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Abstract

This thesis is on applying different clustering algorithms and comparing their
results with ensemble clustering in a Flow Cytometry(FCM) data analysis
pipeline. Although FCM has been used for several decades in both clinical
and research labs, there has not been many applications of bioinformatics
in this field. The advances in technology and biochemistry has led to mas-
sive improvements in the field of FCM through the last decades, which has
brought fast generation of high throughput data. However, the analysis of
FCM data is mostly done manually and lack of computational techniques
have become more evident. One of the most challenging aspects of FCM
analysis is gating, which is the recognition of different cell populations in a
tissue sample based on light scatter and fluorescent data collected from each
cell. In the last few years, several techniques of automatic gating have been
introduced, mostly based on popular clustering algorithms.

The evaluation of clustering algorithms is still considered to be a challenging
issue, these algorithms are unsupervised learners and therefore, there are no
pre-defined labels for each input to determine perfect results. In this project,
a classification pipeline of FCM analysis is introduced and used to compare
the results of the clustering algorithms. Clusterings are used in the feature
extraction part for the classifier and the better the results of the classification
are, the more practical clustering is considered to be. However, this inference
can not be automatically generalized in this field but is an admissible method
of specific performance comparison among different clustering techniques.
Apart from individual clusterings, a voting technique of Ensemble Clus-
tering was applied which similar to voting technique in combining classifiers.
To investigate the application of ensemble clustering, the results of classifi-
cations which used individual well known clustering approaches in FCM for



feature extraction were compared to each other and also to the results of
classification which used some ensemble of these clustering algorithms. To
be able to get more generalize conclusions, this pipeline was tested on two
different FCM data sets, the data from controls and patients with Acute
Myeloid Leukemia and data from DLBC ' and Follicular Lymphoma. Also
for each data set two different classifiers were tested and results were com-
pared. The challenges of implementing this pipeline and the comparison of
different clustering techniques on two data sets are discussed. It is also shown
that although the results of this ensemble technique were generally better
than the results of individual clustering methods, that is not always the case
and the result depends on the choices of clusterings. Three individual clus-
terings were used, k-means, flowMeans and SamSpectral. The SamSpectral
clustering was applied on the data with several different parameters, as it
is a parametric algorithm and performs differently when its parameters are
changed. Among these clustering methods, the popular k-means resulted in
a significantly better classification for both of the data sets, followed by the
ensemble clusterings and the SamSpectral clustering algorithm with the best
choice of parameters.

keywords: FCM, Clustering, Ensemble Clustering, Classification,
Cancer
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1 Introduction

Gating or identifying the discriminative cell populations in FCM data is one
of the most challenging steps of the analysis. In order to automate gating,
many clustering algorithms have been introduced. Mostly the goal of these
algorithms is to be able to generate the results which are the most similar
to the manual gating results, taking the manual gating as a gold standard
in this field [27]. However, considering several drawbacks of the manual gat-
ing which are discussed in the background section, in order to examine the
performance of different clustering techniques including Ensemble Clustering
here, we used another method of evaluation which is using the classification
results of the FCM data sets. Each FCM data file in these data sets is ob-
tained from a FCM experiment on a tissue sample of a patient, knowing the
results of diagnosis for each patient-which is either the type of the cancer
between the cancer patients or if the sample is from a healthy or suffering
patient- we use the results of clusterings for the feature extraction and then
train and test the classifiers feeding these features and the labels.

The aim of this research was to develop a pipeline of evaluation for differ-
ent clustering algorithms, which enables us to compare the results of differ-
ent clusterings including Ensemble Clustering. Having the FCM files, the
pipeline includes the preprocessing and normalization, clustering and feature
extraction and classification.

The Ensemble Clustering techniques have been introduced and used on dif-
ferent data sets for more than a decade. The idea of combining several
clustering algorithms in order to obtain better results comes from its sister
field, classification, in which combining different classifiers is quite popular
and has shown to improve the performance generally [33] [30]; however bring-
ing this approach to the clustering field has been challenging. Here we used
a simulated voting algorithm from Hornik [I5], which modifies the voting
system of combining classifiers and applies it for combining clusterings. We
applied this pipeline on two data sets to be able to have a better comparison
of different methods. Also, in the classification phase, two different classifiers
were tested, with the set of the same clustering algorithms.

The FCM experiment and analysis are discussed in the background section,
followed by a review on variant techniques of gating. Classification in FCM
and use of voting technique for combining clusterings is also discussed in
the background. In Materials and Methods, the analysis pipeline imple-
mented in this project is explained in details. Comparison of the different
clustering algorithms used in the pipeline are discussed in Results and Dis-
cussion.



