
Deep Learning for Fashion Analysis
Generative modelling for semantic segmentation data

Master’s thesis in Complex Adaptive Systems

Marie Korneliusson

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019:TIFX05

Deep Learning for Fashion Analysis

Generative modelling for semantic segmentation data

Marie Korneliusson

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2019

Deep Learning for Fashion Analysis
Generative modelling for semantic segmentation data
Marie Korneliusson

© Marie Korneliusson, 2019.

Supervisor: Olof Mogren, RISE AI
Examiner: Mats Granath, Department of Physics

Master’s Thesis 2019:TIFX05
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Generated image and corresponding generated semantic segmentation map
on top of the generated image.

Typeset in LATEX
Gothenburg, Sweden 2019

Deep Learning for Fashion Analysis
Generative modelling for semantic segmentation data
Marie Korneliusson
Department of Physics
Chalmers University of Technology

iv

Abstract
Using semantic segmentation algorithms to automatically classify each pixel of an
image, could imply great benefits for the fashion industry but also for the use of
society. Semantic segmentation algorithms can for example be used within the
fashion industry by predicting trends on social media or by robots within health
care to help people get dressed. However, performance of semantic segmentation
algorithms are dependent on a large amount of annotated training data. The fashion
industry in particular, is an area where machine learning algorithms are not as
well developed as in many other fields, and the amount of training data is thus
limited. Therefore, the purpose of this thesis was to investigate if it is possible to
use deep learning for generative modeling to increase the amount of training data
in the fashion domain. The results showed that it is possible to use generative
adversarial networks (GANs) to generate pairs of images and corresponding pixel
wise annotations.

Keywords: Generative Adversarial Networks, Neural Networks, Machine Learning,
Deep Machine Learning, Semantic Segmentation, Fashion.

v

Acknowledgements
First of all I would like to thank my supervisor Olof Mogren, for his support and
guidance throughout the project, which made this project possible. I would also
like to thank him for having me as a master thesis student. John Martinsson and
Edvin Listo Zec thanks for supporting, for chairing ideas, and for including me in the
group. A special thanks to John for helping me with testing the generated images
on the semantic segmentation task. In addition I want to thank Malin Korneliusson
for helping with designing the network architecture figure for the report, and Teodor
Norrestad for helping with proofreading.

Marie Korneliusson, Gothenburg, June 2019

vi

viii

Contents

List of Figures x

List of Tables xiii

1 Introduction 3
1.1 Aim and Research Questions . 4
1.2 Limitations . 4
1.3 Thesis outline . 4

2 Background 6
2.1 Artificial Neural Networks . 6
2.2 Deep Neural Networks . 6

2.2.1 Multi Layer Perceptrons . 6
2.2.2 Convolutional Neural Networks 7

2.3 Supervised Learning in Deep Neural Networks 8
2.4 Semantic Segmentation using Deep Neural Networks 9

3 Generative Image Modeling 11
3.1 Generative Modeling Using Deep Learning 11
3.2 Generative Adversarial Networks . 12

3.2.1 Training Instability . 13
3.2.2 Mode Collapse . 15

4 Methods 17
4.1 ModaNet - Data set . 17
4.2 Models . 19

4.2.1 Style GAN - for image generation 19
4.2.1.1 Style GAN - generator 20
4.2.1.2 Style GAN - discriminator 21

4.2.2 Style C GAN - for image and semantic segmentation map
generation . 21
4.2.2.1 Adding feature maps 21
4.2.2.2 Progressive growing in the channel dimension 22

4.2.3 Style C GAN 2D - for image and semantic segmentation map
generation . 22
4.2.3.1 Adding discriminator 22
4.2.3.2 Changing training procedure 23

ix

Contents

4.3 Evaluation Metric . 23
4.3.1 Inception score . 23
4.3.2 Fréchet Inception distance . 24
4.3.3 Similarity evaluation in feature space 25
4.3.4 Traverse the latent space . 25

4.4 Putting it all together from raw data to final model 26
4.4.1 Training, validation and test split 26
4.4.2 Data pre-processing . 26
4.4.3 Training schedule . 27
4.4.4 Evaluation . 27

5 Results 29
5.1 Semantic segmentation maps generation 29
5.2 Image comparison . 31
5.3 Similarity evaluation . 33

6 Conclusion 38
6.1 Future work . 39

x

Contents

xi

List of Figures

2.1 Graph illustrating a multi layer perceptron, with one input layer, two
hidden layers and one output layer. 7

2.2 Illustrating a convolutional operator with kernel size 5, stride 1 and
10 feature maps acting on an input image of dimension (64×64×3) . 8

2.3 Image illustrating semantic segmentation. The left figure shows an
input image. The middle figure shows the semantic segmentation map
highlighting the dress, pants and footwear classes. The right figure
shows the semantic segmentation map on top of the image. 9

4.1 Subset of samples in ModaNet. The upper panel shows examples of
RGB images in ModaNet. The lower panel shows the corresponding
semantic segmentation map to each image. 17

4.2 Proportions of instances per class in descending order in ModaNet
data set. 18

4.3 Example of an one-hot encoded semantic segmentation map, i.e one
map per channel. The figure in the lower right corner shows the
corresponding image. 19

4.4 Figure illustrating the architecture of style GAN. The left figures
shows the layers in each building block, where the upper part shows
the generator and the lower the discriminator. The right figure shows
the entire architecture of the Style GAN generator network. 20

5.1 Four outputs generated by Style C GAN at resolution 512 × 512
trained on ModaNet. For each output the generated image, the gen-
erated semantic segmentation map and the generated semantic seg-
mentation map on top of the image is shown. 29

5.2 Four outputs generated by Style C GAN 2D at resolution 512× 512
trained on ModaNet. For each output the generated image, the gen-
erated semantic segmentation map and the generated semantic seg-
mentation map on top of the image is shown. 30

5.3 The left figure shows proportions of instances per class in ModaNet
data set, the middle figure shows proportions of instances per class
from a data set of 50K images generated by Style C GAN, the right
figure shows proportions of instances per class from a data set of 50K
images generated by Style C GAN 2D. 30

xii

List of Figures

5.4 Samples produced by Style GAN generator at resolution 512 × 512
trained on ModaNet. The FID calculated using test set was 12.34
and the IS was 5.06. 32

5.5 Samples produced by Style C GAN generator at resolution 512× 512
trained on ModaNet. The FID calculated using test set was 25.10
and the IS was 4.79. 32

5.6 Samples produced by Style C GAN 2D generator at resolution 512×
512 trained on ModaNet. The FID calculated using test set was 20.97
and the IS was 4.69. 33

5.7 Visualization of similarity evaluation in feature space for Style C
GAN. From left to right: generated image, 10 nearest neighbors in
the feature space of the pool3 Inception V3 network, semantic seg-
mentation maps of the 10 nearest neighbors, the generated semantic
segmentation map. 34

5.8 Visualization of similarity evaluation in feature space for Style C GAN
2D. From left to right: generated image, 10 nearest neighbors in the
feature space of the pool3 Inception V3 network, semantic segmen-
tation maps of the 10 nearest neighbors, the generated semantic seg-
mentation map. 34

5.9 Traversing the latent space. Interpolation between two latent codes,
resulting samples generated by Style C GAN. The upper panel shows
the generated images and the lower panel shows the generated seman-
tic segmentation maps. 35

xiii

List of Figures

xiv

List of Tables

4.1 Classes and sub-classes in ModaNet. The sub-classes describes which
attributes that each class contains of. 18

5.1 IS and FID for comparing image quality for Style GAN, Style C GAN,
and Style C GAN 2D. IS is calculated as the mean IS of five batches
using 10K generated images in each batch and FID using the test set
and 50K generated images. 31

1

List of Tables

2

1
Introduction

Deep learning algorithms have received a lot of attention during the last couple of
years. Great results in a variety of areas have enhanced the interest and given fuel to
further research [22]. The success factor, deep nets, trained on GPUs [21]. However,
deep models are complex and use a lot of parameters. Therefore, to make the model
generalize and to have capacity to train all the parameters, it is crucial to have a
sufficient amount of available training data [46]

One of the areas where great results have been recorded by the utilisation of deep
learning algorithms is the task of semantic segmentation [9]. The task of semantic
segmentation, is the task of understanding the semantics of an image. In particu-
lar, semantic segmentation algorithms aim to classify each pixel of an image into a
set of predefined classes [30]. Classifying each pixel of an high dimensional image,
implies a certain task complexity. To compensate for the task complexity a large
amount of trainable parameters are required. Therefore, to have the ability to train
all parameters a large amount of training data is needed. However, the training
data used for semantic segmentation includes images and corresponding semantic
segmentation maps, i.e a map including a class label for each of the image pixels.
Labeling that type of data could both be expensive and time consuming.

