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Simulation of Rail Corrugation Growth on Curves
ANDREAS CARLBERGER
Department of Applied Mechanics
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Abstract
Rail corrugation (periodic surface irregularities at distinct wavelengths) is a prob-
lem experienced by many railway networks worldwide. Corrugation induces a pro-
nounced dynamic wheel–rail contact loading that leads to increased generation of
noise and in severe cases even damage of vehicle and track components. The large
magnitude creep forces and sliding between wheel and rail make corrugation espe-
cially prone to develop on curves. The current work summarizes the results from a
Master Thesis project performed in collaboration between Chalmers, ÅF Industry,
Bombardier Transportation and Stockholm Public Transport.
A time-domain model for the prediction of long-term growth of rail roughness has
been developed. Dynamic vehicle–track interaction in a broad frequency range (at
least up to 300 Hz) is simulated using the commercial software SIMPACK. Wheelset
structural flexibility is accounted for by using modal parameters calculated with a
finite element model. Non-Hertzian and non-steady wheel–rail contact and asso-
ciated generation of wear are calculated in a post-processing step in the software
Matlab. Archard’s law is applied to model the sliding wear. A large number of train
passages is accounted for by recurrent updating of the rail surface irregularity based
on the calculated wear depth.
The proposed prediction model is applied to investigate a curve on the Stockholm
metro network exposed to severe corrugation growth. The predictions show corruga-
tion growth to be generated by the leading wheelset of passing bogies at wavelengths
approximately corresponding to those observed on the reference curve of the Stock-
holm metro. The corrugation wavelengths are related to coupled vibrations of the
vehicle–track system involving wheelset bending eigenmodes. The influence of the
wheelset structural flexibility and wheel–rail contact friction on corrugation growth
is investigated.

Keywords: Rutting corrugation, non-Hertzian and non-steady wheel–rail contact,
roughness growth prediction, wavelength fixing mechanism, small radius curves,
multibody dynamics, Simpack.
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1
Introduction

1.1 Background

In today’s modern cities the metro is one of the most environmentally friendly and
effective modes of transportation. The metro often operates in narrow spaces and
in densely populated areas. This puts requirements on limited noise emission and
adaptability to geometric restrictions.
Many recurrent problems with railway vehicles are associated with curving. During
curving high magnitude normal and tangential forces are generated in the wheel–rail
contacts leading to damage and noise. The damage occurs on both wheels and rails
as rolling contact fatigue and wear.
A particular prominent problem is the development of periodic irregularities with
distinct wavelengths on the crown of the low rail in curves. This phenomenon,
referred to as “rutting” corrugation, has been explained by wear generated at certain
wavelengths. The corrugation wavelength developed at a specific site is determined
by the complex vehicle–track interaction. In particular, eigenmodes of the wheelset
in bending and torsion have often been pointed out as the root cause.
Observations of this kind of corrugation are reported from several metro track net-
works worldwide. Currently the most common mitigation action is recurring rail
grinding but this is costly and does not prevent the formation of new irregularities.

1.2 Purpose

The aim of this project is to develop a model for accurate prediction of rail corruga-
tion growth on curves. By use of numerical modelling the complex conditions that
promote corrugation growth can be identified. In particular, such a model could
be applied to investigate the potential of finding a design solution to the problem
or to set limits for operating conditions. The optimization and planning of track
maintenance by infrastructure managers are other areas where this model can be
shown to be useful.

1.3 Limitations

The model is developed to mimic the dynamic interaction between a Bombardier
C20 train and a specific curve on the Stockholm metro. The frequency range below
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1. Introduction

250 Hz is studied. This is sufficient to capture the excitation frequencies corre-
sponding to the dominant corrugation wavelengths observed on the reference curve.
High–frequency curve squeal is not assessed in the current work.
In principle the proposed modelling framework is generally applicable to investi-
gate causes of rail roughness growth provided that the dynamic behaviour of the
vehicle–track system in the studied frequency range is accounted for.
The simplified vehicle model includes only one car of which only the first bogie is
used to predict rail wear. Only corrugation growth on the low rail is considered.
No driving torque was applied to the wheelsets. Only nominal wheel and rail profiles
are used.
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2
Theory

2.1 Review of numerical prediction of corrugation
growth on small radius curves

In the doctoral thesis of P.T. Torstensson [1] rutting corrugation on small radius
curves is studied. It considers the same reference curve as the present thesis.
The specific type of corrugation called rutting on the low rail is both analyzed
through field measurements and modelled using a numerical time-domain vehi-
cle–track model. On the reference curve, rutting corrugation with wavelengths 5
cm and 8 cm are linked to vibrations of the leading wheelsets of passing bogies in
their first and second bending eigenmodes. The developed time-domain model uses
a non-Hertzian and non-steady wheel–rail contact model. The model was validated
in the frequency range below approximately 250 Hz. Predictions showed a large
dependence of the friction on the development of corrugation. For friction below 0.3
almost no corrugation growth was predicted. This is in agreement with results from
field tests where a friction modifier was applied on the reference curve. Further-
more it was predicted and confirmed by observation that the corrugation develops
towards a constant amplitude. This phenomenon was attributed to a decreasing
phase difference between the calculated wear and the accumulated rail irregularity.
In a metallurgic study plastic deformation on the rail crown towards the field side
was found, indicating large magnitude lateral creepages in the curve.

In an article by Knothe and Groß-Thebing [2] short pitch corrugation and the influ-
ence of contact mechanics is discussed. It was found that the vehicle–track dynamic
behaviour promotes corrugation growth in the interval between 2 cm and 10 cm.
The contact mechanics were identified to play an important role in the formation
of short wavelength rail corrugation. The non-steady-state contact mechanics are
strongly linked to the wavelength fixing mechanisms. The structural dynamics of
the track was found to have significant influence of the wear process. Lateral vi-
bration of the rail together with lateral creepage in the contact yields transient
creepage fluctuations. These fluctuations are associated with the development of
corrugation. The currently most effective mitigation of corrugation is rail grinding.
The large magnitude wheel–rail contact forces may cause stresses large enough to
produce plastic flow in the top of the rail surface. The resulting residual stresses
will be periodic with the corrugation and also have to be removed during grinding.
It is therefore not enough to only remove the geometric irregularity.
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2. Theory

The Influence of wheelset and track structural flexibility on the dynamic interaction
was investigated by Chaar [3]. The work included both simulations and measure-
ments. It was found that the structural flexibility of the wheelset and track signifi-
cantly influences the wheel–rail contact forces. A set of parametric studies showed
that simulations of wheel–rail contact forces can be significantly improved if the
track receptance is represented accurately.

2.2 The vehicle–track system

In the following a brief introduction to general railway theory and railway concepts
is given. A more comprehensive summary can be found in the text books Rail Ve-
hicle Dynamics [4] or Modern Railway Track [5].

Rails provide a load bearing running surface with high geometric tolerances. Due to
the large, local and cyclic loads from passing wheels high demands are set on their
mechanical properties such as hardness, strength, toughness, wear resistance and
fatigue strength. The metal should also not become brittle at low temperatures.
The rails are mounted to the sleepers with a stiff fastener. Sleepers are normally
spaced with about 60 cm. A plastic or rubber pad separates the rail and sleeper
and provides resilience and damping. The sleepers are laid on ballast that consist
of crushed stone.

