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A Pipeline for Comparison of ClusteringMethods in Flow Cytometry AnalysisInluding Ensemble ClusteringMarjan FarahbodApril 19, 2013AbstratThis thesis is on applying di�erent lustering algorithms and omparing theirresults with ensemble lustering in a Flow Cytometry(FCM) data analysispipeline. Although FCM has been used for several deades in both linialand researh labs, there has not been many appliations of bioinformatisin this �eld. The advanes in tehnology and biohemistry has led to mas-sive improvements in the �eld of FCM through the last deades, whih hasbrought fast generation of high throughput data. However, the analysis ofFCM data is mostly done manually and lak of omputational tehniqueshave beome more evident. One of the most hallenging aspets of FCManalysis is gating, whih is the reognition of di�erent ell populations in atissue sample based on light satter and �uoresent data olleted from eahell. In the last few years, several tehniques of automati gating have beenintrodued, mostly based on popular lustering algorithms.The evaluation of lustering algorithms is still onsidered to be a hallengingissue, these algorithms are unsupervised learners and therefore, there are nopre-de�ned labels for eah input to determine perfet results. In this projet,a lassi�ation pipeline of FCM analysis is introdued and used to omparethe results of the lustering algorithms. Clusterings are used in the featureextration part for the lassi�er and the better the results of the lassi�ationare, the more pratial lustering is onsidered to be. However, this inferenean not be automatially generalized in this �eld but is an admissible methodof spei� performane omparison among di�erent lustering tehniques.Apart from individual lusterings, a voting tehnique of Ensemble Clus-tering was applied whih similar to voting tehnique in ombining lassi�ers.To investigate the appliation of ensemble lustering, the results of lassi�-ations whih used individual well known lustering approahes in FCM for



feature extration were ompared to eah other and also to the results oflassi�ation whih used some ensemble of these lustering algorithms. Tobe able to get more generalize onlusions, this pipeline was tested on twodi�erent FCM data sets, the data from ontrols and patients with AuteMyeloid Leukemia and data from DLBC 1 and Folliular Lymphoma. Alsofor eah data set two di�erent lassi�ers were tested and results were om-pared. The hallenges of implementing this pipeline and the omparison ofdi�erent lustering tehniques on two data sets are disussed. It is also shownthat although the results of this ensemble tehnique were generally betterthan the results of individual lustering methods, that is not always the aseand the result depends on the hoies of lusterings. Three individual lus-terings were used, k-means, �owMeans and SamSpetral. The SamSpetrallustering was applied on the data with several di�erent parameters, as itis a parametri algorithm and performs di�erently when its parameters arehanged. Among these lustering methods, the popular k-means resulted ina signi�antly better lassi�ation for both of the data sets, followed by theensemble lusterings and the SamSpetral lustering algorithm with the besthoie of parameters.keywords: FCM, Clustering, Ensemble Clustering, Classi�ation,Caner
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1 IntrodutionGating or identifying the disriminative ell populations in FCM data is oneof the most hallenging steps of the analysis. In order to automate gating,many lustering algorithms have been introdued. Mostly the goal of thesealgorithms is to be able to generate the results whih are the most similarto the manual gating results, taking the manual gating as a gold standardin this �eld [27℄. However, onsidering several drawbaks of the manual gat-ing whih are disussed in the bakground setion, in order to examine theperformane of di�erent lustering tehniques inluding Ensemble Clusteringhere, we used another method of evaluation whih is using the lassi�ationresults of the FCM data sets. Eah FCM data �le in these data sets is ob-tained from a FCM experiment on a tissue sample of a patient, knowing theresults of diagnosis for eah patient-whih is either the type of the anerbetween the aner patients or if the sample is from a healthy or su�eringpatient- we use the results of lusterings for the feature extration and thentrain and test the lassi�ers feeding these features and the labels.The aim of this researh was to develop a pipeline of evaluation for di�er-ent lustering algorithms, whih enables us to ompare the results of di�er-ent lusterings inluding Ensemble Clustering. Having the FCM �les, thepipeline inludes the preproessing and normalization, lustering and featureextration and lassi�ation.The Ensemble Clustering tehniques have been introdued and used on dif-ferent data sets for more than a deade. The idea of ombining severallustering algorithms in order to obtain better results omes from its sister�eld, lassi�ation, in whih ombining di�erent lassi�ers is quite popularand has shown to improve the performane generally [33℄ [30℄; however bring-ing this approah to the lustering �eld has been hallenging. Here we useda simulated voting algorithm from Hornik [15℄, whih modi�es the votingsystem of ombining lassi�ers and applies it for ombining lusterings. Weapplied this pipeline on two data sets to be able to have a better omparisonof di�erent methods. Also, in the lassi�ation phase, two di�erent lassi�erswere tested, with the set of the same lustering algorithms.The FCM experiment and analysis are disussed in the bakground setion,followed by a review on variant tehniques of gating. Classi�ation in FCMand use of voting tehnique for ombining lusterings is also disussed inthe bakground. In Materials and Methods, the analysis pipeline imple-mented in this projet is explained in details. Comparison of the di�erentlustering algorithms used in the pipeline are disussed in Results and Dis-ussion. 7



