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Hannes Gustafsson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Deep neural networks are good at recognizing traffic signs when they are trained
on many different examples of each one. However, some traffic signs are very rare
and not often encountered when collecting data. This means that a network does
not recognize rare traffic signs as well as those that are encountered often. When
collecting large amounts of data, one usually only labels a small subset of it. There-
fore, there might exist more examples of the rare traffic signs in the unlabeled data
set. If these examples could be found and used in training, the performance of the
model could be expected to improve. This thesis evaluates how a standard neural
network performs in searching for rare traffic signs, and whether some commonly
used techniques from few-shot learning can improve its performance. To our surprise
we find that they cannot. Furthermore, in this thesis we show that searching for rare
traffic signs is an efficient active learning method, outperforming other established
methods by requiring up to 8x less additional data to achieve the same F1-score on
rare traffic sign recognition.

Keywords: Computer, science, computer science, engineering, project, thesis, deep
learning.
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1
Introduction

Neural networks have revolutionized computer vision. Deep neural networks excel
at locating and classifying objects in images, and they are now the standard choice
for perception systems in self-driving cars [2, 3].

However, neural networks work best when they are trained on very large data sets
that contain many examples of each object to classify [16]. Usually this means that
neural networks struggle to recognize rare objects that occur only a few times in the
training set.

The main data set that we use in this thesis is the Mapillary traffic sign data set,
which consisting of images of traffic signs from all over the world [13]. Some types
of traffic signs in the data set are very rare and are therefore not often encountered
when data is collected. This means that the frequency for the rare types of traffic
signs in the data set is low and the frequency of common traffic signs is high. Ex-
amples of rare types of traffic signs are presented in figure 1.

While the Mapillary traffic sign data set has class labels associated with each traffic
sign, it is commonly the case that there are many more unlabeled images than one
can afford to obtain labels for. If we randomly select a subset of images for which
to acquire labels, images that are rare in the unlabeled data set will also be rare in
the labeled subset. However, if we select images depicting rare classes for labeling,
we can make the rare classes more common in our labeled data set. As a result,
a neural network trained on this labeled data set can be expected to be better at
recognizing rare classes than a network trained on the randomly selected subset.

The question is, how can we identify the images containing the rare classes, so
that we can label them? One could let a human search for them in the data set of
unlabeled images. This is however unfeasible, due to the large size of the unlabeled
data set. A method that can decrease the number of images that a person has to
sort through should be developed.

Figure 1.1: Examples of rare traffic signs from Mapillary traffic sign data set.
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1. Introduction

The purpose of this thesis project is to develop such an automatic method that can
find images of rare types of traffic signs in a large unlabeled data set. Further, we
test if labeling and adding the found images to the training set is an efficient way
of improving a model’s final performance on the rare traffic signs.

1.1 Aim
In this thesis project we aim to develop an algorithm that can find specified types
of rare traffic signs in an unlabeled data set. Our search algorithm returns a set of
images that a neural network predicts to be most likely to depict the specific type
of traffic sign. The algorithm will be trained using a training set that contains few
labeled images of rare traffic signs but many labeled images of common traffic signs.

One straightforward way to do this would be to train a standard neural network
to classify the rare traffic signs using the few labeled images available in the training
set. However, standard neural networks need lots of training data to detect objects
well, which is not available in this case since the traffic signs are rare. We hypothe-
size that we can improve a model’s ability of searching for rare traffic signs by using
techniques from the field of few-shot learning [9].

After we have found images of rare traffic signs in the unlabeled data set we la-
bel them and move them to the training set. We hope that this is an efficient way to
improve a model’s accuracy on the rare types of traffic signs. The concept of letting
a learning algorithm influence the data it’s trained on is called active learning [10].
The second goal of this thesis is to compare the method of searching for rare traffic
signs to other active learning methods.

1.1.1 Few-shot learning
Few-shot learning methods aim to improve classification accuracy on types of objects
where one only has few labeled examples [9]. A common way to to this is to learn
an embedding such that images that depict the same type of object have a a similar
embedding, while images that depict different objects have a dissimilar embedding.
This is called metric-based few-shot learning [9]. In this thesis we test two metric-
based few-shot learning methods, ProtoNet and RelationNet. These methods are
explained in section 3.2.

