
MASTER'S THESISA Pipeline for Comparison of ClusteringMethods in Flow Cytometry AnalysisIn
luding Ensemble Clustering
Marjan Farahbod
Department of Mathemati
al S
ien
esCHALMERS UNIVERSITY OF TECHNOLOGYGöteborg, Sweden 2013



Thesis for the Degree of Master of S
ien
e
A Pipeline for Comparison of ClusteringMethods in Flow Cytometry AnalysisIn
luding Ensemble ClusteringMarjan Farahbod

Department of Mathemati
al S
ien
esChalmers University of Te
hnologySE-412 96 Göteborg, SwedenGöteborg, April 2013



Mathemati
al S
ien
esGöteborg 2013



A Pipeline for Comparison of ClusteringMethods in Flow Cytometry AnalysisIn
luding Ensemble ClusteringMarjan FarahbodApril 19, 2013Abstra
tThis thesis is on applying di�erent 
lustering algorithms and 
omparing theirresults with ensemble 
lustering in a Flow Cytometry(FCM) data analysispipeline. Although FCM has been used for several de
ades in both 
lini
aland resear
h labs, there has not been many appli
ations of bioinformati
sin this �eld. The advan
es in te
hnology and bio
hemistry has led to mas-sive improvements in the �eld of FCM through the last de
ades, whi
h hasbrought fast generation of high throughput data. However, the analysis ofFCM data is mostly done manually and la
k of 
omputational te
hniqueshave be
ome more evident. One of the most 
hallenging aspe
ts of FCManalysis is gating, whi
h is the re
ognition of di�erent 
ell populations in atissue sample based on light s
atter and �uores
ent data 
olle
ted from ea
h
ell. In the last few years, several te
hniques of automati
 gating have beenintrodu
ed, mostly based on popular 
lustering algorithms.The evaluation of 
lustering algorithms is still 
onsidered to be a 
hallengingissue, these algorithms are unsupervised learners and therefore, there are nopre-de�ned labels for ea
h input to determine perfe
t results. In this proje
t,a 
lassi�
ation pipeline of FCM analysis is introdu
ed and used to 
omparethe results of the 
lustering algorithms. Clusterings are used in the featureextra
tion part for the 
lassi�er and the better the results of the 
lassi�
ationare, the more pra
ti
al 
lustering is 
onsidered to be. However, this inferen
e
an not be automati
ally generalized in this �eld but is an admissible methodof spe
i�
 performan
e 
omparison among di�erent 
lustering te
hniques.Apart from individual 
lusterings, a voting te
hnique of Ensemble Clus-tering was applied whi
h similar to voting te
hnique in 
ombining 
lassi�ers.To investigate the appli
ation of ensemble 
lustering, the results of 
lassi�-
ations whi
h used individual well known 
lustering approa
hes in FCM for



feature extra
tion were 
ompared to ea
h other and also to the results of
lassi�
ation whi
h used some ensemble of these 
lustering algorithms. Tobe able to get more generalize 
on
lusions, this pipeline was tested on twodi�erent FCM data sets, the data from 
ontrols and patients with A
uteMyeloid Leukemia and data from DLBC 1 and Folli
ular Lymphoma. Alsofor ea
h data set two di�erent 
lassi�ers were tested and results were 
om-pared. The 
hallenges of implementing this pipeline and the 
omparison ofdi�erent 
lustering te
hniques on two data sets are dis
ussed. It is also shownthat although the results of this ensemble te
hnique were generally betterthan the results of individual 
lustering methods, that is not always the 
aseand the result depends on the 
hoi
es of 
lusterings. Three individual 
lus-terings were used, k-means, �owMeans and SamSpe
tral. The SamSpe
tral
lustering was applied on the data with several di�erent parameters, as itis a parametri
 algorithm and performs di�erently when its parameters are
hanged. Among these 
lustering methods, the popular k-means resulted ina signi�
antly better 
lassi�
ation for both of the data sets, followed by theensemble 
lusterings and the SamSpe
tral 
lustering algorithm with the best
hoi
e of parameters.keywords: FCM, Clustering, Ensemble Clustering, Classi�
ation,Can
er

1Di�use Large B-Cell 2
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1 Introdu
tionGating or identifying the dis
riminative 
ell populations in FCM data is oneof the most 
hallenging steps of the analysis. In order to automate gating,many 
lustering algorithms have been introdu
ed. Mostly the goal of thesealgorithms is to be able to generate the results whi
h are the most similarto the manual gating results, taking the manual gating as a gold standardin this �eld [27℄. However, 
onsidering several drawba
ks of the manual gat-ing whi
h are dis
ussed in the ba
kground se
tion, in order to examine theperforman
e of di�erent 
lustering te
hniques in
luding Ensemble Clusteringhere, we used another method of evaluation whi
h is using the 
lassi�
ationresults of the FCM data sets. Ea
h FCM data �le in these data sets is ob-tained from a FCM experiment on a tissue sample of a patient, knowing theresults of diagnosis for ea
h patient-whi
h is either the type of the 
an
erbetween the 
an
er patients or if the sample is from a healthy or su�eringpatient- we use the results of 
lusterings for the feature extra
tion and thentrain and test the 
lassi�ers feeding these features and the labels.The aim of this resear
h was to develop a pipeline of evaluation for di�er-ent 
lustering algorithms, whi
h enables us to 
ompare the results of di�er-ent 
lusterings in
luding Ensemble Clustering. Having the FCM �les, thepipeline in
ludes the prepro
essing and normalization, 
lustering and featureextra
tion and 
lassi�
ation.The Ensemble Clustering te
hniques have been introdu
ed and used on dif-ferent data sets for more than a de
ade. The idea of 
ombining several
lustering algorithms in order to obtain better results 
omes from its sister�eld, 
lassi�
ation, in whi
h 
ombining di�erent 
lassi�ers is quite popularand has shown to improve the performan
e generally [33℄ [30℄; however bring-ing this approa
h to the 
lustering �eld has been 
hallenging. Here we useda simulated voting algorithm from Hornik [15℄, whi
h modi�es the votingsystem of 
ombining 
lassi�ers and applies it for 
ombining 
lusterings. Weapplied this pipeline on two data sets to be able to have a better 
omparisonof di�erent methods. Also, in the 
lassi�
ation phase, two di�erent 
lassi�erswere tested, with the set of the same 
lustering algorithms.The FCM experiment and analysis are dis
ussed in the ba
kground se
tion,followed by a review on variant te
hniques of gating. Classi�
ation in FCMand use of voting te
hnique for 
ombining 
lusterings is also dis
ussed inthe ba
kground. In Materials and Methods, the analysis pipeline imple-mented in this proje
t is explained in details. Comparison of the di�erent
lustering algorithms used in the pipeline are dis
ussed in Results and Dis-
ussion. 7