2 Bakground2.1 FCMHistoryThe term Cytometry2 is the proess of applying measurements to ells andstudying their physial and hemial harateristis. FCM3 refers to theappliation of these measurements to the ells ontained in a �uid. The�rst �ow ytometers were used in 1960 [29℄. Sine then, it has been used inresearh labs for studying di�erent ell ultures and in linial labs in pathol-ogy, for diagnosis of several types of aners as well as many other diseasessuh as HIV [29℄The FCM experimentIn an FCM experiment, the suspension ontaining ells from a body tissue ora ell ulture is exposed to biohemial markers. The ells in this suspensionwill pass through the laser interrogation points in a �ow ytometer one byone. The 're�etions' from the laser beam are olleted and onverted toeletroni signals whih are digitized and sent to a omputer to be saved indata �les. The re�etion from the forward light satter indiates the sizeand shape of the ell and the side light satter granularity gives informationabout the internal omplexity of the ell. The �uoresene emitted from theell surfae de�nes the intensity of the markers on the ell membrane. [3℄.Eah row in an FCM data �le has information of one ell, with olumns ofdata for eah marker and side and forward satter.MarkersFCM markers are mostly extraellular and bind to the proteins on the surfaeof the ells, but for some experiments intraellular markers are used as well.The number of markers to be used in a single experiment are limited and thenumbers vary in di�erent �ow ytometers. Today there are �ow ytometerswhih an measure up to forty markers in a single experiment. Markers arearefully hosen aording to the studies done on the proteins exposed tothe surfae of di�erent ells in the samples being tested. Sine the numberof markers is limited in eah experiment, some samples are divided into2yto for ell and metry for measurements3�ow for �uid 8



numerous tubes. Eah tube would be put through the experiment withdi�erent set of markers. Set of markers in di�erent tubes usually overlap.2.2 Appliations of FCMThe ability to de�ne subpopulations in a ell sample aording to the size,shape and biohemial markers on the surfae of the ell has made FCM agreat tool for both linial and researh labs. It has been used for diagno-sis and prognosis of Leukemia and Lymphoma and also in peripheral bloodhematopoieti stem ell studies [35℄. It has also been used in environmentalsienes for the identi�ation of new speies. [18℄ [22℄2.3 Analysis of FCM DataFor eah tube of the sample, the FCM tehnique generates multidimentionaldata for individual ells in that sample [17℄. Nowadays, �ow ytometers angenerate data samples of up to a million ells for up to forty markers. How-ever, the FCM �les used for this projet inlude data for tens of thousandsof ells with 7 and 11 markers per tube. 4The goal in many FCM analyses is to identify ells in heterogeneous popu-lations. These di�erent ell populations de�ned within a ell sample beome�ngerprints of that sample for further analysis. In pathology, ell sampleswith similar populations are to be diagnosed with the same disease. Similar-ity between ells is determined by their size and shape and also the markersattahed on their surfae. Certain types of markers are used to diagnose ordi�erentiate between aners. As an example, �nding a population with theCD22 marker means there is a > 90% hane that the sample omes from atissue with T-ell Lymphoma5 [13℄. Cell population disrimination is knownas Gating. Gating analyses are not usually straight forward. The valuesassigned to eah ell for a partiular marker are ontinuous and therefore toall a ell positive with a marker in a data set needs deliate proessing. Also,one the positive ell populations are reognized in a sample, the diagnosisould not be made at 100% for just one marker. Many markers are not highlydisriminative and ould be present in various sub-types of a aner. Gatinganalysis are mostly unsupervised and are done to disover new ell types orphenotypes of a known disease.4there were two data sets used in this experiment whih are disussed in details inMaterials and Methods5the Lymphoma that a�ets T-ells 9



2.4 GatingGating refers to de�ning di�erent subpopulations within a sample tube. Thissubpopulation identi�ation would be used as a harateristi of the sample.Gating is generally aknowledged to be one of the most powerful but alsoone of the most problemati aspets of FCM aording to its subjetive na-ture [12℄. It is traditionally done by biologists by drawing boundaries (gates)in two dimensional projetions of the data. Reently, there have been someautomati methods introdued for this stage of analysis [26℄ [11℄ [19℄ [35℄ [23℄.These methods are mostly based on famous lustering algorithms like k-means.2.5 Manual GatingManual gating is done by drawing boundries around the reognized lustersin the one or two dimensional projetion of the data by researhers [26℄,or it is done based on density distributions. Sine the number of hannelsare more than two, manual gating is done in a hierarhy. At eah level onlytwo dimensions are plotted and in the next level, the populations found inthe previous plot, are plotted in the next two dimensions separately and newpopulations are reognized. Therefore the number of ells plotted at eahlevel of the hierarhy are redued.Manual gating is a labor intensive proess and the result varies dependingon user experiene and intuition [26℄ about the data and markers. Sine itis done by individuals and is highly dependent on their experiene in the�eld, it is not easy to reprodue. Also, sine the data is visualized in justtwo or three dimensions at eah level, the high-dimensional features an notbe reognized. These drawbaks of manual gating an be summarized assubjetivity, lak of e�ieny and loss of information [26℄.2.6 Automated GatingThe drawbaks of manual analysis of FCM data have brought up the needfor using automated analyzing tehniques, among whih are several luster-ing algorithms used for gating. Based on their unsupervised learning nature,lustering algorithms were reasonable hoies for automated gating proesses.However, most of the lustering algorithms used in FCM are based on knownlustering tehniques and have been through some modi�ations in order tomeet the tehnial requirements of FCM analysis. By 2008 there were onsid-erable number of algorithms developed for FCM analysis and many suessfulresults were being reported. Murphy et al. [23℄ used k-means lustering and10