The ability to automatically classify each pixel in an image have a great potential to
be applied in various of areas. For instance using semantic segmentation algorithms
for understanding the semantic of fashion images, could imply great benefits for the
fashion industry but also for the use of society. Semantic segmentation algorithms
can for example, be used within the fashion industry by predicting trends on social
media, or by robots within health care to help people get dressed.

Unfortunately is, the fashion industry in particular, an area in which deep ma-
chine learning have not received as much attention as in many other fields. The
amount of training data available for training a semantic segmentation algorithm
is thus limited. In this thesis we address this problem, and we aim to investigate
what can be done with already available training data. In particular, the goal is
to investigate if it is possible to use generative modelling focusing on Generative
Adversarial Networks [10] to increase the amount of training data.

3

1. Introduction

1.1 Aim and Research Questions
The aim of this master thesis is to investigate and examine the possibility in generat-
ing new training data, that can be used to train a semantic segmentation algorithm
on fashion images. In particular, the idea is to examine the possibility to generate
training data and corresponding semantic segmentation maps using Generative Ad-
versarial Networks (GANs). To fulfill the aim of the thesis the following research
questions will be answered.

(R1) Is it possible to use GANs to generate realistic pairs of images and semantic
segmentation maps?

(R2) Comparing generated images with images generated together with correspond-
ing semantic segmentation maps, how will the quality of generated images be
affected?

(R3) What will be that variation of generated samples, are we able to generate
images that do not already exists in the training set?

1.2 Limitations
Generative adversarial networks is one technique used for implementing generative
models. There are other examples of generative models in the literature, that has
provided good results, for example deep Boltzmann machines [35] and generative
stochastic models [3]. This thesis will be limited to investigate the characteristic of
using the GAN framework. Further, the thesis is limited to generating fashion data.

1.3 Thesis outline
The outline of this thesis is as follow. The thesis starts with a background to deep
neural networks. The chapter aims to introduce the deep learning related aspects
of this thesis. Therefore, multi layer perceptrons, convolutional neural networks,
supervised learning and finally the task of semantic segmentation is described. In
chapter 3, the theory of generative image modeling using deep leaning is provided.
In particular we introduce the theory behind the main technique of this thesis,
namely, Generative Adversarial Networks. In chapter 4 the method is described,
including the used data set, the model architectures and the evaluation metrics. In
chapter 5 the results are presented, where the aim is to answer all the stated research
questions. Finally the thesis is concluded with a discussion about the outcomes and
future work.

4

1. Introduction

5

2
Background

The aim of this thesis was to generate fashion images and corresponding segmenta-
tion maps using deep neural networks trained under the GAN framework. In this
chapter we therefore provide a short background regarding learning in deep neural
networks and the task of semantic segmentation.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) were first introduced in [28], where the original
idea was to model the animal brain. The model paved the way for a new research
area. Namely, designing algorithms where the rules are not set by a human expert
but instead computationally learned by the network’s interaction with the environ-
ment [17]. Today the animal brain interpretation of the ANN model is far from
realistic.

The popularity of ANNs has been fluctuating. Short after the introduction it was
showed that ANNs were limited by a great amount of computations [29]. It was com-
putationally infeasible to train a large net at the time. However further advances
both in algorithms such as back-propagation [34] and in hardware developments have
made it possible to train larger nets, which we today call deep neural networks.

2.2 Deep Neural Networks

Deep neural networks (DNNs) are artificial neural networks with multiple layers,
whose complex architectures can successfully capture dependencies in high dimen-
sional data [24]. Multi layer perceptons (MLPs) and convolotional neural networks
(CNNs) are two of the most well known DNN architectures and are also the two
architectures used in this thesis. Below, both of them are described briefly.

2.2.1 Multi Layer Perceptrons

Multi Layer Perceptrons (MLPs) are artificial neural networks with at least one
hidden layer (in addition to it’s output layer). MLPs are typically illustrated using
a graph (see fig. 2.1), with links connecting the nodes, which by the human brain
interpretation is a realization of synapses connecting to neurons.

6

2. Background

Figure 2.1: Graph illustrating a multi layer perceptron, with one input layer, two
hidden layers and one output layer.

Mathematically the model is defined by the following. Let y(l+1) denote the activa-
tion or output of each neuron in layer l + 1. Further let y(0) = x, where x is the
input vector, then for each layer the activations are given by:

y(l+1) = g(Wy(l) + b), (2.1)

where W denotes the connection strengths of layer l and l+ 1 also called weights, b
denotes the bias vector for the particular layer and g denotes the activation function.

2.2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) is a DNN architecture that was introduced
in [23] with the aim of improving the current state of image recognition algorithms.
CNNs differs from MLPs by the convolutional operator that they employ, which
enable the network to capture spatial local dependencies in images.

The convolutional operator is illustrated in fig. 2.2 and is defined by first specifying
three hyper-parameters, namely, the kernel size k, the stride s, and the number of
feature maps f . Then given an input x with dimension (W ×H ×D), where W , H
andD denotes the input width, height and depth or number of channels respectively,
we can now define the convolutional operator by eq. (2.2), for s = 1.

yfi,j =
k∑

m=1,n=1
xi+m,j+nw

f
m,n ∀i, j, f, (2.2)

where wf ∈ (k × k) denotes the weights in each feature map and y ∈ (W ×H × f)
denotes the output from the convolutional operator. We hence note that the number
of feature maps determines the dimension of the output in a convolutional layer.

7

2. Background

Figure 2.2: Illustrating a convolutional operator with kernel size 5, stride 1 and
10 feature maps acting on an input image of dimension (64×64×3)

2.3 Supervised Learning in Deep Neural Networks

From section 2.2 we note that DNNs can be seen as a function fθ that maps an input
x to an output y, where θ denotes the parameters of the function such as weights
and biases. In deep learning we aim to learn the parameters θ such that fθ is the
best function for solving the given task. There are different types of learning that
can be used for finding the best values of the parameters in a DNN [17]. In this
thesis we will focus on the learning type called supervised learning.

In supervised learning the parameters or weights are learned by the aim of min-
imizing a task specific error e(y, t), which defines a measure of the distance between
the networks predictions y and the given target values t. Hence, supervised learning
requires a data set that consists of pairs of inputs x and targets t.

After defining the error measure e(y, t) the learning procedure is as follows, we
feed the inputs x to through the DNN fθ which yields the networks prediction y.
If the network prediction y and the target t are equal, no updates are needed. If
they are not equal the parameters are updated in the direction such that the error
is minimized. This is typically done by using the back-propagation algorithm [34],
which relies on updating each parameter using gradient decent. Hence for a given
parameter wi,j the update is determined by,

wi,j = wi,j − α
∂e(y, t)
∂wi,j

, (2.3)

where α is called the learning rate, a parameter whose optimal value is dependent on
the particular task and and has been shown to have great influence on convergence
[37].

8

2. Background

2.4 Semantic Segmentation using Deep Neural Net-
works

Semantic segmentation is the task of understanding the semantics of an image. Clas-
sical recognition tasks include image classification and object detection. Semantic
segmentation is related to both the image classification and object detection and
aims to classify each pixel of the image. The transition from classifying the entire
image to classify each pixel comes with an increase of problem complexity. However,
implementing convolutional neural networks (CNNs) has been shown beneficial for
the task [9]. In particular, the results have rapidly increased after the introduction
of the fully convolutional network (FCN) [25], which employs only convolutional
layers to well known image classification models such as AlexNet [21], VGG net [39]
and GoogLeNet [40]. The FCN model has been used as powerful baseline system
which has allowed for further advances on the task[12].