2 Ba
kground2.1 FCMHistoryThe term Cytometry2 is the pro
ess of applying measurements to 
ells andstudying their physi
al and 
hemi
al 
hara
teristi
s. FCM3 refers to theappli
ation of these measurements to the 
ells 
ontained in a �uid. The�rst �ow 
ytometers were used in 1960 [29℄. Sin
e then, it has been used inresear
h labs for studying di�erent 
ell 
ultures and in 
lini
al labs in pathol-ogy, for diagnosis of several types of 
an
ers as well as many other diseasessu
h as HIV [29℄The FCM experimentIn an FCM experiment, the suspension 
ontaining 
ells from a body tissue ora 
ell 
ulture is exposed to bio
hemi
al markers. The 
ells in this suspensionwill pass through the laser interrogation points in a �ow 
ytometer one byone. The 're�e
tions' from the laser beam are 
olle
ted and 
onverted toele
troni
 signals whi
h are digitized and sent to a 
omputer to be saved indata �les. The re�e
tion from the forward light s
atter indi
ates the sizeand shape of the 
ell and the side light s
atter granularity gives informationabout the internal 
omplexity of the 
ell. The �uores
en
e emitted from the
ell surfa
e de�nes the intensity of the markers on the 
ell membrane. [3℄.Ea
h row in an FCM data �le has information of one 
ell, with 
olumns ofdata for ea
h marker and side and forward s
atter.MarkersFCM markers are mostly extra
ellular and bind to the proteins on the surfa
eof the 
ells, but for some experiments intra
ellular markers are used as well.The number of markers to be used in a single experiment are limited and thenumbers vary in di�erent �ow 
ytometers. Today there are �ow 
ytometerswhi
h 
an measure up to forty markers in a single experiment. Markers are
arefully 
hosen a

ording to the studies done on the proteins exposed tothe surfa
e of di�erent 
ells in the samples being tested. Sin
e the numberof markers is limited in ea
h experiment, some samples are divided into2
yto for 
ell and metry for measurements3�ow for �uid 8



numerous tubes. Ea
h tube would be put through the experiment withdi�erent set of markers. Set of markers in di�erent tubes usually overlap.2.2 Appli
ations of FCMThe ability to de�ne subpopulations in a 
ell sample a

ording to the size,shape and bio
hemi
al markers on the surfa
e of the 
ell has made FCM agreat tool for both 
lini
al and resear
h labs. It has been used for diagno-sis and prognosis of Leukemia and Lymphoma and also in peripheral bloodhematopoieti
 stem 
ell studies [35℄. It has also been used in environmentals
ien
es for the identi�
ation of new spe
ies. [18℄ [22℄2.3 Analysis of FCM DataFor ea
h tube of the sample, the FCM te
hnique generates multidimentionaldata for individual 
ells in that sample [17℄. Nowadays, �ow 
ytometers 
angenerate data samples of up to a million 
ells for up to forty markers. How-ever, the FCM �les used for this proje
t in
lude data for tens of thousandsof 
ells with 7 and 11 markers per tube. 4The goal in many FCM analyses is to identify 
ells in heterogeneous popu-lations. These di�erent 
ell populations de�ned within a 
ell sample be
ome�ngerprints of that sample for further analysis. In pathology, 
ell sampleswith similar populations are to be diagnosed with the same disease. Similar-ity between 
ells is determined by their size and shape and also the markersatta
hed on their surfa
e. Certain types of markers are used to diagnose ordi�erentiate between 
an
ers. As an example, �nding a population with theCD22 marker means there is a > 90% 
han
e that the sample 
omes from atissue with T-
ell Lymphoma5 [13℄. Cell population dis
rimination is knownas Gating. Gating analyses are not usually straight forward. The valuesassigned to ea
h 
ell for a parti
ular marker are 
ontinuous and therefore to
all a 
ell positive with a marker in a data set needs deli
ate pro
essing. Also,on
e the positive 
ell populations are re
ognized in a sample, the diagnosis
ould not be made at 100% for just one marker. Many markers are not highlydis
riminative and 
ould be present in various sub-types of a 
an
er. Gatinganalysis are mostly unsupervised and are done to dis
over new 
ell types orphenotypes of a known disease.4there were two data sets used in this experiment whi
h are dis
ussed in details inMaterials and Methods5the Lymphoma that a�e
ts T-
ells 9



2.4 GatingGating refers to de�ning di�erent subpopulations within a sample tube. Thissubpopulation identi�
ation would be used as a 
hara
teristi
 of the sample.Gating is generally a
knowledged to be one of the most powerful but alsoone of the most problemati
 aspe
ts of FCM a

ording to its subje
tive na-ture [12℄. It is traditionally done by biologists by drawing boundaries (gates)in two dimensional proje
tions of the data. Re
ently, there have been someautomati
 methods introdu
ed for this stage of analysis [26℄ [11℄ [19℄ [35℄ [23℄.These methods are mostly based on famous 
lustering algorithms like k-means.2.5 Manual GatingManual gating is done by drawing boundries around the re
ognized 
lustersin the one or two dimensional proje
tion of the data by resear
hers [26℄,or it is done based on density distributions. Sin
e the number of 
hannelsare more than two, manual gating is done in a hierar
hy. At ea
h level onlytwo dimensions are plotted and in the next level, the populations found inthe previous plot, are plotted in the next two dimensions separately and newpopulations are re
ognized. Therefore the number of 
ells plotted at ea
hlevel of the hierar
hy are redu
ed.Manual gating is a labor intensive pro
ess and the result varies dependingon user experien
e and intuition [26℄ about the data and markers. Sin
e itis done by individuals and is highly dependent on their experien
e in the�eld, it is not easy to reprodu
e. Also, sin
e the data is visualized in justtwo or three dimensions at ea
h level, the high-dimensional features 
an notbe re
ognized. These drawba
ks of manual gating 
an be summarized assubje
tivity, la
k of e�
ien
y and loss of information [26℄.2.6 Automated GatingThe drawba
ks of manual analysis of FCM data have brought up the needfor using automated analyzing te
hniques, among whi
h are several 
luster-ing algorithms used for gating. Based on their unsupervised learning nature,
lustering algorithms were reasonable 
hoi
es for automated gating pro
esses.However, most of the 
lustering algorithms used in FCM are based on known
lustering te
hniques and have been through some modi�
ations in order tomeet the te
hni
al requirements of FCM analysis. By 2008 there were 
onsid-erable number of algorithms developed for FCM analysis and many su

