Consider the SDOF system in Figure 2.1 without damping subjected to a sinusoidal 
load. This system has the equation of motion in the form  

 >'& ? A' = ��cos �Ω�	  (2.3) 

Where the solution can be divided in two parts: the particular and complementary 
solution. In the field of structural dynamics the terms forced and natural motion are 
used, respectively, and they together form the total response, i.e. 

 '��	 = ')��	 ? '/��	  (2.4) 

Consider first the natural motion uc or, as it is also called, the free vibration. The 
natural motion is the general solution to the equation of motion when the loading is 
absent. It is convenient to rewrite equation (2.3) for solving the natural motion as 

 u& ? ωIJ · u = 0  (2.5) 

where 

  8�  = MNO = '�P���QP ���'��R ��QS'Q�TU 

The general solution to equation (2.5) can be written in the form of trigonometric 
functions as  
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 '/��	 = VW · cos�8� · �	 ? VJ · sin �8� · �	  (2.6) 

where A1 and A2 are constants that are determined by initial conditions.  

Consider now the forced motion of the system created by the sinusoidal load. It is 
seen that the forced motion from equation (2.3) will have the form 

 ')��	 = � · cos �Ω�	  (2.7) 

where U is the amplitude of the forced motion. By inserting equation (2.7) into (2.3) 
an expression for the amplitude U can be derived as 

 � = ��A Z >ΩJ 
 (2.8) 

This expression can (for a pedagogical reason of the upcoming examination of 
resonance effects) be rewritten as 

 � = ��1 Z rJ 
 (2.9) 

where 

 �� = ��A  
 (2.10) 

is the static displacement and 

 � = Ω8� 
 (2.11) 

is the frequency ratio. The total response for the undamped SDOF system as the sum 
of the forced and natural motion can now be concluded to be 

 '��	 = �01 Z r2 · cos�Ω�	 ? VW · cos�8� · �	 ? VJ · sin �8� · �	 
 

(2.12) 
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2.2.2 Damped SDOF system 

The derivation of the analytical solution for a damped SDOF system is more advanced 
than the derivation without consideration to damping in section 2.2.1. However, the 
approach is the same and as for the case without damping the total response is divided 
in forced and natural motion which solutions are solved separately.  

The equation of motion for the SDOF system that considers damping and is subjected 
to a sinusoidal load has the appearance 

 >'& ? @'% ? A' = �� cos�Ω�	  (2.13) 

As for the case without damping it is convenient to rewrite this equation for the 
derivation of the natural motion as 

 '& ? 2^8�'% ? 8�J' = 0  (2.14) 

where 

  8�  = MNO = '�P���QP ���'��R ��QS'Q�TU 

  ^ = //_` = ,a*Tb'* P���a�� ��T�b� 

  T/�  = 2√A> = T�a�aT�R P���a�� TbQ��aTaQ�� 

To solve the natural motion the form of the solution is assumed as 

 '��	 = @+Q�+d  (2.15) 

By inserting equation (2.15) into (2.14) we obtain the characteristic equation  

 *+J ? 2 · ^ · 8� ? 8�J = 0  (2.16) 

which roots can be solved as 

 *+W,J = Z^ · 8� e 8�f^J Z 1  (2.17) 

The size of ζ can be divided in three cases:  

• 0 < ζ < 1:  underdamped 
• ζ = 1:  critically damping 
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• ζ > 1:  overdamped 

The solution to the natural motion will differ depending on which case that is 
considered. In this thesis only the underdamped case will be treated as the viscous 
damping factor usually lies in the range of 0 to 0.05 for real life structures (like 
railway bridges). For information of the other cases, see for example 
Craig and Kurdila (2006).  

By the use of Euler’s formula the solution of the underdamped case can be derived to 
be 

 '��	 = Qhijkd�V1 · cos�8P�	 ? V2 · sin�8P�		  (2.18) 

where 

 8� = 8�f1 Z ^J  (2.19) 

is called the damped natural frequency. 

Consider now the forced motion of equation (2.13). The solution can be written as 

 ') = � · cos �Ω� Z 2	  (2.20) 

where U is the amplitude and α is the phase angle. The velocity and acceleration of 
the forced response then become 

 '% ) = ZΩ� · sin �Ω� Z 2	  (2.21) 

 '& ) = ZΩJ� · cos �Ω� Z 2	  (2.22) 

The expressions for the displacement, velocity and acceleration of the forced 
response, inserted into equation (2.13), give that 

 Z>ΩJ� · cos�Ω� Z 2	 Z @Ω� · sin�Ω� Z 2	 ? 

? A� · cos �Ω� Z 2	 = �� cos�Ω�	 

 (2.23) 

from which it is obtained that 
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 � = ��f�A Z >ΩJ	J ? �@Ω	J = ��f�1 Z rJ	J ? �2^�	J 
 (2.24) 

and 

 tan 2 = @ΩA Z >Ω2 = 2^�1 Z r2 
 (2.25) 

The total response of the damped SDOF system can now be written as 

 '��	 = ��f�1 Z rJ	J ? �2^�	J  · cos�Ω� Z 2	 ? 

? Qhijkd�V1 · cos�8P�	 ? V2 · sin�8P�		 

  

(2.26) 

2.3 Resonance 

The reason why a dynamic analysis is required in structures subjected to frequency 
loading is because of the so called resonance effects. Resonance occurs when r ≈ 1, 
i.e. when the loading frequency is approximately equal to the natural or damped 
natural frequency. Resonance can cause very large amplitudes of the response 
compared to the corresponding static loading. To examine this consider the dynamic 
magnification factor defined as the ratio between dynamic and static amplitude, i.e. 

 ���	 = ���	�0  
 

(2.27) 

With U defined as in equations (2.9) and (2.24) the dynamic magnification factor 
becomes 

 ���	 = 11 Z r2 
 

(2.28) 

for an undamped SDOF system and 

 ���	 = 1f�1 Z r2	2 ? �2^�	2 
 

(2.29) 

for a damped SDOF system. Figure 2.3 shows the dynamic magnification factor for 
different values of the viscous damping factor and variation of frequency ratio. 



 

Figure 2.3  Dynamic magnification factor for variation in damping and frequency ratio. 

Higher values of damping cause large differences between the natural and damped 
natural frequency. It can hence be seen in Figure 2.3 that resonance occurs for lower 
values of the frequency ratio for higher damping. For the undamped system the 
dynamic magnification factor will go towards infinity as r → 1. 

2.4 MDOF systems 

The dynamic analyses of most real structures are based on multiple-degree-of-
freedom systems, MDOF system. To show how the equation of motion for a MDOF 
system is assembled consider the lumped mass model shown in Figure 2.4. 

 

Figure 2.4  A three-degree-of-freedom system with lumped mass and viscous damping 

Figure 2.5 shows all forces acting on the three masses in Figure 2.4. 

 

Figure 2.5  Free-body diagram for the masses in Figure 2.4. 
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By use of Newton’s Second law three force equilibriums can be established as 

 �W'&W = �W��	 ? �J ? �q Z �W Z �r 

�J'& J = �J��	 ? �s ? �t Z �J Z �q 

�s'& s = �s��	 Z �s Z �t 

  

(2.30) 

where the forces in Figure 2.5 are defined as 

 �W = u1'1 

�J = u2�'2 Z '1	 

�s = u3�'3 Z '2	 

�r = T1'% 1 

�q = T2�'% 2 Z '% 1	 

�t = T3�'% 3 Z '% 2	 

  

 

(2.31) 

By combining equations (2.30) and (2.31) the force equilibrium can be written in 
matrix form as 

 w�W 0 00 �J 00 0 �sx w'&W'& J'& sx ? wTW ? TJ ZTJ 0ZTJ TJ ? Ts ZTs0 ZTs Ts x w'% W'% J'% sx ? y 

? wuW ? uJ ZuJ 0ZuJ uJ ? us Zus0 Zus us
x w'W'J'sx = z�W��	�J��	�s��	{ 

 
(2.32) 

or using matrix format as 

 �#& ? �#% ? �# =  ��	  (2.33) 

Equation (2.33) represents the equation of motion of a MDOF system. The 
appearance of equation (2.33) is the same for two- and three-dimensional analysis and 
forms the basis to the finite element method and hence also dynamic analysis of 
railway bridges. 
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2.4.1 Eigenfrequencies and eigenmodes 

Consider now the free vibration of a MDOF system with N degrees of freedom. The 
corresponding equation of motion for the free vibration is defined as 

 �#& ? �# = |  (2.34) 

where M is the mass matrix and K is the stiffness matrix. Both M and K have the size 
N x N. As for a SDOF system a harmonic solution to equation (2.34) is assumed, i.e. 

 #��	 = cos �8�� Z 2	  (2.35) 

which inserted in equation (2.34) gives that 

 }� Z 8�J�~ = |  (2.36) 

Since U ≠ 0 it is required that 

 det�� Z 8�J�	 = |  (2.37) 

which is the characteristic equation of the MDOF system. There are N roots to 
equation (2.37) , N eigenvalues, each corresponding to a squared eigenfrequency. For 
each eigenvalue there is a corresponding eigenvector, or natural mode. The 
determination of the eigenfrequencies and natural modes for a MDOF system is most 
commonly made numerically.  

2.4.2 Properties of natural modes 

The solution to mode superposition, presented in section 2.5, is based on two 
properties of the natural modes, scaling and orthogonality, which will be presented in 
this section. 

2.4.2.1 Scaling 

The natural modes’ shapes are unique, i.e. for a specific value of one mode’s first 
element the remaining elements are fixed. However the amplitudes of the natural 
modes are arbitrary and they can hence be scaled in any appropriate manner. A scaled 
mode is in this thesis referred to as 9:, where i = 1...N. A common procedure is to 
scale the modes so that the modal mass, which is defined as 

 >� = 9:��9:  (2.38) 
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becomes equal to one. This scaling procedure has been used in this thesis and is 
assumed for all modes in the remainder of the thesis. If equation (2.36) is multiplied 
by 9:T it is obtained that 

 9���9� = 8�J�9���9��  (2.39) 

and hence that the modal stiffness can be defined as 

 A� = 9���9� = 8�J>� = 8�J  (2.40) 

2.4.2.2 Orthogonality 

A very important property of natural modes is that they are orthogonal to each other. 
It can be shown that 

 9���9� = 0 

9���9� = 0 

 (2.41) 

where 9i and 9j are two different natural modes. 

2.5 Mode superposition 

Mode superposition is extensively used in dynamic analysis, and can be used for both 
solving dynamic problems analytically and simplifying numerical calculations. To 
employ mode superposition the modal matrix must first be defined as a matrix which 
columns represent the scaled natural modes, i.e. 

 1 = }9� 9� … 9�~  (2.42) 

The concept of mode superposition lies in the possibility of representing the true 
response as 

 #��	 = ; 9�3���	 =�
��W  14��	 

 (2.43) 

Where ηi is called the modal coordinate of mode i. If the equation of motion is 
multiplied with ΦT and combined with equation (2.43) it is obtained that 

 �� 4& ? ��4% ? ��4 = 1� ��	  (2.44) 
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where 

 �� = 1��1 = diag�>W, >J, … , >�	 = � 

�� = 1��1 = diag�AW, AJ, … , A�	 = diag�8WJ, 8JJ, … , 8�J 	 

�� = 1��1 

 
(2.45) 

are denoted the modal mass matrix, modal stiffness matrix and modal damping matrix 
respectively. It should be note that the modal mass and stiffness matrix are diagonals 
because of the orthogonality of the natural modes. This means that the modal 
coordinates are uncoupled with regard to stiffness and mass. 

Whether the modal coordinates are uncoupled with regard to damping depends on the 
damping’s definition. In several design cases it is not possible to establish a diagonal 
modal damping matrix, for example when there is a presence of energy absorbers or 
viscous damping. However for many structures (including railway bridges) it is not 
possible to define such a damping mechanisms. In those cases it is common to use 
damping definitions that lead to a diagonal modal damping matrix. Two such methods 
will be presented in this thesis and are referred to as Raleigh damping and modal 
damping. 

2.5.1 Rayleigh damping 

In Rayleigh damping the damping matrix is defined as a linear combination of the 
stiffness and mass matrix, i.e. 

 � = �!� ? �W�  (2.46) 

where �!and �Ware constants.  

The modal damping matrix then becomes 

 �� = ���� = diag���� ? �W8�J	>�	 = diag�2 �̂8�>�	  (2.47) 

where ζi is called the modal damping factor and corresponds to the viscous damping 
factor defined for the SDOF system. For the last step in equation (2.47) to be true it is 
required that 

 �̂ = 12 ���8� ? �W8�� 
 (2.48) 

Basically Rayleigh damping is utilized by choosing two modal damping factors and 
calculating a0 and a1 based on these values.  
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2.5.2 Modal damping 

Rayleigh damping has the obvious disadvantage of only having the possibility of 
specifying the modal damping factor for two natural modes. However the modal 
damping method allows specification of all modal damping factors. A disadvantage 
compared to Rayleigh damping is the somewhat more complicated calculation of the 
damping matrix. However, when using mode superposition the damping matrix is 
commonly not required but only the modal damping matrix. In the modal damping 
method the modal damping matrix is basically assumed to satisfy 

 �� = ���� = diag�2 �̂8�>�	  (2.49) 

It can be shown that the damping matrix based on this assumption can be calculated as 

 � = ; 2ζ7ω7M7 ��9�	��9�	��
7�W  

 (2.50) 

2.5.3 Advantages with mode superposition 

The modal coordinates become completely uncoupled in the use of mode 
superposition if a definition of damping that gives a diagonal modal damping matrix 
is used. Basically N SDOF systems are obtained in the form 

 >�'& � ? 2 �̂8�>�'% � ? A�'� = 9�� ��	  (2.51) 

If a simple load acts on the system it may be possible to solve the dynamic problem 
analytically. As an example consider the case where a sinusoidal load acts on the 
system. The solution then becomes similar to that of equation (2.26). However in 
many situations the load is so complex that numerical integration procedures still are 
preferred, see section 2.6.  

However, even when the calculations are solved numerically there is a great use in 
mode superposition in the form of model reduction. Model reduction using mode 
superposition is made by only including a specific number of eigenmodes. It is 
assumed that 

 #��	 = ; 9�3���	 =O
��W  1���4�����	 

 (2.52) 

where M < N and 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2010:37 
17

 1��� = }9� 9� … 9�~  (2.53) 

is the reduced modal matrix and 

 4��� = }3W 3J … 3O~�  (2.54) 

contain the reduced modal matrix’s corresponding modal coordinates. If the equation 
of motion is multiplied with Φred

T and combined with equation (2.52) it is obtained 
that 

 �� ���4& ��� ? �����4% ��� ? �� ���4��� = 1����  ��	  (2.55) 

where 

 �� ��� = 1���� �1��� = diag�>W, … , >O	 = '�a� ����a� = � 

�� ��� = 1���� �1��� = diag�8WJ, … , 8OJ 	 

����� = 1���� �1��� = diag�2 Ŵ8W, … ,2^O8O	 

  

(2.56) 

It should be noted that equation (2.52) is an estimation of the true response. But the 
error will be small in many design situations as modes of higher order tend to give 
very low contribution to the dynamic response. Say that the response can be well 
estimated using twenty eigenmodes. Then a system containing perhaps several 
hundred degrees of freedom can be reduced to only twenty, which greatly reduces 
calculation time for the numerical integration procedures.  

2.6 Numerical integration 

To obtain the acceleration response over time there are in many design situations a 
need for numerical integration. Such procedures do not require any transformation of 
the equation of motion and are therefore commonly referred to as direct integration. 
The procedures are required in many design situations, for example when uncoupled 
modal coordinates cannot be established, when the system contains nonlinearities or 
when the load has a complicated time history.   

There are several direct integration procedures used in the field of structural dynamics 
and these can be divided in two general groups. The first group directly treats the 
second order differential equation (the equation of motion) and the other group 
handles it through an equivalent set of first order differential equations. In the first 
group some of the most commonly used integration procedures are the central 
difference method, the Newmark-β method and the Wilson-� method. One example 
from the second group is the Sub-zero order hold method. 
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In this section focus have been put on the presentation of the Newmark-� method 
which is the only numerical integration procedure used in this thesis. The reader is 
referred to Craig and Kurdila (2006) and Abrahamsson (2000) for insight in the other 
mentioned numerical integration procedures.  

2.6.1.1 Newmark-β method 

The main assumption in the Newmark-β method is that the systems displacement and 
velocity can be written as  

 #% ��W = #% � ? }�1 Z �	#& � ? �#& ��W~ Δ�   (2.57) 

 #��� = #� ? #% �� ? }�1 Z 2β	�& I ? 2β�& I�W~ ∆�J2  
 (2.58) 

where the parameters β and γ are the integration coefficients and used to obtain 
integration stability and accuracy. Newmark introduced an unconditionally stable 
scheme with the relation β = 0.5 and γ = 0.25 and the method is therefore said to be an 
unconditionally stable implicit integration scheme. The Newmark-� method using this 
relation for β and γ is called the Constant Average Acceleration method (or the 
trapezoidal rule). The Constant Average Acceleration method has no demand on the 
incremental time step to reach a stable solution, the acceleration variation is shown in 
Figure 2.6. 

 

Figure 2.6  Newmark’s constant-average-acceleration scheme. 

2.7 Inverse iteration 

In section 0 it was mentioned that the eigenfrequencies and eigenvectors of MDOF 
systems in general are calculated numerically. In many situations more general 
procedures for solving eigenvalue problems are utilized. However when only a few of 
the lowest eigenvalues are required there are simpler and less time consuming 
alternatives. Inverse iteration is a procedure for calculating the first eigenfrequency 
and eigenvector. Consider again the eigenvalue problem 

0.5(�& t+�& t+∆t) 
�& t+∆t �& t 

t t+∆t 
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 �� Z 67�	97 = 0  (2.59) 

where λi = ωi
2. The inverse iteration method is in the subgroup of vector iterations 

methods of solving eigenvalue problems and directly employs equation (2.59). It is 
possible to write the equation in the form 

 9 = 6
9  (2.60) 

where 

 
 = �h��  (2.61) 

is called the dynamical matrix. The iterative procedure of the inverse iteration method 
follows a few specific steps. A first guess of the eigenvector us, is initially assumed 
and then a new vector -$�� is calculated using the dynamical matrix as 

 -$�� = 
#$  (2.62) 

The new guess for the next iteration is then calculated as 

 #��W = 6���-���  (2.63) 

where λs+1is a scaling factor for vs+1 chosen in a consistent manner, for example to get 
the highest value equal to one. According to equation (2.60) us+1 becomes equal to us 

and the scaling factor becomes the corresponding eigenvalue, if an iteration is made 
using the correct eigenvector. When the initial guess deviates from the true 
eigenvector this result is achieved after some iterations. 

An alternative for the definition of the scaling factor is to use the Rayleigh quotient, 
i.e. 

 6��� = -��W� �#�-��W� �-��W  (2.64) 

which gives a faster convergence. 

2.8 Transverse vibration of Bernoulli-Euler Beams 
In section 2.2 it was shown how the eigenfrequency and eigenvector can be calculated 
analytically for a SDOF system and in Section 2.4 it was said that numerical 
procedures often are required for solving the eigenfrequencies and eigenvectors of a 
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MDOF system. SDOF and MDOF systems are similar as they belong to the same 
group, as discrete parameter models. In this section an example of a continuous model 
will be presented, namely a simply supported beam. Continuous models can be used 
to derive the exact analytical solution for free vibration of structures, which presented 
as a discrete parameter model would require a MDOF system. The simply supported 
beam is of special interest as it can be seen as representation of a single-span railway 
bridge. 

It can be shown that beams that are relatively long and thin, i.e. are applicable of 
Bernoulli-Euler beam theory, have the differential equation of motion for governing 
vertical vibration as 

 �J��J  ¡¢ �J,��J£ ? ¤V �J,��J = ����, �	,          0 ¥ � ¥ ¦   (2.65) 

where EI is the bending stiffness, ρA is the mass per meter length, x is the length 
coordinate and v is the vertical deflection. If it is assumed that EI is constant along the 
beam the differential equation of motion becomes   

 ¡¢,′′′′ ? ¤V,&  = 0     (2.66) 

As for the discrete parameter models a harmonic solution is assumed as 

 ,��, �	 = §��	 · cos �8� Z 2	  (2.67) 

and with this solution inserted in equation (2.66) it is obtained that 

 �¨©�ª¨ Z 6r§ = 0   (2.68) 

where 

 6r = 8J «¬®    (2.69) 

The general solution to equation (2.68) can be written as 

 §��	 = VW sinh�6�	 ? VJ cosh�6�	 ? Vssin�6�	 ? Vrcos �6�	   (2.70) 

where A1,2,3,4 are constants determined by the boundary conditions. The boundary 
conditions for a simply supported beam are 
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 ,�� = 0, �	 = 0            ,�� = ¦, �	 = 0             
°�J,��J±ª�� = 0               °�J,��J±ª�² = 0 

 

 (2.71) 

By combining equations (2.70) and (2.71) it can be shown that the eigenfrequencies 
and eigenvectors of a simply supported beam has the analytical solution 

 §��	��	 = M J³� *a� �´ª�     (2.72) 

 8��	 = ��µ	JM ®³�¨   (2.73) 

where 

 � = 1, 2, 3 …  

The shapes of the first three eigenmodes are shown in Figure 2.7. 

 

Figure 2.7  First three eigenmodes for a simply supported beam 
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3 Railway bridge code 
In Sweden railway bridges subjected to high speed trains are design according to BV 
Bro (Banverket, 2006), with regulations set by the Swedish railway administration. 
This code is similar to the regulations set by Eurocode but differs in some aspects. In 
this Chapter the demands of dynamic design of railway bridges set by both BV Bro 
(Banverket, 2006) and Eurocode will be presented. 

3.1 High-speed load models (HSLM) 

Eurocode 1, CEN (2003), states that in a dynamic analysis of a bridge, characteristic 
values shall be used for the specified trains. The choice of train shall regard every 
permitted train configuration for each high speed train configuration that is expected 
to operate the bridge with velocities over 200 km/h. The dynamic analysis shall on 
international lines also include high-speed load models (HSLM). Load model HSLM 
consist of two separate universal train models, HSLM-A and HSLM-B, where the 
length of the coaches varies.  

In BV Bro (Banverket, 2006) there are no demands on additional permitted train 
configurations to the HSLM loads suggested by Eurocode, and the HSLM loads are 
hence the only loads used in the dynamic design of railway bridges in Sweden. The 
HSLM load model consists of two separate universal train configurations, HSLM-A 
and HSLM-B, where the coach length varies.  From Table 3.1 it is possible determine 
which train configuration that should be applied depending on the total length of the 
bridge.  

Table 3.1 Load models for different structural configurations. 

Structural 

configuration 

Span 

L < 7 m L ≥ 7 m 

Simply supported 
one span 

HSLM-B HSLM-A 

Continuous bridge  HSLM-A: trains A1 to A10 
inclusive 

HSLM-A: trains A1 to A10 
inclusive 

3.1.1 HSLM-A 

The HSLM-A load model consist of a load geometry determined by the coach length 
D, the bogie axle spacing d and the numbers of coaches N between the power cars, se 
Figure 3.1. There is also an intermediate coach after the power car in each train 
configuration. 
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Figure 3.1 The load geometry for the train model HSLM-A. 

The HSLM-A train load defined in Eurocode 1, CEN (2003), include ten different 
train configurations, see Table 3.2. The designing dynamic response should be the 
most critical considering all ten load configurations.  

Table 3.2 Train configurations for train HSLM-A. 

Train load Intermediate 

coaches 

N [-] 

Coach length 

 

D [m] 

Boogie axel 

 spacing 

d [m] 

Point force 

 

P [kN] 

A1 18 18 2.0 170 

A2 17 19 3.5 200 

A3 16 20 2.0 180 

A4 15 21 3.0 190 

A5 14 22 2.0 170 

A6 13 23 2.0 180 

A7 13 24 2.0 190 

A8 12 25 2.5 190 

A9 11 26 2.0 210 

A10 11 27 2.0 210 



3.1.2 HSLM-B 

The HSLM-B train load consists of equally spaced point loads. Depending on the total 
span length, Eurocode defines the number of loads N and the spacing d, as in Figure 
3.2 and Figure 3.3.  

 

 

  

 

 

Figure 3.2 The load distribution for train model HSLM-B. 

 

Figure 3.3 The spacing and number of loads for HSLM-B. 

3.1.2.1 Speeds to consider 

According to Eurocode 1, CEN (2003), dynamic calculations of railway bridges 
should be considered from 40 m/s (144 km/h), with a series of speed steps, up to the 
1.2 x maximum design speed. It is mentioned that speed steps should be smaller at 
speeds where resonance is likely to occur, but no specific value is given. 

BV Bro (Banverket, 2006) requires that the dynamic response is examined for a speed 
interval of 100 km/h to the maximum design speed + 20%. The speed steps should be 
5 km/h in general and 2.5 km/h close to resonance effects. 

3.2 Demands on vertical acceleration 

There are several requirements of the dynamic design of railway bridges for the 
serviceability limit state in Eurocode: Basis of Structural Design Annex A2, CEN 
(2003). Checks are required for vertical deflection, vertical acceleration, horizontal 
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transverse deflection, twist of the bridge deck and uplifting of the bearings. The scope 
of this Master’s thesis is to investigate the vertical acceleration in the deck and 
therefore only this demand is presented in this section. 

Bridge deck accelerations shall be limited to 3.5 m/s2 for ballasted tracks and 5 m/s2 

for direct fastened decks according to both BV Bro (Banverket 2006) and Eurocode: 
Basis of Structural Design Annex A2, CEN (2003). The limit for vertical deflection 
along any track is L/600. 

3.3 Limitation of considered eigenmodes 

The criteria for traffic safety in Eurocode: Basis of structural Design Annex A2, CEN 
(2003), states that all members supporting the track shall consider frequencies and 
their associated mode shapes up to the greater of: 

• 30 Hz 
• 1.5 times the frequencies of the fundamental mode of vibration of the member 

being considered 
• The frequencies of the third mode of vibration of the member 

According to BV Bro (Banverket, 2006) it is enough to use the 30 Hz criteria 

3.4 Structural damping 

The acceleration response at resonance is highly dependent on the choice of structural 
damping. Therefore a lower bound value for the structural damping is suggested by 
Eurocode 1, CEN (2003) and the Swedish code BV Bro (Banverket, 2006). The 
suggested values for structural damping are shown in Table 3.3. 

Table 3.3 Values of damping for different spans and type of bridges. 

Bridge type ζ Lower limit of damping [%] 

Span L < 20m Span L ≥ 20m 

Steel and composite ζ = 0.5+0.125(20-L) ζ = 0.5 

Prestressed concrete ζ = 1.0+0.07(20-L) ζ = 1.0 

Reinforced concrete ζ = 1.5+0.07(20-L) ζ = 1.5 
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4 ANALYSIS IN 2D 

Dynamic analysis of railway bridges is usually carried out using mode-superposition 
and therefore this thesis focuses solely on this method of calculation. The 
determination of the dynamic response in all structures when mode superposition is to 
be utilized is done in two steps. First the eigenfrequencies and the corresponding 
eigenvectors need to be determined. Secondly the response in time is determined. For 
simple structures this can be done analytically but for more complex structures (or 
complex loads) there is often a need to solve numerically. 

One of the aims of this thesis is to find general guidelines for the design of railway 
bridges with regard to the dynamic aspects of the design process. To do that, both 
eigenfrequencies and the response in time have to be examined. The eigenfrequencies 
in relation to the load frequency applied on the bridge will affect the dynamic 
response behavior. The actual dynamic response will however also be affected by the 
configuration of geometric and material parameters of the bridge. The method applied 
in this thesis is to examine the effect from individual variation of material and 
geometric parameters to find how these affect the dynamic response. The dynamic 
response will throughout this thesis be referred to as the acceleration response. The 
reason is basically that the acceleration is the only examined outcome from the 
dynamic analysis performed in this thesis, since the demands on vertical acceleration 
govern the design process of railway bridges when considering the dynamic aspects. 

A model that transforms a railway bridge seen in 2D into an SDOF model has been 
developed in the previous master thesis Ekström and Kieri (2007) and De Leon and 
Lasn (2008) carried out at Reinertsen Sverige AB. This model was shown to give 
accurate results for single-span bridges. The theory behind the SDOF model can be 
used to increase the understanding of the dynamic behavior of railway bridges. 
Therefore it is of interest to examine if the model is applicable on multi-span bridges. 
If the model can be proven to give sufficiently accurate results for multi-span bridges, 
it can also be a useful tool for calculating the dynamic response since it greatly 
reduces calculation time compared to a finite element model (FE model).  

Section 4.1 will treat geometric definitions of span relation parameters and the cross-
section geometry which has been kept constant for all calculations in 2D. 

In Chapter 2 it was shown how the eigenfrequencies of a single-span bridge can be 
calculated analytically. The eigenfrequencies of multi-span bridges are examined in 
Section 4.2. The eigenfrequencies’ complex dependence of geometric parameters is 
shown graphically, and also expressions for calculating the first eigenfrequencies are 
created empirically. These expressions allows for better examination of the 
acceleration response later on. 

The load frequency and resonance phenomenon in railway bridges are treated in 
Section 4.3. It is shown that each HSLM load exerts one fundamental load frequency 
that dominates the dynamic response. It is also shown how the critical train speed (for 
which resonance in the bridge occurs) can be determined. 

Section 4.4 treats the transformation of the bridge into an SDOF model. Theory 
behind the transformation is presented and accuracy of the model is tested. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2010:37 
28

After examining the eigenfrequencies for multi-span bridges and showing how the 
load frequency affect the dynamic response, a parameter study is presented in 
Section 4.4 treating the amplitude of the dynamic response. Geometric and material 
parameters’ effect on the eigenfrequencies will influence the critical speed at which 
resonance occurs. As the examination of eigenfrequencies aim to show how the 
critical speeds can be determined in a simplified way, the parameter study made in 
Section 4.4 aims to show the acceleration amplitude at these resonance speeds 
depends on material and geometric parameters. 

It will be shown that the geometric parameters affect the acceleration response in a 
rather complicated way, practically eliminating the possibility to determine single 
equations to express this behavior. Some simple dependencies are found though. All 
observations and conclusion from the previous sections are gathered in Section 4.6 
and used to create a graphical calculation tool for some common railway bridge 
configurations. This tool can be used to determine the exact design acceleration for 
known material and geometric parameters, but also as a guideline of what parameter 
configuration that should be used to obtain a satisfying dynamic response in the 
bridge.  

4.1 Geometric definitions 

The calculations presented in this Chapter aim partly to show the effect from varying 
geometric and material parameters of a railway bridge. The cross-section however 
have been kept constant for simplicity since the effect from varying bending stiffness 
and bridge mass is better examined by variation of young’s modulus and the density 
respectively. 

The geometric parameters used in the 2D analysis will be presented in this section. 
Parameters that describe the span relations for two- and three-span bridges will also 
been defined. 

4.1.1 Cross section 

For all the examinations made in 2D analysis the same geometric parameters have 
been used, see Figure 4.1. The section chosen resembles the section of a portal frame 
bridge, with a total length of 9.5 m, designed by Reinertsen Sweden AB. The reason 
why a section from a real bridge design was chosen was to get an idea of how large 
accelerations and eigenfrequencies would get for different combinations of geometric 
and material parameters. For the calculations in 2D the section is treated as a 
rectangular cross-section, and hence the edge beams are disregarded. 

 

Figure 4.1  Cross section used for all analysis in this Chapter. 
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Since the design code of the Swedish railway administration (BV Bro, Banverket 
2006) has a limit of 30 Hz for eigenmodes that needs to be considered there is a 
special interest for the size of the eigenfrequencies. The eigenfrequencies also have a 
significant influence of how large the design acceleration will be, as will be shown 
later in this thesis. 

4.1.2 Definitions of span relation parameters 

The additional geometric parameters for a multi-span bridge in comparison to a single 
span bridge are the relations between the span lengths. For a two-span bridge one 
extra parameter is required and two extra parameters are required for a three-span 
bridge. The span relation for a two-span bridge has been defined as the length ratio 
between the second and the first span, i.e. 

 � = ¦J¦W 
(4.1) 

where L1 and L2 are the lengths of the first and second span respectively. Figure 4.2 
shows how the parameter μ can be used to describe the geometry of a two-span 
bridge. 

 

Figure 4.2  Explanatory figure of how the geometry of a two-span bridge can be described using 
the parameter μ defined in equation (4.1). 

Two parameters are required to describe the geometry of a three-span bridge. These 
parameters are here defined as 

 3 = ¦J/�¦W ? ¦s	  (4.2) 

 5 = ¦s/¦W  (4.3) 

 

Ltot 

μ·Ltot/(1+μ	 Ltot/(1+μ) 

       L2   L1 
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Figure 4.3 shows how these parameters can be used to describe the geometry of a 
three-span bridge. 

 

 

Figure 4.3  Explanatory figure of how the geometry of a three-span bridge can be described 
using the parameters 3 and 5 defined in equations (4.2) and (4.3). 

4.2 Eigenfrequencies for multi-span bridges 

It is possible to derive an expression that gives the exact value of the eigenfrequencies 
of any degree for a single span bridge, as was shown in Chapter 2. A bridge that has 
two or more spans contributes to a lot more complexity in this derivation and to the 
knowledge of the authors it is not possible to derive an explicit expression for the 
frequencies analytically. 

In Appendix A there is a derivation similar to that of a single-span bridge for deriving 
the eigenfrequency of a two-span bridge made by the authors. In litterateur you can 
find similar derivations that lead to similar expressions to the one derived in 
Appendix A, see for example Gorman (1975). But the result will always be a matrix 
which determinant should equal zero, resulting in a complex trigonometric expression 
where an explicit formulation for the eigenfrequencies is impossible to derive. 

This section will treat the determination of eigenfrequencies for multi-span bridges 
under the variation of geometric and material parameters. As eigenfrequencies cannot 
be determined analytically they have instead been examined graphically. The first 
eigenfrequency is of special interest since it often governs the dynamic response in 
railway bridges. Therefore an expression to easily determine the first eigenfrequency 
for a two- and three-span bridge has been derived.  

It is important to remember the design rule set by the Swedish railway administration, 
stating that only frequencies below 30 Hz need to be considered when designing a 
railway bridge against the dynamic response criteria. Often only a few eigenmodes 
need to be considered in dynamic analysis of railway bridges because of this rule, and 

      L2      L1               L3 

Ltot 

3·Ltot/(1+η	 Ltot/[(1+ η)(1+κ)] κ·Ltot/[(1+ η)(1+κ)] 
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for many bridges only the first. Therefore only the first eigenfrequencies have been 
examined in the following section. 

The calculation of eigenfrequencies under the variation of material and geometric 
parameters has been made using a Matlab program presented in Appendix D made by 
the authors. Matlab have been used instead of commercial FE software since it better 
handles iterative calculations concerning the variation of geometric parameters. 
However ADINA has been used to verify the Matlab program, see Appendix D. 

4.2.1 Two-span bridges 

As for single-span bridges the frequency of a two span bridge will depend on the 
bending stiffness EI, the mass per meter length m and the total length of the bridge 
Ltot. The addition to these parameters for a two span bridge is the ratio between the 
second and first span μ, which was defined in Section 4.1. 

In Appendix A, where an attempt to derive the eigenfrequencies analytically is made, 
it is shown that a complicated expression is obtained when determining an explicit 
expression for the eigenfrequencies’ dependence on bridge parameters. This 
complicated expression however depends solely on the geometric parameters Ltot and μ. The eigenvalues’ dependence on material parameters is defined in the same way as 
for single span bridges, see equation (2.69). This means that irrespective of the 
complicated dependence to geometric parameters the eigenfrequencies of a multi-span 
bridge depends in the same simple manner on material parameters as a single-span 
bridge.  

It can also be shown that the same dependency, as for single-span bridges, exists for 
the total bridge length, see Figure 4.4 and Figure 4.5. 

 

Figure 4.4  Eigenfrequencies for the first eigenmode for a two-span bridge with �=2, E=30GPa, ¤=3000kg/m3. 
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Figure 4.5 Eigenfrequencies for the second eigenmode for a two-span bridge with �=2, 
E=30GPa, ¤=3000kg/m3. 

Figure 4.4 and Figure 4.5 show that both first and second eigenfrequency has a linear 
dependence against the inverse of the total bridge length in square. This means that 
the eigenfrequencies for a two-span bridge in a 2D analysis can be determined as 

 �� = �¹�º	²»¼»½ · M®³   (4.4) 

where gi(μ) is a different function for each eigenfrequency that depends on the span 
ratio. These functions will in the remainder of this thesis be referred to as 
eigenfrequency functions. Figure 4.6 shows how these functions vary for the first five 
eigenfrequencies. Note that the function is dimensionless and independent of all 
geometric and material parameters with the exception of μ. 

 

Figure 4.6  Eigenfrequency functions for the first five frequencies for a two-span bridge. 

Examining Figure 4.6 can help understand the difficulties in deriving an analytical 
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the change of μ. Also the dependency for each individual frequency on μ is complex. 
This complexity can be explained by the eigenvectors corresponding to each 
frequency changing in shape. The shapes for the eigenvectors for the first, second and 
third eigenfrequency for different values of μ are shown in Figure 4.7- Figure 4.9. 
From Figure 4.7- Figure 4.9 it is shown that only the first eigenvector keeps a similar 
form when the ratio between the span lengths is altered, hence the more straight curve 
in Figure 4.6.  

 

Figure 4.7  The first eigenmode for a two-span bridge with a total length of 15 m. The mode is 
normalized to get the modal mass equal to one. 

 

 

Figure 4.8  The second eigenmode for a two-span bridge with a total length of 15 m. The mode is 
normalized to get the modal mass equal to one. 
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Figure 4.9  The third eigenmode for a two-span bridge with a total length of 15 m. The mode is 
normalized to get the modal mass equal to one. 