The task of semantic segmentation in the supervised setting can be formulated by the
following: Semantic segmentation aims to find the parameters θ of the function fθ
that maps an image x ∈ R(W×H×3) to a semantic segmentation map y ∈ R(W×H×C)

such that cross entropy over each pixel eq. (2.4) is minimized,

min
θ

∑
n∈N

tnlog(yn), (2.4)

where W,H, 3 denotes the image width, height and colour depth i.e red, green and
blue in pixels, C denotes the number of predefined classes, N is the number of im-
ages in the data set and t ∈ R(W×H×C) denotes the target or ground truth semantic
segmentation map, i.e the pixel-wise annotation of the image.

From eq. (2.4) we note that solving semantic segmentation in a supervised setting
requires a data set that consists of images and corresponding ground truth seman-
tic segmentation maps. Annotating the semantic segmentation map of an image is
expensive which hence limits the available amount of training data. In fig. 2.3, an
example of the required training data is illustrated.

Figure 2.3: Image illustrating semantic segmentation. The left figure shows an in-
put image. The middle figure shows the semantic segmentation map highlighting the
dress, pants and footwear classes. The right figure shows the semantic segmentation
map on top of the image.

9

2. Background

10

3
Generative Image Modeling

In this chapter we give an overview of the theory regarding generative image mod-
elling using deep learning, staring with a general discussion of generative modelling
using deep learning. Then continuing with discussing the main technique used in
this work namely Generative Adversarial Networks.

3.1 Generative Modeling Using Deep Learning
Generative modeling refers to modeling that aims to learn the distribution that is
very likely to have generated the observed data. For example, consider a data set
that consists of a feature space X with corresponding targets T . For that example,
a generative model would aim to learn the joint distribution P (X,T) that is most
likely to have generated the observed pairs (X,T). The counter part of a generative
model is a discriminative model. The aim of a discriminative model is to learn the
conditional distribution over the data set. Considering the same example as for the
generative model the discriminative model would aim to learn P (T |X = x). Both a
discriminative and a generative model can learn to model targets given input data,
however in the case of a generative model the information learned will be richer,
we will not only learn the conditional distribution, instead we will learn the whole
distribution of the data set.

The traditional approach of learning the distribution most likely to have gener-
ated the observed data, includes, defining a parametric family of densities (Pθ)θ∈R
and then finding the parameter θ that maximizes the log-likelihood [1] :

max
θ

1
n

n∑
i=1

logPθ(xi), (3.1)

where (x)ni are observed samples. In the limit of infinite observations x, the log-
likelihood eq. (3.1) tends to the negative Kullback-Leibler divergence eq. (3.2) [38].
Implying, asymptotically finding the maximum log-likelihood corresponds to min-
imizing the Kullback-Leibler divergence between the real data distribution Pr and
the parameterized distribution Pθ, i.e minimizing KL(Pr|Pθ):∫

χ
Pr(x)log(Pr(x)

Pθ(x))dx (3.2)

Minimizing the KL divergence is a well defined problem under two assumptions. As-
sumption one, the model distribution Pθ exists, and two, the real data distribution

11

3. Generative Image Modeling

Pr and the model distribution Pθ have a non-negligible intersection [1]. However,
according to [27], it is very unlikely that model distribution and the real data distri-
bution has non-negligible intersection. Implying that the KL divergence is infinite.
Classical machine learning techniques for generative modelling deals with the prob-
lem by adding a noise term to the observed data, typically a Gaussian [1].

The idea of adding a noise term to the observed data from the real distribution
leads us to the main topic of this thesis, namely modeling the distribution over
segmented images. According to [44], the optimal noise term to add to an image
normalized between [0, 1], is a noise term with a standard deviation 0.1. Adding a
noise term with standard deviation 0.1 to an image ranging between [0, 1] results
in blurry images, implying a drastic decrease of sample quality. Hence classical
machine learning techniques can not solve the problem of generating sharp images.
Luckily, there are other techniques for generating images, and in the next section
we will introduce one technique that has successfully been used for image gener-
ation [4, 18, 19, 47], and also is the fundamental technique of this thesis, namely
Generative Adversarial Networks.

3.2 Generative Adversarial Networks
Generative Adversarial Networks (GANs) is a framework used to train a generative
model. The algorithm was first introduced by Ian Goodfellow in 2014 [10]. The
main idea is to train a generative model in supervision of a discriminative model,
during a two player min max game. The role of the generator is to fool the discrim-
inator that the generated samples come from the real data distribution rather than
from the generators. The aim of the discriminator is to discriminate between real
and generated samples. Often the game is explained by considering the analogue of
the generative model being a team of counterfeiters aiming to produce fake currency
and use it without detection, whereas the discriminative model plays the role of the
police, aiming to detect the fake currency.

Mathematically the GAN game can be described by the following, let G(z, θg) be
a generative model with parameters θg that maps the input z drawn from a prior
distribution pz(z) to a space following the distribution pg. Let D(x, θd) denote a
discriminative model with parameters θd, that outputs a scalar value representing
the probability that an input x comes from the real data space pdata rather than the
generated pg. D and G will be considered as deep neural networks throughout this
work. Then the GAN game can be described as finding the min max of the value
function V (G,D):

min
G

max
D

Ex∼pdata
[log(D(x))] + Ez∼pz [log(1−D(G(z)))] (3.3)

In [10] it is shown that the theoretical min max optimum of the function V (G,D)
eq. (3.3) is obtained when pdata = pg. They derive this result using two main
steps. Step one yields the expression for the optimal discriminator D∗ for any fixed
generator G. Step two shows that given the expression for D∗ eq. (3.3) simplifies to

12

3. Generative Image Modeling

optimizing the Jensen-Shannon divergence between the real data distribution pdata
and the generated data distribution pg,

JSD(pdata|pg) = KL(pdata|pa) +KL(pg|pa) (3.4)

where KL refers to the Kullback-Leibler divergence eq. (3.2) and pa = pdata+pg
2 .

This concludes the proof since the Jensen-Shannon divergence has the nice property
of being strictly positive and zero iff pdata = pg. Hence the optimal solution of
eq. (3.3) is obtained when pdata = pg, the state when the discriminator D can not
discriminate between generated samples x̂ = G(z) and samples x drawn from the
true distribution.

The parameters θd and θg that correspond to the min max optimum of V (G,D)
are typically found using back-propagation based on gradient descent, where the
parameters of G and D are updated in the direction of the gradients of V (G,D)
with respect to each parameter. A formal explanation of the procedure of finding
the parameters of G and D is presented in Algorithm 1, and in [10] it is shown that
Algorithm 1 optimizes eq. (3.3).

Algorithm 1 GAN training algorithm.
Initialize D and G with random weights θd and θg.
for number of training steps do
Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pg(z).
Sample minibatch ofm samples {x(1), ..., x(m)} from data distribution pdata(x).

Update the discriminator parameters by going gradient ascent using:

∇θd

1
m

m∑
i=1

[logD(x(i)) + log(1−D(G(z(i))))]

Update the generator parameters by going gradient descent using:

∇θg

1
m

m∑
i=1

log(1−D(G(z(i))))

end for

3.2.1 Training Instability
Recent work has shown that a generator trained using the GAN framework can
successfully capture a given data distribution, and generate excellent photo realistic
samples [18, 19, 4]. However, training a generator using the GAN framework is re-
markably difficult [27]. Training instability, non convergence and slow learning are
examples of well reported problems [27, 36, 11]. How to solve these problems are
still open research questions. This section will give a short summary of commonly
observed problems and suggested solutions.

13

3. Generative Image Modeling

The training instability and the non converging behaviour of GANs are due to sev-
eral factors, and most of these factors are still not known [27]. Anyhow, as remarked
in [10] one of the factors leading to training instability, is that the GAN objective
eq. (3.3) may fail to give the generator sufficient gradients. Early in training the
generator is weak, implying that the discriminator finds it easy to distinguish be-
tween real and fake data samples, i.e we have a "perfect" discriminator. Intuitively
it seems desirable to have a perfect discriminator, since intuitively one may argue
that a perfect discriminator would yield a perfect signal to the generator. Further,
it has been shown that a perfect discriminator in theory should result in finding the
desired min-max optimum [10, 27]. Nevertheless, in practice it has been observed
that as the discriminator gets better the generator gets remarkably worse [27].

