
Structural design optimisation
by organisation of stiffness
Development of a finite element package for generative design

Master’s Thesis in Structural Engineering and Building Technology

CARL HOFF
ISAK NÄSLUND

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016:42

Structural design optimisation
by organisation of stiffness

Development of a finite element package for generative design

CARL HOFF
ISAK NÄSLUND

Department of Applied Mechanics
Division of Material and Computational Mechanics

Chalmers University of Technology
Gothenburg, Sweden 2016

Structural design optimisation by organisation of stiffness
Development of a finite element package for generative design
CARL HOFF
ISAK NÄSLUND

© CARL HOFF, ISAK NÄSLUND, 2016.

Supervisor: Rasti Bartek, Buro Happold Engineering
Supervisor: Mats Ander, Applied Mechanics
Examiner: Mats Ander, Applied Mechanics

Master’s Thesis 2016:42
Department of Applied Mechanics
Division of Material and Computational Mechanics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Results of combining optimisation methods on a dome structure, see section
6.3

Typeset in LATEX
Printed by Chalmers Reproservice Gothenburg, Sweden 2016

iv

Structural design optimisation by organisation of stiffness
Development of a finite element package for generative design
CARL HOFF & ISAK NÄSLUND
Department of Applied Mechanics
Chalmers University of Technology

Abstract
When a structure is designed, the designer has a choice to make their design in any
number of ways. What drives the choices could be structural efficiency (oftentimes
measured by weight), economy, architectural qualities, rationality, environmental
impact or some other factor. Since these factors often can be hard to measure,
especially at an early state of design when the level of uncertainty is high, a need
for quick tools for generating acceptable designs is identified.

This thesis work has focused on developing a structural design tool that can
be used for this purpose. It is implemented as a finite element package for the
Rhinoceros plugin Grasshopper, a parametric design tool which also is well suited
for the early stages of design. The package, called CIGull, contains a set of cus-
tomisable optimisation methods for the generation of design, and includes simplified
section checks. The methods were all focused on the redistribution of internal forces
by organisation of stiffness. The methods included automated iterative section siz-
ing, section alignment rotation, canonical stiffness (statical eigenmode) analysis and
connection stiffness (discrete springs) redistribution. The methods were tested on a
small set of test structures of varying complexity, as well as on a real project: KAFD
Metro Station by Zaha Hadid Architects and Buro Happold Engineering.

The iterative section sizers were found to be quick, but they sometimes produced
inefficient load paths. Improvements to these methods were suggested. The section
alignment rotation method was shown to be an effective tool to increase structural
efficiency, but questions were raised about its level of rationality. The connection
stiffness redistribution method was shown to be able to improve structural efficiency,
but automation of the method using genetic algorithms was shown to be very time
consuming. It was possible to combine statical eigenmode analysis with an iterative
section sizer to create new load patterns, which in some cases produced more effective
structures. It was concluded that the best results were obtained by combining
different methods.

The proposed methods were found to be sensitive to the case-specific input pa-
rameters. No one method was shown to produce better results in all cases. It could
be concluded that the methods were best used as a means of understanding the
structure. From the tested examples we conclude that the developed generative
design tool is promising for the early conceptual design stages.
Keywords: Structural design, Optimisation, Finite element method, FEM, Paramet-
ric design, Grasshopper

i

Structural design optimisation by organisation of stiffness
Development of a finite element package for generative design
CARL HOFF & ISAK NÄSLUND
Avdelningen för Tillämpad Mekanik
Chalmers Tekniska Högskola

Sammanfattning
Vid utformningen av en struktur har ingenjören stor valmöjlighet i hur designen skall
vara. Ett flertal faktorer kan påverka valet, t. ex. strukturell effektivitet (ofta mätt
i vikt), ekonomiska faktorer, arkitektoniska kvalitéer, byggbarhet, miljöpåverkan
eller någonting annat. Eftersom dessa faktorer kan vara svåra att mäta, särskilt i
ett tidigt designskede, kan behovet för ett skissverktyg för denna uppgift identifieras.

I detta examensarbete har fokuset varit att utveckla ett designverktyg för detta
syfte. Det har implementerats som en finitelementlösare till 3d-modelleringsprogrammet
Rhinoceros plugin Grasshopper, som är ett parametriskt designverktyg väl lämpat
för tidiga designskeden. Den framtagna pluginen CIGull innehåller även tvärsnittskon-
troller samt ett antal anpassningsbara optimeringsmetoder för generativ design, som
alla syftar till att omfördela inre krafter genom att fördela styvhet. Dessa metoder
inkluderar automatisk iterativ tvärsnittsuppdatering, tvärsnittsrotering, kanonisk
styvhetsanalys (statisk egenmodsanalys) och omfördelning av inre krafter genom
att förändra kopplingsstyvheter. Metoderna har testats på ett antal strukturer av
skiftande komplexitet samt ett projekt i byggstadiet: KAFD Metro Station av Zaha
Hadid Architects och Buro Happold Engineering.

De automatiska iterativa tvärsnittsuppdateringsalgoritmerna har visats vara snabba
men ibland ineffektiva i de lösningar de tog fram. Förslag till förbättringar till dessa
algoritmer gavs. Tvärsnittsroteringsmetoden visades vara effektiv för att öka den
strukturella effektiviteten, men dess praktiska användbarhet ifrågasattes. En varia-
tion av styvheten i kopplingar visades kunna skapa mer effektiva lastvägar, men att
automatisera en optimering av dessa styvheter m.h.a. genetiska algoritmer visades
vara mycket tidskrävande. De statiska egenmoderna kunde kombineras med de
automatiska iterativa tvärsnittsuppdateringsalgoritmerna för att i vissa fall kunna
generera mer effektiva lösningar. De bästa resultaten uppnåddes genom att kom-
binera olika metoder.

Av de föreslagna metoderna visades ingen ge bäst resultat för samtliga situationer.
Alla metoder visades vara känsliga för val av initiella parametrar. Slutsatsen kunde
dras att metoderna bäst kunde användas för att läsa och förstå en struktur. Från
de studerade exemplen dras slutsatsen att det utvecklade verktyget är lovande för
användning i tidiga designskeden.

Nyckelord: Strukturdesign, optimering, Finita elementmetoden, FEM, Parametrisk
design, Grasshopper

iii

Acknowledgements
We would very much like to thank our supervisor and examiner Dr. Mats Ander for
his encouragement and and feedback. We would also like to thank our supervisor
Rasti Bartek of Buro Happold Engineers in London, for his many ideas and good
advice.

We would also like to thank our professor Karl-Gunnar Olsson for always taking
the time, and for the many books he has written. Finally we would like to thank
our opponents Niclas Karlsson and Marcus Hjelm.

Carl Hoff and Isak Näslund, Gothenburg, June 2016

v

Nomenclature
The following section presents the symbols used throughout this thesis. Value sym-
bols that have a unit are presented as SI units if nothing else is stated.

General
Greek upper case symbols∏ Product of a sequence (mathematical operator) -

Greek lower case symbols

η Utilisation
θ Element rotation [rad]
λ Eigenvalue
λ1 Lowest eigenvalue
ρ Density [kg/m3]
σ Stress [Pa]
ϕ Element rotation around in local x axis [rad]

Roman upper case symbols

U Strain energy [Nm]

Roman italic upper case symbols

E Young’s modulus [Pa]
G Shear modulus [Pa]
I Second moment of area [m4]
L Element length [m]
M Bending moment [Nm]
N Normal force [N]
V Shear force [N]

Roman italic lower case symbols

b Section property width [mm]
fy Yield stress [Pa]
h Section property height [mm]
k Spring stiffness [N/m] / [Nm/rad]
m Mass [kg]
n Quantity [-]
t Section property thickness [mm]
u Element displacement in local x direction [m]
v Element displacement in local y direction [m]
w Element displacement in local z direction [m]

vii

Roman bold upper case symbols
For some symbols used for matrix notation (for instance the stiffness matrix K) not
all elements in the matrix has the same units. In these cases the term [var] is used.

K Stiffness matrix [var.]

Roman bold lower case symbols

a Displacement vector [m] / [rad]
f Force vector [N] / [Nm]

viii

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Stiffness redistribution . 3
1.1.2 Finite element solving . 7
1.1.3 Canonical stiffnesses . 7

1.2 Aim . 8
1.3 Method . 8
1.4 Limitations . 10

1.4.1 General . 10
1.4.2 Section properties . 10

1.5 Outline of the report . 11

2 Theory 12
2.1 Finite elements . 12

2.1.1 Frame elements . 12
2.1.1.1 Bar action . 12
2.1.1.2 Beam action . 16
2.1.1.3 Torsion . 22
2.1.1.4 2D-Frame elements 23
2.1.1.5 3D-Frame elements 24
2.1.1.6 Transformation to global coordinates 25

2.1.2 Springs . 27
2.1.3 Connection stiffness . 28

2.2 Canonical stiffnesses . 29
2.3 Structural Optimisation . 30

2.3.1 Introduction to structural optimisation 30
2.3.1.1 Design space and solution space 31
2.3.1.2 The need for heuristics 33

2.4 Optimisation Algorithms . 35
2.4.1 Iterative section sizer . 35
2.4.2 Section Rotator . 36
2.4.3 Mode shape optimisation . 39
2.4.4 Genetic algorithms . 40

3 Method 42
3.1 Project overview . 42

ix

Contents

3.1.1 Rhinoceros and Grasshopper 44
3.1.2 Creating plugins for Grasshopper 44
3.1.3 Armadillo . 46

3.1.3.1 BLAS and LAPACK 46
3.1.4 C++/CLI . 47

3.2 Development of a finite element solver 48
3.2.1 Finite element engine . 48

3.2.1.1 Structure . 48
3.2.1.1.1 Degrees of freedom 48
3.2.1.1.2 Nodes . 48
3.2.1.1.3 Elements 49

3.2.1.2 Forces . 49
3.2.1.3 Solvers . 49

3.2.1.3.1 Linear solver 49
3.2.1.3.2 Eigen solver 50

3.2.1.4 Post-processing . 50
3.2.1.4.1 Section forces and displacements 50
3.2.1.4.2 Utilisation checks 51

3.2.1.5 Optimisers . 52
3.2.1.5.1 Section sizer and rotator 52
3.2.1.5.2 Mode shape optimiser 52
3.2.1.5.3 Combined optimiser 52

3.2.2 Wrapper . 52
3.2.3 Grasshopper plug-in . 53

3.2.3.1 Overview . 53
3.2.3.2 Geometry generation 54
3.2.3.3 Elements . 54
3.2.3.4 Material . 55
3.2.3.5 Restraints . 56
3.2.3.6 Forces . 56
3.2.3.7 Structure . 57
3.2.3.8 Solver . 57
3.2.3.9 Results . 58
3.2.3.10 Optimisers . 59

3.2.4 Verification of results . 60
3.3 Optimisation methods . 61

3.3.1 Iterative section sizer . 61
3.3.1.1 General . 61
3.3.1.2 Method 1: Smallest acceptable section 62
3.3.1.3 Method 2: Step-wise incrementation 63
3.3.1.4 Method 3: Step-wise incrementation with down-sizing 64
3.3.1.5 Method 4: First acceptable solution from current

section . 65
3.3.1.6 Sorting of cross sections 66

3.3.2 Section Rotator . 66
3.3.3 Mode shape optimiser . 67

x

Contents

3.3.3.1 Procedure . 67
3.3.4 Combined section sizer . 68
3.3.5 Section optimisation using genetic algorithms 68
3.3.6 Connection stiffness optimisation 69

3.4 Strategy for experiments . 70

4 Implementation 71
4.1 Linear solver . 71
4.2 Optimisation methods . 72

4.2.1 Iterative section sizer and rotator 72
4.2.1.1 Method 1: First acceptable section 74
4.2.1.2 Method 2: Step-wise incrementation 74
4.2.1.3 Method 3: Step-wise incrementation with down-sizing 75
4.2.1.4 Method 4: First acceptable solution from current

section . 75
4.2.1.5 Section rotator . 76

4.2.2 Mode shape optimiser . 77
4.2.3 Combined section sizer . 78

5 Case Studies 79
5.1 Small 2d frame . 79

5.1.1 Geometry . 79
5.1.2 Boundary conditions . 79
5.1.3 Loads . 80
5.1.4 Optimisation settings . 80

5.2 3d frame . 81
5.2.1 Geometry . 81
5.2.2 Boundary conditions . 81
5.2.3 Loads . 81
5.2.4 Optimisation settings . 82

5.3 Dome . 83
5.3.1 Geometry . 83
5.3.2 Boundary conditions . 83
5.3.3 Loads . 84
5.3.4 Cross sections . 84
5.3.5 Optimisation settings . 84

5.4 KAFD Metro Station . 86
5.4.1 Geometry . 87
5.4.2 Boundary conditions . 87
5.4.3 Loads . 87
5.4.4 Cross sections . 88
5.4.5 Optimisation settings . 89

6 Results 90
6.1 Small 2d frame . 90

6.1.1 Section sizer . 90
6.1.2 Genetic algorithms . 91

xi

Contents

6.1.3 Canonical stiffnesses and eigenmodes 92
6.1.4 Mode section sizer . 93
6.1.5 Combined section sizer . 94
6.1.6 Comments . 96

6.2 3d frame . 97
6.2.1 Section sizer and rotator . 97
6.2.2 Genetic algorithms . 98
6.2.3 Canonical stiffnesses and eigenmodes 99
6.2.4 Mode section sizer . 100
6.2.5 Combined section sizer . 101
6.2.6 Comments . 102

6.3 Dome . 103
6.3.1 Section sizer and rotator . 103
6.3.2 Canonical stiffnesses and eigenmodes 105
6.3.3 Mode section sizer . 106
6.3.4 Combined section sizer . 107
6.3.5 Section sizer with custom settings 109

6.3.5.1 Change of initial condintions 110
6.3.5.2 Combination of methods 111

6.3.6 Comments . 112
6.4 KAFD Metro Station . 113

6.4.1 Section sizer and rotator . 113
6.4.1.1 Minimal initial sections 113
6.4.1.2 Original initial sections 115

6.4.2 Canonical stiffnesses and eigenmodes 117
6.4.3 Mode section sizer . 118
6.4.4 Combined section sizer . 119
6.4.5 Comments . 121

7 Discussion 122
7.1 CIGull . 122
7.2 Iterative Section Sizer . 122

7.2.1 Method 1 . 122
7.2.2 Method 2 . 123
7.2.3 Method 3 . 123
7.2.4 Method 4 . 123
7.2.5 Combining methods . 124
7.2.6 Section rotator . 124

7.3 Genetic algorithms . 124
7.4 Connection stiffness optimisation . 125
7.5 Mode section sizer . 127
7.6 Combined section sizer . 127
7.7 Package release . 127
7.8 Open source code development . 128
7.9 Future implementation . 128

7.9.1 Structural Mechanics . 128

xii

Contents

7.10 Future studies . 130
7.10.1 Mode shape optimiser . 130

Appendix A Comparison of FE calculations II

Appendix B Cross sections
2d and 3d Frame VII

Appendix C Cross sections Dome IX

Appendix D Cross sections KAFD XII

Appendix E 3D-frame eigenvalues XIII

xiii

Division of work
The majority of the thesis work have been made in close collaboration between the
writers, and both of us stand behind this report together. For the coding part one
person may have written the code the other may have been the one checking and
rewriting it. There are though some parts where one or the other writer have done
the majority:

Isak Näslund has been the main contributor to writing the code for the optimis-
ers. He has also designed the algorithms and written the majority of the implemen-
tation chapter. In the case study and result chapters he has been the main writer
of the ’Dome’ and ’KAFD Metro Station’ sections. He has also written most of the
theory part on finite elements and canonical stiffnesses.

Carl Hoff has written much of the code for the finite element solver. He has
also written the main parts of the introduction and method chapters, as well as the
structural optimisation section in the theory chapter. In the case study and result
chapters he has been the main writer of the 2d- and 3d-frame sections.

xiv

1
Introduction

1.1 Background
The beginning of a design process is characterised by uncertainty. The typical

scenario at an engineering practice is to quickly respond to a design idea generated
by the architect, without having neither all the required project specific information
nor the time to do a thorough proposal. The aim is then to produce a reasonable
draft of a structure to which the other parts of the design team can react. The
process of coming up with this initial design of the structure is often driven by the
experience of the engineer, and often involves some form of rationalisation. The
initial design is also prone to influence the end result in ways that are not always
efficient for the project in terms of structural weight (i.e. material use).

There exists a wide range of optimisation methods, wherein the Fully Stressed
Design (FSD) is one. This method is based on that the optimal design is obtained
when every element is subjected to a stress corresponding to its maximum capacity
in at least one loadcase.
This is quantified by Greiner et al. [Greiner, Emperador (2015)] by using equation
1.1:

FSD =
√√√√ n∑

i=1
(σi,max − σRi,max)2 (1.1)

Where σi,max is the maximum stress in one element under any one load case and
σRi,max is the maximum allowed stress in that element. With a set of discrete sec-
tions is it possible to minimise this value in order to find an optimum distribution
for a given problem. This renders one solution for a statically determinate problem
but several distinct solutions for a statically indeterminate one. Given that most
structures in practice are statically indeterminate, this observation raises the ques-
tion which solution should be chosen out of the different FSD:s available? In terms
of structural weight this question can be condensed into an optimisation problem,
which of the possible solutions is the lightest? It can also be seen as a possibility
to evaluate the alternate designs for other criteria than just the weight, for instance
structural redundancy, architectural qualities or the pragmatism of the design.
The phenomenon of several distinct FSD:s also poses a problem for an engineering
problem if it’s not taken into account. Consider a common engineering practice;
to analyse a design, find the elements which are overutilised, and increasing their

1

1. Introduction

capacity. This is effectively treating elements in isolation rather than as a system,
which leads to structural systems that are optimised locally instead of globally.
In a structurally indeterminate system stiffness attracts forces which means that
elements cannot be treated solely in isolation, since any change will also affect the
whole structure. In the case described here, where some overutilised elements gets
strengthened, this means that they may attract even more force, and thus a loop is
formed. When a design that fulfils the FSD criterion eventually is obtained, it is far
from certain whether this is the ’best’ solution. This method is also very sensitive
to the initial design of the structure, rendering different solutions for varying initial
conditions. [Mueller, Burns (2001)]

As an alternative one could consider all fully stressed designs for a structure,
which would render several responses for which a new set of fitness criteria (weight,
similar cross section types etc.) could be applied in order to find the best solution.
However, this of course means that every possible combination of the problem would
have to be considered, rendering a vast number of structures to be analysed. In order
to save computation time some so called heuristics could be used. A heuristic is
a search method that does not necessarily generate the best solution, but rather a
’good enough’ solution, but in exchange have a significantly better performance in
terms of speed. Some of these methods are:

• Genetic algorithms
• Simulated annealing
• Particle swarm optimisation
• Ant colony optimisation

These algorithms are relatively effective tools for finding ’optimal’ solutions, but in
order to use them a value to optimise for is needed. If the loads are known the FSD
(or some other) value could be used, but what if the loads are unknown? This is,
as mentioned earlier, a quite common case in the early design stages. Furthermore,
the inherent problem still isn’t solved by using these methods. The search methods
may be more likely to find a good result, but the non-linear nature of structural
engineering tasks makes it very difficult to ensure that the obtained optimal solution
is really also the global optimum.

This thesis aims to create tools that helps the user explore the solution space of
structural engineering. By developing generative tools that are easy to use and so
streamlining the design process, the intention is to make it easier

2

1. Introduction

1.1.1 Stiffness redistribution
Although the concept of statically indeterminate structures may seem troublesome
at first glance (for calculation purposes, since the loads can take be carried in several
different ways), it can also be regarded as an opportunity for good structural design.
Consider a simple frame with rigid connections and a horisontal load:

Figure 1.1: A simple frame consisting of three beams. All connections are rigid.

The vertical elements are fixed to the ground, and all connections are rigid. It is
loaded with a horisontal force of f = 15.9 [kN] at the connection between element
1 and 3 (see fig. ??). The elements have rectangular cross sections of varying size,
see table 1.1. The material is steel, with E = 210 [GPa] and fy = 275 [MPa]

Element Section property
1 RHS 70 x 50 x 8
2 RHS 110 x 50 x 8
3 RHS 120 x 50 x 8

Table 1.1: Section properties for the three elements
*RHS = Rectangular hollow section [HH] x [WW] x [t]

When analysing this structure the following axial forces and moments are obtained:

(a) Axial forces (b) Moments

3

1. Introduction

By calculating a combined stress and comparing to the yield stress, utilisation factors
can be obtained (see fig. 1.3).

Figure 1.3: Utilisation

When analysing these results, one can conclude that the utilisation is high but
acceptable in the left column and the top beam, and too high in the right column.
In order to produce an acceptable response, the utilisation needs to be reduced in
the right column. The first idea that comes to mind is, naturally, to increase the
height of the cross section in that column. This has been done in fig. 1.4. In image
1.4a it can be noted that the utilisations have been reduced in all elements, but the
utilisation in the right column is still over 1. The size needs to be increased once
more, rendering the result in fig 1.4b, which is acceptable.

(a) Cross section of right column increased
to: RHS 120 x 50 x 8

(b) Cross section of right column increased
to: RHS 130 x 50 x 8

Figure 1.4: Utilisations for the frame as the cross section of the right column is increased.

While there is nothing that is obviously wrong with this process (it may very well
be the best solution with regards to the particular circumstances), it is always
interesting to review the alternative solutions. What happens for instance, if the
size of the left column is increased instead? Analysing the results (fig. 1.5) one can
see that the results are acceptable even after just one incrementation. Since the

4

1. Introduction

structure is statically indeterminate, the load path is determined by the stiffness of
the elements. While increasing the section size of the right column does increase its
capacity it also increases its stiffness, and therefore ’attracts’ more load. Increasing
the section size of the left column can therefore redistribute the load path into a
more efficient structural behaviour.