1.1.2 Active learning
Active learning methods are algorithms that let neural networks decide which images
should be labeled and used for training [10]. Active learning is often performed
iteratively where one has a labeled data set and a unlabeled data set. In each
iteration a part of the unlabeled data set is selected by an active learning method,
annotated, and moved to the training set. The difference between active learning
methods is how they select which samples to label. A common active learning
method is to select the samples in the unlabeled data set where the model shows the
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1. Introduction

highest degree of uncertainty. [10]. To compare different active learning methods
one measures how performance increases on a fixed validation set as the different
methods select new samples that a model is trained on.

1.2 Approach and research questions
This thesis describes an algorithm that is used to search for rare types of traffic
signs in a large unlabeled data set. Although the model will not be allowed to see
the ground truth labels for the images in the unlabeled data set, we have access
to them. This means we can easily measure the algorithm’s search efficiency. We
measure search efficiency using a metric called S-score, defined in section 3.3.

The baseline method we use for searching for rare classes is to train a neural net-
work to classify the images in the labeled set, applying this network to the images in
the unlabeled set, and select the images that the images classifies as most likely to
belong to the rare classes. Since we have so few examples of the rare classes in the
labeled set, we expect that using few-shot learning techniques can lead to a model
that has better performance on the rare classes, which we in turn expect to yield a
higher search efficiency.

Finally, we measure how well a search-based active learning method compares to
traditional active learning methods such as uncertainty based ones. We measure
this by comparing how the F1-score improves by using the different active learning
methods over iterations.

In summary, the research questions that we wanted to answer in this project are:

1. Does replacing a standard neural network model with a few-shot learning
model improve search efficiency?

2. Does using search as an active learning method improve precision and recall
more compared to traditional active learning methods.

1.3 Limitations
Due to time constraints we limit ourselves to two distinct few-shot learning algo-
rithms, ProtoNet and RelationNet [11, 12]. Further, we measure our performance
on two datasets, the Mapillary traffic sign data set, and MiniImageNet [13, 14].
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2
Theory

This section of the thesis aims to give the reader a theoretical introduction to neural
networks and associated techniques. We begin by giving a brief introduction to
neural networks. We then describe metrics that are used in this thesis project.

2.1 Artificial neural networks
Artificial neural networks are computing systems that are inspired by biological
neural networks [18]. The network consists of neurons and weights that connect
them. All though there exists many different designs of neural networks, in this
thesis two of the most common ones will be used, fully-connected and convolutional
neural networks.

2.1.1 Fully-connected networks
Fully-connected feed-forward neural networks are described in [4, 18]. A fully-
connected feed-forward neural network can be seen as directed, acyclic graph [4].
The graph is made up of layers, containing nodes, where each node in layer l has
an edge connecting it to each node in layer l + 1. Each edge has a value called a
weight that is trainable. We denote the weight between node i in layer l and node
j in layer l − 1 as wl

ij. Each node has a value that is computed as

zl
i =

∑
j

vl−1
j wl

ij + bl
i

where vl−1
j is the output of neuron j in layer l − 1 [18]. vl

i is computed by applying
an activation function, g, on zl

i. An activation function, g, is a continuous non-
linear function. This calculation is performed for each neuron in the layer. After
the output has been calculated for a layer, one continues by calculating the output
of the subsequent layer. The final layer of the network is the output of the network.
Figure 2.1 illustrates the neural network as a directed graph.

2.1.2 Convolutional neural networks
Convolutional neural networks are described in [18, 4]. The following section is a
brief summary. Convolutional neural networks (CNN) are a specialized type of neu-
ral networks that are often used to process input data with a natural grid structure,
such as images. The network was introduced in [6].

5



2. Theory

Figure 2.1: Illustration of a feed-forward neural network.

Convolutional neural networks have shared weights between neurons in each layer
and often a local receptive field. This is beneficial in two main ways, combating over-
fitting, due to fewer total number of weights and effectively expanding the training
set. One can think of a CNN as a filter that is applied to an input grid in a sliding
window approach. The filter usually has a local receptive field such that it only
receives inputs from a small part of the full input grid.

Each CNN filter is described by a set of hyper parameters, input depth, width
and height (D, W, H). A single convolutional neural network with these hyper pa-
rameters will contain D ×W × H of trainable parameters plus a bias parameter.
The output of a CNN filter applied to an input with a single dimension is calculated
as following:

yij =
K,l∑

k=1,l=1
wklxk+(i−1),l+(j−1)

Here, wkl is the trainable parameter at position k, l of the CNN. As in a feed-forward
neural network one also applies an activation function on the output of the CNN.
These sorts of network have been shown to work well on image tasks such as object
detection and image classification. The output depth of the neural network will be
equal to the number of filters applied to the input.