One reason to the observed behaviour was pointed out in [10], namely that the second
term in the GAN objective eq. (3.3), Ez∼pz [log(1−D(G(z)))] may saturate when the
discriminator is perfect. It saturates as a consequence of the flat sigmoid (logistic)
function, typically used as activation function for the output layer of the discrim-
inator. However, as suggested in [10] the GAN objective eq. (3.3) can be changed
from minimizing Ez∼pz [log(1−D(G(z)))] to maximizing Ez∼pz [log(D(G(z)))]. This
change of objective function is often referred to as the "log trick". In practice this
provides stronger gradients leading to less training instability. Moreover, the change
in the objective has the same theoretical min-max optimum as the original GAN
objective eq. (3.3).

The new objective function may help training for some applications. However, em-
pirical results show that also the new objective function may fail to provide sufficient
gradients for the generator. The reason was investigated in [27], they show that
optimizing the new objective function is equivalent to minimizing KL(pg|pdata) −
2JSD(pg|pdata), and argue that this objective function during stable training assigns
extremely high cost for generating unrealistic samples. However, they also show that
gradient updates for this objective are Cauchy distributed with zero mean and in-
finite variance, which holds as reason for the observed training instability. By this
observation the authors of [27] suggest to change the objective to a more soft metric,
and propose to use the Wasserstein distance also called the earth mover distance:

|Ex∼pdata
[f(x)]− Ez∼pz [f(z)]| (3.5)

Theoretically the benefits of optimizing the Wasserstein distance are as follows: The
Wasserstein distance is softer compared to the Kullback-Leibler divergence and the
Jensen-Shannon divergence in the sense that it will provide gradients even if the
distributions are disjoint. In addition the Wasserstein distance gives a measure
of the closeness of the distributions. In [1] empirical results from evaluating the
performance of using Wasserstein distance objective are presented, those results
shows that samples obtained while using the Wasserstein distance can in many
cases out-preform results obtained using the original GAN objective.

14

3. Generative Image Modeling

3.2.2 Mode Collapse
Training instability makes it remarkably difficult to train a generator under the GAN
framework, however, failure modes can occur also while the training is stable. Mode
collapse is one of those failure modes. During a mode collapse the parameters of the
generator starts to generate a single mode, i.e a single images. The reason, while
the discriminator discriminates between samples individually no gradient feedback
is given to tell the generator to generate within a variation similar to training data.
This can result in a situation where the generator starts to generate a single mode.
A mode which the discriminator finds likely to belong to the real data distribution.
After the collapse the discriminator learns that a single mode is generated and starts
pushing it around forever [36].

Suggested extensions of the GAN algorithm that deal with the problem can be
found in the literature, where the most straight forward techniques rely on extend-
ing the discriminator such that it has the ability to discriminate between several
samples in combination. Applying batch normalization [16] in the discriminator has
therefore been shown to increase the performance [32]. In [36] they further extend
on the idea of discriminating between several samples. They introduce a new tech-
nique called mini batch discrimination. The idea is to still classify each sample as
real or generated, but they allow the classification decision to use information about
other samples in the same batch. This is implemented by adding an extra layer in
the end of the discriminator with trainable parameters. The output from that layer
represent the statistics over that batch, and are used internally in the discriminator
during the classification decision.

The disadvantage with the mini batch discrimination technique is that the tech-
nique includes an introduction of new parameters to learn, which might slow down
learning. In [18] a technique that does not include adding new trainable parameters
is used, they call the technique standard deviation discrimination, and they argue
that their technique both simplify the computation and implementation but also
improves the variation of generated samples compared to mini batch discrimination.
The idea of standard deviation discrimination is simple. They calculate the stan-
dard deviation for each feature and each pixel over the entire mini batch, then they
calculate the average over those standard deviations, resulting in a single number.
The average standard deviation is then concatenated into a feature map, resulting in
one constant feature map, which is added at one layer in the discriminator network.
Hence the technique results in the discrimination decision being based on statistics
from all the samples in the mini batch.

15

3. Generative Image Modeling

16

4
Methods

In this chapter the method used for the experimental setup of this thesis will be
described. The chapter starts with a description of the used data set. Next the
models architectures are described, followed by a section that provides information
regarding the used evaluation metrics. The chapter is concluded with a section
where all the described elements are put together for describing the entire training
procedure.

4.1 ModaNet - Data set
Training a generator for image generation under the GAN framework requires a
great amount of data. As the aim of this thesis is to generate fashion images and
corresponding semantic segmentation maps, a large data set including both images
and semantic segmentation maps was required. Therefor we use a data set called
ModaNet [48] which includes 55.176 fully annotated street-fashion images.

Figure 4.1: Subset of samples in ModaNet. The upper panel shows examples
of RGB images in ModaNet. The lower panel shows the corresponding semantic
segmentation map to each image.

The images in ModaNet has been collected such that the images in the data set
only contain one person in each image. The images has also been chosen to ensure
high diversity in human poses, the data set is not limited to the frontal pose and
do both includes full body and half body poses. All images in ModaNet has an
equal resolution of 400 pixels width and 600 pixels height. As a consequence of all
images having the same resolution, some of the images has been padded, by adding
a white panel to the image. Further all images are represented in the RGB format,
meaning that they are represented using three channels one for each of the color

17

4. Methods

Table 4.1: Classes and sub-classes in ModaNet. The sub-classes describes which
attributes that each class contains of.

Classes Sub-Classes
1 bag bag
2 belt belt
3 boots boots
4 footwear footwear
5 outer coat, jacket, suit, blazers
6 dress dress, t-shirt dress
7 sunglasses sunglasses
8 pants pants, jeans, leggings
9 top top, blouse, t-shirt, shirt
10 shorts shorts
11 skirt skirt
12 headwear headwear
13 scarf&tie scarf,tie

modes red, green, and blue. Hence each image is a three dimensional array with a
size of (W ×H × 3), where W denotes the width and H denotes the image height.
In the upper panel of fig. 4.1 examples of images from ModaNet are shown.

All images in ModaNet are fully annotated by human annotators. This means
that each image has a corresponding ground truth semantic segmentation map, i.e
each pixel is labeled into one of the 13 predefined classes. Where each class rep-
resent a unique fashion attribute and some of the classes represents a union over
sub-classes of fashion attributes. The different classes and the sub-classes are shown
in Table 4.1. In fig. 4.2 the proportion of instances per class in the ModaNet data
set is shown, note that the figure implies a certain class imbalance.

Figure 4.2: Proportions of instances per class in descending order in ModaNet
data set.

18

4. Methods

Figure 4.3: Example of an one-hot encoded semantic segmentation map, i.e one
map per channel. The figure in the lower right corner shows the corresponding
image.

The semantic segmentation maps can be represented in different formats. Either
they can be represented as a two dimensional array with the size of (W ×H) taking
integer values in the range (0, .., C), where C = 13 in the case of ModaNet. Each
integer indicates one of the categories shown in table 4.1 and 0 indicates background.
The two dimensional representation of the ModaNet semantic segmentation maps
are illustrated in the lower panel of fig. 4.1. The two dimensional representation is
not used during training, the reason, fashion classes do not have a natural ordering,
therefore we can not learn the relations using a gradient based algorithm. Instead
we use a one-hot encoded representation of the semantic segmentation map. In
this representation the semantic segmentation maps has a size of (W ×H × C), in
other words we have one channel for each of the classes, where the values are binary
i.e [0, 1]. For example, given an semantic segmentation map from the ModaNet
data set with the value 1 at pixel coordinate (100,100,6) indicates that there is a
dress at (W,H)=(100,100) in the corresponding image. An example of an semantic
segmentation map where the 13 channels are out-rolled are shown in fig. 4.3

4.2 Models
For the experimental setup of this thesis three different GAN models were used and
in this section the architecture of the used models will be described. We start with
describing the model used for generating fashion images and then continue with
describing the two different models used for generating fashion images and semantic
segmentation maps.