Figure 1.5: Utilisations for the frame as the cross section of the left column is increased to:
RHS 90 x 50 x 8.

Another way of redistributing the force flow in a structure could be to deal with the
problem more directly. Structural connections are often thought of as sort of binary,
either fixed or free. This is a simplification that is often reasonable to make, but in
reality almost all connections are not fully fixed or fully restrained, but something
in between. In this example all connections are modelled as stiff, but what if that is
changed? The highest moment in the right column is found closest to the support.
If the capacity for that connection was to be lowered, the load is forced to the left
column instead. Using a rotational spring (see fig. 1.6a) with a stiffness of k = 6·106

[Nm
rad

] results in an acceptable utilisation rate using the original sections.

(a) New boundary conditions, introducing
a rotational spring at the right support.

(b) Utilisations using a spring stiffness of
k = 6 · 106 [Nm

rad]

Figure 1.6: The original frame new boundary conditions

5

1. Introduction

The results of this short example are presented in table 1.2.

Model desc. Element Section property Util. [%] Weight [kg]

Original
1 RHS 70 x 50 x 8 91

168.52 RHS 110 x 50 x 8 108
3 RHS 120 x 50 x 8 68

Increase right
column size

1 RHS 70 x 50 x 8 77
176.02 RHS 130 x 50 x 8 94

3 RHS 120 x 50 x 8 66

Increase left
column size

1 RHS 80 x 50 x 8 89
172.22 RHS 110 x 50 x 8 99

3 RHS 120 x 50 x 8 63

Connection
stiffness

1 RHS 70 x 50 x 8 99
168.52 RHS 110 x 50 x 8 99

3 RHS 120 x 50 x 8 69

Table 1.2: Results from the different methods presented above, including a weight of the
structure (using ρ = 7800 kg

m3)

This is, clearly, a quite specific example designed to prove a point, and far from all
structures exhibit these properties. Irregardless, what the example does show is that
the most intuitive solution to a structural design problem is not necessarily the best
one. From table 1.2 it can be seen that editing the connection stiffness produced the
lowest structural weight and thus the lowest material usage. But is that then the
best solution? One can’t say for sure. There is no such thing as a free lunch, and all
solutions have their benefits and setbacks. Lowering the connection stiffness does
provide an acceptable solution, but at the expense of increased deflection. Increasing
the left column size also uses less material than increasing the right column, but
pushes the utilisation rate to 99% for one of the elements, which could be dangerous
if there is a high degree of uncertainty in the loads.

This leads to the conclusion that in order to find a good structural design, the
designer must consider many different solutions. All design strategies have their
flaws, and when dealing with complicated structures the enormous number of possi-
ble solutions makes it very difficult to find them all. The criteria for which design is
’best’ may not even be measurable but rather a matter of the architectural qualities
of the structure.

This thesis aims to create ways of quickly and rather effortlessly generate accept-
able (but not necessarily perfect) solutions for the designer to consider, in order to
more easily explore the solution space (see 2.3.1.1) of structural design.

6

1. Introduction

1.1.2 Finite element solving
A prerequisite for the finite element method to be effective is the presence of auto-
mated calculations. Two of the more common methods of doing this is either using
MATLAB or some other matrix solver or by using a commercial FE solver. Both
tools have advantages and disadvantages, which can be related to how accessible
the data is. Using a matrix solver puts the user in total control, but has drawbacks
in that the user interface is very time consuming to work with. Everything needs
to be done manually, which creates a problem as soon as the structure is not very
small and simple. As the user must keep track of which degree of freedom is which,
the work becomes very tedious when working with 3d structures, leading to errors
occurring frequently and an overly complicated procedure when making changes to
the design.

The alternative to use a commercial software is in these regards a better option,
since they are usually designed to alleviate these issues. The main setback using
a commercial software is that it puts the user ’at the mercy’ of the developer.
Whatever the developer has implemented is that which the user can access. If the
user wishes to access some data there is sometimes an application programming
interface (API) from which more data can be accessed. However, this also only
includes what the developer has chosen to expose, so the inherent problem is still
unsolved.

In order to resolve this issue one need to use a working method which puts the
user in control, but makes it easier to work with. The ideal option is to implement
the structural engineering methods that a matrix solver is using in a user-friendly
framework. A possible solution is to use available finite element packages, which
exist for some different environments (both for code and so called ’visual program-
ming’ environments). Everything comes down to how much control the user requires,
where the maximum control means implementing it themselves.

1.1.3 Canonical stiffnesses
The theory of canonical stiffnesses was presented by Karl-Gunnar Olsson and Carl
Thelin in their 2003 report [Olsson, Thelin (2003)]. The theory is presented in more
detail in section 2.2, but can be summarised as a method of finding the ’weakest’
deformation modes of a structure, i.e. the deformations that require the lowest
amount of energy to occur. Since this method can be used to measure the stability
of a structure, it is of interest to investigate how it can be used as an alternative
way to generate and possibly optimise structural design.

7

1. Introduction

1.2 Aim
The aim of the thesis is to investigate ways of increasing structural capacity

through the redistribution of forces. Methods of structural engineering design will
be developed and tested as a tool for structural design sketching. This tool should
produce acceptable designs for a given case. The aim of the thesis is also to in-
vestigate whether the use of stiffness redistribution can be implemented as a useful
tool for engineers in order to understand how a structure works. Furthermore, is
it possible to use this knowledge in an automated process, in order to in a similar
fashion generate a set of designs? One method that is intended to be studied for this
purpose is the theory of canonical stiffnesses (see section 2.2), which can be used for
obtaining information on the weaknesses of the structure.

The obtained solutions are intended to be used as a Design Support System (DSS),
as opposed to the choice of producing one "optimal" solution in a so called black box
solver. The resulting designs should be possible for the user to adapt to the specific
design case. Although the process should be as general as possible, it also needs
to be very easy model a problem and to interpret the results, since this allows a
(somewhat) seamless process of interpreting and reacting to the results.

Another aim of this thesis is to develop a computationally sound framework,
which could easily be expanded to implement new functions. It is also of interest to
explore how using programming as a tool can enable structural engineers to extend
their control of their work. By designing a robust framework of code, and by using
custom-built code, the user is only limited to their own imagination.

1.3 Method
In the light of the aim of the thesis, the method can be summarised as follows:

1. Obtain a finite element solver that
• is accessible from Grasshopper (see 3.1.1)
• has a quick calculation response

2. Create a plug-in for Grasshopper that can access the FE solver
3. Develop a set of different design optimisation methods:

• Section sizer (see 3.3.1)
• Genetic algorithms (see 2.4.4)
• Canonical stiffness (see 2.2 (theory) and 2.4.3 (implementation))

4. Test these methods on some basic structures to analyse their behaviour
5. Make a case study on a real life project

8

1. Introduction

Choice of FEM solver
In order to optimise a structure a means of analysing it must be provided. There
are several means of doing this, some of the identified alternatives are:

1. The CALFEM package for MATLAB.
2. Using a commercial FEM software, for instance GSA / Robot / SAP2000, etc.
3. Programming to the API of one of the commercial FEM softwares.
4. Karamba, a commercial FEM package for Grasshopper.
5. Making a basic FEM solver for Grasshopper.

In the context of this thesis, there are two constraints to the choice of solver:
• The API needs to be exposed.
• The response must be very quick for the iterative analysis to be a viable option.

Since one of the end goals of the thesis work is to create a tool for Grasshopper,
Options 1 and 2 are not possible. Option 3 is a better version of option 2, and
by controlling the FEM software from grasshopper is a good way to make sure that
the basic structural mechanic calculations are made in a good way. However, this
requires the entire API to be exposed and it also adds an unnecessary inefficiency
in the link between Grasshopper and the software, an inefficiency that may be very
detrimental to the overall performance given that it is expected that the number
of iterations will be quite high. An alternative then is Option 4, using a native
Grasshopper FEM solver like Karamba. However, this shares the problems of Option
3, although not to the same extent. The main reason why Options 3 and 4 are not
viable is that in order to solve the eigenvalue problem not only the API needs to be
exposed, but rather the entire stiffness matrix.

Therefore Option 5 should be used, developing a (simplified) native FEM solver
for Grasshopper.

Summarised specification of task
The main questions that should be investigated are:

• What are the implications of a design process which begins in some design and
adjusts the section properties until a satisfactory result is obtained? Can this
process be automated?

• What alternatives to "regular" automated section sizing exists, and what are
their advantages and drawbacks?

• Can canonical stiffnesses be used as such an alternative and
– as a method of finding efficient structures?
– as a way of understanding a structure when there is much uncertainty in

the design process?
• Can the use of connection stiffnesses redistribute the flow of forces in a struc-

ture, in order to reduce weight?
– Is it possible to automate this process?
– How can this be realized in practice?

9

1. Introduction

1.4 Limitations

1.4.1 General
Since the scope of the problem is in the discrete range, a natural limitation of the
thesis is that continuous solutions will be disregarded. This means that the study will
be performed using elements with constant cross-sections and discrete dimensions.
Another limitation of the thesis is that any topology optimisation will be omitted.
This limitation facilitates comparing eigenvalues and eigenmodes (see the section
on canonical stiffnesses, section 2.2) of the stiffness matrix to one another, since
any change of the degrees of freedom will increase the complexity of comparing the
eigenvalues and modes.

The aim of the thesis is to investigate the method of design generation. Rather
than developing one specific method, the intention is to develop several, which should
produce different designs for the engineer to compare and choose from. Since the
aim is focused in this way, the individual methods will not be investigated to the
extent that they would have been, should only one method have been developed.

When developing ’acceptable’ designs, some form of code checking must be done.
Earlier in the introduction (see fig. 1.3) this was done by checking a utilisation
rate based on combined axial and bending (see 3.2.1.4.2). These checks could be
done very rigorously, and should for the final verification of a design. In this thesis
though, the process is be simplified to only include some basic checks. It should
however be build in such a manner that it can be easily expanded with more checks
at a later time.

1.4.2 Section properties
To be able to perform a strength check on the elements of a structure, it must be
possible to check various stresses. Since the FEM solver will be implemented for
three dimensional calculations, this includes torsional checks. Torsion theory has two
parts, St Venant’s theory and Vlassov’s theory, where the former is dominating for
closed sections and the latter dominating for open sections (see 2.1.1.3). Given the
complex nature of Vlassov’s theory it is reasonable as a first step to only implement
closed sections (which also will simplify the checks for other stresses). In summary,
this limits the sections to be used to:

• Rectangular hollow sections (RHS)
• Rectangular solid sections
• Circular hollow sections (CHS)
• Circular solid sections

10

1. Introduction

1.5 Outline of the report
In chapter 2 an introduction to the finite element theory is presented, which has
been implemented in the thesis work. Thereafter follows an introduction to the
theory of canonical stiffness, an introduction to the optimisation problem and a
description of some of the optimisation algorithms and methods that currently exist.

Chapter 3 and 4 describes the way that the theory have been implemented in
two steps, chapter 3 more in general, and chapter 4 more in detail.

Chapter 5 presents several case studies where the various methods have been
tested on some test structures, and on a real project, the King Abdullah Finan-
cial District (KAFD) Metro Station in Ar Riyadh, Saudi Arabia, by Zaha HAdid
Architects and Buro Happold Engineering.

The results are presented in chapter 6, and discussed in chapter 7.

11

2
Theory

2.1 Finite elements
To solve structural problems different methods exists. One of the most commonly
used is finite element analysis in which each member is discretized. In this thesis
frame structures will be the focus point and both 2D and 3D situations will be cov-
ered, with a focus on 3D structures. The following section will give a brief overview of
finite elements used in this thesis. For further reading refer to [Dahlblom, Olsson (2010)].

2.1.1 Frame elements
A frame element consists of multiple differential equations governing its behaviour
for its different deformation modes and degrees of freedom. For a 2D case each end
of the element has three degrees of freedom, two translational and one rotational,
whereas in 3D the element will have six degrees of freedom on each node, 3 trans-
lational and 3 rotational. Translation in the direction of the centreline of the beam
will be governed by bar action, rotation around and translation along the axes per-
pendicular to the centre line by beam action and, for the 3D-case, rotation around
the centreline by torsion. All theory used is under the assumption that the members
have a constant cross section and a constant module of elasticity.

2.1.1.1 Bar action

Figure 2.1: Degrees of freedom and distributed load for a bar

The equilibrium equation for a bar is:

dN

dx
+ qx(x) = 0; 0 ≤ x ≤ L (2.1)

with the constitutive equation:

N = EA
du

dx
(2.2)

12

2. Theory

These equations can be used to construct the differential equation for bar action, or
axial stiffness, also called the strong form[Ottosen, Pettersson (1992)]:

d

dx

(
EA

du

dx

)
+ qx(x) = 0; 0 ≤ x ≤ L (2.3)

This equation can, using the previously mentioned assumptions of constant cross
section area and modulus of elasticity, be simplified to:

EA
d2u

dx2 + qx(x) = 0; 0 ≤ x ≤ L (2.4)

where:

E = Modulus of elasticity[N/m2]
A = Cross section area[m2]
u = Displacement along local x-axis[m]

qx(x) = Axial load distributed along the member[N/m]
L = Length of the bar[m]
N = Normal force[N]

This differential equation has four possible boundary conditions. These boundary
conditions can be either geometrical or natural. The geometric boundary conditions
are defined as:

u(0) = u0

u(L) = uL

(2.5)

These boundary conditions can be used when a displacement is prescribed at one
or both ends of the bar.
The natural boundary conditions are defined as:

N(0) = EA
du

dx

∣∣∣∣
x=0

= N0

N(L) = EA
du

dx

∣∣∣∣
x=L

= NL

(2.6)

These boundary condition can be used when a normal force is prescribed at one
or both ends of the bar. As the differential equation (eq 2.4) is a second degree
differential equation it is necessary to have two boundary condition to solve it, one
for each end of the bar. Used boundary conditions can be two geometrical, two
natural or a combinations of the two.
To obtain the weak form of eq 2.4, used to construct the FE-formulation, the equa-
tion is multiplied by an arbitrary weight function ν(x) and integrated over the length
of the element [Ottosen, Pettersson (1992)]:

13

2. Theory

∫ L

0
ν

[
EA

d2u

dx2 + qx(x)
]
dx = 0 (2.7)

Integration by parts of the first term and insertion of the constitutive condition in
eq 2.2 leads to the weak form:∫ L

0

dν

dx
EA

du

dx
dx = − [νN]L0 +

∫ L

0
νqx(x)dx (2.8)

The finite element approximation is introduced for the displacement as:

u = Neae =
[
N e

1 N e
2

] [u1
u2

]
(2.9)

where Ni = Ni(x) are shape functions, not to be confused with the normal force N ,
and ui are the displacements at the endpoints of the element. As a is independent
of x the following can be concluded:

du

dx
= Beae = dNe

dx
ae =

[
dNe

1
dx

dNe
2

dx

] [u1
u2

]
(2.10)

Inserting eq 2.10 in eq 2.8 gives:(∫ L

0

dν

dx
EABedx

)
ae = − [νN]L0 +

∫ L

0
νqx(x)dx (2.11)

Using the Galerkin method, the weight functions are chosen to be equal to the shape
function which yields[Ottosen, Pettersson (1992)]:

ν = Nec (2.12)

As ν is arbitrary and N are known, c must be arbitrary. The fact that ν gives that
ν = νT , which makes it possible to write eq 2.12 as:

ν = cT NeT (2.13)

which in turn gives that:

dν

dx
= cT BeT = cT dNeT

dx
(2.14)

As cT is idependent of x, inserting 2.13 and 2.14 in 2.11 gives:

cT

[(∫ L

0
BeTEABedx

)
ae +

[
NeTN

]L
0
−
∫ L

0
NeT qx(x)dx

]
= 0

Since this expression must hold for any arbitrary cT , the following must hold:(∫ L

0
BeTEABedx

)
ae = −

[
NeTN

]L
0

+
∫ L

0
NeT qx(x)dx (2.15)

which can be rewritten to:

14

2. Theory

Keae = f e
b + f e

l (2.16)
where:

Ke =
∫ L

0
BeTEABedx (2.17)

f e
b = −

[
NeTN

]L
0

(2.18)

f e
l =

∫ L

0
NeT qx(x)dx (2.19)

The shape functions used must fulfill completeness and compatibility requirements.
The completeness conditions for bar action are:

• The approximation for the deflection u must be able to represent an arbitrary
rigid-body motion.

• The approximation for the deflection u must be able to represent a constant
strain state.

and the compatibility condition is [Ottosen, Pettersson (1992), p.324]:
• The approximation for the displacement u must vary continuously within the

element and over it’s boundaries boundaries.
The simplest shape functions that fulfil these for a bar element are:

N e
1 =− 1

L
(x− L)

N e
2 = 1

L
x

(2.20)

which in turn gives:

Be
1 = N e

1
dx

=− 1
L

Be
2 = N e

2
dx

= 1
L

(2.21)

Inserting eq 2.21 in eq 2.17 gives:

Ke =
∫ L

0

([
− 1

L
1
L

]
EA

[
− 1

L
1
L

])
dx =

= EA

[
1

L2 − 1
L2

− 1
L2

1
L2

] ∫ L

0
1dx = EA

L

[
1 −1
−1 1

] (2.22)

Inserting eq 2.20 in eq 2.18 gives:

f e
b = −

[[
− 1

L
(x− L)

1
L
x

]
N

]L

0
= −

[
0
1

]
N(L) +

[
1
0

]
N(0) =

[
N(0)
−N(L)

]
(2.23)

Inserting eq 2.20 in eq 2.19 gives:

15

2. Theory

f e
l =

∫ L

0

[
− 1

L
(x− L)

1
L
x

]
qx(x)dx

assuming constant load qx(x) = qx this gives:

f e
l = qx

∫ L

0

[
− 1

L
(x− L)

1
L
x

]
dx = qx

L

[[
−x2

2 + Lx
x2

2

]]L

0
= qxL

2

[
1
1

]
(2.24)

To summarise:
Ke = EA

L

[
1 −1
−1 1

]
(2.25)

f e
b =

[
N(0)
−N(L)

]
(2.26)

f e
l = qxL

2

[
1
1

]
(2.27)

2.1.1.2 Beam action

Figure 2.2: Degrees of freedom and distributed load for a beam

There exist multiple different theories for 1D structures carrying load in bending,
i.e beams. One of the most commonly used and most straight forward theories is
the Euler-Bernoulli beam theory. This theory implies several assumptions, namely:

• Small displacements and rotations
• Small strains
• Plane sections remain plane and orthogonal to the centre line

For the scope of this thesis these assumptions are deemed reasonable why this beam
theory is used. The equilibrium equations for a beam are:

dV

dx
= −qy(x); 0 ≤ x ≤ L (2.28)

and

dM

dx
= V ; 0 ≤ x ≤ L (2.29)

with the constitutive relation:

16

2. Theory

M = −EI d
2v

dx2 (2.30)

As the centre line is assumed to be orthogonal to the section planes, it means that the
shear strain will be zero. This means that the shear force will need to be evaluated
based on the deflection. Inserting eq 2.28 in eq 2.29 gives:

d2M

dx2 + qz(x) = 0; 0 ≤ x ≤ L (2.31)

Inserting the constitutive relation eq 2.30 gives the differential equation for an Euler-
Bernoulli beam, also called the strong form [Ottosen, Pettersson (1992)]:

d2

dx2

(
EI

d2v

dx2

)
− qy(x) = 0 0 ≤ x ≤ L

which can be simplified, assuming constant cross section and modulus of elasticity,
to:

EI
d4v

dx4 − qy(x) = 0 0 ≤ x ≤ L (2.32)

where:

E = Modulus of elasticity[N/m2]
I = Second moment of inertia[m4]
v = Transversal deflection along local x-axis[m]

qy(x) = Transversal load distributed along the member[N/m]
L = Length of the beam[m]
M = Bending moment[Nm]
V = Shear force[N]

This differential equation has eight possible boundary conditions. These boundary
conditions can be either geometrical or natural. The geometric boundary conditions
are defined as:

v(0) = u0

v(L) = uL

(2.33)

and

dv

dx

∣∣∣∣
x=0

= θ0

dv

dx

∣∣∣∣
x=L

= θL

(2.34)

17

2. Theory

The boundary conditions in eq 2.33 can be used when a bending moment is pre-
scribed at one or both ends of the beam and the ones in eq 2.34 when the shear
force is prescribed at one or both ends of the beam.
The natural boundary conditions are defined as:

EI
d2u

dx2

∣∣∣∣
x=0

= M0

EI
d2u

dx2

∣∣∣∣
x=L

= ML

(2.35)

and

EI
d3u

dx3

∣∣∣∣
x=0

= V0

EI
d3u

dx3

∣∣∣∣
x=L

= VL

(2.36)

The boundary conditions in eq 2.35 can be used when a displacement is prescribed at
one or both ends of the beam and the ones in eq 2.36 when the rotation is prescribed
at one or both ends of the beam.
As the differential equation (eq 2.32) is a fourth degree differential equation it is
necessary to have four boundary condition to solve it, two for each end of the beam.
As rotation is linked to bending moment and shear force to translation, the two
boundary conditions for each end need to be one of the BC:s in eq 2.33 or eq 2.36
and one of the BC:s in eq 2.34 or eq 2.36.
Similar to the bar, a weak form is sought. To get this the strong form in eq 2.32 is
multiplied by an arbitrary weight function ν and integrated between its boundaries.
As for the bar, integration by parts gives the weak form:

∫ L

0

d2ν

dx2Mdx =
[
dν

dx
M

]L

0
− [νV]L0 −

∫ L

0
νqz(x)dx (2.37)

The finite element approximation is introduced as:

v = Neae =
[
N e

1 N e
2 N e

3 N e
4

]
u1
u2
u3
u4

 (2.38)

whereNi=Ni(x)are shape functions,ui are nodal values at the endpoints of the ele-
ment. As a is independent of x the following can be concluded:

d2v

x2 = Beae = d2Ne

x2 ae =
[

d2Ne
1

x2
d2Ne

2
x2

d2Ne
3

x2
d2Ne

4
x2

]
u1
u2
u3
u4

 (2.39)

As for the bar the Galerkin method is used, which also here is transposable giving:

18

2. Theory

ν = Nec = cT NeT (2.40)

which gives:

dv

dx
= cT dNeT

dx
d2v

x2 = cT BeT

(2.41)

Inserting eq 2.30, eq 2.40 and eq 2.41 into the weak form in eq 2.37 gives, as cT is
independent on x:

cT

(− ∫ L

0
BeTEIBedx

)
ae −

[
dNeT

dx
M

]L

0
+
[
NeTV

]L
0

+
∫ L

0
NeT qz(x)dx

 = 0

As cT is arbitrary the following must hold:(∫ L

0
BeTEIBedx

)
ae =

[
NeTV

]L
0
−
[
dNeT

dx
M

]L

0
+
∫ L

0
NeT qz(x)dx (2.42)

which can be rewritten to:

Keae = f e
l + f e

b (2.43)

where:

Ke =
∫ L

0
BeTEIBedx (2.44)

f e
b =

[
NeTV

]L
0
−
[
dNeT

dx
M

]L

0
(2.45)

f e
l =

∫ L

0
NeT qz(x)dx (2.46)

The shape functions used must fulfill completeness and compatibility requirements.
For beam action the completeness conditions are [Ottosen, Pettersson (1992), p.323]:

• The approximation for the deflection v must be able to represent an arbitrary
rigid-body motion.

