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Cachematic
Automatic Invalidation in Application-Level Caching Systems
Viktor Holmqvist & Jonathan Nilsfors
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Caching is a common method for improving the performance of modern web ap-
plications. Due to the varying architecture of web applications, and the lack of a
standardized approach to cache management, ad-hoc solutions are common. These
solutions tend to be hard to maintain as a code base grows, and are a common
source of bugs.

In this thesis we present Cachematic, a general purpose application-level caching sys-
tem with an automatic cache management strategy. Cachematic provides a simple
programming model, allowing developers to explicitly denote a function cacheable.
The result of a cacheable function will transparently be cached without the developer
having to worry about cache management. The core component of the system is
a dependency graph containing relations between database entries and cached con-
tent. The dependency graph is constructed by having the system listen to queries
executed in a database. When a select query is detected within the scope of a
cacheable function, the query is parsed and used to derive the dependency graph.
When inserts, updates and deletes are detected, the dependency graph is utilized
to determine which cached entries are affected by the modification. To evaluate
Cachematic, a reference implementation was developed in the python programming
language.

Our experiments showed that the deployment of Cachematic decreased response
time for read requests, compared to a manual cache management strategy. We also
found that, compared to the manual strategy, the cache hit rate was increased with
a factor of around 1.64x. On the contrary, a significant increase in response time for
write requests was observed from the experiments.

Keywords: computer science, web applications, caching, cache invalidation, cache
management, application-level caching
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1
Introduction

During the past two decades, the web has evolved from serving static interlinked
documents to serving and executing dynamic web applications, with complexity
traditionally reserved for desktop applications [1, 2, 3].

Additionally, modern web applications are often utilized by millions of users and
the growth of the internet shows no signs of slowing down. Consequently, an ever
increasing amount of data needs to be processed and served [4]. As web applications
have become more and more complex over time, the need for processing data in an
efficient way within web applications has become of great importance. A general
approach for improving performance in computer systems is the concept of caching.
Caching can be employed on multiple levels, for example in a network [5, 6], in a
computer or on a single CPU [7]. The purpose of a cache is to temporarily store
data in a place that makes it accessible faster compared to if it was fetched from its
original source [8].

In context of the internet, a common approach is to cache entire documents or web
pages. Static documents can be cached in the browser using If-Modified-Since or
similar concepts, whereas dynamic documents are usually cached on the serving
side, to retain direct control of validity. When a dynamic page is requested in the
browser, the server generates the page and the page is then cached. If the same
requests is being sent to the server again, the page can be served from the cache
[9]. In modern web applications, it is common to use Javascript to fetch data from
the server and then create parts of the page or the entire page on the client side of
the application [10, 11]. The client side rendering approach allows for not having to
reload the entire page when for instance a user presses a button that should display
some small amount of information. Instead of re-rendering the whole page, a single
request can fetch the data needed and then only the affected fragment on the page
needs to be re-rendered with the newly fetched data. In a setting such as client side
rendering, caching entire web pages might be inefficient.
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1. Introduction

1.1 Application Level Caching

Application level caching is the concept of caching data internal to an application.
The most common use case is caching of database results, in particular for queries
that are executed frequently and involve significant overhead [12]. The cache is
often implemented as a key-value store or in-memory database that ensures quick
access from the application [13, 14]. Ultimately, the advantage of application level
caching is no different from any other cache. It improves performance by reducing
time needed to access some requested data.

One of the greatest challenges with application level caching, and caching in general,
is cache management, i.e. keeping the cache up to date when the underlying data
changes, and avoiding stale or inconsistent data being served from the cache. One of
many examples illustrating the complexity in cache management is a major outage
of Facebook caused by cache management problems [15].

A common method for cache management is cache invalidation. Cache invalidation
works by directly replacing or removing stale data in a caching system [16, 17].
Compared to other methods such as time-based expiry or validation of cache entries
on each request [18], cache invalidation is particularly well suited for frequently
updated dynamic data. It is implemented by explicitly purging or replacing entries
in the cache when they are deemed invalid. In order to determine when a cache
entry is invalid, the system needs to know what resources, such as database results
or data from other external sources, were used to derive the cache entry. Whenever
those resources are updated, the entry should be purged or updated.

Another important aspect of cache invalidation is the granularity of the invalidation
process, illustrated by the following example. A cache entry consists of a set of tuples
R from database relation T. With course-grained invalidation, the cache entry could
be invalidated by any update on the table T. In a more granular setting, the cache
entry could be invalidated only if the selected tuples R are actually affected by
an update. If the cache entries consist of tuples from multiple relations with joins
and complex where clauses, the task of determining whether a cache entry should
be invalidated becomes more complicated. The desired level of granularity heavily
depends on the frequency of updates, and fine-grained invalidation might involve
significant overhead. The balance of granularity and overhead has to be considered
when invalidating cache entries for optimal performance [19, 20].

In this thesis we present the design and an implementation of Cachematic, a general-
purpose middle-tier caching library with an automatic invalidation strategy.

2



1. Introduction

1.2 Bison

The company Bison has developed an application-wide caching system for the web
API of their business intelligence platform. The web API is implemented in Python
and utilizes relational databases as primary storage. The caching system uses a sim-
ple dependency table to keep the cache up to date with the database. The system
employs a decorator interface, similar to the cacheable function interface proposed
in this thesis. The dependency graph is managed manually by the developers, by
specifying dependencies as strings returned together with the result to be cached.
Whenever the database is updated, the relevant strings are looked up in the de-
pendency graph to identify cache entries to be invalidated. The strings relevant for
each update is determined manually by developers on implementation. The initial
deployment of the caching solution successfully improved the responsiveness of the
system. As the application has grown in size, and the caching solution has been de-
ployed throughout the system, the complexity of the dependency graph has grown
to be incomprehensible by any one developer, resulting in sub-optimal and erroneous
invalidation of cache entries.

1.3 Thesis Statement

Application level caching has become the ubiquitous solution to scaling web applica-
tions [21]. Ad-hoc implementations of cache management are common when deploy-
ing application level caching, and often cache management is manually handled by
developers. The characteristic of a manually handled cache is that developers have
to explicitly cache data when appropriate and invalidate or change cached entries
when these entries become outdated. The task of manually managing the cache is
tedious and error prone [22]. Especially, this approach does not scale well with a
code base that grows in amount of code and complexity [23].

1.3.1 Objectives

The goal of this thesis is to research whether it is possible to devise an algorithm for
automatic cache invalidation. We have formulated three research questions which
lay ground for the work carried out during this research.

• Is it possible to devise an automatic dependency resolution algorithm for cache
management with the goal to improve cache hit rates?

• In the context of the Bison web application, does the algorithm actually im-
prove hit rates, and does this improve end user performance for specific, rep-
resentative workload scenarios?

3



1. Introduction

• Can the algorithm guarantee that all cache entries that needs to be invalidated
actually get invalidated?

1.3.2 Methodology

To answer the questions stated in previous subsection, a software library (Cachematic)
was designed, developed and evaluated. The development process was iterative and
included three iterations. Each iteration followed a subprocess of development, test-
ing and evaluation. The evaluation was carried out in the context of the Bison
platform.

The main goals of the three iterations are listed below

1. Have a library that can cache results of functions and return cached results

2. Have complete parsing of sql queries and updates and naively invalidate cached
results on updates

3. Have a fine grained dependency evaluation and invalidation integrated into
Bison’s platform.

1.4 Thesis Outline

Chapter 2 introduces necessary concepts needed to follow the thesis. We describe
key value stores and SQL queries.

Chapter 3 presents previous research carried out on the subject of application level
caching. The chapter ends with a comparison table describing how Cachematic
differentiates from other solutions.

Following, in Chapter 4, is a thorough description of the design of Cachematic and
the implementation created during this project.

Furthermore, Chapter 5 presents an evaluation of the library. Measures on response
time and hit rate are reported as well as the overhead of the implementation. The
results of the measurements are shown in relation to two baselines: the currently
deployed solution in Bison and a solution without caching.

Lastly, in Chapter 6, we present our conclusions in a discussion. We also suggest
potential interesting future research which could extend the research introduced in
this thesis.

4



2
Background

2.1 Existing solution

The cache management solution used at Bison today consists of a simple depen-
dency table, mapping arbitrary strings, called dependencies, to cache keys. In each
function to be cached, the dependencies have to explicitly be returned at the end
of the function. The cache key of the function call is subsequently inserted into the
dependency table, once for each dependency.

@cache.decorator()
def funds(max_age=10):

query = sqlalchemy.text("""
SELECT * FROM fund WHERE age_years > :max_age

""")

funds = db.execute(query, max_age=max_age).all()

# Add scoped primary key of each included fund
dependencies = ["fund:{}".format(fund.id) for fund in funds]

# Global dependency to invalidate on new funds
dependencies.append("funds")

return funds, dependencies

Figure 2.1: Example of a cacheable function utilizing the manual solution

Figure 2.1 shows a cacheable function utilizing the manual solution, and illustrates
how the dependency strings are commonly generated. A dependency string is gen-
erated for each row returned in the query, consisting of the primary key prefixed
with the table name to ensure uniqueness across tables. Additionally, a global de-
pendency for the table is appended to account for edge cases where the cached entry
cannot be identified by an existing row.