It is of great value for the remaining examinations made in this thesis to have a simple 
expression for the first eigenfrequency. Therefore efforts have been made to create 
such an expression. The “curve fitting” toolbox in Matlab was used for this purpose. 
To get a more simple expression different equation types were fitted for different 
intervals of μ. The equations shown in Table 4.1 are proposed to describe the first 
eigenfrequency for a two-span bridge. 

Table 4.1  Proposed eigenfrequency function for determining the first eigenfrequency for a two-
span bridge. 

μ Eigenfrequency function, g(μ) R2-value 

1- 1.2 2·π·sin(π/2·μ) 0.991 

1.2 - 3 8.9·e-μ + 3.34·e-0.00183·μ 0.999 

It should be noted that there is no derivation behind the expressions in Table 4.1, they 
have simply been chosen for their simplicity in comparison to other expressions. 
Figure 4.10 shows the curves fitted against the true acceleration. 
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Figure 4.10  Chosen eigenfrequency functions g for two-span bridges plotted against the true first 
frequency. 

Three different sets of material parameters have been chosen to show the accuracy of 
the expressions. Table 4.2 and Table 4.3 show these parameter sets and a comparison 
of eigenfrequencies calculated using the simple method presented in this section and a 
FE analysis. 

Table 4.2  Parameter sets used for different verifications throughout this thesis. 

Parameter Set 1 Set 2 Set 3 

E [GPa] 30 40 50 

ρ [kg/m3] 2400 2000 2800 

Ltot [m] 25 20 15 

μ }-~ 1.1 2.5 1.5 

Table 4.3 Eigenfrequencies calculated using equation (4.4) and eigenfrequency functions in 
Table 4.1 compared to eigenfrequencies from a FE analysis. 

 Set 1 Set 2 Set 3 

FE analysis 6.0721 7.8595 17.3122 
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It is concluded that the frequency functions in Table 4.1 together with equation (4.4) 
gives satisfactory accuracy for determining the first eigenfrequency for a two-span 
bridge. 

4.2.2 Three-span bridges 

A three-span bridge have the same dependence on the bending stiffness EI, the mass 
per meter m and the total length of the bridge Ltot, with the same motivation as 
described in Section 4.2.1 for a two-span bridge. Two extra geometric parameters are 
however required to describe the relation of the three spans. In this thesis they are 
called η and κ and are defined in Section 4.1. 

Since a two-span bridge only depends on one geometric parameter in a complex way 
it is possible to find expressions for describing the eigenfrequency functions for any 
combination of geometric and material parameters for this type of bridge. It gets more 
complex for a three-span bridge where two geometric parameters (η and κ	 have a 
complex effect on the eigenfrequencies, see Figure 4.11. 

 

Figure 4.11 Eigenfrequency function for the first eigenfrequency for the variation of 5 and 3. 

Figure 4.11 shows that the influence of the geometric parameter κ changes depending 
on the value of η.  This means that it is not possible to formulate two separate 
equations for describing the eigenfrequencies’ dependence on the two variables. 
Instead one equation depending on both variables is required, making it much harder 
to find a suitable expression. 

It is rather common for three-span bridges to have κ equal to one, meaning the first 
and third span are equally sized while the middle span may vary in size. Since 
complexity in finding an expression for the frequencies depend on both η and κ a 
limitation has been made to bridges where κ =1.0. This type of bridge has a similar 
appearance of the eigenfrequencies for the variation of η as for a two span bridge, see 
Figure 4.12. 
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Figure 4.12  Eigenfrequency functions for the first seven eigenfrequencies for a three-span bridge 
with 5 = 1.0. 

As for a two-span bridge it is of great value for further examinations to have a 
simplified expression for calculating only the first eigenfrequency for variations in μ. 
Again the Matlab curve fitting toolbox was used for this purpose, and the expressions 
in Table 4.4 are proposed for different intervals of μ. 
Table 4.4 Proposed expressions for the eigenfrequency function for the first eigenfrequency of 

a three-span bridge with 5=1.0. 

Mode η = L2/(L1+L3) [-] Eigenfrequency function, g(η) R2-value 

First mode 0.5- 0.8 1.6·sin(7.2· η -1.95)+12.55 0.999 

First mode 0.8-2.5 2·pi· η -1.137+3.511 0.999 

Figure 4.13 shows the curves fitted against the true acceleration. 
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Figure 4.13  Chosen eigenfrequency functions g for two-span bridges plotted against the true first 
frequency. 

A verification of the accuracy of the expressions in Table 4.4 has been made using 
three different parameter sets which are defined in Table 4.5. Table 4.6 shows the 
results from this verification. 

Table 4.5  Parameter sets used for different verifications throughout the thesis 

Parameter Set 1 Set 2 Set 3 

E [GPa] 30 40 50 

M [kg/m3] 2400 2000 2800 

Ltot [m] 30 25 20 

μ }-~ 0.6 1.5 0.9 

Table 4.6  Eigenfrequencies calculated using equation (4.4) and eigenfrequency functions in 
Table 4.4 compared to eigenfrequencies from a FE analysis. 

 First eigenfrequency [Hz] 

 Set 1 Set 2 Set 3 

FE analysis 9.301 9.254 19.402 

Equations 9.298 9.262 19.385 
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4.2.3 Comparison to single-span bridges 

Single-span railway bridges are very common and their first eigenfrequency can as 
mentioned be calculated analytically.  Hence it may be of interest to know the 
increase in eigenfrequency that the additional spans of a multi-span bridge contribute 
with compared to a single-span bridge corresponding to the largest span length. The 
eigenfrequency of a multi-span bridge can alternatively be calculated as 

 �� = � · ��,������   (4.5) 

where fi,single is the i:th eigenfrequency of a single-span bridge corresponding to the 
largest span length of the multi-span bridge and 

 � = J·�¹�º	·�W�º	½
´·º½   

 (4.6) 

for a two-span bridge and 

 � = J·�¹�Å	·�W�Å	½
´·Å½   

 (4.7) 

for a three-span bridge. Figure 4.14 shows the appearance of U for calculation of the 
first eigenfrequency of a two- and three-span bridge. 

 
Figure 4.14  Appearance of the factor U for determining the first eigenfrequency for a two- and 

three span bridge through the eigenfrequency of a single-span bridge corresponding 
to the largest span length.  
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4.2.4 Remarks 

By examining the derivation of eigenfrequencies for single- and multi-span bridges it 
was seen that the eigenfrequencies for a multi-span bridge depend on material 
parameters in the same way as a single-span bridge. By graphic examination it was 
seen that this also is true for the total length of the bridge. One important feature to 
note is that all frequencies have the same dependence on these parameters. This 
means the eigenfrequencies have the same relation to each other for any combination 
of material parameters and total bridge length. This is important in later calculations 
since it allows searching for simpler dependencies that the acceleration response has 
on these parameters. However the geometric span relation parameters affect the 
eigenfrequencies differently for all multi-span bridges. This means that the dynamic 
response behavior will be affected in a different way when span relations are altered 
depending on which eigenmode that is examined. It is therefore not possible to define 
exactly how the dynamic response depends on the span relation parameters since each 
eigenmode has its own effect on the dynamic response, and the number of 
eigenmodes in a continuous structure is infinitely large.  

4.3 Load frequency and resonance effects 

According to BV Bro (Banverket 2006) all railway bridges with a total length above 7 
m have to be designed to withstand the HSLM-A train loads in terms of maximum 
allowed vertical acceleration in the superstructure of the bridge, see Chapter 3. As 
shown in Chapter 3 all HSLM-A loads have different load parameters in the term of 
coach length D, bogie axel length d and the number of coaches. In this section it is 
discussed how the train loads will affect a railway bridge is presented. The main load 
frequency is defined and it is shown how it in relation to the eigenfrequencies of a 
bridge affects the dynamic response due to resonance. 

To understand the meaning of load frequency of a train load it is convenient to start 
with a single point load moving over a single-span bridge with a fixed velocity, see 
Figure 4.15. 

 

Figure 4.15  A single-span bridge subjected to one point load. (a): constant load moving over the 
bridge with constant velocity. (b): point load that varies in time acting in the middle 
of the bridge. 

Figure 4.15 implies that a point load moving over a single-span bridge can be 
transformed from a load varying in the space domain to a stationary load varying in 
the time domain. The transformed load in Figure 4.15 will hence vary in time and if 

0.5L 0.5L 0.5L 0.5L 
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several loads with equal distance moves over the bridge there will be a load effect on 
the bridge varying with a certain frequency affected by the speed of the loads and the 
distance between them.  As an example let us consider the static analysis of the bridge 
in Figure 4.15. The influence line for the mid-span deflection caused by one point 
load as it moves over the bridge is very close to a sinusoidal curve. If several 
influence lines are superpositioned in the time domain a resulting influence of the 
loads is received, see Figure 4.16. 

 

 

 

The static response shown by Figure 4.16 gives an idea of how a bridge will be 
affected by moving point loads, even though the full complexity in a dynamic analysis 
is not considered. It should be noted that the appearance of the total influence line 
differ as the load distance is altered or bridge spans are added. For more information 
about the reliability/possibility to describe load effect on the dynamic response using 
a static model, see Section 4.4. 

The train load models HSLM-A are all a combination of point loads traveling with 
different distances in between, namely the coach length D and the boogie axel length 
d. However, the coach length D can be considered as the “main” distance between the 
loads, as it serves as the distance between the resultants of the boogie axle loads of the 
train, see Figure 3.1. In Figure 4.16 it can been seen that the time between peaks in the 
total load influence is equal to the time between the traveling loads. As the frequency 
is the inverse of this time it can then be concluded that the “main” frequency of a 
HSLM-A train load can be defined as 

 Ω = ÇÈ   (4.8) 

where 

  Ω = Load frequency 

  D = Coach length of considered HSLM-A load 

  v = Train velocity 

umax 

t t 

u 

u 

Figure 4.16 The influence line for static displacement in a single-span bridge subjected to 
several equally distanced point loads travelling over the bridge with constant speed. 
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Resonance will occur when the load frequency coincides with one of the 
eigenfrequencies of any structure, see Chapter 2. However, for railway bridges 
resonance will also occur when an eigenfrequency coincides with any multiple of the 
load frequency, i.e. 

 Ω = "¹É    (4.9) 

where 

  fi =  Eigenfrequency of the i:th degree 

  k = 1, 2, 3… 

The behavior behind equation (4.9) can be understood by looking at a spring-weight 
SDOF system without damping. Say the system is vibrating with its eigenfrequency. 
If we tap the weight (put a small impulse load on it) every time it is in its highest 
position we will increase the amplitude of the vibration every cycle and the amplitude 
goes to infinity with time, see Figure 4.17. If we tap the weight every second time it is 
in its highest position the amplitude also goes to infinity in time but it increases 
slower. These two examples correspond to adding a load with a frequency coinciding 
with the eigenfrequency and the eigenfrequency divided by two. In a real structure the 
first of these most often gives the largest dynamic responses since the structure has 
less time to damp out the vibrations. 

 

Figure 4.17  Illustrative figure of how the displacement increases for a SDOF model when an 
impulse load is applied with a frequency corresponding to the systems 
eigenfrequency and half the eigenfrequency in (a) and (b) respectively 

The ratio between the load frequency and the first eigenfrequency is defined as  
 � = Ω"Ê   (4.10) 

M 

(a) 

(b) 
u(t) 

u 

u 

t 

t 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2010:37 
43

This parameter will be frequently used in this thesis since it can be used to describe all 
bridge parameters and the train velocities’ effect on the maximum acceleration 
response. 

FE analyses have been performed on a two-span bridge to show how the dynamic 
response in a railway bridge is dominated by resonance phenomenon. Three different 
data sets have been used, see Table 4.2. In the analyses mode superposition is used 
and limited to the first two eigenmodes. The examined result is the maximum 
acceleration for the variation of train velocity, see Figure 4.18. 

 

Figure 4.18  Maximum acceleration response for the variation of train velocity using the three 
parameter sets defined in Table 4.2, two eigenmodes and a modal damping of 2%. 
The train load HSLM-A1 is used for all three parameter sets. 

It can be seen in Figure 4.18 that resonance effects occur at β = 1 and 1/2 for all three 
parameter sets and thus confirming the correctness of equation (4.9). 

An additional parameter denoted the critical speed is defined before proceeding to the 
following sections.  

 ,/� = � · �W   (4.11) 

Where: 

vcr = The critical speed for a specific bridge configuration and 
HSLM-A load 

The critical speed is the speed resulting in β = 1.0 for a given coach length D and 
consideration to the first eigenfrequency. In reality this speed is never reached as it is 
unadvisable considering dynamic aspects of railway bridge design. Figure 4.18 gives 
an understanding of how much larger the accelerations become if the speed is 
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reached. It serves nevertheless as a good reference value and it will be used frequently 
in the remainder of the thesis. 

By combining equation (4.8), (4.9) and (4.11) the resonance speed can be shown to be 

 ,���!�.�/� = Ç_`É     (4.12) 

where 

vresonance = train velocity at which resonance effects occur in a 
railway bridge 

Finally by combining equations (4.4), (4.11) and (4.12) an analytical expression for 
calculating the resonance speeds by hand is obtained as 

 ,���!�.�/� = ÈÉ · �a¦�b�2 · M¡¢�     (4.13) 

4.4 The SDOF model 

A model meant for describing the dynamic response of multi-span bridges consisting 
of only one degree of freedom has been established. The purpose of creating such a 
model is partly because it describes the complex dynamic response in a simple way 
which may increase the understanding of this complexity, but also because it greatly 
decreases calculation time and gives an analytical equation of the response that could 
be used for finding guidelines in the design process of railway bridges. 

In this section the theory behind the creation of the SDOF model will be explained. 
This is followed by a verification of the SDOF model’s accuracy. 

4.4.1 Theory 

The examination of a SDOF model that resembles a railway bridge is a continuation 
from previous master carried out at Reinertsen Sweden AB, namely Ekström and 
Kieri (2007) and De Leon and Lasn (2008).  

In Ekström and Kieri (2007) the transformation of a single-span railway bridge was 
made using transformation factors which was first introduced by Nyström (2006), also 
a master thesis carried out at Reinertsen Sweden AB. The transformation factor 
approach creates a transformation factor for stiffness, mass and load respectively. 
These factors are defined so that kinetic energy stored in the beam and SDOF system 
becomes equal, the moved mass and the load exerts the same amount of work. The 
transformation factors are based on the assumption that the beam deforms as a 
sinusoidal curve. 

De Leon and Lasn (2008) compared the transformation factor approach to an 
additional method of transformation, called the force scaling approach. The force 
scaling approach requires considerably less calculations and is also easier to apply on 
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more complex structures. The method was proven to give accurate results for a single-
span bridge.  

One of the aims of this thesis is to examine if it is possible to transform also a multi-
span bridge into a SDOF model. Because of the complexity in multi-span bridges the 
force scaling approach has hence been chosen for this task, and its theory will be 
presented in this section. The interested reader is referred to Nyström (2006) for 
theory on the transformation factor approach. 

A SDOF model has the equation of motion shown in equation (2.2).  To establish this 
model the stiffness K, mass M, damping C and load p(t) needs to be determined. The 
force scaling approach has the following calculation procedure: 

• Chose an arbitrary mass of the SDOF model 
• Calculate the stiffness of the SDOF model so the first frequency of the SDOF 

model and the railway bridge becomes equal 
• Determine the damping 
• Scale the load acting on the bridge to use on the SDOF model so that the static 

deflection of the bridge and SDOF model becomes equal 

Let us go through the four steps in more detail. First an arbitrary mass of the SDOF 
model is chosen as 

 > = Ë · >(�����  , where Τ > 0  (4.14) 

In Section 4.3 it was shown that the response in railway bridges is governed by the 
ratio between load frequency and first eigenfrequency. It is hence important that the 
SDOF model has a frequency that corresponds to the first eigenfrequency of the 
bridge. The fact that an SDOF model only has one eigenfrequency limits the model 
since only the first eigenfrequency of the bridge can be regarded. Resonance effects 
that occur with regard to higher eigenmodes are not given consideration in the model. 
By combining the expression for the eigenfrequency in equation (2.5) and 
equation (4.4) an expression for determining the stiffness is obtained as 

 A = > ·  �a��	¦�b�2 · M¡¢�  
 (4.15) 

The SDOF model is made to resemble the dynamic response using the first 
eigenmode. The damping should therefore be chosen to resemble the modal damping 
of the first eigenmode. Equation (4.16) shows how the damping C can be calculated 
from a known modal damping. 

 @ = 2 · ^ · > · 8��!"    (4.16) 

where  
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 8��!" = ÍA> 
  

Finally the load acting on the bridge is scaled so that the static deflection of the bridge 
and SDOF model becomes equal. The static displacement of the SDOF model is 
defined as 

 '��	��!" = )�d	ÎÏ¼ÐN    (4.17) 

Setting the static displacement in equation (4.17) equal to the static displacement of 
the bridge gives an expression for determining the load acting on the SDOF model as 

 ���	��!" = A · '��	(�����   (4.18) 

The force scaling approach has its name since equation (4.18) re-written forms a 
relation between the load acting on the bridge and on the SDOF model equal to 
K/Kbridge which in De Leon and Lasn (2008) has been called the scaling factor. 

A point in which the largest accelerations are assumed to occur in the bridge needs to 
be chosen before the deflection of the bridge can be calculated. It is assumed in this 
thesis that the largest acceleration will occur in the middle of the largest span. The 
static deflection in time is calculated by using influence lines for the deflection in the 
critical point with consideration to one point load. The influence lines are based on the 
coordinate of the point load which can be replaced with velocity of the point loads 
times the time to get the static deflection in time. By superpositioning the influence of 
point loads in a correct manner a HSLM-A train load can be resembled. The added 
complications with applying the force scaling approach on a multi-span bridge 
compared to on a single-span bridge, as has been made in De Leon and Lasn (2008), 
lies solely in the calculation of the static deflection of the bridge.  

4.4.2 Verification 

The whole concept of the SDOF model is based on the limit of required eigenmodes 
in BV Bro Banverket (2006). As described in Chapter 3 this limit is 30 Hz. It means 
that the eigenmodes that has an eigenfrequency above 30 Hz can be excluded when 
calculating the dynamic response.  

The SDOF model created is meant for calculating the dynamic accelerations. These 
accelerations are strongly affected by higher eigenmodes, as shown by Figure 4.19. 
The only time the SDOF model is capable of describing a more accurate dynamic 
acceleration response is when only the first eigenmode has to be considered. 
However, this is often the case for multi-span bridges. 
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Figure 4.19  Comparison of the maximum acceleration response in a two-span bridge subjected to 
a point load of 100 kN moving with v=50 m/s using different number of eigenmodes. 
The used parameters are E=40 GPa, ¤=2400 kg/m3, L=15 m, �=2, c=0.02. 

A SDOF model based on the theory presented in Section 4.4.1 has been established 
and its Matlab code can be found in Appendix D. The SDOF model’s accuracy have 
been verified against a FE program that also can be found in Appendix D. In the 
verification only the first eigenmode was used in the FE analysis since this 
corresponds to what the SDOF model describes. Table 4.7 shows two sets of 
parameters that have been used in the verification. Figure 4.20 and Figure 4.21 shows 
the acceleration response in time for the SDOF model and the FE analysis using data 
set 1 in Table 4.7. 

Table 4.7  Two parameter sets used in the verification of the SDOF models accuracy. Both 
parameter sets concern a two-span bridge. 

Bridge 
type 

E [GPa] ρ [kg/m3] L [m] μ [-] c [-] HSLM-A v [m/s] 

Set 1 40 2400 15 2.0 0.02 A1 50 

Set 2 40 2400 15 2.0 0.02 A4 75 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.02 0.04 0.06 0.08 0.1

A
cc

e
le

ra
tio

n 
[m

/s
^2

]

Time [s]

1 eigenmode

3 eigenmodes

5 eigenmodes



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2010:37 
48

 

Figure 4.20 Acceleration response in the middle of the second span  using data set 1 in Table 4.7. 

 

Figure 4.21 Acceleration response from Figure 4.20 during the first second. 

Figure 4.22 and Figure 4.23 shows the acceleration response in time for the SDOF 
model and the FE analysis using data set 2 in Table 4.7. 
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Figure 4.22  Acceleration response in the middle of the second span using data set 2 in Table 4.7. 

 

Figure 4.23 Acceleration response from Figure 4.22 during the 2: nd second. 

For the first data set in Figure 4.20  and Figure 4.21there is a close resemblance 
between the SDOF model and the FE analysis. Both the appearance and the amplitude 
of the acceleration response are similar. For the second data set Figure 4.22 and 
Figure 4.23 there is however some lack in accuracy when it comes the amplitude of 
the accelerations, even though the appearance is accurate.  
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A more extensive comparison of the acceleration amplitude has been made by 
examining the variation of maximum acceleration in time for different train velocities, 
see Figure 4.24 and Figure 4.25. A comparison between the acceleration response in 
the middle of the largest span (in this case the second span) and the maximum 
acceleration response in the whole bridge is also made in Figure 4.24 and Figure 4.25.  

 

Figure 4.24  Maximum acceleration response using data set 1 in Table 4.7 with variation in the 
train velocity. 

 

Figure 4.25 Maximum acceleration response using data set 2 in Table 4.7 with variation in the 
train velocity. 
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When higher modes are included the maximum acceleration is likely to occur 
somewhat off the center of the largest span. When only one mode is included however 
Figure 4.24 and Figure 4.25 show that the maximum acceleration occurs in the middle 
of the largest span with just a small error. This is good for the SDOF model since it is 
based on the maximum acceleration appearing in the middle of the largest span. This 
makes the acceleration behavior in the SDOF model more correct. Figure 4.24 and 
Figure 4.25 do however also show that the SDOF model lack accuracy and also that 
this lack of accuracy is not consist for the variation of train velocity. 

In the following section calculations have been made to capture different material and 
geometric parameters dependence on the acceleration amplitude. For the possibility of 
finding such dependencies it is necessary to use a calculation tool that can show if the 
dependencies are consistent for the variation of train velocity. It was stated in the 
beginning of this Chapter that the SDOF model could be used to decrease the 
calculation time for the upcoming calculations if proven accurate enough. But since 
the accuracy varies depending on train velocity the SDOF model has not been used 
further in this thesis. 

It can however be stated that the accuracy of the SDOF model is remarkably good 
considering the models simplicity even for multi-span bridges.   

4.5 Amplitude of the acceleration response 

By calculating the eigenfrequencies of a railway bridge, as shown in Section 4.2, it is 
possible to decide the critical speeds at which resonance occur for a certain train load. 
In Section 4.3 it was also shown that resonance effects occurs for multiples of the 
critical speed for railway bridges and how the resonance speeds can be calculated. 

The equations in Sections 4.2 and 4.3 give together an exact formulation of how the 
resonance speed is calculated. They do not however give any guidance to how large 
the dynamic response will be at this resonance speed. As this thesis partly aims to 
give guidelines for how to estimate the dynamic response it is required to further 
examine the variation in acceleration amplitude of the dynamic response.  

In this section the results from a parameter study made on two- and three span bridges 
is presented. In this parameter study the amplitude of the dynamic response in terms 
of acceleration has been examined at different resonance speeds for the variation of 
both material and geometric parameters. Section 4.5.3 will present the results from the 
parameter study for the individual variation of each material and geometric parameter, 
respectively. A discussion and the conclusions made concerning the amplitude of the 
dynamic acceleration response are presented in Section 4.5.4. 

The dynamic response in the parameter study has been calculated using a Matlab FE 
program developed within this thesis by the authors, see Appendix D. For details 
about meshing, element choice, load application and time integration the reader is 
referred to Appendix D. In comparison to commercial FE software the variation of 
geometric parameters is substantially easier to handle in Matlab. It is also easier to 
apply train loads and variation of train velocity in Matlab.  

Equation (4.13) has been used for calculating the resonance speeds both in the Matlab 
program and when handling the data from it. In the FE calculations mode 
superposition was used utilizing only the first eigenmode to save calculation time. 
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Parameter behaviors that differ for different eigenmodes are beyond the time limit of 
this thesis and therefore the use of additional eigenmodes is unnecessary. 

In this section a selection of figures are presented to give the reader a comprehensible 
presentation of the results from the parameter study. For the interested reader a more 
extensive gathering of figures from all the analysis made can be found in Appendix B. 

4.5.1 Method 

In this section the method behind the parameter study will be presented. The section is 
meant to clarify what calculations that have been performed and how the data for the 
figures that will be presented have been extracted. 

The time response of the vertical acceleration when a train runs over a bridge is 
complex. However the shape of this response is not of interest in the process of 
designing a railway bridge. Only the maximum acceleration in time is of interest. 
Therefore there is no necessity in examining the actual response in time, but rather 
only the maximum acceleration. When designing a railway bridge a range of train 
velocities need to be considered however, see Chapter 3. Changing the train velocity 
may result in a completely different acceleration response in time and hence also a 
different maximum acceleration.  

The process of creating the Matlab programs that have been used for the parameter 
study can be divided in steps. First a program that calculates the response in time for a 
fixed train velocity and parameter set was created and verified against ADINA. Then 
this program was modified to calculate the response in time for every train velocity of 
interest and from these extracting the maximum acceleration response, see Figure 
4.26. 
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Figure 4.26  Illustrative figure of how the acceleration response in time has been gathered in a v-
a plot. 

The method applied in the parameter study has been to first calculate the maximum 
acceleration response in time for the variation of train velocity with a certain train 
load and set of material and geometric parameters, as shown by Figure 4.26 procedure 
is then repeated with the independent variation of one variable. The variation in 
amplitude of the acceleration response for changing that variable can then be studied 
by examining the amplitude for fixed values of β. Since the acceleration response at 
resonance often governs the determination of design acceleration in real life projects 
the β values 0.5, 0.33, 0.25 and 0.2 have been examined which corresponds to 
resonance speeds. Figure 4.27 shows how the data at a constant value of β have been 
extracted to show the accelerations dependence upon a variable of interest. 
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4.5.2 Extent of the study 

In this section an overview of all the performed calculations will be presented. The 
section is meant to show the extent of the parameter study together with the required 
performance to achieve this extent. 

The examined parameters are the Young’s modulus, E, the density, ρ, the total bridge 
length, Ltot, the span relation, μ, and the modal damping c. Calculations have been 
performed on both two- and three-span bridges. Table 4.8 shows the extent of the 
parameter study. 

Table 4.8 Extent of the parameter study 
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Two-span bridge Three-span bridge 

A1 A4 A8 A1 A4 A8 

E [GPa] 5 15-60 15-60 - 15-60 - - 

ρ [kg/m3] 200 2800-4600 - - 2200-4000 - - 

Ltot [m] 0.5 13-22.5 13-22.5 15-24.5 - - - 

µ [-], η }-~ 0.05 1-1.95 1-1.95 1-1.95 0.5-1.45 0.5-1.45 0.5-1.45 

c [-] 0.001 0.01-0-029 - - - - - 

a 
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x1 x2 x3 x4 

x 

x1 x2 x3 x4 

Figure 4.27 Illustrative figure of how the acceleration at a Ñ value have been extracted and 
gathered in a figure that shows the accelerations dependence on the examined 
variable. 
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It is seen in Table 4.8 that the train loads HSLM-A1, -A4 and -A8 have been chosen 
for the parameter study. These loads have been chosen as they have different values of 
every parameter that defines the HSLM-A train loads. 

The calculations behind the parameter study are very time consuming. As mentioned 
in Section 4.5.1 the response in time must be calculated for every train velocity of 
interest to receive the response from one single set of parameters. Table 4.8 show that 
this calculation procedure has been repeated 250 times using different parameter sets. 
This is despite limiting the parameter study to three HSLM-A train loads.  

For the examination of every parameter the train velocity has been varied within the 
interval of 100- 360 km/h. Both the interval of the train velocity and the size of the 
examined parameters shown by Table 4.8 have been chosen to resemble realistic 
values. 

When examining one variable the remaining data set have been chosen to capture the 
resonance peaks of interest, namely at β=0.5, 0.33, 0.25 and 0.2. This means that 
different data sets have been chosen for the examination of different variables. The 
data set used is shown in the caption of every figure presented from the parameter 
study later on. 

4.5.3 Results 

The effect on the acceleration amplitude in railway bridges from varying different 
material and geometric parameters have been examined. Each parameter has been 
examined individually and the results are presented in this section in a corresponding 
way. The cross-section defined in Section 4.1 have been used for all analysis 
presented in this section. 

4.5.3.1 Variations of mass 

The mass has been varied by changing the density. When the mass per meter of a 
bridge length is increased the eigenfrequencies, and consequently the resonance 
speeds, will decrease. As can be seen in equation (4.13) the critical speed depends on 
the inverse of the square root of the mass. Figure 4.28 shows an example of the 
maximum acceleration response in a bridge for different train velocities and it is seen 
how the resonance speeds decrease as the mass increase.  
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Figure 4.28 Acceleration response for a two-span bridge subjected to HSLM-A1 using E = 30 GPa, Ltot = 16 m, � = 2 and ̂  = 0.02. 

In Figure 4.28 it can be seen that the shape of the acceleration response curve is kept 
as the mass of the examined bridge varies. The accelerations at the resonance speeds 
have been collected and plotted against each respective density in Figure 4.29. 

 

Figure 4.29 Acceleration response for a two-span bridge subjected to HSLM-A1 using E = 30 GPa, Ltot = 16 m, � = 2 and ̂  = 0.02 at three resonance speeds. 

Eurocode states that the amplitude of the acceleration response has an inverse 
proportionality against the mass. Figure 4.30 shows the normalized curves from 
Figure 4.29, plotted against the inverse of each respective density. Here it can be seen 
that the statement in Eurocode is true. It is important to note that the acceleration 
amplitude has the same dependence for any speed, and hence only one line can be 
seen in Figure 4.30. 
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Figure 4.30  Acceleration from Figure 4.29 plotted against the inverse of the density. 

4.5.3.2 Variation of bending stiffness 

From equation (4.13) it is known that the resonance speeds depend on the square root 
of the bending stiffness. An increase in the bending stiffness thus leads to the 
resonance peaks appearing at higher speeds. In this thesis the variation of bending 
stiffness has been examined by varying the module of elasticity. Figure 4.31 and 
Figure 4.32 shows examples of the acceleration response for the variation of train 
velocity for a two- and three-span bridge respectively. 
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Figure 4.31 Acceleration response for a two-span bridge subjected to HSLM-A1 using  = 2800 kg/m3, Ltot = 16 m,  = 2 and  = 0.02. 
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Figure 4.32 Acceleration response for a three-span bridge subjected to HSLM-A1 using ¤ = 3000 kg/m3, η = 1, Ltot = 25 m, , κ = 1 and ̂  = 0.02. 

It can be seen in Figure 4.31 and Figure 4.32  that both the acceleration amplitude and 
shape are completely independent of the choice of module of elasticity and hence also 
independent of the bending stiffness. For the purpose of giving more credibility to this 
shown phenomenon and give further insight in the response for the reader that is not 
too acquainted with the fields of dynamics additional calculations have been made in 
ADINA, see Figure 4.33 and Figure 4.34. 

 

Figure 4.33 Acceleration response in time using HSLM-A1 and E = 30 GPa, ¤ = 2400 kg/m^3, 
Ltot = 15 m, � = 2, ̂  = 0.02 and v = 399 km/h. The response is calculated in ADINA. 
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Figure 4.34  Acceleration response in time using HSLM-A1 and E = 50 GPa, ¤ = 2400 kg/m^3, 
Ltot = 15 m, � = 2, ̂  = 0.02 and v = 516 km/h. The response is calculated in ADINA. 

Figure 4.33 and Figure 4.34 shows the acceleration response in time using two 
different sets of module of elasticity and train velocity. The choice of parameter sets 
have been made to capture the response in time at vcr/2 or β = 0.5. The figures show 
identical response curves but with different time axis implying that the maximum 
acceleration response are the same using the two different parameter sets. To show 
why the response in time becomes identical the analytical solution for a SDOF model 
has been examined, see Appendix E. 

4.5.3.3 Variations of geometric parameters 

The determination of dynamic acceleration response in railway bridges is a complex 
problem. The examinations of material parameters in Sections 4.5.3.1 and 4.5.3.2, 
though showed that the dynamic response has a simple relation to these parameters, 
which implies that the complexity solely lies in the variation of geometry. 

How the acceleration response depends on geometric parameters cannot be expressed 
in separate expressions as for the material parameters. Instead they depend on each 
other. The geometric parameters for a bridge exist of the total bridge length and span 
relations. The reader should acknowledge however that the geometric parameters does 
not only include the total bridge length and span relation. There are also additional 
geometric parameters in the load in the form of bogie axle length and coach length. 
And it is a combination of these four geometric parameters together that affects the 
dynamic response.  

With the goal of capturing the general variation trend of the acceleration response, 
examinations have still been performed on the geometric parameters. Variations in the 
load parameters have not been performed. Instead different HSLM-A loads have been 
used to examine the dynamic response during the variation of total bridge length and 
span relations independently. 
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4.5.3.4 Variation of total bridge length 

The variation of total bridge length has been examined for two-span bridges only. The 
variation of total bridge length on two-span bridges will be shown to affect the 
dynamic response in such a complex way that no additional conclusions are presumed 
to be gained from analysis on three-span bridges. Figure 4.35 and Figure 4.36 shows 
examples of the acceleration response for a two-span bridge subjected to a HSLM-A 
load for different bridge lengths. 

 

Figure 4.35  Acceleration response for a two-span bridge subjected to HSLM-A1 using E = 40 GPa, � = 2, ¤ = 3000 kg/m3 and ̂  = 0.02. 

 

Figure 4.36  Acceleration response for a two-span bridge subjected to HSLM-A1 using E = 40 GPa, � = 2, ¤ = 3000 kg/m3 and ̂  = 0.02. 
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acceleration has different dependencies on the bridge length for different values of β, 
i.e. the acceleration amplitude varies differently in different resonance peaks when the 
bridge length is changed, see Figure 4.35- Figure 4.38. More figures, similar to Figure 
4.35- Figure 4.38 are presented in Appendix B. 

 

Figure 4.37  Acceleration response in resonance peak at vcr/2 for different train loads and a two-
span bridge using E = 40 GPa, � = 2, ¤ = 3000 kg/m3 and ̂  = 0.02. 

 

Figure 4.38  Acceleration response in resonance peak at vcr/3 for different train loads and a two-
span bridge using E = 40 GPa, � = 2, ¤ = 3000 kg/m3 and ̂  = 0.02. 

The following conclusions can be made concerning the acceleration amplitudes 
dependence of the total bridge length: 

• The dependence differs for different β values, meaning that the design velocity 
of the bridge considered will affect the dependence. 
 

• The dependence will differ between eigenmodes for a constant train velocity 
since these correspond to different β values. 
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• The dependence will differ between HSLM-A train loads for a constant train 
velocity since these correspond to different β values. 

These conclusions together make it difficult to derive an expression for how the 
acceleration amplitude will depend on the total bridge length, since the number of 
possible β values and eigenmodes for a continuous structure are both infinitely large. 

The general trend from varying the total bridge length that was found during the 
parameter study was that the acceleration amplitude decrease when the total bridge 
length is increased. However if this decrease depends on the combination of 
geometric parameters is unclear since increasing the total bridge length also increases 
the total bridge mass. 

4.5.3.5 Variation of span relation for a two-span bridge 

The eigenfrequencies for a two-span bridge was shown in Section 4.2 to be affected 
differently by the variation of span relation μ depending on the examined eigenmode. 
This knowledge alone makes it impossible to derive an expression for the acceleration 
amplitudes dependence on μ. Each eigenfrequency will have a different dependence 
and the β value will hence be affected differently for each eigenmode. Therefore the 
eigenmodes individual response is super-positioned differently for different values of 
µ.  
The variation of the span relation μ has still been examined with the purpose of 
capturing the general effect on the acceleration amplitude. Three different HSLM-A 
loads have been used in this examination, namely A1, A4 and A8. These three 
HSLM-A loads have been chosen as they differ in every load parameter that defines 
their appearance. Figure 4.39 and Figure 4.40 shows examples of the acceleration 
response for a two-span bridge for different values of the span relation using A1 and 
A8 respectively. 

 
Figure 4.39  Acceleration response for a two-span bridge subjected to HSLM-A1 using E = 20 GPa, Ltot = 16 m, ¤ = 3000 kg/m3 and ̂  = 0.02. 
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Figure 4.40  Acceleration response for a two-span bridge subjected to HSLM-A8 using E = 20 GPa, Ltot = 16 m, ¤ = 6000 kg/m3 and ̂  = 0.02. 

The acceleration amplitude has been gathered for constant β values corresponding to 
resonance speeds, namely 0.5, 0.33, 0.25 and 0.2. Figure 4.41 and Figure 4.42 shows 
the variation of acceleration amplitude for β equal to 0.5 and 0.33. More detailed 
results are presented in Appendix B. 

 

 

Figure 4.41  Acceleration response in resonance peak at vcr/2 (�=0.5) for different train loads  
using E = 20 GPa, Ltot = 16 m, ̂  = 0.02 and ¤ = 3000,4000 and 6000 kg/m3 for A1, 
A4 and A8 respectively. 
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Figure 4.42  Acceleration response in resonance peak at vcr/3 (� = 0.33) for different train loads  
using E = 20 GPa, Ltot = 16 m, ̂  = 0.02 and ¤ = 3000,4000 and 6000 kg/m3 for A1, 
A4 and A8 respectively. 