• The approximation for the deflection v must be able to represent an arbitrary
constant curvature.

and the compatibility condition is [Ottosen, Pettersson (1992), p.324]:
• The approximation for the deflection v must vary continuously and with con-

tinuous slopes over the element boundaries.
The simplest shape functions that fulfil these conditions for a beam element are:

19

2. Theory

N e
1 =1− 3x

2

L2 + 2x
3

L3

N e
2 =x

(
1− 2x

L
+ x2

L2

)

N e
3 =x2

L2

(
3− 2x

L

)
N e

4 =x
2

L

(
x

L
− 1

)
(2.47)

which in turn gives:

dN e
1

dx
=6x

2

L3 − 6 x
L2

dN e
2

dx
=1− 4x

L
+ 3x

2

L2

dN e
3

dx
=6 x

L2 − 6x
2

L3

dN e
4

dx
=3x

2

L2 − 2x
L

(2.48)

and:

Be
1 =d

2N e
1

dx2 = 12 x
L3 −

6
L2

Be
2 =d

2N e
2

dx2 = 6 x
L2 −

4
L

Be
3 =d

2N e
3

dx2 = 6
L2 − 12 x

L3

Be
4 =d

2N e
4

dx2 = 6 x
L2 −

2
L

(2.49)

Inserting eq 2.49 into eq 2.44, assuming constant E and I:

Ke = EI
∫ L

0

Be

1B
e
1 Be

1B
e
2 Be

1B
e
3 Be

1B
e
4

Be
2B

e
1 Be

2B
e
2 Be

2B
e
3 Be

2B
e
4

Be
3B

e
1 Be

3B
e
2 Be

3B
e
3 Be

3B
e
4

Be
4B

e
1 Be

4B
e
2 Be

4B
e
3 Be

4B
e
4

= ... = EI

L3

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

(2.50)

Looking at eq 2.47 and eq 2.48 at the beam ends, i.e. at x = 0 and x = L gives:

20

2. Theory

N e
1 (0) = 1; N e

1 (L) = 0
N e

2 (0) = 0; N e
2 (L) = 0

N e
3 (0) = 0; N e

3 (L) = 1
N e

4 (0) = 0; N e
4 (L) = 0

dN e
1

dx

∣∣∣∣
x=0

= 0; dN e
1

dx

∣∣∣∣
x=L

= 0

dN e
2

dx

∣∣∣∣
x=0

= 1; dN e
2

dx

∣∣∣∣
x=L

= 0

dN e
3

dx

∣∣∣∣
x=0

= 0; dN e
3

dx

∣∣∣∣
x=L

= 0

dN e
4

dx

∣∣∣∣
x=0

= 0; dN e
4

dx

∣∣∣∣
x=L

= 1

(2.51)

Using these properties in eq 2.45 gives:

f e
b =

−V (0)
M(0)
V (0)
−M(0)

 (2.52)

Inserting eq 2.47 into eq 2.46, assuming uniform load gives:

f e
l = qyL

2 qz

∫ L

0

N e

1
N e

2
N e

3
N e

4

 dx = ... = qyL

2

1
L
6
1
−L

6

 (2.53)

To summarise:

Ke = EI

L3

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (2.54)

f e
b =

−V (0)
M(0)
v(0)
−M(0)

 (2.55)

f e
l = qyL

2

1
L
6
1
−L

6

 (2.56)

21

2. Theory

Figure 2.3: Degrees of freedom and distributed load for torsional stiffness

2.1.1.3 Torsion

Torsion is only present for elements in 3d space. Two main theories for torsion
exists, St Venants and Vlasovs. St Venants theory assumes, like the beam theory,
that plane sections remain plane. This only holds true for circular sections. For all
other sections there will exist some warping. This warping is is especially present
in open, thin walled sections, whereas for closed section St Venants torsion will
dominate.
To ignore the warping, even for massive sections, that are not circular would lead
to a stiffer system. To compensate for this one can multiply the torsional stiffness
with an appropriate factor that reduces the stiffness.
With this reduction one can approximate the torsional stiffness, using only St Ve-
nents theory, which leads to a system that is simpler to solve.
The equilibrium equation for torsion is:

dT

dx
+ qω(x) = 0 0 ≤ x ≤ L (2.57)

with the constitutive relation, assuming constant material and cross section:

T = GKv
dϕ

dx
(2.58)

which together gives the differential equation for torsion:

GKv
d2ϕ

dx2 − qω(x) = 0 0 ≤ x ≤ L (2.59)

where:

G = Shear modulus[N/m2]
Kv = St Venants torsional constant[m4]
ϕ = Rotation angle[rad]

qω(x) = Torsional load distributed along the member[Nm/m]
L = Length of the bar[m]
T = Torsional moment[Nm]

This differential equation has four possible boundary conditions. These boundary
conditions can be either geometrical or natural. The geometric boundary conditions
are defined as:

ϕ(0) = ϕ0

ϕ(L) = ϕL

(2.60)

22

2. Theory

These boundary conditions can be used when a rotation angle is prescribed at one
or both ends of the bar.
The natural boundary conditions are defined as:

GKv
dϕ

dx

∣∣∣∣
x=0

= T0

GKv
dϕ

dx

∣∣∣∣
x=L

= TL

(2.61)

These boundary condition can be used when a torsional moment is prescribed at
one or both ends of the bar. As the differential equation (eq 2.59) is a second degree
differential equation it is necessary to have two boundary condition to solve it, one
for each end of the bar. Used boundary conditions can be two geometrical, two
natural or a combinations of the two.
As the differential equation for torsion is of degree 2, as the bar, the same prin-
ciple can be used for torsion to derive the FE-formulation. For a more detailed
expiation how this is done refere to section 2.1.1.1, or [Dahlblom, Olsson (2010)]
or [Ottosen, Pettersson (1992)]. Using this principle gives the following element
stiffness matrix and element force vectors:

Ke = GKv

L

[
1 −1
−1 1

]
(2.62)

f e
b =

[
T (0)
−T (L)

]
(2.63)

f e
l = qωL

2

[
1
1

]
(2.64)

2.1.1.4 2D-Frame elements

As stated before, frame elements in 2D-space have three degrees of freedom in each
node, giving six degrees of freedom in total. This includes four translational, two
along the centre axis, two perpendicular and two rotational degrees of freedom. This
in turn means that the element stiffness matrix for a 2D-frame element can be taken
as a combination of one bar action stiffness matrix (equation 2.25) and one beam
action element stiffness matrix (equation 2.54) yielding the following:

Ke = E

L

A 0 0 −A 0 0
0 12I

L2
6I
L

0 −12I
L2

6I
L

0 6I
L

4I 0 −6I
L

2I
−A 0 0 A 0 0

0 −12I
L2 −6I

L
0 12I

L2 −6I
L

0 6I
L

2I 0 −6I
L

4I

(2.65)

In the same manner, the element load vector for distributed loads can be taken as
a combination of equation 2.27 and equation 2.56 giving:

23

2. Theory

f e
l = L

2

qx

qy
qyL

6
qx

qy

− qyL
6

(2.66)

2.1.1.5 3D-Frame elements

As for the 2D case, a frame element in 3D-space can be taken as a combination of
the different stiffness modes. In this case nodes, though, each nodes has six degrees
of freedom, yielding a total of twelve. To get the stiffness matrix for this kind of
element one can, as for the 2D-case, combine the stiffness matrices from bar action
(equation 2.25), beam action two times (equation 2.54) and torsion (equation 2.62)
giving the following:

Ke =

EA
L

0 0 0 0 0 −EA
L

0 0 0 0 0
0 12EIz

L3 0 0 0 6EIz
L2 0 − 12I

L3 0 0 0 6EIz
L2

0 0 12EIy

L3 0 − 6EIy

L2 0 0 0 − 12EIy

L3 0 − 6EIy

L2 0
0 0 0 GKv

L
0 0 0 0 0 −GKv

L
0 0

0 0 − 6EIy

L2 0 4EIy
L

0 0 0 6EIy

L2 0 2EIy
L

0
0 6EIz

L2 0 0 0 4EIz
L

0 − 6EIz
L2 0 0 0 2EIz

L

−EA
L

0 0 0 0 0 EA
L

0 0 0 0 0
0 − 12EIz

L3 0 0 0 − 6EIz
L2 0 12I

L3 0 0 0 − 6EIz
L2

0 0 − 12EIy

L3 0 6EIy

L2 0 0 0 12EIy

L3 0 6EIy

L2 0
0 0 0 −GKv

L
0 0 0 0 0 GKv

L
0 0

0 0 − 6EIy

L2 0 2EIy
L

0 0 0 6EIy

L2 0 4EIy
L

0
0 6EIz

L2 0 0 0 4EIz
L

0 − 6EIz
L2 0 0 0 4EIz

L

(2.67)

As for the case, the load vector can be taken as a combination of the different
partial load vectors. A combination of equation 2.27, equation 2.56 two times and
equation 2.64 gives:

f e
l = L

2

qx

qy

qz

qω

− qzL
6

qyL
6
qx

qy

qz

qω
qzL

6
− qyL

6

(2.68)

24

2. Theory

2.1.1.6 Transformation to global coordinates

The elements described in previous sections are all described in their local coordi-
nates. That is, the x direction for the elements runs along the centre line of the
element with local the y- and z-axes perpendicular to the centre line. For a system
with multiple elements, the local coordinate system for each element don’t need to
coincide. To be able to solve a system like that, one or more of the local element co-
ordinate systems, with stiffness matrices and force vectors, needs to be transformed.
This is done by transforming all matrices and vectors into a chosen global coordinate
system, often the global xyz.
For a 2D-Frame element the transformation matrix is defined as [Dahlblom, Olsson (2010)]:

G =

nxx nyx 0 0 0 0
nxy nyy 0 0 0 0
0 0 1 0 0 0
0 0 0 nxx nyx 0
0 0 0 nxy nyy 0
0 0 0 0 0 1

(2.69)

and for a 3d-Frame element:

G =

nxx nyx nzx 0 0 0 0 0 0 0 0 0
nxy nyy nzy 0 0 0 0 0 0 0 0 0
nxz nyz nzz 0 0 0 0 0 0 0 0 0
0 0 0 nxx nyx nzx 0 0 0 0 0 0
0 0 0 nxy nyy nzy 0 0 0 0 0 0
0 0 0 nxz nyz nzz 0 0 0 0 0 0
0 0 0 0 0 0 nxx nyx nzx 0 0 0
0 0 0 0 0 0 nxy nyy nzy 0 0 0
0 0 0 0 0 0 nxz nyz nzz 0 0 0
0 0 0 0 0 0 0 0 0 nxx nyx nzx

0 0 0 0 0 0 0 0 0 nxy nyy nzy

0 0 0 0 0 0 0 0 0 nxz nyz nzz

(2.70)

where:

nxx = nx • nx; nyx = nx • ny; nzx = nx • nz;
nxy = ny • nx; nyy = ny • ny; nzy = ny • nz;
nxz = nz • nx; nyz = nz • ny; nzz = nz • nz;

(2.71)

where:

25

2. Theory

nx =unit vector in the direction of local x-axis
ny =unit vector in the direction of local y-axis
nz =unit vector in the direction of local z-axis
nx =unit vector in the direction of global x-axis
ny =unit vector in the direction of global y-axis
nz =unit vector in the direction of global z-axis

(2.72)

To ease reading in the previous sections the overline notation has been omitted. In
the following equations overline notation indicates local coordinates. The relation
between local and global coordinates for the degrees of freedom is:

ae = Gae (2.73)

with a similar relation for the force vectors:

f e
l = GT f e

l (2.74)

and:

f e
b = GT f e

b (2.75)

The equation systems found in eq 2.16 and eq 2.43 are as previously mentioned in
local coordinates and are now denoted:

Keae = f e

b + f e

l (2.76)

Inserting eq 2.73, eq 2.74 and eq 2.75 in eq 2.76 gives the system in global coordi-
nates:

Keae = f e
l + f e

b (2.77)

where:

Ke = GT KeG (2.78)

With this, the degrees of freedom, together with stiffness matrices and force vectors,
has been transformed into global coordinates.

26

2. Theory

2.1.2 Springs

Figure 2.4: A one dimensional translational spring connecting two degrees of freedom.

Springs are the simplest possible structural elements. They are a purely discrete
representation of a one dimensional stiffness between two degrees of freedom. The
basic equation of a spring is:

N = kδ (2.79)
where:

k = Spring stiffness[N/m]
N = Force in the spring[N]
δ = Deformation of the spring[m]

By recognising that:

δ = u2 − u1

and

P1 = N

P2 = −N

the equation can be written on matrix form:[
k −k
−k k

] [
u1
u2

]
=
[
P1
P2

]
(2.80)

Or
Keae = f e (2.81)

And so, the spring element stiffness matrix is written:

Ke = k

[
1 −1
−1 1

]
(2.82)

The process for a rotational spring can be solved analogically, but with the difference
that a rotational spring has the stiffness:

k = Spring stiffness[Nm/rad]

27

2. Theory

2.1.3 Connection stiffness
To make a finite element model work all elements must interact with each other.
For frame elements this interaction takes place in their nodes, when a node is shared
with one or several other elements. The typical type of connection is either fixed
or pinned. For a fixed connection all degrees of freedom is shared by the elements
connected to the node. For a pinned connection all translational degrees of freedom
are shared while the rotational degrees of freedom are separate for each element.

(a) Fixed rotations (b) Free rotations

Figure 2.5: An element connection in 2d, with varying connection properties.

This way of connecting elements is ’binary’ in this regard as it forces all degrees
to be either completely connected (the same degree of freedom) or completely free
(see fig. 2.5). To overcome this it is possible to model the connection between
the degrees of freedom as springs. This can be done for each degrees of freedom
separately, modelling all or just some of them as spring restrained connections.
Doing so lets one control the nodal stiffness for each connection, which in turn can
be used to for example compare different connection details of a structure to see
how they affect the overall behaviour.

28

2. Theory

2.2 Canonical stiffnesses
The term canonical stiffness was first coined by Niels Ottosen, but is also described
by Olsson and Thelin [Olsson, Thelin (2003)]1. In their paper they showed that by
assuming a linear load-displacement relationship [Olsson, Thelin (2003)]:

f = λa (2.83)

the response of the structure can be rewritten as:

Ka = f = λa (2.84)

and therefore:

(K− λI)a = 0 (2.85)

from which the eigenvalues λi and corresponding eigenvectors ai can be determined.
If the eigenvectors are normalized, it means that:

aT
i ai = 1 (2.86)

Premultipication of eq 2.84 aT
i gives:

aT
i Kai = λi (2.87)

where:

aT
i Kai = 2Ui (2.88)

where Ui is the strain energy for mode i. This mean that the eigenvectors correspond
to the strain energy, Ui = λi/2, and by using the principle of virtual work the
conclusion can be drawn that the mode which produces the least amount of strain
energy is the mode most sensitive to external loading (which is in turn is found using
the original assumption, equation 2.83).

By sorting the eigenmodes by their corresponding eigenvalues the most sensitive
load patterns for the structure could be obtained. By maximising the lowest eigen-
value the overall response of the structure could be said to be increasingly stiff. One
thing that may be noted here is that the lowest eigenmode may be irrelevant to the
expected behaviour of the structure (in terms of loading).

1The term canonical stiffness isn’t used in this paper, but is used in [Dahlblom, Olsson (2010),
p. 152-153]. In [Olsson, Thelin (2003)] the concept is called as static eigenmodes. The concept is
also described in [Olsson (2006), p. 58-59]

29

2. Theory

2.3 Structural Optimisation

2.3.1 Introduction to structural optimisation
Structural optimisation is a field within structural engineering which aims to find
the ’best’ solutions to design problems. What the ’best’ solutions are may vary
from case to case and could be for example minimizing weight, maximising stiffness,
minimising cost or environmental impact.

In their 2009 book An Introduction To Structural Optimisation, Christensen and
Klarbring name three types of structural optimisation, which are defined by what
variables they use [Christensen, Klarbring (2009)]. They are:

• Size optimisation
Size optimisation uses structural dimensions as input variables, for example
cross section area.

• Shape optimisation
Shape optimisation uses the shape of structural elements as its input variables,
for example by tapering elements.

• Topology optimisation
Topology optimisation changes the connectivity between finite elements to
form load paths. In a discrete system of structural mechanics (for instance a
truss) this can be achieved by letting the section property of some elements
be zero, eliminating them from the calculation and possibly also changing the
stiffness matrix by removing some degrees of freedom.

They also state a general mathematical formulation

minimise f(x, y) w.r.t. x, y

subject to

design constraints on x
behavioural constraints on y
equilibrium constraint

(2.89)

Where

f Objective function. A function which returns a value that sets a
grade on how good a design is. It is often chosen so that a low
value is preferable to a high value.

x Design variable. A variable which sets the state of the problem,
and which is used to change the design of the structure, for example
element height, width or material.

y State variable. A variable which describes a response of a structure
and thus cannot be set manually, y = g(x). Examples are stresses,
strains, reactions and displacements.

30

2. Theory

2.3.1.1 Design space and solution space

Two terms that often are used when talking about structural optimisation are design
space and solution space, where the design space is all possible solutions and the
solution space the subset of this space containing all acceptable solutions. As an
example, consider the beam in figure 2.6a. In the example the only design variables
are the height h and width b. These variables each have a set of discrete sizes that
they may bet set to, ranging from 20 mm to 90 mm (with 10 mm increments). This
means that each dimension has 8 different options, rendering a total of 64 solutions:

Height
20 30 40 50 60 70 80 90

Width

20 1500 667 375 240 167 122 94 74
30 1000 444 250 160 111 82 62 49
40 750 333 187 120 83 61 47 37
50 600 267 150 96 67 49 37 30
60 500 222 125 80 56 41 31 25
70 429 190 107 68 48 35 27 21
80 375 167 94 60 42 31 23 19
90 333 148 83 53 37 27 21 16

Table 2.1: The maximum resulting bending stress in the element σ [MPa] for varying width
and height assuming elastic behaviour and E = 210 [GPa].

This range of results is what is sometimes called the ’design space’ (although it
also has been called ’search space’ and ’phase space’). In the design space the
variables can be thought of as dimensions [Bedney (2016)]. The ’solution space’
is the subspace of the design space which consist of ’acceptable’ solutions. What
is deemed acceptable is chosen from case to case. In fig. 2.6b, the entire surface
represents the design space. If the yield stress is taken as fy = 335 [MPa], the
surface can be divided into acceptable and unacceptable solutions. Here, the blue
area is the acceptable solutions, i.e. the solution space.

(a) A simple problem of a rectangular solid
beam with fixed - free boundary conditions
and a transversal point load of F = 2000N .

(b) A three-dimensional illustration of table 2.1,
showing maximum stress. The red line represents
the yield stress (fy = 275 [MPa]) of the material
and therefore the blue area shows the solutions
that will not yield.

Figure 2.6: A simple example to illustrate the design space and solution space.

31

2. Theory

(a) Two beams fixed at the ends and rigidly connected in a free node. The RHS element is 500
mm long and the solid rectangular element is 700 mm long. A point load of 1000 N is applied in
the downward direction on the free node. Gravity is also considered.

(b) The reciprocal of the maximum utilisation in the system (z = η−1
max) plotted against varying

section properties. The blue coloured area represents 1/ηmax > 1, (⇒ ηmax < 1), which is the
solution space in this case.

Figure 2.7: An illustration of a structural engineering optimisation problem for two elements
of discrete section properties.