reported good results. K-means lustering is a rather fast algorithm and iseasy to implement and apply to FCM data onsidering the size of FCM data�les. However, it has some shortomings when used on non-ellipti data as itis a entroid based lustering tehnique. Also, it needs the number of lustersto be given as a parameter, hene it is not a proper hoie for disoveringunknown sub populations. Therefore, the use of more omplex lusteringsbeame vital in the �eld. In 2008 Chan et al. [7℄ used statistial lusteringwith Guassian mixture model on four olor FCM data. Lo et al. [19℄ used tmixture model to generalize the previous guassian mixture model and there-fore �nd non-elliptial subpopulations as well. The FLAME algorithm byPyne et al. [26℄ also uses a distribution based lustering and models datainto a skew t mixture model, where for eah population the mixtures of 2 to
20 skew t distributions are modeled. The parameters of individual distri-butions in eah mixture are alulated by Maximum Likelihood estimationsvia the Expetation Maximization(EM). For eah sample the best of thesemodels is hosen aording to their Sale-free Weighted Ratio (SWR) whihis the ratio between the intraluster distanes and the interluster distanes.Although distribution based algorithms has been quite popular and pratialin this �eld, there have been other notieably good algorithms. SamSpe-tral [35℄ used a modi�ed spetral algorithm and reports aeptable resultsfor diagnosing subtypes of Lymphoma.In Critial Assessment of Population Identi�ation Methods (FlowCAP1) [27℄a set of both entroid-based and density-based lustering algorithms inlud-ing some of the above were ompared against eah other in four hallenges,having the manual gating results as the referene. Challenges omprisedCompletely Automated Algorithms, where the algorithms were either param-eter free or their parameters were set independent of the data sets; TheManually Tuned Algorithms, where the parameters ould be set aording todi�erent data sets; Assignment of Cells to Populations with pre-de�ned Num-ber of Populations, where the number of populations were given to the algo-rithms and �nally the Supervised Approahes Trained using Human-ProvidedGates, where 25% of the �les with manual gating results were provided topartiipants for training their algorithms [27℄. Some of the algorithms pre-sented in FlowCAP1 are now available via R pakages, among whih areSamSpetral, FlowMeans and FlowCLUST.When hoosing a lustering algorithm, there are two hallenges to overome.First, many lustering algorithms are based on random initializations andhave stohasti learning methods [8℄. The famous k-means lustering hoosesthe �rst set of enters randomly and therefore performs di�erently eah time11



it lusters the same data. Seondly, most of the lustering algorithms havesome initial parameters to be set. Choies of parameters a�et the perfor-mane of the lustering and omprises both the results and exeution time.Therefore, parameters must be hosen based on the type of data and the kindof populations one is looking for. Performing a k-means algorithm on FCMData when we are looking for the small new population, requires putting alarge k(number of lusters) as an input parameter. However, k-means al-gorithm does not work well in �nding non-globular lusters and therefore isnot onsidered to be a good option for the FCM analysis, where many of thelusters are non-globular.2.7 Classi�ation in FCMIn most of the linial pratie of FCM in aner diagnosis, the goal is toidentify the disriminative ell populations in eah type of aner and lassifythe examined samples by their type of aner. Over the last two deades,FCM lassi�ation was done via the omparison of the light satter pro�lesof ontrol and patient groups [32℄. These kinds of lassi�ations were doneby simply omparing the plots of di�erent samples, hene it was mostly donemanually. Gating was inluded in these analyses in order to identify om-mon ell populations among di�erent samples. However, with the advaneof omputational tehnology and its appliation in biology, the analysis ofFCM ould bene�t from various mahine learning algorithms and statistialanalysis. Clustering algorithms ould be used to overome the drawbaks ofmanual gating, but also many types of lassi�ation algorithms whih areknown as supervised learners ould be applied to FCM Data. By having theresults of the earlier diagnosed samples of di�erent types of aners and usingthe proper feature extration methods for their FCM data, one ould traina lassi�er to disriminate between di�erent aner types.In 2008, Pedreira et al. [25℄ implemented a multidimensional lassi�ationby using a divide and onquer approah on four olor FCM data from pe-ripheral blood lymphoyte samples; however, like most of the lassi�ationsused in FCM so far it is based on unsupervised statistial mahine learningtehniques.2.8 Ensemble ClusteringThe idea of using a method of ombined lusterings in order to obtain betterresults when solving a lustering or unsupervised learning algorithm omes12