2.1.3 Supervised learning
In supervised learning, a model is trained to give output that is close as possible to
a predefined ground truth [4]. One of the most common supervised learning tasks
is classification.

The task of classification is to group inputs to a set of predefined categories, or
classes [4]. The inputs can for instance be images or text sequences. Each image
or text sequence belongs to a certain class and each output node in the network
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2. Theory

represents a single class. The ground truth for classification task is a vector that
has the same number of elements as there are numbers of predefined classes. Only
a single element in the vector has a value of 1 and the rest are equal to 0.

2.1.4 Transfer learning
Transfer learning is a machine learning method where a model that has been trained
on a data set X is used as a starting point to train on data set Y [17]. The aim is to
transfer the knowledge that it has learned from X to Y . Experiments have shown
that models that have been trained on large image data sets before being trained
on smaller image data sets can achieve high performance faster compared to only
training on the small data set [17].

2.2 Training a neural network
Training a neural network means adjusting the values of the trainable parameters.
This is often done by gradient based optimization algorithms such as stochastic
gradient descent [4]. Gradient descent updates each weight of a network as follows:

wij = wij − γ
∂L

∂wij

Where L is a loss function and γ is a hyper parameter that specifies the step size
for each weight update. To calculate ∂L

∂wij
one uses back propagation.

2.2.1 Loss functions
The loss function is what the model is trained to minimize [4, 18]. The loss function
is associated with the goal of the task, such that lowering the loss increases the
performance of the network on the given task. The loss is a function that depends
on the model, an input and a target output such that it is differentiable with regards
to the model parameters.

A common loss function for classification is cross entropy which is defined as

L = −
I∑
i

yi log fi(x)

Here x is the input, fi(x) is the output of neuron with index i of the model, and
yi is the ground truth value, for the element with index i in the one-hot encoded
vector, corresponding to the input x. For one-hot targets, thus further simplifies to

L = − log fk(x), (2.1)

where k is the index corresponding to the ground truth class.
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2. Theory

2.2.2 Back-propagation
Back-propagation was introduced in [7]. Back-propagation is a technique to calculate
the gradients of the loss function with regards to the model’s trainable parameters
[7]. Back-propagation computes the gradient using the chain rule, computing one
layer at a time.

2.3 F1-score, precision and recall
In this thesis precision, recall and F1-score are used as metrics [5]. Precision is
calculated as:

Precision = TP

TP + FP

and recall is calculated as:
Recall = TP

TP + FN

Here, TP is number of true positive, FP is number of false positive and FN is number
of false negative. True positive is when a model predicts that an input belongs to a
class and the ground truth agrees. False positive is when a model predicts that an
input belongs to a certain class and the ground truth does not agree. False negative
is when a model predicts that an input does not belong to a certain class while the
ground truth says that it does belong to that class.

F1-score is calculated by combining precision and recall as:

F1-score = 2× Precision× Recall
Precision + Recall

8



3
Methods

In this section the methods used in the project are presented.

3.1 Data
In this section we present the data that is used to perform the experiments.

3.1.1 Mapillary Traffic Signs
Mapillary’s traffic sign data set is used in two experiments [13]. The data set con-
tains images of 313 different types of traffic signs from all over the world. Some
traffic signs are very rare in the data set, such as those shown in figure 1.1, which
makes it suitable for the purpose of this thesis. The full frequency distribution of
the data set is shown in figure 3.1.

Some images of traffic signs are very small and might introduce noisy signals into
the network. These small images are hard to recognize, even for humans. Therefore,
all images that have an area smaller than 162 pixels are removed from the data set.
After filtering, the full data set contains 59,195 images of 313 types of traffic signs.
18,564 images are used for training the models, 2,565 images are used to validate
them and finally 38,066 images are used to act as the large unlabeled data set, where
we search for rare traffic signs.

