
Highway tollgates traffic prediction using
a stacked autoencoder neural network
Master’s thesis in Computer Science - Algorithms, Languages and Logic

OSKAR KÄRRMAN
LINNEA OTTERLIND

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2018

MASTER’S THESIS IN COMPUTER SCIENCE - ALGORITHMS, LANGUAGES AND LOGIC

Highway tollgates traffic prediction using
a stacked autoencoder neural network

OSKAR KÄRRMAN
LINNEA OTTERLIND

Department of Mechanics and Maritime Sciences
Vehicle Safety

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2018

Highway tollgates traffic prediction using
a stacked autoencoder neural network
OSKAR KÄRRMAN
LINNEA OTTERLIND

c© OSKAR KÄRRMAN, LINNEA OTTERLIND, 2018

Master’s thesis 2018:52
Department of Mechanics and Maritime Sciences
Vehicle Safety
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Chalmers Reproservice
Göteborg, Sweden 2018

Highway tollgates traffic prediction using
a stacked autoencoder neural network
Master’s thesis in Computer Science - Algorithms, Languages and Logic
OSKAR KÄRRMAN
LINNEA OTTERLIND
Department of Mechanics and Maritime Sciences
Vehicle Safety
Chalmers University of Technology

Abstract

Traffic flow prediction is an important area of research with a great number of applications such as route
planning and congestion avoidance. This thesis explored artificial neural network performance as travel time
and traffic volume predictors. Stacked autoencoder artificial neural networks were studied in particular due to
recent promising performance in traffic flow prediction, and the result was compared to multilayer perceptron
networks, a type of shallow artificial neural networks. The Taguchi design of experiments method was used
to decide network parameters. Stacked autoencoder networks generally did not perform better than shallow
networks, but the results indicated that a bigger dataset could favor stacked autoencoder networks. Using the
Taguchi method did help cut down on number of experiments to test, but choosing network settings based on
the Taguchi test results did not yield lower error than what was found during the Taguchi tests.

Keywords: stacked autoencoder, multilayer perceptron, neural network, traffic prediction, traffic flow, taguchi

i

Acknowledgements

We are immensely thankful to our supervisor Selpi who helped and supported us throughout the
project. We also want to thank Harald Otterlind who lent us a computer we could use for neural
network training. Finally we want to thank all friends and family for the support, and the people
at SAFER for providing a great place for us to work on the thesis.

Oskar Kärrman & Linnea Otterlind

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 Problem description . 1
1.2 Related work . 1
1.3 Scope . 2
1.4 Thesis outline . 3

2 Background 4
2.1 Artificial neural networks . 4
2.1.1 Training an artificial neural network . 4
2.1.2 Feed forward neural network . 5
2.1.3 Stacked autoencoder . 6
2.1.4 Input preparation . 7
2.2 Taguchi design of experiments . 7

3 Provided data 9
3.1 Task 1 - travel time . 9
3.2 Task 2 - traffic volume . 11
3.3 Weather . 13

4 Method 15
4.1 Network designs . 15
4.2 Data preparation . 16
4.3 Implementation . 18
4.4 Parameter optimization . 19

5 Results 22
5.1 Taguchi tests . 22
5.1.1 Travel time prediction . 22
5.1.2 Volume prediction . 25
5.2 Performance . 27
5.2.1 Travel time prediction . 27
5.2.2 Volume prediction . 27

6 Discussion 30

7 Conclusion 33

References 34

A Appendix A I

B Appendix B VII

iii

iv

1 Introduction

This thesis aims to investigate artificial neural networks as traffic flow predictors using data provided by the
Knowledge Discovery and Data Mining (KDD) Cup 2017. The KDD Cup is an annual competition about data
mining and machine learning topics.

1.1 Problem description

Tollgates are commonly used to collect tolls and can often be found at expressways in many parts of the world.
Tollgates without automatic electric toll collection are a source of large amounts of traffic congestion, which
can easily overwhelm traffic management authorities [6]. To counter the effects of congestion one could for
example deploy temporary toll collectors or adjust traffic lights at nearby intersections. However, this can only
be done efficiently if traffic flow can be predicted to a reasonable extent.

In this thesis we investigate whether a stacked autoencoder neural network could be a satisfactory solution
to the following problems, and compare the results to a traditional shallow neural network.

In a closed system further explained in Chapter 3 and pictured in Figure 3.1 containing three intersections
(A, B, C) and three tollgates (1, 2, 3)

1. Estimate the average travel time from designated intersections to tollgates.
For every 20-minute time window in 08:00 to 10:00 and 17:00 to 19:00 between the 18th and 24th of
October 2016, estimate the average travel time of vehicles for a specific route, given traffic and weather
data collected between the 19th of June and the 17th of October 2016.

• Routes from intersection A to tollgates 2 and 3.

• Routes from intersection B to tollgates 1 and 3.

• Routes from intersection C to tollgates 1 and 3.

2. Predict average tollgate traffic volume.
For every 20-minute time window in 08:00 to 10:00 and 17:00 to 19:00 between the 18th and 24th of
October 2016, predict the entry and exit traffic volumes at tollgates 1, 2 and 3, given traffic and weather
data collected between the 19th of September and the 17th of October 2016.

The objectives are to:

1. Implement and test a stacked autoencoder neural network as well as a shallow neural network for the
above specified problems.

2. Find the optimal settings of each network and for each task using the Taguchi method of designing tests.

3. Compare the performance of the two networks to address the two tasks using the optimal settings.

1.2 Related work

Accurate traffic flow prediction has many useful applications such as route planning and congestion avoidance,
and has therefore been researched extensively for many years. Many different models have been studied and
compared, including autoregressive integrated moving average (ARIMA), neural networks, historical average
and nearest neighbour. These four models were compared in Traffic Flow Forecasting: Comparison of Modeling
Approaches published in 1997 [14], which describes nearest neighbour as the preferred method. It was also
concluded that using neural networks often resulted in under estimations of the traffic flow. However, more
recent studies suggest that certain types of neural networks can be used for traffic flow prediction with great
success [5, 18, 19].

In a study by Ishak and Alecsandru [5], four different neural network architectures were tested by predicting
average 5-minute speeds. These architectures were the widely studied multi-layer perceptron (MLP) network, a
modular network consisting of multiple parallell multi-layer perceptrons, a hybrid principal component analysis
(PCA) network using PCA for feature reduction and MLP for predictions, and a co-active neuro-fuzzy inference
system (CANFIS) which integrates neural networks with fuzzy inference systems. The architectures were

1

compared by measuring the average absolute relative error (AARE) and the root mean square error (RMSE).
Training data was collected using loop detectors on a freeway segment in Florida. Input was divided into short
term and long term memory, where short term was considered data observed 10 minutes prior to the prediction
and long term was historical data. The study showed that long term memory was more important for better
performance as the prediction horizon increased. None of the network architectures outperformed all others for
every prediction horizon (5, 10, 15 and 20 minutes), however the CANFIS architecture proved to be the more
preferable choice for 10 and 20 minute horizons.

Lv et al. [8] explored a stacked autoencoder with logistic regression neural network for traffic flow, trained
and tested on data from freeway systems in California. Predictions for 15, 30, 45 and 60 minutes were made
and compared with other techniques by calculating the mean absolute error (MAE), mean relative error (MRE),
and RMSE. The stacked autoencoder network outperformed the other techniques, which were: standard
back-propagation neural network, random walk, support vector machine, and radial basis function neural
network (RBFNN).

Another study conducted in 2016 by Yang et al. [18] compared three existing neural network architectures
and a novel architecture called stacked autoencoder Levenberg–Marquardt (SAE-LM). The existing architectures
tested were a hybrid exponential smoothing approach with the Levenberg-Marquardt algorithm (EXP-LM),
a network based on the particle swarm optimization algorithm (PSONN), and a radial basis function neural
network (RBFNN). Comparisons were made by predicting traffic flow and calculating the mean absolute
percentage error (MAPE) and the variance absolute percentage error (VAPE). To find the best parameters
for the SAE-LM model the Taguchi method of designing tests was used and proved successful. The results
clearly showed that SAE-LM outperformed the other architectures using real world data collected from the M6
freeway in the U.K. However, the improved performance came at cost as the SAE-LM architecture had the
longest computational time (training and forecasting) of all tested networks. The total computational time for
the SAE-LM architecture was about 12% longer than for the second slowest network (PSONN), and about 62%
longer than for the fastest network (RBFNN).

Recent studies using neural networks also used Taguchi’s design of experiments to figure out what parameters
to use. Pontes et al. [11] used the Taguchi method when designing a radial basis function neural network for
predicting surface roughness in the turning process of hardened steel. The parameters tested for the architecture
were the number of radial units on the hidden layer, the algorithm for spread factor calculation of radial units,
and the algorithm for calculation of the center location of radial functions. The authors concluded that the
Taguchi method was efficient for tuning network parameters in the context of the study.

Another study by Packianather et al. [10] explores the Taguchi method when designing a multilayered feed
forward neural network trained using standard back-propagation. The network was trained to classify defects in
birch wood veneer, and the design parameters chosen for the Taguchi tests were the learning rate, momentum,
number of hidden neurons in the first hidden layer, and the number of neurons in the second hidden layer. The
most significant factors were found to be the learning rate and number of neurons in the first hidden layer.

In a case study by Sukthomya and Tannock [15, 16] Taguchi’s design of experiments was used to identify the
optimal settings in a multilayer perceptron network. The network was trained with data from a superplastic
forming process for manufacturing a wide-chord fan blade, and the network would then model the actual
manufacturing process. The parameters to optimize with the Taguchi method were the learning algorithm,
number of layers, transfer function, proportion of validation data, and a hint. The hint given to the network
was input representing the average level of the output from the network. This was added to help the network
deal with a shifting mean value in the data which occurred when the tooling in the manufacturing process was
changed or adjusted.

1.3 Scope

This thesis is limited to investigating the use of stacked autoencoder neural networks and shallow neural
networks for traffic flow predictions, as specified in Section 1.1. The solution could potentially be used for
traffic flow prediction in similar systems with small modifications, however, the performance of the networks is
not guaranteed when applied to a different set of data. The networks are implemented in the programming
language Python using the Tensorflow library provided by Google, no other similar software will be used or
tested. The KDD Cup 2017 provided the data necessary for the given tasks, and the thesis is limited to the use
and availability of this data.

2

1.4 Thesis outline

Chapter 2 describes the relevant theory needed to understand the techniques used in the implementation and
testing. The chapter describes artificial neural networks, how to train them, different architectures, and how to
process input data to neural networks. The two architectures described are a common shallow feed forward
neural network, along with a stacked autoencoder. Section 2.2 contains a description of the Taguchi method of
experiments which is used in this project to decide network parameter levels.

Chapter 3 describes how the data used for traffic prediction is structured, what kind and how much data is
available.

Chapter 4 details how the neural networks in this project are designed, how predictions are made, and what
different methods are used and evaluated when filling in missing data while training the networks. This is
followed by specific implementation details, how to use the Taguchi method to evalute network parameters,
and finally which network parameters are evaluated.

Chapter 5 presents the results obtained for the network parameter evaluation, followed by the results from
tests performed after choosing network parameters.

Chapter 6 discusses the results and what factors could have been important when producing those results.
Finally, the thesis outcome is concluded in Chapter 7.

3

2 Background

This chapter introduces the concepts and theories the thesis relies upon. Section 2.1 explains what an artificial
neural network (ANN) is, as well as some example networks, such as a shallow feed forward neural network. This
is followed by an explanation of stacked autoencoders and how they operate. Consecutively, it is explained how
to prepare input data to potentially achieve better results. Finally, Section 2.2 contains an explanation of what
the Taguchi method is as well as why it is useful in the area of ANNs. General descriptions of neural networks,
autoencoders, and sparsity are summarized from [9]. Additional explanations of autoencoders, sparsity, and
stacked autoencoders are summarized from [8]. Data representation for neural networks along with how to
normalize the data is common knowledge in neural network research, hence no specific source was used for
Section 2.1.4 describing this. The description of the Taguchi method is summarized from [10] and [11].

2.1 Artificial neural networks

An artificial neuron is a mathematical model attempting to mimic the process of a biological neuron in the
brain. It takes an arbitrary number of inputs, multiplies them by a weight matrix and adds a bias, before
applying a so called activation function and outputting a value, as shown in Figure 2.1.

x2 w2 Σ a

Activation
function

y

Output

x1

Inputs

w1

Weights

xn wn

Bias
b

Figure 2.1: Operations in an artificial neuron.

The mathematical process of an artificial neuron can thus be described as in equation 2.1, where x is the
input vector, w is the weight vector, b is the bias, a is the activation function and y is the output of the neuron.

y = a
(∑

(wx) + b
)

(2.1)

There are many different kinds of activation functions used in artificial neurons, for example the identity
function and softsign. Softsign is a bit more complex than the identity function, which simply returns its input,
and will furthermore scale its input into the range (−1, 1) as shown in equation 2.2.

softsign(x) =
x

1 + |x|
(2.2)

An artificial neural network aims to mathematically simulate the biological neural network of the brain and
can be used to solve classification problems or to make predictions. It consists of a number of artificial neurons
connected by weighted links. The links between neurons are weighted to emulate how not all connections
between them are of equal importance. There are many different strategies available to use when deciding what
activation functions to use and how to connect neurons in a neural network. In this thesis, only the shallow
feed forward and stacked autoencoder neural network types will be discussed in depth.

2.1.1 Training an artificial neural network

There are two main ways to train a neural network: supervised and unsupervised. When using unsupervised
learning the network is given input and is left to see correlations and groupings in that data without anyone
telling it what is ultimately correct. In supervised learning however, one gives the ANN some input and a
corresponding output, the network goes through all of its calculations, and yields its own output. The network
then compares that output to the expected output it was given, calculating how big of an error it made

4

according to a predefined function, called the loss, error, or cost function. There are many different ways of
measuring the error, two examples are the mean absolute percentage error (MAPE) and mean squared error
(MSE) specified in equation 2.3 and 2.4 respectively, where y are the actual values, ŷ are the predicted values,
and n = |y| = |ŷ|.

MAPE(y, ŷ) =
100

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (2.3)

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2 (2.4)

Given the size of the error, the weights and biases of the network are adjusted to get closer to the real
output. The adjustment of weights and biases is made by applying an optimization algorithm to the chosen
loss function.