2 Background

2.1 FCM
History

The term Cytometry? is the process of applying measurements to cells and
studying their physical and chemical characteristics. FCM? refers to the
application of these measurements to the cells contained in a fluid. The
first flow cytometers were used in 1960 [29]. Since then, it has been used in
research labs for studying different cell cultures and in clinical labs in pathol-
ogy, for diagnosis of several types of cancers as well as many other diseases
such as HIV [29]

The FCM experiment

In an FCM experiment, the suspension containing cells from a body tissue or
a cell culture is exposed to biochemical markers. The cells in this suspension
will pass through the laser interrogation points in a flow cytometer one by
one. The ’reflections’ from the laser beam are collected and converted to
electronic signals which are digitized and sent to a computer to be saved in
data files. The reflection from the forward light scatter indicates the size
and shape of the cell and the side light scatter granularity gives information
about the internal complexity of the cell. The fluorescence emitted from the
cell surface defines the intensity of the markers on the cell membrane. [3].
Each row in an FCM data file has information of one cell, with columns of
data for each marker and side and forward scatter.

Markers

FCM markers are mostly extracellular and bind to the proteins on the surface
of the cells, but for some experiments intracellular markers are used as well.
The number of markers to be used in a single experiment are limited and the
numbers vary in different flow cytometers. Today there are flow cytometers
which can measure up to forty markers in a single experiment. Markers are
carefully chosen according to the studies done on the proteins exposed to
the surface of different cells in the samples being tested. Since the number
of markers is limited in each experiment, some samples are divided into

2eyto for cell and metry for measurements
3 flow for fluid



numerous tubes. Each tube would be put through the experiment with
different set of markers. Set of markers in different tubes usually overlap.

2.2 Applications of FCM

The ability to define subpopulations in a cell sample according to the size,
shape and biochemical markers on the surface of the cell has made FCM a
great tool for both clinical and research labs. It has been used for diagno-
sis and prognosis of Leukemia and Lymphoma and also in peripheral blood
hematopoietic stem cell studies [35]. Tt has also been used in environmental
sciences for the identification of new species. [18] [22]

2.3 Analysis of FCM Data

For each tube of the sample, the FCM technique generates multidimentional
data for individual cells in that sample [I7]. Nowadays, flow cytometers can
generate data samples of up to a million cells for up to forty markers. How-
ever, the FCM files used for this project include data for tens of thousands
of cells with 7 and 11 markers per tube. *

The goal in many FCM analyses is to identify cells in heterogeneous popu-
lations. These different cell populations defined within a cell sample become
fingerprints of that sample for further analysis. In pathology, cell samples
with similar populations are to be diagnosed with the same disease. Similar-
ity between cells is determined by their size and shape and also the markers
attached on their surface. Certain types of markers are used to diagnose or
differentiate between cancers. As an example, finding a population with the
CD22 marker means there is a > 90% chance that the sample comes from a
tissue with T-cell Lymphoma?® [13]. Cell population discrimination is known
as Gating. Gating analyses are not usually straight forward. The values
assigned to each cell for a particular marker are continuous and therefore to
call a cell positive with a marker in a data set needs delicate processing. Also,
once the positive cell populations are recognized in a sample, the diagnosis
could not be made at 100% for just one marker. Many markers are not highly
discriminative and could be present in various sub-types of a cancer. Gating
analysis are mostly unsupervised and are done to discover new cell types or
phenotypes of a known disease.

4there were two data sets used in this experiment which are discussed in details in
Materials and Methods
5the Lymphoma that affects T-cells



2.4 Gating

Gating refers to defining different subpopulations within a sample tube. This
subpopulation identification would be used as a characteristic of the sample.
Gating is generally acknowledged to be one of the most powerful but also
one of the most problematic aspects of FCM according to its subjective na-
ture [12]. Tt is traditionally done by biologists by drawing boundaries (gates)
in two dimensional projections of the data. Recently, there have been some
automatic methods introduced for this stage of analysis [26] [11] [19] [35] [23].
These methods are mostly based on famous clustering algorithms like k-
means.

2.5 Manual Gating

Manual gating is done by drawing boundries around the recognized clusters
in the one or two dimensional projection of the data by researchers [26],
or it is done based on density distributions. Since the number of channels
are more than two, manual gating is done in a hierarchy. At each level only
two dimensions are plotted and in the next level, the populations found in
the previous plot, are plotted in the next two dimensions separately and new
populations are recognized. Therefore the number of cells plotted at each
level of the hierarchy are reduced.

Manual gating is a labor intensive process and the result varies depending
on user experience and intuition [26] about the data and markers. Since it
is done by individuals and is highly dependent on their experience in the
field, it is not easy to reproduce. Also, since the data is visualized in just
two or three dimensions at each level, the high-dimensional features can not
be recognized. These drawbacks of manual gating can be summarized as
subjectivity, lack of efficiency and loss of information [26].