The acceleration amplitude seems to have a similar dependence on the span relation μ 
for all examined values of β and all examined train loads. An interesting observation 
is that the acceleration amplitude increases when small the asymmetry is created in 
the bridge. For a two-span bridge it was shown in Section 4.2.1 that when asymmetry 
was increased the first eigenfrequency decreased while the second increased. The 
criterion set by the Swedish railway administration stating that only eigenfrequencies 
up to 30 Hz need to be considered then raises an interesting discussion. Because of 
this criterion there is often only need for considering the first, or first and second 
eigenmode. If creating small asymmetry always leads to increased accelerations this 
means that an increase of μ that puts the second eigenfrequency above 30 Hz may 
lead to lower design acceleration while the true acceleration increase. There might not 
be any conclusions to make of this observation, except that the 30 Hz criterion set by 
the Swedish railway administration might be considered questionable.  

4.5.3.6 Variation of span relation for a three-span bridge 

For the same reason as for a two-span bridge it is not possible to derive an expression 
for the acceleration amplitudes dependence on the span relation η for three-span 
bridges. Examinations have still been performed with the purpose of capturing the 
general dependence. Resulting figures from this examination can be found in 
Appendix B. Figure 4.43 and Figure 4.44 show the variation of acceleration amplitude 
at β=0.5 and β=0.33 from the examination. 
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Figure 4.43  Acceleration response in resonance peak at vcr/2 (� = 0.5) for different train loads  
using ¤ = 2500 kg/m3, Ltot = 20m, ̂  = 0.02, κ = 1  and E = 20,14 and 10 GPa for A1, 
A4 and A8 respectively. 

 

Figure 4.44  Acceleration response in resonance peak at vcr/3 (� = 0.33) for different train loads  
using ¤ = 2500 kg/m3, Ltot = 20 m, ̂  = 0.02, κ = 1  and E = 20,14 and 10 GPa for 
A1, A4 and A8 respectively. 

The same conclusion as for a two-span bridge can be made for three-span bridges 
concerning the span relation η. The acceleration amplitude seems to increase when 
small asymmetry is created. However one deviating result was obtained in the 
analysis which increases the uncertainties in this conclusion, see Figure 4.43. 
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0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.5 0.7 0.9 1.1 1.3 1.5

A
cc

e
le

ra
tio

n 
[m

/s
^2

]

η = L2/(L1+L3) [-]

vcr/2 A1

vcr/2 A4

vcr/2 A8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.5 0.7 0.9 1.1 1.3 1.5

A
cc

e
le

ra
tio

n 
[m

/s
^2

]

η = L2/(L1+L3)  [-]

vcr/3 A1

vcr/3 A4

vcr/3 A8



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2010:37 
66

 
Figure 4.45  Acceleration response for a two-span bridge subjected to HSLM-A1 using E = 40 GPa, � = 2, ¤ = 4000 kg/m3 and Ltot = 15 m. 

4.5.4 Conclusions 

In Section 4.5.3 the results from the individual examinations of material and 
geometric parameters where presented. Several conclusions where made already in 
this section but will be gathered here for a more comprehensible presentation. Also 
some complementary observations will be presented concerning the general dynamic 
response behavior in railway bridges.  

The following observations were made during the parameter study: 

• The acceleration amplitude is independent of the module of elasticity. 
 

• The acceleration amplitude is proportional to the inverse of mass. 
 

• The total bridge length’s effect on the acceleration amplitude depends on the 
value of β. This makes it hard to find an expression for this dependence since 
different train loads and eigenmodes will have a different effect for one 
constant train velocity. 
 

• When comparing the acceleration amplitude in the resonance peaks for vcr/k, 
with k=2,3,4,5, the highest amplitude is not always ordered from lowest to 
highest resonance peak, i.e. the following expression 
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does not hold for all combinations of geometric parameters. This depends 
partly on the additional observation of cancellation effects that can completely 
remove one of the resonance peaks for some sets of geometric parameters. 
 

• The highest acceleration amplitude does not necessarily occur in a resonance 
peak if a maximum limit for the examined train speed is set (This mostly 
occurred when cancellation effects removed the resonance peak at vcr/2). 
 

• The resonance effects does not always occur exactly at the critical speeds. This 
is especially true when cancellation effects occur but the phenomenon appears 
also for other speeds with small differences of around 5 km/h.  

4.6 Case studies 

The discussion presented in Section 4.5.4 can be seen as the result from the 
examination of acceleration amplitudes. In this section three special case studies will 
be presented where all accumulated knowledge from the observations made will be 
applied to create guidelines and simplifications for three common railway bridge 
types. Two multi-span bridges have been examined: a two-span bridge with equal 
span lengths and a three-span bridge with equal span. Also a single-span bridge has 
been examined since it is a good application for the developed calculation tools in this 
section and serves as a basis for the 2D/3D comparison later in Chapter 5.  

The results presented in this section are in the form of diagrams, and referred to as 
design curves throughout this thesis. The name comes from the main concept of 
plotting the train velocities against the design acceleration that this velocity 
corresponds to instead of the actual acceleration. It is shown that the design curves 
can be used to decide which train loads that dominate the response for each specific 
bridge type. It is also possible to easily calculate the exact design acceleration for a 
certain set of material parameters. And as a third sector of application the curves can 
be used as guidance to which combination of bridge parameters that is preferable in a 
dynamic aspect. 

4.6.1 Development of the design curves 

In Section 4.5.3 and 4.5.4 it was shown that the geometric parameters of a railway 
bridge have a complicated effect on the acceleration response. Developing guidelines 
that treats an arbitrary combination of bridge length and span relations was shown to 
be a difficult task as the acceleration has a different dependence upon these variables 
for different eigenmodes and HSLM-A train loads. If a simplified model treating any 
combination of geometric parameters would be developed it would have to express 
different dependencies for every geometric parameter combination that is of interest. 

In Section 4.5.4 some conclusions about the general response behavior of the 
accelerations were made concerning railway bridges. It was shown during the 
parameter study performed in Section 4.4 that it is not possible to predict which train 
velocity that will produce the design acceleration. Even if higher resonance peaks tend 
to give a higher acceleration response it is not consistently so. Also if a higher limit 
for the considered train velocities is set (which it always is in real life projects) it is 
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not necessarily the resonance peaks that contribute with the highest acceleration 
response. 

However a discovery that contributes to increased possibility in finding guidelines for 
the dynamic response of railway bridges was found. The material parameters of a 
railway bridge have simple effect on both eigenfrequencies and the resulting 
acceleration amplitude. This conclusion forms the basis of the development of the 
design curves as the response behavior of the acceleration is kept under the variation 
of material parameters. Let us consider the difference in acceleration response from 
varying the module of elasticity (or bending stiffness), see Figure 4.31. An increase in 
the module of elasticity leads to increased eigenfrequencies and hence increased 
critical speed of the train loads, but the amplitude of the acceleration is unaffected. In 
Figure 4.31 the HSLM-A1 train load is used. If the different curves in Figure 4.31 are 
plotted against their corresponding β value for the A1 load the curves will become 
identical.  

The same approach can be used for the variation of density (or mass per meter of the 
bridge) with the difference that only the shape of the curves will be identical as the 
amplitude will vary. The difference in acceleration amplitude is however consistent 
for the variation of train velocity. For this reason the parameter τ is defined as 

 Ö = � · �     (4.19) 

where 

  m = The mass per meter length of the bridge 

  a = The acceleration response 

Figure 4.46 is an illustration of the transformations from a v-a plot to a β-τ plot. 
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As mentioned above it is not possible to decide which train velocity (or β value) will 
contribute to the highest acceleration response. Therefore it is here examined 
graphically. Since the material parameters’ effect on the acceleration response, as 
shown in Figure 4.36, can be expressed by one single curve it is possible to develop 
one curve for each specific set of geometric parameters, from which it is possible to 
extract the exact acceleration response. 

In the design of railway bridges the only acceleration response of interest is the 
highest one, the design acceleration. Therefore it is here suggested that a curve 
showing the corresponding design acceleration for different values of β is developed. 

Variation of mass Variation of bending stiffness 
a a 

v v 

a a 

Ñ Ñ 

Ñ 

× 

Figure 4.46  Illustration of how different acceleration responses under the variation of material 
parameters can be expressed by one identical curve.  
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This type of curve will be referred to as a design curve throughout this thesis. Figure 
4.47 shows the continued transformation of the illustrative curve in Figure 4.46 into a 
design curve. 

 

 

 

In Section 4.5.3 it was shown that the acceleration response has a complicated 
dependence on geometric parameters. The main conclusion stated was that the 
different dependencies for different geometric parameter sets have to be modeled 
separately. This is however not a possibility when the variation of several geometric 
parameters is of interest, since the number of different dependencies (or figures) to be 
developed becomes too extensive. If, on the other hand, special case studies are 
chosen it is possible to eliminate some of the geometric parameters. In this thesis three 
such case studies is made, which will be discussed later. What they all have in 
common is that fixed span relations have been chosen leaving only one geometric 
parameter for variation, namely the total bridge length. One design curve has to be 
developed for each length of interest for the different case studies. But if the design 
curves for one specific case study are gathered in one figure it would then serve as a 
useful comprehensive graphical calculation tool for the dynamic response of this 
bridge configuration. 

There is however two additional complications whose solutions need to be clarified. 
First off the damping needs to be considered. It was shown in Section 4.5.3.7 that the 
damping’s effect on the acceleration response varies depending on the value of β. The 
damping showed large change in effect at the resonance speeds but none in between. 
However since it was decided to create different design curves for each bridge length 
this is not a problem in practice. The code specifies the damping to be used for each 
bridge length, see Chapter 3. The design curve will hence include the effect of the 
considered bridge length and its corresponding damping. 

Finally there are for each bridge length ten different HSLM-A train loads to account 
for. In real life design the only train load of interest is the one contributing to the 
highest acceleration response. However, it is hard to estimate which of the ten loads 
that will contribute to the highest acceleration, often resulting in a time consuming 
process where the response from all ten loads are examined. By plotting the design 
curves for each HSLM-A train load for a specific bridge length in one figure it is 
possible to graphically produce a design curve that includes the effect of all ten train 

Ñ 

× 

Ñ 

× 

Figure 4.47  Transformation of a regular response curve into a design curve. 
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loads. One problem is that each train load corresponds to different β-τ plots since they 
all have different definitions of the corresponding β value because of different coach 
lengths D. In this thesis this has been solved by simply plotting all the curves against 
the β value of the HSLM-A1 train load. Figure 4.48 shows the final transformation of 
the illustrative design curve in Figure 4.47 into a design curve that includes the effect 
of all HSLM-A train loads. 

 
 

 

4.6.2 The design curves area of use 

In real life design of railway bridges the dynamic aspect plays an important role in the 
design process. However, static analyses have been used in a larger extent in a historic 
perspective, since the requirement of dynamic analysis of railway bridges was 
introduced relatively recently in 2006. Static compared to dynamic analyses have in 
general simpler calculation procedures and engineers today possess larger experience 
with static aspects that govern railway bridge design. Therefore the early stage of the 
design process is today in a large extent still governed by calculations and guidelines 
based on experience from static analysis, even though the demands on dynamic 
criteria may prove to govern the final design. If a railway bridge is designed using 
guidelines based on static analysis and then shown to give unsatisfactory results in a 
dynamic aspect the design process becomes cumbersome and expensive.  

Using the design curves it is possible to easily determine the design acceleration for a 
certain set of material parameters and total bridge length. It is important to note that 
the design acceleration determined from a design curve is not an approximation but in 
fact the exact design acceleration from a 2D analysis. So in the iterative process of 
statically designing the cross-section of a railway bridge the designer can easily check 
how the bridge performs in a dynamic aspect to avoid complications later in the 
project. The calculation is made in two steps. First the β value corresponding to the 
set of bridge parameters and design train velocity is calculated as 

 � = ÇÈ · ¦2
�1 · M�¡¢    (4.20) 

where 

Ñ 

× 
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× 

Figure 4.48  Illustration of how the response from different HSLM-A train loads can be 
combined in a single design curve 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2010:37 
72

  EI = Bending stiffness of the bridge 

  m =  Mass per meter length of the bridge 

  L =  Total bridge length 

  v =  Maximum allowed train velocity on the bridge 

D =  Coach length of the HSLM-A load chosen as reference for the β 
value. 

g1 = Value of the first eigenfrequency function for the given choice 
of span relations. 

The calculated value of β corresponds to a value of τ which is found by using the corresponding design curve. When the value of τ is known the design acceleration can be calculated using equation (4.19). 
The design curves can also serve as guidance in the early design project life of a 
railway bridge since they basically give a complete overview of how the dynamic 
response change with modifications of the cross-section and changes in material 
parameters. Take the final design curve from the illustrative figures in the previous 
section as an example, see Figure 4.49. 

 
 

 

 

It will be shown in the upcoming presentation of real developed design curves that 
there, in the intervals of relevant β values, often exist drastic changes in the design 
curves. Choosing the dimensions and materials of the cross-section with consideration 
to these changes greatly increases the possibility of satisfying the demands on 
maximum acceleration response. By combining equation (4.4), (4.8) and (4.10) an 
equation that gives guidance to the choice of cross-section and material parameters is 
obtained as 

Ñ 

× 

β* 

Figure 4.49  Illustration of the value �* which represents a value of � which 
is preferable to fall below in a dynamic aspect if relevant values 
of � are in the same range. 
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 ®³ = â ²½·ÇÈ·ãä·�ÊåJ    
 (4.21) 

where 

  EI = Bending stiffness of the bridge 

  m =  Mass per meter length of the bridge 

  L =  Total bridge length 

  v =  Maximum allowed train velocity on the bridge 

D =  Coach length of the HSLM-A load chosen as reference for the β 
value. 

g1 = Value of the first eigenfrequency function for the given choice 
of span relations. β* = Appropriate maximum value of β according to Figure 4.49. 

 

As a third sector of application the design curves can be used to verify more complex 
FE models created in commercial software. If a 3D model has been created it can be 
verified by using mode superposition with just the initial eigenmodes that does not 
cause rotation. This is further dealt with in Chapter 5. 

4.6.3 Limitations of the design curves 

The damping specified in Eurocode differs between reinforced concrete bridges and 
pre-stressed bridges. This means that different design curves need to be developed 
depending on the type of bridge that is designed. 

Eurocode specifies that it is not allowed to interpolate between responses using 
different bridge lengths. If an interpolation is made between two design curves this 
result can hence only be treated as a rough estimation of the true response.  

The number of eigenmodes used will affect the appearance of the design curves and 
must hence be chosen before design curves can be developed. The chosen number of 
eigenmodes for the special case studies in this thesis has been estimated based on the 
previous examination of eigenfrequencies for multi-span bridges. These choices will 
be presented in the upcoming section. 

The design curves developed in this Chapter are all based on 2D analysis. If a 3D 
geometry is considered additional accelerations can be expected, since it basically 
mean that more eigenmodes have to be included. More about this limitation will be 
presented in Chapter 5 where dynamic analysis on railway bridges in 3D are treated. 
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4.6.4 Design curves for the three case studies 

Three different bridge configurations have been chosen for the development of real 
design curves. These bridge configurations are: 

• Single-span bridge 
• Two-span bridge with equal span lengths 
• Three-span bridge with equal span lengths 

As mentioned in Section 4.6.2 one design curve for each bridge length of interest has 
to be developed. Also the number of eigenmodes for the bridge configuration needs to 
be chosen. Table 4.9 shows the chosen bridge lengths taken in consideration and the 
choice of eigenmodes used in the calculations.  

Table 4.9 Number of eigenmodes and considered bridge lengths for the four case studies 

Bridge configuration Considered lengths Number of eigenmodes used 

Single-span bridge 7-20 m 2 

Two-span bridge 16-30 m 2 

Three-span bridge with 
equal span length 

30-43.5 m 5 

The developed design curve are all for reinforced concrete. As mentioned pre-stress 
concrete corresponds to different damping according to BV Bro Banverket (2006) and 
their design curves must hence be developed separately.  

The choices of lengths are meant to resemble common lengths for each respective 
bridge configuration. The creation of design curves has been limited to these length 
intervals since it is beyond the scope of this thesis to develop a complete calculation 
tool for the bridge configurations. The performed work has been restricted to the time 
limit of the thesis.  

The chosen numbers of eigenmodes for each respective bridge configuration have 
been chosen based on the examination of eigenfrequencies in Section 4.2. For a 
single-span bridge it is known from experience at Reinertsen Sweden AB that a 
common value of the first eigenfrequency is above 8 Hz. In many design cases only 
the first eigenfrequency falls below 30 Hz since the second is four times larger, but it 
is not always so. For the purpose of getting design curves giving results on the safe 
side both the first and second eigenmode have been included in the development of 
design curves for single-span bridges. For the two- and three-span bridge all 
frequencies that fall below the 30 Hz criterion when the first frequency equals 8 Hz 
have been considered. 
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The calculation procedure presented in Section 4.5.1 has been performed for the four 
case studies. A comparison of design curves from each respective HSLM-A train load 
for each considered bridge length has been made. These design curves have then been 
gathered in the final design curve for each bridge length and finally the design curves 
for every length of each bridge configuration have been gathered in one figure, see 
Figure 4.50 to Figure 4.52. For the purpose of giving a comprehensive presentation of 
the developed design curves all figures cannot be presented in the report. The 
interested reader is however referred to Appendix C where an extensive presentation 
of all figures from the development is made. 

 

Figure 4.50  Design curves for a single-span bridge in the bridge length range of 7-20 m 

 

Figure 4.51  Design curves for a two-span bridge with equal span lengths in the bridge length 
range of 16-30 m 
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Figure 4.52  Design curves for a three-span bridge with equal span lengths in the bridge length 
range of 30-43.5 m 

The developed design curves showed distinguished changes in the τ value for 
basically every bridge configuration and examined bridge length. This implies that 
there is great use in equation (4.21). This equation can be simplified for each 
examined bridge configuration for which the value of the eigenfrequency function is 
known. Also utilizing that the value of D in equation (4.21) equals 18 m since the 
HSLM-A1 train load have been used as reference for the β value in the design curves 
gives the following case specific expressions for each respective case study: 

For a single-span bridge: 

 ®³ = â ²½·Çæ´·ãäåJ    
 (4.22) 

For a two-span bridge with equal span lengths: 

 ®³ = â ²½·Çst´·ãäåJ    
 (4.23) 

For a three-span bridge with equal span lengths: 

 ®³ = â ²½·ÇçW´·ãäåJ    
 (4.24) 
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Every length specific design curve has been created as the maximum curve of all the 
corresponding load specific design curves. As mentioned above all the figures 
showing the load specific design curves cannot be included in the report, but as an 
example consider Figure 4.53. 

 

Figure 4.53  Design curves for each HSLM-A load for a three-span bridge with equal span lengths 
and a total length of 33 m 

Similar curves as Figure 4.53 have been produced for every considered bridge length 
and bridge configuration. The curves show what HSLM-A load that governs the 
acceleration response. In Figure 4.53 it can be seen that A2, A7 and A9 governs the 
response for a three-span bridge with equal span lengths and a total length of 33 m. 

It was found during the development of the design curves that there is a large 
variation in what HSLM-A load that governs the acceleration response. There was 
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acceleration response for any length or bridge configuration. For the rare occasions 
when it did govern the response it was for high and short intervals of β. Another load 
that did not govern the response often was the A4, even if it did have influence for 
shorter lengths of the two-span bridge.  

The HSLM-A loads that govern the acceleration response most frequently where A2 
and A9. Both these loads have distinguishing load parameters compared to the other 
load combinations. A9 have together with A10 the largest value of the load P, namely 
210 kN. A9 have however the smallest coach length of the two making resonance occur earlier. A2 has the largest bogie axle length at 3.5 m compared to the most 
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It was found that A2 governs the response for a lower interval of β for every 
considered length and bridge configuration, with one single exception for a single-
span bridge of 17 m length.  

4.6.5 Two calculation examples 
In this section two examples of how to use the developed design curves is presented. 
The first example treats how the exact design acceleration can be calculated when all 
geometric and material parameters are known. The second example treats the use of a 
design curve as guideline in an early design stage when the cross-section is yet to be 
defined.  

Consider first the calculation of design acceleration when all material and geometric 
parameters are known. Say we have a single-span bridge that is 10 m long with a 
rectangular cross-section that is 10 m wide and 0.6 m high. The material parameters 
are E=40 GPa and ρ=2400 kg/m3. The bridge should withstand train velocities of 250 
km/h. According to BV Bro Banverket (2006) the bridge should then be designed for 
the train velocity 1.2·250=300 km/h or 83.33 m/s, see Chapter 3. Using equation 
(4.20) we get that 
 � = ÇÈ · ¦2

�1��	 · M>¡¢ =  çs.ssWç · 102
µ/2 · M V·2400¢·40·109 ≈ 0.417  

 

From Figure 4.54 we get the corresponding design curve for the studied bridge 
configuration. 

 

Figure 4.54  Design curve for a single-span bridge with a total length of 10 m. 
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 � = é³ = 70000V·2400 ≈ 4.34 m/s
2  

Consider now the following example. Say we are designing a two-span railway bridge 
with equal span-lengths which is supposed to be 20 m in total bridge length and have 
a width of 10 m. Again the bridge is designed for the train velocity 300 km/h. From 
Figure 4.51 we get the design curve corresponding to the bridge configuration, see 
Figure 4.55. 

 

Figure 4.55  Design curve for a two-span bridge with equal span lengths and a total length of 
20 m. 

From Figure 4.55 it is seen that a drastic change in the acceleration occurs at β values 
higher than 0.38. Let us call this appropriate choice of β for β* . Falling below β* 
should be beneficial in a dynamic aspect with consideration to the demands on 
vertical acceleration. Using equation (4.23) we can calculate that 

 ®³ = â ²½·Çst´·ãäåJ = âJ�½·çs.ssst´·�.sç åJ  ≈ 6 · 10q 
  

correspond to an appropriate ratio between the bending stiffness and the mass per 
meter of the bridge to achieve this. This limit for the ratio between bending stiffness 
and mass per meter length is a lower limit. Increasing the ratio leads to an increased 
first eigenfrequency and a lower β value. Say we are interested in a rectangular cross-
section. The expression can then be simplified even further since 

 ¡¢� = ¡ ë�s12ë�¤ = ¡¤ · �J12 
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The expression becomes independent of the width and a lower limit for allowed 
height is received. If we use a density of 2400 kg/m3 and module of elasticity of 40 
GPa and assume that there is no ballast we get that 

 � ≈ M6 · 10q · 12 « = 0.657 �  
  

Basically we have now calculated that if we use a rectangular cross-section and a 
height above 0.66 m we will avoid the drastic peak in the acceleration design curve. 
To be sure this corresponds to the acceleration demand set by BV Bro Banverket 
(2006) we can calculate an upper limit for τ using equation (4.19). Say the limit for 
maximum allowed vertical acceleration is 5 m/s2, which corresponds to a bridge 
without ballast. Then we get that 

 Ö = ë · � · ¤ · �� = 10 · 0.657 · 2400 · 5 = 78840   

The calculated higher limit for τ is higher than the τ value corresponding to the 
chosen β*  value of 0.38. It can thus be concluded that a rectangular cross-section with 
a height larger than 0.66 m would be satisfactory in a dynamic aspect for the 
considered bridge. 
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5 Analysis in 3D 

In Chapter 4 it was shown that the design acceleration for one specific set of 
geometric parameters can be presented by one single curve, independent of the choice 
of material parameters and designing train velocity. This curve is throughout this 
thesis called a design curve. The design curves were shown to give great support in 
the design process of railway bridges with regard to the demands on vertical 
acceleration. There were, however, some limitations for the use of the curves. This 
Chapter treats the main limitation, namely that the design curves were developed 
through 2D analysis. 

All real life structures are three-dimensional. However the designs of many structures 
and details are made in 2D since these analyses in many cases can be made to 
resemble the real behavior. 3D analyses are significantly more complicated and time 
consuming than 2D analyses and hence it is preferable to use a 2D analysis if 
possible.  

This chapter treats the difference between the acceleration response in 2D and in 3D 
for railway bridges. The major difference comes from the fact that a 3D analysis 
model has eigenmodes that twist around the bridge length axis. This means that the 
response is be governed by eigenmodes that are affected differently by geometric 
changes and eccentricity of the load. The aim with the 2D/3D comparison is to get an 
understanding of complications that arise when three-dimensional geometry is 
considered. Also it is of interest to see how large difference in acceleration response 
that may exist between a 2D and a 3D model. 

Section 5.1 presents the calculations that have been made in 3D and the corresponding 
assumptions for these calculations. Because of the 30 Hz criterion set by the Swedish 
railway administration all performed calculations and comparisons are based on FE 
analysis utilizing mode-superposition. 

The studies of the acceleration response in 3D can be divided in three main areas. 
Eigenmodes and eigenfrequencies, variation in bridge width, and variation in load 
eccentricity. Each area is treated separately in Section 5.2 to 5.4. The difference in 
design acceleration is made in Section 5.5 by comparing the design curves created in 
3D and 2D. Finally a discussion about the accumulated results is presented in 
Section 5.6. 

5.1 Performed calculations and limitations 

In this section all performed calculations on three-dimensional bridges is presented. 
Due to limit in time of this thesis several limitations have been made and these are 
also presented. 

5.1.1 Geometry 

Two different length configurations for a single-span bridge have been examined in 
the 3D analyses. Single-span bridges have been chosen since its geometry is simpler 
than multi-span bridges. The geometry is preferred since it simplifies the examination 
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of the added complexity that three-dimensional geometry contributes with. Two 
different lengths were chosen to increase the range of the examinations. 

There are a number of different cross-sections used for railway bridges today. The 
design curves developed from 2D analysis in Chapter 4 are applicable for any form of 
cross-section geometry since the curves solely depend on area and moment of inertia 
of the cross-section, which independently affect the mass per meter length and 
bending stiffness respectively. However in 3D analysis when rotation around the 
longitudinal axis is allowed there is also an influence from bending stiffness 
perpendicular to the longitudinal axis and the rotational stiffness to consider. Different 
shapes of cross-section geometry will therefore have different effect on the 
acceleration response behavior and amplitude. The 3D calculations performed in this 
thesis have been limited to a rectangular cross-section. Cross-sections whose 
appearances require additional geometric parameters than cross-section height and 
width are presumed to add complexity in the calculations and have hence been 
avoided. 

5.1.2 Method 

Calculations have been limited to single-span bridges for variations in bridge width 
and load eccentricity as mentioned above. Table 5.1 shows the considered bridge 
lengths, widths and eccentricities in the performed calculations. 

Table 5.1  Considered bridge configurations for the calculations in 3D 

 Bridge length [m] Bridge width Load eccentricity for 
width of 10 m 

Single-span 
bridge 

10 5m/1m/10m - 

Single-span 
bridge 

15 7.5m/1.5m/15m 0m/0.5m/4.5m 

Table 5.1 shows that 12 different geometric configurations have been used for the 
variation of bridge width.  For each configuration the total acceleration response and 
each eigenmodes separate response has been calculated in the whole bridge and in two 
specific nodes as shown in Figure 5.1. The calculated acceleration responses include 
the total and individual effect of all HSLM-A train loads. 
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Figure 5.1  Definition of bridge width, bridge length and load eccentricity for the calculations in 

3D. Also the two nodes from where separate data has been extracted are shown. 

The effect on the acceleration response by varying the load eccentricity has been 
made on a single-span bridge with a length of 15 m and width of 10 m. The train load 
HSLM-A1 was used for the examinations on eccentricity variation.  

All the 3D calculations have been made using Matlab programs created by the 
authors. The same main program as for the 2D analysis has been used with the 
difference that new function files treating the mesh and load creation have been used. 
All the programs used for the analysis can be found in Appendix D together with 
explanations of the program structures and verifications against ADINA. The reasons 
for using Matlab are the same as for the calculations in 2D, i.e. that the variation of 
geometric parameters and train velocity and the application of load are substantially 
easier to handle in Matlab compared to commercial FE software. 

5.2 Eigenmodes and eigenfrequencies 

The differences in eigenfrequencies and eigenmode shapes between 2D and 3D 
analyses are what make the dynamic responses differ. The change in frequencies will 
cause resonance to occur for different train speeds and rotation around the 
longitudinal axis will increase the influence of bridge width and load eccentricity. 

Two different forms of eigenmodes can be distinguished in a 3D analysis, in this 
thesis they are referred to as bending modes and torsion modes. Bending modes are 
basically the eigenmodes from 2D analyses where bending in the longitudinal 
direction governs the eigenmode shape. Torsion modes are governed by torsion 
around the length coordination of the bridge and bending in the transverse direction. 
These eigenmodes cannot be described by 2D analyses. So basically bending and 
torsion modes represent eigenmodes from 2D and the additional modes in 3D 
respectively. It should be noted that the definitions of bending and torsion modes have 
been created by the authors, and are not generally accepted. The reason why they are 
used here is to easier explain the performed study, which is focused on differences 
between 2D and 3D analysis. Figure 5.2 shows the two bending and torsion modes 
with lowest eigenfrequency for a single-span bridge with a length of 15 m and a width 
of 10 m. 

Load line 
Simply supported 
edge 

Examined nodes 

Bridge length 

Bridge width 



 

Figure 5.2  The two bending modes (a and b) and torsion modes (c and d) with lowest 
corresponding eigenfrequency for a single-span bridge with a length of 15 m, width 
of 10 m and height of 0.6 m. 

As shown in Figure 5.2 there is small change in appearance in the bending modes 
compared to a 2D analysis where the section perpendicular to the length coordination 
remains straight. It will be shown that this bending in the cross-section plane will 
make the bending modes contribute to changes in acceleration with variations in 
bridge width and load eccentricity. The eigenfrequency is also affected but remain 
very close to that of a 2D analysis.  

The torsion modes can have rather low eigenfrequencies and hence easily fall below 
the 30 Hz limit in BV Bro Banverket (2006). In most design cases the two 
eigenmodes with lowest corresponding eigenfrequencies are the first bending and 
torsion mode, respectively. If the 30 Hz criterion is considered this basically means 
that a larger number of eigenmodes need to be considered in a 3D analysis since the 
bending modes from 2D analysis in principal are kept while an addition of torsion 
modes is made. Consequently an increased acceleration response can be expected. 

In 2D analyses an important feature of the eigenfrequencies was that the relation 
between eigenfrequencies of different degree was kept constant for any change in 
material parameters, section geometry or bridge length. A single-span bridge as an 
example has in a 2D analysis a second and third eigenfrequency that correspond to 
four and nine times the first eigenfrequency, respectively. This made the creation of 
design curves possible since the eigenmodes corresponding β values also had a 
constant relation to each other. Take Figure 4.33 and Figure 4.34 as an example. 
These figures show the response in time for the first eigenmode using different 
modules of elasticity with train velocities chosen to get β=0.5 in both cases. If similar 
curves for the second eigenmode where created they would both correspond to β=0.125 for the same bridge parameters, since the used eigenfrequency in the 
calculation of β would be four times larger in both cases. This means that the shape of 
the time response in the two figures would be identical also for the second eigenmode, 
and hence also for the total response considering both eigenmodes. If a parameter that 

(a) (b) 

(c) (d) 
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changes the relation between first and second eigenfrequency (the span relation μ in 
2D analysis as an example) is altered instead, the nice feature of unaffected shape of 
the total response, considering both eigenmodes, would be lost. Choosing two train 
velocities that correspond to the same β value for the first eigenmode would then 
correspond to two different β values for the second eigenmode. Consequently it can 
be stated that a parameter that changes the relation between eigenfrequencies when 
altered affect the acceleration response in a complex way, and hence, its variation 
cannot be described by a design curve. 

In a 2D analysis the cross-section geometry has no effect on the relation between 
eigenfrequencies since it only affects the moment of inertia and area of the bridge 
which has the same effect on all eigenfrequencies. In 3D analyses though the shape 
and size of the cross-section will affect the relation between eigenfrequencies. Figure 
5.3 to Figure 5.5 shows the eigenfrequencies and the ratio between the 
eigenfrequencies for the eigenmodes shown in Figure 5.2 for three different length-
width configurations and the variation of cross-section height. The frequencies have 
been calculated in ADINA. 

 

Figure 5.3  Left: Eigenfrequencies for the eigenmodes in Figure 5.2 with L = 5m, b = 5m, 
E = 30 GPa, v = 0.02, ¤ = 2400 kg/m3. Straight lines correspond to the two lowest 
analytical calculated frequencies in 2D. Right: Corresponding rations of the 
frequencies to that of the first bending mode.  

 

Figure 5.4  Left: Eigenfrequencies for the eigenmodes in Figure 5.2 with L = 10 m, b = 10 m, 
E = 30 GPa, v = 0.02, ¤ = 2400kg/m3. Straight lines correspond to the two lowest 
analytical calculated frequencies in 2D. Right: Corresponding rations of the 
frequencies to that of the first bending mode. 
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Figure 5.5  Left: Eigenfrequencies for the eigenmodes in Figure 5.2 with L = 10 m, b = 5 m, 
E = 30 GPa, v = 0.02, ¤ = 2400 kg/m3. Straight lines correspond to the two lowest 
analytical calculated frequencies in 2D. Right: Corresponding rations of the 
frequencies to that of the first bending mode. 

Several observations can be made from Figure 5.3 to Figure 5.5. 

• Variations in height affect the relation between eigenfrequencies and the 
dependence changes for different length-width configurations.  

• Frequencies in 3D for bending modes deviate from the analytically calculated 
frequencies in 2D for larger heights. 

• Increasing the width of the bridge has basically no effect on the bending 
modes. 

• Increasing the width of the bridge decreases the frequency of the torsion 
modes. 

For real life designs the height of rectangular cross-sections does not vary extensively 
but commonly lies in the range 0.5-0.8 m. Even though it is shown that the relations 
between eigenfrequencies are affected by changes in cross-section height they are 
small within the commonly used range. Therefore no further investigations on the 
variation of height have been made in this thesis. The height 0.6 m has been used for 
all remaining calculations concerning variation of bridge width and load eccentricity. 

In 2D analysis the fact that all eigenmodes have the same relation to each other means 
that the different eigenmode shapes will be ordered in the same way for any choice of 
parameter set.  For a single-span bridge the first eigenmode will approximately have 
the shape of a half sinus curve, the second a full sinus curve and so on. In 3D analysis 
the shape of the bending modes will come in the same order as in 2D analysis as they 
are very similar to these eigenmodes. The shape of the additional torsion modes may 
however change order. Consider Figure 5.2 where the two torsion modes with lowest 
corresponding eigenfrequency for a single-span bridge of 15 m length and 10 m width 
are shown. The first torsion mode will always be the one shown in Figure 5.2c for any 
choice of length-width ratio. The shape of the second eigenmode however depends on 
the length-width ratio of the bridge, where a smaller length-width ratio causes the 
appearance of the eigenmode to change. Figure 5.6 shows the second and third torsion 
mode of a single-span bridge with lower length-width ratio. 
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Figure 5.6  The second and third torsion mode for a single-span bridge with a length and width 
of 10 m and height 0.6 m. 

As shown by Figure 5.2 and Figure 5.6 the second torsion mode becomes the third 
when the bridge length-width ratio is decreased. For the following examinations on 
bridge width and load eccentricity a choice of included eigenmodes must be made. 
Since the relation between torsion modes do not remain for the variation of cross-
section geometry examination on width variation becomes more difficult when more 
torsion modes are included. Therefore a choice has been made to only include the first 
torsion mode in the upcoming calculations on bridge width and load eccentricity 
variations. However for the purpose of comparing the change in design curves in 2D 
and 3D for the two examined single-span bridges it is a requirement that two bending 
modes are used in order to be consequent with the design curves created in Chapter 4 
for single-span bridges. This adds complications in the calculations since the second 
bending mode will change to higher eigenmode degree when width is increased 
because of lowered eigenfrequency of torsion modes. As a solution to this problem a 
Matlab program that can find the three specific eigenmodes of interest utilizing 
inverse iteration has been made by the authors. The Matlab program can be found in 
Appendix D.  

5.3 Variation of width 

It was mentioned in Section 5.2 that variation of cross-section geometry does not 
affect the relation between eigenfrequencies in 2D analysis and therefore it is possible 
to develop one single design curve for each length that corresponds to an arbitrary 
choice of cross-section. It was also shown that this is not possible for the variation of 
bridge width in a 3D analysis as the bridge width affect the bending and torsion 
modes in a more complex manner. This will be explained in more detail in this section 
and a graphical presentation of how the response differs for the variation of bridge 
width will be made. 

In Section 5.1 it was shown that the calculations on bridge width variation in 3D have 
been made on two single-span bridges with the length of 10 and 15 m. Every figure 
presented in this section is a result from these calculations. As mentioned the 
calculations have included all the HSLM-A train loads and gathered the total 
acceleration response in different nodes and also the individual response of different 
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eigenmodes in these nodes. The results presented in this section are all for the HSLM-
A1 train load and the node at the edge, in the middle of the bridge, see Figure 5.1. 

5.3.1 Influence on bending modes 

For a rectangular cross-section the increase of width does not affect the design curve 
from a 2D analysis. This is because the shape of the v-a plot is unaffected. Figure 5.7 
shows a comparison of three v-a plots from 3D analysis where the only difference is 
the width of the cross-section. 

 

Figure 5.7  Maximum acceleration in time for variation of train velocity for a single-span bridge 
with length of 10 m, height of 0.6 m and E = 30 GPa, ¤ = 4000 kg/m3, v = 0.02 and ^ = 0.022 

As can be seen in Figure 5.7 the shape of the v-a plot changes with changed width, 
and hence also the corresponding design curve. The individual responses from the 
bending modes and the torsion mode have been studied for the purpose of explaining 
why and how the v-a curves change. Consider first the response from the bending 
modes. Figure 5.8 shows different v-a plots for the single-span bridge of 10 m length 
considering only the first bending mode. 
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Figure 5.8  Maximum acceleration in time for variation of train velocity considering the 
individual response of the first bending mode for a single-span bridge with length of 
10 m, height of 0.6 m and E = 30 GPa, ¤ = 4000 kg/m3, v = 0.02 and ̂  = 0.022. 