An optimization method that is commonly used to optimize neural networks is the so called gradient descent
method [13]. There are a few variations of gradient descent but the basic method consists of calculating and
analyzing the gradient of the loss function with respect to its parameters. The parameters are updated in the
opposite direction of the gradient to follow the slope of the loss function and reach a minimum. The speed
at which this is done is determined by a predefined learning rate. Thus if the learning rate is increased the
global minimum might be found sooner but we also risk missing it altogether, getting stuck in a local minimum
instead. If the learning rate is decreased it will take longer to find the minimum but it is more likely that the
global minimum is not missed.

Gradient descent uses the same learning rates for every training data point used, even though it may happen
that some samples are very close to a minimum and others are very far from it. Another optimization method
which has identified and solved this is called Adam, derived from adaptive moment estimation [7]. Adam
adapts the learning rates of each parameter so that if the gradient is steep the learning rate is high and when
the gradient flattens out the learning rate drops to prevent overshooting the minimum. This means that the
global minimum can potentially be found faster and without high risk of missing it.

Error functions and optimization methods are commonly used to solve both classification and regression
problems. Classification is when the network is trying to determine which class a given input belongs to.
The network has as many output nodes as there are different classes and each node represents one class and
the networks confidence (from 0 to 1) that the given input belongs to that class. Another way to explain
classification is to say that the network learns to group the data. In regression on the other hand, the network
is asked to output one or several real values given some input data. Regression is used when using a network to
make predictions based on some previous data.

When training a neural network to classify or predict, all available data will be divided into training,
validation and test data. The training data is used to train the network, i.e. the network is given some input
from this block of data and after calculating an output, the corresponding actual output is provided and
weights and biases are adjusted accordingly. The validation data is used to check for and prevent so called over
training or over fitting. One could imagine that if the network trains long enough on the same data it will
become incredibly adept at classifying or predicting in that span. However, outside the scope of that data the
network will most likely not be able to make any accurate estimations, it was only ever told to fit its curve to
the data it was given. This can be prevented using the validation data by periodically calculating the error on
the validation data and assure that it is improving. When the error on the validation data starts to increase
while the error of the training data still decreases, the network has started to over fit and training should
cease, to keep the network’s ability to generalize. The test data is introduced only after training of the network
has finished, and is used to measure the performance of the network. In the test data there are inputs and
corresponding output but, as with the validation data, the network is never given the outputs. The network
outputs its own classifications or predictions which are then compared to the correct output to measure the
performance of the network.

2.1.2 Feed forward neural network

A common type of neural network is the feed forward neural network. Feed forward means that there are no
circular connections in the network, any input data moves only forward through neurons until it reaches the
output nodes. This type of network is often divided into distinct layers: the input layer, an arbitrary number
of hidden layers, and an output layer. A typical neural network with one hidden layer is pictured in Figure 2.2.

5

The input moves from the input layer through to the first hidden layer, then through the subsequent hidden
layers and finally through the output layer.

Input layer Hidden layer Output layer

Figure 2.2: A typical feed forward neural network.

A neural network is called shallow if it only has one hidden layer, and conversely deep if it has more than
one hidden layer.

2.1.3 Stacked autoencoder

An autoencoder is a shallow artificial neural network trained to reproduce its input, and is used in unsupervised
learning to discover interesting features of the input. It consists of two steps; encoding and decoding. Encoding
transforms the input vector x to the hidden vector h by applying the function h as depicted in equation 2.5
where f is an activation function.

h(x) = f(Wx + b) = h (2.5)

Decoding then transforms the hidden vector h into the output vector z by applying the function depicted in
equation 2.6, where g is an activation function. If x consists of real values it is common to omit the activation
function g [17].

z(h) = g(W ′h + b′) = z (2.6)

The output of the autoencoder z is then compared to the input vector x and loss is commonly calculated
using squared error if the input consists of real values, or cross-entropy loss if the input consists of binary
values [17].

If an autoencoder has a hidden layer of equal or bigger size than the input layer, the autoencoder could
potentially learn the identity function and become useless as no information has been learned from the input.
Different methods exists to prevent this, one of them is imposing a sparsity constraint on the network [9]. The
sparsity constraint penalizes the network if the average activation of neuron j over the training set is far from a
specified sparsity parameter. A sparsity parameter of 0.1 encourages neuron j to be active close to 10% over
all inputs in the training set. The sparsity constraint is achieved by adding an additional parameter when
calculating the loss which increases in value when the average activation of neurons in the network deviates
significantly from the sparsity parameter. Weight of the sparsity constraint compared to the original loss
function is tuned by a sparsity constant and the full loss equation is described in equation 2.7, where L is the
original loss function, c is the sparsity constant, HD is the total number of hidden neurons, S is the sparsity
function, p is the sparsity parameter and p̂j is the average activation of neuron j.

L(x, z) + c

HD∑
j=1

S(p, p̂j) (2.7)

The sparsity function S should approach 0 as p̂i approaches p, and increase when p̂i deviates significantly
from p. The Kullback–Leibler (KL) divergence has those features and can be used as a sparsity constraint,
defined as in equation 2.8, and the loss function along with KL divergence as the sparsity constraint is described
in equation 2.9.

KL(p||p̂j) = p log
p

p̂j
+ (1− p) ∗ log

1− p
1− p̂j

(2.8)

6

L(x, z) + c

HD∑
i=1

KL(p||p̂j) (2.9)

A stacked autoencoder (SAE) consists of multiple autoencoders added sequentially where the output of
the previous autoencoder becomes the input to the next, creating a deep network. If an additional predictor
is added on top of the SAE, the network can be used for prediction. Models based on SAE has previously
been used successfully in traffic flow prediction [18], cancer detection [2] as well as general machine learning
benchmarks [17].

To train a SAE network, autoencoders are trained layerwise starting with the autoencoder closest to the
input (the first autoencoder). After the first autoencoder is sufficiently trained to reproduce its input, the
output layer of the first autoencoder is removed and the output of the hidden layer instead becomes the input
to the second autoencoder. When training the second autoencoder, input is given to the first autoencoder with
locked weights and biases. The target of the second autoencoder becomes the output of the first autoencoder’s
hidden layer and training proceeds in the same manner. Subsequent autoencoders are added in the same way:
the output of the hidden layer from autoencoder l is the input to autoencoder l+ 1. When enough autoencoders
has been added, a predictor can be used to complete the network. At this point, weights can be unlocked and
additional fine tuning using supervised learning can be applied.

2.1.4 Input preparation

The data input into a neural network can use any arbitrary number representation, however the performance of
the network can change depending on that representation. For example, for the typical problem of classifying
handwritten digits from 100 by 100 pixel images in black and white, the network could have 10 000 (100 ∗ 100)
input nodes, each representing a pixel. The value of each input would be decided by the amount of black or
white used in the corresponding pixel, a percentage, which could for example be represented by a number from
zero to one, or equally by a number from zero to 100. What representation to choose for the data is evaluated
on a case-by-case basis, but previous studies can be used to assess pros and cons with different representations.

For data divided into classes (nominal data), multiple methods are possible to use when feeding it into a
network. The naive way would be to have only one input node representing what class the input belongs to, so
if the data contains n classes we would order the classes, assign each class a number, and input an integer e.g.
[1, n] depending on the class. Since the network does not know that the input represents nominal data and not
a real valued number, the network might incorrectly infer that class 1 and 2 are more alike than class 1 and 5
due to the values being closer. Another way to input nominal data is to use a 1-of-n technique, also called
one-hot. This technique uses a vector of n input nodes where n is the number of classes in the nominal data.
All classes are ordered and assigned a number [1, n], and when data of class m is used as input, input node m
is set to be active while all other input nodes are set to be inactive. An exception to this is if the number of
classes is 2 (binary data). If so, only one input node is used, and one of the classes is described by setting the
input node to active while the other class sets the input node to inactive.

Real valued inputs are often normalized before being fed to the network, setting the average of every input
close to 0, and makes sure that different data points are relatively close in magnitude. If different inputs has a
vastly different magnitude, they will have different relative significance when calculating the error, which affects
the rate at which the network will learn. A common technique for normalizing real valued data is calculating
the standard score (standardization), which is used when the data is approximately normally distributed.
To standardize the data, one first calculates the mean and standard deviation over all data points on that
specific attribute. Then the mean is subtracted from each data point, and the result is divided by the standard
deviation. This produces the standardized value vn as described in equation 2.10 where v is the original value,
µ is the calculated mean and σ is the calculated standard deviation.

vn =
v − µ
σ

(2.10)

2.2 Taguchi design of experiments

Taguchi’s design of experiments is a method developed by Genichi Taguchi that aims to design tests in
manufacturing processes to identify the parameter levels to get the best and most stable performance [12].
All tests are planned and performed without analyzing the results in between, in contrary to trial and error

7

methods where results are analyzed before the next test is performed. The method uses orthogonal arrays to
structure the tests, and when completed the results are statistically analyzed to reveal what combination of
parameter levels should be used.

To perform a test, parameters and different levels of these parameters are chosen. The parameters are
assumed to be independent, but the tests can give useful information even with dependent parameters [10].
These are then fitted into an appropriate orthogonal array, where an orthogonal array is denoted Li where i is
the number of tests that needs to be performed. Orthogonal arrays for all possible number of features and
levels does not exist [1], so to choose which orthogonal array to use for testing one should look for already
published arrays that contains at least as many features and levels as needed. An array with more features
and/or levels than needed can be used with modifications, where the additional features and levels should be
filled with dummy variables. After all tests are performed, the result of every test is coupled with the parameter
levels used. Analysis of the mean values, variance and other attributes can then be performed at parameter
level to see what different parameters contribute to the result.

The number of tests performed when structured in an orthogonal array is drastically reduced compared
to testing all possible combinations, while still having properties to ease the result analysis. These attributes
includes testing of all possible pairwise combinations of variables, along with equal distribution of all pairwise
combinations. A typical orthogonal array is the L4 array depicted in Table 2.1, where each row is a test
and each column describes what level that specific feature parameter should be at in the test. The L4 array
contains three features with two levels each. If all combinations were to be tested, 8 (i.e., 23) tests would be
needed instead of the 4 tests that are needed in the L4 design. The difference in needed tests increases as the
parameters and levels increases, and a test with 13 parameters with 3 levels each would need 313 = 1 594 323
tests to be performed if all possible combinations should be tested, while only needing 27 tests using a L27

array.

Table 2.1: The L4 orthogonal array.
Test F1 F2 F3

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

8

3 Provided data

The Chinese traffic system from which the data has been collected is specified as follows:

There are three different intersections (A, B, C), and three different tollgate locations (1, 2, 3). Intersection
A connects to tollgates 2 and 3, while intersection B and C connect to tollgates 1 and 3. In tollgate locations 1
and 3 one can both enter and exit the highway, while tollgate location 2 is only an entry on to the highway.
Intersection and tollgate locations are further connected by roads, which are in turn made up of several road
segments. The road segments are connected in three places. The road system is depicted in Figure 3.1.

12 3

A B C

Figure 3.1: Road segment connections in the road system.

The available data has been collected from the 19th of July to the 24th of October 2016 and includes
weather data as well as information about which vehicles pass each intersection or tollgate location at what
time. This makes it possible to calculate average travel times between intersections and tollgates as well as the
traffic volume at each tollgate location for each 20 minute period.

In between the 19th of July and the 24th of October there are two Chinese holidays that may influence the
traffic condition. These holidays occur from the 15th to 17th of September and from the 1st to 7th of October,
respectively, as pictured in Figure 3.2. The figure also describes what parts of the data is used for training,
validation, and testing.

19
/0

7

Training and validation
Task 1

Holiday

15
/0

9

18
/
09

Training and validation
Task 2

19
/
09

Holiday

01
/
10

08
/1

0

Testing

18
/1

0

25
/1

0

Figure 3.2: The time line of Task 1 and Task 2 data, showing holidays and distribution of training, validation
and test data. The time line is not made to scale.

As has been mentioned in Section 1.1 predictions are to be made for the hours 8:00-10:00 and 17:00-19:00.
The data collected from the 18th to the 24th of October is selected as test data, as shown in Figure 3.2. For this
week the data of the two hours before the critical hours, 6:00-8:00 and 15:00-17:00, will be the only available
data to the networks for the primary prediction. A secondary prediction which uses more than the data in
6:00-8:00 and 15:00-17:00 hours is also made.

3.1 Task 1 - travel time

For Task 1 traffic data collected from the 19th of July to the 17th of October is available for training and
validation of the networks, as shown in Figure 3.2. In other words, there is data collected from 91 consecutive
days, meaning that there should be 91 data points for each of the 72 (= 24 hours∗3 intervals/hour) 20-minute

9

intervals. This also means that for each of the six intersection-tollgate pairs, there are 6 552 (= 91 days∗72
intervals/day) distinct 20-minute intervals. However, for some of the intervals data is missing.

Figure 3.3 shows that there is a clear increase in missing data points during night time, most are missing
from 20-minute intervals between 19:00 and 07:00. For B:1, C:1 and C:3 almost all 91 data points are missing
in each of the 20-minute intervals between 00:40 and 04:40. Figure 3.3 also shows that intersection A to tollgate
2 is missing the least number of data points. However, as can be seen in Table 3.1 this intersection-tollgate pair
is still missing data for almost 9% of the 20-minute intervals, which is a significant amount.

00
:0
0

00
:4
0

01
:2
0

02
:0
0

02
:4
0

03
:2
0

04
:0
0

04
:4
0

05
:2
0

06
:0
0

06
:4
0

07
:2
0

08
:0
0

08
:4
0

09
:2
0

10
:0
0

10
:4
0

11
:2
0

12
:0
0

12
:4
0

13
:2
0

14
:0
0

14
:4
0

15
:2
0

16
:0
0

16
:4
0

17
:2
0

18
:0
0

18
:4
0

19
:2
0

20
:0
0

20
:4
0

21
:2
0

22
:0
0

22
:4
0

23
:2
0

0%

20%

40%

60%

80%

100%

20-minute interval (hh:mm)

P
er
ce
n
ta
g
e
of

m
is
si
n
g
d
a
ta

p
oi
n
ts A:2

A:3
B:1
B:3
C:1
C:3

Figure 3.3: The percentage of missing points of each intersection-tollgate pair and 20-minute interval during all
days for Task 1.

As can be seen in Table 3.1, C:1 is missing almost 50% of the total number of data points, B:1 is missing
more than 50% and C:3 is missing more than 60% of its data. In total there should be 39 312 traffic data
points available for Task 1, 6 552 points for each of the six intersection-tollgate pairs, however, 14 168 points or
36% of the points are missing.