2.6 Automated Gating

The drawbacks of manual analysis of FCM data have brought up the need
for using automated analyzing techniques, among which are several cluster-
ing algorithms used for gating. Based on their unsupervised learning nature,
clustering algorithms were reasonable choices for automated gating processes.
However, most of the clustering algorithms used in FCM are based on known
clustering techniques and have been through some modifications in order to
meet the technical requirements of FCM analysis. By 2008 there were consid-
erable number of algorithms developed for FCM analysis and many successful
results were being reported. Murphy et al. [23] used k-means clustering and
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reported good results. K-means clustering is a rather fast algorithm and is
easy to implement and apply to FCM data considering the size of FCM data
files. However, it has some shortcomings when used on non-elliptic data as it
is a centroid based clustering technique. Also, it needs the number of clusters
to be given as a parameter, hence it is not a proper choice for discovering
unknown sub populations. Therefore, the use of more complex clusterings
became vital in the field. In 2008 Chan et al. [7] used statistical clustering
with Guassian mixture model on four color FCM data. Lo et al. [19] used t
mixture model to generalize the previous guassian mixture model and there-
fore find non-elliptical subpopulations as well. The FLAME algorithm by
Pyne et al. [26] also uses a distribution based clustering and models data
into a skew t mizture model, where for each population the mixtures of 2 to
20 skew t distributions are modeled. The parameters of individual distri-
butions in each mixture are calculated by Maximum Likelihood estimations
via the Expectation Maximization(EM). For each sample the best of these
models is chosen according to their Scale-free Weighted Ratio (SWR) which
is the ratio between the intracluster distances and the intercluster distances.
Although distribution based algorithms has been quite popular and practical
in this field, there have been other noticeably good algorithms. SamSpec-
tral [35] used a modified spectral algorithm and reports acceptable results
for diagnosing subtypes of Lymphoma.

In Critical Assessment of Population Identification Methods (FlowCAP1) [27]
a set of both centroid-based and density-based clustering algorithms includ-
ing some of the above were compared against each other in four challenges,
having the manual gating results as the reference. Challenges comprised
Completely Automated Algorithms, where the algorithms were either param-
eter free or their parameters were set independent of the data sets; The
Manually Tuned Algorithms, where the parameters could be set according to
different data sets; Assignment of Cells to Populations with pre-defined Num-
ber of Populations, where the number of populations were given to the algo-
rithms and finally the Supervised Approaches Trained using Human-Provided
Gates, where 25% of the files with manual gating results were provided to
participants for training their algorithms [27]. Some of the algorithms pre-

sented in FlowCAP1 are now available via R packages, among which are
SamSpectral, FlowMeans and FlowCLUST.

When choosing a clustering algorithm, there are two challenges to overcome.
First, many clustering algorithms are based on random initializations and
have stochastic learning methods [8]. The famous k-means clustering chooses
the first set of centers randomly and therefore performs differently each time
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it clusters the same data. Secondly, most of the clustering algorithms have
some initial parameters to be set. Choices of parameters affect the perfor-
mance of the clustering and comprises both the results and execution time.
Therefore, parameters must be chosen based on the type of data and the kind
of populations one is looking for. Performing a k-means algorithm on FCM
Data when we are looking for the small new population, requires putting a
large k(number of clusters) as an input parameter. However, k-means al-
gorithm does not work well in finding non-globular clusters and therefore is
not considered to be a good option for the FCM analysis, where many of the
clusters are non-globular.

2.7 Classification in FCM

In most of the clinical practice of FCM in cancer diagnosis, the goal is to
identify the discriminative cell populations in each type of cancer and classify
the examined samples by their type of cancer. Over the last two decades,
FCM classification was done via the comparison of the light scatter profiles
of control and patient groups [32]. These kinds of classifications were done
by simply comparing the plots of different samples, hence it was mostly done
manually. Gating was included in these analyses in order to identify com-
mon cell populations among different samples. However, with the advance
of computational technology and its application in biology, the analysis of
FCM could benefit from various machine learning algorithms and statistical
analysis. Clustering algorithms could be used to overcome the drawbacks of
manual gating, but also many types of classification algorithms which are
known as supervised learners could be applied to FCM Data. By having the
results of the earlier diagnosed samples of different types of cancers and using
the proper feature extraction methods for their FCM data, one could train
a classifier to discriminate between different cancer types.

In 2008, Pedreira et al. [25] implemented a multidimensional classification
by using a divide and conquer approach on four color FCM data from pe-
ripheral blood lymphocyte samples; however, like most of the classifications
used in FCM so far it is based on unsupervised statistical machine learning
techniques.

2.8 Ensemble Clustering

The idea of using a method of combined clusterings in order to obtain better
results when solving a clustering or unsupervised learning algorithm comes
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from its sister field classification or supervised learning, where several tech-
niques of combining classifiers have been introduced and are generally known
to improve the results.

When having a complicated problem on which the individual classification
algorithms do not perform well, one approach would be to use several algo-
rithms and benefit from putting together their results through some combin-
ing method [30], hoping that one’s strength would cover the others weakness
and thereby reduce the overall error. As in classification, there are many
different forms of applying a combining method when one is trying to benefit
from several clusterings in a complicated problem.