As Figure 5.8 shows the shape of the v-a curve from the first bending mode remains 
as the width is varied. The change in amplitude can be explained by the change of 
bridge mass, where the amplitude was shown in Chapter 4 to have an inverse 
proportionality against the mass. Figure 5.9 and Figure 5.10 shows the v-a plots in 
Figure 5.8 transformed to β-τ plots.  

 

Figure 5.9  Corresponding �-Ö curves for the v-a curves in Figure 5.8. 
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Figure 5.10  Magnification of Figure 5.9 for the interval 0.48<�<0.52. 

It can be seen in Figure 5.10 that the β-τ curves for the bending mode do not have 
identical shapes for the variation of width as they would in a 2D analysis. The curves 
have small differences in position and amplitude. Both these observations are believed 
to be explained by small changes in eigenmode shape.  As shown in Figure 5.2 the 
bending modes do include rotation around the bridge length axis, and this rotation 
causes the width to influence both eigenfrequency and acceleration amplitude. The 
widths effect on the acceleration behavior and amplitude are however small and it can 
be concluded that the major changes in acceleration response that were seen in Figure 
5.7 are caused by the addition of a torsion mode. 

5.3.2 Influence on torsion modes 

Consider now the individual response of the first torsion mode. The maximum 
acceleration responses for different widths under the variation of train velocity are 
shown in Figure 5.11. A constant eccentricity of 2 m has been used in the 
calculations. 
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Figure 5.11 Maximum acceleration in time for variation of train velocity considering the 
individual response of the first torsion mode for a single-span bridge with length of 
10 m, height of 0.6 m and E = 30 GPa, ¤ = 4000 kg/m3, v = 0.02, ̂   = 0.022, 
e = 2 m. 

As mentioned in Section 5.2 the eigenfrequencies of the torsion modes are affected by 
the change in width of the cross-section. Figure 5.11 clearly shows how the placement 
of the response curve moves to the left because of the lowered eigenfrequency with 
increased width.  The v-a curves in Figure 5.11 have been transformed to β-τ curves 
with the purpose of examining the acceleration response behavior for the torsion 
mode, see Figure 5.12. 

 

Figure 5.12  Corresponding �-Ö curves for the v-a curves in Figure 5.11. 
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Figure 5.12 shows that the shape of the β-τ curve for the first torsion mode is kept as 
the width is increased. Also the amplitude of the acceleration is decreased with an 
increase in width. The change in amplitude of the accelerations seem however to have 
a different dependence on the increase of bridge width. The parameter τ can therefore 
not be used to create a curve that is independent of the bridge width as it can for 
bending modes. Figure 5.13 shows the acceleration for a fixed β value in Figure 5.12 
plotted against the inverse of corresponding bridge width. 

 

Figure 5.13  The acceleration amplitudes relation to the inverse of the bridge width in Figure 5.12 
for �=0.19. 

The curve in Figure 5.12 would have had a constant derivative of one if the torsion 
mode had the same dependence on the increase of bridge width as bending modes.  

Basically Figure 5.12 shows that the response from the torsion mode has the same 
type of behavior as a bending eigenmode when plotted against its own corresponding β and an observation like resonance peaks at β ≈ 0.33, 0.25 and 0.2 can be made. It 
would be possible to create a β curve with constant amplitude if a parameter (like τ for 
bending modes) were established that described the material and cross-section 
parameters effect on the acceleration amplitude. Additional calculations are however 
required to achieve this since the performed width variation affects bending stiffness, 
rotational stiffness and mass and hence does not give sufficient understanding of the 
problem. 
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response in time from different eigenmodes that are superpositioned to get the total 
response in time. The maximum accelerations in time for different eigenmodes are 
likely to occur at different times. Figure 5.14 shows the superposition of the 
individual v-a plots for the different eigenmodes and the v-a plot considering both 
eigenmodes. 

 

Figure 5.14  Comparison of the total response considering both the first bending and torsion 
mode with the superposition of the individual response of the eigenmodes. 
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Figure 5.15  The true contribution from the torsion mode to the total response compared to the 
contribution if the eigenmodes individual v-a curve is added for a single-span bridge 
with length 10 m, width 6 m, height 0.6 m, E = 30 GPa, ¤ = 4000 kg/m3, v = 0.02, ^  = 0.0185, e = 2 m. 

Finally Figure 5.16 shows the true contribution from the torsion mode for the 
variation in bridge width. 

 

Figure 5.16 The true contribution from the torsion mode to the response considering only the first 
bending mode for a single-span bridge with length 10 m, width 6 m, height 0.6 m, 
E = 30 GPa, ¤ = 4000 kg/m3, v = 0.02, ̂   = 0.0185, e = 2 m. 

Figure 5.16 show that there are no general similarities between the true contributions 
from the torsion mode for different widths. Interesting to note is that the torsion mode 
in some cases does decrease the maximum acceleration in time. It should also be 
noted that the contributions shown by Figure 5.16 are for the HSLM-A1 train load in 
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the edge node shown by Figure 5.1. Only added complexity is presumed to be added 
when all HSLM-A trainloads and the maximum response for arbitrary node is 
considered. 

5.4 Variation of load eccentricity 

In a 2D analysis no consideration is given to the eccentricity of the train load. 
Eigenmodes that include large deformation parallel the length coordination are highly 
influenced by the eccentricity as it by definition decides the coordinate of load 
application parallel the length axis. As was shown in Section 5.2 it is mainly the 
torsion modes that hence is affected by eccentricity but also the bending modes to 
some extent.  

The eccentricities’ effect on each individual eigenmode will be presented initially in 
this section and then followed by the effect on the total response.  The examinations 
on eccentricity variation have been in the middle line of the bridge in the two nodes 
shown in Figure 5.1. In these nodes there is no contribution from the second bending 
eigenmode and hence only responses from the first bending and torsion mode will be 
presented. All results presented in this section are the individual response of the 
HSLM-A1 train load.  

5.4.1 Influence on bending modes 

The bending eigenmode will be affected by the eccentricity as it includes rotation 
perpendicular to the length coordination. The effect is however small, see Figure 5.17. 

 

Figure 5.17  Maximum acceleration in time for the first bending mode in the middle of the bridge 
for a single-span bridge with length 15 m, width 10 m, height 0.6 m, E = 100 GPa, ¤ = 4000 kg/m3, v = 0.2.The eccentricity varies from 0-4.5 m. 
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The accelerations at v = 196.25 m/s (β = 0.5) have been gathered in Figure 5.18 with 
the purpose of examining the eccentricities’ effect on the acceleration response 
through the first bending mode. 

 

Figure 5.18  Acceleration in the middle and edge node in Figure 5.1 from the first bending mode 
for a single-span bridge with length 15 m, width 10 m, height 0.6 m, E = 100 GPa, ¤ = 4000 kg/m3, v = 0.2 and HSLM-A1with velocity of 196.25 km/h. 

An increase in acceleration with increased eccentricity is expected. The bending 
eigenmode can be said to be a combination of two different motions. One corresponds 
to the motion in 2D and is unaffected by the eccentricity and the other consist of the 
rotation perpendicular to the length coordination and is more influenced as the 
eccentricity increase. In general it can be said that the influence a load has on an 
eigenmode is largest when the load is placed where the eigenmode deforms the most. 
Larger influence on the eigenmode creates larger acceleration through it. It can be 
seen that the accelerations seem to increase with the same shape as the cross-section 
deforms for the considered bending mode, see Figure 5.2a. 

5.4.2 Influence on torsion modes 
The largest impact from a change in eccentricity will be through torsion modes which 
are governed by rotation perpendicular the length coordination. Figure 5.19 shows the 
individual response from the first torsion mode. 
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Figure 5.19  Maximum acceleration in time for the variation of train velocity and load eccentricity 

for a single-span bridge with length 15 m, width 10 m, height 0.6 m, E = 100 GPa, ¤ = 4000 kg/m3, v = 0.2, ̂   = 0.0185 

The accelerations at v=152.5 m/s has been gathered with the purpose of examining the 
eccentricities’ effect on the acceleration response through the bending eigenmode, see 
Figure 5.20. 

 
Figure 5.20  Acceleration in the edge node in Figure 5.1 from the first torsion mode for a single-

span bridge with length 15 m, width 10 m, height 0.6 m, E = 100 GPa, ¤ = 4000 kg/m3, v = 0.2 and HSLM-A1 with velocity of 196.25 km/h. 

The same arguments for why the accelerations increase with the eccentricity for the 
bending mode can be used for the torsion mode. It can be seen in Figure 5.20 that the 
accelerations seem to increase with the same shape as the cross-section deforms also 
for the torsion mode. 
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5.4.3 Combined response 

Finally we consider the total response of the single-span bridge for which the 
individual response of the first bending and torsion mode have been presented. For the 
edge node, the v-a plots for the single-span bridge with variation in load eccentricity 
are shown in Figure 5.21. 

 

Figure 5.21 Maximum acceleration in time for different train velocities considering the first 
bending and torsion mode for a single-span bridge with length 15 m, width 10 m, 
height 0.6 m, E = 100 GPa, ¤ = 4000 kg/m3, v = 0.2, ̂   = 0.185 and HSLM-A1 with 
velocity of 196.25 km/h. 

The change in acceleration due to load eccentricity from Figure 5.21 for constant train 
velocities are shown by Figure 5.22. 

 

Figure 5.22  Accelerations from Figure 5.21 for constant train velocities with increased load 
eccentricity. 
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As seen in Figure 5.22 there is no exact influence that can be derived with regards to 
the eccentricity. In general the eccentricity will increase the total acceleration 
response in a linear manor, the same way as it affects the torsion mode. It can be seen 
that the increase in acceleration is linear for higher values of eccentricity for all three 
considered values of train velocity. But for lower values of eccentricity an increase in 
acceleration is not guaranteed. The reason for this is that the time for which the 
maximum acceleration occur shifts for lower eccentricities. If the torsion mode has an 
acceleration response with opposite sign at the bending modes maximum there might 
even be a decrease in maximum acceleration, as is the case for the train velocity 152.5 
km/h in Figure 5.22.   

5.5 Design curves 

Last in the investigation of variation of bridge width and load eccentricity for a single-
span bridge is to show the difference between design curves in 2D and 3D analysis. 
The design curves in 3D for each width have been compared with the 2D design curve 
obtained in Chapter 4, see Figure 5.23 and Figure 5.24. In both figures the 2D design 
curve is for all velocities the lowest design curve. It is the first torsion mode that 
causes different total response for the variation of bridge width, as mentioned in 
Section 5.3. The complexity in the response due to varying width comes from 
superposition of the bending and torsion modes, whose frequencies are affected 
differently by the variation. Figure 5.23 and Figure 5.24 show that it is not possible to 
predict which width that will have the largest acceleration. 

 
Figure 5.23  Comparison of design curves for the variation of bridge width in 3D and the  

2D design curve, with L = 10 m. 
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Figure 5.24  Comparison of design curves for the variation of bridge width in 3D and the  

2D design curve, with L = 15 m. 

The percental contribution from the torsion mode is shown in Figure 5.25 and Figure 
5.26, for a bridge length of 10 and 15 m respectively. It can be concluded that the 
percental contribution varies for different combination of width, length and velocity. 
In the case of the 10 meter bridge the contribution is as high as 50 % for β=0.4, which 
is a β value likely to occur in a real life project. Hence the use of the design curve 
from 2D without consideration to 3D effects is for β=0.4 a large underestimation. In 
Figure 5.25 and Figure 5.26 it can be seen that the difference between a 2D and 3D 
analysis generally is smaller in percent for the longer bridge, even though the relation 
between length and width are the same. It is however not possible to draw any general 
conclusions if a longer bridge with the same length and width relation implies lower 
contributions from the torsion mode. For this a larger range of calculations are 
required.   

 
Figure 5.25  Differences in design acceleration between 2D and 3D analysis for L = 10 m 
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Figure 5.26  Differences in design acceleration between 2D and 3D analysis for L = 15 m. 

The design curves for different eccentricities in 3D and the 2D design curve are 
compared in Figure 5.27, for a bridge with length 15 meter. It can be seen that the 2D 
design curve form the lower limit of the design curves and that the resulting 
acceleration response will increase with increasing eccentricity. This is an expected 
behaviour because of the increase in acceleration response from the torsion mode due 
to increased eccentricity that could be observed in Section 5.4. The percental increase 
in size of the design curves in 3D for variation of load eccentricity compared to the 
2D design curve is shown in Figure 5.28.  

 
Figure 5.27  Comparison of 3D design curves for different eccentricities in the edge node and the 

design curve from the 2D analysis, with L = 15 m and b = 10 m. 
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Figure 5.28  Differences in design acceleration between 2D and 3D analysis in the edge node for 
L = 15 m and b = 10 m. 

5.6 Conclusions from the analysis in 3D 

The main difference between 2D and 3D analysis is that torsion modes are included. 
In the previous sections of this Chapter it has been shown that a 3D analysis 
contributes with significantly more complexity compared to a 2D analysis. This 
complexity is mainly because of the additional torsion modes but also changes in the 
shape of the bending modes. Below follows the conclusions made from the 3D 
analysis in this thesis, with regard to single-span bridges and rectangular cross-
section. 

• Bending modes change in shape when going from 2D to 3D. In 3D the 
bending modes include torsion around the lengths coordination and the 
amount included depends on geometric parameters like width, height and 
length of the bridge. 
 

• Torsion modes are included in 3D analysis. The eigenfrequencies of the lowest 
torsion modes are in range of the lowest bending modes eigenfrequencies and 
the two lowest eigenfrequencies seem to always be that of the first bending 
and torsion mode for the studied configurations. 
 

• Cross-section height affects the relation between all eigenmodes, including 
bending modes. There may be a distinct deviation of the second bending 
modes eigenfrequency in 3D compared to the analytical from 2D for larger 
cross-section heights. However the height has a small influence on the ratio 
between the first bending and torsion mode.  
 

• Eigenfrequencies of bending modes are in principal unaffected by variation in 
cross-section width but torsion modes are highly affected. 
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• The variation of acceleration response from the first bending mode due to 

changed width can be described by a design curve. The accelerations change 
in amplitude is in principal proportional to the cross-section width and hence 
also the bridge mass. 
 

• The variation of acceleration response from the first torsion mode from 
changing the width cannot be described by a design curve using the parameter τ. The change in acceleration amplitude cannot be explained solely by the 
change in bridge mass. 
 

• The true contribution when considering the first bending and torsion mode 
compared to only the first bending mode for variation in bridge width is very 
complex. The complexity depends mainly on the change in eigenfrequency of 
the torsion mode, which changes the total acceleration response in time for a 
fixed train velocity (or value of β for the bending mode).  
 

• The load eccentricity’s effect on bending modes is small but still present. The 
load’s influence on the bending modes increase with increased eccentricity. 
 

• The eccentricity has a large influence on the effect from the torsion modes. 
For the first torsion mode the increased acceleration is almost proportional to 
the eccentricity. 
 

• The true change in design acceleration, for variation in eccentricity, is 
unpredictable when considering the first bending and torsion mode. A small 
added eccentricity may change the time for which the maximum acceleration 
occurs; it can even result in a decrease of the maximum acceleration.  
 

• The increase in design acceleration in a 3D analysis compared to a 2D analysis 
can be as high as 100 % for large load eccentricities. 
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6 Discussion 

As mentioned in the background to this thesis there is a need today to find guidelines 
and simplifications for the dynamic design of railway bridges subjected to high speed 
trains. Basically guidelines and simplifications cover two different areas of use, where 
guidelines are meant to be used parallel static analysis in an early design process and 
simplifications are meant to reduce calculation time for the advanced dynamic 
analysis.  

In this thesis the main focus has been put on developing guidelines for the early 
design process and the main result has been the idea behind the design curves. The 
design curves developed in 2D do however not give an estimation of accelerations but 
the exact design accelerations and are hence also a first step for simplifying the time 
consuming advanced dynamic analysis.  

The discussion presented in this chapter will attend the advances made in this thesis 
concerning both guidelines and simplifications in dynamic design of railway bridges. 
Is the design curves developed in 2D applicable in real life projects? Is it possible to 
develop guidelines considering 3D geometry? Is it possible to develop guidelines that 
completely exclude the advanced and time consuming dynamic analysis?  

Discussion will also be presented on how advanced dynamic analysis could be used 
for a more time efficient design process.  

6.1 Analysis in 2D 

As mentioned in the introduction of this thesis several earlier theses have been 
performed regarding dynamic analysis of railway bridges within the last years.  Three 
master theses have been carried out in cooperation with Reinertsen Sweden AB, 
namely Ekström and Kieri (2007), De Leon and Lasn (2008) and Gustavsson (2008). 
These theses are all based on 2D analysis. 

One of the advances made in this thesis concerning 2D analysis is the application of 
the SDOF model on multi-span bridges. It was shown that the force scaling approach 
gives a good comparison of results to a FE analysis considering the first eigenmode. 
There is however some lack in accuracy which varies for different HSLM-A loads and 
train velocities. In De Leon and Lasn (2008) it was concluded that the SDOF model 
can be used for approximating the dynamic response. That thesis were however 
limited to single-span bridges for which the second eigenfrequency (in 2D analysis) 
commonly falls above 30 Hz.  

So to what extent is the SDOF model applicable as a guideline or simplification in a 
real life design? The answer depends on the benefits of having a model that quickly 
can calculate an approximate response. According to the authors the use of the SDOF 
model as a guideline is ineffective compared to graphical alternatives like the design 
curves developed in this thesis. Since the model also is approximate it is difficult to 
implement it as a simplification of the advanced analysis, even though it could be 
used to verify complex models by limiting them to the first bending mode.  
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According to the authors the main use of the SDOF model is that the analytical 
expressions behind it gives an increased understanding of the influence from material, 
geometric and load parameters on the dynamic response. This is also the main 
purpose which it has served in previous master thesis. It might be possible that the 
added complexities when considering 3D analysis could be explained by the SDOF 
model. All the complications in the model are based on calculating influence lines of 
the travelling loads. If a SDOF model is be able to describe the dynamic behaviour in 
3D depends hence on the possibility of calculating the deflection in 3D analytically. 

The examinations of acceleration amplitude aimed to map the influence of geometric 
and material parameters. De Leon and Lasn (2008) encountered the accelerations 
inverse proportionality to the mass. They could however only state that there was an 
approximate inverse proportionality since they used their SDOF model for all 
calculations throughout the thesis, which as mentioned include accuracy errors 
compared to the response from a FE analysis.  The choice in this thesis to use a FE 
program for the examinations of individual parameters influence on the dynamic 
response was made to avoid these errors. With the use of FE analysis it was stated in 
this thesis that both young’s modulus and the density and hence also cross-section 
geometry has a simple influence on both eigenfrequencies and acceleration amplitude 
in 2D analysis. 

The first idea of using a graphical tool as guideline in the design process was made by 
De Leon and Lasn (2008). Their idea was to create transformation graphs based on 
their observation of the accelerations approximate inverse proportionality to the 
bridge mass with the use of the SDOF model. The idea is according to the authors 
complicated and time consuming. Four different graphs were required for calculating 
an approximate result and 300 graphs had to be developed for the possibility of 
describing just a single-span bridge. In this thesis it has been shown that the dynamic 
response for single-span bridges can be illustrated by one single figure through so 
called design curves, and that the approach is applicable for any bridge configuration 
of multiple spans.  

Gustavsson (2008) had a different approach compared to De Leon and Lasn (2008) as 
his thesis focused on developing a FE program in Matlab that performed the dynamic 
calculations of railway bridges subjected to HSLM-A train loads. Gustavsson meant 
that, using his program, it was possible to quickly determine the acceleration response 
for a certain set of bridge parameters, and that this approach was easier and better than 
the earlier ideas of simplifications through SDOF models and graphical presentation. 
A FE program for calculating the dynamic response of railway bridges has been 
created by the authors in this thesis as well. However it is not the authors’ opinion that 
a 2D FE program alone can be used as a good guideline or simplification in the design 
process of railway bridges, but rather the possibilities of creating graphical calculation 
tools from it. As the reader is well aware of now the design curves are the way of 
representation created and preferred by the authors. A graphical presentation gives 
more than just a value of the acceleration outcome, it gives an overview and 
understanding of the response. As been shown the design curves can be used to easily 
calculate the acceleration for a certain set of bridge parameters and give guidance to a 
suitable choice of these parameters. 

Calculating the design acceleration and giving guidance to a suitable choice of bridge 
parameters are the main areas of use for the design curves. However in the creation of 
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design curves the responses from the ten HSLM-A train loads is calculated 
individually, and the comparison between these individual responses serves an 
additional purpose as the critical load can be determined from it. In this thesis design 
curves were calculated for a single- two- and three-span bridge with equal span 
lengths. It was found that there is a large variation in what HSLM-A load that governs 
the acceleration response for these bridge configurations. Based on this observation it 
can be stated that no general exclusion rule can be established. However for the 
situation when it is preferable to only include a few loads for a fast approximate 
calculation, it was found that A2 and A9 most frequently governed the design 
acceleration. 

6.2 Analysis in 3D 

In 3D analysis eigenmodes will include torsion. As was shown eigenmodes that are 
governed by bending compared to those governed by torsion are affected differently 
by changes in cross-section geometry, and especially cross-section width. It is hence 
impractical to apply the design curves made for 2D analysis on 3D geometry. Too 
many curves have to be developed if it is not possible to create one single design 
curve, describing an arbitrary choice of cross-section geometry.  

So what possibilities of developing guidelines and simplification for dynamic 3D 
analysis of railway bridges are there? The first torsion mode was shown to have the 
same behaviour as the bending modes when plotted against its own β-value. It showed 
resonance at the same values and for the width variation the shape of the acceleration 
response was unaffected. It was mentioned that it might be possible to develop a 
design curve with consideration to the first torsion mode if the effect from variation of 
cross-section geometry on the acceleration could be decided (as it was clear that 
increase in width’s effect on the acceleration came from more than the increase in 
bridge mass). One large disadvantage with such a curve is that it does not include an 
arbitrary choice of torsion modes, meaning that separate curves would have to be 
developed for every torsion mode of interest.  

The bending modes in 3D analysis can be described by one design curve, as the 
relation between their corresponding eigenfrequencies in principal is unaffected by 
cross-section geometry (the height was shown to affect the relation but it was small 
within the commonly used range of heights). A torsion mode cannot be included in 
this design curve because the relation between bending and torsion modes’ 
eigenfrequencies changes with the cross-section geometry. For the same reason 
different torsion modes require individual design curves. However for the case when 
only one torsion mode is considered it should be possible to use a separate design 
curve that considers width and load eccentricity to give an estimation of the 
acceleration response. This estimation based on summarizing the bending modes and 
the first torsion mode’s maximum response in time will always be on the safe side.  

Another possibility could be to use the design curves developed in 2D with a safety 
factor considering the additional 3D effects. The design curves developed in 3D in 
this thesis showed large similarities with those from 2D. It was seen that the response 
for the examined single-span bridges was governed by the first bending mode and that 
distinct changes in the design curves occurred at the same values of β. The use of the 
design curves from 2D as a guideline could hence work even if 3D geometry is 
considered. If a safety factor is used for calculating the design acceleration 
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corresponding to a certain β value the 3D effects could be fully represented by the 2D 
curves. It is however complicated to establish such a safety factor. More extensive 
calculations in 3D are required to determine how high the addition in acceleration can 
be. This addition varies within a large range as already shown by the examination of 
the two single-span bridges in this thesis. There is a large possibility that the use of a 
safety factor would hence give results that is too much on the safe side for some sets 
of bridge parameters. If the factor is made dependent on parameters like load 
eccentricity this could be avoided, but further studies are required to determine if this 
is at all possible. 

6.3 Practical use of design curves 

It is the authors’ opinion that the design curves are of great guidance in the 2D 
dynamic design of railway bridges. However the question of when 2D analyses are 
applicable remains. In this thesis 3D analyses were performed on two single-span 
bridges and the first torsion mode was included, which is highly governed by load 
eccentricity. The results basically showed that design curves from 2D analysis are not 
sufficient for describing the acceleration response for a rectangular cross-section 
subjected to high eccentric loading. 

The case when the load has no eccentricity was not studied in this thesis. It was 
however still shown that the bending modes from 2D and 3D are very similar (for 
single-span bridges and rectangular cross-section). If only bending modes are 
included in the 3D analysis it might hence be possible to use 2D design curves with a 
small magnification factor to get accurate results for any parameter set. There are 
however torsion modes that are affected when the load has no eccentricity which has 
to be studied further. 

Irrespective of when 3D effects need to be considered, it is the authors’ opinion that 
the design curves from 2D should be used as a basis and 3D effects considered using 
correlation rules. This because the 2D design curves are a much more comprehensible 
presentation of the acceleration response, as they allow arbitrary choice of cross-
section geometry. As mentioned the 2D design curves could be used for both 
calculating the design acceleration and as guidance when only bending modes need to 
be considered. The impact of 3D effects then depends on the individual torsion modes 
contribution, but also which torsion modes that needs to be considered.  

The question of what eigenmodes that should be included could be both beneficial and 
unbeneficial for consideration to 3D effects. The 3D response studied in this thesis for 
example would become even more complicated if the code demands that an additional 
torsion mode should be considered. But in the situation where no torsion mode needs 
to be considered, which might be the case when there is no load eccentricity, the 2D 
design curves could be used directly. 

6.4 Advanced dynamic analysis 

The development of guidelines and simplifications that completely exclude the time 
consuming advanced dynamic analysis requires more examinations and experience of 
the dynamic response of railway bridges. As the analysis in 3D showed several 
additional complications compared to 2D analysis, such simplifications are still not in 
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reach, and might never be. However the advanced analysis can be gradually 
simplified. One such simplification is to use adequate software. As mentioned in this 
thesis, commercial software (like ADINA) might be unfitted for dynamic analysis of 
railway bridges as this analysis includes a combination of travelling point loads. 
Problems might for example arise when choosing the mesh size and time step for the 
numerical integration with consideration to a range of train velocities. The Matlab 
code presented in Appendix D is a good alternative to commercial software and it is 
preferred by the authors for iterative calculations on railway bridges. The use of a FE 
program that can produce a design curve also has the benefit of giving in overview of 
the dynamic response, which at least shows the effect of varying material parameters 
and design train velocity. 
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7 Concluding remarks 
The conclusions from this master thesis and thoughts about further studies are 
presented in this chapter. 

7.1 Conclusions 
Previous master theses regarding dynamic design of railway bridges, carried out at 
Reinertsen Sweden AB during recent years, have all focused on single-span railway 
bridges. This thesis has had a more general approach, as the response of railway 
bridges with multiple spans also has been included. Examinations have therefore been 
made on the eigenmodes of multi-span bridges. It was shown to be complicated to 
derive the eigenfrequencies for multi-span bridges analytically. But through numerical 
examinations it was shown that the eigenfrequencies can be calculated through an 
equation that is very similar to that of single-span bridges, with the addition of so 
called eigenfrequency functions. These functions depend on the span relation and 
differ between eigenmodes. 

A transformation procedure called the force scaling approach was applied on multi-
span bridges as a continuation of previous master theses. The method transforms a 
railway bridge of interest into a SDOF model. The method have earlier been shown to 
give accurate results for single-span bridges and been said to be compatible with more 
complex structures. However, it was shown in this thesis that it lacks some accuracy 
for multi-span bridges. The method can still be used to approximate the dynamic 
response, but it will be on the unsafe side. The model was not used further in the 
thesis because of the lack in accuracy. 

A parameter study has been performed in this thesis, with the purpose of examining 
the individual effect on the acceleration response due to different bridge parameters. It 
was found that material parameters affect the acceleration in a predictable way. The 
amplitude of the acceleration, for a specific frequency ratio (the ratio between load 
frequency and eigenfrequency), is inverse proportional against the density and 
independent of Young’s modulus. The total bridge length and span relations were 
found to affect the acceleration in a way that is hard to predict, though it was seen that 
the accelerations tend to decrease with increased bridge length and increase for small 
asymmetry between spans. 

During the parameter study several observations were made concerning resonance in 
railway bridges. It was seen that the design acceleration does not always occur in the 
resonance peek corresponding to the highest train velocity. It was also seen that 
resonance effects may disappear for some combinations of geometry, through so 
called cancellation effects. The summarising conclusion from these observation is that 
it is difficult, in advance, to determine which train speed that will govern the response, 
and hence the whole speed range suggested by BV Bro (Banverket, 2006) need to be 
considered.  

The observations regarding resonance and individual parameters effect on the 
accelerations were gathered to create a graphical guideline, called design curves. A 
design curve captures the dynamic response of a railway bridge with a certain bridge 
configuration. It allows an arbitrary choice of train speed, material parameters and 
cross-section geometry and includes the effect of all ten HSLM-A train loads. It was 
shown that such design curves can be used to quickly calculate the design acceleration 
for a specific set of parameters. Also it serves as guidance in the early stage of a 
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project, as the graphical form gives an overview of how the response is affected by 
changes in bridge parameters. 

The design curves main limitation is that they are based on 2D analysis. In this thesis 
a comparison between 2D analysis and 3D analysis was performed to show the 
difference in acceleration response. Calculations were made on two single-span 
bridges under the variation of bridge width and load eccentricity. In 2D analysis two 
bending modes were included and in 3D analysis one additional torsion mode was 
also included. The results showed that both eigenfrequencies and the acceleration 
response are affected differently for bending and torsion modes. The eigenfrequency 
of bending modes are in principal unaffected by width variation while width strongly 
affects the torsion modes’ eigenfrequencies. The torsion modes acceleration response 
is also highly governed by load eccentricity, while the bending modes’ response is 
not. The differences between eigenmodes in a 3D analysis make it more difficult to 
find guidelines and simplifications compared to 2D analysis. However it can be 
concluded that 3D effects need to be considered somehow, as it was shown that they 
may give a very high contribution when large load eccentricity is present. In this 
thesis the possibilities of producing separate design curves or magnification factors 
have been discussed, though additional studies are required to determine these 
possibilities. 

7.2 Suggestions of continued work 

The question of how many eigenmodes that should be included in the dynamic design 
of railway bridges (based on eigenfrequencies) definitely needs more attention. 
Developing guidelines for railway bridges, of any kind, whether it is a simplified 
system or a design curve requires that the number of included eigenmodes is known. 
In this thesis, choices were made for how many eigenmodes to include for the three 
bridge configurations of which design curves where created in 2D. However for the 
development of design curves, to be used in real life design, these choices need to be 
made on a larger basis.  

The knowledge of which torsion modes that needs to be considered for a specific set 
of bridge parameters is essential when considering 3D effects. This knowledge itself 
might serve as guidance in the design process if it can be shown that all torsion modes 
can be excluded for some sets of bridge parameters. Knowing how many eigenmodes 
that should be included is hence an important step for the possibility of creating 
guidelines for the dynamic design of railway bridges considering both 2D and 3D.  

To determine the required number of eigenmodes for different bridge configurations, 
it is suggested by the authors that a study which gather used cross-section geometry 
from railway bridges designed for HSLM train loads is performed. It might also be 
possible to use the guidance of the design curves to create a range of suitable cross-
sections. However, this creates a circular reasoning as the result from the design 
curves depend on the included eigenmodes and vice versa.  

Even if the torsion modes to include in a railway bridge design are known, there is 
still a question of determining these modes’ contribution to the acceleration response 
in a simplified way. The torsion modes individual contribution could be presented by 
individual design curves or magnification factors as mentioned in Section 6.3. It 
might also be possible to develop simplified models like a rod subjected to torsion for 
the first torsion mode or a simply supported plate for the second torsion mode. As 
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different torsion modes behave in different ways it is likely that different 
factors/curves/models need to be developed for the respective modes. 

There is also a need to increase the understanding of how both bending and torsion 
modes are affected by changes in cross-section shape. It was shown in this thesis that 
bending modes in 3D compared to 2D had small differences, but the 3D calculations 
in this thesis were also limited to rectangular cross-sections. For other cross-section 
shapes there might be larger differences between the bending modes, which then 
would cause larger differences between 2D and 3D analysis irrespective of the 
inclusion of torsion modes. 

To summarize the authors would like to see further studies regarding which 
eigenmodes to include, individual effect of torsion modes and changes in eigenmodes 
regarding cross-section shape in 3D. An idea could be to examine all three areas, but 
for one specific bridge configuration at a time. This way useful guidance for real life 
projects could be continuously produced.  
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A. Appendix A 
Attempt of analytically deriving an explicit expression for the 
eigenfrequencies of a two-span bridge 

The procedure of deriving an analytical expression for the eigenfrequencies of a 
single span bridge is rather simple and results in an explicit expression for 
eigenfrequencies of any degree. For two span bridges it gets more complicated 
however and an explicit expression is impossible to derive. This appendix is meant to 
give the reader an idea of why. 

The differential equation of motion for transverse vibration is shown by equation 
(A.1). 

����� � ��� ������	 
 �� ����� � ����, ��      (A.1) 

For free vibrations with constant bending stiffness equation (A.1) reduces to: 

������� 
 ���� � 0        (A.2) 

If we assume the following solution to equation (A.2): 

���, �� � ���� � cos ���  !�      (A.3) 

We get: 

"#$"�#  %&� � 0         (A.4) 

Where: 

%& � �' ()*+           (A.5) 

The general solution to (A.4) can be written as: 

���� � �, sinh�%�� 
 �' cosh�%�� 
 �0sin�%�� 
 �&cos �%��  (A.6) 

This equation has four variables which must be determined. For a single span bridge 
we could simply use the boundary condition V = d2V/dx2= 0 at both ends. This gives 
us that A2=A4=0 and the two remaining linear equations gives us that: 

1 sin �%2� sin �%2�%'sin �%2�  %'sin �%2�1 � 0      (A.7) 

Which because of the simplicity of the matrix gives us an explicit expression for λ = 
r*π/L for r= 1, 2, 3 and so on.  

For a two span bridge we have two beams connected together. This means we instead 
have eight variables and eight boundary conditions. The boundary conditions at the 
middle support will connect the two beams together. 
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Figure (A-1) defines two different parameters along the bridge. The definitions of 
these parameters are made to give as simple result as possible. 

 

 

 

 

 

 

Figure A-1 Definition of the variables x and y 

We have the following general solutions for the displacement of beam 1 and 2: 

�,��� � �, sinh�%�� 
 �' cosh�%�� 
 �0sin�%�� 
 �&cos �%��  (A.8) 

�'��� � 5, sinh�%6� 
 5' cosh�%6� 
 50sin�%6� 
 5&cos �%6�  (A.9) 

With the definition of x and y we have the following boundary conditions: 

�,�0� � ���,�0� � 0 �'�0� � ���'�0� � 0 

�,�21� � 0  �,�22� � 0 

��,�21� �  ��'�22� ���,�21� � ���'�22�     (A.10) 

This gives us that: 

�' � �& � 5' � 5&        (A.11) 

And the following linear equations give us that: 

9sinh �%21� 0 sin �%21� 00 sinh �%22� 0 sin �%22�cosh �%21� cos �%21� cosh �%22� cos �%22�sinh �%21�  sin �%21�  sinh �%22� sin �%22�9 � 0  (A.12) 

And this results in a complicated expression where there is no possibility of deriving 
an explicit analytical expression for λ. 

The last steps can be better performed. The first two rows in (12) could be used to 
eliminate two variables. But even if we get that the determinant should be zero for a 
two times two matrix we still get a very complicated expression. The interested reader 
is referred to Gorman (1975).  
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B. Appendix B 

Results from a parameter study on multi-span 
railway bridges 
The following document contains figures showing the results from a parameter study 
made on continuous railway bridges. The parameter study covers two- and three-span 
bridges. 

The parameter study aims to show the effect from different parameters on the 
dynamic response. The studied parameters are: 

• E =  Module of elasticity 
• Ltot =  Total bridge length 
• µ = L2/L1 for two-span bridges 
• η = L2/(L1+L3) for three-span bridges 

• ρ =  density 
• c = damping 

Two different types of figures are presented. The first type shows different 
acceleration responses with the variation of train speed. The second type shows the 
variation of acceleration amplitude around resonance peeks. 