Table 3.1: The number of existing and missing data points of each intersection-tollgate pair in the training and
validation data set for Task 1.

Intersection:Tollgate Existing Missing Missing (%)
A:2 5965 587 8.96%
A:3 5304 1248 19.04%
B:1 3206 3346 51.07%
B:3 4803 1749 26.69%
C:1 3290 3262 49.79%
C:3 2576 3976 60.68%

Two separate Chinese holidays occur in between the 19th of June and the 24th of October, as previously
mentioned and pictured in Figure 3.2. The 1st to the 7th of October 2016 was a Chinese national holiday
week. However, this does not seem to affect the data significantly, as can be seen in Figure 3.4. Only the
intersection-tollgate pair A:2 has been depicted here, because it is missing the least number of points. The
plots of the data from the 28th of September to the 10th of October for the rest of the pairs can be found in
Appendix B. The same thing holds true for the holiday from the 15th to 17th of September, none of the pairs
show significant changes during this time. Plots from the 12th to the 20th of September, for each of the pairs,
can be found in Appendix B.

For the week of the test data, from the 18th to the 24th of October, the total number of 20-minute intervals
is 504 (= 72 intervals/day∗7 days). From Table 3.2 one can tell that a significant part of the test data is missing
as well. However, when restricting the 20-minute intervals to the critical eight hours of each day, 06:00-10:00

10

09
-2
8
00
:0
0

09
-2
9
00
:0
0

09
-3
0
00
:0
0

10
-0
1
00
:0
0

10
-0
2
00
:0
0

10
-0
3
00
:0
0

10
-0
4
00
:0
0

10
-0
5
00
:0
0

10
-0
6
00
:0
0

10
-0
7
00
:0
0

10
-0
8
00
:0
0

10
-0
9
00
:0
0

10
-1
0
00
:0
0

10
-1
1
00
:0
0

0

100

200

The date and time (mm-dd hh:mm)

T
h
e
av
er
ag

e
tr
av
el

ti
m
e
(s
)

A:2

Figure 3.4: Task 1 data, from intersection A to tollgate 2, from the 28th of September to the 10th of October,
showing the holiday week and three regular days before and after for reference.

and 15:00-19:00, there are only 168 (= 7 days∗8 hours∗3 intervals/hour) intervals and the number of missing
data points is as shown in Table 3.3

Table 3.2: The number of existing and missing data points of each intersection-tollgate pair in the test week.
Intersection:Tollgate Existing Missing Missing (%)

A:2 463 41 8.13%
A:3 431 73 14.48%
B:1 331 173 34.32%
B:3 371 133 26.39%
C:1 324 180 35.71%
C:3 248 256 50.79%

Table 3.3: The number of existing and missing data points of each intersection-tollgate pair in the critical eight
hours (06:00-10:00 and 15:00-19:00) of each day in the test week.

Intersection:Tollgate Existing Missing Missing (%)
A:2 167 1 0.60%
A:3 168 0 0.00%
B:1 148 20 11.90%
B:3 161 7 4.17%
C:1 145 23 13.69%
C:3 120 48 28.57%

During the whole test week there should be 3 024 data points in total, 504 points for each pair. 856 data
points or 28.3% of these are missing. For only the eight critical hours there should be 1 008 data points in
total, 168 points for each pair. Here 99 data points or 9.82% are missing.

3.2 Task 2 - traffic volume

For Task 2 data collected from the 19th of September to the 17th of October is available for training and
validation of the networks, as shown in Figure 3.2. The available data has been collected during only 21
consecutive days, meaning that for each of the 72 20-minute intervals during a day, there should be 21 data

11

points. This means that for each of the five tollgate-direction pairs there are 2 088 (= 21 days∗72 intervals/day)
distinct 20-minute intervals. However, as with Task 1, data is not available for all of the intervals.

The number of data points available for training and validation of Task 2 is less than a third of the number
of data points available for Task 1. However, as can be seen in Figure 3.5, the data of Task 2 is more complete.
The only tollgate-direction pair that is missing a significant amount of data is tollgate 2, through which it is
only possible to enter the highway. This tollgate-direction pair is missing 17.43% of its data points while the
remaining four pairs are all missing less than 0.2% of theirs, as can be seen in Table 3.4.

We can also see that for the only tollgate-direction pair that is missing a significant number of data points,
most of them are missing during night time. Between 02:00 and 04:40 more than 70% of the data points are
missing for tollgate 2.

00
:0
0

00
:4
0

01
:2
0

02
:0
0

02
:4
0

03
:2
0

04
:0
0

04
:4
0

05
:2
0

06
:0
0

06
:4
0

07
:2
0

08
:0
0

08
:4
0

09
:2
0

10
:0
0

10
:4
0

11
:2
0

12
:0
0

12
:4
0

13
:2
0

14
:0
0

14
:4
0

15
:2
0

16
:0
0

16
:4
0

17
:2
0

18
:0
0

18
:4
0

19
:2
0

20
:0
0

20
:4
0

21
:2
0

22
:0
0

22
:4
0

23
:2
0

0%

20%

40%

60%

80%

100%

20-minute interval (hh:mm)

P
er
ce
n
ta
g
e
of

m
is
si
n
g
d
a
ta

p
o
in
ts

1:Entry
1:Exit
2:Entry
3:Entry
3:Exit

Figure 3.5: The percentage of missing points of each tollgate-direction pair and 20-minute interval during a day
for Task 2.

Table 3.4: The number of existing and missing data points of each tollgate-direction pair in the training and
validation data set of Task 2.

Tollgate:Direction Existing Missing Missing (%)
1:Entry 2084 4 0.19%
1:Exit 2084 4 0.19%

2:Entry 1724 364 17.43%
3:Entry 2086 2 0.10%
3:Exit 2085 3 0.14%

From the 19th of September to the 17th of October only one Chinese holiday takes place. Since the 15th to
17th of September falls outside of these dates, the Chinese holiday week from the 1st to the 7th of October is
the only holiday that could potentially influence the data.

As can be seen in Figure 3.6 Task 2 is heavily affected by the holiday week. The somewhat regular pattern
before and after the week is completely disrupted and changed during the week. Only tollgate 3 with direction
Exit has been plotted, showing a much lower volume of traffic for this week. However, all tollgate-direction
pairs except for 3:Entry show significant changes during that same week.

Tollgate 2 with direction Entry and tollgate 1 with direction Exit both experience a decline in traffic volume
during the week, just as 3:Exit. Tollgate 1 with direction Entry is the only pair that shows an increase in traffic
volume during the holiday week. The plots for the rest of the pairs can be found in Appendix B.

For Task 2 the test data is collected from the same period of time as for Task 1, from the 18th to the 24th
of October. This means that for each tollgate-direction pair there should be 504 20-minute intervals. The
distribution between existing and missing points in this time interval is as shown in Table 3.5.

Constricting the data points to the chosen eight hours, 06:00-10:00 and 15:00-19:00, yields the distribution
described in Table 3.6, where for each tollgate-direction pair there should be 168 data points.

12

09
-2
8
00
:0
0

09
-2
9
00
:0
0

09
-3
0
00
:0
0

10
-0
1
00
:0
0

10
-0
2
00
:0
0

10
-0
3
00
:0
0

10
-0
4
00
:0
0

10
-0
5
00
:0
0

10
-0
6
00
:0
0

10
-0
7
00
:0
0

10
-0
8
00
:0
0

10
-0
9
00
:0
0

10
-1
0
00
:0
0

10
-1
1
00
:0
0

0

100

200

300

The date and time (mm-dd hh:mm)

T
ra

ffi
c

vo
lu

m
e

(n
u
m

b
er

of
v
eh

ic
le

s)

3:Exit

Figure 3.6: Task 2 data, tollgate 3 with direction Exit, from the 28th of September to the 10th of October,
showing the holiday week and three regular days before and after for reference.

Table 3.5: The number of existing and missing data points of each tollgate-direction pair in the test week.
Tollgate:Direction Existing Missing Missing (%)

1:Entry 504 0 0.00%
1:Exit 504 0 0.00%

2:Entry 430 74 14.68%
3:Entry 504 0 0.00%
3:Exit 503 1 0.20%

The Task 2 test data set is again more complete than the Task 1 data set. With 2 520 available data points
during the whole test week, 504 points for each pair, Task 2 is only missing 75 points or 2.98% of the points
the entire week. Additionally, the Task 2 data set is missing no data points during the eight critical hours of
the day of the test week as shown in Table 3.6.

3.3 Weather

In addition to the traffic data, weather data is collected every third hour from the 1st of July to the 24th of
October. However, since traffic data is only available from the 19th of July and the 19th of September for Task
1 and 2 respectively, the weather data before the 19th of July is ignored. The weather data includes seven
different variables, listed in Table 3.7 with their respective units of measurement.

Since the weather data has been collected every third hour there should be eight data points per day. From
the 19th of July to the 24th of October there are 98 days, thus there should be 784 (= 98 days∗8 points/day)
three hour data points in total. Out of these 784 data points, eight are partly corrupted and ten are missing
completely. The 10th of October is missing completely from the data, as well as the last three hours of the
29th of September and the first three hours of the 30th of September. For the partly corrupted points, it is the
wind direction that contains the value 999 017 instead of a valid value in [0, 360) degrees.

13

Table 3.6: The total number of existing and missing data points of each tollgate-direction pair in the critical
eight hours (06:00-10:00 and 15:00-19:00) of each day in the test week.

Tollgate:Direction Existing Missing Missing (%)
1:Entry 168 0 0.00%
1:Exit 168 0 0.00%

2:Entry 168 0 0.00%
3:Entry 168 0 0.00%
3:Exit 168 0 0.00%

Table 3.7: The available weather parameters and their respective units of measurement.
Variable Unit
Pressure hPa
Sea pressure hPa
Temperature ◦C
Relative humidity %
Precipitation mm
Wind speed m/s
Wind direction ◦

14

4 Method

This chapter describes the method used to design, develop and evaluate different neural network designs. The
design of the different networks are first described in Section 4.1. Different methods to fill in missing data and
prepare input is then explored in Section 4.2, followed by network implementation details in Section 4.3. The
design of methods to optimize network parameters is finally described in Section 4.4.

4.1 Network designs

Two different types of neural networks were designed for comparison, one containing a stacked autoencoder
(SAE), and a shallow neural network (SNN). For the networks containing an SAE, an additional hidden layer
was added after the SAE before the output layer, creating the complete predictor. The structure of the SAE
networks predicting travel time is illustrated in Figure 4.1, and the structure of the SNNs predicting travel
time is illustrated in Figure 4.2.

.

. . .

. . .

...
...

...
...

. . .

. . .

. . .

IP1 IP6 IT1 IT2 IT3 IIa IIb IIc IW1 IWn

Autoencoder 1

Autoencoder 2

Autoencoder m

Additional hidden layer

O1 Ok

Figure 4.1: The general structure of the stacked autoencoder neural networks.

.

. . .

. . .

IP1 IP6 IT1 IT2 IT3 IIa IIb IIc IW1 IWn

O1 Ok

Figure 4.2: The general structure of the shallow neural networks.

15

The input layer for a network predicting travel time consisted of six nodes IPi, i = 1..6 with values from
the six 20-minute time spans prior to the first 20-minute span to be predicted, three one-hot nodes describing
the tollgate IT1, IT2, IT3, three one-hot nodes describing the intersection IIa, IIb, IIc, and zero to seven nodes
containing weather values IWi, i = 1..7. The input node for wind direction treats the direction as a real valued
number. To ease the implementation, no additional effort was made to indicate that the number is periodic. To
evaluate whether weather information helped improve the prediction, different networks with different weather
data as input were designed. For a network predicting volume, the input layer consisted of the same input
nodes as for travel time, except for the nodes describing intersections which were replaced with one binary
node describing the direction from the tollgate IDi.

The output layer consisted of one, two, three or six output nodes, each node describing a prediction for a
20-minute span. The first output node O1 described the value for the first 20-minute span following the input
values. The following output nodes Oi described the value for the 20-minute span following the previous output
node Oi−1. A network with six output nodes predicted the full two hours, while networks containing fewer
output nodes made multiple predictions where the output of the first prediction was standardized and used as
input to the next prediction. An example of this process is illustrated in Figure 4.3, where a network with
three output nodes predicts the two hour span t+ i, i = 0, 20, 40, 60, 80, 100.

IP1

IP2

IP3

IP4

IP5

IP6

O1

O2

O3

Vt−120

Vt−100

Vt−80

Vt−60

Vt−40

Vt−20

Pt

Pt+20

Pt+40

IP1

IP2

IP3

IP4

IP5

IP6

O1

O2

O3

Vt−60

Vt−40

Vt−20

standardize(Pt)

standardize(Pt+20)

standardize(Pt+40)

Pt+60

Pt+80

Pt+100

Prediction 1 Prediction 2

Figure 4.3: How two hour predictions were made using networks with three output nodes.

The SAE networks had an SAE with varying amounts of layers. Every layer in an SAE had the same
amount of nodes with every node using the softsign activation function in the encoder. The softsign activation
function was chosen due to the performance in [18]. While pretraining, the decoder used the softsign activation
function with exception for the first autoencoder. The identity function was used so the first autoencoder
could easily recreate values outside the (−1, 1) span that the softsign function has. To calculate the loss when
pretraining the SAE, mean squared error was used as the loss function, which is different than the error function
used for evaluation. A different error function can be chosen while pretraining since the input and output
of autoencoders represent abstract features instead of real values, and mean squared error is commonly used
when calculating regression loss in autoencoders. The additional hidden layer after the SAE used the identity
function as the activation function as this generally performed better in trial and error testing. Supervised
finetuning used MAPE as the loss function.

The SNNs had a hidden layer with varying amount of nodes, and used softsign as the activation function.
Comparisons were made between softsign and the identity function. Softsign performed better in general, albeit
resulted in big errors with specific network parameters. MAPE was used as the loss function.

4.2 Data preparation

Due to the relatively small dataset that was provided, it was decided to artificially fill in missing data points and
evaluate if this improved performance of the networks. Since weather data was almost complete as described in
Chapter 3, no evaluation of methods to fill in the weather data was done, and linear interpolation was used to

16

fill in the missing data in every case. Where traffic data was missing, five naive methods to fill in missing data
points in traffic data were chosen as follows:

Mean: Fill in with mean value of all existing values in that 20-minute time span for that specific tollgate-
intersection or tollgate-direction pair.