32

2. Theory

In fig. 2.6 an example for two variables have been illustrated where the z coordinate
in fig 2.6b represents the maximum stress in the element. This is a quite basic
example, but if one would consider adding another element (see fig. 2.7a), the
number of variables rapidly increases. In the case of fig 2.7a the variables are 5
(width and height of both sections, plus thickness of the RHS), more than can be
visualised in 3d space. The solution space can instead be plotted for a set of discrete
sections, which implicates that the behaviour will be more non-linear. In fig. 2.7b
the maximum utilisation of the system has been (reciprocally) plotted for a set of
section combinations, with the height coordinate z being calculated to (z = 1/ηmax).

Having obtained the solution space, the task is now to find the optimum solution.
In this case it would be easy to find, since the solution space is sufficiently small. In
terms of minimal weight, the optimum solution consists of a rectangular section of
20x20 mm and an RHS of 60x40x8 mm. This results in a structural weight of 8,42
kg.

2.3.1.2 The need for heuristics

Heuristics are methods of problem solving that aim to find a ’good enough’ solution
rather than finding the global optimum. The two main reasons to do this are that
it is more efficient in terms of computation time and that the heuristic method is
easier to use. It can easily be shown why it is necessary in the field of structural
design to use a heuristic method. Bear in mind that the normal design procedure
of choosing some sections and evaluating them also is a heuristic, since the engineer
doesn’t know that the chosen sections are the ’optimal’ ones. Consider the example
from fig. 2.7a and fig. 2.7b, it can be seen that for two elements with 30 and 32
section properties respectively, the design space is made up of 960 solutions. For
any structure the size of the design space is calculated as:

ne∏
i=1

ns,i (2.90)

Or simplified, if all elements have the same set of sections to choose from:

nne
s (2.91)

Where

ne = is the number of elements in the structure
ns = is the number of possible sections

33

2. Theory

Figure 2.8: Simple frame structure consisting of 3 bays and 3 storeys. The total number of
elements is 21, but if each element has 30 possible section properties, the number of solutions is a
staggering 10.46 · 1027!

If we consider a simple 2d structure of 3 bays and 3 storeys (see fig. 2.8), with a set
of 30 sections to choose from, the size of the design space is nne

s ⇒ 3021 = 10.46 ·1027

solutions large! Even if it would be possible to process a billion results per second
it would still take well over 300 trillion years to process them all.

Even though that in a real design scenario not all solutions would have to be
evaluated (if a solution where all the sections in the structure are the second stiffest
produces an acceptable result, it isn’t really necessary to check for the stiffest sec-
tions), it is still difficult to reduce the design space significantly. This of course
states the need for more efficient search algorithms.

34

2. Theory

2.4 Optimisation Algorithms
This section will cover the theory of the various optimisations algorithms that are
studied in this thesis. They are as following:

• Iterative section sizer
Analysing the structure and increasing the section sizes if they fail.

• Section rotator
Aligning the normal of elements to their principal bending direction.

• Mode shape optimisation
Using canonical stiffnesses to find sensitive deformation patterns.

• Genetic algorithms
Using the ’survival of the fittest’ to generate optimum solutions.

2.4.1 Iterative section sizer
In the introduction to this thesis a common design procedure was described, where
the engineer would identify a overutilised member of a structure and increasing its
size for it to pass a section check. Likewise can underutilised members have their
section size reduced until all elements have a utilisation of about 100%. This process
can of course be automated with varying level of sophistication and may seem to be
a good optimisation process due to its simplicity. It does produce a fully stressed
design (FSD), but as shown by Mueller and Burns [Mueller, Burns (2001)], an FSD
isn’t necessarily also the optimal solution in terms of minimum weight, nevertheless
in other optimisation aspects. On the contrary, they showed that one structure may
have several FSDs, some of which are not even possible to find using an iterative
section sizer. They call these designs ’repelling fully stressed designs’.

Because of the many possible resulting designs, the conclusion can be drawn that
the initial design is of great importance when dealing with structurally indeterminate
structures. At the s

35

2. Theory

2.4.2 Section Rotator
The direction of the normal, or local z-axis, can have a very large impact on the
behaviour of a three dimensional beam element. A simple example is to take a
cantilever beam with a massive rectangular section as an example. It can be noted
that this statically determinate "system" will have a constant inner inner force pat-
tern, even though the stresses will change. A statically indeterminate system might
change inner force patterns if the cross sections of elements are rotated.

Figure 2.9: A cantilever beam with a rectangular cross section.

The cross section have the following properties:

h = 150 mm
b = 50 mm
Iy = 14 062 500 mm4

Iz = 1 562 500 mm4

(2.92)

It can be seen that the section has significantly higher stiffness for rotations around
the local y-axis compared to the local z-axis, where the moment of inertia around
the y-axis is roughly ten times bigger than around the z-axis. This makes a huge
difference for it’s capacity for moments and forces from different directions, and
hence the orientation of the member can be critical depending on the load situation.

In this example the beam has the following properties:
• Length L = 3 m
• Young’s modulus E = 210 GPa
• Yield stress fy = 275 MPa

The cantilever is loaded with a point load of P = 14 kN applied at its free end. The
direction of the normal (local z-axis) of the beam is set to the global z-axis. The
following results are acquired depending on the direction of the force:

36

2. Theory

(a) Point load in the direction of the local y-
axis {0,−P, 0}. Graph shows moment around
the local z-axis (minor axis bending). Moment
around the local y-axis (major axis bending) is
zero for this load case. Utilization of 2.62 at the
support.

(b) Point load in the direction of a com-
bination of the local y-axis and z-axis
{0,−P/

√
(2),−P/

√
(2)}. Graph shows mo-

ment around the local z-axis (minor axis bend-
ing) in purple and moment around the local y-
axis (major axis bending) in orange. Utilization
of 2.47 at the support.

(c) Point load in the direction of
the local z-axis {0, 0,−P}.Graph
shows moment around the local
y-axis (major axis bending). Moment
around the local z-axis (minor axis bending) is
zero for this load case. Utilization of 0.87 at
the support.

Figure 2.10

37

2. Theory

As can be seen in fig. 2.10c, the section is well equipped to handle the applied
force, with a utilization well below 1, while the other cases in fig. 2.10a and 2.10b
gives utilizations well above 2, and thereby failures. This clearly illustrates that the
orientation of the member in relation to the orientation to the load can be extremely
important for certain situations.
In a real life situation one can seldom control the direction of the load. It is, though,
for most cases possible to control the orientation of the member if no detailing
restrain or similar are present. For the examples in fig. 2.10a and fig. 2.10b the
section could be rotated 90◦ and 45◦ respectively to obtain the following:

(a) Point load in the direction of the local
y-axis {0,−P, 0}.The direction of the element
normal is in this case, compared to fig. 2.10a
flipped 90◦ and aligned with the force. Graph
shows moment around the local y-axis (major
axis bending). Moment around the local z-axis
(minor axis bending) is zero for this load case.
Utilization of 0.87 at the support.

(b) Point load in the direction of the local y-
axis {0,−P/

√
(2),−P/

√
(2)}.The direction of

the element normal is in this case, compared
to fig. 2.10b flipped 45◦ and aligned with the
force. Graph shows moment around the local y-
axis (major axis bending). Moment around the
local z-axis (minor axis bending) is zero for this
load case. Utilization of 0.87 at the support.

Figure 2.11

38

2. Theory

Naturally the alignment of the strong direction of the section to the force for this
case gives better results in the form of lower utilization as can be seen in fig. 2.11a
and fig. 2.11b and give the same results as in fig. 2.10c.
For a more general case, aligning the sections with loads applied directly on them
do not have to give the best results, as all members are affected by the rest of the
structure and some members do not even have to have forces acting directly on
them. One approach to make this more general is to align the normal of the section
to the "principle moment" of the worst stresses section. The principle moment is
calculated as:

Mprinciple =
√
M2

y +M2
z (2.93)

The direction of this new normal is found by:

znew = zMy − yMz (2.94)
Where My and Mz are taken from the section with the highest principle moment
Mprinciple.

2.4.3 Mode shape optimisation
In the 2003 paper Use of Static Eigenmodes in Mechanical Design by Karl-Gunnar
Olsson and Carl Thelin [Olsson, Thelin (2003)] are statical eigenmodes (see section
2.2) used as a design tool. An example using an armchair is used (see fig. 2.12).

Figure 2.12: An armchair used as a case study. The chair is statically indeterminate in 2d,
with the load having the possibility to transfer through either the armrest or the seat.
Adopted from [Olsson, Thelin (2003)]

The method of canonical stiffnesses is used through finding the eigenmodes and sort-
ing them based on their corresponding eigenvalues. Thereafter are the eigenmodes
of the lowest corresponding strain energy analysed. The eigenmodes were not only
considered with regard to their eigenvalue, but also to an imagined load case that
the eigenmode corresponds to. For instance, the "tilting mode" (see image 2.13)
is considered usually dangerous, most likely because it corresponds to the second
most common load case: leaning back on the chair (the most common being simply

39

2. Theory

sitting on the chair, loading it only vertically). These dangerous modes are more
important to avoid.

Figure 2.13: An especially dangerous deformation for the armchair.
Adopted from [Olsson, Thelin (2003)]

In conclusion, the method is intended to give the designer information about the
naturally weak modes of deformation in a structure. By then tending to the most
dangerous modes of deformation an effective material usage can be obtained. It is
concluded that the method is especially useful when the loads on the structure are
unknown or hard to envisage.

2.4.4 Genetic algorithms
Genetic algorithms is a heuristic based on the theory of evolution. The allegory is
’survival of the fittest’ in the sense that solutions are selected based on a ’fitness’
value, and allowed to reproduce. There are several descriptions of the method, one
of which is presented by Melanie Mitchell in her 1999 book [Mitchell (1999)]. She
presents the following algorithm:

1. Generate a randomised population of i genomes
2. Calculate the fitness of each genome
3. Generate i number of new genomes (’offspring’)

• Select two of the existing genomes to be parents, based on fitness (higher
fitness means more likely to get selected).

• With a certain probability, cross over the genomes of the parents at a
randomly selected point.

• Form two offspring.
• Mutate the offsprings with a certain probability.

4. Let the children form the new generation
5. Go to step 2

The algorithm is run until a number of stagnated fitness of predetermined length is
reached.

40

2. Theory

The strength of the genetic algorithms are that they require very little analysis of
complex problems and can still come up with reasonably good results. They simply
analyse the problem for a number of randomised initial settings and then tries to
improves the results. This means that, given the right settings, GAs are well suited
to handle non-linear problems. The setbacks are that a large number of calculations
are required for finding a reasonable result, which means a high calculation time.

There are several other methods available in the family of ’generic’ optimisation
techniques. A good summary is presented by Peter Debney in an article in The
Structural Engineer [Bedney (2016)].

41

3
Method

To recapitulate, the aim of this thesis have been to investigate different optimisation
methods in a parametric environment. In order to achieve this, the following major
steps have been taken (each described in more detail in the following sections):

1. Developing a finite element plugin for Grasshopper that contains three separate
parts:

• A finite element package called CIFem in C++
• A wrapper project CIFem_Wrapper in C++ / CLI that enables CIGull

to access CIFem.
• The actual plugin for Grasshopper, called CIGull, that uses CIFem to

perform structural engineering calculations and serving as a platform for
creating structural engineering optimisation algorithms.

2. Developing optimisation methods and implementing them in CIFem.
3. Designing a set of test structures in order to test the optimisation methods

The individual steps will be described in the following chapter.

3.1 Project overview
A well-known principle of object oriented design is to keep code modular. This allows
a particular piece of code to do what it does best, without too many case-specific
additions, and promotes expandability. This goes for individual classes within a
library, but is also true for the libraries themselves (known as the Adapter Pattern
[Freeman, Freeman (2004)]). In the case of this thesis work three interconnected
libraries (CIFem, CIFem_wrapper, CIGull) have been created, which work with
two available groups of libraries. These external libraries actually consist of several
parts, but can be collated into two groups: Rhinoceros and Armadillo. An overview
of the the different parts can be seen in fig. 3.1

42

3. Method

Figure 3.1: A high level flow chart of information between the different code libraries. Rhino
is used as the user interface, taking commands and displaying results. CIFem is the product of
this thesis, adding a finite element package as a plugin to grasshopper. Armadillo is a linear
algebra package which is required for CIFem to perform its calculations. For further reading about
Rhino, consult [Robert McNeel & Associates (2016)]. For further reading on Armadillo, consult
[Sanderson (2010)]

43

3. Method

Figure 3.2: The workspace in Rhinoceros 5, including the four viewports (middle), modelling
tools (left), properties (right) and menu and command line (top).

3.1.1 Rhinoceros and Grasshopper
The Rhinoceros part of the program is used as the front end, where the user interacts
with the model. Rhinoceros is a commercial CAD software developed by Robert
McNeel & Associates. It has all the capabilities that one expects of a CAD software,
but also a capability to work with NURBS (Non-Uniform Rational B-Splines) curves
and surfaces [Robert McNeel & Associates (2016)]. Fig. 3.2 shows the work space
in Rhino.

Rhino has a public Application Programming Interface (API) which has allowed
the community to create numerous plugins for various different purposes. One
of the most recognised ones is Grasshopper, which is a graphical algorithm edi-
tor [Davidson (2016)] developed by David Rutten for Robert McNeel & Associates
[Tedeschi (2011)]. It is a tool that allows its users to interact with Rhinoceros
through a visual programming language. Grasshopper can be used together with
Rhino, or just by using Rhino as a viewport. Generally are all actions that are
possible in Rhino also possible in Grasshopper. Fig. 3.3 shows the work space in
Grasshopper. A good introduction to Grasshopper is available from Delft University
of Technology, see [TU Delft (2015)]. Grasshopper has, like Rhino, a public API,
which has generated as many or even more plugins.

3.1.2 Creating plugins for Grasshopper
A possible reason for the popularity of Grasshopper is its relatively gentle learn-
ing curve combined with its almost endless possibilities of 3d modelling. In the
Grasshopper environment, the wiring is done linearly, meaning that loops are not
possible. The easiest method of resolving that problem is to use the built-in code

44

3. Method

Figure 3.3: The workspace of Grasshopper. Inputs (blue) are connected to components (purple)
using wires. The outputs (red) are then wired in the same way.

components in grasshopper. There are two available, one for Visual Basic (VB) and
one for C#. These components offer great flexibility and may be saved as custom
components to be reused.

If one intends to create something that requires more of a structure it is possible
to create a plugin instead. The plugin consist of a Grasshopper Assembly file (.gha)
which really is a .dll, but has had its file extension changed so that Grasshopper
can find and load it. This .dll may be made in any which way, but for this thesis
work it has been written in Microsoft Visual Studio Community 2015, an integrated
development environment (IDE). Using an IDE rather than the built-in editor offers
several advantages, wherein the most important ones are:

• Possibility to reference other libraries. In the case of this thesis accessing
Armadillo has been crucial, and not possible to do from within Grasshopper.

• Object oriented design. It isn’t possible within Grasshopper to create classes.
• Code completion and code refactoring abilities.
• Speed. Compiling code at compile time rather than at run-time means that it

only happens once and not while running, which improves speed.

45

3. Method

In order to access some written code, one must implement the Grasshopper API.
There are some quite strict formatting requirements that need to be fulfilled in order
for the code to be possible to be used and its information passed around. Fortunately,
there is a very good software development kit (SDK) available for download from
Grasshopper or from:
http://s3.amazonaws.com/mcneel/grasshopper/1.0/sdk/en/GrasshopperSDK.chm.

3.1.3 Armadillo
A prerequisite doing finite calculations is to be able to do matrix operations, such as
solving the system of equations K · a = f . This is not a trivial matter, and since the
calculations in this case need to be performed several times, speed is an important
factor to consider. There are several open source linear algebra packages available
for different coding languages. A C++ package called Armadillo [Sanderson (2010)]
was selected for this thesis work, the main reasons being:

• Syntax. Armadillo provides a syntax similar to the one used in MATLAB,
which is useful for migrating functions from CALFEM.

• Expandability. By using C++ rather than C# (which also would be a good
option, since Grasshopper plugins are usually written in .NET) a possibility
to expand the functionality to other platforms is added.

• Speed. Performance tests suggest that it is both faster than MATLAB and
other C++ libraries (for instance IT++ and Newmat) [Sanderson (2010)]

3.1.3.1 BLAS and LAPACK

A library of Fortran-callable functions called BLAS (Basic Linear Algebra Subpro-
grams) was released in 1979 [Lawson et al (1979)] as a library of low level subrou-
tines that solves basic linear algebraic operations, such as the dot product. It has
since developed into a widely used building block when developing larger linear al-
gebra solvers. These solvers often adopts the interface of BLAS, allowing it to be
exchanged for more efficient (faster) hardware-specific libraries. For instance has
both Intel and AMD developed their own BLAS libraries, which are optimised for
their respective processors. In Armadillo the default implementation of BLAS is
called ATLAS (Automatically Tuned Linear Algebra Software), an open source im-
plementation of the BLAS API, however it may be replaced by a machine-optimised
package, thus further increasing speed.

LAPACK is a numerical linear algebraic library, written in Fortran. LAPACK
offers more high-level functions than BLAS, for instance matrix factorisation and
eigenvalue problem solving [Univ. of Tennessee et al (2016)]. It is commonly used, it
is for instance the library behind MATLAB [Moler (2000)]. As for BLAS, LAPACK
can be replaced by some other high-performance, machine-specific library.

Both BLAS and LAPACK are written so that they may be exchanged for more
efficient libraries, and Armadillo also incorporates this. This means that some speed
gain may be possible by compiling the program with machine-specific libraries. In

46

3. Method

this thesis project the compiled code will be implemented with the basic libraries,
but since the code is open source, any user who wishes to increase their efficiency
have the possibility to recompile with optimised libraries.

3.1.4 C++/CLI
With Armadillo written in C++, and Grasshopper plugins written in .NET, some
form of interpreter is needed. This task can be solved using C++/CLI. CLI stands
for Common Language Infrastructure, and is a "[...] specification for executable code
and the execution environment (the Virtual Execution System) in which it runs"
[ECMA International (2012), p. 9]. Simplified, this allows high-level languages to
be (somewhat) platform-independent by compiling them into code conforming to a
common standard. This is done by standard for .NET languages (such as C# and
VB.NET), which are (usually) compiled into a lower level language called Common
Intermediate Language (CIL). This is not done for C++, which usually is compiled
directly to machine code.

To to enable communication between the two languages one can use C++/CLI,
which is an extension of C++ [ECMA International (2005), p. xii] that does conform
to the CLI standard. When both languages (C# and C++) can get compiled into
intermediate languages that both conform to the same standard, communication
between them is possible. Of course, there are several major issues about this
process that could be raised here, but they are beyond the scope of this thesis.

Figure 3.4: An overview of the common language infrastructure (CLI) [Image from Wikimedia
Commons]

47

3. Method

3.2 Development of a finite element solver
As mentioned in section 3.1, the finite element solver consists of three parts. A
engine written in C++ to take advantage of the matrix libraries avilable in the
language, a Grasshopper plug-in written i C# and a link between the two. The
following sections will go through each part in more detail.

3.2.1 Finite element engine
The finite element engine, called CIFem, is the heart of the package. It is here
that the elements are assembled to a structure, and the structure is calculated and
analyzed. Here follows a description of the most important classes in CIFem.

3.2.1.1 Structure

The structure is the hub in which all geometrical data is stored. It keeps track of
all elements and nodes in the system. When an element is added, the structure is
responsible for connecting it in a proper way to neighbouring elements and nodes.
This connection is done through the degrees of freedom, which is the only object
shared between different elements and nodes, and thereby acts as the link between
them.
The structure is also responsible for the assembling of the global stiffness matrix.

3.2.1.1.1 Degrees of freedom The degrees of freedom, or DOF:s, can be either
translational or rotational. They store information about possible prescribed dis-
placements, as boundary conditions where a fixed degree of freedom has a prescribed
displacement of 0.
After a system as solved using one of the solvers, the resulting displacements or
reaction forces are stored in the degrees of freedom. This information is later used
when the elements are post-processed, see section 3.2.1.4 .
The degrees of freedom all have a unique index which ranges from 0 to the number
of DOF:s in the system. This index is corresponding to a position in the global dis-
placement and force vector and is used when the global stiffness matrix is assembled
and when resulting forces and displacements are stored in the DOF.

3.2.1.1.2 Nodes The nodes contain information about their location in the ap-
propriate space, either a 3D-point (XYZ) or 2D-point (XY) depending on the system.
They also contain a set of degrees of freedom, three for 2D-nodes, two translational
and one rotational, and six for 3D-nodes, three translational and three rotational.
A node is responsible for providing its DOF:s with the appropriate boundary con-
ditions, if any are present, in the form of preset displacements.
When the structure is assembled, the nodes help distribute the DOF:s to the el-
ements connected to it. How this is done depends on the element releases, see
section 2.1.3 and the upcoming section.

48

3. Method

3.2.1.1.3 Elements Two element types are implemented in the engine, 3D-
frame elements described in section 2.1.1.5 and springs described in section 2.1.2.
The elements contain a set of degrees of freedom, that can be shared with other
elements and nodes depending on coupling conditions (called releases for frame ele-
ments).
The elements are responsible for generating their own element stiffness matrix (see
eq. 2.67), which are later assembled by the structure to a global stiffness matrix.
The frame elements are also responsible for calculating their self weight load vector
(using eq. 2.68), given the gravity field which affects them.
Some of the post-processing, including the calculation of section forces and displace-
ments along the element, is done by the elements them self, using data stored in the
degrees of freedom.

3.2.1.2 Forces

There are two types of forces implemented in the solver, gravity load and point-
forces and moments. These loads are grouped in load combinations and used by the
linear solver when solving the system.
The gravity can be controlled in terms of amplitude and direction, using a gravity
field. This then generates forces and moments (calculated by the elements).
The point forces and moments consist of a direction, amplitude and point of appli-
cation.