The corresponding parameter set for the variation of a certain variable are presented in 
the figure explanation. Different parameter sets have been chosen for different 
comparisons. 
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B.1 Variation of module of elasticity, E, for a two-span bridge 
 

 

 

Figure B-2  Acceleration response for a two-span bridge subjected to
   HSLM-A4 using ρ=2800 kg/m3, Ltot=16m, µ=2 and c=0.02 
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Figure B-1  Acceleration response for a two-span bridge subjected to HSLM-
A1 using ρ=2800 kg/m3, Ltot=16m, µ=2 and c=0.02 
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B.2B.2B.2B.2 Variation of density, ρ,    for a two-span bridge    

  

Figure B-3 Acceleration response for a two-span bridge subjected to HSLM-
A1 using E=30 GPa, Ltot=16m, µ=2 and c=0.02 

 Figure B-4 Acceleration response for a two-span bridge subjected to HSLM-
A1 using E=30 GPa, Ltot=16m, µ=2 and c=0.02 

  

Figure B-5 Acceleration from figure B-4 plotted againsst the inverse of the 
density  
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B.3B.3B.3B.3 Variation of span relation, µ, for a two-span bridge        

 

 

 

Figure B-6 Acceleration response for a two-span bridge subjected to HSLM-A1 
using E=20 GPa, Ltot=16m, �=3000 kg/m^3 and c=0.02 

 Figure B-7 Acceleration response for a two-span bridge subjected to HSLM-A1 
using E=20 GPa, Ltot=16m, �=3000 kg/m^3 and c=0.02 

 

 

Figure B-8 Acceleration response for a two-span bridge subjected to HSLM-A4 
using E=20 GPa, Ltot=16m, �=4000 kg/m^3 and c=0.02 

 Figure B-9 Acceleration response for a two-span bridge subjected to HSLM-A4 
using E=20 GPa, Ltot=16m, �=4000 kg/m^3 and c=0.02 
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Figure B-10 Acceleration response for a two-span bridge subjected to HSLM-A8 
using E=20 GPa, Ltot=16m, �=6000 kg/m^3 and c=0.02 

 Figure B-11 Acceleration response for a two-span bridge subjected to HSLM-A8 using 
E=20 GPa, Ltot=16m, �=6000 kg/m^3 and c=0.02 

 

 

 

Figure B-12 Acceleration response in resonance peek at vcr/2 from the response 
shown by figures B-6-11 

 Figure B-13 Normalized acceleration response in resonance peek at vcr/2 from the 
response shown by figures B-6-11 
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Figure B-14 Acceleration response in resonance peek at vcr/3 from the response 
shown by figures B-6-11 

 Figure B-15 Normalized acceleration response in resonance peek at vcr/3 from the 
response shown by figures B-6-11 

 

 

Figure B-16 Acceleration response in resonance peek at vcr/4 from the response 
shown by figures B-6-11 

 Figure B-17 Normalized acceleration response in resonance peek at vcr/4 from the 
response shown by figures B-6-11 
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Figure B-18 Acceleration response in resonance peek at vcr/5 from the response 
shown by figures B-6-11 

 Figure B-19 Normalized acceleration response in resonance peek at vcr/5 from the 
response shown by figures B-6-11 
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B.4B.4B.4B.4 Variation of total bridge length, Ltot, for a two-span bridge    

 

 

 

Figure B-20 Acceleration response for a two-span bridge subjected to HSLM-A1 
using E=40 GPa, �=2, �=3000 kg/m^3 and c=0.02 

 Figure B-21 Acceleration response for a two-span bridge subjected to HSLM-A1 using 
E=40 GPa, �=2, �=3000 kg/m^3 and c=0.02 

 

 

 

Figure B-22 Acceleration response for a two-span bridge subjected to HSLM-A4 
using E=40 GPa, �=2, �=3000 kg/m^3 and c=0.02 

 Figure B-23 Acceleration response for a two-span bridge subjected to HSLM-A8 using 
E=40 GPa, �=2, �=3000 kg/m^3 and c=0.02 
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Figure B-24 Acceleration response in resonance peek at vcr/2 from the response 
shown by figures B-20-23 

 Figure B-25 Normalized acceleration response in resonance peek at vcr/2 from the 
response shown by figures B-20-23 

 

 

 

Figure B-26 Acceleration response in resonance peek at vcr/3 from the response 
shown by figures B-20-23 

 Figure B-27 Normalized acceleration response in resonance peek at vcr/3 from the 
response shown by figures B-20-23 
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Figure B-28 Acceleration response in resonance peek at vcr/4 from the response 
shown by figures B-20-23 

 Figure B-29 Normalized acceleration response in resonance peek at vcr/4 from the 
response shown by figures B-20-23 

 

 

 

Figure B-30 Acceleration response in resonance peek at vcr/5 from the response 
shown by figures B-20-23 

 Figure B-31 Normalized acceleration response in resonance peek at vcr/5 from the 
response shown by figures B-20-23 
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B.5 Variation of damping, c, for a two-span bridge 
  

 

 

 

 

Figure B-32 Acceleration response for a two-span bridge subjected to HSLM-A1 
using E=40 GPa, �=2, �=4000 kg/m^3 and Ltot=15 m 

 Figure B-33 Acceleration response for a two-span bridge subjected to HSLM-A1 using 
E=40 GPa, �=2, �=4000 kg/m^3 and Ltot=15 m 
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B.6 Variation of module of elasticity, E, and density, ρ,    for a three-span bridge 
 

 

 

Figure B-34 Acceleration response for a three-span bridge subjected to HSLM-A1 
using �=3000 kg/m^3, �=1, Ltot=25 m, , κ= 1 and c=0.02 

 Figure B-35 Acceleration response for a three-span bridge subjected to HSLM-A1 
using E=40 GPa, �=1, Ltot=25 m, , κ= 1 and c=0.02 
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B.7B.7B.7B.7 Variation of span relation, η, for a three-span bridge    

 

 

 

Figure B-36 Acceleration response for a three-span bridge subjected to HSLM-A1 
using E=20 GPa, L=20 m, �=2500 kg/m^3, κ= 1 and c=0.02 

 Figure B-37 Acceleration response for a three-span bridge subjected to HSLM-A4 using 
E=14 GPa, L=20 m, �=2500 kg/m^3, κ= 1 and c=0.02 

 

 

 

Figure B-38 Acceleration response for a three-span bridge subjected to HSLM-A8 
using E=10 GPa, L=20 m, �=2500 kg/m^3, κ= 1 and c=0.02 

 Figure B-39 Acceleration response for a three-span bridge subjected to HSLM-A8 using 
E=10 GPa, L=20 m, �=2500 kg/m^3, κ= 1 and c=0.02 
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Figure B-40 Acceleration response in resonance peek at vcr/2 from the response 
shown by figures B-36-39 

 Figure B-41 Normalized acceleration response in resonance peek at vcr/2 from the 
response shown by figures B-36-39 

 

 

Figure B-42 Acceleration response in resonance peek at vcr/3 from the response 
shown by figures B-36-39 

 Figure B-43 Normalized acceleration response in resonance peek at vcr/4 from the 
response shown by figures B-36-39 
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Figure B-44 Acceleration response in resonance peek at vcr/4 from the response 
shown by figures B-36-39 

 Figure B-45 Normalized acceleration response in resonance peek at vcr/4 from the 
response shown by figures B-36-39 
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C. Appendix C 
The design curves from the three different case studies are gathered in this appendix. 
The different bridge configurations are: 

• Single-span bridge – Section C.1 
• Two-span bridge with equal span lengths – Section C.2 
• Three-span bridge with equal span lengths – Section C.3 

Further description and explanation of the three case studies can be found in section 
3.6.4. The layout of each section in this appendix is first a summation of the design 
curves for all bridge lengths considered in the each case study, followed by the design 
curves for each specific bridge length with the possibility to see which load that 
governs the response at a specific choice of β. 

C. APPENDIX C 133 

C.1 Bridge with one span 134 

C.1.1 Total length 7 m 135 

C.1.2 Total length 8 m 136 

C.1.3 Total length 10 m 138 

C.1.4 Total length 11 m 139 

C.1.5 Total length 12 m 140 

C.1.6 Total length 13 m 141 

C.1.7 Total length 14 m 142 

C.1.8 Total length 15 m 143 

C.1.9 Total length 16 m 144 

C.1.10 Total length 17 m 145 

C.1.11 Total length 18 m 146 

C.1.12 Total length 19 m 147 

C.1.13 Total length 20 m 148 

C.2 Bridge with two equal spans 149 

C.2.1 Total length 16 m 150 

C.2.2 Total length 18 m 151 

C.2.3 Total length 20 m 152 

C.2.4 Total length 22 m 153 

C.2.5 Total length 24 m 154 

C.2.6 Total length 26 m 155 

C.2.7 Total length 28 m 156 

C.2.8 Total length 30 m 157 

C.3 Bridge with three equal spans 158 

C.3.1 Total length 30 m 159 

C.3.2 Total length 31.5 m 160 

C.3.3 Total length 33 m 161 

C.3.4 Total length 34.5 m 162 

C.3.5 Total length 36 m 163 

C.3.6 Total length 37.5 m 164 

C.3.7 Total length 39 m 165 

C.3.8 Total length 40.5 m 166 

C.3.9 Total length 42 m 167 

C.3.10 Total length 43.5 m 168 
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C.1 Bridge with one span 

 
Figure  C-1 Design curves of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=7 m to Ltot=20 m . 

 
Figure C-2 Design curves of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot= 7 m to Ltot=20 m. 
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C.1.1 Total length 7 m 

 
Figure C-3 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=7 m.  

 
Figure C-4 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=7 m. 

 
Figure C-5  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=7 m. 
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C.1.2 Total length 8 m 

 
Figure C-6 Relation between β and τ for load A1 to A10 for a bridge with one span  

and Ltot=8 m.  

 
Figure C-7 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=8 m. 

 
Figure C-8  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=8 m. 
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Total length 9 m 

 
Figure C-9 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=9 m.  

 
Figure C-10 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=9 m. 

 
Figure C-11  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=9 m. 
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C.1.3 Total length 10 m 

 
Figure C-12 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=10 m.  

 
Figure C-13 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=10 m. 

 
Figure C-14  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=10 m. 
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C.1.4 Total length 11 m 

 
Figure C-15 Relation between β and τ for load A1 to A10 for a bridge with one span  

and Ltot=11 m.  

 
Figure C-16 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=11 m. 

 
Figure C-17  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=11 m. 
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C.1.5 Total length 12 m 

 
Figure C-18 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=12 m.  

 
Figure C-19 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=12 m. 

 
Figure C-20  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=12 m. 
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C.1.6 Total length 13 m 

 
Figure C-21 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=13 m.  

 
Figure C-22 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=13 m. 

 
Figure C-23  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=13 m. 
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C.1.7 Total length 14 m 

 
Figure C-24 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=14 m.  

 
Figure C-25 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=14 m. 

 
Figure C-26  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=14 m. 
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C.1.8 Total length 15 m 

 
Figure C-27 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=15 m.  

 
Figure C-28 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=15 m. 

 
Figure C-29  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=15 m. 
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C.1.9 Total length 16 m 

 
Figure C-30 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=16 m.  

 
Figure C-31 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=16 m. 

 
Figure C-32  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=16 m. 
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C.1.10 Total length 17 m 

 
Figure C-33 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=17 m.  

 
Figure C-34 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=17 m. 

 
Figure C-35  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=17 m. 
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C.1.11 Total length 18 m 

 
Figure C-36 Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=18 m.  

 
Figure C-37 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=18 m. 

 
Figure C-38  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=18 m. 
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C.1.12 Total length 19 m 

 
Figure C-39  Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=19 m.  

 
Figure C-40 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=19 m. 

 
Figure C-41  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=19 m. 
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C.1.13 Total length 20 m 

 
Figure C-42  Relation between β and τ for load A1 to A10 for a bridge with one span  

  and Ltot=20 m.  

 
Figure C-43 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with one span and Ltot=20 m. 

 
Figure C-44  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with one span and Ltot=20 m. 
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C.2 Bridge with two equal spans 

 
Figure C-45  Design curves of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=16 m to Ltot=30 m. 

 
Figure C-46 Design curves of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=16 m to Ltot=30 m. 
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C.2.1 Total length 16 m 

 
Figure C-47 Relation between β and τ for load A1 to A10 for a bridge with two equal spans 

and Ltot=16 m.  

 
Figure C-48 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with two equal spans and Ltot=16 m. 

 
Figure C-49  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=16 m. 
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C.2.2 Total length 18 m 

 
Figure C-50 Relation between β and τ for load A1 to A10 for a bridge with two equal spans 

and Ltot=18 m.  

 
Figure C-51 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with two equal spans and Ltot=18 m. 

 
Figure C-52  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=18 m. 
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C.2.3 Total length 20 m 

 
Figure C-53 Relation between β and τ for load A1 to A10 for a bridge with two equal spans 

and Ltot=20 m.  

 
Figure C-54 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with two equal spans and Ltot=20 m. 

 
Figure C-55  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=20 m. 
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C.2.4 Total length 22 m 

 
Figure C-56 Relation between β and τ for load A1 to A10 for a bridge with two equal spans 

and Ltot=22 m.  

 
Figure C-57 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with two equal spans and Ltot=22 m. 

 
Figure C-58  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=22 m. 
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C.2.5 Total length 24 m 

 
Figure C-59 Relation between β and τ for load A1 to A10 for a bridge with two equal spans 

and Ltot=24 m.  

 
Figure C-60 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with two equal spans and Ltot=24 m. 

 
Figure C-61  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=24 m. 
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C.2.6 Total length 26 m 

 
Figure C-62 Relation between β and τ for load A1 to A10 for a bridge with two equal spans 

and Ltot=26 m.  

 
Figure C-63 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with two equal spans and Ltot=26 m. 

 
Figure C-64  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=26 m. 
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C.2.7 Total length 28 m 

 
Figure C-65 Relation between β and τ for load A1 to A10 for a bridge with two equal spans 

and Ltot=28 m.  

 
Figure C-66 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with two equal spans and Ltot=28 m. 

 
Figure C-67  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=28 m. 
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C.2.8 Total length 30 m 

 
Figure C-68 Relation between β and τ for load A1 to A10 for a bridge with two equal spans 

and Ltot=30 m.  

 
Figure C-69 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.5,  

for a bridge with two equal spans and Ltot=30 m. 

 
Figure C-70  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with two equal spans and Ltot=30 m. 
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C.3 Bridge with three equal spans 

 
Figure C-71  Design curves of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=30 m to Ltot=43.5 m . 

 
Figure C-72 Design curves of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=30 m to Ltot=43.5 m . 
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C.3.1 Total length 30 m 

 
Figure C-73 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=30 m.  

 
Figure C-74 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=30 m. 

 
Figure C-75  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=30 m. 
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C.3.2 Total length 31.5 m 

 
Figure C-76 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=31.5 m.  

 
Figure C-77 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=31.5 m. 

 
Figure C-78  Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=31.5 m. 
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C.3.3 Total length 33 m 

 
Figure C-79 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=33 m.  

 
Figure C-80 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=33 m. 

 
Figure C-81 Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=33 m. 
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C.3.4 Total length 34.5 m 

 
Figure C-82 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=34.5 m.  

 
Figure C-83 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=34.5 m. 

 
Figure C-84 Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=34.5 m. 
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C.3.5 Total length 36 m 

 
Figure C-85 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=36 m.  

 
Figure C-86 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=36 m. 

 
Figure C-87 Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=36 m. 
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C.3.6 Total length 37.5 m 

 
Figure C-88 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=37.5 m.  

 
Figure C-89 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=37.5 m. 

 
Figure C-90 Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=37.5 m. 
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C.3.7 Total length 39 m 

 
Figure C-91 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=39 m.  

 
Figure C-92 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=39 m. 

 
Figure C-93 Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=39 m. 
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C.3.8 Total length 40.5 m 

 
Figure C-94 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=40.5 m.  

 
Figure C-95 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=40.5 m. 

 
Figure C-96 Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=40.5 m. 
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C.3.9 Total length 42 m 

 
Figure C-97 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=42 m.  

 
Figure C-98 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=42 m. 

 
Figure C-99 Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=42 m. 

0

50 000

100 000

150 000

0 0.2 0.4 0.6 0.8

τ
[N

/m
]

β [-]

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

0

10 000

20 000

30 000

40 000

50 000

0.2 0.25 0.3 0.35 0.4 0.45 0.5

τ
[N

/m
]

β [-]

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

0

25000

50000

75000

100000

125000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

τ 
[N

/m
]

β [-]

L=42



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2010:37 168

C.3.10 Total length 43.5 m 

 
Figure C-100 Relation between β and τ for load A1 to A10 for a bridge with three equal  

spans and Ltot=43.5 m.  

 
Figure C-101 Relation between β and τ for load A1 to A10, with a zoom at β=0.2 to β=0.4,  

for a bridge with three equal spans and Ltot=43.5 m. 

 
Figure C-102 Design curve of the relation between β and τ for the HSLM-A loads of a  

bridge with three equal spans and Ltot=43.5 m. 
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D. Appendix D Matlab Programs 
In this appendix the layout of several Matlab programs used in the dynamic analysis 
of railway bridges will be presented. In the first three sections “main programs” are 
presented. With “main program” the authors refer to a program which purpose mainly 
is to gather the calculations from different function files to achieve a sought result.  
Used function files are presented in section D.4.  

Each section starts with an overview of the created program and a description of the 
area of use for the program. In each section the code for the specific program will be 
printed and available to be copied into Matlab. Verifications for some of the programs 
are presented in the end of the sections.  
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D.1  SDOF 
This section will present the “main program” for the transformation of a railway 
bridge into a SDOF model using the force scaling approach. 

D.1.1 About the SDOF program 
The force scaling approach is made in three steps. First the mass of the SDOF system 
is chosen arbitrary. Then the stiffness is calculated to get the first eigenfrequency 
equal to the first eigenfrequency of the railway bridge. Finally the load is scaled so 
that the static displacement of the SDOF system and the critical point in the railway 
bridge become equal. 

The scaling of the load requires that the influence line for the displacement in the 
critical point of the bridge is calculated for a point load moving across the bridge. 
This is done in a function file called SdofLoad.m, see section D.4.1. 

The Newmark-β method is used as the numerical time integration method, see section 
D.4.6. 

D.1.2 Code 
%-------------------------------------------------- ------------------------ 
  
%           MAIN PROGRAM 
%           SDOF MODELING OF A RAILWAY BRIDGE 
  
%-------------------------------------------------- ------------------------ 
 
%% STARTING DEFINITIONS 
clear all 
  
dof = 3; 
neli = 20; 
  
%% DEFINITION OF BRIDGE PARAMETERS 
L_tot = 15; 
kap = 1; 
my = 2; 
Li = L_tot*[1/(1+my) (1-1/(1+my))]; 
w=11.2; 
h = 0.6; 
E = 40*10^9; 
Mass = 2400; 
A = w*h; 
I = w*h^3/12;  
ep =[E A I Mass*w*h [0 0]]; 
  
%% EIGENFREQUENCIES 
[Coord, Edof, Ndof, Elnod, Ex, Ey, nel, non, ndof, b] =... 
    MeshTwoD(dof, neli, Li); 
  
K = zeros(ndof); 
M = zeros(ndof); 
for i=1:nel 
    [Ke,Me] = beam2d(Ex(i,:),Ey(i,:),ep); 
    K = assem(Edof(i,:),K,Ke); 
    M = assem(Edof(i,:),M,Me); 
end 
  
[L,X] = eigen(K,M,b); 
  
%% MASS, STIFFNESS AND DAMPING OF THE SDOF SYSTEM 
  
M_sdof = 1; 
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K_sdof = M_sdof * L(1); 
  
damp = 0.02; 
C_sdof = 2*damp*M_sdof*sqrt(L(1)); 
  
speed_step = 2.5/3.6; 
max_speed = 100; 
  
q = waitbar(0, 'Jag är en muffin..'); 
for i=1:((max_speed-28)/speed_step) 
     
    speed = 28+i*speed_step; %Speed in m/s 
  
    ntimes = 10000; 
  
    [F_sdof,K_bridge,h]= SdofLoad(speed,ntimes,Li,E ,I,4); 
    %[F_sdof,K_bridge,h]= SdofLoadSimple(speed,ntim es,Li,E,I,1); 
  
    S = K_sdof/K_bridge; 
  
    F = S*F_sdof; 
  
    u0 = 0; 
    v0 = 0; 
    bet = 0.25; 
    gam = 0.5; 
    [u,v,a,t] = NEWMARK(K_sdof,C_sdof,M_sdof,F,h,u0 ,v0,bet,gam); 
  
    A_max(i) = max(a); 
    V(i) = speed; 
     
    waitbar(i/((max_speed-28)/speed_step)) 
end 
close(q) 
%% PLOT RESULTS 
  
hold on 
%plot(t,F) 
  
plot(V.*3.6,A_max,'r') 
%plot(t,a) 
%plot(t,F) 
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D.2 Acceleration response in 2D 

This section will present a “main program” for Matlab for calculating the acceleration 
response of a continuous railway bridge in 2D. The program has several areas of use. 
The main use is to calculate the maximum vertical acceleration in time in the railway 
bridge for the variation of train velocity and bridge parameters. But as several 
calculation procedures are required to achieve this it can also be used to produce the 
result of each separate calculation. With small modifications of the program code 
presented later it is possible to extract eigenfrequencies, eigenmodes and the time 
response concerning displacement, velocity and accelerations.  

D.2.1 About the FE program 

The program calculates the acceleration response using FE analysis. The analysis is 
based on mode-superposition, but numerical time integration is still used because of 
complexity in the train load. The calculation procedure can be divided in the 
following steps: 

• Meshing  
• Assembly of stiffness and mass matrix 
• Calculation of eigenfrequencies, eigenmodes, modal mass matrix, modal 

stiffness matrix and modal damping 
• Load creation 
• Numerical time integration 
• Data saving and plotting 

The meshing is made using a function file called MeshTwoD.m. In short the mesh file 
creates a 2D beam with the possibility of choosing the number of spans, span lengths, 
degrees of freedom in each node and the number of elements in each span. The reader 
is referred to section D.4.4 for more information on the mesh function file. 

Creation of each elements local stiffness and mass matrix and assembly into the 
global stiffness matrices is made using two Calfem files called beam2d.m and 
assem.m. The reader is referred to CALFEM (Austell P.–E., et. Al., 2004) for more 
information on Calfem and the used function files.  

Calculation of eigenfrequencies and eigenmodes is also made using a Calfem file, 
called eigen.m. This file uses the built in eigensolver in Matlab but orders the output 
data in a correct way for the use of mode-superposition. It also normalizes the 
eigenmodes to get a modal mass matrix equal to a diagonal of ones.  

Calculation of the train load is made using a function file called TrainTwoD.m. The 
function file calculates the load matrix representing the load in each node for every 
time step for an arbitrary HSLM-A load. The file has the possibilities of easily 
switching between different HSLM-A train loads and adjusting these loads to any 
choice of number of elements and time step length. The reader is referred to section 
D.4.2 for more information on the load function file. 

The time integration function file uses the Newmark-β method with the parameters β 
and γ equal to 0.25 and 0.5 respectively to make it unconditionally stable. The time 
integration has been made using the function file Newmark.m, see D.4.6. 
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D.2.2 Matlab code 

%-------------------------------------------------- ------------------------ 
  
%           MAIN PROGRAM 
%           FE ANALYSIS ON A 2D CONTINUOUS BEAM 
  
%-------------------------------------------------- ------------------------ 
  
%% INTRODUCTION 
%-------------------------------------------------- ------------------------ 
%Program that calcualtes the response in time using  Newmark integration.  
%Mode superposition is used for fastening the calcu lation process. Meshing 
%and load creation is made in function files. 
%-------------------------------------------------- ------------------------ 
  
%% MAIN CALCULATIONS 
  
%Clears all previous data 
clear all 
clc 
clf 
  
%Defines degrees of freedom in each node and number  of elements in each 
%span 
dof = 3; 
neli = 100; 
  
%A loop that allows for the variation of any bridge  parameter. Each loop 
%defines a set of material, geometric and load para meters and calculates 
%the response in time for a defined range of train velocities. The program 
%can hence be used for smaller calculations like th e response in time for  
%one specific set of parameters but also extensive calculations like the 
%maximum acceleration in time under the variation o f train velocities for a 
%chosen number of parameter sets. 
for j=1:10 
    %GEOMETRIC PARAMETERS 
    %Total length 
    L_tot = 15;  
    %Relation between third and first span for thre e-sapn bridges 
    kap = 1;  
    %Relation between second and first span for two -span bridges 
    my = 1.5;  
    %Vector defining the length of each span. Has d ifferent definition 
    %depending on the number of spans 
    %Li = L_tot*[1/((1+my)*(1+kap)) (1-1/(1+my))  1 /((1+my)*(1+1/kap))]; 
    Li = L_tot*[1/(1+my) (1-1/(1+my))]; 
    %Cross-section width 
    w=11.2; 
    %Cross-section height 
    h = 0.6; 
    %Area 
    A = w*h; 
    %Moment of inertia 
    I = w*h^3/12; 
     
    %MATERIAL PARAMETERS 
    %Module of elasticity 
    E = (20+5*j)*10^9; 
    %Density 
    Density = 2800; 
     
    %Vector used in the creation of beam elements 
    ep =[E A I Density*w*h [0 0]]; 
  
    %MESHING 
    %Meshing is made using a separate function file  
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    [Coord, Edof, Ndof, Elnod, Ex, Ey, nel, non, nd of, b] =... 
        MeshTwoD(dof, neli, Li); 
  
    %ASSEMBLY OF BEAM ELEMENTS 
    %The Calfem function file beam2d is used for cr eating the local 
    %stiffness matrices and these are assembled usi ng the Calfem file 
    %assem 
    K = zeros(ndof); 
    M = zeros(ndof); 
    for i=1:nel 
        [Ke,Me] = beam2d(Ex(i,:),Ey(i,:),ep); 
        K = assem(Edof(i,:),K,Ke); 
        M = assem(Edof(i,:),M,Me); 
    end 
  
    %EIGENVALUES AND EIGENMODES 
    [L,X] = eigen(K,M,b); 
  
    %Cropping of the stiffness, mass and eigenvecto r matrices with 
    %consideration to boundary conditions. 
    K(b,:)=[]; 
    K(:,b)=[]; 
    M(b,:)=[]; 
    M(:,b)=[]; 
    X(b,:) = []; 
  
    %MODE SUPERPOSITION 
    %number of eigenmodes used 
    nmodes = 2; 
  
    %modal mass and stiffness matrix 
    M_diag = X(:,1:nmodes)'*M*X(:,1:nmodes); 
    K_diag = X(:,1:nmodes)'*K*X(:,1:nmodes); 
  
    %modal damping 
    damp = 0.02; 
    C_diag = diag(2*damp*sqrt(L(1:nmodes))); 
  
    %CONSIDERED RANGE OF TRAIN VELOCITY 
    speed_step = 1.25/3.6; 
    max_speed = 315; 
  
    %Loop that calculates the response in time usin g mode superposition  
    %for a chosen range of train velocities 
    q = waitbar(0, ['Iteration ' num2str(j)]); 
    for i=1:((max_speed)/speed_step) 
        %Train velocity 
        speed = i*speed_step; 
        %Number of time steps 
        ntimes = 10000; 
        %Starting displacement and velocity 
        u0 = zeros(nmodes,1); 
        v0 = zeros(nmodes,1); 
  
        %TRAIN LOAD 
        [F_train] = TrainTwoD(speed,ntimes,ndof,Coo rd,Elnod,Edof,Li,1); 
        F_train = [zeros(length(F_train(:,1)),1) F_ train]; 
        F_train(b,:) = []; 
        F = X(:,1:nmodes)'*F_train; 
         
        %TIME INTEGRATION 
        bet = 0.25; 
        gam = 0.5; 
        [u,v,a,t] = NEWMARK(K_diag,C_diag,M_diag,F, h,u0,v0,bet,gam); 
  
        %Calculates the true displacements and acce lerations and adds the 
        %removed degrees of freedom 
        u = X(:,1:nmodes)*u; 
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        a = X(:,1:nmodes)*a; 
        e=1:1:ndof; 
        e(b) = []; 
        u_true = zeros(ndof,ntimes+1); 
        a_true = zeros(ndof,ntimes+1); 
        u_true(e,:) = u; 
        a_true(e,:) = a; 
     
        %MAXIMUM ACCELERATION 
        Max = max(max(a_true)); 
        Min = min(min(a_true)); 
        A_maxmax(i,j) = max([Max abs(Min)]); 
         
        V(i,j) = speed;   
        waitbar(i/((max_speed)/speed_step)) 
    end 
    close(q) 
    %SAVES USED PARAMETERS FOR EACH ITERATION 
    EE(j) = E; 
    MASS(j) = Mass; 
    L_TOT(j) = L_tot; 
    MY(j) = my; 
    DAMP(j) = damp; 
end 
  
%% PLOT RESULTS 
% A huge variation of plot options can be used. The  code below is just an 
% example of possible plot options 
hold on 
colors = ['y', 'g', 'b', 'r', 'k']; 
for k=1:5 
plot(V(:,k)*3.6, A_maxmax(:,k), colors(k)) 
end 
xlabel('Speed [km/h]') 
ylabel('Acceleration [m/s^2]') 
title('HSLM-A1') 
vari = 'E = '; 
legend([vari num2str(EE(1))], [vari num2str(EE(2))] ,...  
   [vari num2str(EE(3))], [vari num2str(EE(4))],...  
   [vari num2str(EE(5))]) 

D.2.3 Verification 

Verification of the program has been made using the commercial software ADINA. A 
2D model of a two-span bridge has been created in both ADINA and the Matlab FE 
program with the purpose of comparing the responses from the two programs. The 
geometry and boundary conditions in the model are shown by Error! Reference 
source not found.. 

 

Figure D-1  Geometry and boundary conditions in the model used for the verification. 

The material parameters in the form of module of elasticity and concrete density have 
been chosen to 30 GPa and 2400 kg/m3 respectively. 

5 m 10 m 11.2 m 

0.6 m 
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The time integration is made using the Newmark-β method with the integration 
parameters β and γ equal to 0.25 and 0.5 respectively. 10000 time steps are used in the 
integration. 

Both models use mode-superposition limited to the three eigenmodes with lowest 
corresponding eigenfrequency. Damping has been included through a modal damping 
of 2 % for all considered eigenmodes. 

Beam elements are used in both programs. One hundred elements in each span have 
been used in the Matlab program, which corresponds to a length of 0.05 and 0.1 m. 
The element length in Adina has been chosen to 0.25 in both spans. The reason why 
the element lengths have been chosen differently between the models is because the 
Matlab model is built to choose the number of elements equally in every span, while 
the Adina model gets substantially easier to create with regard to the train load using 
equal span lengths. 

As a first verification the frequencies from the two models are compared, see Table 
D.1. 

Table D.1 Eigenfrequencies for the two models 

Frequencies  

Mode ADINA Matlab 

1 14.21 Hz 14.2 Hz 

2 44.17 Hz 44.17 Hz 

3 61.71 Hz 61.71 Hz 

The HSLM-A load case A1 and A4 have been used to verify the dynamic response of 
the program. The loads have been simulated with the velocities 180 km/h and 270 
km/h respectively. The displacements and accelerations have been gathered in the 
middle of the second span. Figure D-2 to Figure D-5 show the comparison of 
responses between the two programs for the two first seconds. 
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Figure D-2 Comparison between displacements for the HSLM-A1 train load with velocity of 180 
km/h 

 

Figure D-3  Comparison between accelerations for the HSLM-A1 train load with velocity of 180 
km/h 

 

Figure D-4  Comparison between displacements for the HSLM-A4 train load with velocity of 270 
km/h 
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Figure D-5  Comparison between accelerations for the HSLM-A4 train load with velocity of 270 
km/h 
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D.3 Acceleration response in 3D 

The purpose with this “main program” is to calculate the maximum vertical 
acceleration in time considering a 3D model of railway bridges for the variation of 
load and bridge parameters.  It is also possible to modify the program to calculate 
eigenfrequencies, eigenmodes and the time response concerning displacement, 
velocity and accelerations. 

D.3.1 About the FE program 
The program calculates the acceleration response for a railway bridge modelled as a 
simply supported plate with the possibility to use eccentric loading. The analysis uses 
mode-superposition and numerical time integration to get the vertical acceleration 
response in time. The program can be divided in several steps: 

• Meshing 

• Assembly of the stiffness matrix 
• Calculation of eigenfrequencies, eigenmodes, modal mass matrix, modal 

stiffness matrix and modal damping 
• Creation of HSLM train loads 
• Numerical time integration 

• Plot figures and saves data 

The function file MeshThreeD.m is used for creating the mesh. The mesh file creates 
a 3D plate consisting of shell elements. It is possible to choose span length and the 
number of elements in both length of the span and the width. More information about 
the mesh function file can be found in section D.4.5. 

The Calfem files platre.m, planre and assem.m have been used in the creation of each 
elements local stiffness and mass matrix and assembly into the global stiffness 
matrices. Further information about the Calfem files is found in CALFEM – A finite 
element toolbox version 3.4 (Austell P.–E., et. Al., 2004)  

The 3D program uses a different method for calculating the eigenfrequencies and 
eigenmodes compared to the 2D “main program”. Instead of using a Calfem file and 
the built in eigensolver in Matlab a method called inverse iteration and inverse 
iteration with shift is used. The method provides the possibility of calculating only a 
few of the lowest eigenmodes to save calculation time and can be used to choose 
specific eigenmodes. The gained eigenmodes from the function file 
Inverse_iteration.m are all normalized so it is possible to get a modal mass matrix 
equal to a diagonal of ones. The function file is described in detail in section D.4.7. 

The train load in this program is defined by the function file TrainThreeD.m. It 
calculates the load representing the load in each node for every time step for an 
arbitrary HSLM-A load. It is possible to switch between different HSLM-A train 
loads and adjust to arbitrary choice of time steps and mesh size. The function file is 
described further in D.4.3.  

As in the 2D program Newmark integration are used for the time integration, for more 
information see D.4.6. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2010:37 180

D.3.2 Matlab code 
%-------------------------------------------------- ------------------ 
% 
%           MAIN PROGRAM  
%           FE ANALYSIS ON A 3D PLATE  
% 
%-------------------------------------------------- ------------------ 
 
%% INTRODUCTION 
%-------------------------------------------------- ------------------ 
% Program that calculates the response in time usin g Newmark         % 
integration. 
% Mode superposition is used for fastening the calc ulation process.  % 
Meshing, and load creation is made in function file s. 
 
%% MAIN CALCULATIONS 
  
% Clear all previous data 
clear all 
clc 
clf 
  
%Indata 
qz = 0; 
ty = 0; 
  
%Number of elements used in the length of the bridg e 
n11 = 16; 
  
%Number of elements used in the width of the bridge  
n2  = 16; 
  
%% Mesh the geometry in separate file. 
%A loop that allows for the variation of any bridge  parameter. Each %loop 
defines a set of material, geometric and load param eters and %calculates the 
response in time for a defined range of train %velo cities. The program can 
therefore be used for the response in %time for one  specific set of 
parameters but also extensive %calculations like th e maximum acceleration in 
time under the %variation of train velocities for a  chosen number of 
parameter sets.    
for j=1:10 
    %GEOMETRIC PARAMETERS 
    %Total length 
    l1 = 15; 
    Li = [l1 l2]; 
    %Cross-section width 
    b=11; 
    %Cross-section height 
    h=0.7; 
    %Area 
    A = b*h; 
    %Moment of inertia 
    I = b*h^3/12; 
     
    %MATERIAL PARAMETERS 
    %Module of elasticity 
    E = 40e9 ; 
    %Density 
    d=2800; 
    %poisson's ratio 
    v = 0.2; 
     
    %MESHING 
    %Meshing is made using a separate function file  

[B1,B2,B3,B4,P1,P2,P3,P4,Ex,Ey,ndof,nel,non,Edof]=M eshThreeD(l1,b,n11,n2)
; 
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%ASSEMBLY OF SHELL ELEMENTS 
%The Calfem function files platre and planre are us ed for %creating the 
local stiffness matrices and these are assembled %u sing the Calfem 
function file assem 

    K = zeros(ndof); 
    f = zeros(ndof,1); 
    D = hooke(1,E,v); 
    ep = [1 h]; 
    eq = [0 0 qz]'; 
    for i=1:nel 
         ex = Ex(i,:); 
         ey = Ey(i,:); 
         [Ke1,fe1]=platre(ex,ey,ep(2),D,eq(3)); 
         [Ke2,fe2]=planre(ex([1 2]),ey([2 3]),ep,D, eq([1 2])); 
         Ke = zeros(20); 
         fe = zeros(20,1); 
         Ke([1 2 6 7 11 12 16 17],[1 2 6 7 11 12 16  17])=Ke2; 
         Ke([3 4 5 8 9 10 13 14 15 18 19 20],[3 4 5  8 9 10 13 14 15 18 19 

20])=Ke1; 
         fe([1 2 6 7 11 12 16 17])=fe2; 
         fe([3 4 5 8 9 10 13 14 15 18 19 20])=fe1; 
        [K,f] = assem(Edof(i,:),K,Ke,f,fe); 
    end 
    %% MASS MATRICE 
    %Mass for each element 
    M_el_1 = l1*b*d*h/nel; 
    %Rotational lumped mass (see ADINA manual) 
    M_rot_1 = (M_el_1/4)*(1/12)*(h*h); 
    k1 = [M_el_1/4 M_el_1/4 M_el_1/4 M_rot_1 M_rot_ 1... 
          M_el_1/4 M_el_1/4 M_el_1/4 M_rot_1 M_rot_ 1... 
          M_el_1/4 M_el_1/4 M_el_1/4 M_rot_1 M_rot_ 1... 
          M_el_1/4 M_el_1/4 M_el_1/4 M_rot_1 M_rot_ 1]; 
    Me_1 = diag(k1); 
    M = zeros(ndof); 
    for i=1:nel 
        M = assem(Edof(i,:),M,Me_1); 
    end     
    %% BOUNDARY CONDITIONS 
    for i=1:length(B4(:,1)) 
        bc1((3*i-2):(3*i)) = B4(i,1:3)'; 
        bc2((2*i-1):(2*i)) = B2(i,2:3)';  
        bc5((2*i-1):(2*i)) = B4(i,2:3)'+5*(n2+1)*n1 1/2;    
    end 
  
    bc3 = zeros(1,2); 
    for k=2:(length(B3(:,1))-1) 
        b3 = B1(k,[1 2 3])+5*n2/2; 
        bc3e = [b3; 0 0 0]'; 
        bc3 = [bc3;bc3e]; 
    end 
    bc3(1,:)=[]; 
  
    bc4 = zeros(1,2); 
    for k=2:(length(B3(:,1))-1) 
        b4 = B1(k,4)+5*n2/2; 
        bc4e = [b4; 0]'; 
        bc4 = [bc4;bc4e]; 
    end 
    bc4(1,:)=[]; 
  
    bc = [bc1';bc2']; 
    BC2 = [bc1';bc3(:,1);bc2']; 
    BC3 = [bc1';bc4(:,1);bc5';bc2']; 
  
  
    %% Solve the eigen-value problem 
    Ltot = l1; 
    [X,L]=Inverse_iteration(K,M,bc,BC2,BC3,ndof,Lto t,E,b*h^3/12,b*h,d); 
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    %SAVE USED PARAMETERS FOR EACH ITERATION 
    EE(z,j) = E; 
    L_TOT(z,j) = l1; 
    MASS(z,j) = d; 
    BB(z,j)=b; 
    H(z,j) = h; 
  
    %Cropping of the stiffness, mass and eigenvecto r matrices with 
    %consideration to boundary conditions. 
    K(bc,:)=[]; 
    K(:,bc)=[]; 
    M(bc,:)=[]; 
    M(:,bc)=[]; 
    X(bc,:) = []; 
     
    %%MODE SUPERPOSITION 
    %Number of eigenmodes used 
    nmodes = 3; 
     
    %% Creation of diagonal K,M and C for mode supe rposition 
         
    M_diag = X(:,1:nmodes)'*M*X(:,1:nmodes); 
    K_diag = X(:,1:nmodes)'*K*X(:,1:nmodes); 
  
    %modal damping (According to BV Bro, Banverket 2006) 
    if Ltot<=20 
    damp = 0.015 + 0.0007*(20-Ltot); 
    else 
    damp = 0.015; 
    end 
    C_diag = diag(2*damp*2*pi*L(1:nmodes)); 
  
    %CONSIDERED RANGE OF TRAIN VELOCITY 
    speed_step = 1.25/3.6; 
    max_speed = 0.8*vcr; 
    vcr = pi/2/Ltot^2*sqrt(E*I/(d*A))*18; 
   
    %% Newmark integration 
    bet = 0.25; 
    gam = 0.5; 
    %Number of time steps 
    ntimes = 10000; 
    %Starting displacements 
    u0 = zeros(nmodes,1); 
    v0 = zeros(nmodes,1); 
  
    q = waitbar(0, ['Iteration' num2str(j)]);     

   %Loop that calculate the response in time using mode                   
%superposition for a chosen range of train velociti es 

        for i=1:(max_speed/speed_step) 
            e = 3.5; 
            %Train velocity 
            speed = i*speed_step; 
            %% Train load 
            [F_train h] = 
TrainLoadThreeD(Li,speed,ntimes,ndof,Ex,Ey,Edof,b,e ,n2,n11,n12,j); 
            F_train(bc,:) = []; 
            F = X(:,1:nmodes)'*F_train; 
  
            %TIME INTEGRATION 
            [a,t] = NEWMARK(K_diag,C_diag,M_diag,F, h,u0,v0,bet,gam); 

%Calculate the true displacements and acceleration and %adds 
the removed degrees of freedom. 

            e = 1:1:ndof; 
            e(bc) = []; 
            a = X(:,1:nmodes)*a; 
            a_true = zeros(ndof,ntimes); 
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            a_true(e,:) = a; 
            a = []; 
            % MAX IN THE WHOLE BRIDGE 
            % MaxMax = max(max(a_true)); 
            % MinMin = min(min(a_true)); 
            % A_maxmax(i,j) = max([MaxMax abs(MinMi n)]); 
            V(i,j) = speed; 
            e2 = 3:5:(ndof-2); 
            u_vert = u_true(e2,:); 
            a_vert = a_true(e2,:); 
            a_true = []; 
            MaxVert = max(max(a_vert)); 
            MinVert = min(min(a_vert)); 
            A_maxvert(i,j) = max([MaxVert abs(MinVe rt)]); 
        end 
end 
 
%% PLOT RESULTS 
% A huge variation of plot options can be used. The  code below is just an 
% example of possible plot options 
hold on 
colors = ['y', 'g', 'b', 'r', 'k']; 
for k=1:5 
plot(V(:,k)*3.6, A_maxmax(:,k), colors(k)) 
end 
xlabel('Speed [km/h]') 
ylabel('Acceleration [m/s^2]') 
title('HSLM-A1') 
vari = 'E = '; 
legend([vari num2str(EE(1))], [vari num2str(EE(2))] ,...  
   [vari num2str(EE(3))], [vari num2str(EE(4))],...  
   [vari num2str(EE(5))]) 

 

 

D.3.3 Verification 
ADINA and the Matlab 3D FE program has been used to build a similar model of a 
one span bridge with the purpose of comparing the responses from the two programs. 
The boundary conditions and geometry used in the verification model can been seen 
in Figure D-6. 