5



2. Background

Dependency Cache Keys
"fund:1" "funds,max_age=5" "funds,max_age=10"
"fund:2" "funds,max_age=10" "funds,max_age=12"
"fund:3" "funds,max_age=12"
"funds" "funds,max_age:5" "funds,max_age:10" "funds,max_age:12"

Table 2.1: An example of how the dependency table might look after executing
the function in Figure 2.1

Bison has established developer guidelines for dependency generation, to ensure the
same patterns are used throughout the application. In many cases, in particular with
complex queries, it is still very hard to determine the dependency strings required
to cover all edge-cases. An example of how the dependency table might look after
executing the function is shown in Table 2.1.

def update_fund_age(fund_id, age_years):
query = sqlalchemy.text("""

UPDATE fund SET age_years = :new_age WHERE id = :fund_id
""")

result = db.execute(query, new_age=age_years, fund_id=fund_id)

cache.invalidate("fund:{}".format(fund_id))

return result

Figure 2.2: Example function updating the table queried in Figure 2.1

def create_fund(name, age_years, commitment):
query = sqlalchemy.text("""

INSERT INTO fund (name, age_years, commitment)
VALUES (:name, :age_years, :commitment)

""")

result = db.execute(query, name=name, age_years=age_years,
commitment=commitment,

)

cache.invalidate("funds")

return result

Figure 2.3: Example function inserting into the table queried in Figure 2.1

Figure 2.2 and Figure 2.3 illustrates the manual invalidation process, explicitly inval-
idating hard coded strings as determined by the developers on implementation. The

6



2. Background

function in Figure 2.3 invalidates the global dependency string "funds", since no
fund-specific dependency can exist for a newly created fund. This specific problem
is a common edge-case and has caused numerous bugs in the Bison web application.
In addition to causing bugs, utilizing table-scoped dependency strings will result in
over-invalidation. Reducing over-invalidation by adding more granularity

2.2 Key-value stores

A key-value store is a database designed to hold a data structure mapping keys to
values, similar to a hash map or dictionary. Each value in the database is uniquely
identified and indexed by its key. This enables retrieving, modifying and deleting
values from the database in constant time. To further improve performance of these
operations, key-value stores commonly store most data in memory [24, 25]. The
key-value architecture combined with efficient read and write operations make in-
memory key-value stores a good storage solution for caching systems [26]. Examples
of key-value stores are Redis1, Memcached2 and Amazon DynamoDB [27]. In the
library implemented in this thesis, Redis was used as the cache backend and for
storage of the dependency graph.

Redis

Redis is a distributed in-memory key-value store. It supports multiple data types
such as lists, sets, strings and hashes. To utilize Redis for more complex data
structures, such as objects in high level programming languages, the objects have to
be serialized and stored as strings. Furthermore, Redis supports simple operations
on supported data types. For instance, it is possible to push entries to a list and
perform set operations on sets stored in Redis. Redis can be configured with different
eviction policies such as LRU (least recently used), TTL (time to live) and random
eviction. The eviction policy determines what happens when a Redis instance runs
out of memory. By default, Redis uses LRU eviction, meaning that the entry least
recently used will be evicted to leave space for new entries. Research has shown that
an eviction policy optimized for data access patterns and other application specific
parameters can be beneficial , but it was considered out of scope for this thesis, and
Redis was configured to use LRU eviction in the evaluation [28].

1https://redis.io/
2https://memcached.org/
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2. Background

2.3 SQL

SQL is an abbreviation of Structured Query Language. It is a programming language
designed to manage data in relational database management systems. Mainly there
are four different types of queries that are used to read and write data to and from a
database. The four types are described in some detail below. For a more thorough
explanation of SQL we refer to the W3Schools tutorial on SQL3.

2.3.1 Insert query

Insert queries are used to insert a new row into a table. The insert queries specify
what table the row should be inserted into and what values the row should contain.
There exists a few different variants on the syntax of inserting one or more rows.
An example is shown below.

INSERT INTO table_name (column_1, column_2, column3, ...)
VALUES (value_1, value_2, value_3, ...)

2.3.2 Select query

Select queries are used to read data from the database. A select query always consists
of the columns(the syntactic sugar * can be used to to represent all columns) to be
selected and one or more tables from where the data is supposed to be retrieved.

SELECT column_1, column_2, column_3
FROM table_name

Optionally, select queries can contain a where clause, explained in detail in 2.3.6,
to specify filters on what data rows to fetch. A number of aggregate functions can
also be utilized to retrieve meta information. An example of an aggregate function
is count which counts the number of rows selected by the query. Select queries also
support ordering of rows and limiting the number of results returned. It is also
possible separate the result of a select query in different groups. Furthermore, select
queries support joining which essentially means connecting different tables on some
condition. Joining is explained further in Section 2.3.5.

SELECT table_1.column_1, table_2.column_2, column3, ...)
FROM table_1
JOIN table_2 ON table_1.column_1 = table_2.column_1
WHERE table_2.column_4 < 10 AND table_1.column_5 IS NOT NULL
ORDER BY table_1.column_1
LIMIT 5

3https://www.w3schools.com/sql/

8



2. Background

2.3.3 Delete query

Delete queries are used to delete rows in a table. Usually delete queries are defined
with some condition, similar to select queries. The condition specifies which rows
should be deleted. If a condition is excluded from the delete query, all rows in the
specified table are deleted.

DELETE FROM table_1
WHERE table_1.column_1 = 1

2.3.4 Update query

Update queries are used to update a set of rows in a table. An update query contains
the name of the table to update, the columns that are to be updated and what values
these should have, together with an optional condition. The update query looks a
little like a combination of a select and an insert but it is never creating new rows.
It only updates already existing rows. The number of columns being updated can
be arbitrary. The update does not have to update all columns.

UPDATE table_name
SET column_1 = value_1, column_2 = value_2, ...
WHERE table_name.column_2 < 10

2.3.5 Join clause

When two or more tables contain data related to each other it might be desirable
to correlate them. This can be achieved by utilizing a join clause. A join clause
contains the table to join and an optional condition describing how to join. The
result of a join is a new temporary table containing data from the both tables that
were joined. Which rows are included and how they are concatenated depends on
the join condition. If the join condition is excluded, all rows in both tables will be
concatenated; for instance if the first table has 5 rows and the second table has 2
rows the resulting join table will have 10 rows. Usually, a condition is provided to
correlate rows. Depending on what type of join being executed, different resulting
tables will be achieved. Joins can be applied multiple times sequentially to correlate
more than two tables.

2.3.6 Where clause

The where clause is used to filter what rows are being acted on by the query. There
exists a wide variety of filter conditions. Some of the most common ones are logical

9



2. Background

operators AND, OR and NOT, equality check =, less than < and greater than >
and LIKE. Different dialects also provide their own filter conditions.

2.3.7 Subqueries

Since the result of a query is a temporary new table, the result of a query can also be
used in another query. A query that is used within another query is usually called
a subquery or an inner query. Subqueries can be used in all query types described
above.

10



3
Related Work

In this chapter we present related research that exist on the subject of applica-
tion level caching and in particular aspects of cache management and invalidation
strategies.

A Qualitative Study of Application-Level Caching [21], presents a study where ten
open source web application software projects were studied in depth. The goal of the
study was to extract information on how developers for the different projects handle
caching. From the extracted information, some guidelines and patterns were derived
which purpose is to help developers in their work on designing, implementing and
maintaining application level caches.

One of the guidelines stated is that developers need to evaluate different abstraction
levels in the cache. There are multiple layers of data processing in an application
and in general cached data closer to the model or database layer offers a higher
hit rate than cached data from a business or controller layer. The authors also
identified another interesting guideline regarding per user caching. In general, too
specific data does not improve hit rates. This is for instance the case if the cached
data is specific to a certain user. However, if users tend to utilize the application
for an extended period of time, requesting specific data multiple times, it might be
desirable to cache user specific data. Especially, if the user requests the same or
very similar data multiple times during a time limited session.

Furthermore, the authors found evidence for a guideline they call Keep the Cache
API Simple. The purpose of this guideline is to highlight the complexity in caching
logic when it is spread over an application. The consequence of not having a simple
caching API might be messy code and high costs of maintenance.

3.1 Automatic cache management strategies

We have identified a collection of papers describing automatic cache management
strategies, most of which are implemented as middle-tier caches that augment the
database with a key-value store.

11



3. Related Work

Dependency based cache management is introduced in [29], as an optimization for
the caching system used in the 1998 Winter Olympics website. The main algorithm
is called DUP (Data Update Propagation). The algorithm describes the construc-
tion of a graph for tracking dependencies between cached objects and underlying
data, called ODG, or Object Dependence Graph. In the graph, cached objects, such
as intermediate html fragments or html pages, and underlying data is represented
by nodes. Dependencies are represented by edges. This means that cached objects
can be dependent on other cached objects, such as html fragments, as well as un-
derlying data. When underlying data is invalidated, the algorithm simply finds the
corresponding node and traverses the graph to find all nodes directly or indirectly
dependent on the invalidated node. The visited nodes represent cached objects that
should be invalidated, and thus evicted from the cache. The approach described in
this paper is very general and applicable in almost any currently existing application.
It requires a considerable amount of responsibility from the application utilizing it
and has no specification of how dependencies are supposed to be extracted nor in
what granularity they should be recorded.