3.2.1.3 Solvers

There are currently two solvers implemented in the engine. The first is a linear
solver that solves the displacements and reaction forces, given a set of applied forces
and boundary conditions. The second is an eigenmode solver, that solves the static
eigenmodes, or canonical stiffnesses for a structure (see section 2.2).

3.2.1.3.1 Linear solver The linear solver solves the equation system Ka = f .
This is done by separating the system to free and prescribed degrees of freedom:[

Kff Kfp

Kpf Kpp

] [
af

ap

]
=
[
ff

fp

]
(3.1)

where f denotes free and p denotes prescribed DOF:s. The system is then solved for
the free DOF:s where all information in known except for the displacements and/or
rotations of the DOF:s:

Kffaf = (ff −Kfpap) (3.2)

Finally the reaction forces and/or moments are calculated:

fp = Kpfaf + Kppap (3.3)

The displacements, rotations, reaction forces and reaction moments are then stored
in the DOF:s and later used for post-processing of the elements.

49

3. Method

3.2.1.3.2 Eigen solver Canonical stiffnesses are described in section 2.2. The
eigensolver calculates these canonical stiffnesses, or static eigenmodes, by solving
the eigenvalue problem for the free DOF:s of the stiffness matrix, using the decom-
position shown in eq 3.1:

eig(Kff) (3.4)

This gives a resulting vector of the eigenvalues and a matrix of the eigenmodes:

λ =
[
λ1 λ2 . . . λn

]
V =

[
v1 v2 . . . vn

] (3.5)

where n is the number of free DOF:s. To get reaction forces for a certain mode, the
free DOF:s are assigned to this modes eigenvector:

af = vi (3.6)

after which eq 3.3 can be used. The displacements, rotations, reaction forces and
reaction moments are then stored in the DOF:s for the modes that are to be post-
processed (see below).

3.2.1.4 Post-processing

The post-processing can be divided into two steps. The calculation of section forces
and displacements, and utilisation checks of the elements.

3.2.1.4.1 Section forces and displacements The section forces are calculated
by the elements, using the information stored in their degrees of freedom. For the
3D-frame elements a chosen number of evaluation points along the local x-axis are
set up in which the following displacements and section forces are calculated:

• u - Displacement along the local x-axis
• v - Displacement along the local y-axis
• w - Displacement along the local z-axis
• φ - Rotation around the local x-axis
• N - Normal force
• Vz - Shear force in local z-direction
• Vy - Shear force in local y-direction
• My - Bending moment around the local y-axis (major axis bending)
• Mz - Bending moment around the local z-axis (minor axis bending)
• T - Torsional moment around the local x-axis

The forces are calculated load-combination by load-combination for the linear solver
and mode by mode for the eigen solver, and stored in the elements.

50

3. Method

3.2.1.4.2 Utilisation checks For the frame elements, a set of utilisation checks
are implemented. Given the scope of the thesis, these checks are chosen to be
simplified, to give an overall assessment of the performance of the structure rather
than actually verifying it. In these simplified checks a generic isotropic material is
considered and it is assumed that it has an ultimate capacity whereafter it fails. In
other words, for all checks the utilisation (η) should be less than 1: η ≤ 1

Axial check

η = σ||
fu

(3.7)

where:
σ|| =

N

A
(3.8)

Combined axial and bending check

η = σ||
fu

(3.9)

Where
σ|| =

N

A
+ My

Iy

zmax + Mz

Iz

ymax (3.10)

For a rectangular cross section zmax = ±h/2 and ymax = ±b/2, why four checks are
needed, where σ|| is taken as the maximum absolute value of the four.

For circular sections this check can be simplified, since Iy ≡ Iz and zmax = ymax =
±r. Therefore the check can be simplified to:

σ|| =
N

A
+ Mprinciple

I
r (3.11)

where:
Mprinciple =

√
M2

y +M2
z (3.12)

Here only two checks are needed, and σ|| is taken as the maximum absolute value of
the two.

Shear check
Shear checks are only implemented for rectangular sections where the check is per-
formed in the local y and z directions of the element, separately.

η = τ

fu/
√

3
(3.13)

where:
τ = V S

It
(3.14)

All checks are done on the evaluation points used to calculate the section forces. The
check that gives the highest utilisation for each point is then stored in the elements.

51

3. Method

3.2.1.5 Optimisers

Three section optimisers are implemented in the engine.

3.2.1.5.1 Section sizer and rotator The section sizer and rotator uses the
linear solver described in section 3.2.1.3.1 in an iterative procedure. This procedure
is further described in section 3.3.1 and section 3.3.2.

3.2.1.5.2 Mode shape optimiser The mode shape optimser uses the eigen-
solver described in section 3.2.1.3.2. It is further described in section 3.3.3

3.2.1.5.3 Combined optimiser The combined optimiser works by a combina-
tion of the section sizer and rotator, and the mode shape optimiser and is further
described in section 3.3.4

3.2.2 Wrapper
The wrapper is by far the smallest project in the solution. Its sole purpose is to
link the FE-engine written is C++ to the Grasshopper plug-in written in C#. This
link is done using C++/CLI which is a language able to handle both managed code
(C#) and unmanaged code (C++). The base principle is that for every class in the
FE-engine that needs to be exposed to the Grasshopper plug-in, there is a wrapper
class holding a pointer to an unmanaged object. The Grasshopper plug-in can then
make function calls to the wrapper objects, which in turn send these calls forward
to the FE-engine.

52

3. Method

3.2.3 Grasshopper plug-in
This section describes the grasshopper plugin project, called CIGull. An image
of the grasshopper set-up of a structure will be presented and each part will be
described.

3.2.3.1 Overview

Figure 3.5: An overview of the set-up of a simple structure in Grasshopper

The set-up of the Grasshopper file can be divided into a number of subgroups:
• Geometry generation
• Section properties
• Material
• Elements
• Restraints
• Forces

– Point loads and moments
– Gravity loads

• Structure
• Solver

– Linear solver
– Eigensolver

• Optimisers
– Iterative section sizer
– Mode shape optimiser
– Combined optimiser

• Results

53

3. Method

Figure 3.6: The geometry generation consist of only two types of elements, points and lines.
In this section only already built-in Grasshopper components and types are used.

3.2.3.2 Geometry generation

In Rhinoceros and Grasshopper there are a multitude of geometric elements avail-
able, including curves, breps, surfaces and meshes. The only types that are needed
for generation of geometry for CIGull are the two simplest ones, points (used for
restraints and applied loads) and lines (center lines for the elements).

3.2.3.3 Elements

The actual elements, which at the time of writing are only implemented in the form
of beams, are created from a:

• Center line (see above)
• Beam property, which contains

– Cross section
– Start and end releases
– Material
– Cross section group (optional, used for optimisation processes)

• Element normal vector (local z axis)

54

3. Method

Figure 3.7: Element generation, including material generation and the generation of beam
properties. Here two beams are generated (from two separate centerlines and two sets of beam
properties. The elements have fixed releases for all translations, and rotation in the XX- and ZZ
directions. The YY-rotations are restrained by a rotational spring of k = 100[kNm/rad] for both
elements in both the start and end release.)

3.2.3.4 Material

The material is implemented as linear isotropic and generated from four parameters:

• Young’s modulus E
• Poisson’s ratio ν
• Density ρ
• Ultimate stress fu.

The ultimate stress is used in utilisation checks (see section 3.2.1.4.2). In the example
in fig. 3.12 a steel material is used, where the ultimate stress is taken as the yield
stress as a simplification.

55

3. Method

Figure 3.8: Restraints

3.2.3.5 Restraints

The restraint nodes are generated from three parameters:
• The point to restrain
• The directions to restrain
• The plane in which the restraint directions work (optional)

In the current version of the code, the restraint is implemented only for global coordi-
nates (the third parameter defaults to the XY plane). See ’future implementations’
7.9.1.

Figure 3.9

3.2.3.6 Forces

Forces and moments are applied to the structure in load combination. A load
combination consist of a name, a list of point loads and moments, and gravity
options. The point loads are created from a position and a force or moment vector.
Distributed loads are currently not implemented, see ’future implementations’ 7.9.1.

56

3. Method

Figure 3.10: A structure component and a structure properties component

3.2.3.7 Structure

The structure is mainly a container for restraint nodes and beams. However, as
described in 3.2.1.1, the structure is also responsible for connecting the degrees of
freedom in the nodes and elements.

3.2.3.8 Solver

Figure 3.11: There are two solvers currently implemented, shown here is the linear solver.

CIGull currently has two available solvers, a linear solver and an eigensolver. The
linear solver (see fig. 3.11) combines a structure and a set of load combinations
and solves the displacements and reactions. It also has a check of the structure
implemented, which if turned on will control if the structure is sufficiently restrained.
It is however recommended to check this once and then turn it off, to improve speed.
The eigensolver has three parameters:

• Structure
• List of modes to post-process
• Boolean ’go’ toggle

Where the second parameter is an input to control how many eigenmodes are in-
cluded in the results.

57

3. Method

Figure 3.12: Outputs from a solver can be outputted to Grasshopper (in the form of text and
numbers), or plotted to the Rhino window.

3.2.3.9 Results

Once the solver has run, all results (incl. utilisations) are calculated, so what is
left is basically to access them. The results can either be interpreted numerically
in Grasshopper, or visualised in the Rhino viewport. Forces and moments can be
plotted as diagrams, and element displacements can be drawn.

It can be noted that the element results can be interpreted not only from a linear
solver, but from an eigensolver or from an optimising component as well.

58

3. Method

Figure 3.13: The four different optimisers implemented.

3.2.3.10 Optimisers

There are four optimising components implemented, however there are really only
three optimising methods. This is because the mode shape optimisers is implemented
in two forms (see fig. 3.13, the lowest component group). The difference is how
the eigenmodes to include are chosen. In the upper version all eigenvectors with an
eigenvalue that has a ratio which is lower than the value given as input are included,
and in the lower version the specific modes can be chosen.

59

3. Method

3.2.4 Verification of results
To verify that the finite element solver is performing its calculations correctly, a
comparative case study has been made. In the study results from CIGull were
compared to results calculated using the CALFEM package for MATLAB. The
study is presented in Appendix A.

The results are expected to be similar, since the FE calculations in CIGull are
based on the CALFEM formulations. In order to only address the core of the finite
element calculations, calculations of variables such as the area or the second moment
of area are omitted by using the CIGull values in CALFEM.

The results were compared for element displacements, and found to be corre-
sponding within a margin of error of less than 0.1%�for the studied case.

60

3. Method

3.3 Optimisation methods

3.3.1 Iterative section sizer
As stated in section 3.2.1.5 three element cross section optimisers are implemented
in the FE-engine. The first is the section sizer that utilises the results from the
linear solver (see section 3.2.1.3.1).

3.3.1.1 General

The iterative section sizer works by iteratively solving the system in its current
state and updating the element cross sections each iteration.The sections of the
elements are changed based on their respective utilisation, see 3.2.1.4.2. The section
property will be changed if the maximum utilisation for the element exceeds some
set limits. If the maximum stress is above the set maximum limit (overutilised) the
the section property will increase in size, if the stress is below the set minimum
limit (underutilised) it will decrease in size. The iteration process will stop once a
solution is found where every element in the system has a utilisation within the set
limit, or when no new solution is found compared to the previous iteration.
The main goal for the section sizer is to reduce the weight of the elements. Therefore
the list of sections used is stored based on cross section area which, for elements with
constant cross section and material, will correspond to weight and thereby material
usage. This makes choosing an earlier position in the list favourable for reducing
the weight of the element. See Appendix C for an example of such a list.
The force and stress pattern in a structurally indeterminate structure are highly
dependent on the stiffness distribution. This means that a change of sections likely
will influence the way the structure behaves and how the forces are carried. In other
words, how the sections are updated may influence the end result significantly. To
get a better control of this, four different approaches on how to update the sections
are implemented.

61

3. Method

(a) Current section (b) Overutilised (c) Underutilised

Figure 3.14: Section sizer method 1. Set of possible sections sorted by area. The black denotes
the section from previous iteration. If the member is overutilised, all sections are checked, from
smallest to largest, until one is found that can withstand the forces. The same method is used if
the member is underutilised. Red sections are checked and failed. Green is checked and ok.

3.3.1.2 Method 1: Smallest acceptable section

The first method searches the set of possible sections from smallest to largest area
until a cross section is found that can withstand the forces from the current itera-
tion. This makes it possible for each element to get a quite drastic change in cross
section each iteration, which can lead to convergence in fewer iterations. This faster
convergence comes with a cost of having to do multiple checks for each element each
iteration, which makes each iteration slower. The possibility to make big jumps in
change of cross section also means that the force pattern of the structure can change
quite a lot for each iteration.

62

3. Method

(a) Current section (b) Overutilised (c) Underutilised

Figure 3.15: Section sizer method 2. Set of possible sections sorted by area. The black denotes
the section from previous iteration. If the member is overutilised, the next section in the list is
picked. If the member is underutilised nothing is done. No checks are done for this method.

3.3.1.3 Method 2: Step-wise incrementation

The second method only allows an increase in size of the element. This is done by
changing the cross section to the next one on the list, i.e. one with larger cross
section area, for elements that have a maximum utilisation that exceeds the set
limit. This method will be quick for each iteration (since there is only one initial
check being done), but it may need more iterations to find convergence as the cross
sections are incremented one size at a time. This method should only give small
changes in the force pattern between each iteration, as only small changes to the
cross sections are allowed. The method might, though, produce elements with quite
low utilisation as the stresses in some elements may decrease as the stiffness of others
increase.

63

3. Method

(a) Current section (b) Overutilised (c) Underutilised

Figure 3.16: Section sizer method 3. Set of possible sections sorted by area. The black denotes
the section from previous iteration. If the member is overutilised, the next section in the list is
picked. If the element is underutilised, it is checked if the cross section above in the list is able to
handle the load. If this is, that section is picked, otherwise the cross section remains unchanged.

3.3.1.4 Method 3: Step-wise incrementation with down-sizing

The third method checks the sections in close proximity of the cross section currently
applied, in terms of size of area. If the element is overutilised the cross section will be
incremented to the next on the list, i.e. one with greater area. If it is underutilised
it will check if it’s possible to decrease the cross section size to the previous on the
list, if not it will keep the current one. Problems that can arise with this method is
that the cross section on the next position on the list does not necessarily handle the
section force better than the previous, as larger cross section area do not implicitly
give higher resistance to specific loads.
As this method only allow small changes, it should give quite small changes in force
pattern between each iteration. It also usually require quite a few global iterations
before convergence is found.

64

3. Method

(a) Current section (b) Overutilised (c) Underutilised

Figure 3.17: Section sizer method 4. Set of possible sections sorted by area. The black
denotes the section from previous iteration. If the member is overutilised, all sections larger than
the current are checked in order from smallest to largest, until one is found that can withstand the
forces. If the member is underutilised, all sections smaller than the current are checked, in order
from the largest to the smallest, until one is found that can not withstand the forces. The section
one step larger is then taken. Red sections are checked and failed. Green is checked and ok

3.3.1.5 Method 4: First acceptable solution from current section

The fourth method works similarly to the first method described in 3.3.1.2. The
difference is that the search for an appropriate cross section for an element starts
on the position in the list that was used in the previous iteration and then checks
downwards on the list of available cross sections if the element is overutilised or
upwards on the list if the element is underutilised. This is intended to make the
update procedure quicker compared to method 1 (3.3.1.2), as the search starts at an
position that in most cases should be closer to the sought one, if the force pattern
has not changed too significantly.
The possibility to do big changes in sections size could lead to big changes in force
patterns. As more iterations are run though, the changes magnitude of the changes
should decrease, why this method could have the possibility for faster convergence
compared to method 1.

65

3. Method

3.3.1.6 Sorting of cross sections

The set of possible cross sections used in the methods is, as mentioned before, sorted
by area. Sorting in this manner might, though, give situations where cross sections
further down on the list are worse for carrying a specific load compared to earlier
entries. As an example one can look at two simple rectangular cross sections:

h1 = 150 mm
w1 = 50 mm
A1 = 7 500 mm2

Iy1 = 14 062 500 mm4

Iz1 = 1 562 500 mm4

(3.15)

h2 = 100 mm
w2 = 100 mm
A2 = 10 000 mm2

Iy1 = 8 333 333 mm4

Iz1 = 8 333 333 mm4

(3.16)

Comparing the two cross sections one can note that the area in the cross section in
eq 3.16 is larger than the cross section in eq 3.15; This means that the first cross
section will be placed higher in the list. If the worst load situation for an element
should lead to major axis bending being the critical utilisation factor, though, the
first cross section would be better at handling this, even though it has a later position
in the set.
This is something that can be problematic, especially for method 3 and 4 during
downsizing. It can be exemplified by a situation where an element is flagged as
underutilised, with a current cross section slightly larger in terms of area than the
one described in eq 3.16. Both method 3 and 4 then checks the cross sections
upwards in the list, i.e. eq 3.16, to see if it is able to handle the load. If the worst
load situation is major axis bending, too high for eq 3.16 it means that the cross
section will remain unchanged, even if the cross section described in eq 3.15 would
be able to handle this load. This happens because the downsizing procedure for
both method 3 and 4 is done by checking the cross sections from largest to smallest.

3.3.2 Section Rotator
As described in section 2.4.2, the orientation of the cross section for an element
can be of high importance. As described, it is possible to find a "principle moment"
and its direction by equation 2.93 and 2.94. A rotation of the cross section around
its own axis can lead to a stiffness redistribution and thereby a force redistribution.
This means that a re-computation of the system needs to be done once a section
has been rotated, which might lead to a new rotation of the section. This leads to a
iterative procedure, where one first solves the system then rotates the sections each
iteration until convergence, i.e. when no more rotations of the sections are needed.

66

3. Method

As this is a iterative procedure, as the section sizer described in 3.3.1, the two
can be used in tandem. This is done by solving the system, rotating, solving system
again and then updating sections. This is done iteratively until convergence, i.e.
when no sections needs to be updated or rotated.

3.3.3 Mode shape optimiser
When the mode shape has been used previously (see the theory section, 2.4.3),
the process has been manual. The eigenmodes have been obtained and sorted by
eigenvalue, thereafter the designer has been given the choice to identify relevant
deformations and take actions to reduce the structures susceptibility to them. This
thesis work aims to implement this process, and if possible also improve it by im-
plement it in an automated process.
The mode shape optimiser is the second element cross section optimiser imple-
mented in the FE-engine, utilising the results from the eigensolver described in
section 3.2.1.3.2

3.3.3.1 Procedure

The optimisation method is based on the same foundation as the manual method
previously described. The intention is however to automate the process by letting
the eigenmodes influence the stiffness redistribution. The hypothesis is that this
will allow the structure to be more efficiently utilised, since the stiffness increase
gets focused on the most heavily strained elements. Since the eigenvectors obtained
are normalised, they do not need to correspond to any real load case. Therefore the
these eigenvectors must be properly scaled by a chosen scale factor s so that they
can be used to generate useful results. Described schematically this is done by:

1. Solve the eigenvalue problem
2. Select the relevant eigenmodes.

This can be done either by choosing the specific modes or choosing an eigen-
value ratio limit (for instance one could include all eigenmodes corresponding
to eigenvalues up to x times the lowest eigenvalue).

3. For each eigenmode:
(a) Calculate a ratio of the eigenvalue R = λi/λ1, where λ1 is the lowest

eigenvalue.
(b) Using the displacement vector to find the corresponding stresses in the el-

ements (in the same way as for a structure with prescribed displacements
in all of its degrees of freedom)

(c) Analysing the elements to find their utilisation rate
(d) Find the element in the structure with the lowest utilisation rate ηmin

(e) Calculate the applied forces on the DOFs (according to eq. 2.83)
(f) Scale all forces with a scale factor C = η−1

min ·R · s.
This scales the applied forces so that the least utilised element gets a
utilisation of 100%, and all other elements are overutilised, for the first
eigenmode. All other (selected) eigenmodes gets a reduced scale factor

67

3. Method

(R) to correspond to the strain they induce compared to the first eigen-
mode.

(g) Increase the section properties so that the elements can carry the load.
This is done in the same manner as method 1 used by the section sizer,
see section 3.3.1.2

(h) Record the new section property
4. When all eigenmodes have been analysed, the section property of each element

is taken as the largest one obtained for any eigenmode.

One thing that can be noted is that this process only considers modal loads, and
no actual load cases. It is therefore useful for finding "stable" structures but not
necessarily useful for an actual load case.

3.3.4 Combined section sizer
Since the aim of the mode shape optimiser, described in section 3.3.3, is to find
inherently stable structures, an hypothesis is that these structures seem like a good
starting points for the section sizers. The section sizers are highly prone to be
influenced by the initial design, and by starting from an effective structure the
behaviour is steered toward a potentially more efficient behaviour.
The combined section sizer is the third element cross section optimiser implemented
in the FE-engine and is easily explained, since it is a combination the other two
methods:

1. Perform the mode shape optimisation (see section 3.3.3)
2. Starting from the acquired design, perform a section sizing procedure (see

section 3.3.1)

3.3.5 Section optimisation using genetic algorithms
In Grasshopper, there is a single-objective genetic algorithm implementation in-
cluded. It’s called Galapagos and contains a genetic algorithm solver and a simu-
lated annealing solver. It is well implemented in the Grasshopper interface, making
it easy to assign variables and output.