CloseMean: Fill in with mean value of previous 20-minute time span and next 20-minute time span for that
specific tollgate-intersection or tollgate-direction pair.

LinearInterpolation: Fill in value using linear interpolation on the closest previous and next 20-minute
values.

Lowest: For travel time data, fill in with the lowest travel time found in the dataset for that specific tollgate-
intersection pair. For volume data, fill in with a volume of 1.

Random: Fill in with a value randomly chosen from a Gaussian distribution where the mean and standard
deviation is calculated from all existing data points for that 20-minute time span for that specific
tollgate-intersection or tollgate-direction pair.

The first method Mean calculated the mean value for all 20-minute segments for all different tollgate-
intersection or tollgate-direction pairs over all data used for training and validation. This value was then used
for every missing data point in that segment.

The second method CloseMean calculated the mean value of the previous and next 20-minute segment for
the specified tollgate-intersection or tollgate-direction pair. Two exceptions were made for the first and last
data points respectively. If the first segment in the dataset was missing, the mean was instead calculated by
taking the mean of the next two 20-minute segments. If these segments were not available, the Mean method
was instead used to fill in the first data point. Likewise, if the last segment in the dataset was missing, the
mean was calculated by taking the mean of the previous two 20-minute segments. Segments were calculated in
order, meaning that the previous 20-minute segment would always be available, with the exception for the very
first segment.

The third method LinearInterpolation used linear interpolation to fill in the missing value. The interpolant
was calculated using the closest previous available value, along with the closest next available value. In cases
where no previous or next value was available, the Mean method was instead used to fill in the data point.
Linear interpolation is described in equation 4.1, where vprev and vnext are the values for the previous and
next available values respectively, tprev and tnext are the timestamps for the previous and next available values
respectively, t is the timestamp for the value to be filled in, and v is the value filled in.

v = (t− tprev)
vnext − vprev
tnext − tprev

+ vprev (4.1)

The forth method Lowest was based on the assumption that a missing data point described a 20-minute
segment where no cars passed the detectors. For travel time data, this method found the lowest travel time for
that specific tollgate-intersection pair, assuming that no congestion would allow the travel time to be as low as
possible. For volume data, no cars passing the detectors described a volume of 0, but to preserve integrity
when calculating the MAPE the lowest positive non-zero integer 1 was instead chosen to fill in the data. This
method was not used in evaluation as it did not perform well for travel time prediction.

The fifth method Random assumed that the values were distributed according to a Gaussian distribution
at that 20-minute segment for that specific tollgate-intersection or tollgate-direction pair. The mean for the
distribution was calculated by calculating the mean for every 20-minute segment and tollgate-intersection or
tollgate-direction pair, over all values available for those segments in the training and validation data. The
standard deviation for the distribution was calculated over the same values as the mean. A random value
picked from that distribution was then used to fill in missing data points.

A threshold for when to exclude traffic data completely while training was also added. This was specified as
a percentage of missing input and output values, where if the amount of missing values was above the threshold,
the aggregated data point would be excluded. The threshold was implemented to evaluate if a network would
perform different if part of the training data was artificially created instead of collected naturally. An example
would be a network with three output nodes and a threshold of 33%, one of the tested values. The total number
of nodes would be nine, as there were six input nodes describing the previous two hour span. If there was

17

missing values for three or fewer nodes, these would be filled in by the specified method. Otherwise, the data
would not be filled in and that aggregated data point would not be used when training.

Before training the network, traffic and weather input data was standardized. For traffic values, the mean
and standard deviation was calculated over all training and validation values, and the same values were used
to standardize the input data when doing a prediction. Mean and standard deviation for weather data was
calculated the same way, calculating one mean and standard deviation for every different weather attribute.

4.3 Implementation

The neural networks and the testing suite were implemented in Python using the Tensorflow library. The
initial SAE network implementation was based on a blog post by Chris Green [3] and the corresponding code
provided at GitHub [4]. Raw data was stored in a SQLite database to make sorting and aggregation easier
using prepared SQL statements. Standardization along with artificially filling in missing data was performed at
runtime before training the network, as it was easier to implement and the additional computation added an
insignificant increase in running time. All networks used the Tensorflow implementation of the Adam optimizer.

Training data was passed to the network in batches, where each entry in a batch was chosen uniformly at
random from the available entries. Since every batch contained entries chosen randomly from all available
entries, a training epoch didn’t guarantee that every entry was used exactly once. After every epoch, validation
error was calculated, and if the validation error was lower than for all previous epochs, a Tensorflow checkpoint
was created. The checkpoint was a file containing all network variables, allowing the network variables to be
set to that specific state at a later point in time. If the validation error didn’t decrease for a specific amount of
epochs, the network was reset to the latest saved checkpoint before calculating the error on the test data. A
visualization of the training process is depicted in Figure 4.4.

Get training
batch

Calculate
training

error,
update

network state

Current
epoch

complete?

Calculate
validation

error

Best
validation

result?

Save network
state

All epochs
complete?

Restore
best saved

network state

Calculate
final testing

error

No Yes

Yes
No

No

Yes

Figure 4.4: Network training flowchart.

Two different testing errors were calculated using MAPE. The data was calculated over two dimensions:
intersection-tollgate pairs or tollgate-direction pairs for travel time prediction and volume prediction respectively,
along with all 20-minute time spans. The MAPE calculation used for two dimensions is described in equation
4.2, where N is the number of pairs (intersection-tollgate or tollgate-direction), T is the number of 20-minute

18

time spans, y are the actual values, and ŷ are the predicted values.

MAPE(y, ŷ) =
100

N

N∑
n=1

(
1

T

T∑
t=1

∣∣∣∣ytn − ŷtnytn

∣∣∣∣
)

(4.2)

The primary error, which was used for evaluating the networks, was calculated using the test data on the time
spans specified in the problem description; every day between 08:00-10:00 and 17:00-19:00 where missing values
were dropped from the calculation. A secondary error was calculated on the test data similar to the primary,
but the time range of test data was the same as when training the network. This means that the secondary
error value was the same as the primary value for networks trained using only 08:00-10:00 and 17:00-19:00 data.
The secondary error value was used to identify if the network performed significantly better on data outside
the smaller time span.

For SAE networks, every layer in the SAE was trained in sequence and Tensorflow checkpoints were used to
save the network state with the lowest validation. When a layer was trained to over fitting, the network state
was restored to the checkpoint before training the next layer. To calculate the KL-divergence when applying
the sparsity constraint, the average activation of neurons were scaled to (0, 1) using the function y = 1+x

2 , since
activation using softsign gives values in (−1, 1).

4.4 Parameter optimization

To optimize the network parameters, tests were designed based on Taguchi’s design of experiments method.
During development it was discovered that training a network to the point of overfitting was a relatively fast
(from minutes to 24 hours) process due to the small dataset. There were a lot of network parameters available
for testing in the SAE networks: 22 for travel time prediction and 23 for volume prediction networks. Taking
training duration into account, it was decided to use the L64 orthogonal array for SAE network parameter
optimization, allowing 21 different features at four levels each. For SNNs, 16 and 17 parameters were available
for testing in travel time predictions and volume predictions respectively. It was decided to use the L64

orthogonal array for SNN parameter optimization due to allowing four feature levels for parameters, while
other considered designs (L16, L27) did not allow sufficient levels. The first and second half of the L64 array is
depicted in Appendix A, Table A.5 and Table A.6 respectively.

Features and level values were chosen based on results of trial-and-error testing during development of the
networks. For SAE networks features and feature levels were the same for both travel time prediction and
volume prediction. 21 features were chosen, and the full set of features and feature levels for SAE networks are
described in Table 4.1.

The SNNs had a different feature set than the SAE networks, and the networks predicting volume had one
additional feature that the travel time networks did not have. 16 features were chosen for travel time prediction,
but the L64 orthogonal array was still used to test sufficient features and levels. Since volume is measured
with integers, the output of volume networks is rounded, and different methods for rounding was evaluated in
volume SNNs. This added a 17th feature for SNNs predicting traffic volume. Feature numbers were chosen to
ease the testing in the testing suite, unused features contained dummy values that did not impact network
performance. The full set of features and feature levels for SNNs are described in Table 4.2.

19

Table 4.1: Features and feature levels evaluated for stacked autoencoder neural networks.
Feature Description Level 1 Level 2 Level 3 Level 4

1 Number of output nodes 1 2 3 6
2 Learning rate 0.001 0.01 0.1 1
3 Percentage of data for training 80% 85% 90% 95%
4 Time of day to include in

training data
All hours 06-21 06-12, 15-21 08-10, 17-19

5 Percent of missing values al-
lowed

0% 33% 66% 100%

6 Fill function to use for missing
values

Mean CloseMean Random LinearInterpolation

7 Using pressure as an input true true false false
8 Using sea pressure as an input true true false false
9 Using wind direction as an in-

put
true true false false

10 Using wind speed as an input true true false false
11 Using temperature as an input true true false false
12 Using relative humidity as an

input
true true false false

13 Using precipitation as an in-
put

true true false false

14 Exclude holidays in the train-
ing data

true true false false

15 Number of autoencoders 3 4 5 6
16 Number of nodes in every au-

toencoder
12 24 36 48

17 Number of nodes in last hid-
den layer

24 96 384 768

18 Sparsity constant value 0 0.01 0.1 1
19 Sparsity parameter 0.1 0.2 0.4 0.6
20 Batch size pretraining 100 500 1000 2000
21 Batch size finetuning 100 500 1000 2000

20

Table 4.2: Features and feature levels evaluated for shallow neural networks.
Feature Description Level 1 Level 2 Level 3 Level 4

1 Number of output nodes 1 2 3 6
2 Learning rate 0.001 0.01 0.1 1
3 Percentage of data for training 80% 85% 90% 95%
4 Time of day to include in

training data
All hours 06-21 06-12, 15-21 08-10, 17-19

5 Percent of missing values al-
lowed

0% 33% 66% 100%

6 Fill function to use for missing
values

Mean CloseMean Random LinearInterpolation

7 Using pressure as an input true true false false
8 Using sea pressure as an input true true false false
9 Using wind direction as an in-

put
true true false false

10 Using wind speed as an input true true false false
11 Using temperature as an input true true false false
12 Using relative humidity as an

input
true true false false

13 Using precipitation as an in-
put

true true false false

14 Exclude holidays in the train-
ing data

true true false false

15 Number of nodes in the hid-
den layer

24 96 384 768

16 Batch size 100 500 1000 2000
(17) Rounding method Round Round Ceiling Floor

21

5 Results

This chapter describes the results obtained during the course of the project. In Section 5.1 the results of the
Taguchi tests are summarized and in Section 5.2 the final results of the SAE networks and SNNs are presented.
Figure 5.1 depicts how experiments were conducted and results obtained. The process was repeated four times:
two for both network architectures in combination with the two different tasks.

Conduct the 64
Taguchi tests

Calculate mean
primary and sec-

ondary MAPE for
each feature level

Calculate sen-
sitivity values

Choose best performing
primary and secondary

feature levels for
further experiments

Perform 10 exper-
iments with best

primary and secondary
settings respectively

Calculate final results

Figure 5.1: How experiments were conducted and results obtained.

5.1 Taguchi tests

In total the Taguchi method was applied four times, with 64 tests each. Once for each combination of prediction,
travel time or volume, and neural network, SAE neural network (SAENN) or SNN. Features and feature levels
are as described in Section 4.4, Table 4.1 and Table 4.2. The mean MAPE has been calculated for each Feature
and level in each of the Tables 5.1, 5.2, 5.3, 5.4, 5.6, 5.7, 5.8 and 5.9. For example, the primary MAPE of all
task 1 SAE Taguchi tests with feature 1 set to level 1 has the mean value found in Table 5.1 F1:L1. The best
performing levels of each feature in terms of primary and secondary MAPE have been marked in bold.

5.1.1 Travel time prediction

For travel time prediction the primary and secondary MAPE results of the SAENN Taguchi tests are as
described in Tables 5.1 and 5.2 respectively. The primary and secondary MAPE results of the SNN Taguchi
tests are as described in Tables 5.3 and 5.4 respectively.

For features 7 through 14, which denote whether certain weather data or holiday data is included, levels 1
and 2 represent the same value, true, and levels 3 and 4 represent the same value, false. Consequently the
mean MAPE of levels 1 and 2 and levels 3 and 4 have been calculated respectively.

Feature 19, sparsity parameter, is dependent on feature 18, the sparsity constant. For this reason only tests
where the sparsity constant was not zero (i.e., not level 1) were considered when calculating the average MAPE
results for feature 19. When the sparsity constant is set to zero, the sparsity parameter does not affect the
network in any way. The same reasoning is used when calculating the results of feature 6, the fill function,
which is dependent on feature 5, the percent of missing values allowed in each data point. When feature 5 is
set to zero percent feature 6 does not affect the network in any way. Therefore, when calculating the MAPE
for feature 6 only tests where feature 5 was not set to level 1 were considered.

In the primary MAPE results of the SAE network there is no value below 21%, while for the secondary
MAPE the best results are all below 21%. The grand mean of the primary MAPE, the mean of all recorded
primary MAPE results, is 21.92% and the grand mean of the secondary MAPE is 20.83%.

For the SNN none of the primary MAPE values are less than 21% while a majority of the best secondary
MAPEs are. The grand mean of the primary MAPE is 22.11% and the grand mean of the secondary MAPE is
21.13%.

22

Table 5.1: Stacked autoencoder feature levels and their
corresponding impact on the results on the primary
MAPE for travel time prediction.

L1 L2 L3 L4
F1 22.08% 22.10% 21.66% 21.84%
F2 21.84% 22.10% 21.86% 21.88%
F3 21.84% 22.18% 22.15% 21.52%
F4 23.45% 21.46% 21.55% 21.22%
F5 21.80% 21.41% 21.84% 22.64%
F6 23.53% 21.51% 21.59% 21.21%
F7 21.87% 21.97%
F8 21.80% 22.04%
F9 21.75% 22.09%
F10 21.77% 22.07%
F11 21.85% 21.99%
F12 21.88% 21.96%
F13 21.49% 22.35%
F14 21.85% 21.99%
F15 21.34% 22.21% 22.02% 22.11%
F16 21.52% 21.83% 22.25% 22.09%
F17 22.22% 21.54% 22.15% 21.77%
F18 21.54% 21.81% 22.05% 22.28%
F19 22.38% 21.47% 22.68% 21.65%
F20 21.23% 22.23% 22.56% 21.67%
F21 22.12% 21.87% 21.96% 21.74%

Table 5.2: Stacked autoencoder feature levels and their
corresponding impact on the results on the secondary
MAPE for travel time prediction.