essfulresults were being reported. Murphy et al. [23℄ used k-means 
lustering and10



reported good results. K-means 
lustering is a rather fast algorithm and iseasy to implement and apply to FCM data 
onsidering the size of FCM data�les. However, it has some short
omings when used on non-ellipti
 data as itis a 
entroid based 
lustering te
hnique. Also, it needs the number of 
lustersto be given as a parameter, hen
e it is not a proper 
hoi
e for dis
overingunknown sub populations. Therefore, the use of more 
omplex 
lusteringsbe
ame vital in the �eld. In 2008 Chan et al. [7℄ used statisti
al 
lusteringwith Guassian mixture model on four 
olor FCM data. Lo et al. [19℄ used tmixture model to generalize the previous guassian mixture model and there-fore �nd non-ellipti
al subpopulations as well. The FLAME algorithm byPyne et al. [26℄ also uses a distribution based 
lustering and models datainto a skew t mixture model, where for ea
h population the mixtures of 2 to
20 skew t distributions are modeled. The parameters of individual distri-butions in ea
h mixture are 
al
ulated by Maximum Likelihood estimationsvia the Expe
tation Maximization(EM). For ea
h sample the best of thesemodels is 
hosen a

ording to their S
ale-free Weighted Ratio (SWR) whi
his the ratio between the intra
luster distan
es and the inter
luster distan
es.Although distribution based algorithms has been quite popular and pra
ti
alin this �eld, there have been other noti
eably good algorithms. SamSpe
-tral [35℄ used a modi�ed spe
tral algorithm and reports a

eptable resultsfor diagnosing subtypes of Lymphoma.In Criti
al Assessment of Population Identi�
ation Methods (FlowCAP1) [27℄a set of both 
entroid-based and density-based 
lustering algorithms in
lud-ing some of the above were 
ompared against ea
h other in four 
hallenges,having the manual gating results as the referen
e. Challenges 
omprisedCompletely Automated Algorithms, where the algorithms were either param-eter free or their parameters were set independent of the data sets; TheManually Tuned Algorithms, where the parameters 
ould be set a

ording todi�erent data sets; Assignment of Cells to Populations with pre-de�ned Num-ber of Populations, where the number of populations were given to the algo-rithms and �nally the Supervised Approa
hes Trained using Human-ProvidedGates, where 25% of the �les with manual gating results were provided toparti
ipants for training their algorithms [27℄. Some of the algorithms pre-sented in FlowCAP1 are now available via R pa
kages, among whi
h areSamSpe
tral, FlowMeans and FlowCLUST.When 
hoosing a 
lustering algorithm, there are two 
hallenges to over
ome.First, many 
lustering algorithms are based on random initializations andhave sto
hasti
 learning methods [8℄. The famous k-means 
lustering 
hoosesthe �rst set of 
enters randomly and therefore performs di�erently ea
h time11



it 
lusters the same data. Se
ondly, most of the 
lustering algorithms havesome initial parameters to be set. Choi
es of parameters a�e
t the perfor-man
e of the 
lustering and 
omprises both the results and exe
ution time.Therefore, parameters must be 
hosen based on the type of data and the kindof populations one is looking for. Performing a k-means algorithm on FCMData when we are looking for the small new population, requires putting alarge k(number of 
lusters) as an input parameter. However, k-means al-gorithm does not work well in �nding non-globular 
lusters and therefore isnot 
onsidered to be a good option for the FCM analysis, where many of the
lusters are non-globular.2.7 Classi�
ation in FCMIn most of the 
lini
al pra
ti
e of FCM in 
an
er diagnosis, the goal is toidentify the dis
riminative 
ell populations in ea
h type of 
an
er and 
lassifythe examined samples by their type of 
an
er. Over the last two de
ades,FCM 
lassi�
ation was done via the 
omparison of the light s
atter pro�lesof 
ontrol and patient groups [32℄. These kinds of 
lassi�
ations were doneby simply 
omparing the plots of di�erent samples, hen
e it was mostly donemanually. Gating was in
luded in these analyses in order to identify 
om-mon 
ell populations among di�erent samples. However, with the advan
eof 
omputational te
hnology and its appli
ation in biology, the analysis ofFCM 
ould bene�t from various ma
hine learning algorithms and statisti
alanalysis. Clustering algorithms 
ould be used to over
ome the drawba
ks ofmanual gating, but also many types of 
lassi�
ation algorithms whi
h areknown as supervised learners 
ould be applied to FCM Data. By having theresults of the earlier diagnosed samples of di�erent types of 
an
ers and usingthe proper feature extra
tion methods for their FCM data, one 
ould traina 
lassi�er to dis
riminate between di�erent 
an
er types.In 2008, Pedreira et al. [25℄ implemented a multidimensional 
lassi�
ationby using a divide and 
onquer approa
h on four 
olor FCM data from pe-ripheral blood lympho
yte samples; however, like most of the 
lassi�
ationsused in FCM so far it is based on unsupervised statisti
al ma
hine learningte
hniques.2.8 Ensemble ClusteringThe idea of using a method of 
ombined 
lusterings in order to obtain betterresults when solving a 
lustering or unsupervised learning algorithm 
omes12