from its sister �eld lassi�ation or supervised learning, where several teh-niques of ombining lassi�ers have been introdued and are generally knownto improve the results.When having a ompliated problem on whih the individual lassi�ationalgorithms do not perform well, one approah would be to use several algo-rithms and bene�t from putting together their results through some ombin-ing method [30℄, hoping that one's strength would over the others weaknessand thereby redue the overall error. As in lassi�ation, there are manydi�erent forms of applying a ombining method when one is trying to bene�tfrom several lusterings in a ompliated problem.Regarding the data, for reasons suh as the di�erent performane of lustererson partiular type of data or limited resoures [31℄, the individual lusteringsin the ensemble ould be applied to di�erent parts of the data. This does notreate any di�ulties for ombining part sine most of the ombining teh-niques need only the labels and some information from the results of eahalgorithm and do not rely on having the original data points. Basially, thedata ould be divided based on the feature set or data points. The formeris, where for the same data di�erent subsets of features are given to eahlustering. These subsets of features ould have overlaps or be disjoint. Thisis most ommon when you have features of various resoures, or features ofdi�erent types. The latter, however, is when di�erent subsets of data pointsare given to lusterers for lustering, while eah of the data points have allthe features. However, using the whole data set for eah lustering algorithmis expeted to improve the results of lustering as well.There are three methods of ombining lusterings6 introdued in [31℄. Their�rst method, namedCluster-based Similarity Partitioning Algorithm-CSPA, de�nes a pairwise measure of similarity between the objets, basedon the ounts of their presene in the same luster. As simple as this methodis to implement, sine it requires the memory of the order O(n2) of the input,it beomes impratial for the large input. Therefore, it is not onvenientfor FCM data where the number of objets to be lustered ould be morethan hundreds of thousands. Their seond approah is HyperGraph Par-titioning Algorithm-HGPA, based on a hypergraph presentation of thelusterings and de�ning n-way relationship between the data points.6the ombining funtion is also alled onsensus lustering or the ombiner in some ofthe litreture 13



Diversity in the approah. Inorder to ahieve the most results from theombined approah, one does not only look for lusterings whih performwell individually, but also tries to bring the most diversity possible amongthem. We annot expet to get muh improvement in our ombination if allthe individual algorithms are quite similar and luster the data in the samemanner. It is only with a great diversity between the individual algorithmsand using a proper ombining method that one ould exept better perfor-mane using an ensemble of lusterings. Having diversity ould be ahievedby using di�erent lustering methods (e.g., using a mixture of a entroidbased lustering and a density based) or applying the same methods of lus-tering with di�erent input parameters.Voting has been one of the well-known methods for ombining lassi�ers [33℄.Although voting shemes are rather straightforward proedures in ombininglassi�ers, when it omes to lusterings they are not as simple. The di�erenebetween lassi�ation algorithms and lustering algorithms brings up ertainissues to be taken are of. Unlike a lassi�ation problem, there are noprede�ned labels for the data in a lustering and therefore there is a problemof de�ning whih luster of one lustering algorithm orresponds to whihlusters in the other algorithms, the problem is even using the same method oflustering ould not result in the same set of labeling. [8℄ Therefore, to applyvoting in ombining lusterings, �rst we need to math the same lustersfrom di�erent algorithms and then we an ompare the labels the algorithmshave assigned to a partiular data point and vote between them.
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3 Materials and MethodsThere are two pipelines of FCM analysis. While the goal in Gating is toidentify ell populations, in Classi�ation the goal is to �nd the disrimi-native features between the samples of di�erent type (e.g., di�erent anertypes). Several methods of lustering ould be applied in both of these path-ways (Figure1).The pipeline oded and used for this projet is a lassi�ation pipeline whihuses lustering for feature extration. The general framework of the pipelineis shown in Figure2, whih also inludes the steps of the Ensemble Clus-tering. There are four major steps in the pipeline (Figure 3), however thereare some minor di�erenes between the training pipeline and testing pipeline,regarding the Cluster Mathing and Feature Extration phase.3.1 AML DataThe AML7 dataset was used in FlowCAP2 ompetition [27℄, where the par-tiipants presented their automated analysis methods for di�erent hallengesin FCM analysis, inluding the gating. The manual gating labels were usedto rate the performane of eah algorithm. The AML hallenge was to �ndell populations that an be used to disriminate between AML positive andAML negative patients. Peripheral blood or bone marrow aspirate sampleswere olleted over a one year period using eight tubes, from 43 AML posi-tive patients and 316 healthy people [11℄. Tubes were di�erent in their hoieof markers. The data from eah tube ould be analyzed separately. In thisexperiment the data of tube two was used. This tube was hosen randomlyand the omparison of the results from di�erent tubes of a single FCM exper-iment was beyond the sope of this projet. Tube two had 7 markers whihlisted in Table113.2 The Lymphoma DataThe DLBCL8 and Folliular Lymphoma data is the data from 118 patients,
33 of whih were diagnosed with DLBCL and 85 were diagnosed with a typeof Folliular Lymphoma. The FCM experiment on these patients had 11markers, the markers and information about data sets are given in Table117Aute Myeloid Leukemia8Di�use Large B-ell Lymphoma 15