4.2.1 Style GAN - for image generation
The model used for generating images completely replicates the work done by [19]
and will be refereed to as Style GAN, we use same hyper-parameter setting as in
the original Style GAN setup. Further, the Style GAN model is an extension of
the Pro GAN model introduced in [18]. One of the Pro GAN model strengths
is the progressively growing of the generator and the discriminator network. The

19

4. Methods

progressive growing precedes by starting with a small generator and discriminator
which can generate 8 × 8 resolution images. Then the networks are trained using
Algorithm 1, next we grow both networks by adding a new block of layers such
that the new output/input resolution is doubled. The procedure is then repeated
until the networks has capacity to generate and discriminate images with the target
resolution. The progressively growing of the networks encourage training stability
and speeds up training. The progressive growing property is inherited by the Style
GAN model.

Figure 4.4: Figure illustrating the architecture of style GAN. The left figures shows
the layers in each building block, where the upper part shows the generator and the
lower the discriminator. The right figure shows the entire architecture of the Style
GAN generator network.

4.2.1.1 Style GAN - generator

The architecture of Style GAN generator G is shown in the right panel of fig. 4.4.
As seen in the figure the Style GAN generator consists of two parts. The first part
is called the mapping network and is a multi layer perceptron (MLP) with 8 layers.
Where all 8 layers uses 512 neurons and leaky ReLU [26] activation with α = 0.2.
The second part is called the synthesis network and consists of n block layers. Each
of the block layers consists of four different types of layers, layer one is a 2 dimen-
sional up sampling layer, layer two and tree are convolutional layers, with kernel size
3 and 512 feature maps. The last layer is also a convolutional layer with kernel size
3 and 3 feature maps. All intermediate layers in the synthesis network uses leaky
ReLU activation with α = 0.2. The architecture of each block layer is shown in the

20

4. Methods

left upper panel of fig. 4.4. The number of block layers n in the synthesis network
is dependent of the target resolution. We need to add one new block layer for each
time we double the resolution starting from resolution 8 × 8, i.e we need n blocks
for target resolution 22+n × 22+n.

The information flow from the input z to the output image in the Style GAN gener-
ator G, differs from what’s normally used in the GAN literature. In Style GAN the
latent code do not directly control the synthesis network. Instead the latent code z
is mapped through the mapping network into a feature representation w. Then by
a learned affine transformation, w is mapped into the so called styles y = (ys,yb)
(the name is borrowed from style transfer literature [19]). The style then controls
by the adaptive instance normalization operation (AdaIN) [15] the output of each
convolutional layer in the synthesis network. The AdaIN operation is defined by
eq. (4.1) where xi is the output feature map:

AdaIN(xi,y) = ys,i
xi − µ(xi)
σ(xi)

+ yb,i, (4.1)

hence the AdaIN operation aligns mean and variance of each feature map to match
those of the styles y. In addition to controlling the synthesis network by the styles,
noise is added by a learned scaling factor to each feature map in the convolutional
layers. The adding of noise has been shown to increase the generators ability to
generate images with stochastic variation, such as placement of hairs, freckles etc
[19].

4.2.1.2 Style GAN - discriminator

The Style GAN discriminator D is the mirrored version of the synthesis network,
without the adding of noise and the AdaIN operation. The discriminator takes an
image as input, then the images is feed through the same type of blocks as in the
generator, but the discriminator uses down sampling instead of up sampling as can
be seen in the left lower panel of fig. 4.4.

4.2.2 Style C GAN - for image and semantic segmentation
map generation

For the aim of generating both images and semantic segmentation maps the Style
GAN model was extended to a new architecture which will be referred to as Style
C GAN. All new elements of Style C GAN is stated below, model specifics that are
not stated remains the same as for the Style GAN architecture.

4.2.2.1 Adding feature maps

To have the ability to generate both images and semantic segmentation maps we
add an extra set of C feature maps to the last convolutional layer (see fig. 4.4) in
the Style GAN discriminator D and the generator G. Hence the number of feature
maps in the last convolutional layer of each block in the Style C GAN discriminator
Dc and generator Gc will now equal 3+C, i.e the input and output is now an object

21

4. Methods

of dimension (W×H×3+C) that allocates 3 channels for the image and C channels
for the semantic segmentation map. Therefore C = 13 when generating all classes
in ModaNet.

4.2.2.2 Progressive growing in the channel dimension

When training Style C GAN we start from a pre-trained Style GAN network pair D
and G. We then apply progressive growing in the channel dimension to translate D,
G to the Style C GAN generator discriminator pair Dc, Gc. The progressive growing
in the channel dimension is accomplished using two steps. In step one we add one
new feature map such that the model can generate images and corresponding one
class semantic segmentation maps. Where the one class semantic segmentation map
is the resulting map from labeling all fashion classes as 1 and background as 0.
When adding the new feature map we do not use random initialization of weights,
instead we initialize the weights by copying the weights allocated for the red channel
in the RGB image. The reason, pre-initialized weights trained on a similar task can
speed up convergence, this is what we usually call transfer learning [31]. In step two
we grow the network such that the model has capacity to generate C = 13 classes
i.e all classes in ModaNet. We hence add 12 new feature maps. We initialize the 12
new feature maps by using the weights from the feature map added in the previous
step, i.e the feature map trained for generating the one class semantic segmentation
map. The training precedes by using Algorithm 1.

4.2.3 Style C GAN 2D - for image and semantic segmenta-
tion map generation

For the last model we combine the Style GAN discriminator D with the Style C
GAN generator Gc and discriminator Dc. Hence in the new setup the Style C GAN
generator Gc is trained in supervision of two discriminators D and Dc. The pur-
pose of the first discriminator D is to learn to discriminate between real images and
generated images, whereas the second discriminator Dc aims to learn if the combi-
nation of generated images and segmentation maps is real or generated, hence the
second discriminator needs to learn to distinguish if pairs of images and semantic
segmentation maps are coherent or not coherent.

For the new model setup the architectures for each of the networks D, Gc and
Dc remains the same as explained in section 4.2.1 and section 4.2.2. However for
training using two discriminators we add a discriminator and hence slightly adjust
the training procedure which is explained below.

4.2.3.1 Adding discriminator

When training Gc using two discriminators we first use the same training procedure
as for Style C GAN explained in section 4.2.2. We hence start with training the gen-
erator for generating images in target resolution. Then we apply progressive growing
in the channel dimension for both the generator G and the discriminator D. Hence
we translate G to Gc, and D to Dc, i.e we translate to a generator discriminator

22

4. Methods

pair that has capacity to generate both images and semantic segmentation maps.
However, when training using two discriminators we keep a copy of the image dis-
criminator D, and we train D to discriminate between images throughout the whole
training procedure.

4.2.3.2 Changing training procedure

The new training procedure after adding the discriminator is as follows. First we
use Gc to generate a batch of objects of dimension (W × H × 3 + C). We then
feed the generated batch together with the real batch of same dimension to the
discriminator Dc, and preform a gradient step using Algorithm 1. Second we use Gc

to again generate a batch of objects of dimension (W × H × 3 + C), however this
time we only keep the object that allocates the three first channels i.e the image.
Then we feed the generated batch of images together with a real batch of images to
the discriminator D, and preform a gradient step using Algorithm 1.

4.3 Evaluation Metric

Evaluating sample quality from generative models is challenging [2], in particular
for GAN models, since the loss function of GANs is not interpretable as a mea-
surement between different models performance [36]. The most straight forward
approach would be to use human annotators for evaluating the image quality [6].
However, this approach could potentially be both time consuming, costly, and in
addition different annotators may have different objectives implying an unreliable
measurement. Luckily, the GAN literature includes a variety of different qualitative
measurements provided to evaluate the generated samples, where the different mea-
surements might be beneficial for different setups [45]. In this thesis we will use two
of the most popular measurements, namely Inception score (IS) [36] and, Fréchet
Inception distance (FID) [14].