Ballast

Sleeper

Rail fastening
Rail pad

14 mm

Rail Track gauge
Rail inclination

Track plane
14 mm

Figure 2.1: Track cross section and important components.

Railway curves consist of a transition curve and a circular curve. Transition curves
connecting tangent track and circular curves have a continuous varying curvature
which limits the lateral change of acceleration for passing trains.
The definition of some track components is shown in Figure 2.1. Track gauge is
a measure of the distance between the rails. The measuring point is defined as
the point closest to the other rail at no more than 14 mm from the top of the rail
vertically in the track coordinate system. To counteract the effects of the centrifugal
accelerations of passing trains, curved track are constructed with a angle with respect
to the horizontal plane. This is called superelevation or cant. Often the rails are
mounted at an angle with respect to the track plane. This is called inclination
and results in a enlarged contact area between the wheel and rail, and a better
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2. Theory

transmission of forces between the rail and sleeper. The inclination is typically
between 1:40 and 1:20 (in Sweden 1:30).

2.2.1 Irregularities

A distinction is often made between long and short wavelength irregularities. Irreg-
ularities on the rail top with wavelengths below 20 cm are denoted “rail roughness”.
These are present at varying amplitudes and the cause can for example be rail grind-
ing or irregular wear caused by passing trains. The initial irregularity is essential
for the development of new irregularities [2].
Deviations of the rail location from the design geometry can be denoted as “track
irregularities” and are quantified by measurements of vertical displacement, lateral
displacement, gauge and cant. The wavelengths are typically ranging from 20 cm
to 25 m. These track irregularities have a significant influence on the low frequency
dynamic behaviour of the train [4].
In the current work only the first type of irregularity is considered.

2.2.2 Vehicle

Conventionally train cars are supported by two bogies. In some cases two cars can
share a bogie. The car is mounted to the bogie via the secondary suspension. A
bogie is a frame normally holding two wheelsets. The connection between them is
called the primary suspension. Wheelsets consist of two wheels rigidly connected
by a wheelaxle. The mounting of the primary suspension is on the outside of the
wheels. On many modern trains all wheelsets are driven. The torque is applied
to a sprocket on the wheel axle. An illustration containing the most basic train
components can be seen in Figure 2.2a.

2.2.3 Steering of rail vehicles

The wheel profile consists of a wheel tread and a wheel flange. In normal conditions
only the tread is in contact with the rail. The wheel flange restricts the wheelset
movement in the lateral direction. The conicity of the tread gives the wheel different
effective rolling radii depending on the lateral contact position, see Figure 2.2b. By
having different effective radius on its wheels, a rolling wheelset will steer towards
the wheel with smaller radii and therefore reduces the risk of flange contact. Due to
the conicity of the wheels the wheelset will automatically steer towards the centre
of the track. This explains why curving without flange contact is possible. Flange
contact is generally associated with large magnitude forces in combination with
excessive wear and should therefore be avoided to the largest extent. The effective
radii are determined by the wheelset position and the rail and wheel profiles. The
track gauge is often widened in curves to reduce the likelihood of flange contact and
to allow larger running radius difference of the two wheels.
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Secondary suspension

Primary suspensionWheel axle
Bogie

Sprocket

Car

Wheel tread

Wheel flange

(a)

R0

zr

yrzw

yw
Rc

(b)

Figure 2.2: (a), Main vehicle components. (b), Wheel and rail profiles and definition
of coordinate systems.

2.3 Simulation of dynamic vehicle–track interac-
tion

The wheel-rail contact forces are in the low-frequency range due to car body steering
and in the high-frequency range up to about 2000 Hz caused by irregularities in
the wheel–rail contact. In the following important concepts for the simulation of
dynamic vehicle-track interaction are introduced.

2.3.1 Mathematical formulation

The system of equations describing the dynamic vehicle-track interaction can be
analyzed in the frequency- or time-domain. The non-linear system of equations can
be written as

Mü + Cu̇ + Ku = Q (2.1)

M, C and K are the mass, damping and stiffness matrices. Q constitutes exter-
nal forces and u holds state variables such as displacements, rotations and modal
displacements. These equations may be complemented with a set of constraint equa-
tions. Analysis in the frequency domain is based on a linearization at a specific state.
This can give valuable information about the behaviour of the model. However, to
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2. Theory

capture transients and non-linearities, a time-domain model is required. Solution is
typically obtained through computationally demanding numerical integration.

2.3.2 Track

The frequencies of the rail–wheel contact forces range from a few Hz related to car
body motions up to more than 2000 Hz related to irregularities in the wheel–rail
contact. To correctly assess the magnitudes of the corresponding forces the dynamics
of the track in the same frequency range needs to be modelled. Depending on the
analysis, different ranges of frequencies need to be accounted for and the track model
should be chosen accordingly.

2.3.2.1 Continuous track models

A common way of accounting for the track dynamics is to model a section of the track
with high resolution using the finite element (FE) method. The number of degrees-
of-freedom (dofs) of the track model can be reduced through modal superposition
retaining only a truncated set of low frequency eigenmodes. Some methods [6, 7, 8]
model the rails by using beam theory and the other components with mass-spring-
damper systems.

2.3.2.2 Moving track models

Often in simulations of dynamic vehicle-track interaction a so-called moving track
model, corresponding to a simple representation of the track following each wheelset,
is applied. This allows for much longer simulation distances as the model size is in-
dependent of the track length. In this method longitudinal dynamics and interaction
of wheels through the track are disregarded. Typically the track is represented by a
mass-spring-damper system. In principle the properties of this mechanical system
can be varied periodically to account for the discrete sleeper support.

2.3.3 Vehicle

The basic components included in a vehicle model were presented in Section 2.2.2.
Often significant simplifying assumptions are used. The secondary suspension con-
necting the bogie to the car contains airsprings, antirollbars and yaw dampers mak-
ing up a complex non-linear six-dof connection. In modelling this system is typically
linearized.
The structural flexibility of vehicle components is typically accounted for by the FE
method. However these representations generally include a large number of dofs
and hence they are computationally demanding. To reduce the computational cost
some vehicle components may be modelled as rigid. In studies that focus on high-
frequency wheel–rail contact forces, the wheelsets are also commonly modelled as
flexible. The representation of the flexible bodies normally only contain a small set
of its lowest frequency eigenmodes.
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2. Theory

2.3.4 Wheel–rail contact

For a given state of the rail and wheel in the time-integration of dynamic vehicle-
track interaction, the normal and tangential forces in the wheel-rail contact need
to be accurately calculated. Moreover for calculating the wear generated on the
wheel or rail not only forces and slip velocities need to be known, but also their
respective distribution within the contact patch. The high stiffness and the non-
linear force-displacement relation in the wheel-rail contact puts requirements on
using a high sampling frequency in the time-integration procedure. In order to
reduce the computational effort simplifying assumptions need to be made. In this
section the basic theory and two of the most popular methods are briefly presented.
A full introduction to the theory of contact mechanics can be found in the work of
Johnson [9]. More about the current research in the field of wheel–rail contact can
be found in the thesis of Sichani [10].