L1 L2 L3 L4
F1 21.35% 20.75% 20.52% 20.68%
F2 21.30% 20.87% 20.49% 20.65%
F3 21.18% 20.99% 20.78% 20.35%
F4 23.23% 18.57% 20.28% 21.22%
F5 21.13% 20.09% 20.69% 21.39%
F6 22.62% 20.21% 20.16% 19.91%
F7 20.68% 20.97%
F8 20.59% 21.06%
F9 20.56% 21.09%
F10 20.55% 21.10%
F11 20.74% 20.91%
F12 20.82% 20.83%
F13 20.20% 21.46%
F14 20.78% 20.87%
F15 19.96% 21.13% 21.17% 21.04%
F16 20.20% 20.64% 21.43% 21.04%
F17 21.23% 20.45% 21.16% 20.46%
F18 20.32% 20.73% 21.19% 21.06%
F19 21.48% 20.36% 21.71% 20.43%
F20 19.90% 21.25% 21.62% 20.54%
F21 20.72% 20.83% 21.05% 20.70%

Table 5.3: Shallow neural network feature levels and
their corresponding impact on the results on the pri-
mary MAPE for travel time prediction.

L1 L2 L3 L4
F1 21.55% 22.00% 21.92% 22.99%
F2 21.18% 21.93% 22.32% 23.03%
F3 21.54% 23.09% 22.37% 21.45%
F4 23.24% 21.41% 21.61% 22.21%
F5 21.84% 21.42% 22.41% 22.78%
F6 24.25% 21.41% 21.99% 21.18%
F7 21.86% 22.37%
F8 22.16% 22.07%
F9 22.13% 22.10%
F10 22.14% 22.08%
F11 22.32% 21.91%
F12 22.18% 22.05%
F13 21.76% 22.47%
F14 22.03% 22.20%
F15 21.42% 22.32% 21.82% 22.90%
F16 22.08% 22.10% 22.25% 22.03%

Table 5.4: Shallow neural network feature levels and
their corresponding impact on the results on the sec-
ondary MAPE for travel time prediction.

L1 L2 L3 L4
F1 20.37% 21.47% 20.68% 22.01%
F2 20.05% 20.98% 21.55% 21.95%
F3 20.30% 21.93% 21.48% 20.82%
F4 23.02% 18.87% 20.44% 22.21%
F5 20.82% 20.75% 21.21% 21.75%
F6 23.39% 20.63% 20.69% 20.24%
F7 20.81% 21.46%
F8 21.09% 21.18%
F9 21.02% 21.25%
F10 21.14% 21.12%
F11 21.22% 21.05%
F12 21.37% 20.90%
F13 20.70% 21.57%
F14 21.00% 21.27%
F15 20.44% 21.25% 20.83% 22.00%
F16 21.20% 20.98% 21.32% 21.03%

23

In order to make it possible to analyze each feature’s impact on the network performance, a sensitivity study
was performed on the results. For each feature the grand mean of the corresponding primary or secondary
MAPE was subtracted from each level’s MAPE value, the results of which were squared before being summed to
one value. The resulting values are presented in Table 5.5, where higher values indicate that the corresponding
feature impacts the network performance to a greater extent. The three highest values are shown in bold and
the three lowest values are underlined, for each network, SAE or SNN, and MAPE, primary (1) or secondary
(2).

From Table 5.5 it can be seen that for the SAE network, features 4, 6 and 13 have the biggest impact on the
performance, both according to primary and secondary MAPE. Feature 4 describes the time of day to include
in the training data, feature 6 describes what fill function is used and feature 13 describes whether or not
precipitation was used as input to the network. The fill function used has the biggest impact on the primary
MAPE while what time of the day to include in the data has the biggest impact on the secondary MAPE. For
both the primary and secondary MAPE, feature 7 and feature 21 are in the three lowest sensitivity values.
Feature 7 describes whether or not pressure was used as an input to the network and feature 21 describes the
batch size used for finetuning of the network. For the primary MAPE the features with the lowest impact also
include feature 2, what learning rate was used to train the network. In addition to feature 7 and 21, feature 14
has one of the lowest impacts for the secondary MAPE. Feature 14 describes whether or not holidays were
included as input data.

For the SNN features 2, 4 and 6 have the biggest impacts on performance according to the sensitivity
study both for primary and secondary MAPE. As already mentioned feature 2 describes the learning rate
used, feature 4 describes what time of day were included in the data and feature 6 describes what fill function
was used. Feature 6 has the biggest impact on the primary MAPE while feature 4 has the biggest impact on
the secondary MAPE. The least influential features are also shared between both the primary and secondary
MAPE; features 8, 14 and 16. Feature 8 describes whether or not to use sea pressure as input to the network,
feature 14 describes whether or not to include holidays in the input data and feature 16 describes what batch
size was used during training.

Table 5.5: Sensitivity study results for travel time prediction.
Stacked autoencoder networks Shallow networks

Sensitivity 1, 10−5 Sensitivity 2, 10−5 Sensitivity 1, 10−5 Sensitivity 2, 10−5

F1 1.33 3.99 11.35 16.76
F2 0.46 3.69 17.85 20.22
F3 2.91 3.77 17.80 15.46
F4 31.87 113.20 20.29 103.49
F5 7.98 9.69 10.90 6.31
F6 33.55 48.94 59.71 63.48
F7 0.36 1.59 2.76 4.30
F8 1.56 4.60 2.06 2.64
F9 2.12 7.31 2.68 3.81
F10 1.68 6.05 3.73 4.51
F11 1.08 3.56 3.61 5.01
F12 9.71 9.57 2.74 4.81
F13 12.76 21.23 5.39 7.65
F14 0.95 2.48 0.64 1.92
F15 4.67 10.02 12.23 13.39
F16 3.06 8.38 0.29 0.74
F17 3.07 5.45
F18 3.02 4.50
F19 10.70 15.77
F20 10.46 17.51
F21 0.74 0.74

24

5.1.2 Volume prediction

The primary and secondary MAPE results of the SAENN Taguchi tests for volume prediction are as shown in
Tables 5.6 and 5.7. The primary and secondary MAPE results of the SNN Taguchi tests for volume prediction
are shown in Tables 5.8 and 5.9. As with travel time prediction, features 7 through 14 are consolidated as two
levels represent the same value. Consequently the average MAPEs of levels 1 and 2 and levels 3 and 4 have
been calculated respectively.

For feature 17 of the SNN, rounding method used, levels 1 and 2 represent the same method. Therefore the
mean MAPEs of levels 1 and 2 have been calculated jointly.

Alike volume prediction testing, feature 6, fill function, is dependent on feature 5, percent of missing values
allowed. The same is true for feature 19, sparsity parameter, which is dependent on feature 18, sparsity constant.
Therefore only tests where feature 5 and feature 18 was not set to level 1 were considered when calculating the
average MAPE results of feature 6 and 19 respectively.

For the primary MAPE of the SAE network tests only four of the best results are below 22%. The grand
mean of all recorded primary MAPE values is 23.36%. Only five of the best results of the secondary MAPE are
below 26% and four of those are more than 25%, while one is 21.85% for feature 4, the time of day to include
in the data. The grand mean of the secondary MAPE is 26.97%.

Among the best primary MAPE results of the SNN Taguchi tests, none is below 21% and all are less than
25%. The grand mean of the primary MAPE is 24.98% Only one of the best secondary MAPE results is below
25%, and only one exceeds 30%. The grand mean of the secondary MAPE is 30.29%.

Table 5.6: Stacked autoencoder feature levels and their
corresponding impact on the results on the primary
MAPE for volume prediction.

L1 L2 L3 L4
F1 23.48% 22.43% 23.75% 23.75%
F2 24.46% 23.85% 21.81% 23.31%
F3 22.67% 21.23% 24.13% 25.40%
F4 25.90% 23.28% 22.39% 21.85%
F5 21.97% 24.17% 23.51% 23.77%
F6 23.60% 23.07% 24.65% 23.94%
F7 24.06% 22.65%
F8 24.11% 22.60%
F9 23.37% 23.35%
F10 23.34% 23.37%
F11 23.71% 23.00%
F12 24.03% 22.68%
F13 23.50% 23.21%
F14 23.53% 23.18%
F15 23.13% 23.29% 22.38% 24.62%
F16 22.30% 23.75% 23.72% 23.65%
F17 23.71% 23.52% 23.15% 23.05%
F18 23.18% 23.48% 23.98% 22.79%
F19 23.24% 24.93% 22.50% 22.99%
F20 23.28% 24.02% 23.27% 22.85%
F21 24.41% 23.90% 22.20% 22.91%

Table 5.7: Stacked autoencoder feature levels and their
corresponding impact on the results on the secondary
MAPE for volume prediction.

L1 L2 L3 L4
F1 27.06% 26.21% 27.60% 27.04%
F2 28.26% 26.76% 25.60% 27.28%
F3 26.21% 25.00% 27.63% 29.06%
F4 35.74% 24.80% 25.52% 21.85%
F5 25.61% 27.50% 27.75% 27.04%
F6 26.90% 26.67% 28.64% 27.51%
F7 27.77% 26.18%
F8 27.79% 26.16%
F9 27.09% 26.86%
F10 27.19% 26.76%
F11 27.08% 26.87%
F12 27.61% 26.34%
F13 27.20% 26.74%
F14 26.35% 27.60%
F15 26.89% 27.02% 26.14% 27.85%
F16 26.91% 27.03% 26.94% 27.01%
F17 27.52% 26.62% 26.79% 26.96%
F18 27.42% 27.14% 27.06% 26.28%
F19 26.71% 27.65% 25.93% 27.01%
F20 26.89% 26.73% 26.93% 27.34%
F21 27.77% 27.66% 26.10% 26.36%

25

Table 5.8: Shallow neural network feature levels and
their corresponding impact on the results on the pri-
mary MAPE for volume prediction.

L1 L2 L3 L4
F1 27.18% 24.74% 24.00% 24.01%
F2 23.47% 24.18% 21.85% 30.43%
F3 23.91% 23.46% 26.59% 25.97%
F4 28.97% 24.20% 22.69% 24.05%
F5 23.45% 24.13% 25.53% 26.81%
F6 26.18% 26.26% 25.98% 23.55%
F7 24.81% 25.15%
F8 26.38% 23.58%
F9 25.35% 24.61%
F10 25.30% 24.66%
F11 25.00% 24.97%
F12 25.39% 24.57%
F13 24.91% 25.05%
F14 25.39% 24.58%
F15 25.10% 25.59% 23.63% 25.61%
F16 26.43% 24.70% 24.05% 24.74%
F17 25.65% 24.18% 24.44%

Table 5.9: Shallow neural network feature levels and
their corresponding impact on the results on the sec-
ondary MAPE for volume prediction.

1 2 3 4
1 30.80% 30.56% 31.78% 28.00%
2 28.45% 27.30% 26.97% 38.42%
3 28.81% 31.18% 29.52% 31.63%
4 43.28% 27.00% 26.81% 24.05%
5 27.83% 29.66% 32.90% 30.75%
6 33.62% 31.71% 30.82% 28.26%
7 29.98% 30.59%
8 30.86% 29.72%
9 31.77% 28.80%
10 29.98% 30.59%
11 30.86% 29.71%
12 31.36% 29.21%
13 30.05% 30.52%
14 30.63% 29.95%
15 29.13% 29.93% 28.69% 33.40%
16 31.82% 29.41% 30.64% 29.28%
17 31.40% 28.89% 29.45%

Table 5.10: Sensitivity study results for volume prediction.
Stacked autoencoder networks Shallow networks

Sensitivity 1, 10−4 Sensitivity 2, 10−4 Sensitivity 1, 10−4 Sensitivity 2, 10−4

F1 1.18 0.99 6.83 7.82
F2 3.86 3.69 42.41 89.49
F3 9.79 9.29 7.06 5.38
F4 9.70 110.01 22.65 230.43
F5 2.77 2.76 6.72 13.50
F6 2.17 3.16 6.10 17.58
F7 3.56 2.65 2.82 8.56
F8 2.41 2.66 8.63 4.71
F9 0.32 0.69 1.40 9.28
F10 0.43 1.13 0.72 3.26
F11 0.76 0.34 3.66 11.27
F12 2.76 1.64 2.76 5.94
F13 0.56 0.23 0.22 1.17
F14 0.67 1.75 1.70 2.85
F15 2.61 1.48 2.60 13.72
F16 1.49 0.01 3.12 4.24
F17 0.29 0.45 2.21 5.61
F18 0.76 0.71
F19 3.37 1.61
F20 0.71 0.20
F21 2.95 2.24

The same kind of sensitivity study has been performed for volume prediction as for travel time in Section
5.1.1. The results of this study are shown in Table 5.10. The study shows that features 2, 3 and 4 have the
biggest impact both on primary and secondary MAPE for the SAE network. These features describe the
learning rate used, percentage of data used for training and the time of day to include in the data, respectively.
The SAE network features with the smallest impact are 9, 10 and 17 for the primary MAPE. These correspond
to using wind direction as input, using wind speed as input and the number of nodes used in the last hidden

26

layer. Features 13, 16 and 20 have the smallest impact on the secondary MAPE. Feature 13 describes whether
or not to use precipitation as input data, feature 16 describes the number of nodes used in every autoencoder
and feature 20 describes what batch size to use during pretraining.

For the SNN the results are not unanimous, only features 2 and 4, denoting the learning rate and time of
day to include in data, are among the three most influential features of both MAPEs. The third feature for the
primary MAPE is 8, whether or not to use sea pressure as input. The third feature of the secondary MAPE is
6, what fill function to use. The least influential features of the SNN are 9, 10 and 13 for the primary MAPE.
These features describe whether or no to use wind direction, wind speed and precipitation respectively, as input
data. The least influential features of the secondary MAPE are 10, 13 and 14, where 14 describes whether or
not to exclude holidays in the input data.

5.2 Performance

After performing the Taguchi tests and analyzing the results, the optimal settings for each neural network were
specified. Primary and secondary MAPE did not produce the same optimal settings, therefore eight different
set of settings were selected to be used for further experiments. One set of settings per task, type of neural
network and MAPE. Each of the settings were then tested ten times, by training the corresponding network
using those settings and collecting primary and secondary MAPE results. This in turn yields 16 independent
results, eight per task.