Regarding the data, for reasons such as the different performance of clusterers
on particular type of data or limited resources [31], the individual clusterings
in the ensemble could be applied to different parts of the data. This does not
create any difficulties for combining part since most of the combining tech-
niques need only the labels and some information from the results of each
algorithm and do not rely on having the original data points. Basically, the
data could be divided based on the feature set or data points. The former
is, where for the same data different subsets of features are given to each
clustering. These subsets of features could have overlaps or be disjoint. This
is most common when you have features of various resources, or features of
different types. The latter, however, is when different subsets of data points
are given to clusterers for clustering, while each of the data points have all
the features. However, using the whole data set for each clustering algorithm
is expected to improve the results of clustering as well.

There are three methods of combining clusterings® introduced in [3T]. Their
first method, named Cluster-based Similarity Partitioning Algorithm-
CSPA, defines a pairwise measure of similarity between the objects, based
on the counts of their presence in the same cluster. As simple as this method
is to implement, since it requires the memory of the order O(n?) of the input,
it becomes impractical for the large input. Therefore, it is not convenient
for FCM data where the number of objects to be clustered could be more
than hundreds of thousands. Their second approach is HyperGraph Par-
titioning Algorithm-HGPA, based on a hypergraph presentation of the
clusterings and defining n-way relationship between the data points.

6the combining function is also called consensus clustering or the combiner in some of
the litreture
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Diversity in the approach. Inorder to achieve the most results from the
combined approach, one does not only look for clusterings which perform
well individually, but also tries to bring the most diversity possible among
them. We cannot expect to get much improvement in our combination if all
the individual algorithms are quite similar and cluster the data in the same
manner. It is only with a great diversity between the individual algorithms
and using a proper combining method that one could except better perfor-
mance using an ensemble of clusterings. Having diversity could be achieved
by using different clustering methods (e.g., using a mixture of a centroid
based clustering and a density based) or applying the same methods of clus-
tering with different input parameters.

Voting has been one of the well-known methods for combining classifiers [33].
Although voting schemes are rather straightforward procedures in combining
classifiers, when it comes to clusterings they are not as simple. The difference
between classification algorithms and clustering algorithms brings up certain
issues to be taken care of. Unlike a classification problem, there are no
predefined labels for the data in a clustering and therefore there is a problem
of defining which cluster of one clustering algorithm corresponds to which
clusters in the other algorithms, the problem is even using the same method of
clustering could not result in the same set of labeling. [8] Therefore, to apply
voting in combining clusterings, first we need to match the same clusters
from different algorithms and then we can compare the labels the algorithms
have assigned to a particular data point and vote between them.
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3 Materials and Methods

There are two pipelines of FCM analysis. While the goal in Gating is to
identify cell populations, in Classification the goal is to find the discrimi-
native features between the samples of different type (e.g., different cancer
types). Several methods of clustering could be applied in both of these path-

ways (FigurdI]).

The pipeline coded and used for this project is a classification pipeline which
uses clustering for feature extraction. The general framework of the pipeline
is shown in Figure2l which also includes the steps of the Ensemble Clus-
tering. There are four major steps in the pipeline (Figure [3)), however there
are some minor differences between the training pipeline and testing pipeline,
regarding the Cluster Matching and Feature Extraction phase.

3.1 AML Data

The AMLT dataset was used in FlowCAP2 competition [27], where the par-
ticipants presented their automated analysis methods for different challenges
in FCM analysis, including the gating. The manual gating labels were used
to rate the performance of each algorithm. The AML challenge was to find
cell populations that can be used to discriminate between AML positive and
AML negative patients. Peripheral blood or bone marrow aspirate samples
were collected over a one year period using eight tubes, from 43 AML posi-
tive patients and 316 healthy people [I1]. Tubes were different in their choice
of markers. The data from each tube could be analyzed separately. In this
experiment the data of tube two was used. This tube was chosen randomly
and the comparison of the results from different tubes of a single FCM exper-

iment was beyond the scope of this project. Tube two had 7 markers which
listed in Tablelll

3.2 The Lymphoma Data

The DLBCL? and Follicular Lymphoma data is the data from 118 patients,
33 of which were diagnosed with DLBCL and 85 were diagnosed with a type
of Follicular Lymphoma. The FCM experiment on these patients had 11
markers, the markers and information about data sets are given in Tablell]

" Acute Myeloid Leukemia
8Diffuse Large B-cell Lymphoma
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3.3 Pre-processing

Based on the data set, FCM files need some pre-processing. There are three
steps of pre-processing which are commonly applied to FCM files, biexponen-
tial transformation, compensation and normalization. FCM data is usually
presented using a log-scale, but some of the data points are on or below the
axis with this presentation, therefore a biexponential transformation is ap-
plied to make use of all the data points. Also, signals from different markers
in an FCM experiment could have overlap with each other, which generates
problems in both manual and automated gating. To fix this, there is usually
a matrix provided with the FCM files, called the compensation matrix, which
is a transformation matrix used to eliminate the effects of overlapping signals.

The AML dataset was already compensated and did not need such a process,
for the biexponential transformation function estimateLogicle and transfrom
where used in R. Normalization was also applied to transform the data within
the range of [0,1]. The same tools were used for the Lymphoma data set;
however, it also needed to be compensated.