An extended version of DUP, was implemented in the Accessible Business Rules
framework (ABR) for IBM’s Websphere [30]. The paper extends DUP with a con-
crete process for automatically constructing the ODG by analyzing SQL queries.
It also extends the graph by annotating edges (indicating dependencies) with val-
ues used in the query where clause, enabling value-aware invalidation. In this pa-
per, the dependency graph is constructed at compile-time, with the exception of
parametrized statements, for which the graph is prepared but finalized with actual
parameters at run-time. Selective invalidation of the cache is triggered by inval-
idation code in the attribute setter, creation and deletion methods. The code is
automatically generated at compile time.

TxCache is a transactional caching system, where dependencies are represented by
invalidation tags [31]. A tag is a description of which column has been referenced in
the database to produce a cached result. A tag consists of two parts separated by a
colon. The first part represents the database table and the second part a potential
referenced column. The second part is set whenever an index equality lookup is
performed. If the query for instance is a range query, the second part is explicitly
set to a wildcard. Each query executed can have multiple invalidation tags. When a
write to the database is executed the database sends a stream of invalidation tags to
the cache. The cache can then identify which cached invalidation tags are affected
by the write and consequently identify affected cached entries. The system proposed
in this paper extends the transactional consistency guarantees of the database to the
cache. In order to achieve this, most of the cache management logic is implemented
in the database layer, through modifications to PostgresSQL.

Another strategy is implemented in AutoWebCache [32], where dependencies be-
tween read and write queries are established by finding shared database relations
and fields. If the queries share any fields, a basic dependency is established and
stored in a data structure resembling the Object Dependence Graph used in DUP.
The algorithm also stores information about the database set related to the queries.
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When write queries are executed, actual intersection is evaluated in a more precise
manner for each of the dependent read queries using the stored information. This
evaluation supports three levels of progressively more refined analysis:

1. Table/column intersection, similar to the fine-grained analysis in [19]

2. In addition to table/column intersection, match the where clause of the read
query to the values of the write query to see if the same rows are being updated.

3. The most refined case involves extending the previous policy by executing
extra queries to get information missing in the write query, to be able to test
if the same rows are being updated.

The basic dependency ensures the transactional consistency of the underlying database
remains intact, as long as the more precise intersection test is sound. The depen-
dency information is itself cached by query template (query without parameters).
This cache stabilizes quickly since the number of read/write query combinations
normally is relatively small.

A system with a trigger based strategy for cache management, CacheGenie, is de-
scribed in [33]. The system generates database triggers to handle cache invalidation.
Database triggers are procedural code that is executed automatically in response to
events on a particular database relation. In this paper, the database triggers are sim-
ple, and their only job is to notify the cache manager that rows have changed. The
actual cache invalidation is then implemented in the cache manager itself. Triggers
have to be defined for each query type (insert, update and delete) for each database
relation. The authors have chosen an explicit programming model handle this, ex-
plained in detail in 3.2. Another interesting concept implemented in CacheGenie
is Semantic Caching. Semantic caching involves exploiting the semantics of the
database in the cache management system, in order to automatically update cached
objects instead of invalidating. This can have performance benefits over invalidation
in systems with frequent writes, but limits what objects can be cached to database
results.

Semantic caching is also employed in the approach described in [19], by checking for
containment of a query’s expected result within already cached ones. This paper
handles dependencies between read and write queries by looking at shared fields,
similar to the basic dependency mechanism in AutoWebcache. An interesting detail
from this paper is an optimization for queries returning at most a single row, which
under certain circumstances can never be invalidated by an insert.

A more formal approach to cache management is described in [34]. The system,
Sqlcache, is based on compile-time SQL analysis and first-order-logic to create a
sound mapping from each update operation (insert, update or delete) to read queries
they affect. This mapping is then used to transparently add caching with automatic
invalidation. Essentially, the implementation uses the filter variables in the where
clause of an SQL query and the filter variables together with the update vector
for database updates to determine if invalidation is necessary. In the paper, three
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situations where invalidation is required are identified:

• When a row that was formerly not included in a set of rows according to some
predicate becomes part of the set according to the predicate

• When a row that formerly was included in a set of rows according to some
predicate becomes excluded from the set according to the predicate

• When a row that was formerly included in a set of rows according to some
predicate and still is part of the set but with different values

The authors provide a proof of soundness for cache invalidation using quantifier-free
first order logic based on the these three situations.

CachePortal, is a cache management system described in [35]. The system largely
depends on a sniffer module which task is to log http requests, database queries
and mappings between requests and database queries. When a database update
query is captured, the query is analyzed to conclude which cached entries need
to be invalidated. Whether to invalidate a cached entry or not is determined by
comparing the update query to each select query executed to compute a cached
entry. The comparison algorithm checks if the where clause for the select query is
satisfied by the update query. If the select query is a join of multiple tables and
there is not enough information to conclude if the update satisfies the select where
condition, an extra polling query can be performed. The system identifies what
data is missing to be able to evaluate the query comparison and performs a polling
query to retrieve the missing data. When all data necessary for evaluation has been
collected, the algorithm can soundly determine if a cache invalidation needs to take
place or not.

Query change notifications is a fairly recent feature of Oracle and Microsoft SQL
Server. It enables subscribing to changes in the result of individual SQL queries,
thereby trivializing the process of implementing cache invalidation. This feature is
utilized in [36], to implement CQN (Continuous Query change Notifications), an
application transparent approach to cache management.

3.2 Programming model

One of the core features for an automatic caching system is to be as transparent as
possible to the application implementing it. Any additional code the developers have
to write in order to implement the caching system has the potential to introduce
bugs or change the behaviour of the application. It also makes it more complex to
reason about the semantics of the original application. It is therefore important to
provide a simple programming model [21].

In TxCache [31], the results of a function can be automatically cached by using
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a decorator function make-cacheable, illustrated in Figure 3.1, that generates a
cacheable function. In for example the python programming language, this can easily
be achieved by utilizing the decorator pattern. The wrapping function automatically
makes sure the cache is being used whenever a call to the decorated function is
executed. The only restriction on the developer is that the decorated functions
must be deterministic, cannot have side effects and depend only on their arguments
and the database state.

MAKE-CACHEABLE(fn) -> cacheable-fn

Figure 3.1: Programming model for the cacheable function in TxCache

SQLCache [34] is implemented in the domain-specific functional language Ur/Web,
where the compiler does parsing and type checking of SQL to guarantee that queries
adhere to the database schema. The compiler performs static analysis of the source
code, including the queries, to find possible caching opportunities. This analysis is
made possible by the fact that SQL queries are not strings, but first order constructs
in the language. Enabling caching requires no more effort from the developer than
passing a flag to the compiler. In the approach described in the paper, only database
results are being cached.

CacheGenie [33] also caches database query results. The system builds on top of an
ORM (Object-relational Mapping) and uses cache-classes to define what queries to
apply caching to. Different query patterns are represented by different cache-classes.
If a query result should be cached, the developer creates an instance of the cache-
class representing the query’s pattern. The main model representing the database
column is being passed in as an argument when creating the cache-class instance.
Once the cache-class instance is created, the developer can use the original code to
query the database through the ORM. No modifications of the previous source code
is required. By default, CacheGenie provides four types of query patterns; Feature
Query, Link Query, Count Query and Top-K Query. If query patterns that
are not included in the set of pre-defined cache classes need to be cached, developers
can define their own cache-classes.

AutoWebCache uses an aspect oriented programming model to help transparently in-
ject caching mechanisms in web applications. Aspect oriented programming (AOP)
is a methodology used to modularize applications and separate concerns into aspects.
The aspects are combined, or wowen together, as specified by weawing rules. This
way, an AOP-based application implementing AutoWebCache can specify the points
in the application where mechanisms for cache management need to be injected.
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3.3 Comparison

In this chapter, we have presented a number of existing automatic cache invalidation
systems. Many of them are pure database caches while others are more high level.
Some solutions use compile-time analysis to statically determine caching and some
require modifications to external sources such as database management systems.
We end this chapter by comparing how the most relevant caching systems differ
from each other and especially how they differ from Cachematic. A summary of the
comparison is visualized in Table 3.1.

Cached values Analysis Note
Cachematic Function results Runtime
TxCache Function results Runtime DB modifications
CacheGenie Query results Runtime
AutoWebCache HTML documents Compile time
Sqlcache Query results Compile time Language specific

Table 3.1: Comparison table between automatic caching systems

TxCache

TxCache allows for arbitrary cacheable functions as long as the functions fulfill some
requirements. The system requires no compilation but modifications to the Post-
greSQL DBMS was required to support some of the features provided in TxCache.
For the evaluation of TxCache, the RUBiS benchmark was used [37]. The evalua-
tion showed that TxCache increased the throughput with up to 5.2x for the RUBiS
benchmark. The RUBiS bidding mix workload, which provides 85 percent read
interactions and 15 percent write interaction, was used [31].