from its sister �eld 
lassi�
ation or supervised learning, where several te
h-niques of 
ombining 
lassi�ers have been introdu
ed and are generally knownto improve the results.When having a 
ompli
ated problem on whi
h the individual 
lassi�
ationalgorithms do not perform well, one approa
h would be to use several algo-rithms and bene�t from putting together their results through some 
ombin-ing method [30℄, hoping that one's strength would 
over the others weaknessand thereby redu
e the overall error. As in 
lassi�
ation, there are manydi�erent forms of applying a 
ombining method when one is trying to bene�tfrom several 
lusterings in a 
ompli
ated problem.Regarding the data, for reasons su
h as the di�erent performan
e of 
lustererson parti
ular type of data or limited resour
es [31℄, the individual 
lusteringsin the ensemble 
ould be applied to di�erent parts of the data. This does not
reate any di�
ulties for 
ombining part sin
e most of the 
ombining te
h-niques need only the labels and some information from the results of ea
halgorithm and do not rely on having the original data points. Basi
ally, thedata 
ould be divided based on the feature set or data points. The formeris, where for the same data di�erent subsets of features are given to ea
h
lustering. These subsets of features 
ould have overlaps or be disjoint. Thisis most 
ommon when you have features of various resour
es, or features ofdi�erent types. The latter, however, is when di�erent subsets of data pointsare given to 
lusterers for 
lustering, while ea
h of the data points have allthe features. However, using the whole data set for ea
h 
lustering algorithmis expe
ted to improve the results of 
lustering as well.There are three methods of 
ombining 
lusterings6 introdu
ed in [31℄. Their�rst method, namedCluster-based Similarity Partitioning Algorithm-CSPA, de�nes a pairwise measure of similarity between the obje
ts, basedon the 
ounts of their presen
e in the same 
luster. As simple as this methodis to implement, sin
e it requires the memory of the order O(n2) of the input,it be
omes impra
ti
al for the large input. Therefore, it is not 
onvenientfor FCM data where the number of obje
ts to be 
lustered 
ould be morethan hundreds of thousands. Their se
ond approa
h is HyperGraph Par-titioning Algorithm-HGPA, based on a hypergraph presentation of the
lusterings and de�ning n-way relationship between the data points.6the 
ombining fun
tion is also 
alled 
onsensus 
lustering or the 
ombiner in some ofthe litreture 13



Diversity in the approa
h. Inorder to a
hieve the most results from the
ombined approa
h, one does not only look for 
lusterings whi
h performwell individually, but also tries to bring the most diversity possible amongthem. We 
annot expe
t to get mu
h improvement in our 
ombination if allthe individual algorithms are quite similar and 
luster the data in the samemanner. It is only with a great diversity between the individual algorithmsand using a proper 
ombining method that one 
ould ex
ept better perfor-man
e using an ensemble of 
lusterings. Having diversity 
ould be a
hievedby using di�erent 
lustering methods (e.g., using a mixture of a 
entroidbased 
lustering and a density based) or applying the same methods of 
lus-tering with di�erent input parameters.Voting has been one of the well-known methods for 
ombining 
lassi�ers [33℄.Although voting s
hemes are rather straightforward pro
edures in 
ombining
lassi�ers, when it 
omes to 
lusterings they are not as simple. The di�eren
ebetween 
lassi�
ation algorithms and 
lustering algorithms brings up 
ertainissues to be taken 
are of. Unlike a 
lassi�
ation problem, there are noprede�ned labels for the data in a 
lustering and therefore there is a problemof de�ning whi
h 
luster of one 
lustering algorithm 
orresponds to whi
h
lusters in the other algorithms, the problem is even using the same method of
lustering 
ould not result in the same set of labeling. [8℄ Therefore, to applyvoting in 
ombining 
lusterings, �rst we need to mat
h the same 
lustersfrom di�erent algorithms and then we 
an 
ompare the labels the algorithmshave assigned to a parti
ular data point and vote between them.

14



3 Materials and MethodsThere are two pipelines of FCM analysis. While the goal in Gating is toidentify 
ell populations, in Classi�
ation the goal is to �nd the dis
rimi-native features between the samples of di�erent type (e.g., di�erent 
an
ertypes). Several methods of 
lustering 
ould be applied in both of these path-ways (Figure1).The pipeline 
oded and used for this proje
t is a 
lassi�
ation pipeline whi
huses 
lustering for feature extra
tion. The general framework of the pipelineis shown in Figure2, whi
h also in
ludes the steps of the Ensemble Clus-tering. There are four major steps in the pipeline (Figure 3), however thereare some minor di�eren
es between the training pipeline and testing pipeline,regarding the Cluster Mat
hing and Feature Extra
tion phase.3.1 AML DataThe AML7 dataset was used in FlowCAP2 
ompetition [27℄, where the par-ti
ipants presented their automated analysis methods for di�erent 
hallengesin FCM analysis, in
luding the gating. The manual gating labels were usedto rate the performan
e of ea
h algorithm. The AML 
hallenge was to �nd
ell populations that 
an be used to dis
riminate between AML positive andAML negative patients. Peripheral blood or bone marrow aspirate sampleswere 
olle
ted over a one year period using eight tubes, from 43 AML posi-tive patients and 316 healthy people [11℄. Tubes were di�erent in their 
hoi
eof markers. The data from ea
h tube 
ould be analyzed separately. In thisexperiment the data of tube two was used. This tube was 
hosen randomlyand the 
omparison of the results from di�erent tubes of a single FCM exper-iment was beyond the s
ope of this proje
t. Tube two had 7 markers whi
hlisted in Table113.2 The Lymphoma DataThe DLBCL8 and Folli
ular Lymphoma data is the data from 118 patients,
33 of whi
h were diagnosed with DLBCL and 85 were diagnosed with a typeof Folli
ular Lymphoma. The FCM experiment on these patients had 11markers, the markers and information about data sets are given in Table117A
ute Myeloid Leukemia8Di�use Large B-
ell Lymphoma 15