3.4 Clustering Algorithms

There were three individual clustering algorithms used on this pipeline for
each data set: flowMeans, KM and SamSpectral. SamSpectral [36] is a para-
metric clustering and it was applied with different input parameters. Based
on the results of the classification, which is considered to be the evaluation
of these clusterings, sets of individual clusterings were chosen to be used in
the Ensemble Clustering(FiguredI4/T3]). Ensemble Clustering technique
used here is from package CLUE in R. Package CLUE was released in 2007
by Kurt Hornik, for creation and analyzing cluster ensembles. The ensemble
functions is easy to apply for different datasets with minor modifications,
introduced in the package manual. Results of the clustering algorithm for
each file are saved separately, so that they could be fetched in the next step
which is Cluster Matching and Feature Extraction. The output of these al-
gorithms, including the Ensemble Clustering, are not the same; however, all
of them return a vector of the clustering labels for the data containing an
integer label for each data point. Given the labels and the data file itself,
centers and sizes of the clusters for each file are calculated and found. The
center of a cluster is the mean of the data points in that cluster. The vector
of labels along with the center and size of each cluster are saved for each file.

flowMeans Clustering. flowMeans is a non-parametric FCM clustering
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which is based on k-means clustering but unlike k-means, it allows for con-
cave clusters, by using several clusters to model a single population. It also
finds the number of clusters by taking the number of modes found individ-
ually in every eigenvector of the data [I]. flowMeans clustering is available
via the R package flowMeans [2]

K-means Clustering. K-means clustering was applied to the data using R
function kmeans. k-means is a parametric clustering and needs the number
of clusters to be defined as an input parameter. The number of clusters were
given 15 for both of the data sets. This number was given after observing
the dot-plots of the data in experimental k-means results. From each data
set two frames” were chosen to observe the results of k-means clusterings for
different k on the dotplots'®. Most of the populations were identified when k
was chosen at 8, 10 or 12, but 15 was chosen since it did not affect the iden-
tification of large cell populations negatively, while it could have improved
the chance of finding small discriminative populations.

SamSpectral Clustering. [37] [36] SamSpectral is a parametric spectral
clustering. Its performance is tuned mostly by two parameters which are
normal-sigma and separation-factor. Normal-sigma is a scaling parame-
ter, increasing it results in recognizing more the smaller clusters and it could
be any integer from one to several hundreds. However, depending on the
data set, choosing a large normal sigma could make the algorithm imprac-
tical due to its computational complexity. Separation-factor, on the other
hand, controls the combining phase of clustering, where the smaller clusters
are merged together and make up the final clusters. It defines the extent to
which clusters should be kept separately or be merged together. According
to the manual for SamSpectral R package [37], an appropriate range for the
separation-factor is [0.3 —2]. In order to find the proper input parameters for
the SamSpectral algorithm, dot-plots of different combinations of the param-
eters on three different FCS files for each data set were made and observed.
Plots were made for 17 normal sigma from 0.1 to 1.8, for every 0.1 and for
12 different separation-factor, starting from 80 to 1040 for every 80.

Clue. [I5] Is an ensemble clustering algorithm which is implemented in the
R package clue [14]. The algorithm resembles a voting scheme similar to
voting technique for combining classifiers [34]. Having the below:

9For AML data one frame with AML positive and one with AML negative were chosen.
For Lymphoma data one frame with DLBCL and one frame with Lymphoma were chosen
10k were chosen at 6, 8, 10, 12, 15, 18
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® ¢ j,t €1,...,n: cluster ¢ in the clustering j and n is the number of
clusters.

e (;,j €1,...,m: clustering j where m is the total number of clusterings
to be combined.

e Di(cy,¢,) the similarity distance between two clusters with the same
label in clusterings v and r, having the labeling .

L4 Dtotal,l = 2labelingl)l(cvu Cr)
e labeling [ : each permutation of labels in a clustering.

When combining different clustering results, it must be considered that the
same cluster in different clusterings might have different labels. Therefore,
combining clusterings has two steps. Step one is to optimally match the
similar clusters in different clusterings, in a way that the sum of differences
Diotar; between each cluster and its matched clusters among all the clus-
tering methods in the ensemble are minimum. There are several methods
for calculating Dyo; and therefore choosing the labeling which minimizes
it for soft clustering '* algorithms. Our clusterings here are hard clustering,
where each data point only belongs to one cluster in the clustering method.
The method used is the transfer distance, which is for a set of labelings the
minimum number of objects to be removed so the clusterings with the left
objects are identical. Therefore, applying different permutatoins of labelings
to the clusterings, the one which results in the minimum transfer distance is
chosen.

Once having the same labels for the most similar clusters in differnt clus-
terings, the second step is to combine them into one labeling and clustering
result. Combining technique here was voting which is basically to choose the
label which is most common among all the clusterings for each object and
return it as the label of that object.