2.3.4.1 Rolling contact mechanics

The wheelset curving behaviour discussed in Section 2.2.3 assumes that the contact
exists in one point and that no sliding is present, i.e. pure rolling. Due to elasticity,
the contact is in reality made over a small contact patch. Also a portion of the
contact area may be sliding. Carter [11] presented that in order for a rolling contact
to yield a tangential force a velocity difference between the contacting bodies needs
to be present. This velocity difference is called creepage and is due to both elastic
deformation of the two bodies and slip in the rear of the contact patch. The creepage
is defined as

γ = vw − vr

vref

(2.2)

where vw and vr are the velocities in the contact point with respect to an inertial
coordinate system for the wheel and rail, respectively. vref is a reference velocity
normally taken as the vehicle speed. The creepage can be calculated in both longitu-
dinal and lateral directions, as well as with respect to the angular velocity difference,
then called spin.

8
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slip adhesion

v

ω

Figure 2.3: Illustration of contact of rolling cylinder on halfspace. Distribution of
normal force (thin line). Distribution of tangential force (thick line).

All rolling contacts that transmit a tangential force have a region of slip in the
wheel–rail contact area. This region increases from the rear towards the front of
the wheel–rail contact area with increasing creepage. The shear force distribution
is illustrated in Figure 2.3 for a cylinder rolling on an elastic halfspace. The shear
force can be modelled using the well known Coulomb’s friction model

T

 ≤ µF, if adhesion
= µF, if slip

(2.3)

which gives the tangential force in a point as the smallest force that prevents sliding
until the limit µF is reached. It therefore defines the region of slip and adhesion.
Generally the friction is significantly lower for sliding contact but this is often ne-
glected in models of wheel–rail contact.

2.3.4.2 Common assumptions

The elastic halfspace assumption is widely used in the field of contact mechanics [9].
It implies that the contacting bodies are non-conformal and that the dimensions
of the contact area are significantly smaller than the local radii of the contacting
bodies. According to this assumption, the bodies can be regarded as flat semi-
infinite elastic solids in the calculation of internal stresses and deflections. Influence
functions describing the behaviour of an arbitrary surface can then be calculated
based on the work of Boussinesq [12] and Cerruti [13]. Assuming that the bodies
are quasi-identical, for a given pressure distribution p, the surface displacement in
the normal direction is given as

u(x, y) = 1 − ν2

πE

∫∫
A

p(ξ, η)√
(x− ξ)2 + (y − η)2

dξdη (2.4)

where ν and E are the Poisson’s ratio and the modulus of elasticity, respectively.
If the two contacting bodies have the same elastic constants or

G1

1 − 2ν1
= G2

1 − 2ν2
, (2.5)
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where G and ν are the shear modulus and Poisson’s ratio for the two bodies, the
bodies are said to be quasi-identical. This implies that the bodies will deform
identically when pressed together and the contact plane will remain flat. If the
contact is non-conformal this will lead to the normal and tangential contact problems
being uncoupled.

2.3.4.3 Hertzian contact

Hertz [14] developed an efficient theory for the elastic contact between two bodies.
The theory is based on the following set of assumptions; the contact area is small
compared to the size of the contacting bodies, the curvature of the bodies are close
to constant in the vicinity of the contact patch and friction is negligible. The last
assumption is needed to uncouple the normal and tangential contact problems and
can therefore be disregarded if the bodies are close to quasi-identical. Defining a
coordinate system with origin in the point where the bodies first touch and the z-axis
normal to the contact surface, each body can be approximated using a quadratic
function as

zi = Aix
2 +Biy

2 + Cixy (2.6)

The rotation of the coordinate system can be set such that the distance between the
undeformed bodies h = z1 − z2 becomes a function of two terms

h = Ax2 +By2, (2.7)

A = 1
2R′e

= 1
2R′1

+ 1
2R′2

, B = 1
2R′′e

= 1
2R′′1

+ 1
2R′′2

. (2.8)

Here R denotes the radii of curvature in both directions. The superscript R′ and
R′′ denote major and minor relative radius respectively. Re denotes the equivalent
radii.
Using the halfspace assumption the distribution of normal contact pressure is ob-
tained as

p = p0

√
1 − (x/a)2 − (y/b)2 (2.9)

where p0 is the maximum pressure at the centre of the contact, and a and b are the
contact semi-axes. The total normal force then becomes

P = 2
3p0πab (2.10)

2.3.4.4 Kalker’s variational method

In many cases of rolling contact the curvature of the geometries in contact varies
significantly in the contact patch. In these cases the Hertz assumption may be too
crude. Kalker’s variational method can account for these conditions and is based
on his non-steady and non-linear theory of rolling contact [15], often referred to as
Kalker’s complete theory. The contacting geometries are discretized locally in the
vicinity of the contact. The elastic deformation of the contacting bodies is calculated
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using the boundary element method and the Boussinesq-Cerruti integral in Equation
2.4. The rolling contact problem is solved in its weak form. Often quasi-identity is
assumed resulting in a separation of the normal and tangential contact problems.
This algorithm is often used as a reference solution as it converges to the exact
solution for any set of geometries that fulfil the halfspace assumption. Another
advantage is that it allows for the modelling of transient effects in the wheel–rail
contact. According to Knothe and Groß-Thebing [2] this is necessary if the contact
patch is larger than 1/10 of the studied corrugation wavelength. This is often the
case on corrugated rail.

2.4 Wear model
Archard’s wear model [16] is based on the assumption that the volume of removed
material is proportional to the dissipated energy. The dissipation of energy is the
work done by frictional forces so wear is only present in the sliding part of the
contact. This model is derived using the theory of asperity contact and was first
done by Reye in 1860 [17]. The Archard equation for the wear volume is as follows

Vwear = k
Ns

H
(2.11)

The wear volume is proportional to both the normal force, N , and the sliding dis-
tance, s. H is the hardness constant of the softer material and k is a wear constant
normally ranging from 10−8 to 10−2. The magnitude of the loading, the material
and the local friction are typically the factors influencing k. Empirically this depen-
dence has been found and tabulated for wheel and rail materials, varying creepage
and N/H ratios, by Jendel [18]. In combination with a discrete contact model it
can be useful to re-write Equation 2.11 as

∆zwear(x, y) = k
p(x, y)γ(x, y)dx

H
(2.12)

where ∆z is the local wear depth, p is the pressure, γ is the total local creepage and
dx is the element length.
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Method

Although the strategy developed in this thesis is a general approach to predict
wear and corrugation, it is used for a specific curve on the Stockholm metro. This
reference curve is trafficked exclusively by Bombardier’s metro train C20.
The basis for the prediction of corrugation growth can be split in two major parts;
the simulation of dynamic vehicle–track interaction and the generation of wear on
the rails. By accurate modelling of both in the frequency range of interest, the
mechanisms causing corrugation may be found.
In several studies eigenmodes of the unsprung mass, i.e. the wheelset, have been
associated with the development of different types of rail corrugation [19]. In the
current work the wheel axle is modelled as flexible.
In the following the foundation for the simulation model and its configuration is
presented.