However, it is important to note that both the IS and the FID has limitations
in ability to measure both quality and variation in samples. In order to compensate
for some of those limitations we do an qualitative similarity evaluation between gen-
erated and real data, and in addition we investigate the effect of traversing the latent
space. At last, we evaluate the generated semantic segmentation maps and corre-
sponding generated images by evaluating the samples performance on the semantic
segmentation task section 2.4.

4.3.1 Inception score
The Inception score is by far the most used metrics for evaluating performance of a
generative image model [45]. The Inception score relies on the Inception v3 network
[41], a classification network trained on ImageNet [5]. Where ImageNet is a data set
consisting of 1.2 million RGB images from 1000 classes. Therefore given an input
x the output of the Inception v3 network is the class conditional distribution over

23

4. Methods

the 1000 ImageNet classes. The definition of the Inception score given a generative
model G is given below:

IS(G) = exp(Ex∼pg KL(p(y|x) || p(y))). (4.2)
Where x is a sample drawn from the generative model G, p(y|x) is the class con-
ditional distribution given by the Inception v3 network for a generated sample x,
KL(p(y|x) || p(y))) is the KL-divergence between the class conditional distribution
and the marginal class distribution p(y) which is approximated by p̂(y) given by,

p̂(y) = 1
N

N∑
i=1

p(y|xi) (4.3)

where N is the number of samples. In [36] it was proposed to use a great amount
of images to give a reliable estimation of the Inception score. They suggest to use
a set of at least 50k images and to split the set into 10 batches, then calculate the
mean and the standard deviation of the Inception score over the batches.

The Inception score is high if the two following conditions are full-filled: Condi-
tion one, the class conditional distribution p(y|x) for individual samples has low
entropy, i.e the model finds it likely that the image belongs to a certain class imply-
ing sharpness in individual images. Condition two, the marginal class distribution
p(y) has high entropy, i.e the marginal class distribution is close to uniform implying
large variety in generated samples.

In conclusion a high Inception score indicates sharp images and large variation
between samples i.e no mode collapse. In addition high Inception score has been
shown to align well with human judgment [36]. Hence, the higher Inception score
the better. However it is important to note that the Inception score has limitations
[2]. First of all the value of the Inception score does not penalize a generative model
that memorize and generate images that can be found in the data. Instead the In-
ception score encourage a model that has generated the exact same images. Second,
the Inception v3 network is trained on ImageNet which includes 1000 classes, hence
using the Inception v3 network to calculate Inception score for a generative model
trained on a data set with classes that do not align with the classes in ImageNet
might yield misleading results [33]. A better solution might hence be to use the In-
ception v3 network trained on the same data set as used for training the generative
model. However, to align with other works we use the Inception v3 network trained
on ImageNet to calculate the Inception score. It is therefore important to note that
the Inception score for models trained on ModaNet can only be compared to the
Inception score for other models trained on ModaNet.

4.3.2 Fréchet Inception distance
The Frèchet Inception distance (FID) was proposed in [14] with the aim of improv-
ing the Inception score. While the Inception score provides a score of the quality of
generated images the FID tries to measure the distance between generated and real
data samples. Hence the lower FID the better. Similar to the Inception score the

24

4. Methods

FID has been shown to correlate with human judgment [14].

When calculating the FID one calculates the Fréchet distance [8] also referred to as
the Wasserstein-2 distance [42] between the generated and real data distribution.
The Fréchet distance measures the distance between two Gaussian distributions,
the FID therefore relies on the assumption that the 2084 dimensional output from
the pool3 layer in the Inception v3 network follows an multidimensional Gaussian
distribution. The mathematical definition of the FID is given below,

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)1/2), (4.4)

where Xg ∼ N(µg,Σg), Xr ∼ N(µr,Σr) is the 2084 dimensional output from the
pool3 layer in the Inception v3 network for the generated and real samples respec-
tively.

In comparison to the Inception score, the FID can in larger extent indicate the
performance of generators generating using different training data sets. Since the
FID measures the distance between generated and real data. However, similar to
the Inception score the FID benefits a generator generating the same images that
are already included in the real data set. Therefore in next section we provide a
qualitative evaluation metric that tries to evaluate if the generative model generated
images that are included in the real data set.

4.3.3 Similarity evaluation in feature space
As mentioned in section 4.3.1 and section 4.3.2 both the Inception score and the
FID fails in measuring if the generative model is generating images that are already
contained in the real data set. We therefore propose to preform a qualitative simi-
larity evaluation between generated and real data samples. We do this by presenting
the 10 nearest neighbours from the real data set given a generated image. Where
the nearest neighbours are given as the nearest images in L2 norm. However, it is
well known that the L2 norm in pixel space does not reliably measure the distance
between images [43, 7]. Small changes in pixel values can give large impact on the
L2 norm. Therefore we calculate the L2 norm nearest neighbours in feature space,
using the pool3 layer in the Inception v3 network. This technique for evaluating sim-
ilarity between images is also used in [4], however, they use the fc7 layer in VGG-16
[39] and the avgpool layer in ResNet-50 [13], we use the Inception v3 network for
simplicity.

4.3.4 Traverse the latent space
To further investigate the variation in generated samples we provide visualizations
of the effect of traversing the latent space. The evaluation is done by choosing
two latent codes z∗1 , and z∗2 , where both codes yields a unique generated image
x∗1 = G(z∗1) and x∗2 = G(z∗2), where G denotes the generator. We then calculate the
vector w = z∗1 − z∗2 between the first and second latent code. Using w we can move
from z∗1 to z∗2 and collect latent codes zj on the line connecting z∗1 with z∗2 . I.e collect

25

4. Methods

latent codes zj : zj = z1 − j
N
w, where N is the number of codes we want to collect.

We then visualize the corresponding generated images xj = G(zj) and observe the
variation.

4.4 Putting it all together from raw data to final
model

We conclude this chapter with putting it all together which leads us to describing
the entire training procedure, from raw data to evaluating the final model. We
start with describing how the data was divided into a training, a validation and a
test set. Secondly how the data was pre-processed. Thirdly we describe the specific
parameters related to the training procedure and at last we describe how the models
where evaluated.

4.4.1 Training, validation and test split

As mentioned in section 4.1 consists ModaNet data set of 55.176 fully annotated
street images, however only 52.346 was available for downloading. From the set of
52.346 images we randomly chose images to create the training set the validation
set and the test set, the amount of images in each set was chosen to be 45.346, 2000,
5000 correspondingly.

4.4.2 Data pre-processing

We apply two pre-processing steps for the training images. The same two steps are
applied for images both when training Style GAN, Style C GAN, and Style C GAN
2D. Step one was to resize the images to have an equal height H and width W , such
that the images fit the model architecture. The resizing transformation was defined
such that it perseveres the aspect ration of the humans. Step two was normalizing
the training images to range in between [−1, 1]. We normalize using a hard range
between −1 and 1, as in the original Style GAN setup.

The semantic segmentation maps used for training the Style C GAN was pre-
processed using three steps. First step was to resize the maps, using exact same
procedure as for the images. In the second step we shifted the binary values in
the maps such that they are symmetric around zero i.e such that 0 → −0.5 and
1→ 0.5. The third step was to relax the problem, therefore we add Gaussian noise
with mean 0 and standard deviation 0.01 to each map. As mentioned in section 3.1
adding noise to images compensate the sharpness of generated images. However,
this is not a problem for the semantic segmentation maps generation since when
finish training we set all value less than 0 to 0 and all values grater than 0 to 1. We
did not compare the results of adding noise with not adding noise, the reason, there
was nothing indicating that the adding of noise decreased performance.

26

4. Methods

4.4.3 Training schedule
All models where trained using Algorithm 1 to convergence at the target resolution
of 512 × 512 pixels. The target resolution was chosen as consequence of the size
of the training images in ModaNet. Further as loss function we use the "log-trick"
GAN objective, i.e we train using the following objective function,

max
G

max
D

Ex∼pdata
[log(D(x))] + Ez∼pz [log(D(G(z)))]. (4.5)

We use same hyper-parameter settings as proposed in the Style GAN paper, the
ones related to the training procedure is stated as follows. We optimize the ob-
jective function using the Adam optimizer [20], with exponential decay β1 = 0.0,
β2 = 0.99 and we use resolution dependent learning rate α ranging between = 0.001
to α = 0.002 for resolution (8 × 8) to target resolution (512 × 512). We also use a
resolution dependent mini-batch size ranging from 128 samples in each mini-batch
to 16 samples in each mini-batch. The reason why we do not perform any hyper-
parameter search is due to time and computational limitations.