Having the labels for each file from CLUE and using the FCS file itself, cen-
ters of the clusters and their sizes are calculated using two functions find-
ClustersCenters.R and getClusterSizes.R. The center of a cluster is the
vecter of the mean values for the markers of the cells on that cluster. Size of

Ysoft clustering algorithms or Fuzzy clustering are clusterings where each object belongs
to a cluster with a value from [0,1] which sums up to 1 for each object. Manhattan
partition dissimilarity, FEuclidean distance, angle and diag are the methods named and
briefly explained in the package
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a cluster is the number of cells in that cluster.

3.5 Cluster Matching and Feature Extraction

Each file represents a sample to be classified and therefore has a feature vector
based on the results of the clustering. This feature vector is obtained by the
features of individual clusters it has. The features with which a cluster is
described or presented could vary by the method of clustering it was clustered
with, for example it could be the parameters of the distribution, if we use
distribution based clustering techniques. Here we chose the center and sizes
of clusters for the features, since we are using different method of clustering
and these two features could be calculated fast and easy regardless of the
method of clustering used. Therefore, for each data file, features are the
percent of the total data points in each of the clusters. Percentage was used
instead of the actual size since the number of cells in different files are not
necessarily the same. However, since each file is clustered individually, even
the same clusters, which are the cell population with the same characteristics
or homologous cell populations, would not necessarily have the same
cluster labels in different files and we needed to have consistency among the
labels. This means that we need the homologous clusters to have unified
labels among all the files. The problem of matching homologous clusters to
each other among different data-sets (here each file is a data set) is known
as Cluster Matching. The cluster matching phase is different for train
and test pipelines. For training, the pipeline fetches the whole training data
files and apply the cluster matching, which is done by clustering the cluster
centers in the train data files altogether. Centers which are clustered together
would obtain the same label among all the files and the clustering information
for each data file would be changed accordingly. This means summing up
the sizes of two clusters in the same file if they gained the same label in
the cluster matching and therefore not every file would have members in all
the clusters. The clustering algorithm for the cluster matching could be any
clustering algorithm; here we used K-means clustering. As the number of
the clusters should be given as a parameter to the K-means algorithm, this
number was defined as twice the number of the clusters the data file with
the most clusters. Centers of the cluster matching from the training phase
-centers of the centers of clusters- would be kept and used as a frame for
cluster matching for the test files. Since the files go through the test phase
individually and the classifiers are trained with the training feature sets, the
centers from the cluster matching phase in the training is used to obtain
features of the test files. For each cluster center in a test file, the cluster
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label would be the label of the cluster from from the train cluster matching
which has the minimum euclidean distance to it (Figured]).

3.6 Classification and Evaluation

In order to have a better comparison of the clusterings and study the consis-
tency of clusterings performance, the pipeline was applied with the same set
of clustering algorithms with two different classifiers Support Vector Ma-
chines - SVM and Multilayer Perceptron Neural Networks - MLP,
which are both popular as general purpose classifiers and are known to per-
form well with different data sets [5] [21]. To perform statistical analysis on
the results of the classifiers, MLP classifiers were applied for 400 bootstrap
sets of train-test samples and SVM classifiers were applied for 100 train-test
samples, using 80% of the data for the train and 20% for test each time
(Figure [@3| [4). For classifiers, R function train and test from the base
package were used, choosing the algorithms to be SVM and MLP accord-
ingly. Number of internal nodes for the MLP classifier was 15, which was
based on the size of the feature vector. For each train-test sample of the
data, the AUC' [16] result of the test samples were saved into files, along
the trained classifier and the resulting labels for the record. Two-sided t-test
for the difference between the means were applied, with the null hypothesis
being “true difference in mean is equal to zero”.

3.7 Mathematical Representation of the Pipeline

An FCM dataset contains several .FCS files. Each file is a result of FCM
experiment on a sample and includes a data matrix, where rows represent,
the cells and colums are markers. Terms used in mathematical explanation
of the pipeline are defined as follow:

o D= M'"M? .. Mm™ an FCM data set, containg several data matrix.

e M': data matrix i, where i € 1,...,n and n is the number of files in the
data set.

) c§: cell j in data matrix ¢ and j € 1,...,p where p is the total number

of cells(rows) in the data matrix.

e cci: cluster center for cluster /, in data matrix .

1Zarea under the curve
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e csi: cluster size for cluster [, in data matrix i.
e MC(C": set of cluster centers cc¢' and their sizes cs’ for a data matrix.

® Mi.qin: a subset of D, including the data matrces used in the training
phase.

e M,.: a subset of D, including the data matrices used in the testing
pahse.

e CL(M): a clustering fuctions, taking in a data matrix M?, returning
a vector of labels [ for the cells, containing an integer cluster label for
each cell ¢ in the matrix.

e C'M(): a cluster matching function. The application of this function is
different for train and test data. train: C'M;,,;,(d) taking a matrix of
cluster centers d, clusters them and returns the labels for each center.
This could be any clustering function. test: C'M,.q(z,d) having the
centers of several previously known clusters and their labels x, given
the centers of clusters for one file d, it will assing to each cluster center
in d, the labels of the closest cluster center in x(Figure [3])

e SELECT(D,r) select function randomly choses a subset of r matrix
from the set D.