3.3 Pre-proessingBased on the data set, FCM �les need some pre-proessing. There are threesteps of pre-proessing whih are ommonly applied to FCM �les, biexponen-tial transformation, ompensation and normalization. FCM data is usuallypresented using a log-sale, but some of the data points are on or below theaxis with this presentation, therefore a biexponential transformation is ap-plied to make use of all the data points. Also, signals from di�erent markersin an FCM experiment ould have overlap with eah other, whih generatesproblems in both manual and automated gating. To �x this, there is usuallya matrix provided with the FCM �les, alled the ompensation matrix, whihis a transformation matrix used to eliminate the e�ets of overlapping signals.The AML dataset was already ompensated and did not need suh a proess,for the biexponential transformation funtion estimateLogile and transfromwhere used in R. Normalization was also applied to transform the data withinthe range of [0, 1]. The same tools were used for the Lymphoma data set;however, it also needed to be ompensated.3.4 Clustering AlgorithmsThere were three individual lustering algorithms used on this pipeline foreah data set: �owMeans, KM and SamSpetral. SamSpetral [36℄ is a para-metri lustering and it was applied with di�erent input parameters. Basedon the results of the lassi�ation, whih is onsidered to be the evaluationof these lusterings, sets of individual lusterings were hosen to be used inthe Ensemble Clustering(Figures14,13).Ensemble Clustering tehniqueused here is from pakage CLUE in R. Pakage CLUE was released in 2007by Kurt Hornik, for reation and analyzing luster ensembles. The ensemblefuntions is easy to apply for di�erent datasets with minor modi�ations,introdued in the pakage manual. Results of the lustering algorithm foreah �le are saved separately, so that they ould be fethed in the next stepwhih is Cluster Mathing and Feature Extration. The output of these al-gorithms, inluding the Ensemble Clustering, are not the same; however, allof them return a vetor of the lustering labels for the data ontaining aninteger label for eah data point. Given the labels and the data �le itself,enters and sizes of the lusters for eah �le are alulated and found. Theenter of a luster is the mean of the data points in that luster. The vetorof labels along with the enter and size of eah luster are saved for eah �le.�owMeans Clustering. �owMeans is a non-parametri FCM lustering16



whih is based on k-means lustering but unlike k-means, it allows for on-ave lusters, by using several lusters to model a single population. It also�nds the number of lusters by taking the number of modes found individ-ually in every eigenvetor of the data [1℄. �owMeans lustering is availablevia the R pakage �owMeans [2℄K-means Clustering. K-means lustering was applied to the data using Rfuntion kmeans. k-means is a parametri lustering and needs the numberof lusters to be de�ned as an input parameter. The number of lusters weregiven 15 for both of the data sets. This number was given after observingthe dot-plots of the data in experimental k-means results. From eah dataset two frames9 were hosen to observe the results of k-means lusterings fordi�erent k on the dotplots10. Most of the populations were identi�ed when kwas hosen at 8, 10 or 12, but 15 was hosen sine it did not a�et the iden-ti�ation of large ell populations negatively, while it ould have improvedthe hane of �nding small disriminative populations.SamSpetral Clustering. [37℄ [36℄ SamSpetral is a parametri spetrallustering. Its performane is tuned mostly by two parameters whih arenormal-sigma and separation-fator. Normal-sigma is a saling parame-ter, inreasing it results in reognizing more the smaller lusters and it ouldbe any integer from one to several hundreds. However, depending on thedata set, hoosing a large normal sigma ould make the algorithm impra-tial due to its omputational omplexity. Separation-fator, on the otherhand, ontrols the ombining phase of lustering, where the smaller lustersare merged together and make up the �nal lusters. It de�nes the extent towhih lusters should be kept separately or be merged together. Aordingto the manual for SamSpetral R pakage [37℄, an appropriate range for theseparation-fator is [0.3−2]. In order to �nd the proper input parameters forthe SamSpetral algorithm, dot-plots of di�erent ombinations of the param-eters on three di�erent FCS �les for eah data set were made and observed.Plots were made for 17 normal sigma from 0.1 to 1.8, for every 0.1 and for
12 di�erent separation-fator, starting from 80 to 1040 for every 80.Clue. [15℄ Is an ensemble lustering algorithm whih is implemented in theR pakage lue [14℄. The algorithm resembles a voting sheme similar tovoting tehnique for ombining lassi�ers [34℄. Having the below:9For AML data one frame with AML positive and one with AML negative were hosen.For Lymphoma data one frame with DLBCL and one frame with Lymphoma were hosen10k were hosen at 6, 8, 10, 12, 15, 18 17



• ci,j, i ∈ 1, ..., n: luster i in the lustering j and n is the number oflusters.
• Cj , j ∈ 1, ..., m: lustering j where m is the total number of lusteringsto be ombined.
• Dl(cv, cr) the similarity distane between two lusters with the samelabel in lusterings v and r, having the labeling l.
• Dtotal,l = ΣlabelingDl(cv, cr)

• labeling l : eah permutation of labels in a lustering.When ombining di�erent lustering results, it must be onsidered that thesame luster in di�erent lusterings might have di�erent labels. Therefore,ombining lusterings has two steps. Step one is to optimally math thesimilar lusters in di�erent lusterings, in a way that the sum of di�erenes
Dtotal,l between eah luster and its mathed lusters among all the lus-tering methods in the ensemble are minimum. There are several methodsfor alulating Dtotal,l and therefore hoosing the labeling whih minimizesit for soft lustering 11 algorithms. Our lusterings here are hard lustering,where eah data point only belongs to one luster in the lustering method.The method used is the transfer distane, whih is for a set of labelings theminimum number of objets to be removed so the lusterings with the leftobjets are idential. Therefore, applying di�erent permutatoins of labelingsto the lusterings, the one whih results in the minimum transfer distane ishosen.One having the same labels for the most similar lusters in di�ernt lus-terings, the seond step is to ombine them into one labeling and lusteringresult. Combining tehnique here was voting whih is basially to hoose thelabel whih is most ommon among all the lusterings for eah objet andreturn it as the label of that objet.Having the labels for eah �le from CLUE and using the FCS �le itself, en-ters of the lusters and their sizes are alulated using two funtions �nd-ClustersCenters.R and getClusterSizes.R. The enter of a luster is theveter of the mean values for the markers of the ells on that luster. Size of11soft lustering algorithms or Fuzzy lustering are lusterings where eah objet belongsto a luster with a value from [0, 1] whih sums up to 1 for eah objet. Manhattanpartition dissimilarity, Eulidean distane, angle and diag are the methods named andbrie�y explained in the pakage 18