5.2.1 Travel time prediction

Given the results of the travel time Taguchi tests the optimal settings for the SAE networks and the SNNs are
as specified in Table 5.11. The primary settings are derived from the primary MAPE results of the Taguchi
tests and the secondary settings are derived from the secondary MAPE results. In the SAENN two features
differ and in the SNN four features differ between primary and secondary settings.

After performing ten tests each with the settings specified in Table 5.11, the results are as specified in Tables
5.12 and 5.13. Table 5.12 shows the results of each of the four settings measured using primary MAPE while
Table 5.13 shows the results of each of the settings using secondary MAPE. These tables show that the secondary
settings yielded better results than the primary settings on all accounts except one, even when measured
using the primary MAPE. According to the primary MAPE the SNN using the secondary settings yielded the
overall best results. Only the SNN median for the primary settings and the SAENN standard deviation for
the secondary settings were better. According to the secondary MAPE the SAENN using secondary settings
performed best overall. Only the standard deviation of the SNN using secondary settings is a tiny bit better.

5.2.2 Volume prediction

Given the results of the volume Taguchi tests the optimal settings for the SAE networks and the SNNs are as
specified in Table 5.14. Four features differ between the SAENNs primary and secondary settings: using wind
speed as input, exclude holidays, nodes in last hidden layer, and pretraining batch size. Five features differ
between the primary and secondary settings for the SNNs: number of output nodes, percentage of data for
training, time of day to include, using wind speed as input, and batch size.

After performing ten tests each with each of the four settings specified in Table 5.14, the results are as
specified in Tables 5.15 and 5.16. The best average, minimum, maximum and standard deviation values are
shown in bold. Table 5.15 shows the results of each of the four settings measured using primary MAPE while
Table 5.16 shows the results of each of the settings using secondary MAPE. Because the secondary settings
for the SNNs only use data from 08:00-10:00 and 17:00-19:00 during the day the secondary MAPE results are
effectively the same as the primary MAPE results for these settings. The SNNs performed better than the
SAENNs in general, with the secondary settings yielding the best results over all.

27

Table 5.11: Final settings of the SAENNs and SNNs for task 1, travel time prediction.
SAENNs SNNs

Primary
setting

Secondary
setting

Primary
setting

Secondary
setting

Number of output nodes 3 1
Learning rate 0.001 0.1 0.001
Percentage of data for training 95% 95% 80%
Time of day to include in training data 08-10, 17-19 06-21 06-21
Percent of missing values allowed 33% 33%
Fill function to use for missing values Interpolation Interpolation
Using pressure as an input True True
Using sea pressure as an input True False True
Using wind direction as an input True False True
Using wind speed as an input True False
Using temperature as an input True False
Using relative humidity as an input True False
Using precipitation as an input True True
Exclude holidays in the training data True True
Number of nodes in the hidden layer 24
Batch size 2000 500
Number of autoencoders 3
Number of nodes in every autoencoder 12
Number of nodes in last hidden layer 96
Sparsity constant value 0
Batch size pretraining 100
Batch size finetuning 2000

Table 5.12: Primary MAPE results of SAENN and SNN primary and secondary settings for task 1.
Stacked autoencoder networks Shallow networks

Primary sett. Secondary sett. Primary sett. Secondary sett.
Mean 20.71% 20.53% 20.40% 20.39%

Median 20.67% 20.53% 20.39% 20.43%
Minimum 20.23% 20.26% 20.22% 20.16%
Maximum 21.28% 20.69% 20.65% 20.64%

Standard dev. 0.0036 0.0012 0.0015 0.0017

Table 5.13: Secondary MAPE results of SAENN and SNN primary and secondary settings for task 1.
Stacked autoencoder networks Shallow networks

Primary sett. Secondary sett. Primary sett. Secondary sett.
Mean 20.71% 17.72% 17.91% 18.13%

Median 20.67% 17.75% 17.89% 18.11%
Minimum 20.23% 17.52% 17.70% 17.97%
Maximum 21.28% 17.91% 18.09% 18.32%

Standard dev. 0.0036 0.0012 0.0014 0.0012

28

Table 5.14: Final settings of the SAENNs and SNNs for task 2, volume prediction.
SAENNs SNNs

Primary
setting

Secondary
setting

Primary
setting

Secondary
setting

Number of output nodes 2 3 6
Learning rate 0.1 0.1
Percentage of data for training 85% 85% 80%
Time of day to include in training data 08-10, 17-19 06-12, 15-21 08-10, 17-19
Percent of missing values allowed 0% 0%
Fill function to use for missing values CloseMean Interpolation
Using pressure as an input False True
Using sea pressure as an input False False
Using wind direction as an input False False
Using wind speed as an input True False False True
Using temperature as an input False False
Using relative humidity as an input False False
Using precipitation as an input False True
Exclude holidays in the training data False True False
Number of nodes in the hidden layer 384
Batch size 1000 2000
Rounding method Ceiling
Number of autoencoders 5
Number of nodes in every autoencoder 12
Number of nodes in last hidden layer 768 96
Sparsity constant value 1
Sparsity parameter 0.4
Batch size pretraining 2000 500
Batch size finetuning 1000

Table 5.15: Primary MAPE results of SAENN and SNN primary and secondary settings for task 2.
Stacked autoencoder networks Shallow networks

Primary sett. Secondary sett. Primary sett. Secondary sett.
Mean 18.31% 18.47% 18.55% 15.95%

Median 18.35% 18.34% 18.61% 15.87%
Minimum 17.47% 17.88% 18.10% 15.53%
Maximum 19.58% 19.69% 18.94% 16.38%

Standard dev. 0.0061 0.0056 0.0026 0.0029

Table 5.16: Secondary MAPE results of SAENN and SNN primary and secondary settings for task 2.
Stacked autoencoder networks Shallow networks

Primary sett. Secondary sett. Primary sett. Secondary sett.
Mean 18.31% 18.47% 22.52% 15.95%

Median 18.35% 18.34% 22.53% 15.87%
Minimum 17.47% 17.88% 22.12% 15.53%
Maximum 19.58% 19.69% 22.85% 16.38%

Standard dev. 0.0061 0.0056 0.0026 0.0029

29

6 Discussion

The results from the testing in Section 5.2 shows that stacked autoencoder networks performed worse than the
shallow neural networks in both travel time prediction and volume prediction for the primary task of predicting
during the 8-10 and 17-19 hours. For volume prediction, the SAE networks performed considerably worse than
the SNN, while the travel time prediction was closer between the two networks. The bad performance of the
SAE networks could be related to the relatively small dataset used for training, as other studies have achieved
good performance using networks based on SAEs for traffic prediction ([8, 18]). This could also possibly explain
the significantly greater difference in performance between the two tasks, as the network structure for the
two different predictions were very similar while the two datasets differed considerably in size, the dataset
for volume prediction containing less than a third of the amount of data points compared to the travel time
dataset.

While Lv et al. [8] and Yang et al. [18] achieved good performance using SAE networks, the networks in
their studies differ from the SAE networks studied in this thesis. The study by Lv et al. used a SAE with a
logistic regression layer as the final predictor layer, while our study used an identity function predictor layer.
The SAE network studied by Yang et al. was trained with the Levenberg-Marquardt algorithm, instead of
the Adam optimizer used in this thesis. It is possible that the SAE networks investigated in this thesis was
outperformed due to these differences, and other SAE networks would perform better than the SNN networks.

Using the Taguchi method to help choose parameter levels did cut down a lot of time compared to doing
trial-and-error style testing. However, the result could potentially be better using other parameter levels than
suggested by the result from the Taguchi tests. In the beginning of the project we noticed that the MAPE
had a non-trivial variation when training and testing the same network multiple times, which prompted us to
measure mean values of the tests. We did not investigate the cause of this variation, but it could potentially be
an effect of the random weight initialization. One could potentially compare different feature levels by their
best performance instead of mean performance to receive a different result. It is also notable that the single
best results overall was achieved during the Taguchi tests and not in any of the final tests. The best result
achieved for travel time prediction was a primary MAPE of 19.99% with a SAENN during Taguchi tests, and
for volume prediction the best result was a primary MAPE of 15.41% with a SAENN during Taguchi tests.
This could indicate that the different parameters tested were too dependent, and some parameter settings
together resulted in an improvement.

The sensitivity analysis gave some great insight in which parameters influenced the result most, but it should
be noted that this does not necessarily mean that the feature with the highest sensitivity is what contributes
the most to the best result. A parameter can have a high sensitivity value from one of the levels performing
vastly worse than the other levels. An example of this could be if the result for the four different feature levels
were 20.3%, 20.5%, 20.7% and 30%. The big difference between the last level and the other three would result
in a high sensitivity, but that wouldn’t mean that the feature is what contributed most to the best result,
just that it is important to not choose the wrong level when performing additional tests. With this in mind,
analyzing the sensitivity can still give some interesting information.

For travel time prediction, feature 4 (time of day to include) and 6 (fill function) had the highest sensitivity
in both the SAE networks and the SNNs. Time of day was expected to have quite a bit of impact on the result,
since it drastically changes how much data is available for training and what patterns the data contains, as the
pattern is very different in different time spans. Using all 24 hours of the day performed worst in all cases,
which makes sense since the night intuitively has another traffic pattern, along with missing data as described
in Chapter 3. Sensitivity being higher on the secondary MAPE than the primary MAPE was also expected
since the secondary MAPE is calculated over all included times, hence the result is dependent on what patterns
in the data is easiest to predict and if they are included.

The third feature with one of the highest sensitivity values of the SAE network for travel time prediction
was feature 13, whether or not to use precipitation as input data. The remaining weather data features all have
significantly lower sensitivity values. This is not particularly surprising since rain will affect road grip, visibility
and thus the behavior of drivers. It may also cause some motorists to choose not to drive at all, thus affecting
the traffic pattern considerably. For the SNN the third of the features with the highest sensitivity was feature
two, the learning rate used. In general, the learning rate had a greater impact on the SNNs than the SAENNs
for both tasks. All weather data features had low sensitivity for the SNN which could imply that for the SNN
the network settings were more important than data related settings. It also seems that the SAENNs were
mostly impacted by the quality and quantity of data.

For volume prediction, the features with highest sensitivity values for the SAENNs were features 2, 3 and 4

30

(i.e., the learning rate, percentage of data to use for training, and time of day to include). Feature 2 had a
significantly lower sensitivity value indicating that the SAENNs were overall more sensitive to data quality and
quantity than network settings. For the SNNs the two most influential features were features 2 and 4 (learning
rate and time of day to include), followed by sea pressure for primary MAPE and fill function for secondary
MAPE which had significantly lower sensitivity values. The weather data settings had less of an impact on the
SAENNs for volume prediction. This could be due to the amount of data being lower for volume prediction
than for travel time prediction, which would mean that additional weather data doesn’t contribute as much.

For the secondary MAPE of the SNNs the time of day included in the data had a considerably higher
sensitivity value than features 2 and 6. This could partly be due to the first level having a mean MAPE of 43%,
compared to levels 2, 3 and 4, having a mean MAPE of 27%, 27% and 24% respectively. Since the secondary
MAPE is evaluated using the same time span as the training data, the first level uses all 24 hours of the day
for evaluation as well as training. Volume prediction has a low amount of data, which could mean that the
SNN does not have enough data to learn the pattern occurring during the night, hence the secondary MAPE is
significantly lower when evaluating without using the night data.

Looking at the primary MAPE result for the final tests with fixed parameter levels, the best results were in
general not obtained with networks using settings chosen to optimize primary MAPE performance, but instead
of networks using settings for optimizing secondary MAPE performance. It is not clear why this happens, but
it could be due to the test data having a different pattern than the training and validation data, and secondary
settings performing better in general while primary settings performs well on the 8-10, 17-19 time span in the
training and validation data.

The quantity and quality of training data has a big impact on the performance of neural networks. Using a
stacked autoencoder was perhaps not ideal for this purpose, as the dataset was relatively small. For travel time
prediction there was a decently long time span from which data was collected, however there was also many data
points missing from this time. Most data is missing during the nighttime, but several of the intersection-tollgate
pairs are missing a significant amount of data during the whole day. In contrast, for volume prediction the
quantity of the data was only a third of the amount of data for task 1, but almost complete. Efforts was made
to fill in the data, but the results from the Taguchi testing implies that our chosen methods to fill in the missing
data was not sufficient for improving network performance considerably. Hypothetically both the SAENNs
and the SNNs would have produced better predictions given a greater and more complete set of data for each
task. With the amount of data that we were given the neural networks that we designed over trained fairly
quickly. The run time for training each neural network varied between a few minutes and 24 hours depending
on network settings. In general the stacked autoencoder neural network took longer to train fully than the
shallow neural network. The average run time for the SNNs during Taguchi tests was about five minutes, while
the SAENNs had an average run time of about one hour and 28 minutes.

There is an abundance of different settings and approaches used to design neural networks. Because of the
time constraint of the study, we were not able to explore each and everyone of these. A few were picked hoping
that they would yield the better results. For example, a single SAENN or SNN could have been designed for
each intersection-tollgate or tollgate-direction pair. However, as mentioned above the amount of data was
limited, dividing it up further would most likely not yield better results. Additionally, two hours is a relatively
long time span to make a prediction for. In the cases where fewer than 6 output nodes were used, previous
predictions were assumed to be correct while predicting the rest of the time windows. This means that there
could be a snowballing effect on the results. If the first prediction is less accurate it is more likely that the
following predictions are as well since they rely on less accurate information.

Since the data was from the KDD Cup 2017 competition, the results of this thesis can be somewhat
compared to the results submitted to the competition. The best competition result for travel time prediction
had a MAPE of 17.48%, and the best result for volume prediction had a MAPE of 12.03% This is considerably
better than the result of this thesis with the best travel time prediction result having a MAPE of 19.99%, and
volume predicting having a MAPE of 15.41%. The results obtained in this thesis would have placed 180 out
of 368 and 20 out of 346 in travel time prediction and volume prediction respectively. This is however not
directly comparable, as the competition result was evaluated by predicting the week following the week used
for network evaluation in this thesis. The data for the last week was never published, hence couldn’t be used
for evaluation in this thesis. The competition evaluation also used denoising on submitted predictions, and the
specific details of the denoising was never published.