3.1 Reference curve
A curve in the Stockholm metro exposed to severe corrugation growth on the low rail
is used as a reference. The prediction model is developed to resemble the conditions
in this curve.
The track layout of interest consists of a curve with a radius of 120 m. The curve is
preceded by a straight (tangent) track section and a 50 m long transition curve. The
transition curve is an Euler clothoid, a spiral with linearly varying curvature. The
track cant also increases linearly over the transition curve from zero on the straight
track to 9 cm in the curve. A constant gauge of 1435 mm is used throughout this
section. Rails are inclined towards the centre of the track with angle 1:40. BV50
rails and S1002 wheel profiles are used.
The traffic on the curve consists exclusively of the C20 train manufactured by Bom-
bardier Transportation. The speed of passing trains in the specified curve is ap-
proximately 30 km/h. The curve has previously been subjected to two measurement
campaigns. The measurements have included track receptance, rail irregularity and
noise from passing trains. The first campaign performed in 2008, initially presented
by Torstensson et al. [20], shows distinctive corrugation growth at the wavelengths
of 4.5 and 8 cm. For a vehicle speed of 30 km/h, this corresponds to excitation
frequencies of about 185 Hz and 104 Hz. It was also noted that the corrugation am-
plitude at the corresponding wavelengths approach a constant value after less than
one year after rail grinding. The noise data is strongly dominated by frequencies
significantly higher than those associated with the rail corrugation. Results from
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Tangent track Transition curve

Circular curve

R = 120m

s = 100m
s = 150m

Figure 3.1: Curve layout.

another measurement done in 2015 is described in Section 4.1.

3.2 Model in Simpack

Simpack is a commercial software for dynamic simulation of mechanical multibody
systems (MBS). It’s module Simpack Rail has become one of the most used MBS-
software tools for simulating railway vehicle dynamics. The Simpack pre-processor
enables setup of a model by usage of simple elements such as rigid bodies, springs,
dampers, constraints and joints. More advanced components such as flexible bodies
and wheel–rail contacts can also be used. Specifically, the wheel–rail contact element
takes care of everything concerning the contact such as contact detection, normal
and tangential force distribution and creep velocities. It can also handle multiple
contact points per wheel–rail pair. The structural flexibility of bodies in the me-
chanical system needs to be accounted for through input from other FE-software.
The equations of motion set up by Simpack’s pre-processor are integrated using
solver SODASRT 2 [21]. In Simpack, the equations of motion and the correspond-
ing structural element matrices can not be exported to an output file.
An effective way of reducing the simulation time is to use a so called continuation
run. This type of simulation is based on the end states of a prior simulation and
enables different continuations on a simulation as long as the transition between the
two is smooth. This feature was used in the current work to continue simulations
in the circular curve. This way, simulations on the tangent track and the reference
curve did not have to be re-run.

3.2.1 Track

A moving track model was used to represent the dynamics of the track. Here the
chosen model consists of a representation of the rails, sleeper, rail fastening, ballast
and rail pads. A schematic picture of the wheelset and track can be seen in Figure
3.2. The rail stiffness is accounted for by using an added undamped connection
directly to the ground. A similar model was made in [22] where the rail stiffness
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Figure 3.2: Flexible wheelset and track model in Simpack. The bodies respective
degrees of freedom are noted under the circle/arrow joint symbols (blue). The

spring/arrow symbols (red) denote spring and damper connections and the bars/arrow
symbols (green) denote constraints.

was accounted for by adopting a Guyan-Irons reduction on an Euler-Bernoulli-Saint-
Venant beam representing the rail.

An important property of the track is its resulting displacement amplitude due to a
sinusoidal unit load. This quantity is called receptance. In field, the receptance can
be measured in a sledge hammer test [20]. The rail is impacted with a sledge hammer
equipped with a load cell and the resulting displacement in the rail is measured with
an accelerometer. Both lateral and vertical receptance are assessed. Measurements
were performed above a sleeper as well as in the middle of a sleeper span. Using
this data a linear response has to be assumed.

The track properties are calibrated towards field test data though optimization with
respect to the receptance magnitude and phase in both lateral and vertical directions.
The frequency range between 50 Hz and 600 Hz is considered. For this a particle
swarm optimization was used, starting from estimated parameters for the properties.
The calculated and measured track receptances are compared in Figure 3.3.
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Figure 3.3: Track direct receptance in vertical (a) and lateral (b) directions:
calculated ( ) and measured ( ).

3.2.2 Vehicle
A C20 train is formed by three units coupled together. A unit is 47m and consists
of three inseparable car bodies. The two end cars are hinged to the middle car by a
semi-trailer arrangement, thereby reducing the number of bogies from six to four.
The train model was obtained from Bombardier Transportation. In order to reduce
simulation time, a vehicle model consisting of only one car is used. The two bogies
of the car were adjusted to correspond to the C20 bogie including two motorized
wheelsets. However, here no driving torque is applied to the wheelsets. Only the
leading bogie in the car is used for the wear simulations. Both its wheelsets are
modelled with flexible wheel axles. The trailing bogie is non-motorised and has
rigid axles. The trailing bogie and the car are kept unmodified throughout all
simulations. According to [23] the largest magnitude contact forces are generated at
the leading bogie of the second car. The car load of the obtained vehicle is modified
to adjust the leading bogie forces towards this case. Modifications in the vehicle
model are isolated to the added weight of the car and the wheel axle flexibility.
The wheelset structural flexibility has important significance at frequencies above
about 50 Hz and hence in the frequency range of interest in the current study.
The wheelset was therefore modelled as flexible. The primary suspension effectively
isolates the unsprung mass from the train components above the primary suspension
at frequencies above about 20 Hz. Hence, excluding the wheelsets, all other train
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components are modelled as rigid. The final assembled model can be seen in Figure
3.4.

Figure 3.4: Simpack model mimicking one car of the C20 train.

3.2.2.1 Wheelset structural flexibility

The flexible wheel axle was imported to Simpack from the commercial software for
finite element analysis Abaqus. In Simpack flexible bodies are represented by their
eigenmodes and eigenvalues. Modal synthesis was performed in Abaqus. The FE-
model of the wheelset includes solid brick elements for the axle and solid tetrahedral
elements for the spur wheel. To enable the wheel axle connections (e.g. to wheels,
axle boxes, etc.) in the subsequent Simpack simulations, so-called interface nodes
are introduced. These nodes are created on the rotation axis of the wheelset and
are rigidly connected to all selected nodes on the surface of the wheel axle, see
Figure 3.5. This results in these surfaces being rigid, however, these surfaces are
much smaller than the general dimensions of the axle. The interface nodes have six
degrees of freedom compared to three for the solid element nodes. This is possible
due to the multiple rigid connections to the surface nodes.

Figure 3.5: Illustration of axle interface nodes and connection to mesh.
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(a) 79 Hz

(b) 95 Hz

(c) 225 Hz

(d) 518 Hz

(e) 570 Hz

(f) 605 Hz

(g) 708 Hz

Figure 3.6: The lowest seven
eigenmodes for the wheelset and their

associated eigenfrequencies.

Modal synthesis of the wheelset FE-model
originally containing a total of 103 512 dofs
was performed retaining the 70 lowest fre-
quency eigenmodes. The wheels were mod-
elled as rigid and added to the axle in Sim-
pack using rigid connections to the corre-
sponding interface nodes. In Simpack the
wheel axles were the only components mod-
elled as flexible. The primary suspension cor-
responds to a low-pass filter effectively isolat-
ing the high-frequency dynamics to the un-
sprung mass. This motivates the use of rigid
bodies to model the bogie frame and the car.
The properties of the assembled wheelset are
presented in Table 3.1. Eigenmodes cor-
responding to the lowest seven eigenvalues
calculated for free boundary conditions are
shown in Figure 3.6. These are the modes
used to account for the wheelset flexibility in
the assembled vehicle model.