CacheGenie

The system CacheGenie provides the ability to cache database results by declaring
certain ORM classes to be cache classes. It provides some default caches representing
a set of database queries and a developer can implement new classes if necessary.
The system requires no compilation and no modifications to the DBMS. CacheGenie
used Pinax1 applications for benchmarking. The benchmark showed that using
CacheGenie with cache invalidation improved throughput up to 2.5 times compared
to using no cache. Furthermore, if updating cache entries rather than invalidating
them, a 25 percent improvement could be observed compared to the invalidation
strategy [33].

1http://pinaxproject.com/
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AutoWebCache

AutoWebCache caches full web page documents created by dynamic data. It per-
forms static analysis during compile time. To our knowledge, no database modi-
fications are required. AutoWebCache was evaluated using the RUBiS benchmark
and was able to provide up to a 64 percent improved response time when using the
bidding mix workload.

Sqlcache

In Sqlcache, static analysis of queries in the source code is performed during compila-
tion. The analysis identifies potential caching opportunities. Sqlcache caches results
of database queries with no modifications of source code or database implementa-
tions. The throughput in relation to number of available threads was measured in
the evaluation of Sqlcache. The evaluation showed that the throughput doubled for
a specific scenario in comparison to the baseline ur/web compiler [34, 38].

Cachematic

Cachematic is a general-purpose automatic cache management system. It provides
a programming model that transparently handles caching of function results by
simply declaring a function as cacheable. Cachematic requires no compilation and
no modifications to database implementations. The query analysis is performed at
runtime.
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4
Design & Implementation

The invalidation algorithm presented in this chapter is a combination of ideas from
the papers described in Chapter 3 including optimizations and lessons learned from
the manual invalidation system in use at Bison. The caching library is intended to
eventually replace the manual system.

4.1 Algorithm

The algorithm is divided into three sub algorithms: the cache algorithm, the depen-
dency algorithm and the invalidation algorithm.

Input : Function to be cached fn and arguments (a1, a2, ..., an)
Output: Return value of fn(a1, a2, ..., an)

1 k ← genCacheKey(fn, a1, a2, ..., an);
2 if scopeStarted(k) then
3 wait until done;
4 end
5 cached← getCached(k);
6 if cached then
7 return cached;
8 end
9 startScope(k);

10 result← fn(a1, a2, ..., an);
11 storeCached(k, result);
12 (queries, nestedKeys)← endScope(k);
13 dependencyAlgorithm(key, queries, nestedKeys);
14 return result;

Figure 4.1: The cache algorithm
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The cache algorithm handles caching of the return value of individual function calls.
This process includes generating the cache key from the function name and the
arguments of the function call and managing scope to capture read queries and
nested function calls to pass to the dependency algorithm. The scope also prevents
multiple equivalent calls to the same function to be executed simultaneously. The
cache algorithm is illustrated in Figure 4.1.

c1

c2

c3

c4

q1

q2

q3

q3

k1

k2

k3

k4

The three layers of the dependency graph, where c1, c2, c3 and c4 are columns, q1, q2, q3
and q4 are read queries and k1, k2, k3 and k4 are function keys.

Figure 4.2: The dependency graph

The dependency and invalidation algorithms handle read and write queries respec-
tively. The dependency algorithm utilizes meta data extracted from read queries
executed within the scope of a cacheable function to construct a dependency data
structure. The invalidation algorithm combines information from the dependency
data structure with meta data extracted from write queries to identify read query
candidates for invalidation and eventually carry out the invalidation.

The dependency data structure is modeled as a directed graph consisting of nodes
in three layers, hereafter called the dependency graph, illustrated in Figure 4.2. The
nodes in the first layer represent table columns, which are the entry points of the
graph. The nodes in the second layer represent read queries. An edge is established
from the first to the second layer if a column occurs in a read query. The nodes in
the third layer are cache keys generated by the cache algorithm. A node in the third
layer will have an incoming edge from the second layer if a read query was executed
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during the scope of the cacheable function. If a cachable function contains a call to
another cacheable function, an edge within the third layer will also be established
from the key of the nested function call to the key of the parent call.

Input : Cache key k, captured read queries Q and cache keys of nested
function calls N

Output: Nodes and edges to be added to dependency graph
1 knode ← KeyNode(k);
2 nodes← {knode};
3 edges← ∅;
4 for q ∈ Q do
5 qmeta ← parseQuery(q);
6 qhash ← computeResultHash(q);
7 qnode ← QueryNode(q, qmeta, qhash);
8 db← dbId(qmeta);
9 table← tableName(qmeta);

10 add qnode to nodes;
11 for c ∈ columns(qmeta) do
12 cid ← db + table + c;
13 cnode ← ColNode(cid);
14 add cnode to nodes;
15 add (cnode, qnode) to edges;
16 end
17 add (qnode, knode) to edges;
18 end
19 for n ∈ N do
20 nnode ← KeyNode(n);
21 add nnode to nodes;
22 add (nnode, knode) to edges;
23 end
24 return nodes, edges;

Figure 4.3: The dependency algorithm

When read queries are passed to the dependency algorithm, the query strings are
parsed to extract relevant meta data such as queried tables and columns. The tables
and columns are used in conjunction with the database schema to include constraints
such as primary and foreign keys in the meta data. In addition, boolean expressions
from where and join clauses are converted to abstract syntax trees (ASTs) for easy
evaluation. The ASTs generated from where and join clauses are also inspected
to construct a set of tables filtered by primary key and a column equality map.
These data structures are explained in detail in Section 4.1.2. Canonical column
identifiers are produced by concatenating database identifier, table name and column
name. The extracted information is then used to build the dependency graph.

21



4. Design & Implementation

Nodes are added to the first layer for each canonical column identifier, with edges
to corresponding queries in the second layer. Query nodes consist of the query
string, parameters and query meta data extracted earlier including a hash of the
query results. The cache key generated for the call is inserted into the third layer
with edges from each query node and the cache keys of nested function calls. The
dependency algorithm is illustrated in Figure 4.3.

Input : Captured write query w and dependency graph D
Output: Set K of keys to be invalidated

1 Kdirect ← ∅;
2 Kindirect ← ∅;
3 Q← ∅;
4 wmeta ← parseQuery(w);
5 db← dbId(wmeta);
6 table← tableName(wmeta);
7 for c ∈ columns(wmeta) do
8 cid ← db + table + c;
9 nodes← lookup cid in D;

10 add nodes to Q;
11 end
12 for node ∈ Q do
13 (q, qmeta, qhash)← node;
14 invalidate← evaluate(w, wmeta, q, qmeta);
15 if invalidate = yes then
16 keys← lookup node in D;
17 add keys to Kdirect;
18 else if invalidate = maybe then
19 if rhash 6= computeResultHash(q) then
20 keys← lookup node in D;
21 add keys to Kdirect;
22 end
23 end
24 end
25 for key ∈ Kdirect do
26 parents← lookup key in D;
27 add parents to Kindirect

28 end
29 K ← Kdirect ∪Kindirect;
30 return K

Figure 4.4: The invalidation algorithm
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In contrast to read queries, which are only processed in the scope of cacheable func-
tions, write queries executed in any scope must be processed to ensure consistency.
When a write query is received, the query string is parsed and processed in a similar
fashion to read queries with some variation depending on the type of query. In
the case of insert and delete, all columns of the affected table are captured since
the query will result in an entire row being added or removed. For updates, only
the affected columns are captured. Additionally, inserted rows and new values are
extracted for inserts and updates respectively. Updates and deletes can also contain
where clauses, which are converted to ASTs.

After processing the write query, the columns extracted are looked up in the first
layer of the dependency graph. For matching nodes, edges are traversed to the next
layer to identify corresponding read queries that will be considered for invalidation.
Subsequently, the read queries are tested for invalidation using a series of tests, each
a more granular attempt to exclude the query from further testing. The tests deter-
mine whether the query should be invalidated, excluded from invalidation or passed
through for further testing. If invalidation can not be determined with certainty
by any test, the query is passed to a final hash based test. In the final test, the
hash of the read query results stored in the dependency graph, is compared to a
hash of the results after the write query has been executed. If the hashes differ,
the read query results changed due to the write query and any dependent function
calls should be invalidated. Queries with unchanged hashes are excluded from in-
validation. This ensures invalidation correctness. The exclusion tests are described
in detail in Section 4.1.2 and the hash test implementation is described in Section
4.2.1.

Cache keys to be invalidated are retrieved by following the edges from the queries
marked for invalidation to the third layer of the dependency graph and traversing the
third layer recursively to capture functional dependencies. Invalidation is carried out
by deleting the keys in the cache and removing associated nodes from the dependency
graph. The invalidation algorithm is illustrated in Figure 4.4.