3.3 Pre-pro
essingBased on the data set, FCM �les need some pre-pro
essing. There are threesteps of pre-pro
essing whi
h are 
ommonly applied to FCM �les, biexponen-tial transformation, 
ompensation and normalization. FCM data is usuallypresented using a log-s
ale, but some of the data points are on or below theaxis with this presentation, therefore a biexponential transformation is ap-plied to make use of all the data points. Also, signals from di�erent markersin an FCM experiment 
ould have overlap with ea
h other, whi
h generatesproblems in both manual and automated gating. To �x this, there is usuallya matrix provided with the FCM �les, 
alled the 
ompensation matrix, whi
his a transformation matrix used to eliminate the e�e
ts of overlapping signals.The AML dataset was already 
ompensated and did not need su
h a pro
ess,for the biexponential transformation fun
tion estimateLogi
le and transfromwhere used in R. Normalization was also applied to transform the data withinthe range of [0, 1]. The same tools were used for the Lymphoma data set;however, it also needed to be 
ompensated.3.4 Clustering AlgorithmsThere were three individual 
lustering algorithms used on this pipeline forea
h data set: �owMeans, KM and SamSpe
tral. SamSpe
tral [36℄ is a para-metri
 
lustering and it was applied with di�erent input parameters. Basedon the results of the 
lassi�
ation, whi
h is 
onsidered to be the evaluationof these 
lusterings, sets of individual 
lusterings were 
hosen to be used inthe Ensemble Clustering(Figures14,13).Ensemble Clustering te
hniqueused here is from pa
kage CLUE in R. Pa
kage CLUE was released in 2007by Kurt Hornik, for 
reation and analyzing 
luster ensembles. The ensemblefun
tions is easy to apply for di�erent datasets with minor modi�
ations,introdu
ed in the pa
kage manual. Results of the 
lustering algorithm forea
h �le are saved separately, so that they 
ould be fet
hed in the next stepwhi
h is Cluster Mat
hing and Feature Extra
tion. The output of these al-gorithms, in
luding the Ensemble Clustering, are not the same; however, allof them return a ve
tor of the 
lustering labels for the data 
ontaining aninteger label for ea
h data point. Given the labels and the data �le itself,
enters and sizes of the 
lusters for ea
h �le are 
al
ulated and found. The
enter of a 
luster is the mean of the data points in that 
luster. The ve
torof labels along with the 
enter and size of ea
h 
luster are saved for ea
h �le.�owMeans Clustering. �owMeans is a non-parametri
 FCM 
lustering16



whi
h is based on k-means 
lustering but unlike k-means, it allows for 
on-
ave 
lusters, by using several 
lusters to model a single population. It also�nds the number of 
lusters by taking the number of modes found individ-ually in every eigenve
tor of the data [1℄. �owMeans 
lustering is availablevia the R pa
kage �owMeans [2℄K-means Clustering. K-means 
lustering was applied to the data using Rfun
tion kmeans. k-means is a parametri
 
lustering and needs the numberof 
lusters to be de�ned as an input parameter. The number of 
lusters weregiven 15 for both of the data sets. This number was given after observingthe dot-plots of the data in experimental k-means results. From ea
h dataset two frames9 were 
hosen to observe the results of k-means 
lusterings fordi�erent k on the dotplots10. Most of the populations were identi�ed when kwas 
hosen at 8, 10 or 12, but 15 was 
hosen sin
e it did not a�e
t the iden-ti�
ation of large 
ell populations negatively, while it 
ould have improvedthe 
han
e of �nding small dis
riminative populations.SamSpe
tral Clustering. [37℄ [36℄ SamSpe
tral is a parametri
 spe
tral
lustering. Its performan
e is tuned mostly by two parameters whi
h arenormal-sigma and separation-fa
tor. Normal-sigma is a s
aling parame-ter, in
reasing it results in re
ognizing more the smaller 
lusters and it 
ouldbe any integer from one to several hundreds. However, depending on thedata set, 
hoosing a large normal sigma 
ould make the algorithm impra
-ti
al due to its 
omputational 
omplexity. Separation-fa
tor, on the otherhand, 
ontrols the 
ombining phase of 
lustering, where the smaller 
lustersare merged together and make up the �nal 
lusters. It de�nes the extent towhi
h 
lusters should be kept separately or be merged together. A

ordingto the manual for SamSpe
tral R pa
kage [37℄, an appropriate range for theseparation-fa
tor is [0.3−2]. In order to �nd the proper input parameters forthe SamSpe
tral algorithm, dot-plots of di�erent 
ombinations of the param-eters on three di�erent FCS �les for ea
h data set were made and observed.Plots were made for 17 normal sigma from 0.1 to 1.8, for every 0.1 and for
12 di�erent separation-fa
tor, starting from 80 to 1040 for every 80.Clue. [15℄ Is an ensemble 
lustering algorithm whi
h is implemented in theR pa
kage 
lue [14℄. The algorithm resembles a voting s
heme similar tovoting te
hnique for 
ombining 
lassi�ers [34℄. Having the below:9For AML data one frame with AML positive and one with AML negative were 
hosen.For Lymphoma data one frame with DLBCL and one frame with Lymphoma were 
hosen10k were 
hosen at 6, 8, 10, 12, 15, 18 17



• ci,j, i ∈ 1, ..., n: 
luster i in the 
lustering j and n is the number of
lusters.
• Cj , j ∈ 1, ..., m: 
lustering j where m is the total number of 
lusteringsto be 
ombined.
• Dl(cv, cr) the similarity distan
e between two 
lusters with the samelabel in 
lusterings v and r, having the labeling l.
• Dtotal,l = ΣlabelingDl(cv, cr)