Being a single-objective solver one must create a combined value which includes
all desired parameters. In this case for instance it would not be enough to simply
minimise the weight, because the structure also needs to have a utilisation less than
100% in all sections to be acceptable. One way to do this is to use a hard constraint,
which basically only accepts solutions with acceptable utilisations, for instance by:

m =

m if ηi < 1 ∀ i

∞ else
(3.17)

This method treats all unacceptable solutions the same, regardless of whether the
maximum utilisation is 101% or 1000%. A scaled weight function could be used

68

3. Method

instead:

m =

m if ηi < 1 ∀ i

m · ηmax else
(3.18)

As an alternative to Galapagos, there is a plugin called Octopus available
[Vierling, R (2014)]. It has two features that are useful for this optimisation task:

• Start from presets option
• Multi-objective optimisation

Starting from presets is an interesting option because genetic optimisers often start
from very bad fitness and work themselves toward a good solution. Since each
solution is quite time consuming to evaluate even a relatively small improvement to
the initial conditions could prove to result in a large amount of saved time. This
could be done either by manually setting the starting geometry to something which
is reasonable, or by using another generative algorithm.

Multi-objective optimisation is good because of the reasons stated earlier. Now
the genetic algorithm could be solved by for instance optimising for both weight
and maximum utilisation. By optimising for both of these (or more) goals a number
of results can be obtained, rather than just one. The advantage of this is that the
cut-off between the two optimisation criteria is performed manually, putting the
user in control without having to predict how a weighing factor will affect a single
optimisation criterion.

3.3.6 Connection stiffness optimisation
The connection stiffness optimisation is implemented using the theory in section 2.1.3.
To evaluate this method a structure is created with joints that are rigid for transla-
tions and torsion, and have rotational springs for bending in the major and minor
axes. An existing genetic algorithm is then used to find the best suitable stiffness
for these springs.

69

3. Method

3.4 Strategy for experiments
In order to analyse the proposed tools, a strategy must be developed. This strategy
is presented below:

1. Which questions need to be answered?
• When are the different methods good/bad?
• What are the limits of the methods?
• How and why do the results differ?
• What customisation is possible?
• How practically applicable are the methods?
• How can the different methods be combined?

2. Which models should be analysed to answer these questions?
• 2d frame

– This frame should be simple enough to study the basics of the different
methods. See fig. 5.1

• 3d frame
– This frame should be more complicated, which should show the ca-

pabilities of the different methods, in terms of both efficiency and
solving capability. See fig. 5.3

• Dome-like structure
– Using a structure with a high degree of statical indeterminacy should

further elucidate the strengths and weaknesses of the methods. See
fig. 5.5

• Case study: KAFD Metro Station
– The complexity of this free-form structure should serve as a thorough

examination that challenges the methods on a real project. See fig. 5.9
– This model is intended to especially study how the methods can be

combined, and how applicable the results are in a real project.

70

4
Implementation

This chapter explains the implementation of the developed package in more detail.
The most important parts will be explained in pseudo-code algorithms. If further
information is required, the entire code will be made available (see section 7.8).

4.1 Linear solver
A very important part of the FEM package is the linear solver, which solves dis-
placements and reactions for a set of applied loads. It can be used separately, but is
also implemented in the section sizers and the combined section sizer. The process
is described in algorithm 4.1:

Algorithm 4.1: Linear solver
Data: Elements, Boundary conditions, Loads
Result: Resulting displacements, reaction forces and section forces
Get element degrees of freedom;
Assign a unique index to each DOF, ranging from 0 to the number of DOF:s;
Assemble global stiffness matrix;
foreach Loadcombination do

Reset forces in DOF:s;
Calculate and apply gravity loads to DOF:s;
Apply nodal forces to DOF:s;
Solve system (see section 3.2.1.3.1);
Set results to DOF:s;
Calculate element section forces;

71

4. Implementation

4.2 Optimisation methods
This section will describe in more detail how the different optimisation methods in
the finite element solver CIFem has been implemented.

4.2.1 Iterative section sizer and rotator
The section sizer and rotator works by an iterative outer while-loop that runs until
the system is unchanged from previous iteration. Algorithm 4.2 describes the main
loop where the whole system is ran until convergence is found. It can be noted that
the system can be solved twice for each iteration if sections are both rotated and
changed.

Algorithm 4.2: Section sizer loop
Data: Initial structure
Result: Updated structure with updated sections
set updated to true;
while updated do

if rotate sections then
solve system;
check and rotate sections;
set updated to true if sections have been rotated

if change sections then
if updated then

solve system;
check and change sections;
set updated to true if sections have been changed

The section updating described in algorithm 4.3 first checks if any of the elements
are over utilised. If no over utilised elements are found in the whole structure it
does not try to update any element, but exits the function. If one or more elements

72

4. Implementation

are over utilised, all elements are checked to see if a better fit can be found.

Algorithm 4.3: Check and update element cross sections
Data: Current Structure
Result: Updated structure with updated sections, boolean stating if any updates

has been done
set over utilised to false;
foreach element in structure do

calculate maximum utilisation of element;
if element is over utilised then

set over utilised to true;

if over utilised = false then
set updated boolean to false;
return updated boolean and exit function;

set updated boolean to false;
foreach element in structure do

try to update element section;
if element has been updated then

set updated boolean to true;
return updated boolean and updated structure and exit function;

The check if the element cross section can be updated or not is done using algo-
rithm 4.4. Here it is checked if the element has a utilisation within a set limit. If the
utilisation is outside the set limit, a new cross section is searched for using algorithm
4.5, 4.6, 4.7 or 4.8;

Algorithm 4.4: Update element cross section
Data: results from solution
Result: boolean stating if any updates has been done
check if element utilisation is below set minimum;
check if element utilisation is above set maximum;
if over utilised or underutilised then

try to find new cross section;
if update is found then

update element cross section;
set updated boolean to true;
return updated boolean and exit function;

else
set updated boolean to false;
return updated boolean and exit function;

73

4. Implementation

4.2.1.1 Method 1: First acceptable section

As described in section 3.3.1.2, this method works by checking all possible cross
section from smallest to largest in terms of area. As mentioned before, the set of
cross sections used to search through is sorted by area, which makes it possible to
check the set first to last until one is found that can sustain the applied loads.

Algorithm 4.5: Update cross section by checking smallest to largest
Data: results from solution, current cross section, set of possible cross section
Result: updated section, boolean set to if the section has been updated or not
foreach cross section in possible cross sections do

check utilisation of cross section with current results;
if utilisation < maximum allowed utilisation then

set updated cross section to loop cross section;
set updated boolean to true;
return updated cross section and boolean and exit loop and function;

4.2.1.2 Method 2: Step-wise incrementation

Method described in section 3.3.1.3. If the member is over utilised the current
position in the set is found and the cross section is then updated to the one after,
as long as the current is not at the end of the list.

Algorithm 4.6: Update section by stepping to next
Data: over utilised boolean, current cross section, set of possible cross section
Result: updated section, boolean set to if the section has been updated or not
if over utilised boolean = false then

set updated boolean to false;
return boolean and exit function;

find position of current cross section in set of possible cross sections;
if position is last in set then

set updated boolean to false;
return boolean and exit function;

else
set updated cross section to next in set of possible cross sections;
set updated boolean to true;
return updated cross section and boolean and exit function;

74

4. Implementation

4.2.1.3 Method 3: Step-wise incrementation with down-sizing

Method described in section 3.3.1.4. If the member is over utilised this method
works exactly as the one described in section 4.2.1.2. If the member is underutilised
a check is done if the section on the previous position in the set of cross sections can
handle the load. If so, the section is updated to that previous cross section. If not
the cross section remains unchanged.

Algorithm 4.7: Update section by stepping to next or previous
Data: over utilised boolean, results from solution, current cross section, set of

possible cross section
Result: updated section, boolean set to if the section has been updated or not
find position of current cross section in set of possible cross sections;
if over utilised boolean = true then

if position is last in set then
set updated boolean to false;
return boolean and exit function;

else
set updated cross section to next in set of possible cross sections;
set updated boolean to true;
return updated cross section and boolean and exit function;

else
check utilisation of cross section in previous position in set;
if utilisation < maximum allowed utilisation then

set updated cross section to cross section in previous position in set;
set updated boolean to true;
return updated cross section and boolean and exit function;

else
set updated boolean to false;
return boolean and exit function;

4.2.1.4 Method 4: First acceptable solution from current section

Method described in section 3.3.1.5. This method works by first finding the position
of the current cross section in the set. If the element is overutilised the set is then
searched through, starting from the current section property and incrementing until
a section is found that has a utilisation below the set limit.
If the member is underutilised the set is instead searched through by moving decre-
menting section property until a section is found that has a utilisation above the set
maximum limit. When such a cross section is found, the updated cross section is
set to the one for the previous iteration, i.e. the cross section one step further down

75

4. Implementation

in the list that is slightly larger and was checked in the previous iteration.

Algorithm 4.8: Update section checking all from current position
Data: over utilised boolean, results from solution, current cross section, set of

possible cross section
Result: updated section, boolean set to if the section has been updated or not
find position of current cross section in set of possible cross sections;
if over utilised boolean = true then

set run to true;
while run do

check utilisation of cross section of current position in set;
if utilisation < maximum allowed utilisation then

set run to false;
set updated cross section to current position in set;

else
change cross section position to next in set;

else
set run to true;
while run do

check utilisation of cross section of current position in set;
if utilisation < maximum allowed utilisation then

change cross section position to previous in set;
else

set run to false;
set updated cross section to next position in set;

4.2.1.5 Section rotator

As for the section sizer the outer loop, described in algorithm 4.2, calls a inner loop
that runs through all elements in the structure and checks if any update is required.
This loop is described by algorithm 4.9.

Algorithm 4.9: Check and update all element cross section orientations
Data: Current Structure
Result: Updated structure with updated sections orientations, boolean stating if

any updates has been done
set updated boolean to false;
foreach element in structure do

try to update element orientation;
if element has been updated then

set updated boolean to true;
return updated boolean and updated structure and exit function;

As a first check for the section rotation for each element, the cross section type is

76

4. Implementation

analysed. For example a CHS section is directionally independent, why a rotation of
the section would result in no change to the structural behaviour. If the orientation
of the cross section have an influence a check is made if any improvements for the
orientation can be found.
As described in 2.4.2 and 3.3.2 the rotator is using the principle moment to find
the orientation for the cross section. As this is an iterative procedure, the method
need to have some convergence criterion. The criterion used is to check if the ratio
between the major and minor axis bending moment is sufficiently small. If the
ratio is small enough no change will be made, otherwhise the cross section will be
updated.

Algorithm 4.10: Update the element orientation based on principle moment
Data: results from solution, current cross section
Result: new element orientation vector, boolean stating if update is found
if cross section is directional dependant then

find the position with highest principle moment, using eq 2.93, from the worst
load case for the element;
get size of major and minor axis moment from position;
if abs(maxMz/maxMy) < small value then

no update needed;
set updated boolean to false;
return update boolean and exit function;

else
calculate new element orientation vector using eq 2.94;
set updated boolean to true;
return update boolean, new element orientation vector and exit function;

else
no update needed;
set updated boolean to false;
return update boolean and exit function;

4.2.2 Mode shape optimiser
The mode shape optimiser is described in section 3.3.3. unlike the iterative section
sizer, it only uses its solver, here the eigensolver described in section 3.2.1.3.2 once.
This is done at the start of the process, where after all modes of interest, chosen by
the user, are evaluated. The cross sections found, using algorithm 4.7 for each mode
is stored by the elements. After all modes have been checked the largest cross section

77

4. Implementation

for each element is chosen. The whole processes is described in algorithm 4.11.

Algorithm 4.11: Mode shape optimiser
Data: Current Structure, modes to optimise for, external scale factor (sext)
Result: Updated structure with updated sections
Calculate eigenvalues and modes for the structure using the eigensolver;
Get the first (lowest) eigenvalue (λ1);
foreach mode to optimise for do

Calculate the ratio between the first and current eigenvalue (R = λi/λ1);
Calculate section forces for the mode;
Find the lowest utilisation for the mode (ηmin);
Calculate the scalig factor (s = sext · 1/ηmin · 1/R);
Scale all element section forces with s;
Find the smallest suitable cross section for the scaled forces;

Update all elements cross to the largest ones found in the loop;

4.2.3 Combined section sizer
The combined section sizer works by a combination of the mode shape optimiser and
the iterative section sizer, as described in section 3.3.4. This process is described
by algorithm 4.12.

Algorithm 4.12: Combined mode sizer and section sizer
Data: Current Structure, modes to optimise for)
Result: Updated structure with updated sections
Run mode shape optimiser(algorithm 4.11);
Run section sizer(algorithm 4.2);

78

5
Case Studies

5.1 Small 2d frame
A test was conducted on a small 2d frame of 2x2 bays, see fig. 5.1. Each element
has a length of L = 3m. All node connections were modelled as stiff.

5.1.1 Geometry

Figure 5.1: The analysed frame with dimensions and boundary conditions.

5.1.2 Boundary conditions
The element is rigidly connected to the ground in all three columns. All out-of-plane
actions have been restrained as well.

79

5. Case Studies

5.1.3 Loads

(a) Vertical load, f1=50 [kN] (b) Horisontal load, f2=10 [kN]

Figure 5.2: Load combinations on the structure

The loads are presented in figure 5.2. The frame was loaded in-plane with relatively
small forces. The forces were applied as separate loads rather than as one combined.
Both load combinations also include self-weight.

5.1.4 Optimisation settings
For the iterative section sizers, the following settings have been used:

Setting Value
Initial cross section RHS30x30x8
Minimum utilisation 80%
Maximum utilisation 100%
Maximum iterations 100

Table 5.1: Optimisation settings for the 2d frame

The sections used for the iterative section sizers can be found in Appendix B

80

5. Case Studies

5.2 3d frame

5.2.1 Geometry
The geometry of the structure is as follows (see fig. 5.3):

Figure 5.3: The structure consist of two storeys and is symmetrically two bays wide and two
bays deep. Each element is 3 meters long, making the entire structure 6x6x6 meters.

5.2.2 Boundary conditions
The structure is fixed in all translations and all rotations at the bottom nodes (see
fig. 5.3). However, the node stiffness method may alter the rotational stiffnesses in
the major and minor axes for any element.

5.2.3 Loads
The structure is subjected to several combinations of vertical loads and wind load.
The wind loads are subjected to the nodes at the exposed side. All load combinations
also include self-weight.
The loads are presented in fig. 5.4.

81

5. Case Studies

(a) LC1: Vertical (b) LC2: Wind W (c) LC3: Wind SW

(d) LC4: Wind S (e) LC5: Wind SE (f) LC6: Wind E

(g) LC7: Wind NE (h) LC8: Wind N (i) LC9: Wind NW

Figure 5.4: The load combinations applied to the structure. Vertical loads are 50 kN in
the pure vertical case (6.13a) and 10 kN in all other cases. Horizontal loads are 5 kN. All load
combinations also include self-weight. Loads not drawn to scale.

5.2.4 Optimisation settings
For the iterative section sizers, the following settings have been used:

Setting Value
Initial cross section RHS30x30x8
Minimum utilisation 80%
Maximum utilisation 100%
Maximum iterations 100

Table 5.2: Optimisation settings for the 3d frame

The sections used for the iterative section sizers can be found in Appendix B

82

5. Case Studies

5.3 Dome

5.3.1 Geometry
The geometry of the structure consists of a quadratic grid dome with an outer
perimeter ring. (see fig. 5.5):

Figure 5.5: The structure consist of a dome resting on six pinned roller supports.

The dome has a diameter of 30 m, with an average length of each element of 3.8
meters.

5.3.2 Boundary conditions
A dome structure with vertical and horizontal supports along it’s boundary is a
very efficient structure. If the boundary conditions are changed to something not as
ideal, though, the structure might change its load bearing behaviour. For the ideal
boundary condition case, the dome will carry vertical load in primarily normal force
action. To get a structure with less ideal conditions, the dome is instead sat on six
rolling supports, only restraining vertical movement. This should change the load
bearing behaviour from primarily normal force action to primarily bending moment
action. Stiffening the perimeter ring of the dome could be beneficial as it could

83

5. Case Studies

make the grid of the dome get a behaviour closer to the ideal boundary condition
case.
As the six rolling supports does not prevent horizontal movement and rotation and
rotation around the vertical axis, the middle node of the structure is restrained to
handle these movements.

5.3.3 Loads
The point of interest for the investigation of this dome like structure is to evaluate
how different stiffness distributions can change the load bearing behaviour between
bending action and normal force action. To investigate this, five load cases are set
up, all solely consisting of vertical loads. The load cases consists of point loads of
10[kN]. The distribution can be seen in figure 5.6

5.3.4 Cross sections
For the section sizer procedures various RHS cross sections are set up as possible
candidates for the elements to use. The size of these cross sections range from 30
mm to 650 mm in height and width, all 6 mm thick. The cross sections are limited
to an aspect ratio (height/width) between 1 and 4. For a full list of the used cross
sections refer to appendix C.

5.3.5 Optimisation settings
The following settings has been used for the optimisation procedure if nothing else
is mentioned, the cross section chosen to start with is the smallest on the list (see
appendix C):

Setting Value
Initial cross section RHS30x30x6
Minimum utilisation 80%
Maximum utilisation 100%

Table 5.3: Optimisation settings for dome structure

84

5. Case Studies

(a) Load combination 1. Whole dome loaded (b) Load combination 2. Half dome loaded

(c) Load combination 3. Half dome loaded (d) Load combination 4. Half dome loaded

(e) Load combination 5. Half dome loaded

Figure 5.6: Dome load cases.

85

5. Case Studies

Figure 5.7: King Abdullah Financial District Metro Station. Picture courtesy of Zaha Hadid
Architects [Zaha Hadid (2016)].

5.4 KAFD Metro Station
For the final object to study, a real project was chosen. King Abdullah Financial
District Metro Station is a part of a massive infrastructure project currently under
construction in Ar Riyadh, Kingdom of Saudi Arabia [Zaha Hadid (2016)]. The
station will be one of the major stations for the new Metro in Ar Riyadh, serving
three lines. It is designed by Zaha Hadid Architects and Buro Happold Engineering,
with facade design by NewTecnic.

This project is of course extremely complex and requires lots of skill and time to
design completely. At the time when this thesis was conducted, this project was in
the final design stages after several years of development. It was selected as a good
test subject because of its complexity, which meant that the methods would really
be put to the test. A real project would also hopefully not have the idealised nature
that a test structure has, which could highlight the strengths and weaknesses of the
methods.

However, as the entire project contains more than 20 000 elements it would take
very long time to analyse. Therefore a smaller part of the structure was selected
for the case study, with the intention that the complexity of that part alone would
be sufficiently complex to be useful for a study. The part that was selected is one
of the entryways for the trains. It was chosen because it was a part that worked
predominantly in isolation and was relatively unaffected by the rest of the structure,
but still being of unconventional structural design. It also contains a transition
between a free-form part and a more conventional part.

86

5. Case Studies

Figure 5.8: Night render of King Abdullah Financial District Metro Station. The selected part
for the case study is where the train at the left side is entering the station. Picture courtesy of
Zaha Hadid Architects [Zaha Hadid (2016)].

5.4.1 Geometry
The evaluated part of the station consist of a 3D-frame steel structure. It has a
span of ca 22 meters over it’s wides parta and 13 meters over it’s smallest part, and
is ca 23 meters long. The geometry can be seen in fig. 5.9.

5.4.2 Boundary conditions
The structure has been modeled with pinned supports along it’s sided. The supports
can be seen as grey pyramids in fig. 5.9.

5.4.3 Loads
Since several simplifications had to be done, both in the geometry of the case study
and in the implementations of CIGull, the loads used for the actual design of the
structure generated a very low utilisation. For instance, the driving factor for the
design of the actual design may have been deflection limits, dynamic loads, con-
nection design or buckling, all phenomena not currently implemented in CIGull.
Therefore, the original loads applied to the structure have been scaled so that they
generate a utilisation of about 100%, thus making the process of optimisation more

87

5. Case Studies

Figure 5.9: Geometry of the evaluated part. Boundary conditions are modeled as pinned
supports.

similar to the original design. This of course means that the obtained designs are
not comparable to the original, but they are still comparable to each other.
The applied loads are all modeled as point loads. Their amplitude correspond to
their tributary area, which means that the further the load applications points are
from each other, the larger the load will get. The load situations correspond to dead
loads from panels carried by the structure (fig. 5.10a) and wind pressure from the
trains entering and exiting the station (fig. 5.10b and fig. 5.10c).

5.4.4 Cross sections
The current state of the geometry of the structure consists of three types of cross
sections, RHS:s, CHS:s and I-beams. As CIFem currently do not support I-beams,
they where changed to RHS-beams with similiar sections properties. For the opti-
misation procedures cross sections already used in the structure is taken as possible
candidates. Members being RHS:s at the start will coose from the available set of
RHS cross sections to keep the section type intakt. The same is true for elements
with initial CHS section types. For full lists of the cross sections used refer to
appendix D;

88

5. Case Studies

(a) Load 1 (b) Load 2

(c) Load 3

Figure 5.10: The three different load setups for the structure

5.4.5 Optimisation settings
The following settings has been used for the optimisation procedure if nothing else
is mentioned, the cross section chosen to start with is the smallest on the lists (see
appendix D):

Setting Value
Initial cross section RHS RHS80x80x5
Initial cross section CHS CHS139.7x5
Minimum utilisation 80%
Maximum utilisation 100%
Maximum iterations 150

Table 5.4: Optimisation settings for KAFD metro

89

6
Results

6.1 Small 2d frame

6.1.1 Section sizer
The 2d frame from fig. 5.1 was optimised using the four section sizing tools described
in section 3.3.1. Allowing rotations isn’t relevant in this case, since the problem is
two dimensional. The following results were obtained:

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.1: Resulting structures from the section sizer, using different modes as input

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Section sizer
(no rotation)

1 677 0.9 s 5 81.6 99.3 92.3
2 718 2.2 s 35 65.3 97.6 79.6
3 680 2.2 s 33 84.0 98.7 91.6
4 677 0.8 s 5 81.6 99.3 92.3

Table 6.1: Results for the 2d frame from fig. 5.1.