4.1.1 Invalidation scope

To avoid read queries being evaluated multiple times against multiple write queries
within the same execution context, the concept of invalidation scope was introduced.
Invalidation scope works similarly to the scope within a cacheable function in that it
groups write queries executed within the same context to be processed in bulk. By
recording write queries as they happen and deferring processing until the scope ends,
evaluation of read queries can be remembered across write queries. For example,
if a read query is marked for invalidation, it is not necessary to evaluate it again,
and it can be skipped for the remaining write queries within the scope. Invalidation
scope also enables many implementation specific optimizations, described in detail
in Section 4.2.3.
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4.1.2 Hierarchical invalidation

To reduce overhead of the invalidation algorithm, it is critical to reduce the number
of read queries that are tested against incoming write queries. For this reason a
hierarchical approach has been applied. This process starts with the first layer of
the dependency graph, by excluding read queries without matching column nodes.
It continues with exclusion tests optimized by query type.

Input : Write query w, read query r and meta data wmeta and rmeta

Output: Invalidation status yes, no or maybe

1 rast ← whereAst(rmeta);
2 if rast = Nothing then
3 if limited(rmeta) then
4 return maybe;
5 end
6 return yes;
7 end
8 if tableName(wmeta) ∈ pkF iltered(rmeta) then
9 return no;

10 end
11 for row ∈ rows(w) do
12 fields← expand(row, rmeta);
13 (reduced, unknowns)← reduceAst(rast, fields);
14 if unknowns = All then
15 return maybe;
16 end
17 if evaluateAst(reduced) then
18 if unknowns = None ∧ ¬limited(rmeta) then
19 return yes;
20 end
21 return maybe;
22 end
23 end
24 return no;

Figure 4.5: Query evaluation for inserts

A read query where the primary key of a queried table is tested for equality with a
constant can never be affected by an insert into that table [19]. A set of tables filtered
by primary key, where no other condition can satisfy the where clause, is included
in the query meta data stored in the dependency graph. In the first exclusion test
for inserts, read queries are excluded from further testing by checking if the table
affected by the insert is contained within this set.
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The second test for inserts involves evaluating the ASTs generated from the where
clauses of the remaining read queries. For each inserted row, field references in the
AST are replaced with matching values from the row. The ASTs are then evaluated.
If every AST evaluates to false, the read query can be excluded from further testing.

Evaluation of the read query AST is the primary test for updates and deletes,
but no rows are available to substitute for fields in the AST. However, equality
conditions necessary to satisfy the where clause of the write query can be extracted
and substituted for the fields in the read query AST. If there is no where clause in
the write query, it is certain the read query is affected unless it is limited, and it
can be passed directly to invalidation.

Input : Write query w, read query r and meta data wmeta and rmeta

Output: Invalidation status yes, no or maybe

1 rast ← whereAst(rmeta);
2 wast ← whereAst(wmeta);
3 if rast = Nothing ∨ wast = Nothing then
4 if limited(rmeta) then
5 return maybe;
6 end
7 return yes;
8 end
9 fields← expand(equalityConditions(wast), rmeta);

10 (reduced, unknowns)← reduceAst(rast, fields);
11 if unknowns = All then
12 return maybe;
13 end
14 if evaluateAst(reduced) then
15 if unknowns = None ∧ ¬limited(rmeta) then
16 return yes;
17 end
18 return maybe;
19 end
20 return no;

Figure 4.6: Query evaluation for updates and deletes

Since read queries often involves more than one table through various joins, many
fields in the AST will not be present in the inserted row or the equality conditions of
the write query where clause. An AST reduction algorithm was developed in order
to be able to evaluate ASTs where only a subset of the variables is available. The
goal of the reduction algorithm is to make the tree always evaluate true if any of
the unknown values decides the outcome. The reduction is performed by traversing
the AST and reducing expressions with unknown values to either True or False,
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depending on the context. If all variables in the AST are unknown, the tree will
always evaluate to true, thus evaluation can be skipped. If no variables are unknown
and the tree evaluates to true, it is certain that the read query will be affected unless
it has a limit clause, which could exclude arbitrary rows depending on the order.
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(a) Read query
SELECT user_actions.name, app_user.name FROM user_actions
INNER JOIN app_user ON user_actions.app_user_id = app_user.id
WHERE app_user.id = 9 AND user_actions.name = 'Changed password';

(b) Write query
INSERT INTO user_actions (id, name, app_user_id)
VALUES (1, 'Changed password', 10);

(c) Resulting AST Evaluation
>>> column_equality_map
{'user_actions.app_user_id': 'app_user.id'}

>>> row
{

'user_actions.id': 1,
'user_actions.name': 'Changed password',
'user_actions.app_user_id': 10,

}

>>> evaluate(where_ast, row)
=> app_user.id = 9 AND user_actions.name = 'Changed password'
=> unknown AND 'Changed password' = 'Changed password'
=> True AND True
True

>>> extended_row = extend_row(row, column_equality_map)
{

'user_actions.id': 1,
'user_actions.name': 'Changed password',
'user_actions.app_user_id': 10,
'app_user.id': 10,

}

>>> evaluate(where_ast, extended_row)
=> app_user.id = 9 AND user_actions.name = 'Changed password'
=> 10 = 9 AND 'Changed password' = 'Changed password'
=> False AND True
False

The read query (a) is being evaluated for invalidation against the write query (b). The
evaluation is illustrated in (c).

Figure 4.7: Column equality map in use

The join clauses of a read query might contain equality conditions between columns
that can be considered preconditions of the where clause. The equality conditions are
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used to set up a column equality map, included in the query nodes of the dependency
graph, that is used to extend the fields from the write query. This process is shown
in Figure 4.7.

4.2 Caching Library

The caching library, called Cachematic, was designed with three major goals in mind:
Portability, usability and performance. Portability is achieved by using the adapter
pattern to facilitate communication with external storage, such as the database
and the cache backend. Usability is realized through a single-function program-
ming model, and automatic invalidation based on the algorithm described in Section
4.1. By caching internal data structures to reduce overhead, good performance is
achieved for reads in the evaluated workload.

Application

Cache DB

User User User 

Cachematic 

Figure 4.8: Key components in a Cachematic deployment

By deploying Cachematic in an application, developers can easily add caching to
arbitrary functions containing SQL queries, and be confident that the cached result
will always be consistent with the database. The library adds caching to marked
functions, and captures SQL queries executed within the application to automati-
cally invalidate the cache according to the algorithm described in 4.1. The library
can be described as middleware between the application, the database and the cache,
illustrated in Figure 4.8
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Due to the requirements of the evaluated application, the caching library was im-
plemented in Python 2.7. Cross compatibility with Python 3.6 was considered but
was not prioritized due to lack of time. The library utilizes both functional and
object-oriented features of Python and consists of two primary components: the
cache manager and the dependency handler. In addition, the library contains a set
of modules that handle parsing, abstract syntax trees, serialization, communication
with external systems and storage for the dependency graph.

@cache_manager.cacheable
def get_user(user_id, include_profile=False):

user_query = sqlalchemy.text("""
SELECT * FROM app_user WHERE id = :user_id

""")

result = db.execute(user_query, user_id=user_id).first()

if result is None:
# No user by that id
return None

user = dict(result)

if include_profile:
profile_query = sqlalchemy.text("""

SELECT * FROM app_user_profile WHERE user_id = :user_id
""")

result = db.execute(profile_query, user_id=user_id).first()

user['profile'] = dict(result) if result else None

# Result to be cached
return user

Figure 4.9: Example of cacheable function fetching a user and optionally it’s profile
by executing two database queries using SQLAlchemy

The cache manager is the primary API of the library. It is implemented as a class
intended to be instantiated in the host application. The primary caching inter-
face consists of a single method, used to decorate other functions and denote them
cacheable. Combined with the decorator syntax available in Python, the result is a
very simple but powerful programming model, illustrated in Figure 4.9. To allow for
more exotic use cases, the cache manager also exposes the same API used to imple-
ment the cachable decorator. This allows developers to define their own decorators
or to access the cache and associated functionality in other ways. The API is shown
in Figure 4.10.
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The cache manager implements the cache algorithm, shown previously in Figure
4.1, including cache key generation, scope, interacting with the cache and capturing
queries to the database. Interaction with the cache backend and database is facili-
tated through the adapter interfaces CacheAdapter and DBAdapter respectively.

class CacheManager(object):
...
def cacheable(self, fn):

@functools.wraps(fn)
def wrapper(*args, **kwargs):

key = self.generate_key(fn, args, kwargs)

with self.scope(key):
hit, result = self.check_cache(key)

if hit:
return result

return self.run_fn(key, fn, args, kwargs)

return wrapper

@contextlib.contextmanager
def scope(self, key):

self.start_scope(key)
yield
self.end_scope()

def start_scope(self, key):
...

def end_scope(self):
...

def generate_key(self, fn, args, kwargs):
...

def run_fn(self, key, fn, args, kwargs):
...

def check_cache(self, key):
...