Table 3.1: Flexible wheelset properties
and mode frequencies.

Mass, m 794 kg
Inertia around x, Ixx 374 kg/m2

Inertia around y, Iyy 50 kg/m2

Inertia around z, Izz 374 kg/m2

First antisymmetric torsion 79 Hz
First symmetric bending 95 Hz
First antisymmetric bending 225 Hz
Second symmetric bending 518 Hz
First symmetric torsion 570 Hz
First symmetric axial 605 Hz
Second antisymmetric bending 708 Hz
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3.2.3 Wheel–rail contact

Simpack subjects the wheel–rail contact to several simplifications [21]. In solving
the contact problem only the rail profile vertically below the wheelset rotation axis
is used to describe the rail. This assumes a constant rail profile shape in the entire
contact area. The number of contact points are determined from the intersection
of the three-dimensional contact surfaces of the wheel and rail. The wheelset yaw
angle is accounted for. The assumption of a constant rail profile throughout the
wheel–rail contact area leads to an error in the estimated contact position in the
longitudinal direction. This is because the displacement of the contact area towards
the closest corrugation peak occurring for real cases of short wavelength corrugation
is not captured. By a pure geometrical assessment it can be shown that a wavelength
of 45 mm and amplitude of 0.1 mm will result in a maximum longitudinal shift of
about 5.5 mm.
For modelling the wheel–rail contact in Simpack, the theory by Hertz and the al-
gorithm FASTSIM are used in the normal and tangential directions, respectively.
FASTSIM is an implementation of Kalker’s steady-state simplified theory of rolling
contact [24].

3.3 Contact post-processing in Matlab

As already has been discussed, the contact analysis in Simpack assumes a non-
varying rail profile in the contact area, Hertzian normal contact and steady-state
tangential contact. All these assumptions are often applicable in simulations of
dynamic vehicle–track interaction. However, in calculations of wear they may intro-
duce a significant error [10]. To achieve an accurate calculation of the rail wear the
contact is re-evaluated in a post-processing step in Matlab. Taking the true three-
dimensional contact geometries of the rail and wheel at positions resulting from the
time integration of the vehicle-track system could possibly lead to large penetrations
and consequently an overprediction of the contact forces. This is avoided by shift-
ing the wheel vertical position until the resulting normal wheel–rail contact force
corresponds to that obtained from Simpack.
To solve for the stresses and sliding in the wheel–rail contact, the same algorithm
as used in [22] is applied. This is an implementation of Kalker’s variational method.
The contact problem is solved for a mesh with quadratic elements of side length
1 mm. In the post-processing step the contact problem is solved with a sampling
frequency of 8320 Hz. This corresponds to the vehicle, with speed 30 km/h, traveling
one element length. Given the wheel and rail contact geometries, and the normal
force and creepages from the Simpack simulation, the post-processing step in Matlab
provides a detailed contact estimation.
A representative set of re-evaluated contacts is illustrated in Figure 3.7. The lon-
gitudinal x-coordinate for each contact is based on the midpoint of the Hertzian
contact evaluated by Simpack. Note that the geometric shift is captured in the
re-evaluation.
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Figure 3.7: Wheels rolling on a single 40 mm wavelength rail irregularity with 0.1 mm
amplitude. Contact location and normal contact pressure distribution for leading (blue

dots) and trailing (red circles) wheelset, respectively. Vehicle speed 30 km/h, rail
inclination 1:40, friction 0.6, curve raidus 120 m.

3.3.1 Updating of the rail surface irregularity
Archard’s law is applied to calculate wear. The wear coefficient and material hard-
ness were chosen as k = 10−4[−] and H = 3.4 × 109[N/m2] [18], respectively. The
wear depth calculated at a specific time-step is mapped over to a mesh containing
the accumulated wear for the complete rail and several train passages. The wear
volume from a contact node is split up to its four closest neighbours on the rail mesh.
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Using the notations in Figure 3.8b the contact node wear depth δz distributed to
rail node wear depth ∆z1 is calculated as

∆z1(δz) = δz
axby

δxδy

∆x∆y
δxδy

(3.1)

This guarantees that the wear volume is preserved. The resulting in-plane volume
shift is small. A smooth contact wear will always result in a smooth rail wear
distribution provided that the rail elements are larger than the contact elements.

From the rail mesh, rail profiles to be used in the simulations of dynamic vehi-
cle–track interaction in Simpack are linearly interpolated.
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Figure 3.8: Illustration of wear depth mapped from contact mesh on to rail mesh. (a)
Contact wear (quadratic elements) mapped to a section of the rail mesh (rectangular

elements). (b) Contact and rail element.

3.4 Simulation of long-term roughness growth

For the possibility to predict long-term rail corrugation growth the simulation of
a large number of train passes is required. The procedure used consists of three
modules; (1) the simulation of dynamic vehicle-track interaction in Simpack, (2) the
contact re-evaluation and (3) updating of the rail irregularity with respect to the
generated wear. The method is summarized below.
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Outline of steps performed in the main Matlab script.
1. Start by generating an initial rail geometry with a representative rough-

ness, save this in a format that Simpack can read.
2. Call the Simpack solver and simulate one train passage.
3. Make a detailed re-evaluation of all contacts by using the results from the

simulation and the rail geometry from step 1.
4. Evaluate the corresponding wear for each contact, assemble these and mul-

tiply with a number of train passes. Update the rail geometry by removing
this quantity.

5. Return to step 2 until sufficiently many train passes have been simulated.

Figure 3.9: Outline of Matlab script.

To simulate a large number of train passages a multiplication factor of 2000 - 10
000 is used for the wear depth calculated for one train passage. Before the next
simulation in Simpack, the rail surface geometry is updated with respect to the
wear generated by previous train passes.
A graphic representation of the simulation scheme is seen in Figure 3.10.

3.4.1 Initial rail roughness
The initial rail irregularity influences the development of corrugation. In the pro-
posed simulation procedure, three different options for the initial irregularity can
be made. An arbitrary roughness can be set by providing a set of wavelengths and
corresponding amplitudes. The second option is to simply provide the raw space
domain roughness signal. This could for example be a measured signal from a re-
cently ground rail. The third option is to set the roughness level according to the
ISO 3095 limit. To do this the script developed in [25] was used. An option for
inducing additional lateral irregularity with smooth longitudinal variation was also
developed.