All models are trained using 4 GPUs each, and the entire training procedure takes
approximately 1-2 weeks for each model.

4.4.4 Evaluation
The models where evaluated using the metrics presented in section 4.3. We do
all model selections based on the best recorded FID (see section 4.3.2), using the
validation data set. Whereas all reported FID are evaluated using the test data set.

27

4. Methods

28

5
Results

In this chapter the results from the experimental setup is presented. The chapter is
divided into four sections, where the results of each section aims to answer each of
the stated research questions (see section 1.1). All results are extracted using the
generative models with best validation FID, i.e for each model training is stopped
when the models has reached its optimum validation FID at resolution 512× 512.

5.1 Semantic segmentation maps generation
(R1) Is it possible to use GANs to generate realistic pairs of images and semantic

segmentation maps?
By the aim of answering research question R1 we present results from Style C GAN
and Style C GAN 2D. The results that will be presented are, visualizations of im-
ages and semantics segmentation maps, and a comparison between the proportion
of instances per class in the generated set of semantic segmentation maps and the
proportion of instances per class in ModaNet.

In fig. 5.1 and fig. 5.2 the outputs from four latent codes using Style C GAN and
Style C GAN 2D are shown. For each output the generated image, the generated
semantic segmentation map, and the generated semantic segmentation map on top
of the generated image is shown.

Figure 5.1: Four outputs generated by Style C GAN at resolution 512 × 512
trained on ModaNet. For each output the generated image, the generated semantic
segmentation map and the generated semantic segmentation map on top of the
image is shown.

29

5. Results

Figure 5.2: Four outputs generated by Style C GAN 2D at resolution 512 × 512
trained on ModaNet. For each output the generated image, the generated semantic
segmentation map and the generated semantic segmentation map on top of the
image is shown.

The results in fig. 5.1 and fig. 5.2 indicates that both Style C GAN and Style C GAN
2D can generate semantic segmentation maps that are coherent with the semantics
of the generated image. We further note that there is no significant difference in
how well the generated semantic segmentation maps fits the generated images while
comparing Style C GAN fig. 5.1 and Style C GAN 2D fig. 5.2.

In fig. 5.3 the proportion of instances per class is presented for ModaNet data set,
for 50K of generated images from Style C GAN, and for 50K of generated images
from Style C GAN 2D. The classes are ordered in decreasing order with regard to
instance proportions in ModaNet data set.

Figure 5.3: The left figure shows proportions of instances per class in ModaNet
data set, the middle figure shows proportions of instances per class from a data set
of 50K images generated by Style C GAN, the right figure shows proportions of
instances per class from a data set of 50K images generated by Style C GAN 2D.

From fig. 5.3 we note that Style C GAN seems to have generated images where class
instances occur with similar frequencies as for ModaNet data set, the pants class
seems however to be overrepresented. Style C GAN 2D on the other hand seems
to have generated images where the instances per class is quite similar to ModaNet
data set, except from the headwear and sunglass classes. From visualizing generated

30

5. Results

images it was further noted that Style C GAN 2D sometimes interpret sunglasses as
headwear, which can explain why the sunglass class is underrepresented. The lower
left corner of fig. 5.2 illustrates one example of where sunglasses are interrupted as
headwear. It was further noted that to learn classes where number of instances are
few, such as sunglasses, a larger number of training iteration was needed compared
to well represented classes.

5.2 Image comparison

(R2) Comparing generated images with images generated together with correspond-
ing semantic segmentation map, how will the quality of generated images be
affected?

In this section we address research question R2 and thereby compare results regard-
ing image quality for images generated with and without semantic segmentation
maps. In table 5.1 qualitative results of the image quality using IS (see section 4.3.1)
and FID (see section 4.3.2) for all used models, i.e Style GAN , Style C GAN and
Style C GAN 2D are presented. The reported IS have been calculated using 50K of
generated images and the reported FID have been calculated using the test set and
50K of generated images.

Table 5.1: IS and FID for comparing image quality for Style GAN, Style C GAN,
and Style C GAN 2D. IS is calculated as the mean IS of five batches using 10K
generated images in each batch and FID using the test set and 50K generated
images.

Model IS FID
Style GAN 5.06 ±0.11 12.34
Style C GAN 4.79 ±0.12 25.10
Style C GAN 2D 4.69 ±0.12 20.97

From table 5.1 we note that Style GAN preforms best both regarding IS and FID,
implying that the image quality of image samples generated using Style GAN gener-
ator have higher quality compared to the other two models. Hence generating both
images and semantic segmentation maps seems to affect image quality negatively.
We also note that Style C GAN and Style C GAN 2D have similar IS but that Style
C GAN 2D performs better regarding FID.

In fig. 5.4, fig. 5.5, and fig. 5.6 visualizations of generated samples from Style GAN,
Style C GAN, and Style C GAN 2D are presented. All images are generated in res-
olution 512× 512, however, to get a better understanding of the variation between
images, we visualize generated images in different sizes.

31

5. Results

Figure 5.4: Samples produced by Style GAN generator at resolution 512 × 512
trained on ModaNet. The FID calculated using test set was 12.34 and the IS was
5.06.

Figure 5.5: Samples produced by Style C GAN generator at resolution 512× 512
trained on ModaNet. The FID calculated using test set was 25.10 and the IS was
4.79.

32

5. Results

Figure 5.6: Samples produced by Style C GAN 2D generator at resolution 512×512
trained on ModaNet. The FID calculated using test set was 20.97 and the IS was
4.69.

Comparing fig. 5.4, fig. 5.5, and fig. 5.6 we note that for a human observer it is hard
to distinguish differences in image quality between the models, although IS and FID
differs. We further note that variation in images seems to be quite high.

5.3 Similarity evaluation

(R3) What will be that variation of generated samples, are we able to generate
images that do not already exists in the training set?

In this section we present results, which aims to answer the last research question,
therefore we visualize the results from using the similarity evaluation in feature
space discussed in section 4.3.3 and from traversing the latent space discussed in
section 4.3.4.

We start with presenting results from performing similarity evaluation in feature
space, in fig. 5.7 we presents results from using Style C GAN and in fig. 5.8 from
style C GAN 2D. In both figure we visualize one generated image together with the
10 nearest neighbors in the feature space of the pool3 Inception V3 network.

33

5. Results

Figure 5.7: Visualization of similarity evaluation in feature space for Style C GAN.
From left to right: generated image, 10 nearest neighbors in the feature space of
the pool3 Inception V3 network, semantic segmentation maps of the 10 nearest
neighbors, the generated semantic segmentation map.

.

Figure 5.8: Visualization of similarity evaluation in feature space for Style C GAN
2D. From left to right: generated image, 10 nearest neighbors in the feature space
of the pool3 Inception V3 network, semantic segmentation maps of the 10 nearest
neighbors, the generated semantic segmentation map.

We note form fig. 5.7 and fig. 5.8 that the images most similar in feature space is
not equal to the generated image. However the nearest neighbors are similar both
to the generated image and to each other. This implies that in feature space we are
able to find similar images. Therefor the results indicate that it is very unlikely the
two presented examples are not represented in the data set.

To further investigate the output variation of the generator we will now visual-
ize the output response from traversing the latent space. In fig. 5.9 we present the
results from interpolating between two latent codes, and generating images using
Style C GAN. Similar results can be obtained using Style C GAN 2D.

34

5. Results

Figure 5.9: Traversing the latent space. Interpolation between two latent codes,
resulting samples generated by Style C GAN. The upper panel shows the generated
images and the lower panel shows the generated semantic segmentation maps.

35

5. Results

From fig. 5.9 we note that both poses, humans, backgrounds, and clothes changes as
we interpolate between latent codes. We also note that the same human continuously
appears in different poses and different clothes. Similar results can be obtained
independently of the chosen latent codes. In the real data set we can not continuously
interpolate between different images, the result therefor indicates that the generator
is able to generate images that do not exist in the real data set.