• labeling l : ea
h permutation of labels in a 
lustering.When 
ombining di�erent 
lustering results, it must be 
onsidered that thesame 
luster in di�erent 
lusterings might have di�erent labels. Therefore,
ombining 
lusterings has two steps. Step one is to optimally mat
h thesimilar 
lusters in di�erent 
lusterings, in a way that the sum of di�eren
es
Dtotal,l between ea
h 
luster and its mat
hed 
lusters among all the 
lus-tering methods in the ensemble are minimum. There are several methodsfor 
al
ulating Dtotal,l and therefore 
hoosing the labeling whi
h minimizesit for soft 
lustering 11 algorithms. Our 
lusterings here are hard 
lustering,where ea
h data point only belongs to one 
luster in the 
lustering method.The method used is the transfer distan
e, whi
h is for a set of labelings theminimum number of obje
ts to be removed so the 
lusterings with the leftobje
ts are identi
al. Therefore, applying di�erent permutatoins of labelingsto the 
lusterings, the one whi
h results in the minimum transfer distan
e is
hosen.On
e having the same labels for the most similar 
lusters in di�ernt 
lus-terings, the se
ond step is to 
ombine them into one labeling and 
lusteringresult. Combining te
hnique here was voting whi
h is basi
ally to 
hoose thelabel whi
h is most 
ommon among all the 
lusterings for ea
h obje
t andreturn it as the label of that obje
t.Having the labels for ea
h �le from CLUE and using the FCS �le itself, 
en-ters of the 
lusters and their sizes are 
al
ulated using two fun
tions �nd-ClustersCenters.R and getClusterSizes.R. The 
enter of a 
luster is theve
ter of the mean values for the markers of the 
ells on that 
luster. Size of11soft 
lustering algorithms or Fuzzy 
lustering are 
lusterings where ea
h obje
t belongsto a 
luster with a value from [0, 1] whi
h sums up to 1 for ea
h obje
t. Manhattanpartition dissimilarity, Eu
lidean distan
e, angle and diag are the methods named andbrie�y explained in the pa
kage 18



a 
luster is the number of 
ells in that 
luster.3.5 Cluster Mat
hing and Feature Extra
tionEa
h �le represents a sample to be 
lassi�ed and therefore has a feature ve
torbased on the results of the 
lustering. This feature ve
tor is obtained by thefeatures of individual 
lusters it has. The features with whi
h a 
luster isdes
ribed or presented 
ould vary by the method of 
lustering it was 
lusteredwith, for example it 
ould be the parameters of the distribution, if we usedistribution based 
lustering te
hniques. Here we 
hose the 
enter and sizesof 
lusters for the features, sin
e we are using di�erent method of 
lusteringand these two features 
ould be 
al
ulated fast and easy regardless of themethod of 
lustering used. Therefore, for ea
h data �le, features are theper
ent of the total data points in ea
h of the 
lusters. Per
entage was usedinstead of the a
tual size sin
e the number of 
ells in di�erent �les are notne
essarily the same. However, sin
e ea
h �le is 
lustered individually, eventhe same 
lusters, whi
h are the 
ell population with the same 
hara
teristi
sor homologous 
ell populations, would not ne
essarily have the same
luster labels in di�erent �les and we needed to have 
onsisten
y among thelabels. This means that we need the homologous 
lusters to have uni�edlabels among all the �les. The problem of mat
hing homologous 
lusters toea
h other among di�erent data-sets (here ea
h �le is a data set) is knownas Cluster Mat
hing. The 
luster mat
hing phase is di�erent for trainand test pipelines. For training, the pipeline fet
hes the whole training data�les and apply the 
luster mat
hing, whi
h is done by 
lustering the 
luster
enters in the train data �les altogether. Centers whi
h are 
lustered togetherwould obtain the same label among all the �les and the 
lustering informationfor ea
h data �le would be 
hanged a

ordingly. This means summing upthe sizes of two 
lusters in the same �le if they gained the same label inthe 
luster mat
hing and therefore not every �le would have members in allthe 
lusters. The 
lustering algorithm for the 
luster mat
hing 
ould be any
lustering algorithm; here we used K-means 
lustering. As the number ofthe 
lusters should be given as a parameter to the K-means algorithm, thisnumber was de�ned as twi
e the number of the 
lusters the data �le withthe most 
lusters. Centers of the 
luster mat
hing from the training phase-
enters of the 
enters of 
lusters- would be kept and used as a frame for
luster mat
hing for the test �les. Sin
e the �les go through the test phaseindividually and the 
lassi�ers are trained with the training feature sets, the
enters from the 
luster mat
hing phase in the training is used to obtainfeatures of the test �les. For ea
h 
luster 
enter in a test �le, the 
luster19



label would be the label of the 
luster from from the train 
luster mat
hingwhi
h has the minimum eu
lidean distan
e to it (Figure4).3.6 Classi�
ation and EvaluationIn order to have a better 
omparison of the 
lusterings and study the 
onsis-ten
y of 
lusterings performan
e, the pipeline was applied with the same setof 
lustering algorithms with two di�erent 
lassi�ers Support Ve
tor Ma-
hines - SVM and Multilayer Per
eptron Neural Networks - MLP,whi
h are both popular as general purpose 
lassi�ers and are known to per-form well with di�erent data sets [5℄ [21℄. To perform statisti
al analysis onthe results of the 
lassi�ers, MLP 
lassi�ers were applied for 400 bootstrapsets of train-test samples and SVM 
lassi�ers were applied for 100 train-testsamples, using 80% of the data for the train and 20% for test ea
h time(Figure 13, 14). For 
lassi�ers, R fun
tion train and test from the basepa
kage were used, 
hoosing the algorithms to be SVM and MLP a

ord-ingly. Number of internal nodes for the MLP 
lassi�er was 15, whi
h wasbased on the size of the feature ve
tor. For ea
h train-test sample of thedata, the AUC12 [16℄ result of the test samples were saved into �les, alongthe trained 
lassi�er and the resulting labels for the re
ord. Two-sided t-testfor the di�eren
e between the means were applied, with the null hypothesisbeing �true di�eren
e in mean is equal to zero�.3.7 Mathemati
al Representation of the PipelineAn FCM dataset 
ontains several .FCS �les. Ea
h �le is a result of FCMexperiment on a sample and in
ludes a data matrix, where rows representthe 
ells and 
olums are markers. Terms used in mathemati
al explanationof the pipeline are de�ned as follow:
• D = M1,M2, ...,Mm: an FCM data set, 
ontaing several data matrix.
• M i: data matrix i, where i ∈ 1, ..., n and n is the number of �les in thedata set.
• cij : 
ell j in data matrix i and j ∈ 1, ..., p where p is the total numberof 
ells(rows) in the data matrix.
• ccil: 
luster 
enter for 
luster l, in data matrix i.12area under the 
urve 20