3.4.2 Simulation setup
Measures were taken in order to decrease the simulation time. By only calculating
wear for a section of the circular curve where steady-state curving is obtained the
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Figure 3.10: Illustration of iteration procedure used to simulate long-term corrugation
growth.

running section could be reduced. It was found that the train had obtained a
steady-state curving position at longitudinal coordinate 190 m. Hence wear was
assessed starting at this coordinate. It is important to remark that if the operational
parameters are changed (e.g. vehicle speed, friction coefficient, wheelset stiffness,
etc.), the dynamic vehicle-track interaction needs to be re-simulated from the start
on the tangent track.
Updating of the rail geometry with respect to corrugation is done over a 10 m long
section from longitudinal coordinate 195 m to 205 m. The transition between the
unworn rail at 190 m and the worn rail at 195 m is found to be sufficiently long
in order to reduce transients, see Figure 3.11. A linear ramp up of the corrugation
magnitude for the first 30 cm of the corrugated rail section is modelled.

s = 190 m s = 190.8 m s = 194.8 m s = 195 m s = 195.3 m

Unworn rail profile First worn rail profile Linear ramp up

x
z

Figure 3.11: Transition between unworn rail and corrugated section for section of the
rail.
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4
Results

4.1 Measurements of rail roughness on the
reference curve

Measurement of rail roughness was performed on the reference curve on the Stock-
holm metro approximately six months after grinding. Roughness was measured in
three parallel lines with an APT - RSA equipment. Long wavelength track irregu-
larities have not been considered. Spectral analysis of the measurement data shows
presence of corrugation at several wavelengths. The largest levels are found at the
approximate wavelengths of 5 cm and 10 cm, see Figure 4.1. Previous measurement
campaigns on the same curve have shown similar results [1] with peaks in roughness
level at wavelengths of about 5 cm and 8 cm. Moreover it was found that corrugation
developed into a constant amplitude after about 300 days after grinding.
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Figure 4.1: Rail roughness level in 1/3 octave bands measured on the low rail of the
reference curve

4.2 Vehicle curving behaviour on the reference
curve

The curving behaviour of the current vehicle model on a track with geometry in
accordance with the reference curve is simulated. Results for the leading bogie
obtained from Simpack at vehicle speed 30 km/h are shown. These results are
directly obtained from the vehicle–track simulation.
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4.2.1 Transient curving behaviour
In Figure 4.2 the normal and tangential wheel–rail contact forces for the leading
bogie are presented. Results are shown from the tangent track until steady-state
curving is achieved in the circular curve at approximate longitudinal coordinate 170
m. The transition curve starts and ends at longitudinal coordinates 100 m and 150
m, respectively. At approximate longitudinal track coordinate 110 m a flange contact
is developed for the leading wheelset, see Figure 4.2. Note that the flange contact
is much more severe if friction is increased, corresponding to a further displacement
of the leading wheelset towards the high rail. Note also that the magnitudes of
the forces are relatively similar for the two axles and that the influence of friction
coefficient on normal forces is small.
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Figure 4.2: Normal and tangential wheel–rail contact forces, for leading (a) and
trailing axle (b). Calculated for vehicle speed 30 km/h. ( ) µ = 0.2 low rail, ( ) µ = 0.2

high rail, ( ) µ = 0.6 low rail, ( ) µ = 0.6 high rail.

Figure 4.3 shows that the creepages for the leading wheelset on the low rail exceeds
those obtained for the trailing wheelset. This suggests that the wear will have
its largest contribution from the leading wheelset. It can also be seen that an
increased friction will reduce longitudinal creepage and increase lateral creepage.
The metallurgical study performed on the same rail in [25] showed plastic flow on
the rail head mainly directed towards the field side. This suggests that the true
friction coefficient is much closer to 0.6 than to 0.2 when wear and plastic flow is
generated.
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Figure 4.3: Longitudinal (a) and lateral (b) creepages on the low rail for the leading
and trailing wheelsets of the leading bogie. Directions are positive in the travelling

direction, and towards the field side, respectively. Vehicle speed 30 km/h. ( ) µ = 0.2
leading axle, ( ) µ = 0.2 trailing axle, ( ) µ = 0.6 leading axle, ( ) µ = 0.6 trailing axle.

The lateral contact positions on the low rail are shown in Figure 4.4. For both levels
of friction the contact position on the low rail for the leading wheelset is seen to
occur on the rail crown. For friction coefficient 0.2 the trailing wheelset is displaced
towards the low rail (not shown here) corresponding to a lateral contact position
towards the rail gauge face. It is important to keep in mind that the lateral contact
position has a strong non-linear dependence on the wheel–rail relative lateral shift.
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Figure 4.4: Lateral contact position on the low rail for the leading and trailing
wheelset, respectively. Results are calculated for friction coefficient 0.2 and 0.6.

Direction is positive towards the field side. Vehicle speed 30 km/h. ( ) µ = 0.2 leading
axle, ( ) µ = 0.2 trailing axle, ( ) µ = 0.6 leading axle, ( ) µ = 0.6 trailing axle.

Yaw angles of both wheelsets and the frame of the leading bogie are presented in
Figure 4.5. The leading wheelset has a large under-steering yaw angle whilst the
trailing wheelset has an almost radial steering position. The bogie has about half
as much under-steering as the leading wheelset. Lowering the friction increases the
yaw angle of the leading wheelset and the bogie frame.
The yaw angle observed for the leading wheelset causes the large magnitude lateral
creepage seen in Figure 4.3b. The lateral creepage caused by the large yaw angle
of the leading wheelset creates a force acting on the wheelset directed outwards in
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the curve towards the high rail. This results in a rolling radius difference of the
leading wheelset corresponding to a negative longitudinal creep on the high rail and
a positive longitudinal creep on the low rail. As a result tangential creep forces
are developed that strives to reduce the yaw angle of the wheelset. Limiting these
forces by reducing the friction will therefore lead to an increase in yaw for the leading
wheelset, as can be seen in Figure 4.5.
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Figure 4.5: Yaw angles calculated for both wheelset and frame of the leading bogie.
Friction coefficient 0.2 and 0.6 are used. The angle is defined positive around the z-axis,

thus the bogie is in under-radial steering position. Vehicle speed 30 km/h.

4.2.2 Coupled vehicle–track eigenmodes

To illustrate the coupling between the vehicle and the track, the assembled system
is analyzed in the frequency domain. The system is linearized in the steady-state
curving situation. In the visualization all components except the leading wheelset
and its track components are removed. The lowest frequency eigenmodes of the
complete system which include a significant vibration at the low rail contact of the
leading wheelset are assessed. Results calculated with rigid or flexible wheelsets
including the seven lowest frequency eigenmodes are shown in Figure 4.6 and 4.7,
respectively. Note that due to the choice of track model all track movements are in
the xz-plane.

Figure 4.6 shows six eigenmodes calculated with the rigid wheelset model. The so
called P2 resonance, where the wheelset, rails and sleeper vibrate in phase on the
stiffness of the ballast occurs at about 50 Hz is not shown here. Figure 4.6a illustrates
an eigenmode including a lateral vibration in opposite directions of the wheelset and
sleeper. Eigenmodes in Figure 4.6b to 4.6d include a significant deformation of the
rail pad and lateral, vertical and rotational vibration of the sleeper.
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(a) 79 Hz (b) 178 Hz (c) 188 Hz

(d) 212 Hz (e) 490 Hz (f) 526 Hz

Figure 4.6: Coupled vehicle–track eigenmodes calculated for the leading wheelset of
the leading bogie during steady-state curving. The wheelsets are modelled as rigid.
Curve radius 120 m, vehicle speed 30 km/h. Eigenfrequencies associated with the six

lowest frequency eigenmodes are outlined.