3.1.2 MiniImageNet
We also perform one experiment using the MiniImageNet data set in order to test
how well the methods transfer to very different data sets [14]. MiniImageNet is a
subset of the ImageNet data set [20]. It contains 93 different classes such as dogs,
cats and humans. Each class has 600 images depicting the class. As with the traffic
sign data set we split the full data set into train, validation and test set, where
the test set acts as the unlabeled data set, where we search for rare classes. The
train set contains 14,400 images, the validation set 1,600 images and the test set
37,000 images. MiniImageNet only contains relatively large images and therefore no
filtering due to small sizes is needed.

9



3. Methods

Figure 3.1: The y-axis shows how many images are present in Mapillary traffic
sign data set for a given type of traffic sign. The x-axis is the category index for
that traffic sign. The left most types of traffic signs are the very rare types of traffic
signs that the models are queried to search for.
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3. Methods

3.2 Models
In this thesis three different neural network models are tested and compared. All
models are implemented in the PyTorch framework [8]. This section aims to explain
each model. For the experiments that do not involve the MiniImageNet data set all
models are pretrained on the ImageNet data set in order to speed up training. All
models share a common convolutional neural network structure called ResNet-18
[15]. This architecture was chosen due to the high accuracy it achieves on ImageNet
while also being quite fast to train.

The models that we use have been pretrained to predict which of 1,000 classes
an image depicts. Since we are not interested in these predictions we remove the
output layer. By removing the original output layer the original model’s second to
last layer will become the output layer. If we now feed an image to the model it will
not output class probabilities, instead it will produce a 512 dimensional vector that
represents the content of the image. We call this vector a feature vector.

3.2.1 ProtoNet
ProtoNet is based on a neural network f , which in this thesis is a ResNet-18 [11].
By passing an image xi into f a feature vector is produced. Before each training
batch one calculates a mean feature vector for each class ck. This is done using a
randomly sampled subset, Ck, of images labeled as ck:

Pck
= 1
|Ck|

∑
xi∈Ck

f(xi)

f is trained to minimize the distance between f(xi) and Pck
for all xi that are labeled

as the class ck. Simultaneously, f is also trained to maximize the distance between
f(xi) and the mean feature vectors for all other classes. This training objective is
illustrated in figure 3.2.

The loss function that ProtoNet is trained to minimize is

L(x) = d(f(x), Pi) + log
∑
j 6=i

exp(−d(f(x), Pj)).

Here Pj is the mean feature vectors for classes that x does not belong to and Pi is
the mean feature vector for the class that x does belong to. d(x, y) is the Euclidean
distance between x and y.

During test time one calculates the mean feature vector for a class rk using a set,
Rk, of images labeled as rk:

Prk
= 1
|Rk|

∑
xi∈Rk

f(xi)

The model classifies an unlabeled image xu based on its feature vector’s, f(xu),
distance from Prk

.

11



3. Methods

Figure 3.2: Illustration of the task that ProtoNet is trained to solve. The blue
background shows the feature space. The dark red circles show the projected feature
vectors of five images, all of which belong to the class C1. The bright red circle shows
the average of the dark red circles. The model is trained to produce a feature vector
for all images belonging to C1 to be close to the bright red circle and far away from
the light blue circle. The black circle is the projected feature vector of an unlabeled
traffic sign. In this case it is classified as belonging to C1 since the center of C1 is
closer than C2.
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3. Methods

3.2.2 RelationNet
RelationNet is based on two neural networks, a feature extractor f and a relation
module g [12]. In this thesis f is the ResNet-18. The relation module g has a single
output neuron. During training each image containing a traffic sign is fed into f such
that a feature vector is produced. Two different feature vectors are concatenated
[f(xi) : f(xj)] where xi and xj can either depict the same type of traffic sign or two
different. The concatenation, [f(xi) : f(xj)], is then passed through the regression
module, g. The relation module is trained to have a large output value if xi and
xj depict the same type of traffic sign, and low otherwise. The model is trained to
minimize the mean squared error:

L(x1, x2) = (g([f(x1) : f(x2)])− y)2

where y is one if x1 and x2 depict the same object, and zero otherwise. In figure 3.3
an illustration of RelationNet’s architecture is presented.

Note that the model never predicts which class an image belongs to, only whether
two images belong to same class. Therefore, during test time one of the two images,
passed through the model, will be labeled while the other is not. The model will
assign the unlabeled image the same label as the labeled image that it produces the
highest relation score with.