 

 

 
 

Figure D-6  Geometry and boundary conditions. 

The material parameters in the form of module of elasticity and concrete density have 
been chosen to 30 GPa and 2400 kg/m3 respectively. 

The time integration is made using the Newmark-β method with the integration 
parameters β and γ equal to 0.25 and 0.5 respectively. 10000 time steps are used in the 
integration. 

Both models use mode-superposition limited to the three eigenmodes with lowest 
corresponding eigenfrequency. Damping has been included through a modal damping 
of 2 % for all considered eigenmodes. 

15 m 10 m 

0.6 m 
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Plate elements are used in the Matlab program to create the model above and in 
ADINA shell elements are used. The element size in Adina has been chosen to 
0.25·0.25m2. In Matlab the element size were chosen to 16∙16 elements which 
correspond to 0.625 ∙ 0.9375 m2. The reason why a much more coarse mesh was 
chosen for the Matlab program is because of the memory limit that the program has. 

The result from comparing the frequencies from the two models can be seen in Table 
D-1 . 

Table D-1  Comparison between the eigenfrequencies for the two programs. 

Frequencies  

Mode ADINA Matlab 

1 4.3 Hz 4.3 Hz 

2 9.93 Hz 10.03 Hz 

3 17.25 Hz 17.26 Hz 

 

The further verification of the FE Matlab 3D plate program is divided in two parts. 
First the total response is monitored for one specific train configuration, certain bridge 
parameters and a velocity of 180 km/h. The response gained from the Matlab FE 
program is compared to the response obtained from an analysis in ADINA with the 
same input parameters. After the total response is verified, for one single case, max 
accelerations for different bridge configurations and speeds for the trainload will be 
compared. It is mainly the width of the bridge that will be changed in the comparison 
but also two different velocities of the traveling train will be tested.  

The load case HSLM-A1 has been used to represent the high-speed train. It has been 
simulated with the velocity 180 km/h and accelerations has been monitored in the 
middle of the span. Results from the comparison between total acceleration response 
in ADINA and Matlab are shown in Figure D-7 and Figure D-8. The response from 
each program shows very similar behavior and has only small deviations from one 
other. 

 
Figure D-7  Comparison between displacements for the HSLM-A1 train load with velocity of 180 
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Figure D-8  Comparison between displacements for the HSLM-A1 train load with velocity of 180 

km/h. 

Since the response is nearly identical for this single case next step is to compare the 
maximum acceleration with some different input parameters. Results from the 
analysis in ADINA and Matlab are shown in Table D-2 and Table D-3 respectively. 
The comparison between the results in each program is shown in Table D-4. 

Table D-2 Max accelerations from the different input parameters in ADINA. 

ADINA 

HSLM-A1 L=10 m, b=6 m L=10 m, b=10 m 

180.0 km/h 2.925 m/s
2
 1.239 m/s

2
 

242.5 km/h 15.446 m/s
2
 9.177 m/s

2
 

 

Table D-3 Max accelerations from the different input parameters in Matlab. 

Matlab 

HSLM-A1 L=10 m, b=6 m L=10 m, b=10 m 

180.0 km/h 2.816 m/s
2
 1.262 m/s

2
 

242.5 km/h 15.439 m/s
2
 8.897 m/s

2
 

 

Table D-4 Comparison of max accelerations from the result in ADINA and Matlab. 

ADINA vs Matlab 

HSLM-A1 L=10 m, b=6 m L=10 m, b=10 m 

180.0 km/h 3.7% 1.8% 

242.5 km/h 0.0% 3.0% 
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D.4 Function files 
The “main programs” described earlier all gather calculations from several function 
files. Function files are used to mesh the geometry, calculate the travelling train load, 
calculate the dynamic response and for solving the eigenvalue-problem. Several of 
these function files have been made by the authors, and these are described in the 
following sub-chapters. 

D.4.1 Sdof Load 
The function file SdofLoad.m is used in the “Mina program” for transforming a 
railway bridge into a SDOF system. 

The function file calculates the influence lines for the critical point of the railway 
bridge (in the middle of the largest span) for a two-span bridge considering static 
displacement when a point load moves across the bridge. The file also gathers the 
influence from all point loads in a HSLM-A train load into an influence line with 
consideration to a chosen train configuration. 

D.4.1.1 Matlab code 
%-------------------------------------------------- ------------------------ 
%           FUNCTION FILE 
%           TRAIN LOAD IN 2D  
%-------------------------------------------------- ------------------------ 
%% INTRODUCTION 
function [F_sdof,K_bridge,h]= SdofLoad(v,ntimes,Li, E,I,A) 
%-------------------------------------------------- ------------------------ 
%Pogram that calculates the load matrix for a FE an alysis corresponding to 
%a HSLM-A train load. 
  
%       INDATA 
  
%       v =         Train velocity 
%       ntimes =    Number of time steps 
%       Li =        Vector containing the length of  each span. The function 
%                   file is compatible with arbitra ry number of spans. 
%       E =         Module of elasticity. 
%       I =         Moment of inertia. 
%       A =         Number of the HSLM-A train load  considered. 
  
%       OUTPUT 
  
%       F_sdof =    Vector where every value corres ponds to the load for a 
%                   time step. 
%       K_bridge =  Stiffness of the railway bridge  in the considered point 
%       h =         time step 
%-------------------------------------------------- ------------------------ 
  
N = [18 17 16 15 14 13 13 12 11 11]; 
D = [18 19 20 21 22 23 24 25 26 27]; 
d = [ 2 3.5 2 3 2 2 2 2.5 2 2]; 
P = [170 200 180 190 170 180 190 190 210 210]*10^3;  
  
N = N(A); 
D = D(A); 
d = d(A); 
P = P(A); 
  
distance = zeros(1,(N+1)*2+12); 
s = length(distance); 
distance(1:6) = [0 3 14 17 20.525 20.525+d]; 
  
for i=1:(N+1) 
    distance([5+2*i 6+2*i]) = [18.7625+D*i-d/2 18.7 625+D*i+d/2]; 
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end 
  
distance((s-5):s) = [(N+2)*D+17-d (N+2)*D+17 (N+2)* D+20.525 ... 
    (N+2)*D+23.525 (N+2)*D+34.525 (N+2)*D+37.525]; 
  
start = distance./v; 
h = (sum(Li)+distance(s))/v/ntimes; 
%% 
  
defl_max = Li(2)^3/(48*E*I) - Li(2)^4/(64*E*I*sum(L i))*3/4; 
F_sdof = zeros(1,ntimes+1); 
for i=1:ntimes 
     
    for j=1:length(start) 
         
        a1 = v*(h*i-start(j)); 
        a2 = v*(h*i-start(j))-Li(1); 
        b = Li(2)-a2; 
         
        if a1<=0 
            break 
        end 
         
        if b<=0 
            continue 
        end 
     
        if v*(h*i-start(j)) <= Li(1) 
            F_sdof(i+1) = F_sdof(i+1) + ... 
                P*(a1*Li(1)*Li(2)^2/(32*E*I*sum(Li) )*(1-a1^2/Li(1)^2)); 
        else if v*(h*i-start(j)) <= Li(1)+Li(2)/2 
                F_sdof(i+1) = F_sdof(i+1) - ... 
                    P*(a2*Li(2)^2/(48*E*I)*(3-4*a2^ 2/Li(2)^2)-b*Li(2)^3/... 
                    (32*E*I*sum(Li))*(1-b^2/Li(2)^2 )); 
            else 
                F_sdof(i+1) = F_sdof(i+1) - ... 
                    P*(b*Li(2)^2/(48*E*I)*(3-4*b^2/ Li(2)^2)-b*Li(2)^3/... 
                    (32*E*I*sum(Li))*(1-b^2/Li(2)^2 )); 
            end 
        end 
         
    end 
end 
  
F_sdof = F_sdof./defl_max; 
K_bridge = 1/defl_max; 

 

D.4.2 Train load 2D 
The function file is called TrainTwoD. It creates the load matrix of a HSLM-A train 
load. A load matrix is a matrix where every column corresponds to the load on every 
degree of freedom and one time step. The load matrix hence has rows equal to the 
degrees of freedom and columns equal to the number of time steps. 

The procedure behind the calculations in the file is as follows:  

• The load parameters are decided based on which HSLM-A train load that the 
user has chosen. 

• Based on the load parameters a vector containing the distance between all 
point loads with the first load as reference is created. The vector is called 
“distance”. 
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• Based on the “distance” vector and the chosen train velocity a vector 
describing the time between loads is created. The vector is called “start” as it 
describes the time for which every point load starts affecting the bridge. 

• When the “start” vector has been established a double loop is used for 
performing the calculations. The first loop corresponds to every time step and 
the second to every point load inside each time step. For one time step the 
program calculates where every point load is using the “start” vector and 
assembles the load on the corresponding elements vertical degrees of freedom. 

The assembly of the load has been made on the vertical degrees of freedom, which 
means that an element affected by a point load is seen as simply supported. This 
solution will be correct if small element lengths are used as the moments become 
negligible. 

D.4.2.1 Matlab code 
%-------------------------------------------------- ------------------------ 
%           FUNCTION FILE 
%           TRAIN LOAD IN 2D  
%-------------------------------------------------- ------------------------ 
%% INTRODUCTION 
function [F_train] = TrainTwoD(v,ntimes,ndof,Coord, Elnod,Edof,Li,A) 
%-------------------------------------------------- ------------------------ 
%Pogram that calculates the load matrix for a FE an alysis corresponding to 
%a HSLM-A train load. 
  
%       INDATA 
  
%       v =         Train velocity 
%       ntimes =    Number of time steps 
%       ndof =      Number of degrees of freedom 
%       Coord =     Vector with the x coordinate of  each node 
%       Elnod =     Matrix where each row contains the nodes for the 
%                   corresponding element 
%       Edof =      Matrix connecting dofs and elem ents according to Calfem 
%       Li =        Vector containing the length of  each span. The function 
%                   file is compatible with arbitra ry number of spans. 
%       A =         Number of the HSLM-A train load  considered. 
  
%       OUTPUT 
  
%       F_train =   Matrix where every column corre sponds to the load for a 
%                   time step. The size is ndof*nti mes. 
%-------------------------------------------------- ------------------------ 
  
F_train = zeros(ndof,ntimes); 
  
N = [18 17 16 15 14 13 13 12 11 11]; 
D = [18 19 20 21 22 23 24 25 26 27]; 
d = [ 2 3.5 2 3 2 2 2 2.5 2 2]; 
P = [170 200 180 190 170 180 190 190 210 210]*10^3;  
  
N = N(A); 
D = D(A); 
d = d(A); 
P = P(A); 
  
distance = zeros(1,(N+1)*2+12); 
s = length(distance); 
distance(1:6) = [0 3 14 17 20.525 20.525+d]; 
  
for i=1:(N+1) 
    distance([5+2*i 6+2*i]) = [18.7625+D*i-d/2 18.7 625+D*i+d/2]; 
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end 
  
distance((s-5):s) = [(N+2)*D+17-d (N+2)*D+17 (N+2)* D+20.525 ... 
    (N+2)*D+23.525 (N+2)*D+34.525 (N+2)*D+37.525]; 
  
start = distance./v; 
load = P * ones(1,s); 
h = (sum(Li)+distance(s))/v/ntimes; 
  
for i=1:ntimes 
     
    for j=1:length(start) 
         
        s= v*(h*i-start(j)); 
        if s<=0 
            break 
        end 
         
        if s>=sum(Li) 
            continue 
        end 
         
        for k = 1:(length(Coord)-1) 
            if s <= Coord(k+1) 
                el = k; 
                break 
            end 
        end 
     
        a = s - Coord(Elnod(el,2)); 
        b = Coord(Elnod(el,3)) - s; 
        L = Coord(Elnod(el,3)) - Coord(Elnod(el,2)) ; 
     
        P1 = load(j)*b/L; 
        P2 = load(j)*a/L; 
     
        F_train(Edof(el,[3 6]),i) = [-P1 -P2]'; 
    end    
end 

 

D.4.3 Train load 3D 
The function file is called TrainThreeD. It creates the load matrix considering a three-
dimensional geometry. The procedure behind the calculations is very similar to that in 
TrainTwoD, and the reader is referred to this description for a more thorough 
explanation of the calculation procedure. 

The additional calculation that is required when considering a 3D geometry concerns 
the eccentricity of the load. The only addition is that when the “start” vector has been 
calculated an additional vector that describes the numbering of the elements that the 
train will pass through needs to be established before the double loop. The “Coord” 
vector was used for this purpose in the 2D load creation as it was known that the load 
would pass through all elements.  

D.4.3.1 Matlab code 
%-------------------------------------------------- ------------------------ 
%  
%           FUNCTION FILE 
%           TRAIN LOAD IN 3D 
%  
%-------------------------------------------------- ------------------------ 
  
%% INTRODUCTION 
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function [F_train h] = ... 
    TrainThreeD(Li,speed,ntimes,ndof,Ex,Ey,Edof,b,e ,n2,n11,n12,A) 
  
%-------------------------------------------------- ------------------------ 
%Pogram that calculates the load matrix for a FE an alysis corresponding to 
%a HSLM-A train load. 
%  
%       INDATA 
%  
%       Li =        Vector containing the length of  each span. The function 
%                   file is compatible with arbitra ry number of spans. 
%       speed =     Train velocity 
%       ntimes =    Number of time steps 
%       ndof =      Number of degrees of freedom 
%       Ex =        x-coordinates for every element . Each row corresponds 
%                   to one element. The coordinates  for one element are 
%                   displaced in the following orde r: 
%  
%                   4-------------3 
%                   |             | 
%                   |             | 
%                   |             | 
%                   1-------------2 
%  
%       Ey =        y-coordinates for every element .      
%       Edof =      Matrix connecting dofs and elem ents according to Calfem 
%       b =         Width of the bridge 
%       e =         Eccentricity of the load 
%       n2 =        Number of elements perpendicula r to the bridge length 
%                   coordination 
%       n11 =       Number of elements in the first  span 
%       n12 =       Number of elements in the secon d span 
%       A =         Number of the HSLM-A train load  considered. 
  
%       OUTPUT 
  
%       F_train =   Matrix where every column corre sponds to the load for a 
%                   time step. The size is ndof*nti mes. 
%-------------------------------------------------- ------------------------ 
  
F_train = zeros(ndof,ntimes); 
  
y_coord = b/2+e; 
  
N = [18 17 16 15 14 13 13 12 11 11]; 
D = [18 19 20 21 22 23 24 25 26 27]; 
d = [ 2 3.5 2 3 2 2 2 2.5 2 2]; 
P = [170 200 180 190 170 180 190 190 210 210]*10^3;  
  
N = N(A); 
D = D(A); 
d = d(A); 
P = P(A); 
  
  
distance = zeros(1,(N+1)*2+12); 
s = length(distance); 
distance(1:6) = [0 3 14 17 20.525 20.525+d]; 
  
for i=1:(N+1) 
    distance([5+2*i 6+2*i]) = [18.7625+D*i-d/2 18.7 625+D*i+d/2]; 
end 
  
distance((s-5):s) = [(N+2)*D+17-d (N+2)*D+17 (N+2)* D+20.525 ... 
    (N+2)*D+23.525 (N+2)*D+34.525 (N+2)*D+37.525]; 
  
start = distance./speed; 
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load = P * ones(1,s); 
h = (sum(Li)+distance(s))/speed/ntimes; 
  
  
%% 
  
for i=1:n2 
    if y_coord<=Ey(i,4) 
        el_row_nr = i; 
        break 
    end 
end 
  
for i=1:(n11+n12) 
    el_row(i) = el_row_nr + n2*(i-1); 
end 
  
%% 
  
for i=1:ntimes 
     
    for j=1:length(start) 
         
        s= speed*(h*i-start(j)); 
        if s<=0 
            break 
        end 
         
        if s>=sum(Li) 
            continue 
        end 
     
        for j = 1:length(el_row) 
            if s <= Ex(el_row(j),2) 
                el = el_row(j); 
                break 
            end 
        end 
        a1 = s-Ex(el,1); 
        a2 = Ex(el,2)-s; 
        b1 = y_coord - Ey(el,1); 
        b2= Ey(el,4) - y_coord; 
  
        P1 = P*b2*a2/((Ey(el,3)-Ey(el,1))*(Ex(el,2) -Ex(el,1))); 
        P2 = P*b2*a1/((Ey(el,3)-Ey(el,1))*(Ex(el,2) -Ex(el,1))); 
        P3 = P*b1*a1/((Ey(el,3)-Ey(el,1))*(Ex(el,2) -Ex(el,1))); 
        P4 = P*b1*a2/((Ey(el,3)-Ey(el,1))*(Ex(el,2) -Ex(el,1))); 
  
        F_train(Edof(el,[4 9 14 19]) ,i) = F_train( Edof(el,[4 9 14 19])  
        ,i)+[-P1 -P2 -P3 -P4]'; 
    end 
end 

 

D.4.4 Mesh in 2D 
The function file is called MeshTwoD. Its purpose is to create a two-dimensional 
mesh of a continuous beam. Basically it creates a row of nodes placed with a spacing 
that depends on the requested span lengths and number of elements.  

The program can create the mesh of a continuous beam with arbitrary span lengths 
and number of spans. It is however limited in the choice of spacing between nodes as 
the same number of elements is used for all spans. 
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Creating the mesh of a structure basically means establishing a number of matrices 
that describes coordinates and structure of the mesh. The created matrices are 
explained in the code below.  

D.4.4.1 Matlab code 
%-------------------------------------------------- ------------------------ 
  
%           FUNCTION FILE 
%           MESH FOR 2D CONTINUOUS BEAM 
  
%-------------------------------------------------- ------------------------ 
  
%% INTRODUCTION 
  
function [Coord, Edof, Ndof, Elnod, Ex, Ey, nel, no n, ndof, b] = ... 
    MeshTwoD(dof, neli, Li) 
  
%-------------------------------------------------- ------------------------ 
%Function file that creates the mesh of a 2D contin uous beam 
  
%       INDATA 
  
%       dof =   degrees of freedom in each node 
%       neli =  number of elements in every span 
%       Li =    vector with the lengths of each spa n respectively. The  
%               length Li defines the number of spa ns. 
  
%       OUTPUT 
  
%       Coord = A vector with the x coordinate of e ach node. 
%       Edof =  Matrix connecting dofs and elements  according to CALFEM. 
%               Has the follwing form for the case of dof=3: 
  
%               Edof = [1 1 2 3 4 5 6; 
%                       2 4 5 6 7 8 9; 
%                       3 7 8 9 ... 
  
%       Ndof =  Dofs for each node. Has the followi ng form: 
  
%               Ndof = [1 1 .. dof; 
%                       2 dof+1 .. dof*2; 
%                       3 2*dof+1 .. dof*3; 
%                       4 .. 
  
%       Elnod = Nodes for each element. Has the fol lowing form: 
  
%               Elnod = [1 1 2; 
%                        2 2 3; 
%                        3 .. 
  
%       Ex =    x coordinates for each element.Each  row correspond to one 
%               element 
%       Ey =    y coordinates for each element. The  matrix is a zero matrix 
%       nel =   number of elements 
%       non =   number of nodes 
%       ndof =  total number of degrees of freedom 
%       b =     vector consisting of locked dofs 
  
%-------------------------------------------------- ------------------------ 
  
%% Creation of Coord, nel, non 
nel = length(Li) * neli; 
Coord = 0; 
for j=1:length(Li) 
    for i=1:neli 
        Coord = [Coord; Li(j)/neli*i+Coord((j-1)*ne li+1)]; 
    end 
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end 
  
non = length(Coord); 
  
%% Creation of Elnod, Ex, Ey 
for i=1:nel 
    Elnod(i,:) = [i i i+1]; 
end 
  
for i=1:length(Elnod) 
    ex = [Coord(Elnod(i,2),1) Coord(Elnod(i,3),1)];  
    Ex(i,:) = ex; 
end 
  
Ey = zeros(nel,2); 
  
%% Creation of Ndof, ndof 
for i=1:non 
    for j=1:dof 
        t(j) = (dof*i-dof)+j; 
    end 
    Ndof(i,:) = [i t]; 
end 
  
ndof =  max(max(Ndof)); 
  
%% Creation of Edof 
for i=1:nel 
    Edof(i,:) = [i Ndof(Elnod(i,2), 2:(dof+1)) Ndof (Elnod(i,3), 2:(dof+1))]; 
end 
  
%% Creation of b 
b = [1 2]';     
for i=1:length(Li) 
    b = [b; dof*neli*i*[1 1]'+[1 2]']; 
end 
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D.4.5 Mesh in 3D 

The purpose with the 3D mesh file is to create a mesh for a rectangular domain which 
represents a one span bridge with simply supported boundary conditions. It will 
therefore create a rectangular mesh with the chosen mesh density of n11xn2 and a 
mesh size that depend on chosen size of the bridge and mesh density. It will assemble 
all necessary matrices needed to use the CALFEM-toolbox, this includes the 
following matrices: 

• Edof – Describe the connection between elements 

• Ex – Element wise x-coordinates 

• Ey – Element wise y-coordinates 

• Pi – Row vector containing x-dof (1st value) and y-dof (2nd value) for corner 
node i (i=1,2,3,4). 

• Bi – Matrix containing x-dofs (1st column) and y-dofs (2nd column) for nodes 
on boundary segment i (i=1,2,3,4).  

In excess of these matrices the function file also calculate and provide the main 
program with the number of elements (nel), number of nodes (non) and number of 
degrees of freedom (ndof) included in the model.  

D.4.5.1 Matlab Code 
function[B1,B2,B3,B4,P1,P2,P3,P4,Ex,Ey,ndof,nel,non ,Edof]= MeshThreeD 
(l1,b,n11,n2)  
%-------------------------------------------------- ------------------ 
%           Bridge Mesh 3D one span 
%-------------------------------------------------- ------------------ 
%PURPOSE: 
% Generates a mesh for one rectangular domain with corners 1,2,3,4   % and 
boundaries 1, 2, 3 and 4 
% 
%-------------------------------------------------- ------------------ 
% 
%  P4    B3    P3    
%    *---------*     
%    |         |      
% B4 |         |B2   
%    |         |       
%    *---------*     
%   P1    B1   P2     
% 
% Input: 
% xcorner    - x-coordinates for the four corners o f the domain (1x4) 
% ycorner    - x-coordinates for the four corners o f the domain (1x4) 
% xcorner    - x-coordinates for the four corners o f the domain (1x4) 
% ycorner    - x-coordinates for the four corners o f the domain (1x4) 
% elemtype - Element type    "tria3"  - 3-node tria ngular element 
%                            "quad4" - 4-node quadr ilateral element 
% n1    - number of elements along the boundaries 1  and 3  
% n2    - number of elements along the boundaries 2  and 4  
% 
% Output: 
% Edof  - Connectivity matrix for mesh 
% Ex    - Elementwise x-coordinates, cf. Calfem Too lbox 
% Ey    - Elementwise y-coordinates, cf. Calfem Too lbox 
% Bi    - Matrix containing x-dofs (1st column) and  y-dofs (2nd      %         
column) for nodes on boundary segment i (i=1,2,3,4)  
%          
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% Pi    - Row vector containing x-dof (1st value) a nd y-dof (2nd     %         
value) for corner node i (i=1,2,3,4). 
%          
%-------------------------------------------------- ------------------ 
%AUTHORS: PATRIK ERIKSSON, EMANUEL TROLIN 2010-02-0 5 
% 
%-------------------------------------------------- ------------------ 
  
% Specify the geometry of the bridge with respectiv ely  
xcorner = [0 l1 l1  0]; 
ycorner = [0 0  b b]; 
  
% Specify the element type to use 
elemtype = 'quad4'; 
  
 
% The program now calculates and define all geometr ical parameters 
nel = (n1+1)*(n2+1); 
for k=1:nel 
    ndof(k,:) = [1 2 3 4 5]+5*(k-1)*[1 1 1 1 1]; 
end 
  
B1 = zeros(n1+1,5); 
B2 = zeros(n2+1,5); 
B3 = B1; 
B4 = B2; 
    for i=1:n1 
        for j=1:n2 
            sw=(i-1).*(n2+1)+j; 
            nw=sw+1; 
            se=sw+(n2+1); 
            ne=se+1; 
            xiw=((i-1)/n1); 
            xie=(i/n1); 
            etas=((j-1)/n2); 
            etan=(j/n2); 
            [xsw,ysw]=bilmap(xiw,etas,xcorner,ycorn er); 
            [xse,yse]=bilmap(xie,etas,xcorner,ycorn er); 
            [xne,yne]=bilmap(xie,etan,xcorner,ycorn er); 
            [xnw,ynw]=bilmap(xiw,etan,xcorner,ycorn er); 
            elno=(i-1)*n2+(j-1); 
            
Edof(elno+1,:)=[elno+1,ndof(sw,:),ndof(se,:),ndof(n e,:),ndof(nw,:)]; 
            Ex(elno+1,:)=[xsw xse xne xnw]; 
            Ey(elno+1,:)=[ysw yse yne ynw]; 
             
            if j == 1 
                B1([i i+1],:) = [ndof(sw,:);ndof(se ,:)]; 
            end 
            if i == n1 
                B2([j j+1],:) = [ndof(se,:);ndof(ne ,:)]; 
            end 
            if j == n2 
                B3([i i+1],:) = [ndof(nw,:);ndof(ne ,:)]; 
            end 
            if i == 1 
                B4([j j+1],:) = [ndof(sw,:);ndof(nw ,:)]; 
            end 
             
        end 
    end 
  
P2=B1(end,:); 
P1=B1(1,:); 
P3=B3(end,:); 
P4=B3(1,:); 
  
function [x,y]=bilmap(xi,eta,xcorner,ycorner) 
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N=[(1-xi).*(1-eta) xi.*(1-eta) xi.*eta (1-xi).*eta] ; 
x=N*xcorner'; 
y=N*ycorner'; 
  
nel = length(Edof(:,1)); 
ndof = max(max(Edof)); 
non = ndof/5; 

D.4.6 Newmark 

Newmark-β method is an unconditionally stable method if the parameters are chosen 
properly. The function file calculates the change in acceleration, velocity and 
displacement for each time step by first calculating the first initial acceleration and 
performs a LU factorization of the mass matrix. For each time step the function file 
calculates updated acceleration, velocity and displacements. 

The time integration function file uses the Newmark-β method with the parameters β 
and γ equal to 0.25 and 0.5 respectively to make it unconditionally stable. 

More information about the Newmark-β method can be found in section 2.3.1.1. 

D.4.6.1 Matlab Code 
function [u,v,a,t] = NEWMARK(K,C,M,F,h,u0,v0,bet,gam) 
%-------------------------------------------------------------------- 
% 
%           NEWMARK INTEGRATION 
% 
%-------------------------------------------------------------------- 
%PURPOSE: 
%Function file that calculates the response in time using the Newmark 
%integration method. 
% 
%-------------------------------------------------------------------- 
%IN DATA: 
%K-Stiffness matrix 
%C-Damping matrix 
%M-Mass matrix  
%F-Trainload 
%h-Time step 
%u0-displacement vector 
%v0-velocity vector 
%-------------------------------------------------------------------- 
%AUTHORS: PATRIK ERIKSSON, EMANUEL TROLIN 2010-02-05 
% 
%-------------------------------------------------------------------- 
  
%Calculate the initial acceleration from the equations of motion 
a0 = inv(M)*(F(:,1)-C*v0-K*u0); 
  
%Calculate the LU factorization of M 
LU = M + gam*h*C + bet*h^2*K; 
  
%Initial Acceleration, Velocity and displacement 
u = zeros(size(F)); 
v = u; 
a = u; 
u(:,1) = u0; 
v(:,1) = v0; 
a(:,1) = a0; 
  
%Loop for each time step 
for i=1:length(F(1,:))-1 
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    RHS = -K*u(:,i) -(C+h*K)*v(:,i) - ... 
        (h*(1-gam)*C+h^2/2*(1-2*bet)*K)*a(:,i) + F(:,i+1); 
     
    %Solve for the second derivatives at the next time step 
    a(:,i+1) = inv(LU)*RHS; 
     
    %Evaluate the set of displacements and velocities 
    u(:,i+1) = u(:,i) + h*v(:,i) +((1-2*bet)*a(:,i)+2*bet*a(:,i+1))*h^2/2; 
    v(:,i+1) = v(:,i) + ((1-gam)*a(:,i)+gam*a(:,i+1))*h; 
     
    %Continue to the next time step: 
end 
  
t = linspace(0,length(F(1,:))*h,length(F(1,:))); 
%-------------------------------END---------------------------------- 

 

D.4.7 Inverse iteration  
The largest difference between the 2D and 3D program, besides plate elements instead 
of beam elements, is that the Matlab FE 3D plate model uses another technique of 
solving the eigen-value problem. Instead of using the Calfem file eigen.m, which 
itself uses the built-in Matlab function file eigen, the eigenvalues and eigenvector is 
obtained by the inverse iteration method. The method is effective when only a few of 
the lowest eigenvalues and eigenvectors are desired (Craig and Kurdila, 2006). The 
benefit with using only a few eigenmodes is that the time required to perform the 
calculation is significantly reduced which is very important when the program is 
repeated many times.  

 

D.4.7.1 Matlab Code 
function [X1,L]=Inverse_iteration(K,M,bc,BC2,ndof) 
%-------------------------------------------------- ------------------ 
%PURPOSE: 
%Calculate the first eigenvalues (L) and eigenvecto rs (X1) by the vector  
%iteration method inverse iteration. 
%-------------------------------------------------- ------------------
%INDATA: 
%K-Stiffness matrix 
%M-Mass matrix 
%bc-boundary condition for simply supported bridge (used to calculate the  
%1st eigenvalue) 
%BC2-boundary condition for simply supported bridge  with locked mid row. 
%(used to calculate the 2nd eigenvalue) 
%ndof-number of degrees of freedom 
%-------------------------------------------------- ------------------ 
%AUTHORS: PATRIK ERIKSSON, EMANUEL TROLIN 2010-03-0 3 
% 
%-------------------------------------------------- ------------------ 
  
%%------Remove the locked dofs for each boundary co ndition----------- 
 K1=K; 
 M1=M; 
 K2=K; 
 M2=M; 
  
 K1(bc,:)=[]; 
 K1(:,bc)=[]; 
 M1(bc,:)=[]; 
 M1(:,bc)=[]; 
  
 K2(BC2,:)=[]; 
 K2(:,BC2)=[]; 
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 M2(BC2,:)=[]; 
 M2(:,BC2)=[]; 
  
%%------Calculate the first eigen-value by Inverse Iteration--------- 
freedof = setdiff(1:ndof,bc); 
unlockeddof=ndof-length(bc); 
U0=ones(unlockeddof,1); 
X1=zeros(ndof,2); 
  
%Calculate the dynamic matrix 
D=inv(K1)*M1;        
  
%Calculate the Rayleigh quotient and shape U0 with 10 iterations 
U(:,1)=U0; 
for i=1:10 
    V(:,i)=D*U(:,i); 
    Lambda(i)=V(:,i)'*K1*V(:,i)/(V(:,i)'*M1*V(:,i)) ; 
  
    U(:,i+1)=Lambda(i)*V(:,i); 
end 
  
%Pick the first eigenvector 
X1(freedof,1)=U(:,11); 
  
%Calculate the first eigenfrequency 
Freq1=sqrt(Lambda(i))/(2*pi); 
  
%%------Calculate the second eigen-value by Inverse  Iteration-------- 
freedof2 = setdiff(1:ndof,BC2); 
unlockeddof2=ndof-length(BC2); 
U02=ones(unlockeddof2,1); 
  
%Calculate the dynamic matrix 
D2=inv(K2)*M2; 
  
%Calculate the Rayleigh quotient and shape U0 with 10 iterations 
U2(:,1)=U02; 
for i=1:10 
    V2(:,i)=D2*U2(:,i); 
    Lambda2(i)=V2(:,i)'*K2*V2(:,i)/(V2(:,i)'*M2*V2( :,i)); 
  
    U2(:,i+1)=Lambda2(i)*V2(:,i); 
end 
  
%Pick the second eigenvector 
X1(freedof2,2)=U2(:,11); 
  
%Calculate the second eigenfrequency 
Freq2=sqrt(Lambda2(i))/(2*pi); 
  
% Let L be a vector of 1st and 2nd eigenfrequencies  
L=[Freq1 Freq2]; 
  
%%------Normalize the eigenvectors----------------- ------------------ 
fdof=[1:ndof]'; 
  
[nfdof,nfdof]=size(X1); 
       
for j=1:nfdof; 
    mnorm=sqrt(X1(:,j)'*M(fdof,fdof)*X1(:,j)); 
    X1(:,j)=X1(:,j)/mnorm; 
End 
----------------------------END-------------------- ------ 
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E. Appendix E 
Analytical solution for the acceleration response of a SDOF model 

In this document a shorter derivation of the acceleration response for a SDOF model 
in the form of a mass-spring system subjected to a sinusoidal load is presented. The 
derivation is meant to show how the acceleration is affected by the mass and the 
stiffness of the spring. 

Consider the SDOF model as defined by Figure E-1. 

 

 

 

 

 

Figure E-1 SDOF model in the form of a mass-spring system 

The following differential equation can be conducted for the SDOF model: 

 ��� � �� � ��sin Ω��     (E.1) 

The solution to such a simple model can analytically be found to be: 
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Where: 
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The stiffness can be expressed as: 

 � � � � �1       (E.5) 

(E.3), (E.4) and (E.5) give us that: 
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Since r is a constant for any combination of load frequency and eigenfrequency we 
get from equation (E.6) that the acceleration amplitude has an inverse proportionality 
to the mass and is independent of the stiffness. 

M 

K 

u(t) 

p(t) = p0∙sin(Ωt) 
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F. Appendix F 
Tabled values of eigenfrequency functions and design curves 
In this appendix tabled values of important results in the report are presented. The tabled values are 
presented to give the interest reader an opportunity of producing own figures of the results.  