An analysis of the eigenmodes for the system with flexible wheelsets is performed.
Eigenmodes associated with the eight lowest frequency eigenvalues, calculated for
the leading wheelset of the leading bogie in steady-state curving, are shown in Figure
4.7. For an eigenfrequency of about 55 Hz, Figure 4.7a shows a coupled vibration
corresponding to the P2 resonance in combination with the first symmetric bending
eigenmode of the wheelset. The first symmetric bending eigenmode is also dominant
for the eigenfrequency at 125 Hz, see Figure 4.7b. Eigenmodes in Figure 4.7c through
4.7e are similar to the results obtained with the rigid wheelset in the corresponding
frequency range, but involves in addition a vibration of the wheelset in its first
antisymmetric bending eigenmode. Eigenfrequencies for the free wheelset are found
in Table 3.1.
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(a) 55 Hz (b) 125 Hz (c) 178 Hz

(d) 199 Hz (e) 231 Hz (f) 355 Hz

(g) 455 Hz (h) 517 Hz

Figure 4.7: Coupled vehicle-track eigenmodes calculated for the leading wheelset of
the leading bogie during steady-state curving. The wheelsets are modelled as flexible.
Curve radius 120 m, vehicle speed 30 km/h. Eigenfrequencies associated with the six

lowest frequency eigenmodes are outlined.
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4.3 Prediction of corrugation growth

In the following, results from the post-processing performed in Matlab are discussed.

4.3.1 Verification of wheel–rail contact post-processing

The implementation of the post-processing step in Matlab is verified by comparing
calculated contact pressures with those obtained in Simpack. Due to the large
variation in lateral contact positions at different locations along the track, low rail
contact of the trailing wheelset and friction coefficient 0.2 is considered, see Figure
4.4. Results obtained at longitudinal coordinates 80 m (tangent track), 125 m
(transition curve) and 180 m (circular curve), are shown in Figure 4.8 through 4.10,
respectively. The corresponding calculated wear depth is also shown.
Due to the vanishing creepages on the tangent track, see Figure 4.3, the generated
wear is negligible, see Figure 4.8b. As expected the wear calculated for the other
cases is concentrated in the slip region in the trailing edge of the contact patch, see
Figure 4.9b and 4.10b.
For the non-conformal contacts in Figure 4.8a and 4.9a Simpack and Matlab yield
similar contact pressure distributions. The normal contact pressure distributions are
close to parabolic. In the circular curve the low rail contact of the trailing wheelset
becomes close to conformal. For this non-Hertzian contact condition the difference
between the models is significant, see Figure 4.10a.
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Figure 4.8: Comparison of results calculated in Simpack and those obtained in the
post-processing step in Matlab, for the low rail contact of the trailing wheelset.

Longitudinal coordinate 80 m (tangent track), friction coefficient 0.2 and vehicle speed
30 km/h. (a) Contact pressure integrated longitudinally. The local wheel and rail

profiles are outlined. (b) Calculated wear depth.
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Figure 4.9: Comparison of results calculated in Simpack and those obtained in the
post-processing step in Matlab, for the low rail contact of the trailing wheelset.

Longitudinal coordinate 125 m (transition curve), friction coefficient 0.2 and vehicle
speed 30 km/h. (a) Contact pressure integrated longitudinally. The local wheel and rail

profiles are outlined. (b) Calculated wear depth.
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Figure 4.10: Comparison of results calculated in Simpack and those obtained in the
post-processing step in Matlab, for the low rail contact of the trailing wheelset.

Longitudinal coordinate 180 m (circular curve), friction coefficient 0.2 and vehicle speed
30 km/h. (a) Contact pressure integrated longitudinally. The local wheel and rail

profiles are outlined. (b) Calculated wear depth.

4.3.2 Wavelength fixing mechanisms
By comparing the calculated wear depth with the initial rail irregularity, an indica-
tion about which irregularity wavelengths that may be promoted over time is given.
An important remark is that the system is non-linear and hence the generated wear
depends on the current irregularity magnitudes. This issue is discussed in the next
Section where results for long-term roughness growth are shown. In this Section the
initial rail irregularity is taken in accordance with the ISO3095 standard. Irregular-
ity wavelengths in the range from 2 cm to 64 cm are included. The same realization
of the initial rail irregularity is used for all simulations presented in the following.
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To investigate at which wavelengths the vehicle–track system promotes corrugation
growth, the complex transfer function, H̄, between the initial rail irregularity, R̄,
and the predicted wear depth, ∆Z̄, is calculated. The frequency contents of the rail
irregularity is obtained using a discrete Fourier transform. Notations used are taken
from [25].

H̄ = ∆Z̄
R̄

(4.1)

The magnitude of the transfer function, H̄, calculated for the low rail contacts of the
leading bogie in the circular curve is presented in Figure 4.11. The case of steady-
state curving at vehicle speed 30 km/h and friction coefficient 0.6 is considered.
The amount of wear generated by the leading wheelset exceeds that of the trailing
wheelset by approximately ten times. The transfer function magnitude calculated
for the leading wheelset shows distinct peaks at approximate wavelengths 4.5 cm and
7 cm. These wavelengths are similar to the wavelengths observed on the reference
curve of the Stockholm metro, see Section 4.1. For the current vehicle speed and the
wavelength of 7 cm, the eigenmode at the corresponding eigenfrequency is presented
in Figure 4.7b. For the wavelength of 4.5 cm, the eigenmodes at the corresponding
eigenfrequency are presented in Figure 4.7c to 4.7e. The increased magnitude of
the transfer function noted at the wavelength about 17 cm coincides with the P2
resonance, see Figure 4.7a. This corrugation wavelength is not represented in the
measurement data from the reference curve and might be due to insufficient ballast
damping or excitation from the initiation of the rail irregularities.
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Figure 4.11: Magnitude of the transfer function between the initial rail irregularity
and the wear depth calculated for both wheelsets of the leading bogie. Results calculated
for flexible wheelsets given in 1/12 octave bands. Curve radius 120 m, vehicle speed 30

km/h and friction coefficient 0.6.

4.3.2.1 Wheelset structural flexibility

The cause of the distinct peaks seen in Figure 4.11 is investigated by varying se-
lected model parameters. In Figure 4.12, results calculated accounting for wheelset
structural flexibility are compared with those obtained for rigid wheelsets. Again
the magnitude of the transfer function between the initial rail irregularity and the
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calculated wear depth is used. The wheelset structural flexibility is seen to have
a significant influence on the magnitudes of the transfer function. It also leads to
more distinct peaks in the transfer functions.
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Figure 4.12: Magnitude of the transfer function between the initial rail irregularity
and the wear depth calculated for both wheelsets of the leading bogie. Comparison of
results calculated for flexible and rigid wheelsets given in 1/12 octave bands. Curve

radius 120 m, vehicle speed 30 km/h and friction coefficient 0.6.

As observed in Figure 4.13, growth of corrugation at distinct wavelengths is also
predicted for the case of the leading wheelset modelled as rigid. Here the wave-
lengths correspond to frequencies 70 Hz and 185 Hz. The peak in transfer function
magnitude at 185 Hz may be related to the eigenmodes illustrated in Figure 4.6b
through 4.6d, keeping in mind the poorly damped peak in the lateral receptance of
the track in the same frequency range, see Figure 3.3b. For the flexible wheelset
this also involves a significant vibration of the wheelset in its first antisymmetric
bending eigenmode. The peak in transfer function magnitude calculated for the
rigid wheelset at around 12 cm might be a combination of the P2 resonance and the
eigenmode illustrated in Figure 4.6a.