a luster is the number of ells in that luster.3.5 Cluster Mathing and Feature ExtrationEah �le represents a sample to be lassi�ed and therefore has a feature vetorbased on the results of the lustering. This feature vetor is obtained by thefeatures of individual lusters it has. The features with whih a luster isdesribed or presented ould vary by the method of lustering it was lusteredwith, for example it ould be the parameters of the distribution, if we usedistribution based lustering tehniques. Here we hose the enter and sizesof lusters for the features, sine we are using di�erent method of lusteringand these two features ould be alulated fast and easy regardless of themethod of lustering used. Therefore, for eah data �le, features are theperent of the total data points in eah of the lusters. Perentage was usedinstead of the atual size sine the number of ells in di�erent �les are notneessarily the same. However, sine eah �le is lustered individually, eventhe same lusters, whih are the ell population with the same harateristisor homologous ell populations, would not neessarily have the sameluster labels in di�erent �les and we needed to have onsisteny among thelabels. This means that we need the homologous lusters to have uni�edlabels among all the �les. The problem of mathing homologous lusters toeah other among di�erent data-sets (here eah �le is a data set) is knownas Cluster Mathing. The luster mathing phase is di�erent for trainand test pipelines. For training, the pipeline fethes the whole training data�les and apply the luster mathing, whih is done by lustering the lusterenters in the train data �les altogether. Centers whih are lustered togetherwould obtain the same label among all the �les and the lustering informationfor eah data �le would be hanged aordingly. This means summing upthe sizes of two lusters in the same �le if they gained the same label inthe luster mathing and therefore not every �le would have members in allthe lusters. The lustering algorithm for the luster mathing ould be anylustering algorithm; here we used K-means lustering. As the number ofthe lusters should be given as a parameter to the K-means algorithm, thisnumber was de�ned as twie the number of the lusters the data �le withthe most lusters. Centers of the luster mathing from the training phase-enters of the enters of lusters- would be kept and used as a frame forluster mathing for the test �les. Sine the �les go through the test phaseindividually and the lassi�ers are trained with the training feature sets, theenters from the luster mathing phase in the training is used to obtainfeatures of the test �les. For eah luster enter in a test �le, the luster19



label would be the label of the luster from from the train luster mathingwhih has the minimum eulidean distane to it (Figure4).3.6 Classi�ation and EvaluationIn order to have a better omparison of the lusterings and study the onsis-teny of lusterings performane, the pipeline was applied with the same setof lustering algorithms with two di�erent lassi�ers Support Vetor Ma-hines - SVM and Multilayer Pereptron Neural Networks - MLP,whih are both popular as general purpose lassi�ers and are known to per-form well with di�erent data sets [5℄ [21℄. To perform statistial analysis onthe results of the lassi�ers, MLP lassi�ers were applied for 400 bootstrapsets of train-test samples and SVM lassi�ers were applied for 100 train-testsamples, using 80% of the data for the train and 20% for test eah time(Figure 13, 14). For lassi�ers, R funtion train and test from the basepakage were used, hoosing the algorithms to be SVM and MLP aord-ingly. Number of internal nodes for the MLP lassi�er was 15, whih wasbased on the size of the feature vetor. For eah train-test sample of thedata, the AUC12 [16℄ result of the test samples were saved into �les, alongthe trained lassi�er and the resulting labels for the reord. Two-sided t-testfor the di�erene between the means were applied, with the null hypothesisbeing �true di�erene in mean is equal to zero�.3.7 Mathematial Representation of the PipelineAn FCM dataset ontains several .FCS �les. Eah �le is a result of FCMexperiment on a sample and inludes a data matrix, where rows representthe ells and olums are markers. Terms used in mathematial explanationof the pipeline are de�ned as follow:
• D = M1,M2, ...,Mm: an FCM data set, ontaing several data matrix.
• M i: data matrix i, where i ∈ 1, ..., n and n is the number of �les in thedata set.
• cij : ell j in data matrix i and j ∈ 1, ..., p where p is the total numberof ells(rows) in the data matrix.
• ccil: luster enter for luster l, in data matrix i.12area under the urve 20



• csil: luster size for luster l, in data matrix i.
• MC i: set of luster enters cci and their sizes csi for a data matrix.
• Mtrain: a subset of D, inluding the data matres used in the trainingphase.
• Mtest: a subset of D, inluding the data matries used in the testingpahse.
• CL(M): a lustering futions, taking in a data matrix M i, returninga vetor of labels l for the ells, ontaining an integer luster label foreah ell c in the matrix.
• CM(): a luster mathing funtion. The appliation of this funtion isdi�erent for train and test data. train: CMtrain(d) taking a matrix ofluster enters d, lusters them and returns the labels for eah enter.This ould be any lustering funtion. test: CMtest(x, d) having theenters of several previously known lusters and their labels x, giventhe enters of lusters for one �le d, it will assing to eah luster enterin d, the labels of the losest luster enter in x(Figure 3)
• SELECT (D, r) selet funtion randomly hoses a subset of r matrixfrom the set D.Having had the above, the pipeline has 8 steps:1. lustering eah data �le individually:for i in 1 : m