Having had the above, the pipeline has 8 steps:

1. clustering each data file individually:
fortvinl:m

MC? = CL(M)

2. selecting the train and test subset:
Myess = SELECT(D, 1)
Mtrain =D — Mtest

3. cluster matching for the train data:
’resu”tr(u’n - CM(Mtrain)

4. cluster matching for the test data:
resultyesy = C M (Miest, resultyyqin)

5. extracting feature matrix for train and test data

6. train the classifier with the train feature matrix
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7. test the classifer with the test data
8. save the AUC for the test data

Steps 2 — 8 where repeated 400 times for each triple of the dataset, clustering
and classifier.
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4 Results and Discussion

4.1 The AML dataset

The results of AML data was quite variant. Mean of the AUC was between
0.798 and 0.9582] for MLP and 0.768 and 0.972 for SVM classifier. Although
the results for MLP are generally better, the maximum and minimum of
AUC means belong to k-means and SamSpectral with normal-sigma 110 and
separation-factor 0.1 for both classifiers. K-means clustering seems to per-
form significantly better than other clusterings(FiguredIIlI2). The results for
other clusterings are similar for both classifiers as well, other than the CC03,
CC04 and FM clusterings (Figurdl3). The CC04 ensemble clustering results
are much better when used with the MLP classifier rather than SVM. Among
the SampSPECTRAL results, the one with the higher separation-factor ob-
tained better results. But using the greater separation-factor is not practical
according to the computational complexities.

For the ensemble clusterings, results seem to be better than the individual
clusterings and the ensembles performances are among the highest, however,
they are still lower than the best clustering in the ensemble. K-means result
is better than the results of all ensembles, including the ones it was part
of them. This was not expected since according to FlowCAP1 [27] results,
the ensemble clustering had better results than all the individual clustering.
However, in FlowCAP1 results of the clusterings were compared to the man-

ual gating results and were not compared to the classification results as we
did here.

Ensemble techniques are used to improve the performance of clusterings, but
based on the data and individual clusterings, they must be tuned carefully
to perform well. In a voting ensemble technique when there is a particular
clustering with significantly better results than all the other clusterings, it is
better to use a weighted voting scheme, in which there is a weight assigned
to the results of each clustering technique when building the ensemble based
on the individual clustering results and as a result, better clusterings would
have more impact on the final ensemble result than the other clusterings.

K-means clustering is a relatively fast clustering and also easy to implement
and therefore is a popular clustering, but according to its two drawabacks
which are being highly dependant on its input parameter £ and only being
able to recognize the spherical clusters, it is not the best choice for the
FCM analysis, where the number of clusters are not known previously to
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the analysis and the clusters are not neccessarily spherical. However, we see
that with our data sets here and with a good choice of k, we could obtain
acceptable results.

4.2 The Leukemia results

The AUC results from the Lymphoma data are less variant, having their
mean between 0.683 and 0.869 for MLLP and 0.728 and 0.816 for SVM classi-
fier (Tabld3]). But using k-means algorithm resulted in better AUC for both
of the classifiers as well. Unlike the AML data, SVM classifier had better
results herd3d] and there was more consistency among the classifier results
generally. Also the best SamSpectral here was not the one with the greatest
separatoin-factor(Figure????). The mean of Ensemble clustering results for
all sets are less than the best clustering result and more than the worst one,
showing that like the other data set, a weighted voting system might be a
better approach.

Results here are similar to those from the AML data, with k-means clustering
having the best classification performance, followed by the best SamSpectral
and flowMeans. FlowMeans and SamSpectral results were of the best clus-
tering when the standard was manual gating results in FlowCAP1. How-
ever, lowMeans algorithm has an advantage compared to SamSpectral and
k-means and that is it could be applied as a non-parametric clustering and
still generate relatively good results(based on both FlowCAP1 and this ex-
periment), but SamSpectral algorithm would perform poorly if parameters
are not carefully tuned. Even from a set of chosen parameters which was
based on prior observation on the data and comparing several SamSpectral
results, SamSpectral does not have be best performance.
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5 Conclusion and Future Work

Unsupervised learners or clustering algorithms are a well known choice when
it comes to categorizing the data sets where we do not have predefined labels
for each datapoint. In FCM analysis, these algorithms are used to identify
the discriminative cell populations among different samples, as a replacement,
for the manual techniques and to overcome their drawbacks. Although clus-
tering algorithms are very practical for this field, due to their unsupervised
method of learning, it is challenging to define a proper evaluation method
for them. One approach is to set the manual analysis results as the gold
standard and trying to achieve the results similar to manual gating, but in
order to improve the results (even better than manual gating), we need other
standards. In this experiment, through the previous results of diagnosis using
FCM data, we built a classification pipeline, which used clustering algorithms
for its feature extraction part by finding discriminative cell populations and
the counts of cells in them using clustering algorithms. To take the analysis
one step further, we also applied an ensemble clustering technique, to see
how this technique could improve the results compared to the already known
clustering algorithms in this field.