90

6. Results

6.1.2 Genetic algorithms

Optimiser Parameters Weight [kg] Calc. time

Genetic algorithm
(galapagos)

Section properties 560 1 h

Section properties +
node stiffness

796 1 h

Genetic algorithm
(octopus)

Section properties 512 1 h

Section properties +
node stiffness

785 1 h

Table 6.2: Results for the 2d frame from fig. 5.1 optimised using genetic algorithms using
either only the section properties or section properties and node stiffness as its genome.

(a) Galapagos - SP* (b) Octopus - SP*

(c) Galapagos - SP* + CS** (d) Octopus - SP* + CS**

Figure 6.2: Resulting structures from the genetic algorithms, optimised for different variables
* SP - Section properties
** CS - Connection stiffness

The genetic algorithms did find some good results, but when optimising for connec-
tion stiffness as well the additional parameters made it very slow to converge, likely
because the connection stiffness do not affect the fitness directly. It is assumed that
if the algorithm was left to run for a longer time, a better result would have been
achieved.

91

6. Results

6.1.3 Canonical stiffnesses and eigenmodes

(a) Mode 1. λ1 = 916 (b) Mode 2. λ2 = 8307 (c) Mode 3. λ3 = 19.5 · 103

(d) Mode 4. λ4 = 23.3 · 103 (e) Mode 5. λ5 = 37.4 · 103 (f) Mode 6. λ6 = 41.8 · 103

(g) Mode 7. λ7 = 42.4 · 103 (h) Mode 8. λ8 = 60.8 · 103 (i) Mode 9. λ9 = 17.0 · 106

(j) Mode 10. λ10 = 17.0·106 (k) Mode 11. λ11 = 17.0 ·
106

(l) Mode 12. λ12 = 44.5·106

(m) Mode 13. λ13 = 44.5 ·
106

(n) Mode 14. λ14 = 116.4 ·
106

(o) Mode 15. λ15 = 116.4 ·
106

Figure 6.3: The first nine eigenmodes for the 2d frame with uniform sections.

92

6. Results

Mode Eigenvalue Normalised eigenvalue
1 916 1.0
2 8307 9.07
3 19.5 · 103 21.31
4 23.3 · 103 25.51
5 37.4 · 103 40.9
6 41.8 · 103 45.63
7 42.4 · 103 46.31
8 60.8 · 103 66.39
9 17.0 · 106 18555
10 17.0 · 106 18560
11 17.0 · 106 18569
12 44.5 · 106 48579
13 44.5 · 106 48590
14 116.4 · 106 127178
15 116.4 · 106 127182

Table 6.3: Eigenvalues for the first fifteen modes, normalized to the first eigenvalue.

When analysing the eigenmodes in figure 6.3 there are some things that can be noted.
First, mode 1 corresponds very well to the horisontal load combination (fig 5.2b).
What this means is that the most sensitive deformation pattern of the structure
corresponds to one of the actual load combinations, which is not ideal. The vertical
load case has a corresponding eigenmode in mode 9, but that is less of an issue given
the large increase in eigenvalue which can be identified between mode 8 and nine.
The reason for this large increase is the introduction of axial deformations in the
elements.

6.1.4 Mode section sizer
Looking at the modes in fig. 6.3, the first two are characterised by lateral defor-
mation, modes 3-8 by various rotations, and modes 9-15 by axial deformations.
Choosing the modes for the mode section sizer is therefore done for these ’groups’,
and one combination.

93

6. Results

(a) Mode 1 - 2 (b) Modes 3 - 8

(c) Modes 9 - 18 (d) Modes 1 - 8

Figure 6.4: Resulting structures from the mode section sizer, using different modes as input

6.1.5 Combined section sizer

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Section sizer
(no rotation)
modes 1-8

1 639 4.5 s 18 33.5 99.2 75.9
2 796 3.4 s 27 45.1 98.3 67.9
3 647 5.2 s 46 31.8 97.9 73.2
4 650 4.3 s 18 42.4 97.9 76.4

Section sizer
(no rotation)
modes 1 + 9

1 575 3.8 s 23 26.8 86.1 62.3
2 710 1.2 s 14 18.8 95.5 77.1
3 665 2.4 s 30 57.8 98.4 85.2
4 568 3.0 s 19 33.8 99.3 66.7

Table 6.4: Results from the combined section sizer.

The combined section sizer was run for a set of different modes in the mode section
sizer. In figure 6.5 the first 8 modes were used in order to generate a "stable" struc-
ture, in figure 6.6 the two most that most corresponded to the load combinations.

94

6. Results

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.5: Resulting structures from the combined section sizer, starting with a geometry
scaled for modes 1-8.

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.6: Resulting structures from the combined section sizer, starting with a geometry
scaled for modes 1 and 9, the modes that most correspond to the applied loads.

95

6. Results

6.1.6 Comments
It can be noted that although the genetic algorithms produce end results that are
better than the ones produced by the section sizers, they do it at a much slower
speed. For this relatively simple example the genetic algorithm had a calculation
time of about one hour, compared to the section sizers and combined section sizer
which converged in a matter of seconds.

The problem with the genetic algorithms is that they basically are blind while
searching for good solutions in an enormous search space. It is thus expected for the
process to be slow. However, most of the computation time is spent searching for an
’acceptable’ solution, and only a small part of the time is spent on finding a ’good’
solution. If one could cut this first initial calculation part it would likely generate
a large increase in speed. This can be done by letting the outcome of the iterative
section sizer be the input of the genetic algorithm. Octopus (see section 3.3.5)
includes an option of "run with presets", allowing the user to add one genome to the
set of the randomly generated ones. By adding a genome with very good fitness and
using combined settings of high mutation probability and low mutation rate (for
more information on these, [Bedney (2016)] can be consulted) the result obtained
from the iterative section sizer may be increased very quickly. Since the majority
of the generations of the genetic algorithms were spent searching for a fitness as
good as the ones obtained from the iterative section sizers (rather than actually
improving them), eliminating that part of the process increases the efficiency by a
huge amount! The downside with this technique is however that the point of using
genetic algorithms, to explore unexpected solutions, is somewhat reduced.

The perhaps most interesting result from this studied example was that the
method that generated the best results was the combined section sizer using sec-
tion sizer method 4 (see fig. 6.6d). Choosing the first eight modes resulted in a
more homogenous structure, but choosing the relevant modes for the current load
combinations resulted in a more effective structure.

96

6. Results

6.2 3d frame

6.2.1 Section sizer and rotator

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Section sizer
(no rotation)

1 1688 3.6 min 21 57.6 98.7 79.5
2 1965 1.4 min 27 62.5 97.5 79.2
3 1751 4.2 min 66 47.7 99.6 79.5
4 1718 3.1 min 23 46.3 99.7 79.3

Section sizer
(incl. rotation)

1 1587 6.8 min 36 37.1 100 76.0
2 1845 3.8 min 38 65.0 95.0 77.8
3 1733 8.5 min 77 39.0 98.5 83.6
4 1676 5.1 min 34 46.2 99.3 78.9

Table 6.5

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.8: Resulting structure from iterative section sizer - not allowing rotations.

97

6. Results

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.9: Resulting structure from iterative section sizer - allowing rotations.

When analysing the results for the section sizer with and without rotation it can be
noted that method 2 is the fastest one for both cases. This isn’t surprising since it
performs less checks than the others. Including rotations improved the results for
all methods. Another thing to notice is that the rotating and non-rotating methods
have produced one family of results each (cf. figs. 6.8 and 6.9).

6.2.2 Genetic algorithms

Optimiser Parameters Weight [kg] Generations Calc time
GA (Octopus) Section properties 2399 17 2 h
GA with presets* 1679 11 1 h**

Table 6.6: Results from an optimisation process using genetic algorithms.
* Genetic algorithm using Octopus starting from the resulting design from section sizer type 1 (see
3.3.1.2)
** The best solution was found after approximately 5 mins, but the algorithm was allowed to
continue running for one hour before aborting.

The genetic algorithms were run using only the section properties as input, because
of the time increase it would cause (see the 2d frame example, section 6.1). This
time the results (see table 6.6) showed that the genetic algorithm didn’t achieve a
better result than the section sizers (see table 6.5) in the test time. It is expected

98

6. Results

that a better result would have been possible to achieve if enough time would have
been given, as well as optimal algorithm settings. Using a preset geometry did allow
Octopus to produce a better result than the input data, but it is still a slow process
which doesn’t improve the end result by a great deal.

6.2.3 Canonical stiffnesses and eigenmodes

(a) Mode 1. λ1 = 916 (b) Mode 2. λ2 = 916 (c) Mode 3. λ3 = 920

(d) Mode 4. λ4 = 4814 (e) Mode 5. λ5 = 8192 (f) Mode 6. λ6 = 8307

(g) Mode 7. λ7 = 8307 (h) Mode 8. λ8 = 8986 (i) Mode 9. λ9 = 8986

Figure 6.10: The first nine eigenmodes for the 3d frame with uniform sections.
Deformations scaled 5 times.

99

6. Results

Mode Eigenvalue Normalised eigenvalue
1 916 1.0
2 916 1.0
3 920 1.01
4 4814 5.26
5 8192 8.95
6 8307 9.07
7 8307 9.07
8 8986 9.82
9 8986 9.82

Table 6.7: Eigenvalues for the first nine modes, normalized to the first eigenvalue. A longer
version of this list can be found in Appendix E.

In table 6.7 the first 9 eigenmodes are presented. A list of the first 67 eigenvalues
is presented in Appendix E. For this problem, the eigenvalues of the first three
eigenmodes were very similar, their normalised values very close to one. After that
the eigenvalues 4-66 are somewhat similar, with a large increase after that.

6.2.4 Mode section sizer

(a) Mode 1 (b) Modes 2

(c) Modes 3 (d) Modes 1 - 3

Figure 6.11: Resulting structures from the mode section sizer, using different modes as input

When analysing the different modes as seen in table 6.7 it can be seen that modes
1 - 3 have almost equally low eigenvalues. When looking at these modes in figure

100

6. Results

6.10 the first two modes can be identified as actually being the same mode, only
acting in different directions. It is a ’shearing mode’ which is corresponding fairly
well to the loads applied in this case. The third mode is a twisting mode that is not
found in the load combinations, but given the structures inherent weakness to it, it
is included in the combined section sizer check anyway.

6.2.5 Combined section sizer

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.12: Resulting structure from the combined iterative section sizer - not allowing
rotations.

101

6. Results

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.13: Resulting structure from the combined iterative section sizer - allowing rotations.

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Combined sizer
(no rotation)

1 1673 3.8 min 23 49.8 99.1 80.1
2 3781 5 s 1 10.6 27.0 18.4
3 1680 3.9 min 52 57.8 99.6 85.4
4 1703 2.6 min 14 46.4 98.4 82.4

Combined sizer
(incl. rotation)

1 1658 7.0 min 44 51.0 98.7 79.6
2 4061 1.3 min 13 10.1 21.5 15.7
3 1736 5.5 min 43 52.7 98.3 79.3
4 1710 5.3 min 24 46.3 96.2 77.6

Table 6.8

6.2.6 Comments
The results for the 3d frame were quite similar to the results obtained from the
2d structure. It seems that increasing the complexity of the model increases the
computation time for the genetic algorithms severely. The reason for this is probably
that both the solution space and the computation time for each iteration increases,
which together makes the search very slow. The most remarkable result for this
structure is however that the combined section sizer (figure 6.12a) produced a better
result than any other (not allowing rotations).

102

6. Results

6.3 Dome

6.3.1 Section sizer and rotator

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.14: Resulting structure from iterative section sizer - not allowing rotations. Colour
corresponding to utilisation from worst load case for each element

103

6. Results

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.15: Resulting structure from iterative section sizer - allowing rotations. Colour
corresponding to utilisation from worst load case for each element

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Section sizer
(no rotation)

1 10060 1.74 min 10 29.0 99.5 76.7
2 13743 2.86 min 44 25.8 94.1 58.4
3 10268 4.185 min 52 29.2 97.2 74.9
4 10877 2.18 min 12 36.9 98.8 75.5

Section sizer
(incl. rotation)

1 9467 7.20 min 38 23.7 99.8 73.9
2 12787 8.45 min 65 25.1 97.0 58.4
3 9510 11.05 min 77 29.4 99.3 74.3
4 9672 9.03 min 47 21.6 99.1 72.7

Table 6.9: Results from the section sizer with and without rotation

104

6. Results

6.3.2 Canonical stiffnesses and eigenmodes

(a) Mode 1. λ1 = 3.42 (b) Mode 2. λ2 = 60.9 (c) Mode 3. λ3 = 84.8

(d) Mode 4. λ4 = 94.7 (e) Mode 5. λ5 = 123 (f) Mode 6. λ6 = 127

(g) Mode 7. λ7 = 192 (h) Mode 8. λ8 = 214 (i) Mode 9. λ9 = 234

Figure 6.16: The 9 first eigenmodes for the dome with uniform sections

Mode Eigenvalue Normalised eigenvalue
1 3.42 0.0562
2 60.9 1.0
3 84.8 1.39
4 94.7 1.55
5 123 2.02
6 127 2.09
7 192 3.15
8 214 3.51
9 234 3.84
10 252 4.13

Table 6.10: Eigenvalues for the first modes. Normalized to the second eigenvalue

Looking at the mode shapes and eigenvalues one can note that the first is of little
interest, as it reassembles something very close to a rigid body mode. This mode

105

6. Results

do not give much information on the stiffness and behaviour of the structure, but
is a consequence of the low degree of restrain from the chosen boundary conditions.
This is why the eigenvalues have been normalised to the second eigenvalue, and why
the mode shape optimiser and the combined section sizer in the upcoming sections
were set to only work with higher modes.

6.3.3 Mode section sizer

(a) Mode 2 (b) Mode 3 (c) Mode 4

(d) Mode 5 (e) Mode 6 (f) Mode 7

(g) Mode 8 (h) Mode 9 (i) Mode 2-10

Figure 6.17: Mode section sizer. The first eight figures are showing results from mode 2-9 run
in solitude. The last figure shows modes 2-10 run together.

106

6. Results

6.3.4 Combined section sizer

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.18: Resulting structure from combined section sizer. Modes used for mode shape
optimiser are mode 2-10 (see fig. 6.28i), that can be seen in figure 6.17

The combined section sizer was set to work with modes 2-10. This means that the
initial geometry for the second step in the process (the iterative section sizer) was
the one from fig. 6.28i.

107

6. Results

(a) Method 1, allowing rotation (b) Method 2, allowing rotation

(c) Method 3, allowing rotation (d) Method 4, allowing rotation

Figure 6.19: Resulting structure from combined section sizer. Modes used for mode shape
optimiser are mode 2-10, that can be seen in figure 6.17

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Combined sizer
(no rotation)

1 10544 2.06 min 9 29.4 98.4 77.6
2 13317 2.78 min 37 20.1 93.1 60.5
3 10401 3.83 min 42 33.5 98.1 76.9
4 11267 2.20 min 11 36.9 99.4 76.5

Combined sizer
(incl. rotation)

1 9353 8.01 min 29 25.9 98.5 76.3
2 12054 11.7 min 59 22.6 98.9 62.7
3 9352 7.90 min 54 27.6 98.5 74.4
4 9573 6.56 min 33 25.9 99.1 75.1

Table 6.11: Combined section sizer set, setting initial conditions from mode 2-10

108

6. Results

6.3.5 Section sizer with custom settings
The geometry of the structure reassembles one of a grid shell dome, which is a
very efficient structure that can carry load more or less purely through compressive
normal force. The set up boundary conditions, though, makes the structure carry
the load predominately in bending. It is believed that an increase of stiffness of
the outer ring surrounding the mid grid could enhance the dome like behaviour and
thereby make a large part of the structure more efficient in that the way the load is
handled.

To try to enhance this behaviour two different approaches were tested. The first
was to increase the initial stiffness of the perimeter ring by starting from a signifi-
cantly larger cross section (see fig. 6.20a). The second was to use different section
chooser methods for the ring and the grid (see fig. 6.20b). The hypothesis is that
using method 1 or 4 on the ring and method 3 on the grid will enable the ring to
grow a lot "quicker" in terms of numbers of iteration, and thereby attract more force.

(a) Initial set up with larger sections on
the perimeter ring

(b) Combination of methods.
Green - method 3, Red - method 1 or 4

Figure 6.20: Figures showing the different settings

109

6. Results

6.3.5.1 Change of initial condintions

(a) Method 1 - No rotation (b) Method 3 - No rotation

(c) Method 1 - With rotation (d) Method 3 - With rotation

Figure 6.21: Section sizer ran with altered initial conditions.
Initial section 400x300x6 on perimeter ring, 30x30x6 on grid

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Section sizer
(no rotation)

1 9358 2.64 min 16 35.2 97.8 76.0
3 9427 1.35 min 17 33.2 96.7 68.6

Section sizer
(incl. rotation)

1 9467 10.4 min 38 23.7 99.8 73.9
3 8904 7.75 min 56 31.9 99.9 73.2

Table 6.12: Section sizer run with different initial conditions

110

6. Results

6.3.5.2 Combination of methods

(a) Method 1 on perimeter ring, method 3 on
grid - No rotation

(b) Method 4 on perimeter ring, method 3 on
grid - No rotation

(c) Method 1 on perimeter ring, method 3 on
grid - With rotation

(d) Method 4 on perimeter ring, method 3 on
grid - With rotation

Figure 6.22: Section sizer ran with combination of methods on different parts of the structure

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Section sizer
(no rotation)

1 & 3 9274 1.31 min 15 28.0 99.9 73.9
4 & 3 9274 1.30 min 15 28.0 99.9 73.9

Section sizer
(incl. rotation)

1& 3 9028 7.34 min 53 31.4 99.8 75.3
4 & 3 8965 8.31 min 53 30.8 99.7 74.9

Table 6.13: Section sizer ran with combination of methods

111

6. Results

6.3.6 Comments
It can be noted that when the section sizer was run with all initial sections set

to the minimal, the best results in terms of weight were obtained using method 1.
This is not very surprising as method 1 is the only method that with 100% certainty
ensures that each element will get the smallest possible section in terms of area able
to handle the load for a given set of section forces. It can also be noted that the
orientation of the sections is important and that it was possible to reduce the weight
by 5-10% if the cross sections were rotated to match their worst moments.

Since none of the mode shapes corresponded perfectly to the applied loads they
did not give any real improvements when used in the combined section sizer. This
can be seen by comparing the results of table 6.9 (Section sizer) with the results
from table 6.11 (Combined section sizer), where the results in terms of weight are
better in the first table.

The best results by far were achieved when some presets were made and a specific
way of carrying the load was enforced. Looking at the results from section 6.3.5
one can note that the hypothesis that one would be able to reduce the overall
weight of the structure by enforcing a dome-like behaviour, either by changing initial
conditions or by using a combination of methods, was correct. The best results when
not allowing rotation was achieved using method 3 on the grid and method 1 or 4 on
the outer ring. The best result when allowing rotation was achieved when method
3 was used on the whole structure, but with a significantly larger cross section on
the outer ring. This shows that one can get very good results with the section
sizer if some evaluation on how one believes that the structure should work is done
beforehand, and that that behaviour is enforced, either by choice of method or by
a choice of initial conditions. This suggests that the tool is best used by someone
with engineering experience, who can accurately interpret the results, and predict
the behaviour.

One can get a grasp on how efficient a certain setup of cross sections is in relation
to another by comparing the weight and average utilisation of the two. For example,
one can compare the results from the section sizer (without any initial presets) using
method 1, m = 10060kg and ηm = 76.7% (see table 6.11), with the results from the
sections sizer used with a combination of methods, m = 9274kg and ηm = 73.9%
(see table 6.13). Here one can note that the latter method has both lower weight
and lower average utilisation, which means that the load is handled in a better way
globally, as one will get lower stresses in smaller sections using the second approach.

112

6. Results

6.4 KAFD Metro Station

6.4.1 Section sizer and rotator
The section sizer and rotator was run with two different initial settings for the cross
sections. The first run was made using the smallest cross section for each element
that shared a type with it (CHS/RHS). The second run was made with initial cross
sections set to the existing ones when the model was received. It should be noted
here, as pointed out earlier, that the loads used for the optimisation were scaled
to make the original design fail in terms of utilisation. This was done to give the
optimisers ’more to work with’, as the current utilisation checks only cover basic
ULS checks and do not cover checks like deflection or buckling.

6.4.1.1 Minimal initial sections

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.23: Resulting structure from iterative section sizer - not allowing rotations.
Colour corresponding to utilisation.

113

6. Results

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.24: Resulting structure from iterative section sizer allowing rotations.
Colour corresponding to utilisation.

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Section sizer
(no rotation)

1 39520 1.97 min 13 0.27 96.8 41.4
2 49430 1.06 min 11 0.27 97.2 37.6
3 39440 2.52 min 22 0.27 99.5 41.6
4 46960 1.89 min 13 0.29 99.9 36.6

Section sizer
(incl. rotation)

1 38690 10.0 min 37 0.27 111.0 41.4
2 48620 7.41 min 32 0.27 98.9 36.0
3 38960 32.2 min 150 0.27 145.0 41.3
4 46810 8.85 min 33 0.29 122.0 36.6

Table 6.14: Results from the section sizer, ran with initial section sat to minimum sections

114

6. Results

6.4.1.2 Original initial sections

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.25: Resulting structure from iterative section sizer - not allowing rotations.
Colour corresponding to utilisation.