Figure 3.3: Illustration of the task that RelationNet is trained to solve.
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3.2.3 StandardNet
StandardNet is used as the baseline. The model is a standard ResNet-18 with a
final output layer consisting of 313 nodes. Each output node represents a single
type of traffic sign. The model is trained such that given an image of a traffic sign
of category C, the output node corresponding to category C should have the highest
value of all output nodes. For StandardNet a softmax activation function is applied
to the final layer [4]. The model is trained using categorical cross entropy thus
minimizing:

L =
∑

i

−yi log fi(x)

where fi(x) is the value of the output node with index i. yi is one if x depicts a
class whose output node is i and zero otherwise.

3.2.4 Probability assignment
In the experiments, each image in the large unlabeled data set will be assigned a
value corresponding to how likely it is that it depicts the same traffic sign as the one
searched for. The method of assigning the values is different depending on which
model is used.

For StandardNet each image in the unlabeled data set will be assigned the value
of the output neuron that corresponds to the queried traffic sign. The value corre-
sponds to the networks estimated probability that the image belongs to the queried
traffic sign.

For ProtoNet each image is assigned the distance between the feature vector of
the queried traffic sign and the feature vector of the sample. A smaller distance
indicates higher probability of depicting same type of traffic sign as the queried.

For RelationNet the value assigned to each image is the relation score between
the queried traffic sign and the sample.

3.3 S-score
In the first experiment the S-scores are tracked for all models and setups. The S-
score measures how well the model performed during search for the queried sample.
We define the S-score as

S-K = M

min(K,N)
where M is the number of correct samples in top-K, K is an integer and N is total
number of correct samples in the unlabeled data set. Thus, if the model found
3 correct images in the top 50 and there existed 30 total correct images in the
unlabeled data set then the S-50 score would be 3

min(50,30) = 3
30 = 0.1

14



3. Methods

3.4 Few-shot learning experiment
In this experiment we test the hypothesis that replacing a standard neural network
with a few-shot learning model will improve search efficiency. Three different models
are tested: StandardNet, ProtoNet and RelationNet.

At the beginning of the experiment 25 types of traffic signs are chosen as the rare
traffic signs that the models will search for. A single sample of each type of rare
traffic sign can be seen in figure 3.4. For each of the 25 types of rare traffic signs
there exists between 5 and 81 images in the unlabeled data set that depict the same
rare traffic sign. Since the number of images in the unlabeled data set is 38 066 the
probability of randomly choosing a rare traffic sign is small.

Figure 3.4: A single sample of each type of rare traffic sign used in the few-shot
learning experiment.

All images of the chosen traffic signs, except for N = 1, 5, 10, depending on the
experiment setup, are moved from the training set to the large unlabeled data set.
Therefore all three models will only have a small set of examples of the rare traffic
signs available during training. This is done to imitate the situation where one only
has access to a few samples of the rare traffic sign.

Before searching, each model is trained on the remaining training set for 40 epochs
and evaluated on the validation set.
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To search for the rare traffic signs, the models are used to assign a value to each
sample in the large unlabeled data set. The value assigned to each sample indi-
cates how likely it is that it depicts one of the rare traffic signs. All samples in the
large unlabeled data set are then sorted according to their assigned values. Finally,
the top-K samples in the sorted list of samples are the model’s proposals. For the
experiment we measure the average S-score over the set of rare traffic signs with
K = 5, 20, 100, 1000.

3.4.1 Few-shot learning experiment on MiniImageNet
Apart from the traffic sign data set we also perform the same experiment on the
MiniImageNet data set in order to see how well the methods transfer to a different
data set. The same setup is used as above. MiniImageNet is well balanced and
therefore the classes that are treated as rare objects are selected randomly.

3.5 Active learning experiment
In the active learning experiment we test how searching for rare traffic signs com-
pares to other active learning methods.

The experiment is setup as follows. A set of rare traffic signs is chosen and all
images that depict them, except for one from each class, are removed from the
training set. In this experiment 6 different types of traffic signs are used.

We use two different setups with regards to how rare the 6 types of traffic sign
are in the unlabeled data set. In the first setup we make no changes to the un-
labeled data set. Thus, for each of the six rare traffic signs there exist between
150 and 250 images in the unlabeled data set that depict the same sign. For the
second setup we limit the number of samples for each of the 6 types of traffic sign
to a maximum of 50 samples per type. This is done in order to see how the active
learning methods performance changes with how rare the 6 traffic signs are.