Comparing this work with previous studies where similar tasks were addressed using similar methods, there
are a few key differences. Contrary to other studies this work used a stacked autoencoder in combination with
a small and somewhat incomplete data set. Additionally, fairly many weather measurements were used when

31

training the neural networks and making predictions. Furthermore, the effects on prediction performance when
including data from different time spans were studied more in depth.

In this project we discovered that Tensorflow is a very powerful and easy to use tool when implementing
simple neural network structures such as the shallow neural network. However, it is somewhat more difficult to
use when implementing something more complex, such as a stacked autoencoder. We did not need to spend
a lot of time implementing the shallow neural network, while the stacked autoencoder implementation took
considerably longer. If we had had more previous experience with stacked autoencoders and Tensorflow, the
time needed for implementation would probably have been considerably shorter.

32

7 Conclusion

The result shows that neural networks can be used to quite accurately predict traffic travel time and volume
despite relatively small datasets. A stacked autoencoder neural network did not generally perform better than
a simple shallow neural network when averages were compared. However, the quantity of data seemed to
affect the stacked autoencoder neural networks to a greater extent and the difference between the two network
designs’ performances was smaller when the bigger dataset was used. This indicates that with a greater dataset
a stacked autoencoder neural network could outperform a shallow neural network.

Using the Taguchi approach for design of experiments can cut down the time spent deciding neural network
settings, but does not guarantee that optimal settings are chosen. In this study, the best results were obtained
while performing the structured Taguchi tests, not when a combination of network settings had been chosen
based on the results of the Taguchi tests.

Future studies should be made with a similar approach as in this thesis, but with bigger datasets to see if
this would favor stacked autoencoder neural networks over shallow neural networks. Even though the Taguchi
method did not prove to be optimal for this project, more experimentation with the method should be done, as
other studies have used it successfully to optimize neural network parameters.

33

References

[1] Andries E Brouwer, Arjeh M Cohen, and Man VM Nguyen. Orthogonal arrays of strength 3 and small
run sizes. Journal of Statistical Planning and Inference 136.9 (2006), 3268–3280.

[2] Rasool Fakoor, Faisal Ladhak, Azade Nazi, and Manfred Huber. “Using deep learning to enhance cancer
diagnosis and classification”. Proceedings of the Workshop on Role of Machine Learning in Transforming
Healthcare at the 30th International Conference on Machine Learning. 2013.

[3] Chris Green. Diving Into TensorFlow With Stacked Autoencoders. url: http://cmgreen.io/2016/01/
04/tensorflow_deep_autoencoder.html (visited on 2017-07-23).

[4] Chris Green. MNIST Digit Classification Using Stacked Autoencoder And TensorFlow. url: https:
//github.com/cmgreen210/TensorFlowDeepAutoencoder (visited on 2017-07-23).

[5] Sherif Ishak and Ciprian Alecsandru. Optimizing traffic prediction performance of neural networks under
various topological, input, and traffic condition settings. Journal of Transportation Engineering 130.4
(2004), 452–465.

[6] Teruaki Ito and Tomoyuki Hiramoto. A general simulator approach to ETC toll traffic congestion. Journal
of Intelligent Manufacturing 17.5 (2006), 597–607.

[7] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

[8] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow prediction with big
data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems 16.2 (2015),
865–873.

[9] Andrew Ng. Sparse autoencoder. CS294A Lecture notes 72.2011 (2011), 1–19.
[10] MS Packianather, PR Drake, and H Rowlands. Optimizing the parameters of multilayered feedforward

neural networks through Taguchi design of experiments. Quality and reliability engineering international
16.6 (2000), 461–473.

[11] Fabŕıcio José Pontes, Anderson Paulo de Paiva, Pedro Paulo Balestrassi, João Roberto Ferreira, and
Messias Borges da Silva. Optimization of Radial Basis Function neural network employed for prediction
of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Systems with
Applications 39.9 (2012), 7776–7787.

[12] Ranjit K Roy. Design of experiments using the Taguchi approach: 16 steps to product and process
improvement. John Wiley & Sons, 2001.

[13] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747
(2016).

[14] Brian L Smith and Michael J Demetsky. Traffic flow forecasting: comparison of modeling approaches.
Journal of transportation engineering 123.4 (1997), 261–266.

[15] Wimalin Sukthomya and James Tannock. The optimisation of neural network parameters using Taguchís
design of experiments approach: an application in manufacturing process modelling. Neural Computing &
Applications 14.4 (2005), 337–344.

[16] Wimalin Sukthomya and James Tannock. The training of neural networks to model manufacturing
processes. Journal of Intelligent Manufacturing 16.1 (2005), 39–51.

[17] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research 11.Dec (2010), 3371–3408.

[18] Hao-Fan Yang, Tharam S Dillon, and Yi-Ping Phoebe Chen. Optimized structure of the traffic flow
forecasting model with a deep learning approach. IEEE transactions on neural networks and learning
systems, in press (2016).

[19] Weizhong Zheng, Der-Horng Lee, and Qixin Shi. Short-term freeway traffic flow prediction: Bayesian
combined neural network approach. Journal of transportation engineering 132.2 (2006), 114–121.

34

http://cmgreen.io/2016/01/04/tensorflow_deep_autoencoder.html
http://cmgreen.io/2016/01/04/tensorflow_deep_autoencoder.html
https://github.com/cmgreen210/TensorFlowDeepAutoencoder
https://github.com/cmgreen210/TensorFlowDeepAutoencoder

A Appendix A

This appendix contains the L64 orthogonal array and results from testing using the Taguchi method described
in Section 4.4.

Table A.1: Results of the first 32 tests using stacked autoencoder networks
Test Task 1 MAPE 1 Task 1 MAPE 2 Task 2 MAPE 1 Task 2 MAPE 2

1 21.27% 20.09% 25.08% 38.16%
2 22.03% 24.28% 32.81% 37.49%
3 27.50% 31.63% 21.82% 31.78%
4 22.49% 23.56% 20.53% 32.48%
5 21.86% 18.64% 22.42% 24.76%
6 21.63% 18.59% 23.97% 25.06%
7 20.94% 18.19% 21.05% 21.31%
8 21.76% 18.85% 22.92% 21.70%
9 23.43% 21.50% 25.49% 29.19%
10 21.58% 20.50% 21.63% 25.30%
11 20.74% 19.17% 20.42% 23.92%
12 21.44% 20.00% 20.04% 24.20%
13 22.77% 22.77% 22.55% 22.55%
14 21.72% 21.72% 22.65% 22.65%
15 21.10% 21.10% 28.27% 28.27%
16 21.03% 21.03% 24.06% 24.06%
17 23.85% 23.17% 19.92% 22.18%
18 22.73% 21.52% 19.13% 21.90%
19 22.04% 20.41% 22.77% 27.31%
20 21.88% 20.51% 21.62% 25.10%
21 23.31% 23.31% 20.96% 20.96%
22 21.36% 21.36% 19.75% 19.75%
23 20.29% 20.29% 19.78% 19.78%
24 20.70% 20.70% 23.05% 23.05%
25 24.27% 24.07% 25.09% 37.77%
26 21.08% 19.66% 26.36% 35.64%
27 23.92% 22.76% 26.90% 34.46%
28 21.34% 19.96% 26.84% 36.96%
29 19.99% 17.45% 22.92% 22.93%
30 24.54% 20.72% 21.79% 22.43%
31 21.62% 18.43% 21.69% 24.48%
32 20.69% 17.73% 20.38% 24.63%

I

Table A.2: Results of the last 32 tests using stacked autoencoder networks
Test Task 1 MAPE 1 Task 1 MAPE 2 Task 2 MAPE 1 Task 2 MAPE 2
33 20.91% 20.91% 20.56% 20.56%
34 20.72% 20.72% 25.37% 25.37%
35 20.11% 20.11% 27.97% 27.97%
36 20.63% 20.63% 25.83% 25.83%
37 20.00% 18.62% 20.56% 23.85%
38 20.84% 19.06% 20.33% 23.70%
39 22.90% 21.83% 24.48% 27.46%
40 20.05% 19.91% 30.44% 31.58%
41 22.54% 20.07% 21.16% 23.16%
42 22.15% 18.71% 18.60% 22.81%
43 21.79% 18.39% 23.36% 24.30%
44 20.58% 18.19% 24.28% 23.10%
45 27.06% 28.61% 26.56% 33.16%
46 21.56% 20.81% 22.20% 31.22%
47 22.57% 21.44% 21.77% 40.09%
48 22.12% 20.24% 26.58% 37.42%
49 21.77% 19.30% 27.55% 27.60%
50 20.14% 17.84% 23.22% 26.87%
51 20.83% 18.13% 30.78% 33.10%
52 20.49% 17.89% 26.35% 28.47%
53 29.15% 29.12% 27.65% 36.88%
54 22.43% 21.25% 30.77% 38.42%
55 24.09% 22.49% 29.76% 36.07%
56 22.35% 21.73% 23.73% 33.86%
57 20.74% 20.74% 15.41% 15.41%
58 21.23% 21.23% 16.20% 16.20%
59 21.32% 21.32% 18.14% 18.14%
60 21.54% 21.54% 18.97% 18.97%
61 21.40% 19.96% 23.32% 24.05%
62 21.05% 19.79% 23.18% 25.07%
63 20.68% 19.40% 23.02% 27.15%
64 20.23% 19.15% 21.95% 26.30%

II

Table A.3: Results of the first 32 tests using shallow neural networks
Test Task 1 MAPE 1 Task 1 MAPE 2 Task 2 MAPE 1 Task 2 MAPE 2

1 20.78% 20.05% 31.17% 42.70%
2 21.11% 19.82% 34.13% 43.46%
3 20.72% 20.03% 22.01% 32.36%
4 20.95% 20.22% 20.91% 33.56%
5 21.63% 18.48% 24.31% 28.29%
6 20.61% 17.88% 22.96% 27.93%
7 20.76% 18.74% 24.23% 22.11%
8 20.78% 18.37% 21.43% 20.89%
9 23.03% 21.16% 26.52% 29.04%
10 21.94% 20.67% 21.74% 24.25%
11 20.78% 19.33% 24.41% 24.57%
12 21.43% 20.88% 23.03% 25.62%
13 23.44% 23.44% 36.75% 36.75%
14 21.18% 21.18% 38.52% 38.52%
15 23.62% 23.62% 38.92% 38.92%
16 22.03% 22.03% 23.90% 23.90%
17 24.03% 23.12% 20.35% 25.67%
18 21.47% 20.24% 20.58% 24.38%
19 22.22% 20.90% 22.28% 27.89%
20 21.09% 20.19% 21.74% 28.50%
21 23.75% 23.75% 20.03% 20.03%
22 20.70% 20.70% 21.67% 21.67%
23 21.62% 21.62% 23.90% 23.90%
24 20.49% 20.49% 24.37% 24.37%
25 23.12% 24.65% 25.73% 39.20%
26 21.41% 24.27% 26.17% 49.24%
27 22.11% 21.77% 25.97% 36.83%
28 21.26% 21.67% 25.08% 38.57%
29 20.97% 18.99% 26.61% 27.40%
30 20.93% 18.33% 27.14% 28.56%
31 23.52% 21.08% 25.42% 30.59%
32 23.32% 21.79% 38.78% 42.25%

III

Table A.4: Results of the last 32 tests using shallow neural networks
Test Task 1 MAPE 1 Task 1 MAPE 2 Task 2 MAPE 1 Task 2 MAPE 2
33 21.19% 21.19% 21.81% 21.81%
34 20.01% 20.01% 21.44% 21.44%
35 21.06% 21.06% 22.12% 22.12%
36 20.31% 20.31% 23.91% 23.91%
37 20.45% 19.33% 19.68% 25.45%
38 20.19% 19.04% 21.20% 25.69%
39 20.18% 18.98% 19.10% 22.11%
40 20.32% 19.49% 21.47% 23.59%
41 22.99% 19.61% 19.94% 23.78%
42 21.21% 18.44% 20.58% 24.40%
43 21.12% 18.25% 20.82% 25.33%
44 20.73% 18.16% 22.01% 23.17%
45 31.66% 32.05% 34.19% 82.02%
46 22.34% 21.44% 32.12% 49.83%
47 24.93% 22.97% 37.19% 54.02%
48 21.97% 20.56% 26.34% 39.81%
49 21.95% 19.57% 23.95% 27.92%
50 20.17% 17.82% 25.51% 28.67%
51 20.90% 18.20% 21.91% 25.92%
52 20.90% 18.14% 21.67% 24.85%
53 30.34% 31.56% 33.33% 38.77%
54 22.81% 23.13% 35.92% 38.21%
55 24.18% 22.20% 26.81% 36.64%
56 22.09% 21.95% 26.51% 37.17%
57 24.53% 24.53% 17.62% 17.62%
58 22.42% 22.42% 16.11% 16.11%
59 23.82% 23.82% 17.27% 17.27%
60 25.17% 25.17% 16.56% 16.56%
61 23.90% 22.11% 27.23% 30.20%
62 23.02% 21.76% 27.91% 32.03%
63 20.56% 19.60% 23.18% 31.66%
64 21.05% 20.19% 22.64% 28.32%

IV

Table A.5: First 32 tests with corresponding feature levels of the L64 orthogonal array.
Test F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

1 1
2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 1 2 2 2 2 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
6 1 2 2 2 2 2 2 2 2 1 1 1 1 4 4 4 4 3 3 3 3
7 1 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2
8 1 2 2 2 2 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1
9 1 3 3 3 3 1 1 1 1 3 3 3 3 4 4 4 4 2 2 2 2
10 1 3 3 3 3 2 2 2 2 4 4 4 4 3 3 3 3 1 1 1 1
11 1 3 3 3 3 3 3 3 3 1 1 1 1 2 2 2 2 4 4 4 4
12 1 3 3 3 3 4 4 4 4 2 2 2 2 1 1 1 1 3 3 3 3
13 1 4 4 4 4 1 1 1 1 4 4 4 4 2 2 2 2 3 3 3 3
14 1 4 4 4 4 2 2 2 2 3 3 3 3 1 1 1 1 4 4 4 4
15 1 4 4 4 4 3 3 3 3 2 2 2 2 4 4 4 4 1 1 1 1
16 1 4 4 4 4 4 4 4 4 1 1 1 1 3 3 3 3 2 2 2 2
17 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
18 2 1 2 3 4 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3
19 2 1 2 3 4 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
20 2 1 2 3 4 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1
21 2 2 1 4 3 1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
22 2 2 1 4 3 2 1 4 3 1 2 3 4 4 3 2 1 3 4 1 2
23 2 2 1 4 3 3 4 1 2 4 3 2 1 1 2 3 4 2 1 4 3
24 2 2 1 4 3 4 3 2 1 3 4 1 2 2 1 4 3 1 2 3 4
25 2 3 4 1 2 1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3
26 2 3 4 1 2 2 1 4 3 4 3 2 1 3 4 1 2 1 2 3 4
27 2 3 4 1 2 3 4 1 2 1 2 3 4 2 1 4 3 4 3 2 1
28 2 3 4 1 2 4 3 2 1 2 1 4 3 1 2 3 4 3 4 1 2
29 2 4 3 2 1 1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2
30 2 4 3 2 1 2 1 4 3 3 4 1 2 1 2 3 4 4 3 2 1
31 2 4 3 2 1 3 4 1 2 2 1 4 3 4 3 2 1 1 2 3 4
32 2 4 3 2 1 4 3 2 1 1 2 3 4 3 4 1 2 2 1 4 3