3 4 6 8 11 16 23 32

1e−05 

1e−04 

1e−03 

Wavelength [cm]

M
a
g
n
it
u
d
e
[–
]

185Hz

120Hz

50Hz

70Hz

Flexible
Rigid

Figure 4.13: Magnitude of the transfer function between the initial rail irregularity
and the wear depth calculated for the leading wheelset. Comparison of results calculated
for flexible and rigid wheelsets given in 1/12 octave bands. Curve radius 120 m, vehicle

speed 30 km/h and friction coefficient 0.6.
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4.3.2.2 Friction dependence

One mitigation action for rail corrugation is the application of a friction modifier on
the top of the rail. In Figures 4.14 and 4.15, the magnitude of the transfer function
between the initial rail irregularity and the calculated wear depth, calculated for the
low rail contacts of the leading bogie for different values of the wheel–rail friction,
are shown. The wear coefficient is kept constant for all values of wheel–rail friction.
The level of friction is seen to have a significant non-linear effect on the transfer
function magnitudes. By reducing the friction coefficient the peaks in transfer func-
tion magnitudes at 50 Hz and 120 Hz are reduced whereas the one at 185 Hz seems
more or less unaffected. Keep in mind that the wear coefficient, which has been kept
constant throughout these simulations, has a friction dependence. The magnitudes
for lower frictions can therefore be expected to be lower.
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Figure 4.14: Friction dependent magnitude of the transfer function between the initial
rail irregularity and the wear depth calculated for the leading wheelset. Results given in
1/12 octave bands. Curve radius 120 m and vehicle speed 30 km/h. Wheelset structural

flexibility accounted for.
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Figure 4.15: Friction dependent magnitude of the transfer function between the initial
rail irregularity and the wear depth calculated for the trailing wheelset. Results given in
1/12 octave bands. Curve radius 120 m and vehicle speed 30 km/h. Wheelset structural

flexibility accounted for.
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4.3.3 Prediction of long-term corrugation growth
The development of long-term corrugation is predicted. The initial rail roughness is
modelled in accordance with the ISO 3095 limit. 40 000 train passes are accounted
for, corresponding to a total of 20 iteration steps in the proposed simulation proce-
dure. Steady-state curving of the leading wheelset on the reference curve at vehicle
speed 30 km/h and friction coefficient 0.6 is considered. Only wear generation from
the leading bogie is accounted for.
Figure 4.16a shows a cut-out of the rail irregularity development. It is noticed that
the final rail irregularity includes a dominant wavelength of approximately 4 cm.
While increasing in magnitude, the corrugation formation at this wavelengths is
also noticed to translate backwards with respect to the travelling direction of the
vehicle. Spectra of the final and initial rail irregularity are compared in Figure 4.16b.
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Figure 4.16: (a) Corrugation development predicted for 40 000 vehicle passages
corresponding to 20 iteration steps in the simulation procedure. Resulting roughness

after 0, 5, 10, 15 and 20 iterations. Steady-state curving on the reference curve at vehicle
speed 30 km/h and friction coefficient 0.6. (b) Spectra of the rail irregularity predicted
after 40 000 train passages and the initial rail irregularity presented in 1/3 octave bands.
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Conclusions

A model able to predict long-term roughness growth on small radius curves has
been developed and verified towards observations on a reference curve exposed to
severe corrugation growth on the Stockholm metro. The proposed simulation proce-
dure combines the robustness and versatility of the commercial multibody dynamics
software Simpack, with an in-house model for calculation of the accumulated wear
accounting for non-Hertzian and non-steady wheel–rail contact and Archard’s law for
sliding wear. The calculation of accumulated wear is based on the three-dimensional
contact geometry of the wheel and rail.
The amount of wear generated by the leading wheelsets of passing bogies exceeds
that of the trailing wheelsets. In addition the magnitude of the complex transfer
function between the initial rail irregularity and the calculated wear depth calculated
for the leading wheelset shows peaks at approximate wavelengths 4.5 cm and 7
cm. Possible wavelength-fixing mechanisms are investigated by eigenvalue analysis
performed on the vehicle-track system linearized with respect to steady-state curving
conditions. The corrugation wavelengths are associated with coupled vehicle-track
vibrations including the first symmetric and first antisymmetric bending eigenmodes
of the leading wheelset in passing bogies. These vibrations are exited by the wheelset
yaw-angles and the resulting lateral wheel–rail contact forces with large magnitudes.

5.1 Error sources

The rail section that is updated with respect to the calculated wear is introduced by
successively increasing the roughness magnitude over a total distance of 30 cm. The
excitation of the P2 resonance might be possible to reduce by extending this section.
Additional unwanted excitation may originate from the slope discontinuities at the
start and end of the 4 m long linear ramp from the nominal to the worn rail profile.
The mass of the axle boxes and the sprocket housing are currently not modelled.
This may lead to an over-estimation of the wheelset eigenfrequencies and could
partly explain the predicted corrugation wavelengths in Figure 4.16b being shorter
than those found in measurement data, see Figure 4.1.
Some other aspects whose influence have not been investigated are; the driving
torque applied on the wheel axle sprocket, simplifications in the vehicle and track
model, the true initial rail geometry and the variation of vehicle speeds.
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5.2 Suggestions for future work
The developed model can be used to deepen the understanding of the complex
mechanisms that promote corrugation growth. The proposed simulation procedure
is not limited to the special type of "rutting corrugation", but is generally applicable
presumeing that the structural flexibility of the train and track is accounted for in
the studied frequency range.
Having a verified prediction model for corrugation growth enables an efficient search
for mitigation measures or even actions to eliminate the problem. Examples of future
studies suggested by the author are to investigate the possibility to use mixed traffic
conditions (prescribed vehicle speed, axle load, train types, wheel and rail profiles,
etc.) as a measure to prevent corrugation growth. Another possible use of the
model is for the planning of maintenance intervals. Implementing a general purpose
optimization algorithm in combination with the proposed model constitutes another
possibility. Such an algorithm could optimize several parameters simultaneously
towards a combination of objectives. Examples of optimization parameters are wheel
and rail profiles, vehicle speed distribution, etc. In addition to quantities related to
corrugation, the objective function could assess also for example passenger comfort.
It is however important to consider the computational time for such an optimization.
Some suitable algorithms can be found in the excellent work of Wahde [26].
The proposed model for prediction of long-term corrugation growth is readily able
to use in combination with other vehicle models or other track geometries. Moreover
it can easily be modified to account for wear generated by more wheelsets.
To better capture the real-world conditions, the author suggests to perform predic-
tions of corrugation accounting for the statistical variance of input parameters such
as vehicle speed, axle load, friction coefficient, etc. In addition measured wheel and
rail profiles should be used.
The contact re-evaluation performed in the Matlab post-processing takes up a vast
majority of the computational time. Each simulated train passage requires the worn
rail from the previous run. This demands that the simulations are run in succession.
Assuming, as has been done in the model, that the rail changes insignificantly for
each train passage, the re-evaluation of rail–wheel contacts for different rail–wheel
pairs are independent. This enables contacts from several rail–wheel pairs to be
calculated simultaneously using parallel computing, reducing the simulation time to
a fraction. Assuming steady-state rail–wheel contact enables parallel computing for
all contacts of one rail–wheel pair.
The proposed simulation procedure includes a detailed model for dynamic vehicle-
track interaction and a state-of-the-art post-processing calculation of wear. The
possibility of reducing the complexity of the post-processing step by implementing
a less detailed wheel–rail contact model is also part of future work. The present
model could be used as a reference for validation.
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