The experiment is performed in iterations. Each iteration consists of two steps,
training and querying. A total of 10 iterations are performed per active learning
method. At the start of each iteration a StandardNet model is trained using the
current labeled data set and is evaluated on a static validation set of traffic signs.
Note that at the first iteration only a single sample per rare traffic sign is present
in the training data set.

After training the model, a set of images from the unlabeled data set is chosen
according to one of five active learning metrics. The chosen images are labeled and
added to the training set. Pseudo code for the full process is presented in listing 1.

We track how a StandardNet’s F1-score on the rare traffic signs improves as more
data is added the the training set.
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3.5.1 Active-learning methods
In this experiment five different active learning methods are compared.

• Choosing the most likely samples to belong to a rare traffic sign according to
(1) ProtoNet, (2) RelationNet and (3) StandardNet.

• (4) Choosing the samples that have the highest uncertainty according to out-
put probability .

• (5) Choosing samples at random.

The three search models are trained using same setup as in the earlier experiment.
When choosing the samples that should be labeled and used for training in the next
iteration, the model’s top 50 proposals for each of the 6 types of traffic signs are
used. In total this amounts to 300 images being added per iteration. The search
models are also retrained using the new train set.

The uncertainty method chooses the 300 samples in the unlabeled data set where the
model displays the highest level of uncertainty. Uncertainty is measured according
to the following formula.

Entropy(x) =
I∑

i=1
−fi(x) log fi(x).

Here fi(x) is the probability that x depicts the traffic sign corresponding to the out-
put node with index i, according to a StandardNet model, and I is the total number
of classes. All samples in the unlabeled data set are sorted according to this method.

For the random method, 300 random images from the unlabeled data will be chosen
and added to the training set.
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4
Results

In this section results for the experiments introduced in section 3 are presented.

4.1 Few-shot learning experiment
In this section we present the results that are aimed to answer the first of our research
questions. Does replacing a standard neural network model with a few-shot learning
model improve efficiency? The few-shot learning experiment was carried out using
two data sets, Mapillarys traffic sign data set and MiniImageNet. We first present
the average S-scores for searching for rare traffic signs, followed by searching for rare
objects from the MiniImageNet data set.
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4. Results

4.1.1 Traffic sign data set
In this section the results for the few-shot learning experiment on the traffic sign
data set are presented.

4.1.1.1 Quantitative

Each graph shows the average S-score on the y-axis and the number of labeled images
per type of traffic sign available during training on the x-axis. The experiment was
done using 25 types of traffic signs. The standard errors or the mean are also
presented for each model and initial sample size.

(a) Average S5-Score (b) Average S20-Score

(c) Average S100-Score (d) Average S1000-Score

Figure 4.1: The colored bars show average S-scores on the traffic sign data set for
three different sample sizes, 1, 5 and 10. Sample sizes are the number of images of
the rare traffic signs that are available during training. The three colors represent
the three models. The vertical black lines on top of all bars show the standard error
of the mean.
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4.1.1.2 Qualitative

In this section we present qualitative results of searching for two different rare traffic
signs using StandardNet. The results show the top-20 proposals given by Standard-
Net while searching for two types of rare traffic signs. In both examples StandardNet
is only trained using a single example of the two rare traffic signs.

(a) (b)

Figure 4.2: The two figures above show the top-20 proposals given by StandardNet.
Above each of the 40 images are the assigned probability to each given sample. At
the bottom left of the two figures the single training sample that was available to
the model are presented.

21



4. Results

4.1.2 MiniImageNet
In this section the results for the first experiment on the MiniImageNet data set
are presented. Each graph shows the average S-score on the y-axis and number
of labeled images that was available during training per class on the x-axis. The
experiment was done using 10 unique classes. The score was calculated by averaging
the given S-score over all classes per model and sample size. The standard errors
are also presented for each model and initial sample size.