MC i = CL(M i)2. seleting the train and test subset:
Mtest = SELECT (D, r)
Mtrain = D −Mtest3. luster mathing for the train data:
resulttrain = CM(Mtrain)4. luster mathing for the test data:
resulttest = CM(Mtest, resulttrain)5. extrating feature matrix for train and test data6. train the lassi�er with the train feature matrix21



7. test the lassifer with the test data8. save the AUC for the test dataSteps 2−8 where repeated 400 times for eah triple of the dataset, lusteringand lassi�er.
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4 Results and Disussion4.1 The AML datasetThe results of AML data was quite variant. Mean of the AUC was between
0.798 and 0.9582 for MLP and 0.768 and 0.972 for SVM lassi�er. Althoughthe results for MLP are generally better, the maximum and minimum ofAUC means belong to k-means and SamSpetral with normal-sigma 110 andseparation-fator 0.1 for both lassi�ers. K-means lustering seems to per-form signi�antly better than other lusterings(Figures1112). The results forother lusterings are similar for both lassi�ers as well, other than the CC03,CC04 and FM lusterings (Figure13). The CC04 ensemble lustering resultsare muh better when used with the MLP lassi�er rather than SVM. Amongthe SampSPECTRAL results, the one with the higher separation-fator ob-tained better results. But using the greater separation-fator is not pratialaording to the omputational omplexities.For the ensemble lusterings, results seem to be better than the individuallusterings and the ensembles performanes are among the highest, however,they are still lower than the best lustering in the ensemble. K-means resultis better than the results of all ensembles, inluding the ones it was partof them. This was not expeted sine aording to FlowCAP1 [27℄ results,the ensemble lustering had better results than all the individual lustering.However, in FlowCAP1 results of the lusterings were ompared to the man-ual gating results and were not ompared to the lassi�ation results as wedid here.Ensemble tehniques are used to improve the performane of lusterings, butbased on the data and individual lusterings, they must be tuned arefullyto perform well. In a voting ensemble tehnique when there is a partiularlustering with signi�antly better results than all the other lusterings, it isbetter to use a weighted voting sheme, in whih there is a weight assignedto the results of eah lustering tehnique when building the ensemble basedon the individual lustering results and as a result, better lusterings wouldhave more impat on the �nal ensemble result than the other lusterings.K-means lustering is a relatively fast lustering and also easy to implementand therefore is a popular lustering, but aording to its two drawabakswhih are being highly dependant on its input parameter k and only beingable to reognize the spherial lusters, it is not the best hoie for theFCM analysis, where the number of lusters are not known previously to23



the analysis and the lusters are not neessarily spherial. However, we seethat with our data sets here and with a good hoie of k, we ould obtainaeptable results.4.2 The Leukemia resultsThe AUC results from the Lymphoma data are less variant, having theirmean between 0.683 and 0.869 for MLP and 0.728 and 0.816 for SVM lassi-�er (Table3). But using k-means algorithm resulted in better AUC for bothof the lassi�ers as well. Unlike the AML data, SVM lassi�er had betterresults here3 and there was more onsisteny among the lassi�er resultsgenerally. Also the best SamSpetral here was not the one with the greatestseparatoin-fator(Figure????). The mean of Ensemble lustering results forall sets are less than the best lustering result and more than the worst one,showing that like the other data set, a weighted voting system might be abetter approah.Results here are similar to those from the AML data, with k-means lusteringhaving the best lassi�ation performane, followed by the best SamSpetraland �owMeans. FlowMeans and SamSpetral results were of the best lus-tering when the standard was manual gating results in FlowCAP1. How-ever, �owMeans algorithm has an advantage ompared to SamSpetral andk-means and that is it ould be applied as a non-parametri lustering andstill generate relatively good results(based on both FlowCAP1 and this ex-periment), but SamSpetral algorithm would perform poorly if parametersare not arefully tuned. Even from a set of hosen parameters whih wasbased on prior observation on the data and omparing several SamSpetralresults, SamSpetral does not have be best performane.
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5 Conlusion and Future WorkUnsupervised learners or lustering algorithms are a well known hoie whenit omes to ategorizing the data sets where we do not have prede�ned labelsfor eah datapoint. In FCM analysis, these algorithms are used to identifythe disriminative ell populations among di�erent samples, as a replaementfor the manual tehniques and to overome their drawbaks. Although lus-tering algorithms are very pratial for this �eld, due to their unsupervisedmethod of learning, it is hallenging to de�ne a proper evaluation methodfor them. One approah is to set the manual analysis results as the goldstandard and trying to ahieve the results similar to manual gating, but inorder to improve the results (even better than manual gating), we need otherstandards. In this experiment, through the previous results of diagnosis usingFCM data, we built a lassi�ation pipeline, whih used lustering algorithmsfor its feature extration part by �nding disriminative ell populations andthe ounts of ells in them using lustering algorithms. To take the analysisone step further, we also applied an ensemble lustering tehnique, to seehow this tehnique ould improve the results ompared to the already knownlustering algorithms in this �eld.This pipeline was implemented to study the performane of di�erent luster-ings in FCM gating, knowing that gating is a ritial and one of the mosthallenging parts of FCM analysis and although new lustering tehniqueshave been introdued to this �eld reently, based on the diversity amongthe FCM data, it is hard to hoose one of them as the ultimate lusteringapproah. Beause of that, most of the lusterings introdued in this �eldare parametri and parameters are to be tuned based on the data. Ensem-ble lustering tehniques have been used to improve the lustering resultsin ompliated problem, here we used a modi�ed version of popular votingtehnique for ombining lassi�ers. Although the ensemble lustering resultwas better than most of the individual lusterings, it ould not beat the bestlustering results. Based on these results, applying a weighted voting shemefor ensemble lustering ould be onsidered as a future work for this projet.There are also other ombining tehniques whih were brie�y disussed here,whih ould be applied to FCM data.
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Tables and Graphs
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Figure 1: FCM analysis pipeline of gating and lassi�ation. FCM data ome in .fs �les. Gating and lassi�ationare two paths in data analysis. Clustering ould be used in feature extration, for lassi�ation. Also, lustering isa way of automati gating.
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Figure 2: Data omes into the pipeline as .FCS �les. Feature extration inludes three parts, lustering, lustermathing and �nally feature extration from the lustering results. Evaluation of the lusterings is done by omparingthe lassi�er results.
28