F.1 Eigenfrequency functions for two-span bridge 
 

 
  

 

Eigenfrequency function 

My One Two Three Four Five 

1 6.2832 9.8155 25.1328 31.8086 56.5488 

1.06 6.2502 9.8804 24.879 32.1756 55.7353 

1.12 6.164 10.055 24.2858 33.0796 54.0489 

1.18 6.0448 10.3095 23.5717 34.2573 52.2394 

1.24 5.9092 10.6195 22.8514 35.5431 50.5779 

1.3 5.7681 10.9664 22.1722 36.8217 49.1763 

1.36 5.6279 11.3368 21.5526 37.9718 48.1303 

1.42 5.4924 11.7201 20.9992 38.8333 47.5711 

1.48 5.3634 12.1069 20.5148 39.2439 47.6327 

1.54 5.2415 12.4882 20.1015 39.1771 48.313 

1.6 5.127 12.8543 19.7624 38.7748 49.4402 

1.66 5.0197 13.194 19.5024 38.2008 50.814 

1.72 4.9193 13.4954 19.3281 37.5603 52.2815 

1.78 4.8254 13.7463 19.2465 36.9083 53.7173 

1.84 4.7375 13.937 19.2628 36.2721 54.9889 

1.9 4.6552 14.0629 19.3772 35.6652 55.9438 

1.96 4.578 14.1261 19.5835 35.0942 56.4583 

2.02 4.5056 14.1346 19.8697 34.5624 56.5288 

2.08 4.4376 14.0996 20.2206 34.0713 56.2697 

2.14 4.3736 14.0323 20.6208 33.6221 55.8145 

2.2 4.3134 13.9424 21.0561 33.2157 55.2586 

2.26 4.2566 13.8375 21.5138 32.8538 54.6589 

2.32 4.2029 13.7233 21.9825 32.5384 54.0474 

2.38 4.1522 13.6039 22.4517 32.2729 53.4419 

2.44 4.1041 13.4821 22.9109 32.0615 52.8526 

2.5 4.0586 13.36 23.3495 31.9097 52.2853 

2.56 4.0154 13.239 23.7566 31.824 51.7432 

2.62 3.9744 13.1199 24.1216 31.8112 51.2282 

2.68 3.9354 13.0034 24.435 31.877 50.7414 

2.74 3.8982 12.89 24.6901 32.0249 50.2835 
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F.2 Eigenfrequency functions for three-span bridge 

 

Eigenfrequency functions for my = 0.5-1.95 

My One Two Three Four Five Six Seven 

0.5 14.13717 18.117 26.45459 56.54905 64.44663 79.0665 127.2388 

0.55 14.01267 19.07504 25.49564 55.50075 67.72738 76.9824 123.7507 

0.6 13.6693 20.03279 25.20083 52.91896 70.96009 77.9157 116.3635 

0.65 13.18384 20.97804 25.39332 49.91484 73.895 80.4455 109.2185 

0.7 12.63619 21.89429 25.9178 47.10175 76.10762 83.7038 103.8394 

0.75 12.08178 22.75925 26.662 44.68058 76.97044 87.2813 100.9446 

0.8 11.55077 23.54341 27.55216 42.70102 76.12183 90.9396 100.7712 

0.85 11.05657 24.20974 28.54045 41.17168 74.03129 94.4599 102.6927 

0.9 10.60331 24.71713 29.59448 40.09387 71.44769 97.5436 105.8097 

0.95 10.1905 25.03 30.69044 39.46398 68.82738 99.7387 109.5239 

1 9.815544 25.13283 31.80867 39.26248 66.36893 100.5367 113.4927 

1.05 9.475083 25.03972 32.93085 39.44487 64.14845 99.816 117.4733 

1.1 9.165607 24.78938 34.03787 39.94621 62.19286 98.0317 121.214 

1.15 8.88377 24.42957 35.1082 40.69602 60.51199 95.7483 124.3766 

1.2 8.62651 24.00339 36.11662 41.63116 59.11245 93.327 126.5148 

1.25 8.391089 23.54356 37.0337 42.70085 58.00347 90.9494 127.2532 

1.3 8.175087 23.07245 37.82687 43.86596 57.19795 88.6999 126.6255 

1.35 7.976383 22.60436 38.46414 45.09604 56.70958 86.6164 125.0562 

1.4 7.793117 22.14798 38.92077 46.36624 56.54631 84.7152 122.9979 

1.45 7.623664 21.70828 39.18675 47.65477 56.70282 83.0036 120.7492 

1.5 7.466602 21.28783 39.27072 48.94078 57.15638 81.4864 118.4746 

1.55 7.320686 20.88772 39.19715 50.20285 57.86941 80.1691 116.2597 

1.6 7.18482 20.50808 38.99877 51.41775 58.7968 79.0596 114.1481 

1.65 7.058044 20.1485 38.70869 52.5598 59.89347 78.1697 112.1619 

1.7 6.939508 19.80824 38.35566 53.60109 61.1188 77.5143 110.312 

1.75 6.828463 19.48636 37.96239 54.51306 62.43802 77.1102 108.6039 

1.8 6.724242 19.18185 37.54582 55.26978 63.82153 76.9721 107.0412 

1.85 6.626255 18.89368 37.1181 55.85261 65.2435 77.1084 105.6272 

1.9 6.533973 18.62083 36.68778 56.25451 66.68033 77.5162 104.3662 

1.95 6.446927 18.36231 36.26074 56.4819 68.10921 78.1798 103.2646 
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F.3 Design curves for a single-span  railway bridges 
 

 
  

L = 7 m L = 8 m L = 9 m L = 10 m L = 11 m L = 12 m L = 13 m L = 14 m L = 15 m L = 16 m L = 17 m L = 18 m L = 19 m L = 20 m 
β τ β τ β τ β τ β τ β τ β τ β τ β τ β τ β τ β τ β τ β Τ 
                            

0.00127 160 0.00166 175 0.00210 181 0.00259 149 0.00313 169 0.00204 106 0.00240 86 0.00278 100 0.00319 100 0.00363 90 0.00410 95 0.00459 99 0.00512 101 0.00567 100 
0.00888 1013 0.00994 918 0.00839 602 0.01036 659 0.01253 732 0.01021 391 0.00959 397 0.01112 379 0.00957 287 0.01089 284 0.01229 336 0.01378 334 0.01536 359 0.01134 234 
0.01649 2169 0.01823 1813 0.01468 1287 0.01812 1226 0.02193 1275 0.01838 940 0.01678 618 0.01946 819 0.01595 470 0.01815 474 0.02049 570 0.02297 574 0.02560 646 0.01702 347 
0.02410 3922 0.02651 3670 0.02097 1889 0.02589 1935 0.03133 1973 0.02655 1530 0.02396 835 0.02779 1433 0.02233 617 0.02541 699 0.02869 856 0.03216 989 0.03583 968 0.02836 677 
0.03171 6202 0.03480 4381 0.02726 3173 0.03366 2342 0.04072 3326 0.03471 1948 0.03115 1285 0.03613 2041 0.02872 813 0.03267 1199 0.03688 1258 0.04135 1262 0.04607 1231 0.03403 859 
0.03933 7196 0.04308 5427 0.03355 3629 0.04142 3539 0.05012 3893 0.04288 2835 0.03834 1706 0.04447 2327 0.03510 1380 0.03993 1553 0.04508 1647 0.05054 1509 0.05631 1816 0.03970 996 
0.04694 8523 0.05136 6573 0.03984 4062 0.04919 4324 0.05952 5586 0.05105 3971 0.04553 2063 0.05281 3122 0.04148 1454 0.04719 1564 0.05328 1744 0.05973 2173 0.06655 2535 0.05105 1401 
0.05455 9710 0.05965 8035 0.04614 5418 0.05696 5329 0.06892 5586 0.05922 4706 0.05272 3432 0.06115 3774 0.04786 2064 0.05445 2527 0.06147 2102 0.06892 2216 0.07679 2623 0.05672 1560 
0.06216 10981 0.06793 9035 0.05243 5614 0.06472 6091 0.07832 7267 0.06738 5025 0.05991 4370 0.06948 3774 0.05424 2803 0.06171 2527 0.06967 2325 0.07810 2726 0.08702 3815 0.06239 1980 
0.06977 15660 0.07622 12229 0.05872 6590 0.07249 6505 0.08771 10376 0.07555 5025 0.06710 4370 0.07782 5423 0.06062 2967 0.06897 2527 0.07786 3150 0.08729 3823 0.09726 4457 0.07374 1980 
0.07738 17650 0.08450 14878 0.06501 7674 0.08026 7760 0.09711 10376 0.08372 5785 0.07429 4370 0.08616 6581 0.06700 2967 0.07623 3023 0.08606 4037 0.09648 3823 0.10750 4468 0.07941 2154 
0.08500 17650 0.09279 19257 0.07130 9131 0.08802 8889 0.10651 10376 0.09189 6963 0.08148 4384 0.09450 7791 0.07338 2967 0.08349 3748 0.09426 5916 0.10567 4882 0.11774 4784 0.08508 2794 
0.09261 24059 0.10107 19257 0.07759 9131 0.09579 12881 0.11591 10376 0.10006 10937 0.08867 7132 0.10284 7919 0.07976 3602 0.09075 4522 0.10245 5916 0.11486 6034 0.12798 4784 0.09643 2852 
0.10022 29188 0.10936 20990 0.08388 10060 0.10356 12881 0.12531 13824 0.10822 10937 0.09586 7132 0.11117 8543 0.08615 4585 0.09801 6123 0.11065 5916 0.12405 6902 0.13821 6185 0.10210 3845 
0.10783 29188 0.11764 22651 0.09017 10388 0.11132 14369 0.13470 13824 0.11639 10937 0.10305 7368 0.11951 8543 0.09253 4764 0.10527 6123 0.11884 6205 0.13324 6902 0.14845 6498 0.10777 3845 
0.11544 29188 0.12593 22651 0.09646 15759 0.11909 14369 0.14410 14431 0.12456 10937 0.11024 7686 0.12785 8543 0.09891 5290 0.11253 6181 0.12704 6205 0.14243 7462 0.15869 7981 0.11911 4120 
0.12305 29188 0.13421 22651 0.10276 15986 0.12686 14369 0.15350 22930 0.13273 10937 0.11743 8308 0.13619 8754 0.10529 6756 0.11980 6181 0.13524 7086 0.15162 7462 0.16893 7981 0.12479 5649 
0.13066 33337 0.14250 26559 0.10905 15986 0.13463 15015 0.16290 24988 0.14090 12141 0.12462 10101 0.14453 8754 0.11167 6756 0.12706 6964 0.14343 7536 0.16080 10986 0.17917 12679 0.13046 5649 
0.13828 33337 0.15078 34538 0.11534 15986 0.14239 18349 0.17229 24988 0.14906 12141 0.13181 10101 0.15286 15734 0.11805 7384 0.13432 6964 0.15163 9704 0.16999 12654 0.18941 12679 0.14180 5954 
0.14589 33337 0.15907 41678 0.12163 18547 0.15016 18349 0.18169 24988 0.15723 17024 0.13900 10210 0.16120 17855 0.12443 7643 0.14158 6964 0.15983 12544 0.17918 12654 0.19964 12679 0.14747 5954 
0.15350 33337 0.16735 42656 0.12792 18908 0.15793 18349 0.19109 31668 0.16540 24669 0.14618 12725 0.16954 17855 0.13081 7643 0.14884 9239 0.16802 12544 0.18837 12654 0.20988 19313 0.15315 7308 
0.16111 42056 0.17563 42656 0.13421 18908 0.16569 23585 0.20049 37058 0.17357 24669 0.15337 12725 0.17788 17855 0.13719 8907 0.15610 9239 0.17622 12544 0.19756 14420 0.22012 19313 0.16449 8981 
0.16872 53221 0.18392 42656 0.14050 18908 0.17346 35843 0.20989 43640 0.18173 24669 0.16056 12725 0.18622 18070 0.14358 9308 0.16336 9239 0.18441 12544 0.20675 14420 0.23036 19313 0.17016 8981 
0.17633 76736 0.19220 42656 0.14679 19867 0.18123 38433 0.21928 43640 0.18990 24669 0.16775 14142 0.19455 27284 0.14996 9308 0.17062 11421 0.19261 17715 0.21594 15133 0.24060 19313 0.17584 8981 
0.18394 76736 0.20049 57411 0.15308 31209 0.18899 42093 0.22868 43640 0.19807 24669 0.17494 23355 0.20289 27284 0.15634 9659 0.17788 16432 0.20081 17715 0.22513 15133 0.25083 19313 0.18718 9671 
0.19156 94614 0.20877 69893 0.15938 35915 0.19676 43713 0.23808 43640 0.20624 26043 0.18213 23355 0.21123 27284 0.16272 15533 0.18514 16432 0.20900 17715 0.23431 15133 0.26107 19313 0.19285 10553 
0.19917 95210 0.21706 75786 0.16567 41183 0.20453 43713 0.24748 43640 0.21441 34498 0.18932 23355 0.21957 27284 0.16910 17755 0.19240 16432 0.21720 17715 0.24350 15133 0.27131 19313 0.19852 10553 
0.20678 95210 0.22534 75786 0.17196 43598 0.21229 43713 0.25688 43640 0.22257 34498 0.19651 23355 0.22791 27284 0.17548 17755 0.19966 16432 0.22540 17715 0.25269 15133 0.28155 19313 0.20987 12952 
0.21439 106667 0.23363 75786 0.17825 45447 0.22006 43713 0.26627 43640 0.23074 34498 0.20370 23355 0.23624 27284 0.18186 17755 0.20692 16432 0.23359 17715 0.26188 16033 0.29179 19313 0.21554 12952 
0.22200 106667 0.24191 75786 0.18454 45447 0.22783 43713 0.27567 43640 0.23891 34498 0.21089 23355 0.24458 27284 0.18824 17755 0.21418 21229 0.24179 17715 0.27107 16033 0.30203 19313 0.22121 12952 
0.22961 106667 0.25020 75786 0.19083 45447 0.23559 43713 0.28507 43640 0.24708 34498 0.21808 23355 0.25292 27284 0.19462 17755 0.22144 21229 0.24998 17715 0.28026 16033 0.31226 19313 0.23256 12952 
0.23723 106667 0.25848 75786 0.19712 45447 0.24336 43713 0.29447 43640 0.25524 34498 0.22527 23355 0.26126 27380 0.20101 21983 0.22870 21229 0.25818 17715 0.28945 16033 0.32250 19313 0.23823 12952 
0.24484 106667 0.26677 75786 0.20341 45447 0.25113 43713 0.30386 43640 0.26341 34498 0.23246 23355 0.26960 30986 0.20739 21983 0.23596 21229 0.26638 17715 0.29864 16033 0.33274 19952 0.24390 12952 
0.25245 106667 0.27505 75786 0.20971 45447 0.25890 43713 0.31326 43640 0.27158 34498 0.23965 23355 0.27793 30986 0.21377 26986 0.24322 21229 0.27457 17715 0.30783 16033 0.34298 19952 0.25524 12952 
0.26006 106667 0.28333 75786 0.21600 45447 0.26666 53671 0.32266 43640 0.27975 34498 0.24684 23355 0.28627 30986 0.22015 26986 0.25048 21229 0.28277 17715 0.31701 16033 0.35322 19952 0.26092 12952 
0.26767 106667 0.29162 75786 0.22229 45447 0.27443 53671 0.33206 44119 0.28792 34498 0.25403 23355 0.29461 30986 0.22653 26986 0.25774 21229 0.29096 17715 0.32620 17430 0.36345 23226 0.26659 14177 
0.27528 106667 0.29990 75786 0.22858 45447 0.28220 53671 0.34146 45409 0.29608 34498 0.26121 23355 0.30295 30986 0.23291 26986 0.26500 21229 0.29916 17715 0.33539 22235 0.37369 27939 0.27793 14177 
0.28289 106667 0.30819 75786 0.23487 45447 0.28996 53671 0.35085 45409 0.30425 34498 0.26840 23906 0.31129 30986 0.23929 26986 0.27226 21229 0.30736 17715 0.34458 22235 0.38393 27939 0.28360 14177 
0.29051 106667 0.31647 75786 0.24116 45447 0.29773 53671 0.36025 45409 0.31242 34498 0.27559 23906 0.31962 30986 0.24567 26986 0.27952 21229 0.31555 17715 0.35377 22235 0.39417 27939 0.28928 14177 
0.29812 106667 0.32476 75786 0.24745 45447 0.30550 53671 0.36965 45409 0.32059 34498 0.28278 23906 0.32796 30986 0.25205 26986 0.28678 21229 0.32375 17719 0.36296 22235 0.40441 27939 0.30062 14177 
0.30573 106667 0.33304 75786 0.25374 45447 0.31326 53671 0.37905 45409 0.32876 36111 0.28997 23906 0.33630 30986 0.25844 26986 0.29404 21229 0.33195 23037 0.37215 22235 0.41464 27939 0.30629 14177 
0.31334 106667 0.34133 75786 0.26003 55689 0.32103 53671 0.38845 45409 0.33692 43127 0.29716 23906 0.34464 30986 0.26482 27669 0.30130 21229 0.34014 23037 0.38134 22235 0.42488 27939 0.31197 14177 
0.32095 106667 0.34961 75786 0.26633 63702 0.32880 53671 0.39784 45409 0.34509 43127 0.30435 23906 0.35298 30986 0.27120 27669 0.30856 21229 0.34834 23037 0.39052 22235 0.43512 27939 0.32331 14177 
0.32856 106667 0.35790 88924 0.27262 63702 0.33656 53671 0.40724 45409 0.35326 43127 0.31154 23906 0.36131 36329 0.27758 27669 0.31582 21229 0.35653 23037 0.39971 22235 0.44536 27939 0.32898 14177 
0.33618 113391 0.36618 103279 0.27891 63702 0.34433 53671 0.41664 45409 0.36143 47805 0.31873 23906 0.36965 45690 0.28396 27669 0.32308 21229 0.36473 23037 0.40890 22235 0.45560 27939 0.33465 14177 
0.34379 113391 0.37447 115634 0.28520 63702 0.35210 53671 0.42604 45409 0.36959 50179 0.32592 24201 0.37799 45690 0.29034 27669 0.33034 21229 0.37293 23037 0.41809 22235 0.46584 27939 0.34600 14177 
0.35140 121003 0.38275 117575 0.29149 63702 0.35986 53671 0.43544 48041 0.37776 51333 0.33311 33841 0.38633 45690 0.29672 27669 0.33760 21229 0.38112 23037 0.42728 22791 0.47607 40308 0.35167 14711 
0.35901 156235 0.39104 117575 0.29778 63702 0.36763 53671 0.44483 55919 0.38593 51333 0.34030 33841 0.39467 45690 0.30310 27669 0.34486 21229 0.38932 23037 0.43647 25712 0.48631 47432 0.35734 19481 
0.36662 167236 0.39932 128981 0.30407 63702 0.37540 53671 0.45423 60406 0.39410 51333 0.34749 33841 0.40300 46088 0.30948 27669 0.35212 21229 0.39751 23037 0.44566 33784 0.49655 66180 0.36869 27085 
0.37423 184274 0.40760 165255 0.31036 63702 0.38316 53671 0.46363 69369 0.40227 51333 0.35468 34726 0.41134 53235 0.31587 27669 0.35939 21229 0.40571 23037 0.45485 33784 0.50679 70797 0.37436 27085 
0.38184 184274 0.41589 165255 0.31665 63702 0.39093 53671 0.47303 85998 0.41043 51333 0.36187 44194 0.41968 53235 0.32225 27669 0.36665 21229 0.41391 23037 0.46403 38320 0.51703 70797 0.38003 27085 
0.38946 184274 0.42417 190638 0.32295 63702 0.39870 53671 0.48242 97348 0.41860 51333 0.36906 51410 0.42802 55386 0.32863 27669 0.37391 21229 0.42210 32692 0.47322 45343 0.52726 70797 0.39137 27085 
0.39707 184274 0.43246 193646 0.32924 63702 0.40647 53782 0.49182 116997 0.42677 51333 0.37625 52007 0.43636 55386 0.33501 27669 0.38117 21229 0.43030 36007 0.48241 60261 0.53750 70797 0.39705 27085 
0.40468 213465 0.44074 210647 0.33553 63702 0.41423 60136 0.50122 140011 0.43494 51333 0.38343 52007 0.44469 55386 0.34139 27669 0.38843 21229 0.43850 41120 0.49160 60261 0.54774 71596 0.40272 27085 
0.41229 227754 0.44903 224879 0.34182 63702 0.42200 70480 0.51062 140011 0.44311 51333 0.39062 52007 0.45303 55386 0.34777 27669 0.39569 24403 0.44669 49775 0.50079 77727 0.55798 85700 0.41406 27085 
0.41990 227754 0.45731 224879 0.34811 63702 0.42977 72835 0.52002 140011 0.45127 51333 0.39781 52007 0.46137 55386 0.35415 27669 0.40295 32699 0.45489 49775 0.50998 77727 0.56822 85700 0.41974 27085 
0.42751 271397 0.46560 224879 0.35440 63702 0.43753 87228 0.52941 140011 0.45944 51333 0.40500 52007 0.46971 55386 0.36053 27669 0.41021 37975 0.46308 49775 0.51917 77727 0.57845 85700 0.42541 27085 
0.43513 271397 0.47388 247527 0.36069 63702 0.44530 98016 0.53881 154806 0.46761 51333 0.41219 52007 0.47805 55386 0.36691 27669 0.41747 37975 0.47128 49775 0.52836 77727 0.58869 85700 0.43675 27085 
0.44274 305367 0.48217 302996 0.36698 63702 0.45307 98016 0.54821 194081 0.47578 53690 0.41938 52007 0.48638 55386 0.37330 29897 0.42473 49512 0.47948 64198 0.53755 77727 0.59893 85700 0.44242 27085 
0.45035 310382 0.49045 302996 0.37328 63702 0.46083 100425 0.55761 224258 0.48394 55998 0.42657 52007 0.49472 55386 0.37968 30233 0.43199 49512 0.48767 64220 0.54673 77727 0.60917 85700 0.44810 27085 
0.45796 310382 0.49874 361166 0.37957 63702 0.46860 120067 0.56701 224258 0.49211 70288 0.43376 52007 0.50306 55386 0.38606 30233 0.43925 49512 0.49587 76056 0.55592 80193 0.61941 85700 0.45944 27085 
0.46557 310382 0.50702 364379 0.38586 64196 0.47637 144313 0.57640 224258 0.50028 83540 0.44095 52007 0.51140 55386 0.39244 30233 0.44651 56123 0.50407 84921 0.56511 80193 0.62965 85700 0.46511 27085 
0.47318 310382 0.51530 364379 0.39215 71279 0.48413 167064 0.58580 224258 0.50845 83540 0.44814 52007 0.51974 55386 0.39882 34591 0.45377 56123 0.51226 84921 0.57430 80193 0.63988 85700 0.47078 27085 
0.48079 370509 0.52359 364379 0.39844 80577 0.49190 174870 0.59520 224258 0.51662 83540 0.45533 52007 0.52807 55386 0.40520 45675 0.46103 56123 0.52046 84921 0.58349 80193 0.65012 85700 0.48213 31586 
0.48841 370509 0.53187 364379 0.40473 94460 0.49967 213535 0.60460 239108 0.52478 84122 0.46252 52007 0.53641 55386 0.41158 48145 0.46829 56123 0.52865 84921 0.59268 80193 0.66036 85700 0.48780 33303 
0.49602 408038 0.54016 364379 0.41102 98133 0.50743 213535 0.61400 261609 0.53295 97337 0.46971 52007 0.54475 55386 0.41796 48145 0.47555 57675 0.53685 84921 0.60187 80193 0.67060 85700 0.49347 42563 
0.50363 432852 0.54844 378381 0.41731 106397 0.51520 213535 0.62339 261609 0.54112 116551 0.47690 52007 0.55309 55386 0.42434 54286 0.48281 66975 0.54505 84921 0.61106 80193 0.68084 85700 0.50482 51576 
0.51124 432852 0.55673 427077 0.42360 126652 0.52297 213535 0.63279 277935 0.54929 142862 0.48409 52007 0.56143 55386 0.43073 54474 0.49007 66975 0.55324 84921 0.62024 80193 0.69107 85700 0.51049 51576 
0.51885 432852 0.56501 427077 0.42990 133752 0.53073 213535 0.64219 299945 0.55746 158997 0.49128 52007 0.56976 55386 0.43711 54474 0.49733 70339 0.56144 84921 0.62943 80193 0.70131 85700 0.51616 51576 
0.52646 432852 0.57330 427077 0.43619 133752 0.53850 213535 0.65159 299945 0.56562 158997 0.49847 52007 0.57810 64753 0.44349 61708 0.50459 72417 0.56963 84921 0.63862 80193 0.71155 85700 0.52751 51576 
0.53407 432852 0.58158 427077 0.44248 164395 0.54627 239541 0.66098 318079 0.57379 158997 0.50565 52007 0.58644 71164 0.44987 61708 0.51185 72417 0.57783 84921 0.64781 80193 0.72179 85700 0.53318 51576 
0.54169 432852 0.58987 427077 0.44877 169448 0.55404 284718 0.67038 339039 0.58196 158997 0.51284 52007 0.59478 75634 0.45625 61708 0.51911 72417 0.58603 84921 0.65700 80193 0.73203 85700 0.53885 51576 
0.54930 445842 0.59815 427077 0.45506 169448 0.56180 287311 0.67978 339039 0.59013 159987 0.52003 52007 0.60312 93642 0.46263 61708 0.52637 72417 0.59422 84921 0.66619 80193 0.74227 85700 0.55019 74774 
0.55691 494090 0.60644 427077 0.46135 169448 0.56957 287311 0.68918 339039 0.59829 161810 0.52722 53355 0.61145 103953 0.46901 61708 0.53363 72417 0.60242 84921 0.67538 80193 0.75250 85700 0.55587 82988 
0.56452 494090 0.61472 427904 0.46764 169448 0.57734 287311 0.69858 339039 0.60646 196696 0.53441 62654 0.61979 104003 0.47539 61708 0.54089 72417 0.61062 84921 0.68457 80193 0.76274 85700 0.56154 82988 
0.57213 494090 0.62301 427904 0.47393 188508 0.58510 287311 0.70797 339039 0.61463 208956 0.54160 74559 0.62813 116657 0.48177 61708 0.54815 72417 0.61881 84921 0.69376 80193 0.77298 85700 0.57288 82988 
0.57974 494090 0.63129 427904 0.48022 224716 0.59287 287311 0.71737 389450 0.62280 208956 0.54879 90138 0.63647 136977 0.48816 61708 0.55541 72417 0.62701 84921 0.70294 80193 0.78322 85700 0.57855 82988 
0.58736 494090 0.63957 462987 0.48652 225401 0.60064 287311 0.72677 403413 0.63097 217740 0.55598 100322 0.64481 139469 0.49454 61708 0.56267 72417 0.63520 84921 0.71213 80193 0.79346 85700 0.58423 82988 
0.59497 494090 0.64786 462987 0.49281 240472 0.60840 314836 0.73617 403413 0.63913 244756 0.56317 100322 0.65314 139469 0.50092 61708 0.56993 72417 0.64340 84921 0.72132 80193 0.79857 85700 0.59557 82988 
0.60258 494090 0.65614 462987 0.49910 277091 0.61617 321123 0.74557 405438 0.64730 244756 0.57036 100322 0.66148 167462 0.50730 61708 0.57719 72417 0.65160 84921 0.73051 80193   0.60124 82988 
0.61019 494090 0.66443 489755 0.50539 278485 0.62394 321123 0.75496 416448 0.65547 244756 0.57755 100322 0.66982 177652 0.51368 61708 0.58445 72417 0.65979 84921 0.73970 80193   0.60691 82988 
0.61780 494090 0.67271 497486 0.51168 278485 0.63170 323356 0.76436 416448 0.66364 276480 0.58474 106260 0.67816 177652 0.52006 61708 0.59172 72417 0.66799 84921 0.74889 96785   0.61826 82988 
0.62541 494090 0.68100 497486 0.51797 278485 0.63947 357105 0.77376 416448 0.67180 282864 0.59193 106260 0.68650 177652 0.52644 61708 0.59898 72417 0.67619 84921 0.75808 99984   0.62393 82988 
0.63302 494090 0.68928 497486 0.52426 278485 0.64724 357105 0.78316 416448 0.67997 282864 0.59912 123459 0.69483 190962 0.53282 61708 0.60624 72417 0.68438 84921 0.76727 99984   0.62960 82988 
0.64064 518744 0.69757 497486 0.53055 278485 0.65500 357105 0.79255 416448 0.68814 282864 0.60631 146886 0.70317 190962 0.53920 61708 0.61350 72417 0.69258 84921 0.77645 99984   0.64095 82988 
0.64825 518744 0.70585 497486 0.53685 278485 0.66277 381940 0.79882 416448 0.69631 282864 0.61350 155405 0.71151 210725 0.54559 61708 0.62076 72417 0.70077 84921 0.78564 99984   0.64662 82988 
0.65586 518744 0.71414 502936 0.54314 278485 0.67054 391523   0.70448 282864 0.62069 155405 0.71985 242738 0.55197 61708 0.62802 72417 0.70897 84921 0.79483 99984   0.65229 82988 
0.66347 533238 0.72242 552592 0.54943 323346 0.67831 391523   0.71264 308704 0.62787 157773 0.72819 247109 0.55835 61708 0.63528 72417 0.71717 96780 0.79943 99984   0.66364 82988 
0.67108 549191 0.73071 553595 0.55572 362810 0.68607 391523   0.72081 349804 0.63506 184334 0.73652 247109 0.56473 61708 0.64254 72417 0.72536 105182     0.66931 82988 
0.67869 549191 0.73899 553595 0.56201 362810 0.69384 391523   0.72898 352252 0.64225 193007 0.74486 257471 0.57111 61708 0.64980 72417 0.73356 105182     0.67498 82988 
0.68631 549191 0.74727 553595 0.56830 362810 0.70161 391523   0.73715 352252 0.64944 193007 0.75320 271064 0.57749 61708 0.65706 72417 0.74175 116935     0.68632 82988 
0.69392 549191 0.75556 556036 0.57459 362810 0.70937 391523   0.74532 357152 0.65663 194267 0.76154 271064 0.58387 61708 0.66432 81832 0.74995 129380     0.69200 82988 
0.70153 549191 0.76384 556036 0.58088 362810 0.71714 436327   0.75348 370239 0.66382 224812 0.76988 271064 0.59025 61708 0.67158 84356 0.75815 132763     0.69767 82988 
0.70914 549191 0.77213 556036 0.58717 362810 0.72491 452613   0.76165 370239 0.67101 229702 0.77821 271064 0.59663 61708 0.67884 84356 0.76634 132763     0.70901 82988 
0.71675 563450 0.78041 556036 0.59347 362810 0.73267 452613   0.76982 370239 0.67820 229702 0.78655 271064 0.60302 61708 0.68610 90426 0.77454 132763     0.71468 82988 
0.72436 595947 0.78870 556036 0.59976 362810 0.74044 452613   0.77799 370239 0.68539 229702 0.79489 271064 0.60940 63279 0.69336 99148 0.78274 132763     0.72036 82988 
0.73197 595947 0.79698 556036 0.60605 362810 0.74821 458723   0.78615 370239 0.69258 230593 0.79767 271064 0.61578 64428 0.70062 99424 0.79093 132763     0.73170 82988 
0.73959 595947   0.61234 374711 0.75597 463848   0.79432 370239 0.69977 232993   0.62216 66954 0.70788 114683 0.79913 132763     0.73737 82988 
0.74720 595947   0.61863 374711 0.76374 463848   0.79841 370239 0.70696 232993   0.62854 78941 0.71514 135827       0.74304 82988 
0.75481 595947   0.62492 374711 0.77151 463848     0.71415 269796   0.63492 90096 0.72240 145421       0.75439 82988 
0.76242 595947   0.63121 374711 0.77927 463848     0.72134 297396   0.64130 92444 0.72966 146857       0.76006 82988 
0.77003 595947   0.63750 405662 0.78704 463848     0.72853 299164   0.64768 92444 0.73692 146857       0.76573 82988 
0.77764 595947   0.64379 408092 0.79481 463848     0.73572 299164   0.65406 101450 0.74418 163991       0.77708 82988 
0.78525 595947   0.65009 408092 0.79999 463848     0.74291 299164   0.66045 118921 0.75144 174632       0.78275 82988 
0.79287 595947   0.65638 408092       0.75009 320455   0.66683 125647 0.75870 174632       0.78842 82988 
0.79921 595947   0.66267 430016       0.75728 320455   0.67321 126537 0.76596 174632       0.79977 82988 

    0.66896 443197       0.76447 320455   0.67959 126537 0.77322 174632         
    0.67525 443197       0.77166 320455   0.68597 127015 0.78048 174632         
    0.68154 443197       0.77885 320455   0.69235 139681 0.78774 174632         
    0.68783 443197       0.78604 320455   0.69873 143642 0.79500 174632         
    0.69412 443197       0.79323 320455   0.70511 143642 0.79863 174632         
    0.70042 443197       0.79802 320455   0.71149 167584           
    0.70671 443197           0.71788 187435           
    0.71300 451391           0.72426 196672           
    0.71929 492183           0.73064 196672           
    0.72558 504929           0.73702 196672           
    0.73187 504929           0.74340 205990           
    0.73816 504929           0.74978 221655           
    0.74445 504929           0.75616 222462           
    0.75074 512454           0.76254 222462           
    0.75704 512454           0.76892 222462           
    0.76333 512454           0.77531 222462           
    0.76962 512454           0.78169 222462           
    0.77591 512454           0.78807 222462           
    0.78220 512454           0.79445 222462           
    0.78849 512454           0.79764 222462           
    0.79478 512454                       
    0.79898 512454                       
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F.4 Design curves for a two-span  railway bridges 
 

L = 16 m L = 18 m L = 20 m L = 22 m L = 24 m L = 26 m L = 28 m L = 30 m 
β τ β τ β τ β τ β τ β τ β τ β τ 