(a) Average S5-Score (b) Average S20-Score

(c) Average S100-Score (d) Average S1000-Score

Figure 4.3: The colored bars shows the average S-scores on the MiniImagenet data
set for three different sample size, 1, 5 and 10. Sample size is number of images of
the searched for traffic sign that are available during training. The vertical black
lines on top of all bars shows the standard errors of the mean. The three colors
represents the three models.
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4.2 Active learning experiment
In section 3.5 we stated that we wanted to evaluate search as an active learning
method. In this section, we present the results of an experiment where we aim to
answer if search is a more efficient active learning method than other established
ones. Each line in the two figures below represents a single active learning method.
The search based active learning metrics are labeled as Proto, Standard and Re-
lationNet and the established active learning methods are labeled as Entropy and
Random. In figure 4.4 the F1-scores on the chosen rare classes for StandardNet
and how they improve as more data is added to the training set is presented. In
figure 4.5 we show the F1-scores of the chosen rare classes when we have limited the
number of samples of the 6 types of traffic signs, making them even more rare. For
each iteration 300 new data points are added to the training set.

Figure 4.4: The figure above shows the results for the active learning experiments
with uncapped rarity. The x-axis is number of active learning iterations that has
been performed. The y-axis shows the F1-score of a StandardNet trained on the
samples chosen by each metric at each iteration.
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Figure 4.5: The figure above shows the results for the active learning experiments
with capped rarity. The x-axis is number of active learning iterations that has been
performed. The y-axis shows the F1-score of a StandardNet trained on the samples
chosen by each metric at each iteration.
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5
Conclusion

The aim of this thesis project was to develop a method that could find images of
rare types of traffic signs in a large unlabeled data set. We also aimed to investigate
if labeling and adding the found images of rare types of traffic signs was an efficient
way of improving a models accuracy on rare types of traffic signs. We therefore
formulated the following two research questions that we aimed to answer.

1. Does replacing a standard neural network model with a few-shot learning
model improve search efficiency?

2. Does using search as an active learning method improve precision and recall
more compared to traditional active learning methods?

To answer the first question we implemented two few-shot learning models, Pro-
toNet and RelationNet, as well as one standard neural network. All three were used
to search for rare traffic signs in a large unlabeled data set. Our results showed that
using few-shot learning models had only a small impact on search efficiency, and
that a standard neural network is in the majority of cases equally efficient or even
more efficient.

The models were also used to search for other, more abstract and difficult to rec-
ognize objects, in an unlabeled data set of images from MiniImagenet. Our results
showed that search efficiencies for all models were heavily affected and decreased by
more than 50 %. The results showed that searching for more difficult to recognize
objects using few-shot learning models did not have a big impact on the S-score as
StandardNet achieved comparable efficiency as both ProtoNet and RelationNet.

To answer the second question we compared search based active-learning meth-
ods with other established methods. This was done by iterativly adding data to a
training set using the methods and evaluating the effects the new data points had
on a model. Our results showed that using a search based active learning method is
a very efficient way to improve performance on traffic signs that are very rare in the
training set. The search methods outperformed standard active learning methods by
needing up to 8 times fewer additional data points to achieve similar F1-score. This
can be seen in figure 4.4 and 4.5 where the search based active learning methods
need only a few iterations worth of additional data points to achieve an F1-score of
around 0.9.

Our results also showed that the rarer the traffic signs were, the better the search
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5. Conclusion

methods performed compared to the other active learning methods. Comparing fig-
ure 4.4 and figure 4.5, we can see that the Random and Entropy methods perform
much worse when one makes the rare traffic signs even more rare. However, this
does not occur for the search based active learning methods, which perform almost
equally well on both setups.

Finally we will discuss questions for future work. Our tests on the MiniImageNet
and the Mapillary traffic-sign data sets show that the search efficiency can vary
substantially between two data sets. It would be interesting to conclude how well
the search methods presented in this thesis could transfer to even larger and more
unbalanced data sets.

The models used for experiments, involving Mapillary traffic-sign data, were pre-
trained on the standard ImageNet data set. It would be interesting to see how well
search efficiency would scale with models that were pretrained on data sets even
larger than ImageNet.
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A
Appendix

model = StandardNet()
AL_method = chosen_method # An active learning metric is chosen

for iteration in range(10):
model.train(train_dataset) # Retrain
search_model.train(train_dataset) # If applicable
model.evaluate(validation_dataset)

datapoints = model.choose_datapoints(unlabeled_dataset, AL_method)

#Label the chosen data points and add to train set
train_dataset += label(datapoints)

#Remove chosen data points from unlabeled data set
unlabeled_dataset -= datapoints

Listing 1: The pseudo code above shows how the active learning experiment is
performed. The only variable that is changed during the experiment is the active
learning metric. The method takes on the values Random, Entropy, StandardNet-
Search, ProtoNetSearch and RelationNetSearch
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