Figure 4.10: Cache Manager API, including cacheable decorator implementation
and context manager for simple scope management
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The dependency handler is instantiated inside the cache manager, and implements
the dependency and invalidation algorithms. The dependency handler exposes a
simple interface to the cache manager, shown in 4.11, consisting of the methods
add_dependency, prepare_invalidation and finalize_invalidation. The first
method exposes the dependency algorithm and the latter two the invalidation algo-
rithm. The dependency handler is also called from the cache manager to clean up
the dependency graph when deleting the keys from the cache. The cleanup process
is described in 4.2.2.

class DependencyHandler(object):
...
def add_dependency(self, key, read_queries, child_keys):

# Populate dependency graph
...

def prepare_invalidation(self, write_query, scope=None):
# Test read queries and prepare internal data structures
# for the hash test performed in finalize_invalidation
...

def finalize_invalidation(self, scope):
# Perform hash test and recursively identify cache keys to
# be invalidated
...
return keys # Keys to be invalidated

def cleanup(self, keys):
# Remove associated nodes from the dependency graph
...

def clear(self):
# Remove everything from the dependency graph
...

Figure 4.11: Dependency Handler API

4.2.1 Modules

Both the dependency and invalidation algorithms rely on queries executed within the
application being communicated to the algorithm. There are many ways to achieve
this, including database triggers, parsing SQL query log files and applying listeners
within a library. The optimal choice largely depends on the language and libraries
used and in what environment the application is deployed. A DBAdapter implemen-
tation for SQLAlchemy has been developed for the reference implementation used in
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the evaluation. This implementation utilizes the SQLAlchemy event system1 to set
up listeners for the core events before_cursor_execute and after_cursor_execute.
The SQLAlchemy adapter also implements the methods get_query_result_hash
and get_schema. The schema is necessary for post processing parsed queries, since
the schema holds primary and foreign key information. The schema is also neces-
sary to retrieve column information not available in the queries. The query result
hashes are computed in the database by executing an extra query, containing the
read query as a subquery. The extra query, shown in Figure 4.12, generates the hash
by casting each row to text and combining the strings to a single entry using the
aggregate function array_agg. The resulting string is passed to the hash function.
Any hash algorithm with sufficient distribution can be used to generate the hash.
The hash algorithm md5 was used in the library since it is supported by default in
PostgreSQL. A comment is appended to the extra query to be able to ignore it in
the listeners. Generating the hash in the database removes network and mapping
overhead associated with fetching the entire result set to the application.

SELECT md5(array_agg(hash_query::text)::text)
FROM (:read_query) hash_query --extra_query

Figure 4.12: Extra query computing the hash of read query results

Another module that is utilized by both parts of the algorithm is the SQL parser,
including grammar for a large part of PostgresSQL and a post processing procedure
to extract relevant information from the queries and converting where clauses to
abstract syntax trees. The parser was implemented using pyparsing2, a monadic
parsing combinator library for creating recursive-descent parsers. The grammar is
based on an existing example for parsing SQLLite select statements, included with
pyparsing. It has been extended to support a large subset of PostgreSQL, including
insert, update and delete statements, to cover the needs of the evaluated application.
Supporting the entire SQL language including various dialects would be a significant
task, and was out of scope for this thesis.

By default, the result of parsing a string in pyparsing is a tree represented by lists
of lists and strings. For each expression in the grammar, a parse action can be
set to convert the resulting part of the tree to a more complex type. This was
taken advantage of to create a tree where the relevant information can easily be
extracted. The post processing engine converts this tree to instances of the class
ParsedQuery, with sub classes for each query type. Where-clauses are converted
to abstract syntax trees using the Python abstract syntax grammar from the ast
module3. This is the grammar used by Python itself, and can be compiled and
evaluated using the builtins compile and eval. Inspecting and transforming trees in
this form can be done by extending ast.NodeVisitor and ast.NodeTransformer.
This is how information is extracted from the where clauses, and how the reduction

1http://docs.sqlalchemy.org/en/latest/core/events.html
2http://pyparsing.wikispaces.com/
3https://docs.python.org/2/library/ast.html
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algorithm is implemented. Boolean, numeric and comparison expressions in a where
clause can be directly mapped to the Python AST. Function calls are translated
to predefined equivalent calls in Python, and the LIKE expression is translated to a
call to a predefined function executing a regular expression. Similarly, the SQL case
expression is translated to a function call, evaluating each case sequentially.

The cache manager keeps track of the current scope to enable tracking of queries and
nested function calls necessary to build the dependency graph. A context interface
with a default implementation was developed to handle this. It keeps a stack of
cache keys, representing the scope of function calls. A cache key is pushed on top of
the stack when a scope starts and popped when a scope ends, such that the cache key
for the innermost function call is always on top of the stack. The context also keeps
track of read queries and nested keys for each key on the stack. Queries get recorded
to the key on top of the stack whenever they occur. Nested calls are captured at
the end of every scope. If the stack is nonempty after popping a key, the popped
key is captured as a child of the key on top of the stack. The evaluated application
is implemented in Flask4, a Python web application framework, and deployed using
Gunicorn5, a web server that can be configured to run with multiple processes and
threading. If threading is enabled, each request of the application will be executed
in a new thread. With multiprocessing, each process will run a distinct instance of
the application, while threads share memory within the same instance. To avoid
race conditions with multiple threads executing cacheable functions simultaneously,
a thread-local implementation of the context for use with Flask was developed.
The thread-local context takes advantage of the Flask application context, which is
unique for each thread. Implementations supporting other execution models would
be straightforward to develop and the cache manager can easily be configured to use
implementations other that the default.

A serialization module was developed to help generate cache keys and serialize
cached results. Part of the requirements for the evaluated application is caching
of values of user defined types such as class instances, in addition to built-in types6.
Serializing arbitrary objects using standard serialization formats such as json in
Python requires custom code per user defined type, which was not reasonable to
do within the scope of this thesis. A python-specific serialization method which
can handle arbitrary objects is the pickle module7. There is also a very performant
C-extension equivalent called cPickle. Unfortunately, pickle has a bad reputation
for being insecure since a malicious object can perform arbitrary code injection on
de-serialization [39]. In order to avoid this, a wrapper for pickle was developed, com-
bining the serialized object with a hmac [40] signature. The signature is generated
from the serialized object and a secret key, and is prepended to the output. On de-
serialization, the signature is compared to a newly generated one before unpickling
the serialized object and raises an exception on mismatch.

4http://flask.pocoo.org/
5http://gunicorn.org/
6https://docs.python.org/2/library/stdtypes.html
7https://docs.python.org/2.7/library/pickle.html
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Cache keys are generated by concatenating a fully qualified name of the wrapped
function with a serialized version of all the arguments. The fully qualified name
includes the full module path of the function and its name, including any local
scopes, since you can define functions almost anywhere in Python. For the purpose
of serializing the arguments, it was discovered that a custom one-way serialization
function supporting built-in types was the fastest after evaluating standard serial-
ization formats.

Redis was used both as cache backend and for storage of the dependency graph.
An implementation of the CacheAdapter interface for Redis was developed for the
reference implementation. A wrapper for Redis was also implemented to handle the
storage of the dependency graph.

4.2.2 Graph representation

The dependency graph is represented by six hash tables, listed in Table 4.1. In
the reference implementation these are stored in Redis with a key prefix for each
table. Tables storing sets are implemented using Redis Sets8 to take advantage of
O(1) performance for add and remove operations, thus reducing the overhead of
maintaining the dependency graph.

Table Key Value
Column Lookup Canonical Column Set of Can. Query Templates
Query Lookup Canonical Query Template Set of Query Ids
Instance Lookup Query Id Set of Cache Keys
Key Lookup Cache Key Set of Parent Cache Keys
Query Nodes Query Id Query Params
Query Cache Canonical Query Template Parsed Query

Table 4.1: Hash tables representing the dependency graph

The four lookup tables represent most of the dependency graph, including nodes
in the first and third layer and all edges in the graph. Query node data is stored
in a separate table to keep the sets simple and without serialization. Query nodes
contain query parameters for each individual query instance.

The query cache stores the query meta data in the form of a ParsedQuery, ex-
tracted after parsing and analyzing each query, keyed on the canonical query tem-
plate string. A query template is a SQL query string before the parameter names
have been substituted with actual values. A canonical query template is produced
by concatenating the template with the database id. The query cache takes ad-
vantage of the fact that the number of unique query templates is relatively low in
most applications [32]. Parsing and analyzing the query strings is a time consuming

8https://redis.io/topics/data-types
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operation, and the query cache is therefore essential to achieve good performance
in both the dependency and invalidation algorithm. Both the query cache and the
column lookup table stabilized fairly quickly in our evaluation tests.