V

Table A.6: Last 32 tests with corresponding feature levels of the L64 orthogonal array.
Test F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

33 3 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4 2
34 3 1 3 4 2 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1
35 3 1 3 4 2 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4
36 3 1 3 4 2 4 2 1 3 4 2 1 3 4 2 1 3 4 2 1 3
37 3 2 4 3 1 1 3 4 2 2 4 3 1 3 1 2 4 4 2 1 3
38 3 2 4 3 1 2 4 3 1 1 3 4 2 4 2 1 3 3 1 2 4
39 3 2 4 3 1 3 1 2 4 4 1 1 3 1 3 4 2 2 4 3 1
40 3 2 4 3 1 4 2 1 3 3 2 2 4 2 4 3 1 1 3 4 2
41 3 3 1 2 4 1 3 4 2 3 1 2 4 4 2 1 3 2 4 3 1
42 3 3 1 2 4 2 4 3 1 4 2 1 3 3 1 2 4 1 3 4 2
43 3 3 1 2 4 3 1 2 4 1 3 4 2 2 4 3 1 4 2 1 3
44 3 3 1 2 4 4 2 1 3 2 4 3 1 1 3 4 2 3 1 2 4
45 3 4 2 1 3 1 3 4 2 4 2 1 3 2 4 3 1 3 1 2 4
46 3 4 2 1 3 2 4 3 1 3 1 2 4 1 3 4 2 4 2 1 3
47 3 4 2 1 3 3 1 2 4 2 4 3 1 4 2 1 3 1 3 4 2
48 3 4 2 1 3 4 2 1 3 1 3 4 2 3 1 2 4 2 4 3 1
49 4 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3
50 4 1 4 2 3 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4
51 4 1 4 2 3 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1
52 4 1 4 2 3 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
53 4 2 3 1 4 1 4 2 3 2 3 1 4 3 2 4 1 4 1 3 2
54 4 2 3 1 4 2 3 1 4 1 4 2 3 4 1 3 2 3 2 4 1
55 4 2 3 1 4 3 2 4 1 4 1 3 2 1 4 2 3 2 3 1 4
56 4 2 3 1 4 4 1 3 2 3 2 4 1 2 3 1 4 1 4 2 3
57 4 3 2 4 1 1 4 2 3 3 2 4 1 4 1 3 2 2 3 1 4
58 4 3 2 4 1 2 3 1 4 4 1 3 2 3 2 4 1 1 4 2 3
59 4 3 2 4 1 3 2 4 1 1 4 2 3 2 3 1 4 4 1 3 2
60 4 3 2 4 1 4 1 3 2 2 3 1 4 1 4 2 3 3 2 4 1
61 4 4 1 3 2 1 4 2 3 4 1 3 2 2 3 1 4 3 2 4 1
62 4 4 1 3 2 2 3 1 4 3 2 4 1 1 4 2 3 4 1 3 2
63 4 4 1 3 2 3 2 4 1 2 3 1 4 4 1 3 2 1 4 2 3
64 4 4 1 3 2 4 1 3 2 1 4 2 3 3 2 4 1 2 3 1 4

V
I

B Appendix B

This appendix contains additional data plots referenced in Chapter 3.

0
9
-2
8
0
0
:0
0

0
9
-2
9
0
0
:0
0

0
9
-3
0
0
0
:0
0

1
0
-0
1
0
0
:0
0

1
0
-0
2
0
0
:0
0

1
0
-0
3
0
0
:0
0

1
0
-0
4
0
0
:0
0

1
0
-0
5
0
0
:0
0

1
0
-0
6
0
0
:0
0

1
0
-0
7
0
0
:0
0

1
0
-0
8
0
0
:0
0

1
0
-0
9
0
0
:0
0

1
0
-1
0
0
0
:0
0

1
0
-1
1
0
0
:0
0

0

100

200

300

400
A:3

0
9
-2
8
0
0
:0
0

0
9
-2
9
0
0
:0
0

0
9
-3
0
0
0
:0
0

1
0
-0
1
0
0
:0
0

1
0
-0
2
0
0
:0
0

1
0
-0
3
0
0
:0
0

1
0
-0
4
0
0
:0
0

1
0
-0
5
0
0
:0
0

1
0
-0
6
0
0
:0
0

1
0
-0
7
0
0
:0
0

1
0
-0
8
0
0
:0
0

1
0
-0
9
0
0
:0
0

1
0
-1
0
0
0
:0
0

1
0
-1
1
0
0
:0
0

0

200

400

B:1

0
9
-2
8
0
0
:0
0

0
9
-2
9
0
0
:0
0

0
9
-3
0
0
0
:0
0

1
0
-0
1
0
0
:0
0

1
0
-0
2
0
0
:0
0

1
0
-0
3
0
0
:0
0

1
0
-0
4
0
0
:0
0

1
0
-0
5
0
0
:0
0

1
0
-0
6
0
0
:0
0

1
0
-0
7
0
0
:0
0

1
0
-0
8
0
0
:0
0

1
0
-0
9
0
0
:0
0

1
0
-1
0
0
0
:0
0

1
0
-1
1
0
0
:0
0

0

200

400
B:3

Figure B.1: Task 1 data, from intersection to tollgate, between the 28th of September and the 11th of October.
Y-axis: average travel time (s), X-axis: date and time (mm-dd hh:mm)

VII

0
9
-2
8
0
0
:0
0

0
9
-2
9
0
0
:0
0

0
9
-3
0
0
0
:0
0

1
0
-0
1
0
0
:0
0

1
0
-0
2
0
0
:0
0

1
0
-0
3
0
0
:0
0

1
0
-0
4
0
0
:0
0

1
0
-0
5
0
0
:0
0

1
0
-0
6
0
0
:0
0

1
0
-0
7
0
0
:0
0

1
0
-0
8
0
0
:0
0

1
0
-0
9
0
0
:0
0

1
0
-1
0
0
0
:0
0

1
0
-1
1
0
0
:0
0

0

200

400

600
C:1

0
9
-2
8
0
0
:0
0

0
9
-2
9
0
0
:0
0

0
9
-3
0
0
0
:0
0

1
0
-0
1
0
0
:0
0

1
0
-0
2
0
0
:0
0

1
0
-0
3
0
0
:0
0

1
0
-0
4
0
0
:0
0

1
0
-0
5
0
0
:0
0

1
0
-0
6
0
0
:0
0

1
0
-0
7
0
0
:0
0

1
0
-0
8
0
0
:0
0

1
0
-0
9
0
0
:0
0

1
0
-1
0
0
0
:0
0

1
0
-1
1
0
0
:0
0

0

200

400

C:3

Figure B.2: Task 1 data, from intersection to tollgate, between the 28th of September and the 11th of October.
Y-axis: average travel time (s), X-axis: date and time (mm-dd hh:mm).

VIII

0
9
-1
2
0
0
:0
0

0
9
-1
3
0
0
:0
0

0
9
-1
4
0
0
:0
0

0
9
-1
5
0
0
:0
0

0
9
-1
6
0
0
:0
0

0
9
-1
7
0
0
:0
0

0
9
-1
8
0
0
:0
0

0
9
-1
9
0
0
:0
0

0
9
-2
0
0
0
:0
0

0
9
-2
1
0
0
:0
0

0

200

400 A:2

0
9
-1
2
0
0
:0
0

0
9
-1
3
0
0
:0
0

0
9
-1
4
0
0
:0
0

0
9
-1
5
0
0
:0
0

0
9
-1
6
0
0
:0
0

0
9
-1
7
0
0
:0
0

0
9
-1
8
0
0
:0
0

0
9
-1
9
0
0
:0
0

0
9
-2
0
0
0
:0
0

0
9
-2
1
0
0
:0
0

0

200

400

A:3

0
9
-1
2
0
0
:0
0

0
9
-1
3
0
0
:0
0

0
9
-1
4
0
0
:0
0

0
9
-1
5
0
0
:0
0

0
9
-1
6
0
0
:0
0

0
9
-1
7
0
0
:0
0

0
9
-1
8
0
0
:0
0

0
9
-1
9
0
0
:0
0

0
9
-2
0
0
0
:0
0

0
9
-2
1
0
0
:0
0

0

200

400

600

800 B:1

Figure B.3: Task 1 data, from intersection to tollgate, between the 12th and 20th of September. Y-axis: average
travel time (s), X-axis: date and time (mm-dd hh:mm).

IX

0
9
-1
2
0
0
:0
0

0
9
-1
3
0
0
:0
0

0
9
-1
4
0
0
:0
0

0
9
-1
5
0
0
:0
0

0
9
-1
6
0
0
:0
0

0
9
-1
7
0
0
:0
0

0
9
-1
8
0
0
:0
0

0
9
-1
9
0
0
:0
0

0
9
-2
0
0
0
:0
0

0
9
-2
1
0
0
:0
0

0

100

200

300

400
B:3

0
9
-1
2
0
0
:0
0

0
9
-1
3
0
0
:0
0

0
9
-1
4
0
0
:0
0

0
9
-1
5
0
0
:0
0

0
9
-1
6
0
0
:0
0

0
9
-1
7
0
0
:0
0

0
9
-1
8
0
0
:0
0

0
9
-1
9
0
0
:0
0

0
9
-2
0
0
0
:0
0

0
9
-2
1
0
0
:0
0

0

500

1,000

1,500 C:1

0
9
-1
2
0
0
:0
0

0
9
-1
3
0
0
:0
0

0
9
-1
4
0
0
:0
0

0
9
-1
5
0
0
:0
0

0
9
-1
6
0
0
:0
0

0
9
-1
7
0
0
:0
0

0
9
-1
8
0
0
:0
0

0
9
-1
9
0
0
:0
0

0
9
-2
0
0
0
:0
0

0
9
-2
1
0
0
:0
0

0

500

1,000 C:3

Figure B.4: Task 1 data, from intersection to tollgate, between the 12th and 20th of September. Y-axis: average
travel time (s), X-axis: date and time (mm-dd hh:mm).

X

0
9
-2
8
0
0
:0
0

0
9
-2
9
0
0
:0
0

0
9
-3
0
0
0
:0
0

1
0
-0
1
0
0
:0
0

1
0
-0
2
0
0
:0
0

1
0
-0
3
0
0
:0
0

1
0
-0
4
0
0
:0
0

1
0
-0
5
0
0
:0
0

1
0
-0
6
0
0
:0
0

1
0
-0
7
0
0
:0
0

1
0
-0
8
0
0
:0
0

1
0
-0
9
0
0
:0
0

1
0
-1
0
0
0
:0
0

1
0
-1
1
0
0
:0
0

0

100

200

300
1:Entry

0
9
-2
8
0
0
:0
0

0
9
-2
9
0
0
:0
0

0
9
-3
0
0
0
:0
0

1
0
-0
1
0
0
:0
0

1
0
-0
2
0
0
:0
0

1
0
-0
3
0
0
:0
0

1
0
-0
4
0
0
:0
0

1
0
-0
5
0
0
:0
0

1
0
-0
6
0
0
:0
0

1
0
-0
7
0
0
:0
0

1
0
-0
8
0
0
:0
0

1
0
-0
9
0
0
:0
0

1
0
-1
0
0
0
:0
0

1
0
-1
1
0
0
:0
0

0

100

200
1:Exit

0
9
-2
8
0
0
:0
0

0
9
-2
9
0
0
:0
0

0
9
-3
0
0
0
:0
0

1
0
-0
1
0
0
:0
0

1
0
-0
2
0
0
:0
0

1
0
-0
3
0
0
:0
0

1
0
-0
4
0
0
:0
0

1
0
-0
5
0
0
:0
0

1
0
-0
6
0
0
:0
0

1
0
-0
7
0
0
:0
0

1
0
-0
8
0
0
:0
0

1
0
-0
9
0
0
:0
0

1
0
-1
0
0
0
:0
0

1
0
-1
1
0
0
:0
0

0

50

100

150 2:Entry

0
9
-2
8
0
0
:0
0

0
9
-2
9
0
0
:0
0

0
9
-3
0
0
0
:0
0

1
0
-0
1
0
0
:0
0

1
0
-0
2
0
0
:0
0

1
0
-0
3
0
0
:0
0

1
0
-0
4
0
0
:0
0

1
0
-0
5
0
0
:0
0

1
0
-0
6
0
0
:0
0

1
0
-0
7
0
0
:0
0

1
0
-0
8
0
0
:0
0

1
0
-0
9
0
0
:0
0

1
0
-1
0
0
0
:0
0

1
0
-1
1
0
0
:0
0

0

100

200
3:Entry

Figure B.5: Task 2 data, from intersection to tollgate, between the 28th of September and the 11th of October.
Y-axis: traffic volume (number of vehicles), X-axis: date and time (mm-dd hh:mm).

XI

	Abstract
	Acknowledgements
	Contents
	Introduction
	Problem description
	Related work
	Scope
	Thesis outline

	Background
	Artificial neural networks
	Training an artificial neural network
	Feed forward neural network
	Stacked autoencoder
	Input preparation

	Taguchi design of experiments

	Provided data
	Task 1 - travel time
	Task 2 - traffic volume
	Weather

	Method
	Network designs
	Data preparation
	Implementation
	Parameter optimization

	Results
	Taguchi tests
	Travel time prediction
	Volume prediction

	Performance
	Travel time prediction
	Volume prediction

	Discussion
	Conclusion
	References
	Appendix A
	Appendix B