This pipeline was implemented to study the performance of different cluster-
ings in FCM gating, knowing that gating is a critical and one of the most
challenging parts of FCM analysis and although new clustering techniques
have been introduced to this field recently, based on the diversity among
the FCM data, it is hard to choose one of them as the ultimate clustering
approach. Because of that, most of the clusterings introduced in this field
are parametric and parameters are to be tuned based on the data. Ensem-
ble clustering techniques have been used to improve the clustering results
in complicated problem, here we used a modified version of popular voting
technique for combining classifiers. Although the ensemble clustering result
was better than most of the individual clusterings, it could not beat the best
clustering results. Based on these results, applying a weighted voting scheme
for ensemble clustering could be considered as a future work for this project.

There are also other combining techniques which were briefly discussed here,
which could be applied to FCM data.
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Figure 1: FCM analysis pipeline of gating and classification. FCM data come in .fcs files. Gating and classification
are two paths in data analysis. Clustering could be used in feature extraction, for classification. Also, clustering is
a way of automatic gating.
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Figure 2: Data comes into the pipeline as .FCS files. Feature extraction includes three parts, clustering, cluster
matching and finally feature extraction from the clustering results. Evaluation of the clusterings is done by comparing
the classifier results.
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Figure 10: Boxplots of the AUC for SVM results on Lymphoma data set. Classifiers were trained and tested for 400
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abbreviations clusterings

KM I K-means clustering with k = 15 I 1
Clusterings on AML data EM -
| FlowMeans clustering | =
SS SamSpectral Clustering
parameters
normal-sigma separation-factor
SS1100.1 110 0.1
§51100.3 110 0.3
SS 110 0.6 110 0.6 5
cec Ensemble Clustering
set of individual clusterings
cco1 SS 110 0.1, SS 110, 0.3, SS 110 0.6 6
ccoz FM, KM, SS 110 0.1, SS 110, 0.3, SS 110 0.6 7
cco3 FM, KM, SS 110 0.3, SS 110 0.6 8
cco4 FM, 8§ 1100.3, SS 110 0.6 9

.

Figure 13: list of AML clusterings and the abbreviation used in the
plots. Nine clusterings were applied on AML data, including k-means(KM),
flowMeans(FM), three SamSpectrals(SS) and four combination of ensembe
clusterings(CC). Rows 3-5 are having SamSpectral abbreviations and their
parameters normal-sigma and separaiton factor. Rows 6-9 have the Ensemble
Clusterins abbreviations and their set of individual clusterings.
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Clusterings on Lymphoma data

Figure 14: List of Lymphoma clusterings and the abbreviation used in the
Twelve clusterings were applied on Lymphoma data, including k-
means(KM), flowMeans(FM), seven SamSpectrals(SS) and three combina-
tion of ensembe clusterings(CC). Rows 3-9 are having SamSpectral abbre-
viations and their parameters normal-sigma and separaiton factor.
10-12 have the Ensemble Clusterins abbreviations and their set of individual

plots.
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dataset marker
AML FSC, SSC, 1gG1-FITC, 1gG1-PE, CD45-ECD, 1gG1-PC5, 1gG1-PC7
Lymphoma FSC-A, FSC-W, SSC, FITC, PE, PerCP-Cy5-55, PE-Cy7,
APC, APC-CY7, PacificBlue, AmCyan

Table 1: List of the markers for the data sets. AML, Lymphoma

clustering | CC01 | CC02 | CC03 | CCo4 FM KM | SS1100.1 | SS1100.3 | SS 110 0.6 | mean

SVM 0.795 | 0.928 | 0.925 | 0.806 | 0.849 | 0.972 0.767 0.789 0.843 0.853

MLP 0.830 | 0.894 | 0.885 | 0.859 | 0.851 | 0.958 0.798 0.842 0.882 0.867

SVM-MLP | -0.035 | 0.034 | 0.039 | -0.053 | -0.002 | 0.014 -0.032 -0.053 -0.039 -0.014

Table 2: Mean for the AUC results of the clusterings on AML data

clustering | CC01 | CC02 | CC03 | FM KM | SS11200 | SS11390 | SS 11900 | SS4390 | SS4900 | SS 7390 | SS 7900 | mean
SVM 0.758 | 0.770 | 0.767 | 0.774 | 0.816 0.756 0.755 0.755 0.777 0.747 0.728 0.754 0.762
MLP 0.702 | 0.710 | 0.708 | 0.730 | 0.769 0.705 0.709 0.718 0.710 0.718 0.683 0.704 0.714
SVM-MLP | 0.056 | 0.06 | 0.059 | 0.044 | 0.047 0.051 0.046 0.037 0.067 0.029 0.045 0.050 0.048

Table 3: Mean for the AUC results of the clusterings on Lymphoma data
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