• csil: 
luster size for 
luster l, in data matrix i.
• MC i: set of 
luster 
enters cci and their sizes csi for a data matrix.
• Mtrain: a subset of D, in
luding the data matr
es used in the trainingphase.
• Mtest: a subset of D, in
luding the data matri
es used in the testingpahse.
• CL(M): a 
lustering fu
tions, taking in a data matrix M i, returninga ve
tor of labels l for the 
ells, 
ontaining an integer 
luster label forea
h 
ell c in the matrix.
• CM(): a 
luster mat
hing fun
tion. The appli
ation of this fun
tion isdi�erent for train and test data. train: CMtrain(d) taking a matrix of
luster 
enters d, 
lusters them and returns the labels for ea
h 
enter.This 
ould be any 
lustering fun
tion. test: CMtest(x, d) having the
enters of several previously known 
lusters and their labels x, giventhe 
enters of 
lusters for one �le d, it will assing to ea
h 
luster 
enterin d, the labels of the 
losest 
luster 
enter in x(Figure 3)
• SELECT (D, r) sele
t fun
tion randomly 
hoses a subset of r matrixfrom the set D.Having had the above, the pipeline has 8 steps:1. 
lustering ea
h data �le individually:for i in 1 : m

MC i = CL(M i)2. sele
ting the train and test subset:
Mtest = SELECT (D, r)
Mtrain = D −Mtest3. 
luster mat
hing for the train data:
resulttrain = CM(Mtrain)4. 
luster mat
hing for the test data:
resulttest = CM(Mtest, resulttrain)5. extra
ting feature matrix for train and test data6. train the 
lassi�er with the train feature matrix21



7. test the 
lassifer with the test data8. save the AUC for the test dataSteps 2−8 where repeated 400 times for ea
h triple of the dataset, 
lusteringand 
lassi�er.
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4 Results and Dis
ussion4.1 The AML datasetThe results of AML data was quite variant. Mean of the AUC was between
0.798 and 0.9582 for MLP and 0.768 and 0.972 for SVM 
lassi�er. Althoughthe results for MLP are generally better, the maximum and minimum ofAUC means belong to k-means and SamSpe
tral with normal-sigma 110 andseparation-fa
tor 0.1 for both 
lassi�ers. K-means 
lustering seems to per-form signi�
antly better than other 
lusterings(Figures1112). The results forother 
lusterings are similar for both 
lassi�ers as well, other than the CC03,CC04 and FM 
lusterings (Figure13). The CC04 ensemble 
lustering resultsare mu
h better when used with the MLP 
lassi�er rather than SVM. Amongthe SampSPECTRAL results, the one with the higher separation-fa
tor ob-tained better results. But using the greater separation-fa
tor is not pra
ti
ala

ording to the 
omputational 
omplexities.For the ensemble 
lusterings, results seem to be better than the individual
lusterings and the ensembles performan
es are among the highest, however,they are still lower than the best 
lustering in the ensemble. K-means resultis better than the results of all ensembles, in
luding the ones it was partof them. This was not expe
ted sin
e a

ording to FlowCAP1 [27℄ results,the ensemble 
lustering had better results than all the individual 
lustering.However, in FlowCAP1 results of the 
lusterings were 
ompared to the man-ual gating results and were not 
ompared to the 
lassi�
ation results as wedid here.Ensemble te
hniques are used to improve the performan
e of 
lusterings, butbased on the data and individual 
lusterings, they must be tuned 
arefullyto perform well. In a voting ensemble te
hnique when there is a parti
ular
lustering with signi�
antly better results than all the other 
lusterings, it isbetter to use a weighted voting s
heme, in whi
h there is a weight assignedto the results of ea
h 
lustering te
hnique when building the ensemble basedon the individual 
lustering results and as a result, better 
lusterings wouldhave more impa
t on the �nal ensemble result than the other 
lusterings.K-means 
lustering is a relatively fast 
lustering and also easy to implementand therefore is a popular 
lustering, but a

ording to its two drawaba
kswhi
h are being highly dependant on its input parameter k and only beingable to re
ognize the spheri
al 
lusters, it is not the best 
hoi
e for theFCM analysis, where the number of 
lusters are not known previously to23



the analysis and the 
lusters are not ne

essarily spheri
al. However, we seethat with our data sets here and with a good 
hoi
e of k, we 
ould obtaina

eptable results.4.2 The Leukemia resultsThe AUC results from the Lymphoma data are less variant, having theirmean between 0.683 and 0.869 for MLP and 0.728 and 0.816 for SVM 
lassi-�er (Table3). But using k-means algorithm resulted in better AUC for bothof the 
lassi�ers as well. Unlike the AML data, SVM 
lassi�er had betterresults here3 and there was more 
onsisten
y among the 
lassi�er resultsgenerally. Also the best SamSpe
tral here was not the one with the greatestseparatoin-fa
tor(Figure????). The mean of Ensemble 
lustering results forall sets are less than the best 
lustering result and more than the worst one,showing that like the other data set, a weighted voting system might be abetter approa
h.Results here are similar to those from the AML data, with k-means 
lusteringhaving the best 
lassi�
ation performan
e, followed by the best SamSpe
traland �owMeans. FlowMeans and SamSpe
tral results were of the best 
lus-tering when the standard was manual gating results in FlowCAP1. How-ever, �owMeans algorithm has an advantage 
ompared to SamSpe
tral andk-means and that is it 
ould be applied as a non-parametri
 