Using sets to represent most of the dependency graph also simplifies the cleanup
process. The process starts by deleting invalidated keys from the key lookup table.
Thereafter, the keys are removed from all sets in the instance lookup table, recording
query identifiers with empty sets in the process. These queries no longer have any
dependencies and can therefore be deleted from the query nodes and removed from
the sets in the query lookup table. The column and query lookup tables and the
query cache only need cleanup when the schema changes, which happens very rarely.
These tables can be cleared manually through the clear method in the dependency
handler. It is important that the cleanup happens before deleting the keys from the
cache, in order to avoid cache misses for the affected keys while modifying the graph.
A cache miss would trigger the dependency algorithm, which could modify the same
part of the graph simultaneously, cause race conditions, and potentially corrupt the
dependency graph. The query part of the tree can still be subject to race conditions,
since it is shared between many cache keys. By using distributed locks identified
by each query id, the subgraph associated with that query is effectively locked, and
modifications can be done safely. The locks were implemented using using Redis 9.

The actual invalidation of cache keys and cleanup of the dependency graph can
be done externally through an invalidation callback, optionally configured during
instantiation of the cache manager. In the evaluated application, invalidation was
configured to be done in a background task. This increases the staleness of the cache
slightly, but reduces the overhead imposed on write endpoints.

4.2.3 Invalidation algorithm

As described in Section 4.2.2, read queries are grouped by query template in the
dependency graph. This enables bulk testing of read query instances that share
query template. For example, the primary key test for inserts, described in Section
4.1.2, is applied on query templates, and can exclude many queries before loading
instance specific data. ASTs are constructed only once per pair of write and read
query templates, and if all variables are unknown in the AST, all read queries with
that template can be directly passed to the hash test.

Utilizing invalidation scope enables further optimizations. For instance, read queries
marked for potential invalidation do not have to be evaluated again within a scope.
Additionally, instance specific data for read queries are cached in memory within an
invalidation scope, to avoid repeated deserialization. At the end of the invalidation
scope, each read query needs to be hash tested only once, and cache keys associated
with the queries can be loaded in bulk.

9https://redis.io/topics/distlock
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Due to the availability of events triggered before and after execution of queries in
SQLAlchemy, the invalidation algorithm was implemented as a two-phase process.
This enables hashing of read query results on demand before and after the execution
of a write query instead of hashing when the read query is executed, and reduces the
overhead of the dependency algorithm. Within invalidation scope, only one initial
hash has to be computed per read query. If an implementation of the DBAdapter
can only report queries after execution, the cache manager will fall back to single
phase invalidation and do the initial hash in the dependency algorithm.

4.3 Testing

A collection of unit tests was developed to verify the correctness of the dependency
and invalidation algorithms, including the parser, query tests and dependency graph
maintenance. To implement the tests for the dependency and invalidation algo-
rithms, a debug mode was added to the library. In debug mode, the library writes
internal data to a log file, including captured queries, dependency data structures
and invalidation actions. Unit and regression tests were implemented continuously
by inspecting and analyzing the log file, generated by running the system manually
and through the evaluation suite.

4.4 Limitations

For Cachematic to be able to work properly, cacheable functions have to be depen-
dent only on the arguments passed to the function, a database that is setup to be
listened to and any deterministic sub call. If a function that is using any kind of
non-determinism outside of the database, like an operating system call, would be
annotated cacheable there would be no guarantees that the cache would work. In
fact, for instance if a result of a function that used current time would be cached,
Cachematic would incorrectly return a cached result of that function for any subse-
quent calls. That is, if the cache was not invalidated for some other reason.

Since the process of invalidating can be time-consuming and happens independently
of data access, stale data might remain in the cache for a limited amount of time
until the invalidation process is done.

36



5
Evaluation

In this chapter we present the evaluation of Cachematic, performed utilizing Ama-
zon Web Services. The evaluation suite was implemented using a python library,
Locust1. Two baselines are included for comparison. The first baseline is the man-
ual invalidation solution currently in use in the Bison platform. The second is an
implementation without caching.

The chapter begins with a description of the library used to develop the test suite
and a description of the implementation including a specification of the AWS setup.
Following is a section presenting a number of graphs displaying the response times
for the different implementations. Next, the cache hit rate for the two caching im-
plementation is presented. The chapter ends with a discussion about the evaluation
and an outline of potential threats to the validity of the evaluation.

5.1 Approach

To evaluate the performance of Cachematic, the load test library Locust was used.
Locust is a python library that allows developers to load test an http API. For every
http request sent from the test locust records the response time, the name of the
endpoint, the sequential number of the request and some additional data. A test
consists of clients and task sets. The clients serve as users and they perform tasks
on a certain interval, specified by the developers. There can be different types of
clients which perform different sets of tasks. The ratio of how many of each type of
client should exist can be specified.

The task sets are also specified by the developers. The sets contain either other task
sets or concrete tasks that specify http requests to the API to be tested. Both task
sets and concrete tasks support weighting. When specifying a weight on a task the
probability of that task being executed is altered.

When a test is initialized, each client is spawned and assigned a task set. The clients
then begin sending requests according to the task set they were assigned. Because of

1https://locust.io
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the weighting of the tasks and task sets the test scenario becomes non-deterministic
but influenced. We used this feature to create a representative workload of the
actions performed by users of the Bison platform.

To be able to measure hit rate, which is not measured in Locust by default, we made
a minor modification to the Locust source code. In the code that records relevant
data from a response we added extraction of a header(x-cache-hit) which indicates
if the response data was served from the cache or not.

5.2 Test Setup

The test consists of two sets of users called Client Admin and Regular Client. The
Client Admin users are responsible for creating, modifying and sharing data. The
characteristic of these users is that they call endpoints that trigger writes to the
database. Ultimately, these requests will invalidate cached data, but also enable
the analysis in the first place. Regular Client users are responsible for requesting
time consuming calculations. The requests sent by Regular Client users trigger a
significant number of reads from the database.

The test included 4 Client Admins and 16 Regular Users. All users were assigned
a wait time of two seconds between execution of task sets. Weights ranging from
one to five was used on different tasks. The test was run for 60 minutes. With a
two second wait time and 20 users, an average of 10 tasks are executed per second.
Each task executes multiple http requests, resulting in an observed rate of about 30
requests per second.

In the Bison platform, a user belongs to a client, not to be confused with the clients
in Locust. The users created for the test were equally distributed between two Bison
clients, resulting in each Bison client having two Client Admins and eight Regular
Users. Data created by the Client Admins is shared with all users belonging to the
same Bison client.

The two types of users were assigned one main task set each. Regular Users were
assigned the task set UserBehavior and Client Admins were assigned the task set Ad-
minBehavior. The main task sets included multiple sub task sets that are described
below.

The test setup was based on insights from Bison employees with specific knowledge
about the user behaviors in the platform.
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5.2.1 User Behavior

The User Behavior task set includes two different sub task sets to execute: BrowseBench-
mark and VehicleAnalysis.

BrowseBenchmark includes two requests. First, the user requests a list of avail-
able benchmarks. Second, the user randomly selects one of the available benchmarks
and requests the actual benchmark data. The task has weight 1.

VehicleAnalysis includes more steps than the first task set. First, the user requests
a list of all available vehicle entities. Next, the user selects a vehicle and requests a
list of available reporting-dates. Third, the user selects one of the dates and requests
meta information about the vehicle. Lastly, a number of analyses are performed on
the vehicle, given the vehicle type, the user’s selections, and other input parameters.
The task has weight 5.

5.2.2 Admin Behavior

The Admin Behavior task set includes four different sub task sets to execute: Up-
loadCashflow, DeleteEntity, ShareEntity and ChangeAttribute.

UploadCashflow begins with the user selecting a spreadsheet from a pre-defined
set of spreadsheets with example data. The spreadsheet is then uploaded through
a number of sequential requests. The task has weight 5.

In DeleteEntity, the user requests a list of available entities and then selects one
that it requests to delete. The task has weight 1.

ShareEntity begins with the user requesting a list of available entities. Next, the
user shares all available entities with the other users belonging to the users Bison
client. The task has weight 1.

In ChangeAttribute, the user requests a list of selects a name and requests to
update the entity with the new name. Furthermore, the user requests a list of
available attributes for the new entity, selects a random attribute and updates the
entity with the new attribute. The task has weight 1.

5.3 Test environment

The evaluated application was deployed to a VPC in Amazon Web Services using
AWS CloudFormation to easily replicate the production environment where the ap-
plication is normally deployed. The environment consists of a RDS database of
type db.m4.large, a set of four EC2 instances of type m5.large and a ElastiCache
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cluster with a single Redis node of type cache.m3.large. The EC2 instances are
provisioned with Ubuntu 16.04, two as web servers and the other two as background
workers. PyPy 5.8 was used as python interpreter. The web servers run the appli-
cation through Gunicorn 19.7.1, and the background workers use Celery 4.1.0. The
RDS database is running PostgreSQL 9.6.6.

Before each test, the application was deployed with the target solution and the
PostgreSQL database and Redis cluster was reset to a clean state.

To reduce network overhead, the evaluation script was executed on another instance
of type m5.large in the same VPC.