36

5. Results

37

6
Conclusion

The aim of this thesis was to investigate if it is possible to generate images and
corresponding semantic segmentation maps. By extending on the Style GAN model
we proposed two new models Style C GAN and Style C GAN 2D. It was shown
that both models could successfully generate images together with coherent seman-
tic segmentation maps. However, it was noted that samples generated by the Style
GAN model gained better results with respect to the image quality compared to
the proposed models for image and semantic segmentation maps generation. The
reason, when generating both images and semantic segmentation maps the gradient
feed back, from the discriminator will not only focus on the image quality as in the
case of only generating images. The problem was partly resolved by introducing the
Style C GAN 2D model where a discriminator was added, which did increase image
quality compared to Style C GAN. However, Style C GAN 2D still lack the final
performance obtained for Style GAN.

Further, the results implied that we could generate image with high variation and
images that do not already exist in the data set. From traversing the latent space
by interpolating between latent codes we found that the response in the generator
was that clothes, poses, backgrounds, and persons continuously changed, this can
not be observed in the real data set.

We did not compare our extended Style GAN models with extending on any other
GAN model. However, in the beginning of the project different GAN models where
tested by the aim of modelling the image distribution of ModaNet. The tested
models could not train stable and both mode collapse and training instability was
observed. We found that the distribution of ModaNet was hard to model due to
large variation between images in the data set, both regarding clothes, backgrounds,
and poses. The theory suggested to change the objective and use the softer metric
also called Wasserstein distance to encourage training stability. However, we found
that using Style GAN we could observe stable training while still using the original
GAN objective with the log-trick. We therefor conclude that the progressive grow-
ing property that the Style GAN model inherited encourage training stability in a
larger extension than chaining the objective.

38

6. Conclusion

6.1 Future work
In future work it would be interesting to use the generated data to train a semantic
segmentation algorithm, it is however not obvious that the generated images would
actually increase the accuracy on a semantic segmentation algorithm. If we want
to increase the accuracy on test data we would like to use the generator to sample
where the training data is not well represented, however, it is likely that also the
generator finds it easier to generate from parts of the distribution where many real
samples are contained. It would therefore be interesting to use the Style C GAN
2D model, which can be trained separately on both images and annotated images.
We can therefore add training data of only images to see if we can capture an even
larger distribution of annotated images, than the one with images and hand anno-
tated ground truth’s.

Another interesting direction, which also could increase test accuracy for the se-
mantic segmentation algorithm, is to use the generator to compensate for the class
imbalance observed in ModaNet. Instead of choosing arbitrary generated images
when training the semantic segmentation algorithm we could choose images contain-
ing class instances which are not well represented in the real data set, for example
we can choose more generated images containing scarf which is the class with the
least amount of instances in ModaNet.

I addition it was noted that classes with few instances per class was learned later
during training, and that Style C GAN 2D had not been able to capture the sun-
glasses class at convergence regarding the FID. For model selection in future work
it would therefor be interesting to use an metric where both image quality and
semantic segmentation maps are measured.

39

6. Conclusion

40

Bibliography

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

[2] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint
arXiv:1801.01973, 2018.

[3] Yoshua Bengio, Eric Laufer, Guillaume Alain, and Jason Yosinski. Deep gen-
erative stochastic networks trainable by backprop. In International Conference
on Machine Learning, pages 226–234, 2014.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for
high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[6] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image
models using a laplacian pyramid of adversarial networks. In Advances in neural
information processing systems, pages 1486–1494, 2015.

[7] David A Forsyth and Jean Ponce. A modern approach. Computer vision: a
modern approach, 17:21–48, 2003.

[8] Maurice Fréchet. Sur la distance de deux lois de probabilité. COMPTES
RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCI-
ENCES, 244(6):689–692, 1957.

[9] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440–1448, 2015.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of wasserstein gans. In Advances in
Neural Information Processing Systems, pages 5767–5777, 2017.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a

41

Bibliography

local nash equilibrium. In Advances in Neural Information Processing Systems,
pages 6626–6637, 2017.

[15] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adap-
tive instance normalization. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1501–1510, 2017.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[17] Anil K Jain, Jianchang Mao, and KM Mohiuddin. Artificial neural networks:
A tutorial. Computer, (3):31–44, 1996.

[18] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. arXiv preprint arXiv:1812.04948, 2018.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[23] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[25] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431–3440, 2015.

[26] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, volume 30, page 3,
2013.

[27] Léon Bottou Martin Arjovsky. Towards principled methods for training gener-
ative adversarial networks. arXiv:1701.04862, 2017.

[28] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[29] Marvin Minsky. S. papert. perceptrons: An introduction to computational
geometry, 1969.

[30] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution
network for semantic segmentation. In Proceedings of the IEEE international
conference on computer vision, pages 1520–1528, 2015.

[31] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans-
actions on knowledge and data engineering, 22(10):1345–1359, 2009.

42

Bibliography

[32] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[33] Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, and Shakir Mo-
hamed. Variational approaches for auto-encoding generative adversarial net-
works. arXiv preprint arXiv:1706.04987, 2017.

[34] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[35] Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltz-
mann machines. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 693–700, 2010.

[36] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved techniques for training gans. In Advances in
neural information processing systems, pages 2234–2242, 2016.

[37] Hannes Schulz, Andreas Müller, and Sven Behnke. Investigating convergence
of restricted boltzmann machine learning. In NIPS 2010 Workshop on Deep
Learning and Unsupervised Feature Learning, 2010.

[38] Jonathon Shlens. Notes on kullback-leibler divergence and likelihood. arXiv
preprint arXiv:1404.2000, 2014.

[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[40] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1–9, 2015.

[41] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
2818–2826, 2016.

[42] Leonid Nisonovich Vaserstein. Markov processes over denumerable products of
spaces, describing large systems of automata. Problemy Peredachi Informatsii,
5(3):64–72, 1969.

[43] Zhou Wang and Alan C Bovik. Mean squared error: Love it or leave it? a new
look at signal fidelity measures. IEEE signal processing magazine, 26(1):98–117,
2009.

[44] Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On
the quantitative analysis of decoder-based generative models. arXiv preprint
arXiv:1611.04273, 2016.

[45] Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, and
Kilian Weinberger. An empirical study on evaluation metrics of generative
adversarial networks. arXiv preprint arXiv:1806.07755, 2018.

[46] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530, 2016.

43

Bibliography

[47] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-
attention generative adversarial networks. arXiv preprint arXiv:1805.08318,
2018.

[48] Shuai Zheng, Fan Yang, M Hadi Kiapour, and Robinson Piramuthu. Modanet:
A large-scale street fashion dataset with polygon annotations. In 2018 ACM
Multimedia Conference on Multimedia Conference, pages 1670–1678. ACM,
2018.

44

	List of Figures
	List of Tables
	Introduction
	Aim and Research Questions
	Limitations
	Thesis outline

	Background
	Artificial Neural Networks
	Deep Neural Networks
	Multi Layer Perceptrons
	Convolutional Neural Networks

	Supervised Learning in Deep Neural Networks
	Semantic Segmentation using Deep Neural Networks

	Generative Image Modeling
	Generative Modeling Using Deep Learning
	Generative Adversarial Networks
	Training Instability
	Mode Collapse

	Methods
	ModaNet - Data set
	Models
	Style GAN - for image generation
	Style GAN - generator
	Style GAN - discriminator

	Style C GAN - for image and semantic segmentation map generation
	Adding feature maps
	Progressive growing in the channel dimension

	Style C GAN 2D - for image and semantic segmentation map generation
	Adding discriminator
	Changing training procedure

	Evaluation Metric
	Inception score
	Fréchet Inception distance
	Similarity evaluation in feature space
	Traverse the latent space

	Putting it all together from raw data to final model
	Training, validation and test split
	Data pre-processing
	Training schedule
	Evaluation

	Results
	Semantic segmentation maps generation
	Image comparison
	Similarity evaluation

	Conclusion
	Future work