lustering andstill generate relatively good results(based on both FlowCAP1 and this ex-periment), but SamSpe
tral algorithm would perform poorly if parametersare not 
arefully tuned. Even from a set of 
hosen parameters whi
h wasbased on prior observation on the data and 
omparing several SamSpe
tralresults, SamSpe
tral does not have be best performan
e.
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5 Con
lusion and Future WorkUnsupervised learners or 
lustering algorithms are a well known 
hoi
e whenit 
omes to 
ategorizing the data sets where we do not have prede�ned labelsfor ea
h datapoint. In FCM analysis, these algorithms are used to identifythe dis
riminative 
ell populations among di�erent samples, as a repla
ementfor the manual te
hniques and to over
ome their drawba
ks. Although 
lus-tering algorithms are very pra
ti
al for this �eld, due to their unsupervisedmethod of learning, it is 
hallenging to de�ne a proper evaluation methodfor them. One approa
h is to set the manual analysis results as the goldstandard and trying to a
hieve the results similar to manual gating, but inorder to improve the results (even better than manual gating), we need otherstandards. In this experiment, through the previous results of diagnosis usingFCM data, we built a 
lassi�
ation pipeline, whi
h used 
lustering algorithmsfor its feature extra
tion part by �nding dis
riminative 
ell populations andthe 
ounts of 
ells in them using 
lustering algorithms. To take the analysisone step further, we also applied an ensemble 
lustering te
hnique, to seehow this te
hnique 
ould improve the results 
ompared to the already known
lustering algorithms in this �eld.This pipeline was implemented to study the performan
e of di�erent 
luster-ings in FCM gating, knowing that gating is a 
riti
al and one of the most
hallenging parts of FCM analysis and although new 
lustering te
hniqueshave been introdu
ed to this �eld re
ently, based on the diversity amongthe FCM data, it is hard to 
hoose one of them as the ultimate 
lusteringapproa
h. Be
ause of that, most of the 
lusterings introdu
ed in this �eldare parametri
 and parameters are to be tuned based on the data. Ensem-ble 
lustering te
hniques have been used to improve the 
lustering resultsin 
ompli
ated problem, here we used a modi�ed version of popular votingte
hnique for 
ombining 
lassi�ers. Although the ensemble 
lustering resultwas better than most of the individual 
lusterings, it 
ould not beat the best
lustering results. Based on these results, applying a weighted voting s
hemefor ensemble 
lustering 
ould be 
onsidered as a future work for this proje
t.There are also other 
ombining te
hniques whi
h were brie�y dis
ussed here,whi
h 
ould be applied to FCM data.
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Figure 1: FCM analysis pipeline of gating and 
lassi�
ation. FCM data 
ome in .f
s �les. Gating and 
lassi�
ationare two paths in data analysis. Clustering 
ould be used in feature extra
tion, for 
lassi�
ation. Also, 
lustering isa way of automati
 gating.
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Figure 2: Data 
omes into the pipeline as .FCS �les. Feature extra
tion in
ludes three parts, 
lustering, 
lustermat
hing and �nally feature extra
tion from the 
lustering results. Evaluation of the 
lusterings is done by 
omparingthe 
lassi�er results.
28



Figure 3: The pipeline has four modules.
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bookFigure 4: Feature Extra
tion for train(A, B, C) and test(D, E). In train 
luster mat
hing is done by meta 
lusteringthrough the 
enters of 
lusters. Center of 
lusters are saved to be used as referen
e for 
luster mat
hing in the train.
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Figure 5: Comparison of p-values for the 
lassi�
ation results on Lymphomadata, using MLP 
lassi�er
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Figure 6: Comparison of p-values for the 
lassi�
ation results on Lymphomadata, using SVM 
lassi�er
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Figure 7: Comparison of p-values for the 
lassi�
ation results on AML data,using SVM 
lassi�er
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Figure 8: Comparison of p-values for the 
lassi�
ation results on AML data,using MLP 
lassi�er
34



Figure 9: Boxplots of the AUC for MLP 
lassi�ers, on Lymphoma data set. Classi�ers were trained and tested for

400 bootstrap samples.
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Figure 10: Boxplots of the AUC for SVM results on Lymphoma data set. Classi�ers were trained and tested for 400bootstrap samples.
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Figure 11: Boxplots of the AUC for SVM results on AML data set. Classi�ers were trained and tested for 400bootstrap samples.
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Figure 12: Boxplots of the AUC for MLP results on aML data set. Classi�ers were trained and tested for 400bootstrap samples.
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Figure 13: list of AML 
lusterings and the abbreviation used in theplots. Nine 
lusterings were applied on AML data, in
luding k-means(KM),�owMeans(FM), three SamSpe
trals(SS) and four 
ombination of ensembe
lusterings(CC). Rows 3-5 are having SamSpe
tral abbreviations and theirparameters normal-sigma and separaiton fa
tor. Rows 6-9 have the EnsembleClusterins abbreviations and their set of individual 
lusterings.
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Figure 14: List of Lymphoma 
lusterings and the abbreviation used in theplots. Twelve 
lusterings were applied on Lymphoma data, in
luding k-means(KM), �owMeans(FM), seven SamSpe
trals(SS) and three 
ombina-tion of ensembe 
lusterings(CC). Rows 3-9 are having SamSpe
tral abbre-viations and their parameters normal-sigma and separaiton fa
tor. Rows10-12 have the Ensemble Clusterins abbreviations and their set of individual
lusterings.
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dataset markerAML FSC, SSC, lgG1-FITC, lgG1-PE, CD45-ECD, lgG1-PC5, lgG1-PC7Lymphoma FSC-A, FSC-W, SSC, FITC, PE, PerCP-Cy5-55, PE-Cy7,APC, APC-CY7, Pa
i�
Blue, AmCyanTable 1: List of the markers for the data sets. AML, Lymphoma


lustering CC01 CC02 CC03 CC04 FM KM SS 110 0.1 SS 110 0.3 SS 110 0.6 meanSVM 0.795 0.928 0.925 0.806 0.849 0.972 0.767 0.789 0.843 0.853MLP 0.830 0.894 0.885 0.859 0.851 0.958 0.798 0.842 0.882 0.867SVM-MLP -0.035 0.034 0.039 -0.053 -0.002 0.014 -0.032 -0.053 -0.039 -0.014Table 2: Mean for the AUC results of the 
lusterings on AML data


lustering CC01 CC02 CC03 FM KM SS 11 200 SS 11 390 SS 11 900 SS 4 390 SS 4 900 SS 7 390 SS 7 900 meanSVM 0.758 0.770 0.767 0.774 0.816 0.756 0.755 0.755 0.777 0.747 0.728 0.754 0.762MLP 0.702 0.710 0.708 0.730 0.769 0.705 0.709 0.718 0.710 0.718 0.683 0.704 0.714SVM-MLP 0.056 0.06 0.059 0.044 0.047 0.051 0.046 0.037 0.067 0.029 0.045 0.050 0.048Table 3: Mean for the AUC results of the 
lusterings on Lymphoma data
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