Figure 3: The pipeline has four modules.
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bookFigure 4: Feature Extration for train(A, B, C) and test(D, E). In train luster mathing is done by meta lusteringthrough the enters of lusters. Center of lusters are saved to be used as referene for luster mathing in the train.
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Figure 5: Comparison of p-values for the lassi�ation results on Lymphomadata, using MLP lassi�er
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Figure 6: Comparison of p-values for the lassi�ation results on Lymphomadata, using SVM lassi�er
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Figure 7: Comparison of p-values for the lassi�ation results on AML data,using SVM lassi�er
33



Figure 8: Comparison of p-values for the lassi�ation results on AML data,using MLP lassi�er
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Figure 9: Boxplots of the AUC for MLP lassi�ers, on Lymphoma data set. Classi�ers were trained and tested for

400 bootstrap samples.
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Figure 10: Boxplots of the AUC for SVM results on Lymphoma data set. Classi�ers were trained and tested for 400bootstrap samples.
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Figure 11: Boxplots of the AUC for SVM results on AML data set. Classi�ers were trained and tested for 400bootstrap samples.
37



Figure 12: Boxplots of the AUC for MLP results on aML data set. Classi�ers were trained and tested for 400bootstrap samples.
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Figure 13: list of AML lusterings and the abbreviation used in theplots. Nine lusterings were applied on AML data, inluding k-means(KM),�owMeans(FM), three SamSpetrals(SS) and four ombination of ensembelusterings(CC). Rows 3-5 are having SamSpetral abbreviations and theirparameters normal-sigma and separaiton fator. Rows 6-9 have the EnsembleClusterins abbreviations and their set of individual lusterings.
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Figure 14: List of Lymphoma lusterings and the abbreviation used in theplots. Twelve lusterings were applied on Lymphoma data, inluding k-means(KM), �owMeans(FM), seven SamSpetrals(SS) and three ombina-tion of ensembe lusterings(CC). Rows 3-9 are having SamSpetral abbre-viations and their parameters normal-sigma and separaiton fator. Rows10-12 have the Ensemble Clusterins abbreviations and their set of individuallusterings.
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dataset markerAML FSC, SSC, lgG1-FITC, lgG1-PE, CD45-ECD, lgG1-PC5, lgG1-PC7Lymphoma FSC-A, FSC-W, SSC, FITC, PE, PerCP-Cy5-55, PE-Cy7,APC, APC-CY7, Pai�Blue, AmCyanTable 1: List of the markers for the data sets. AML, Lymphoma

lustering CC01 CC02 CC03 CC04 FM KM SS 110 0.1 SS 110 0.3 SS 110 0.6 meanSVM 0.795 0.928 0.925 0.806 0.849 0.972 0.767 0.789 0.843 0.853MLP 0.830 0.894 0.885 0.859 0.851 0.958 0.798 0.842 0.882 0.867SVM-MLP -0.035 0.034 0.039 -0.053 -0.002 0.014 -0.032 -0.053 -0.039 -0.014Table 2: Mean for the AUC results of the lusterings on AML data

lustering CC01 CC02 CC03 FM KM SS 11 200 SS 11 390 SS 11 900 SS 4 390 SS 4 900 SS 7 390 SS 7 900 meanSVM 0.758 0.770 0.767 0.774 0.816 0.756 0.755 0.755 0.777 0.747 0.728 0.754 0.762MLP 0.702 0.710 0.708 0.730 0.769 0.705 0.709 0.718 0.710 0.718 0.683 0.704 0.714SVM-MLP 0.056 0.06 0.059 0.044 0.047 0.051 0.046 0.037 0.067 0.029 0.045 0.050 0.048Table 3: Mean for the AUC results of the lusterings on Lymphoma data
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