0.00144 112 0.00182 111 0.00224 106 0.00272 103 0.00323 93 0.00379 82 0.00439 85 0.00505 102 
0.00575 374 0.00727 420 0.00673 290 0.00815 257 0.00968 300 0.00758 253 0.00877 210 0.01010 215 
0.01006 649 0.01273 610 0.01121 493 0.01359 510 0.01613 517 0.01136 358 0.01316 305 0.01515 381 
0.01437 980 0.01818 1184 0.01570 672 0.01902 817 0.02258 1050 0.01894 587 0.01754 523 0.02020 614 
0.01868 1522 0.02364 1769 0.02018 1269 0.02446 1123 0.02903 1114 0.02273 815 0.02193 660 0.02525 614 
0.02299 1780 0.02909 2436 0.02466 1269 0.02989 1766 0.03548 1582 0.02652 996 0.02632 839 0.03030 688 
0.02730 2474 0.03455 2605 0.02915 1895 0.03533 1766 0.04194 2001 0.03409 1338 0.03070 839 0.03535 1032 
0.03161 2943 0.04000 3658 0.03363 1963 0.04076 2273 0.04839 2083 0.03788 1654 0.03509 1149 0.04040 1032 
0.03592 3200 0.04545 3716 0.03812 2500 0.04620 2325 0.05484 2960 0.04167 1761 0.03947 1382 0.04545 1093 
0.04023 3780 0.05091 5038 0.04260 3579 0.05163 3471 0.06129 4042 0.04924 1979 0.04386 1403 0.05051 1566 
0.04454 5065 0.05636 5321 0.04709 3579 0.05707 3978 0.06774 4042 0.05303 1979 0.04825 1469 0.05556 1720 
0.04885 6263 0.06182 6706 0.05157 5360 0.06250 4688 0.07419 4042 0.05682 2808 0.05263 1965 0.06061 2306 
0.05316 6762 0.06727 6706 0.05605 5360 0.06793 4688 0.08065 4042 0.06439 3714 0.05702 2303 0.06566 2306 
0.05747 6882 0.07273 6706 0.06054 5360 0.07337 4688 0.08710 5115 0.06818 3714 0.06140 2490 0.07071 2306 
0.06178 7934 0.07818 6706 0.06502 5360 0.07880 5415 0.09355 6116 0.07197 3714 0.06579 2551 0.07576 2306 
0.06609 7934 0.08364 7741 0.06951 5360 0.08424 6390 0.10000 6389 0.07955 3787 0.07018 2551 0.08081 2733 
0.07040 7934 0.08909 10458 0.07399 5360 0.08967 7492 0.10645 6389 0.08333 3965 0.07456 2609 0.08586 3570 
0.07471 7934 0.09455 12737 0.07848 5360 0.09511 8295 0.11290 6389 0.08712 4632 0.07895 3167 0.09091 3570 
0.07902 9994 0.10000 13512 0.08296 7538 0.10054 8584 0.11935 6637 0.09470 5270 0.08333 3797 0.09596 5161 
0.08333 10541 0.10545 13512 0.08744 7538 0.10598 8584 0.12581 7577 0.09848 5454 0.08772 4068 0.10101 5161 
0.08764 12526 0.11091 13512 0.09193 8299 0.11141 8584 0.13226 8268 0.10227 5454 0.09211 4437 0.10606 5161 
0.09195 12526 0.11636 13512 0.09641 11920 0.11685 8584 0.13871 9643 0.10985 5637 0.09649 4604 0.11111 5161 
0.09626 13074 0.12182 13512 0.10090 11920 0.12228 8584 0.14516 9704 0.11364 5637 0.10088 5648 0.11616 5161 
0.10057 13074 0.12727 13512 0.10538 11920 0.12772 9109 0.15161 12547 0.11742 5637 0.10526 5648 0.12121 5161 
0.10489 13074 0.13273 14149 0.10987 11920 0.13315 10500 0.15806 13387 0.12500 6276 0.10965 5648 0.12626 5161 
0.10920 13074 0.13818 14149 0.11435 11920 0.13859 10989 0.16452 13387 0.12879 6276 0.11404 5648 0.13131 5456 
0.11351 13074 0.14364 14149 0.11883 11920 0.14402 13478 0.17097 13387 0.13258 6380 0.11842 5648 0.13636 5630 
0.11782 15282 0.14909 16914 0.12332 11920 0.14946 13478 0.17742 17463 0.14015 8410 0.12281 5671 0.14141 6203 
0.12213 16589 0.15455 22502 0.12780 11920 0.15489 13478 0.18387 17463 0.14394 8410 0.12719 5671 0.14646 8404 
0.12644 16589 0.16000 22502 0.13229 11920 0.16033 14243 0.19032 17463 0.14773 9796 0.13158 5821 0.15152 8404 
0.13075 16589 0.16545 22502 0.13677 11920 0.16576 14593 0.19677 17463 0.15530 12803 0.13596 6887 0.15657 8404 
0.13506 18208 0.17091 22502 0.14126 11920 0.17120 14593 0.20323 17463 0.15909 12803 0.14035 6887 0.16162 8404 
0.13937 20272 0.17636 22846 0.14574 13787 0.17663 14593 0.20968 19029 0.16288 12803 0.14474 7630 0.16667 8404 
0.14368 20272 0.18182 23207 0.15022 14880 0.18207 14814 0.21613 19029 0.17045 12803 0.14912 9836 0.17172 8404 
0.14799 20272 0.18727 25302 0.15471 15127 0.18750 18373 0.22258 19029 0.17424 12803 0.15351 9836 0.17677 11344 
0.15230 26148 0.19273 25302 0.15919 15127 0.19293 20222 0.22903 19029 0.17803 12803 0.15789 9836 0.18182 11344 
0.15661 28214 0.19818 25302 0.16368 15129 0.19837 20222 0.23548 19029 0.18561 12803 0.16228 10971 0.18687 11344 
0.16092 29520 0.20364 25302 0.16816 17040 0.20380 20222 0.24194 19029 0.18939 14553 0.16667 10971 0.19192 11344 
0.16523 29520 0.20909 27019 0.17265 17957 0.20924 20222 0.24839 19029 0.19318 14921 0.17105 10971 0.19697 11344 
0.16954 29520 0.21455 29238 0.17713 22082 0.21467 20222 0.25484 19753 0.20076 14921 0.17544 10971 0.20202 11344 
0.17385 29520 0.22000 29238 0.18161 22082 0.22011 20222 0.26129 20869 0.20455 14921 0.17982 10971 0.20707 11344 
0.17816 29520 0.22545 29238 0.18610 22082 0.22554 20222 0.26774 20869 0.20833 14921 0.18421 10971 0.21212 11344 
0.18247 29520 0.23091 29238 0.19058 22082 0.23098 20222 0.27419 20869 0.21591 14921 0.18860 11157 0.21717 11344 
0.18678 29520 0.23636 29238 0.19507 22560 0.23641 20222 0.28065 20869 0.21970 14921 0.19298 11157 0.22222 11344 
0.19109 38217 0.24182 29238 0.19955 22560 0.24185 20222 0.28710 20869 0.22348 14921 0.19737 11157 0.22727 11344 
0.19540 46465 0.24727 29238 0.20404 22560 0.24728 20222 0.29355 22427 0.23106 14921 0.20175 11157 0.23232 11344 
0.19971 46465 0.25273 31314 0.20852 24532 0.25272 20222 0.30000 23532 0.23485 14921 0.20614 12311 0.23737 11344 
0.20402 46465 0.25818 35808 0.21300 24541 0.25815 21253 0.30645 23532 0.23864 14921 0.21053 15078 0.24242 11344 
0.20833 46465 0.26364 37156 0.21749 24541 0.26359 29883 0.31290 23532 0.24621 15646 0.21491 15078 0.24747 11344 
0.21264 46465 0.26909 38099 0.22197 24541 0.26902 32790 0.31935 23532 0.25000 18062 0.21930 15078 0.25253 11344 
0.21695 46465 0.27455 38099 0.22646 24541 0.27446 34874 0.32581 23532 0.25379 18062 0.22368 15078 0.25758 12598 
0.22126 46465 0.28000 38099 0.23094 24541 0.27989 34874 0.33226 23532 0.26136 19243 0.22807 15078 0.26263 13877 
0.22557 46465 0.28545 38099 0.23543 24541 0.28533 34874 0.33871 23532 0.26515 22268 0.23246 15078 0.26768 13877 
0.22989 46465 0.29091 38099 0.23991 28061 0.29076 34874 0.34516 23532 0.26894 22564 0.23684 15078 0.27273 13877 
0.23420 46465 0.29636 38099 0.24439 30678 0.29620 34874 0.35161 23532 0.27652 23310 0.24123 15078 0.27778 13877 
0.23851 46465 0.30182 38844 0.24888 31478 0.30163 34874 0.35806 23532 0.28030 23310 0.24561 15078 0.28283 13877 
0.24282 46465 0.30727 41011 0.25336 31736 0.30707 34874 0.36452 27268 0.28409 23310 0.25000 15078 0.28788 13877 
0.24713 46465 0.31273 42745 0.25785 31736 0.31250 34874 0.37097 32094 0.29167 23310 0.25439 15078 0.29293 13877 
0.25144 46465 0.31818 42745 0.26233 31736 0.31793 34874 0.37742 32094 0.29545 23310 0.25877 15078 0.29798 13877 
0.25575 46465 0.32364 42745 0.26682 31736 0.32337 34874 0.38387 32094 0.29924 23310 0.26316 15078 0.30303 13877 
0.26006 47095 0.32909 42745 0.27130 31736 0.32880 34874 0.39032 32094 0.30682 23310 0.26754 15778 0.30808 13877 
0.26437 52510 0.33455 42745 0.27578 31736 0.33424 34874 0.39677 32094 0.31061 23310 0.27193 19054 0.31313 13877 
0.26868 54718 0.34000 42745 0.28027 31736 0.33967 34874 0.40323 32094 0.31439 23310 0.27632 19054 0.31818 14975 
0.27299 57812 0.34545 42745 0.28475 31736 0.34511 34874 0.40968 32094 0.32197 23310 0.28070 19054 0.32323 17290 
0.27730 57812 0.35091 42745 0.28924 31736 0.35054 34874 0.41613 32094 0.32576 23310 0.28509 19054 0.32828 19995 
0.28161 57812 0.35636 42745 0.29372 32409 0.35598 34874 0.42258 32094 0.32955 24716 0.28947 19054 0.33333 19995 
0.28592 57812 0.36182 42745 0.29821 32409 0.36141 34874 0.42903 32094 0.33712 24716 0.29386 19054 0.33838 19995 
0.29023 57812 0.36727 45019 0.30269 32409 0.36685 34874 0.43548 32094 0.34091 24716 0.29825 19054 0.34343 19995 
0.29454 57812 0.37273 48486 0.30717 32409 0.37228 34874 0.44194 32094 0.34470 24716 0.30263 19054 0.34848 19995 
0.29885 57812 0.37818 54905 0.31166 32409 0.37772 34874 0.44839 32094 0.35227 24716 0.30702 19054 0.35354 19995 
0.30316 57812 0.38364 60766 0.31614 32409 0.38315 34874 0.45484 32094 0.35606 24716 0.31140 19054 0.35859 19995 
0.30747 57812 0.38909 63645 0.32063 32409 0.38859 34874 0.46129 32094 0.35985 24716 0.31579 19054 0.36364 19995 
0.31178 57812 0.39455 64262 0.32511 32409 0.39402 34874 0.46774 33017 0.36742 24716 0.32018 19054 0.36869 20332 
0.31609 57812 0.40000 64457 0.32960 32409 0.39946 34874 0.47419 39313 0.37121 24716 0.32456 19054 0.37374 20593 
0.32040 57812 0.40545 69046 0.33408 32409 0.40489 34874 0.48065 48241 0.37500 24716 0.32895 19054 0.37879 20593 
0.32471 57812 0.41091 69956 0.33857 32409 0.41033 34874 0.48710 59063 0.38258 24716 0.33333 19054 0.38384 20593 
0.32902 62602 0.41636 69956 0.34305 32409 0.41576 34874 0.49355 71913 0.38636 24716 0.33772 19054 0.38889 20593 
0.33333 63900 0.42182 72354 0.34753 32409 0.42120 34874 0.50000 78358 0.39015 24716 0.34211 19054 0.39394 20593 
0.33764 63900 0.42727 75925 0.35202 32409 0.42663 34874   0.39773 24716 0.34649 19054 0.39899 20593 
0.34195 63900 0.43273 75925 0.35650 32409 0.43207 34874   0.40152 28022 0.35088 19054 0.40404 20593 
0.34626 63900 0.43818 75925 0.36099 32409 0.43750 35815   0.40530 32505 0.35526 19054 0.40909 20593 
0.35057 63900 0.44364 75925 0.36547 32409 0.44293 43037   0.41288 34721 0.35965 19054 0.41414 20593 
0.35489 63900 0.44909 75925 0.36996 32409 0.44837 44221   0.41667 34721 0.36404 19054 0.41919 20593 
0.35920 63900 0.45455 75925 0.37444 32409 0.45380 47305   0.42045 34721 0.36842 19054 0.42424 20593 
0.36351 63900 0.46000 75925 0.37892 32409 0.45924 54875   0.42803 36668 0.37281 19054 0.42929 20593 
0.36782 70900 0.46545 75925 0.38341 32409 0.46467 60273   0.43182 36668 0.37719 19054 0.43434 20593 
0.37213 74013 0.47091 75925 0.38789 32409 0.47011 64108   0.43561 36668 0.38158 19054 0.43939 24021 
0.37644 74013 0.47636 75925 0.39238 33287 0.47554 73180   0.44318 36668 0.38596 19054 0.44444 26728 
0.38075 74013 0.48182 75925 0.39686 36496 0.48098 79552   0.44697 36668 0.39035 19054 0.44949 26728 
0.38506 74013 0.48727 75925 0.40135 39282 0.48641 79552   0.45076 36668 0.39474 19054 0.45455 26728 
0.38937 74013 0.49273 75925 0.40583 41999 0.49185 82370   0.45833 36668 0.39912 19217 0.45960 27164 
0.39368 74013 0.49818 75925 0.41031 43985 0.49728 96649   0.46212 36668 0.40351 20443 0.46465 29258 
0.39799 74013 0.50000 75925 0.41480 47018 0.50000 100133   0.46591 36668 0.40789 21715 0.46970 31445 
0.40230 74013   0.41928 53735     0.47348 36668 0.41228 24126 0.47475 36286 
0.40661 74013   0.42377 60390     0.47727 36668 0.41667 24126 0.47980 43584 
0.41092 74013   0.42825 60991     0.48106 36668 0.42105 28584 0.48485 43656 
0.41523 74013   0.43274 60991     0.48864 36668 0.42544 31699 0.48990 43656 
0.41954 74013   0.43722 67721     0.49242 36668 0.42982 31699 0.49495 46564 
0.42385 74013   0.44170 74991     0.49621 36668 0.43421 31699 0.50000 49599 
0.42816 74013   0.44619 75777     0.50000 36668 0.43860 34510   
0.43247 74013   0.45067 75777       0.44298 39887   
0.43678 74013   0.45516 75777       0.44737 39887   
0.44109 74013   0.45964 75777       0.45175 39887   
0.44540 74013   0.46413 75777       0.45614 39887   
0.44971 74013   0.46861 75777       0.46053 39887   
0.45402 74013   0.47309 78739       0.46491 39887   
0.45833 74013   0.47758 85157       0.46930 39887   
0.46264 74013   0.48206 86462       0.47368 39887   
0.46695 76391   0.48655 86462       0.47807 39887   
0.47126 82072   0.49103 86462       0.48246 39887   
0.47557 87548   0.49327 86462       0.48684 39887   
0.47989 93846   0.49552 86462       0.49123 39887   
0.48420 98911   0.50000 89424       0.49561 39887   
0.48851 106099           0.50000 39887   
0.49282 116435               
0.49713 128341               
0.50000 134908               
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F.5 Design curves for a three-span  railway bridge 
 

L = 30 m L = 31.5 m L = 33 m L = 34.5 m L = 36 m L = 37.5 m L = 39 m L = 40.5 m L = 42 m 

 

L = 43.5 m 

β τ β τ β τ β τ β τ β τ β τ β τ β τ β τ 

0.002242 116.2585 0.002472 102.9108 0.002713 96.62865 0.002965 97.47153 0.003229 108.8065 0.003503 118.6441 0.003789 106.3135 0.004086 95.48939 0.004395 108.4476 0.004714 89.8916 

0.008968 523.5175 0.009888 446.4143 0.010852 431.9652 0.011861 445.38 0.009686 275.7452 0.01051 355.9948 0.011367 354.9664 0.012259 353.3344 0.013184 322.835 0.014142 323.7149 

0.015695 654.173 0.017303 675.5032 0.018991 617.6315 0.020756 768.5169 0.016143 507.3154 0.017516 636.0863 0.018946 570.4226 0.020431 570.9336 0.021973 705.8436 0.02357 540.0452 

0.022421 1222.764 0.024719 1083.903 0.027129 1175.115 0.029652 1102.548 0.0226 816.9627 0.024523 870.7022 0.026524 1030.499 0.028604 921.3637 0.030762 798.656 0.032998 975.8854 

0.029147 1657.914 0.032135 1511.036 0.035268 1801.994 0.038547 1772.889 0.029058 927.6 0.031529 933.5443 0.034102 1364.993 0.036776 1223.927 0.039551 1400.427 0.042426 1507.089 

0.035874 2291.726 0.039551 2493.666 0.043407 1868.109 0.047443 2170.185 0.035515 1599.72 0.038536 1427.013 0.041681 1662.552 0.044948 1540.826 0.04834 1506.934 0.051854 1943.059 

0.0426 2791.472 0.046966 2493.666 0.051546 2612.694 0.056338 2447.445 0.041972 1715.338 0.045543 1913.929 0.049259 2456.931 0.053121 1936.714 0.057129 1816.966 0.061282 2240.409 

0.049326 3428.53 0.054382 3259.332 0.059685 3161.418 0.065234 2963.162 0.048429 2004.547 0.052549 2264.75 0.056837 2456.931 0.061293 2346.848 0.065918 2188.127 0.07071 2456.256 

0.056052 3519.524 0.061798 3814.478 0.067823 3530.805 0.074129 3732.116 0.054887 2601.103 0.059556 2433.026 0.064415 2456.931 0.069466 2746.571 0.074707 2508.274 0.080138 2468.999 

0.062779 4752.455 0.069214 3835.656 0.075962 4338.856 0.083025 4051.167 0.061344 2828.286 0.066562 2744.046 0.071994 2486.47 0.077638 2978.072 0.083496 2700.46 0.089566 3443.74 

0.069505 4752.455 0.076629 4666.247 0.084101 4338.856 0.09192 4743.905 0.067801 2828.286 0.073569 2841.485 0.079572 3037.914 0.085811 3115.145 0.092285 3403.181 0.098994 3443.74 

0.076231 5412.912 0.084045 5644.819 0.09224 5061.093 0.100816 5808.86 0.074258 3762.7 0.080575 3167.63 0.08715 3400.239 0.093983 3927.128 0.101074 4127.702 0.108422 3804.579 

0.082958 5412.912 0.091461 5644.819 0.100379 5929.631 0.109712 5808.86 0.080716 3762.7 0.087582 4217.125 0.094729 3665.302 0.102156 3927.128 0.109863 5132.154 0.11785 4722.025 

0.089684 6227.773 0.098877 7431.03 0.108518 6142.925 0.118607 6431.733 0.087173 4088.297 0.094588 4303.01 0.102307 4825.444 0.110328 4624.145 0.118652 5132.154 0.127278 6148.335 

0.09641 6707.287 0.106292 7774.616 0.116656 8455.796 0.127503 8493.045 0.09363 4510.725 0.101595 4812.522 0.109885 4825.444 0.1185 5550.994 0.127441 5354.236 0.136706 6148.335 

0.103136 7543.619 0.113708 7774.616 0.124795 8455.796 0.136398 9187.112 0.100087 4982.699 0.108602 5229.263 0.117463 5835.043 0.126673 6922.597 0.13623 5941.833 0.146134 6148.335 

0.109863 8976.76 0.121124 9734.305 0.132934 8455.796 0.145294 9187.112 0.106545 5219.374 0.115608 5986.295 0.125042 6499.988 0.134845 6922.597 0.145019 6790.933 0.155562 6914.119 

0.116589 10746.86 0.12854 10232.45 0.141073 10771.72 0.154189 9187.112 0.113002 5959.318 0.122615 7557.29 0.13262 6499.988 0.143018 6922.597 0.153808 7723.014 0.16499 8364.992 

0.123315 10923.15 0.135955 10232.45 0.149212 10771.72 0.163085 12372.66 0.119459 6849.97 0.129621 7557.29 0.140198 7567.581 0.15119 7963.458 0.162597 10904.21 0.174418 8573.748 

0.130042 10923.15 0.143371 10232.45 0.15735 10971.57 0.17198 12372.66 0.125916 7234.196 0.136628 7557.29 0.147777 7857.357 0.159363 8936.625 0.171386 11308.06 0.183846 8573.748 

0.136768 12948.06 0.150787 11249.89 0.165489 13062.57 0.180876 14612.01 0.132374 7513.355 0.143634 7557.29 0.155355 9239.27 0.167535 8936.625 0.180175 11308.06 0.193274 8803.226 

0.143494 12948.06 0.158203 13453.88 0.173628 13062.57 0.189771 15229.77 0.138831 7935.919 0.150641 8376.664 0.162933 10273.79 0.175708 9677.676 0.188964 11987.79 0.202702 11215.63 

0.15022 13672.11 0.165618 13453.88 0.181767 13979.36 0.198667 16133.51 0.145288 8297.098 0.157647 10132.89 0.170511 11170.66 0.18388 9677.676 0.197753 13306.52 0.21213 11605.98 

0.156947 13672.11 0.173034 13649.88 0.189906 13979.36 0.207562 16700.51 0.151745 9127.746 0.164654 10132.89 0.17809 11170.66 0.192052 10800.42 0.206542 13306.52 0.221558 11605.98 

0.163673 15637.24 0.18045 16129.84 0.198045 14525.99 0.216458 18784.41 0.158203 10697.7 0.17166 10240.32 0.185668 11170.66 0.200225 12557.53 0.215331 14475.32 0.230987 11605.98 

0.170399 16452.53 0.187865 16588.22 0.206183 18237.1 0.225353 18784.41 0.16466 11577.87 0.178667 13158.28 0.193246 14287.51 0.208397 12557.53 0.22412 14475.32 0.240415 12481.29 

0.177126 16452.53 0.195281 20353.94 0.214322 18237.1 0.234249 18784.41 0.171117 11577.87 0.185674 13158.28 0.200825 14287.51 0.21657 12579.15 0.232909 14475.32 0.249843 14666.03 

0.183852 16452.53 0.202697 20353.94 0.222461 19092.43 0.243145 18784.41 0.177574 11577.87 0.19268 13158.28 0.208403 14287.51 0.224742 12579.15 0.241698 14475.32 0.259271 14666.03 

0.190578 16668.3 0.210113 20353.94 0.2306 20877.56 0.25204 18784.41 0.184031 11577.87 0.199687 13318.13 0.215981 14648.6 0.232915 12579.15 0.250487 14475.32 0.268699 22362.31 

0.197304 16668.3 0.217528 20353.94 0.238739 20877.56 0.260936 18784.41 0.190489 11577.87 0.206693 16362.41 0.223559 17192.99 0.241087 13987.01 0.259276 14475.32 0.278127 22362.31 

0.204031 19545.53 0.224944 20353.94 0.246877 24229.67 0.269831 19400.01 0.196946 11731.29 0.2137 16362.41 0.231138 17602.16 0.24926 15844.07 0.268065 14594.87 0.287555 22362.31 

0.210757 24180.35 0.23236 20353.94 0.255016 24229.67 0.278727 19400.01 0.203403 14617.36 0.220706 16362.41 0.238716 17602.16 0.257432 15844.07 0.276854 14594.87 0.296983 22362.31 

0.217483 25446.65 0.239776 20353.94 0.263155 27536.41 0.287622 19400.01 0.20986 14617.36 0.227713 16362.41 0.246294 17602.16 0.265604 15844.07 0.285643 14594.87 0.306411 22362.31 

0.22421 27474.51 0.247191 20353.94 0.271294 33125.83 0.296518 19400.01 0.216318 14617.36 0.234719 16362.41 0.253873 17602.16 0.273777 18231.83 0.294432 14594.87 0.315839 22362.31 

0.230936 27754.45 0.254607 21620.76 0.279433 33125.83 0.305413 19400.01 0.222775 17421.04 0.241726 16362.41 0.261451 17602.16 0.281949 18231.83 0.303221 14594.87 0.325267 22362.31 

0.237662 27754.45 0.262023 26515.68 0.287571 33125.83 0.314309 19400.01 0.229232 18645.28 0.248733 16362.41 0.269029 22042.27 0.290122 18231.83 0.31201 14594.87 0.334695 22362.31 

0.244388 27754.45 0.269439 28155.82 0.29571 33125.83 0.323204 19400.01 0.235689 18645.28 0.255739 16362.41 0.276607 22042.27 0.298294 18231.83 0.320799 14594.87 0.344123 22362.31 

0.251115 27754.45 0.276854 28155.82 0.303849 33125.83 0.3321 22609.67 0.242147 18645.28 0.262746 17897.95 0.284186 22042.27 0.306467 18231.83 0.329588 14594.87 0.353551 22362.31 

0.257841 27754.45 0.28427 28155.82 0.311988 33125.83 0.340995 23332.09 0.248604 18645.28 0.269752 19488.88 0.291764 22042.27 0.314639 18231.83 0.338377 14594.87 0.362979 22362.31 

0.264567 27754.45 0.291686 28155.82 0.320127 33125.83 0.349891 23332.09 0.255061 18645.28 0.276759 19488.88 0.299342 22042.27 0.322812 18231.83 0.347166 17397.4 0.372407 22362.31 

0.271294 27754.45 0.299102 28155.82 0.328266 33125.83 0.358786 23332.09 0.261518 19602.21 0.283765 19488.88 0.30692 22042.27 0.330984 20875.27 0.355955 17729.59 0.381835 22362.31 

0.27802 27754.45 0.306517 28155.82 0.336404 33125.83 0.367682 28125.47 0.267976 23523.44 0.290772 19488.88 0.314499 22042.27 0.339156 23303.24 0.364744 17729.59 0.391263 22362.31 

0.284746 27754.45 0.313933 28155.82 0.344543 33125.83 0.376577 30958.59 0.274433 25143.44 0.297778 19488.88 0.322077 22042.27 0.347329 23303.24 0.373533 17729.59 0.400691 22362.31 

0.291473 27754.45 0.321349 28155.82 0.352682 33125.83 0.385473 31085.66 0.28089 25143.44 0.304785 19488.88 0.329655 22042.27 0.355501 23303.24 0.382322 18269.29 0.410119 22362.31 

0.298199 27754.45 0.328765 28155.82 0.360821 33125.83 0.394369 31085.66 0.287347 25143.44 0.311791 19488.88 0.337234 22042.27 0.363674 23303.24 0.391111 18269.29 0.419547 22362.31 

0.304925 27754.45 0.33618 34050.29 0.36896 33200.38 0.403264 31085.66 0.293805 25143.44 0.318798 19488.88 0.344812 22042.27 0.371846 23303.24 0.3999 18703.69 0.428975 22362.31 

0.311651 27754.45 0.343596 34812.38 0.377098 33200.38 0.41216 31085.66 0.300262 25143.44 0.325805 19488.88 0.35239 22042.27 0.380019 23303.24 0.408689 19115.63 0.438403 22362.31 

0.318378 27754.45 0.351012 34812.38 0.385237 33200.38 0.421055 31085.66 0.306719 25143.44 0.332811 19488.88 0.359968 22042.27 0.388191 23303.24 0.417478 19115.63 0.447831 22362.31 

0.325104 27754.45 0.358428 34812.38 0.393376 33200.38 0.429951 31949.53 0.313176 25143.44 0.339818 19488.88 0.367547 22042.27 0.396364 23303.24 0.426267 19115.63 0.457259 28716.89 

0.33183 28830.66 0.365843 34812.38 0.401515 33200.38 0.438846 34561.99 0.319634 25143.44 0.346824 19488.88 0.375125 22042.27 0.404536 23303.24 0.435056 20301.64 0.466687 34801.26 

0.338557 32315.05 0.373259 34812.38 0.409654 33200.38 0.447742 37975.76 0.326091 25143.44 0.353831 19488.88 0.382703 22042.27 0.412708 23303.24 0.443845 25929.95 0.476115 37028.25 

0.345283 32315.05 0.380675 34812.38 0.417793 33855.72 0.456637 45216.3 0.332548 25143.44 0.360837 19488.88 0.390282 22042.27 0.420881 23303.24 0.452634 29360.69 0.485543 38909.85 

0.352009 32315.05 0.388091 34812.38 0.425931 43889.87 0.465533 55433.18 0.339005 25143.44 0.367844 19488.88 0.39786 22042.27 0.429053 27985.99 0.461423 35823 0.494971 40331.52 

0.358735 32315.05 0.395506 34812.38 0.43407 50018.16 0.474428 61349.02 0.345463 25143.44 0.37485 19488.88 0.405438 22042.27 0.437226 31112.28 0.470212 39834.45 0.504399 40331.52 

0.365462 32315.05 0.402922 34812.38 0.442209 50018.16 0.483324 61549.3 0.35192 25143.44 0.381857 19488.88 0.413016 26070.63 0.445398 33233.88 0.479001 40736.92 0.513827 40331.52 

0.372188 32315.05 0.410338 43913.34 0.450348 50018.16 0.492219 61549.3 0.358377 25143.44 0.388864 19626.84 0.420595 28300.98 0.453571 33233.88 0.48779 40736.92 0.523255 40331.52 

0.378914 32315.05 0.417753 47752.75 0.458487 50018.16 0.501115 62518.61 0.364834 25143.44 0.39587 23290.49 0.428173 33191.58 0.461743 33444.56 0.496579 40736.92 0.532683 40331.52 

0.385641 32599.66 0.425169 47752.75 0.466625 50018.16 0.51001 62518.61 0.371292 25143.44 0.402877 26025.97 0.435751 36301.74 0.469916 33444.56 0.505368 40736.92 0.542111 40331.52 

0.392367 40679.86 0.432585 51593.12 0.474764 52195.8 0.518906 62518.61 0.377749 25143.44 0.409883 30988.15 0.44333 37165.44 0.478088 33444.56 0.514157 40736.92 0.551539 40331.52 

0.399093 45272.68 0.440001 55382.79 0.482903 56123.05 0.527801 62518.61 0.384206 25143.44 0.41689 34156.16 0.450908 37165.44 0.48626 33444.56 0.522946 40736.92 0.560967 43500.84 

0.405819 45272.68 0.447416 55622.98 0.491042 56123.05 0.536697 62518.61 0.390663 28023.93 0.423896 35070.47 0.458486 37165.44 0.494433 33444.56 0.531735 40736.92 0.570395 48143.4 

0.412546 45805.24 0.454832 55622.98 0.499181 56123.05 0.545593 62518.61 0.397121 31590.29 0.430903 35070.47 0.466064 37165.44 0.502605 33444.56 0.540524 44584.07 0.579823 48143.4 

0.419272 50467.06 0.462248 55622.98 0.50732 56123.05 0.554488 62518.61 0.403578 32149.83 0.437909 35070.47 0.473643 37165.44 0.510778 35423.7 0.549313 46640.69 0.589251 48143.4 

0.425998 52466.85 0.469664 55622.98 0.515458 56123.05 0.563384 62518.61 0.410035 32762.22 0.444916 35070.47 0.481221 37165.44 0.51895 42586.88 0.558102 48608.16 0.598679 48143.4 

0.432725 52466.85 0.477079 55622.98 0.523597 56123.05 0.572279 62518.61 0.416492 32762.22 0.451922 35070.47 0.488799 37165.44 0.527123 42586.88 0.566891 49310.28 0.608107 59825.12 

0.439451 52466.85 0.484495 55622.98 0.531736 56123.05 0.581175 62518.61 0.42295 32762.22 0.458929 35070.47 0.496378 37165.44 0.535295 42586.88 0.57568 49310.28 0.617535 61448.62 

0.446177 52466.85 0.491911 55622.98 0.539875 56123.05 0.59007 62518.61 0.429407 32762.22 0.465936 35070.47 0.503956 37680.23 0.543468 44727.49 0.584469 49310.28 0.626963 61448.62 

0.452903 52466.85 0.499327 55622.98 0.548014 57420.45 0.598966 74741.76 0.435864 32762.22 0.472942 40064.61 0.511534 38962.32 0.55164 58262.42 0.593258 49310.28 0.636391 61448.62 

0.45963 52466.85 0.506742 55622.98 0.556152 64870.4 0.607861 85152.56 0.442321 32762.22 0.479949 48711.41 0.519112 40883.97 0.559812 60845.01 0.602047 49310.28 0.645819 61448.62 

0.466356 52466.85 0.514158 55622.98 0.564291 64870.4 0.616757 87659.57 0.448779 33182.32 0.486955 52188.37 0.526691 40883.97 0.567985 60845.01 0.610837 56678.67 0.655247 61448.62 

0.473082 55653.06 0.521574 55622.98 0.57243 64870.4 0.625652 89098.57 0.455236 40191.34 0.493962 52323.58 0.534269 44364.52 0.576157 60845.01 0.619626 56678.67 0.664675 61448.62 

0.479809 56327.11 0.52899 58736.74 0.580569 72659.87 0.634548 99686.48 0.461693 48711.71 0.500968 52323.58 0.541847 47307.48 0.58433 60845.01 0.628415 56678.67 0.674103 61448.62 

0.486535 56327.11 0.536405 66265.03 0.588708 74649.19 0.643443 103262 0.46815 53031.69 0.507975 52323.58 0.549426 60619.78 0.592502 60845.01 0.637204 56678.67 0.683532 61448.62 

0.493261 56327.11 0.543821 77551.23 0.596846 82511.67 0.652339 103262 0.474608 53352.91 0.514981 52323.58 0.557004 67123.35 0.600675 60845.01 0.645993 56678.67 0.69296 61448.62 

0.499987 60775.34 0.551237 88137.16 0.604985 95198.11 0.661234 106844.2 0.481065 53404.14 0.521988 52323.58 0.564582 67123.35 0.608847 60845.01 0.654782 56678.67 0.702388 61448.62 

0.506714 60775.34 0.558653 94640.41 0.613124 99100.82 0.67013 113015.1 0.487522 60106.01 0.528995 52323.58 0.57216 67123.35 0.61702 60845.01 0.663571 56678.67 0.711816 65299.02 

0.51344 60775.34 0.566068 94640.41 0.621263 99100.82 0.679026 113015.1 0.493979 61486.79 0.536001 52323.58 0.579739 67123.35 0.625192 60845.01 0.67236 56678.67 0.721244 65299.02 

0.520166 62939.7 0.573484 94640.41 0.629402 107684.9 0.687921 124782 0.500437 61915.18 0.543008 52323.58 0.587317 67123.35 0.633364 62445.78 0.681149 56678.67 0.730672 68613.86 

0.526893 69211.43 0.5809 94640.41 0.637541 124621.1 0.696817 141040.5 0.506894 61915.18 0.550014 54287.12 0.594895 67123.35 0.641537 69555.24 0.689938 56678.67 0.7401 74954.28 

0.533619 77572.38 0.588316 94640.41 0.645679 126861 0.705712 161027.7 0.513351 61915.18 0.557021 58210.61 0.602474 67123.35 0.649709 69555.24 0.698727 58894.42 0.749528 84811.85 

0.540345 87511.93 0.595731 94640.41 0.653818 126861 0.714608 166499.4 0.519808 61915.18 0.564027 58210.61 0.610052 67123.35 0.657882 69555.24 0.707516 69456.9 0.758956 89374.52 

0.547071 101446.6 0.603147 97437.62 0.661957 126861 0.723503 166499.4 0.526265 61915.18 0.571034 58210.61 0.61763 67123.35 0.666054 69555.24 0.716305 77752.04 0.768384 89374.52 

0.553798 107199.4 0.610563 108749.4 0.670096 126861 0.732399 166499.4 0.532723 61915.18 0.57804 58210.61 0.625208 67123.35 0.674227 69555.24 0.725094 87711.76 0.777812 89374.52 

0.560524 108952.1 0.617979 116197.2 0.678235 126861 0.741294 166499.4 0.53918 61915.18 0.585047 58210.61 0.632787 67123.35 0.682399 69555.24 0.733883 87862.99 0.78724 89374.52 

0.56725 108952.1 0.625394 126738.6 0.686373 126861 0.75019 166499.4 0.545637 61915.18 0.592053 58210.61 0.640365 67123.35 0.690572 69555.24 0.742672 96347.73 0.796668 89374.52 

0.573977 108952.1 0.63281 147560 0.694512 129142.7 0.759085 166499.4 0.552094 61915.18 0.59906 58210.61 0.647943 67123.35 0.698744 75172.51 0.751461 108937.5  

0.580703 108952.1 0.640226 158414.1 0.702651 144483.3 0.767981 166499.4 0.558552 61915.18 0.606067 58210.61 0.655522 67123.35 0.706917 87715.14 0.76025 109836.2  

0.587429 108952.1 0.647641 158414.1 0.71079 155056.2 0.776876 166499.4 0.565009 61915.18 0.613073 58210.61 0.6631 69899.2 0.715089 97615.24 0.769039 109836.2  

0.594155 108952.1 0.655057 158414.1 0.718929 155056.2 0.785772 166499.4 0.571466 61915.18 0.62008 58305.08 0.670678 79488.05 0.723261 109830 0.777828 109836.2  

0.600882 108952.1 0.662473 158414.1 0.727068 155056.2 0.794667 166499.4 0.577923 61915.18 0.627086 59071.87 0.678256 79488.05 0.731434 113524 0.786617 109836.2  

0.607608 121524.1 0.669889 158414.1 0.735206 155056.2 0.797633 166499.4 0.584381 61915.18 0.634093 61966.71 0.685835 83334.08 0.739606 113524 0.795406 109836.2  

0.614334 136389.6 0.677304 158414.1 0.743345 155056.2 0.590838 61915.18 0.641099 71592.4 0.693413 89230.65 0.747779 113524 0.7998 109836.2  

0.621061 138038.8 0.68472 158414.1 0.751484 155056.2 0.597295 61915.18 0.648106 73483.05 0.700991 98716.85 0.755951 122399.1  

0.627787 138038.8 0.692136 158414.1 0.759623 155056.2 0.603752 61915.18 0.655112 85337.46 0.70857 100870.7 0.764124 122399.1  

0.634513 148821.6 0.699552 158414.1 0.767762 155056.2 0.61021 61915.18 0.662119 91697.71 0.716148 108613.4 0.772296 122399.1  

0.64124 155418.7 0.706967 158414.1 0.7759 155056.2 0.616667 64901.05 0.669125 96276.6 0.723726 114500.9 0.780469 122399.1  

0.647966 155418.7 0.714383 158414.1 0.784039 155056.2 0.623124 73509.42 0.676132 99232.82 0.731304 121536 0.788641 122399.1  

0.654692 155418.7 0.721799 158414.1 0.792178 155056.2 0.629581 84067.03 0.683139 99232.82 0.738883 121536 0.796813 122399.1  

0.661418 155418.7 0.729215 158414.1 0.797604 155056.2 0.636039 89669.47 0.690145 99232.82 0.746461 121536  

0.668145 155418.7 0.73663 158414.1 0.642496 91593.06 0.697152 99232.82 0.754039 129133.7  

0.674871 155418.7 0.744046 158414.1 0.648953 91771.53 0.704158 100244.5 0.761618 132346.8  

0.681597 155418.7 0.751462 158414.1 0.65541 97415.31 0.711165 107835.4 0.769196 132346.8  

0.688324 155418.7 0.758878 158414.1 0.661868 103748.9 0.718171 114936.5 0.776774 137391.1  

0.69505 155418.7 0.766293 158414.1 0.668325 107592.1 0.725178 122255.2 0.784352 140939.1  

0.701776 155418.7 0.773709 158414.1 0.674782 107592.1 0.732184 130757.9 0.791931 140939.1  

0.708502 155418.7 0.781125 158414.1 0.681239 107592.1 0.739191 130757.9 0.799509 140939.1  

0.715229 155418.7 0.788541 158414.1 0.687697 107592.1 0.746198 130757.9  

0.721955 162525 0.795956 158414.1 0.694154 114211.7 0.753204 130757.9  

0.728681 168687.3 0.798428 158414.1 0.700611 126961.5 0.760211 130757.9  

0.735408 175731.3 0.707068 142556.4 0.767217 130757.9  

0.742134 203755.7 0.713526 146314.7 0.774224 143894.2  

0.74886 221491.5 0.719983 146314.7 0.78123 150975.4  

0.755586 222950.1 0.72644 146314.7 0.788237 150975.4  

0.762313 222950.1 0.732897 146314.7 0.795243 150975.4  

0.769039 222950.1 0.739355 146314.7 0.798747 150975.4  

0.775765 222950.1 0.745812 146314.7  

0.782492 222950.1 0.752269 146314.7  

0.789218 222950.1 0.758726 146314.7  

0.795944 222950.1 0.765184 146314.7  

0.771641 146314.7  

0.778098 146314.7  

0.784555 146314.7  

0.791013 146314.7  

0.79747 146314.7  

 