5.4 Response time

In this section a number of graphs delineating the response times for the different
implementations are presented. Every test was divided into samples of 30 seconds
and metrics were collected from each of the samples.
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Figure 5.1: Median response time with 25% quartile and 75% quartile

Figure 5.1 plots the median response times of read requests in the evaluation of
each implementation. The dashed lines highlights the 25% quartile and the 75%
quartile. Cachematic performs slightly better than the manual solution. Note that
Cachematic deviates more than the manual solution in the beginning, highlighting
that Cachematic requires warmup in addition to just populating the cache. This
additional warmup is due to initial parsing of queries and population of the first
layer in the dependency graph. The implementation without caching performs sig-
nificantly worse than the other two implementations. The spikes in response time
of the implementation without caching are due to high load on the web server. The
solutions with caching are more resilient to load since the web server has to do
considerably less work when serving requests from the cache.
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Figure 5.2: Close up median response time with 25% quartile and 75% quartile
after warmup

In Figure 5.2 the no cache solution and the warmup time has been stripped out.
From this data, a more detailed analysis of the comparison between Cachematic
and the manual invalidation system can be performed. We observe that, when two
caches have stabilized, the median for the manual solution is constantly around 40
ms or just below. The median for Cachematic is below 30 ms for almost every
sample, establishing that the median response time is decreased to around 75% of
the manual solution.

The 75% quartile is significantly lower in Cachematic but it is fluctuating more
than the 75% quartile for the manual solution. In the manual solution the quartile
is around 110 ms while in Cachematic it ranges from around 50 ms up to around 90
ms. The cause of the fluctuation is likely because of the cache hit rate presented in
Table 5.5. Since the cache hit rate for cachematic is 69%, the 75% quartile probably
includes only cache hits for some samples and non-cache hits for some samples. The
75% quartile for the manual solution is supposedly always including non-cache hits.
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Figure 5.3: 90th percentile response time for read requests

For the 90th percentile, plotted in Figure 5.3, Cachematic outperforms both the
other implementations after the initial warmup period. This can be explained by the
higher hit rate achieved with Cachematic. The higher hit rate means a significant
portion of the 90th percentile will be cache hits. Requests to different endpoints
should take approximately the same amount of time if the result is fetched from the
cache. If the request requires actual execution of functions and database calls, the
result can vary greatly depending on exactly which endpoint was called.
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Figure 5.4: Median response time with 25% quartile and 75% quartile

Figure 5.4 plots the median response times of write requests in the evaluation of
each implementation. The dashed lines highlights the 25% quartile and the 75%
quartile. The plot clearly illustrates the overhead imposed by Cachematic on write
requests. As the cache gets populated the overhead increases since each write query
has to be tested against more read queries. Suggestions for reducing this overhead
further are discussed in Section 6.1. Note the spikes in the standard deviation of
the implementation without caching. These are due to high load on the web server,
since all the calculations have to be done from scratch in each read request. The
high load also results in a higher rate of error than in the solutions with caching.

5.5 Cache hit rate

Because of the implementation described in Chapter 4, we know that the cache
hit rate for Cachematic is close to optimal. What is interesting is how the hit
rate compares to the hit rate of the current manual invalidation implementation.
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The difference in hit rate gives an indication of how complex the task of manually
invalidating cache entries can be for developers. The result can be seen in Figure
5.5.
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Figure 5.5: Cache hit rate for cachematic and manual solution

From the measured hit rate it can be concluded that Cachematic provides a hit rate
that is approximately 1.64x higher than the current manual solution. We can also
conclude that the manual implementation is invalidating cached entries that do not
have to be invalidated.

5.6 Overhead

As can be seen in the graphs in Section 5.4, the overhead for read requests does not
seem to have significant impact on the response time. At least, when comparing the
manual invalidation implementation to Cachematic, the benefits of the higher hit
rate provided by Cachematic combined with the overhead still performs better.

On the contrary, the overhead for write requests is more considerable. Not only is
the response time for write requests very high but it is also fluctuating significantly.
It is largely depending on what exact endpoint is being requested and the current
status of the cache.

The high overhead in certain write requests can be explained by the execution of
hash queries. For some write queries included in the test, none of the exclusion tests
will be able to determine invalidation, and a hash query will always be executed.
As the cache is populated, and there are more read queries to test, the hash queries
will impose significant overhead. The number of read queries in the cache stabilizes
over time.
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Another factor contributing to the overhead is the high number of complex queries
executed in the evaluated application. Most queries join at least one other table,
and many have complex where clauses. In the evaluation of other systems, such as
AutoWebCache, it is highlighted that most of the queries executed by the bench-
marks TCP-W and RUBiS are simple, and the where clause often consists of a single
equality condition [32]. It is highly likely that the overhead for write requests would
be significantly reduced if Cachematic was deployed in a system with more simple
queries.

5.7 Threats to validity

The evaluation is only representative for a portion of the user behaviors in Bison.
The workload used for the evaluation is based on behaviors common for the users of
the Bison platform. Therefore, the workload is arguably a reasonable representation
of a real world scenario. Furthermore, the workload in Bison might differ from other
applications.

Since the test is non deterministic, different test runs might execute different loads
on the system. To understand the impact of the non deterministic test, multiple tests
were run for the same implementation. We found that for a single implementation,
the results did not deviate significantly. To account for the minor differences, the
test results from multiple test runs were combined to create the plots in Section 5.4.

Another factor that could affect the test results is the test environment, more specif-
ically variable performance of the cloud instances used in the evaluation. Due to
the small deviations in the results between test runs, this factor was not considered
further.

The evaluation in this thesis does not consider or optimize for cases when the cache
is full. This is largely not an issue in modern application level caching deployments,
since arbitrarily large caches are available for cheap. The cache used in the evaluation
was sufficiently large to avoid automatic eviction entirely. If necessary, evictions
would be determined by Redis’ LRU policy .

5.8 Discussion

In this chapter we have showed the evaluation of Cachematic in comparison to
the current manual invalidation implementation and an implementation without
caching. It can be concluded from the evaluation that the two cache implementa-
tions greatly improves the response time for read requests sent to the API. Fur-
thermore for read requests, Cachematic performs slightly better than the manual
invalidation implementation both in terms of median response time and standard
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deviation response time. The fact that Cachematic provides a higher hit rate ex-
plains the improved performance since more requests can be satisfied by the cache.
Fetching cached results decreases the number of database queries and application
logic that has to be performed, which is often time consuming tasks.

The overhead on write requests imposed by the automatic invalidation algorithm is
significant when the cache is populated. Depending on application, the overhead
might be considered acceptable, especially if write requests happen rarely and fast
read access is highly valued. It also removes a significant workload from the devel-
opers, and can help speed up development of new features and reduce the frequency
of bugs.

Cachematic has proven to be sufficient enough to replace the current manual inval-
idation system deployed in the Bison platform. The fact that Cachematic signifi-
cantly reduces the amount of work required by the developers is of great value for
Bison. Even though the increased response time in write-intense requests is substan-
tial, the total benefits are considered to weigh up for the increased response times.
Some more work will be put into improving implementation details to minimize the
disadvantages before the system is finally deployed in the Bison platform.
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6
Conclusion

Managing application level caches manually can be a tedious and error-prone task.
In particular, when a code base grows in size and complexity, the task of invalidating
the cache correctly becomes troublesome. One way of solving the complex task of
invalidating cached entries correctly is to use an automatic invalidation system. In
this thesis, we introduced Cachematic, a general-purpose caching library with an au-
tomatic invalidation strategy. Cachematic provides a simple programming interface
for developers to cache the result of arbitrary functions by simply annotating the
function as cacheable, and requires only minor modifications to the application it is
deployed in. The algorithms implemented incorporates ideas from related research
to efficiently test for invalidation and introduces a hash based test to guarantee
the invalidation is performed optimally. A reference implementation, developed in
Python, was used for evaluation and comparison with a manual solution deployed
in the Bison platform. The evaluation showed that Cachematic increased the cache
hit rate and reduced the median response time of read requests for a representative
workload scenario. The evaluation also showed that the invalidation algorithm is
expensive, in particular when the cache is populated with a significant amount of
data and complex queries are executed.

6.1 Future Work

There is still work to be done in order to improve the library presented in this thesis.
There was not enough time to implement extra queries, described in [32], which
fetch additional information to enable more accurate testing of certain read queries.
Extra queries can increase the accuracy of read query testing and significantly reduce
overhead in the invalidation algorithm. Many of the ancillary modules implemented
to support the library are incomplete or unoptimized due to lack of time. The
parser needs work to reduce overhead during warmup, and to support the full SQL
language including the many dialects. Ideally the grammar should be defined using
a common notation such as BNF.

Other potential future work would be to compare Cachematic to similar automatic
cache management libraries presented in this thesis. For instance, a reference im-
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6. Conclusion

plementation in a programming language supported by RUBiS would enable direct
comparison to TxCache and AutoWebCache. Being able to compare Cachematic to
similar solutions using the exact same evaluation setup would undoubtedly give a
better understanding of how Cachematic performs in a more general setting, out-
side of the Bison platform. In [41], three benchmarks for testing performance of
a web application with a setting such as described in this thesis are described. It
might be of value to further investigate whether it would be reasonable to utilize
the benchmarks described in the paper.

The algorithms and the query tests have been informally verified in a collection of
simple unit tests. Formal verification remains to be done.
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