115

6. Results

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.26: Resulting structure from iterative section sizer allowing rotations.
Colour corresponding to utilisation.

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Section sizer
(no rotation)

1 39390 2.81 min 17 0.27 98.6 40.7
2 70140 33.3 s 5 0.2 94.7 25.3
3 40650 1.15 min 11 0.27 99.3 40.9
4 48240 1.33 min 8 0.29 99.8 36.4

Section sizer
(incl. rotation)

1 39210 40.6 min 150 0.27 99.8 39.2
2 69840 7.36 min 34 0.2 97.4 23.1
3 40010 34.3 min 150 0.27 104.0 38.9
4 48110 41.5 min 150 0.29 104.0 33.9

Table 6.15: Results from the section sizer, ran with initial section set to original sections.

116

6. Results

6.4.2 Canonical stiffnesses and eigenmodes

(a) Undeformed (b) Mode 1. λ1 = 9411 (c) Mode 2. λ2 = 11347

(d) Mode 3. λ3 = 12567 (e) Mode 4. λ4 = 19104 (f) Mode 5. λ5 = 43718

(g) Mode 6. λ6 = 44938 (h) Mode 7. λ7 = 57626 (i) Mode 8. λ8 = 69074

Figure 6.27: The 8 first eigenmodes. The analysis was run with as uniform sections as possible.
This means RHS100x100x10 for the rectangular sections and CHS139.7x5 for the circular ones.

Mode Eigenvalue Normalised eigenvalue
1 9411 1.0
2 11347 1.21
3 12567 1.34
4 19104 2.03
5 43718 4.65
6 44938 4.77
7 57626 6.12
8 69074 7.34
9 87129 9.26
10 89519 9.51
11 97326 10.3

Table 6.16: Eigenvalues for the first modes. Normalized to the first eigenvalue.

117

6. Results

6.4.3 Mode section sizer

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8 (i) Mode 1-8

Figure 6.28: Mode section sizer. The first eight figures are showing results from mode 2-9 ran
in solitude. The last shows modes 2-10 run together.

118

6. Results

6.4.4 Combined section sizer

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.29: Resulting structure from iterative section sizer - not allowing rotations.
Colour corresponding to utilisation.

119

6. Results

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 6.30: Resulting structure from iterative section sizer allowing rotations.
Colour corresponding to utilisation.

Optimiser Type Weight [kg] Calc. time Iter. Utilisation [%]
Min Max Avg

Combined sizer
(no rotation)

1 40920 6.4 min 13 0.27 99.9 40.6
2 282500 4.42 min 1 0.22 92.6 7.12
3 39540 6.48 min 17 0.27 99.6 41.6
4 49700 6.31 min 10 0.29 97.5 34.7

Combined sizer
(incl. rotation)

1 40610 14.2 min 39 0.27 98.3 39.7
2 282500 13.4 min 44 0.15 84.6 7.01
3 39210 38.6 min 150 0.27 118.0 41.0
4 49440 12.2 min 25 0.29 98.5 33.9

Table 6.17: Combined section sizer set, setting initial conditions from mode 2-10

120

6. Results

6.4.5 Comments
One thing one can note looking at the results from the section sizer is that method

1 and 3 gives the best results in terms of weight for both of the two different initial
cross section setups. It is quite surprising is that method 4 gives significantly higher
weight, even higher than the ones achieved using method 2 for some cases. This
result has not been observed in the other case studies. The reason for this behaviour
might be the small set of cross sections used in the optimisation process, which could
lead to a smaller possibility for method 4 to reduce the cross section, if a situation
like the one described in section 3.3.1.6 appears, where different aspect ratios of the
cross sections might "block" the possibility to find a working smaller one.
The small set of cross sections could probably be the reason why the section sizer
have convergence problems when rotation is allowed. Increasing the list of allowable
cross sections would allow for smaller "jumps" in terms of stiffness and strength,
and could also give the possibility for smaller and or larger cross sections for under
respectively over utilised elements.
One can note that the initial conditions have a large impact on the final results.
Looking at the results from the section sizer when run with the initial sections set
to the original ones (see fig. 6.25) one can note a clear similarity to the original setup
(see fig 5.9. Here the force and stiffness have been concentrated over a smaller set
of portal frames, compared to to solutions obtained when the section sizer was run
with all initial sections set to the minimum one (see fig. 6.23).

The mode shape optimiser, when run for mode 1-8, gave very large sections for
all of the members. This is probably also a consequence of the small set of cross
sections used. This makes the influence of the mode section sizer smaller as more or
less all of the element will start with the largest possible cross section. Looking at
the results from the combined section sizer one can note that this leads to method
2 giving poor results, as it only allows for an increase in sections size (see fig. 6.29
and fig. 6.30). This can also be noted from the results in table 6.17 where method 2
had a seven times larger weight compared to the other methods and converged after
only one iteration.

121

7
Discussion

7.1 CIGull
Evaluating the creation of CIGull has rendered an overall positive response. The
comparative study to CALFEM (see Appendix A) showed that the calculations
produced coherent results with very small discrepancies. The results when using
the iterative procedures (see chapter 6) shows low calculation times for the given
tasks. For the 2d frame the calculation is sufficiently quick so that it could be
used continuously while changing section properties, connection stiffnesses or node
positions. The current calculations are also set up in a way so that solving the
system of equations, extracting element forces and performing section checks are all
performed in the same process. In order to increase speed these actions could be
broken up and implemented in separate components, giving the user the choice to
only use the ones that they currently need.

The optimisation methods studied in this thesis work and implemented in CIGull
have all shown different strengths and weaknesses, which are discussed in detail
below. The assessment of the methods as a whole has shown that there are no clear
"best method", but that the best solution is obtained by trying several methods to
really understand the structure. Another reason for this is that the definition of
what the best design is may not be decided solely from the weight, but also from
other factors. These reasons both indicates that the tool is best used for ’structural
sketching’ in the early design stages.

7.2 Iterative Section Sizer
The different methods for choosing cross section used by the section sizer have been
shown to give different results. Method 1, 3 and 4 have all given the best results
in terms of minimising structural weight, depending on the set-up. The comments
below are all based on the results from the conducted analyses in chapter 6.

7.2.1 Method 1
Method 1 works by choosing a new cross section by checking the provided cross
sections from smallest to largest in terms of area until a cross section is found
that can withstand the internal section forces. For a more detailed description see
section 3.3.1.2. This method has produced the best results in terms of desired lowest

122

7. Discussion

weight for most of the conducted studies. This is not overly surprising as this method
always gives the smallest possible cross section to each element for every iteration,
something that only can be guaranteed by this method.

7.2.2 Method 2
Method 2 works by updating the cross section to a cross section one step larger
in terms of area, if the current cross section is unable to withstand the section
forces. For a more detailed description see section 3.3.1.3. This method has been
shown to be quick, but the resulting structures tend to have higher weight than the
ones generated with the other methods. As a result of this, many of the elements
tend to be underutilised. All elements sized by method 2 have at some point had a
utilisation which is good (close to 100%). However, as the stiffness of other elements
is increased, the utilisation drops, and without a way of downsizing, the elements
are bound to be underutilised.

This method usually gives, based on the conducted studies, a more uniform so-
lution in terms of cross section types. This might be beneficial if one seeks a more
even distribution of either internal forces in the structure or reaction forces at the
supports. Another positive effect of this could be a higher degree of structural
redundancy.

7.2.3 Method 3
Method 3 works by updating the cross section to one which is one step larger if the
cross section is overutilised, and checks if it is possible to update to one which is
one step smaller if the cross section is underutilised. For a more detailed description
see section 3.3.1.4. This method usually requires the highest number of iterations
to find convergence. This can be explained by the fact that this method only allows
for small changes in cross section area which means that it will take more iterations
to obtain the "best" one if the stresses are very high/low compared to the capacity
of the analysed cross section. This also means that method 3 is the overall slowest
approach, even though each iteration usually is quicker than one iteration for method
1 and 4. For example, looking at the results for the 3D-frame in table 6.5 one can
note that method 1 and 3 converges in roughly the same time, even though method
3 requires three times as many iterations.
Method 3 can, for some cases, give the best results in terms of low structural weight.
This could originate from some structures benefiting from a slower change in cross
sections, and thereby slower change in the stiffness and force patterns.

7.2.4 Method 4
Method 4 works by checking all provided cross sections larger than the current used
until a cross section able to withstand the section forces is found, if the cross section
is overutilised. If the cross section is underutilised it instead checks all smaller
cross sections until the smallest working cross section is found. For a more detailed

123

7. Discussion

description see section 3.3.1.5. This method has been shown to give the best results
for some setups. It can be significantly more vulnerable to the cross section list used,
something that can be seen in the evaluation of the KAFD structure (section 6.4)
and is discussed in section 6.4.5. From the studied examples one can conclude that
method 1 seem to be preferable to use for almost all cases if one seeks to use a
method that allows for large changes in section size for each iteration.

7.2.5 Combining methods
In section 6.3.5 it was shown that a combination of the methods could give better
results. It shows that with some insight to how both the methods and a structure
works, it is possible to achieve more. This is something that could be developed
further, by for example allowing some chosen sections to find their section proper-
ties before the other ones, for example the primary structure before the secondary
structure.

7.2.6 Section rotator
The section rotator, when used together with the section sizer, has in almost all cases
produced more efficient structures compared to the structures produced when only
the section sizer has been run. This can be explained almost by definition, since the
section rotator aligns the section to the direction of the largest principal moment.
It should therefore, if used only once, always improve the response of elements
unless they are already aligned correctly. When used in an iterative procedure, the
behaviour is more unpredictable and may produce some less efficient solutions.

A practical issue concerning the section rotator is how the structural details will be
affected. A node with many elements, which all are rotated independently, connected
to it may be very tricky to manufacture. This issue can be handled in several ways:

• Use the section rotator to influence design, and make manual adjustments.
• Further develop the process, implementing some set rotations that are allowed

(for instance only 90° or 45°).
• Develop/use a construction scheme that allows custom rotations

7.3 Genetic algorithms
The somewhat limited evaluation of genetic algorithms as a design tool for structural
design, that has been conducted in this thesis work, has shown that it is possible to
obtain good solutions using them. However, it is a time consuming process, which
quickly grows into an impossible problem within the usual time constraints of a
design project. The 3d frame structure in section 6.2 contained 42 elements, each of
which could take any of 63 different cross sections. This means roughly 3.73 · 1075

solutions (see eq. 2.91), a number in the vicinity of some current estimations of
how many atoms there are in the universe. When the calculations were made each

124

7. Discussion

calculation took about 2.5 seconds, resulting in a huge required time for the entire
process to produce a result. In order to increase the viability of using this method,
three possible solutions are identified:

• Starting from a qualified guess
• Increase the speed of calculation
• Decrease the number of solutions

For the studied example of the 3d frame (see section 6.2.2), the genetic algorithms
were initialised with a guess state which was produced by one of the section sizer
methods. This process did increase the efficiency of the method a great deal, and
gave sligtly better results. The downside of this approach is that the genetic algo-
rithm is steered toward a particular solution.

Some effort has been put into making the solver as efficient as possible, but some
further measures can still be made. With the increasing speed of processing afford-
able high-performance hardware may also tend to this problem. The problem could
also be simplified, something that should be done for any engineering problem. In
the case of the 3d frame, the loads are doubly symmetric, which means that the
problem may be reduced to containing only four load combinations instead of nine,
cutting the computation time in about half.

Decreasing the number of solutions is really a matter of simplifying the problem.
Suggestions for ways of doing this is reducing the number of section properties
available. Simplifying the problem could also be done by for instance prescribing
that two or more elements should have the same section property, which probably
also simplifies construction.

Another problem with the implementations of the genetic algorithms that have
been tested is that they require large amounts of RAM which may cause crashes.
Another thing that may be noted when performing genetic algorithms is that the
set-up of the project needs to very rigorous. This isn’t necessarily a problem, but
could actually force the engineer to structure their model in a way that allows them
to have better overview.

7.4 Connection stiffness optimisation
In this thesis work, the connection stiffness optimisation has been a somewhat left
out topic. In the initial example (see 1.1.1) connection stiffness seemed like an
interesting way of redistribution the flow of forces from the overutilised to the un-
derutilised elements. It was further investigated in the 2d frame example, by using
genetic algorithms and shown to produce good results. However, as seen in the pre-
vious section on genetic algorithms in general, this method gets very time consuming
as the size of the structure is increased. When the GA was tested on the 3d frame
(see section 6.2) they were unable to find a good result for using section properties as

125

7. Discussion

the only design variable. Therefore the method of optimising for connection stiffness
was abandoned going forward.

The measures to increase the efficiency of the GAs also apply for connection
stiffness optimisation. By for instance only using a few discrete stiffnesses instead
of a range, the number of solutions is reduced. The set of stiffnesses could for
instance be some actual connections that have been properly analysed. Another
way of increasing the efficiency would be to not combine the connection stiffness
and section property search, but rather perform a connection stiffness optimisation
in isolation, optimising for reduced utilisations. When a good solution has been
found the sections could get re-evaluated and updated if possible. This process
involves more steps but could be more reliable.

In conclusion connection stiffness optimisation is still a promising topic, if a more
efficient method of automating the process was to be developed.

126

7. Discussion

7.5 Mode section sizer
The mode section sizer has in this implementation not been tested to its full capacity.
The way that the method has been used previously (cf. [Olsson, Thelin (2003)],
[Olsson (2006)]) have been using the eigenmodes to identify deformation patterns
that may occur in a structure. This suggest that the mode section sizer could be
more useful for a case where the loads aren’t known, which requires a different study
(see 7.10).

The mode section sizer also has some issues regarding its stability. Since it sizes
the elements based on fictitious loads derived from the eigenmodes the elements may
become very large in some cases. To handle this, a scale factor has been implemented
in the mode section sizer, but not the combined section sizer.

The way that the mode section sizer is used could also be explored further. In
the studied examples for in this thesis, the mode analysis have been made for one
case each, often using the smallest sections available. However, the mode shapes are
sorted by their eigenvalue and the mode shape optimiser uses the eigenvalue to scale
the strains. Since the canonical stiffnesses can be interpreted as a measure of the
sensitivity to a displacement, this may cause a problem. For instance, using small
sections makes the structure relatively more sensitive to bending moments than
axial forces. Therefore it is of importance what sections are used in the eigenmode
calculation.

7.6 Combined section sizer
The combined section sizer has performed over expectation in the studied examples.
For the 2d structure, it produced the best results apart from the genetic algorithms,
but at a fraction of the time. It seems that by identifying deformation modes that
correspond approximately to the applied load combinations and optimising for them,
the stiffness was steered toward this behaviour. By optimising for the "worst version"
of the actual load combination, the stiffness distribution seems to have become a
good starting position for the coming iterations. However with that said, it was not
always easy to identify the worst eigenmodes, as seen in the analysis of the dome
and the KAFD Metro Station.

7.7 Package release
The intention is that the package will be made available as a downloadable plug-in
for Grasshopper. The platform for this will most likely be the website Food4Rhino
where most plug-ins for Rhino and Grasshopper are collected. The website address
is:
<http://www.food4rhino.com/>

127

7. Discussion

In order to release it, some further work needs to be done, such as error handling,
bug searching, drawing of icons et cetera.

7.8 Open source code development
The entire code package is developed as open-source and available for anyone to
download and develop under a Creative Commons Attribution-ShareAlike 4.0 Inter-
national License. To view a copy of this license, visit:
<http://creativecommons.org/licenses/by-sa/4.0/>

The project is accessible from <https://github.com/IsakNaslund/MasterThesis>

Armadillo is available as open source under the restrictions of Mozilla Public
Licence (MPL) 2.0. For further information, consult
<http://arma.sourceforge.net/>

7.9 Future implementation
This section describes various ideas and suggestions for future implementations and
research that have arisen during this thesis work.

7.9.1 Structural Mechanics

Solvers

The currently implemented solvers can handle most standard situations. A further
development could be to develop a solver for structural analysis according to the
second order theory and/or a solver able to handle non-linear materials.

Element releases

The element releases are currently set to work in global coordinates. A change that
could be an improvement for some situations would be to allow one to set these in
local coordinates instead.

Restraint directions

In the restraint nodes, there is an optional input of the plane in which the restraint
works. This is currently only implemented for the default XY plane. This means that
the restraint directions are in global coordinates, which is acceptable for most cases.
However, a future implementation of this function would make all restraints possible.
For information on how this could be done, consult [Dahlblom, Olsson (2010), fig
5.18, p.138]

128

7. Discussion

Distributed loads

Currently, loads are applied as point loads or point moments, with an additional
option of adding a gravity load. However, no easy way of applying distributed loads
is currently implemented. It can be approximated by exchanging the distributed
load by a combination of point loads and moments, but this requires extra manual
labour. Information on how to perform this can be found in [Austrell et al. (2004),
p. 5.6 - 26]

Elements

The solver could be expanded to allow for more elements, such as plate and shell
elements.

Section checks

The section checks currently implemented are all relatively basic. The problem with
implementing more rigorous checks is that a choice has to be made of which code
(Eurocode, British Standard et cetera) should be used. Some checks, like buckling,
are simply difficult to implement in coded format. Some checks that have been
considered are presented below.

Torsion check
The following simplified method could be used to calculate the stresses induced
by torsional moments in the elements, calculated using the theory of St. Venant
and disregarding the warping effect. It would therefore be assumed that the torsion
resistance is GIt = GIp. Note that the torsion check would be performed in isolation,
and not combined with the shear check. The utilisation could then be calculated as:

η = fvST

fu

(7.1)

where:

General
fvST = T ∗ r

J
(7.2)

J = π ∗R4

2 (7.3)

Circular solid sections
fvST = T ∗ r

J
(7.4)

J = π ∗R4

2 (7.5)

Circular hollow sections
fvST = T ∗ r

J
(7.6)

J = π

2 (R4
o −R4

i) (7.7)

129

7. Discussion

7.10 Future studies

7.10.1 Mode shape optimiser
The mode shape optimiser didn’t prove to be very useful as a design tool in this
thesis work (see 7.5). However, it would be interesting to see if it could be useful
for a design scenario where the loads were unknown. An interesting study to make
would be to study a structure at an early design stage and compare the loads to what
they are at a later stage. Are the loads roughly the same or are there differences?
Are there loads in directions that weren’t present at the earlier stage? And if so,
could the mode shape optimiser be a useful tool for handling it?

130

Bibliography

[Austrell et al. (2004)] Austrell, P-E et al., (2004) CALFEM, Version 3.4, KFS i
Lund AB, Lund. ISBN: 91-8855823-1

[Bedney (2016)] Debney, Peter, (2016), An introduction to engineering optimisation
methods, The Structural Engineer, Vol 94, Issue 3

[Christensen, Klarbring (2009)] Christensen, Peter W., Klarbring, Anders, (2009),
An Introduction to Structural Optimization, Solid Mechanics and its Applica-
tions, Vol 153, Springer. ISBN: 978-1-4020-8665-6

[Dahlblom, Olsson (2010)] Dahlblom, Ola, Olsson, Karl-Gunnar, (2010), Struk-
turmekanik, Modellering och analys av ramar och fackverk, Lund: Studentlit-
teratur AB.

[Davidson (2016)] Davidson, Scott, Robert McNeel & Associates, (2016), Grasshop-
per, [online], accessed 2016-05-02, <http://www.grasshopper3d.com>

[ECMA International (2005)] ECMA International, (2005), Standard ECMA-372:
C++/CLI Language Specification, Geneva

[ECMA International (2012)] ECMA International, (2012), Standard ECMA-335:
Common Language Infrastructure (CLI), 6th Edition, Geneva

[Freeman, Freeman (2004)] Freeman, Eric, Freeman, Elisabeth, (20104), Head First
Design Patterns, O’Reilly Media Inc., Sebastopol, CA, USA

[Greiner, Emperador (2015)] Greiner, David, Emperador, José M., Galván, Blas
and Winter, Gabriel, (2015), Evolutionary Algorithms and Metaheuristics in
Civil Engineering and Construction Management, Computational Methods in
Applied Sciences, 39, DOI 10.1007/978-3-319-20406-2_2, (accessed 2016-01-28).

[Lawson et al (1979)] Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.,
(1979) Basic Linear Algebra Subprograms for Fortran Usage Pages 308-23, ACM
Transactions on Mathematiccal Software, Vol 5, No. 3, September 1979, DOI:
10.1145/355841.355847, (accessed 2016-05-02).

[Mitchell (1999)] Mitchell, M., & Books24x7, (1999), An Introduction to Ge-
netic Algorithms, The MIT Press, Cambridge, Mass., accessed 2016-05-23,
<http://common.books24x7.com.proxy.lib.chalmers.se/toc.aspx?bookid=438>

[Moler (2000)] Moler, Cleve, MathWorks (2000), accessed
2016-05-02, MATLAB Incorporates LAPACK, [online],
<http://se.mathworks.com/company/newsletters/articles/matlab-
incorporates-lapack.html?requestedDomain=www.mathworks.com>

[Mueller, Burns (2001)] Mueller, Keith M., Burns, Scott A., (2001), Fully stressed
frame structures unobtainable by conventional design methodology, Interna-
tional journal for numerical methods in engineering, DOI: 10.1002/nme.261 (ac-
cessed 2016-02-02)

131

Bibliography

[Olsson, Thelin (2003)] Olsson, Karl-Gunnar and Thelin, Carl, (2003), Use of Static
Eigenmodes in Mechanical Design, Building Design Papers nr 2, Centraltryck-
eriet Linköping, Linköping.

[Olsson (2006)] Olsson, Pierre, (2006), Conceptual Studies in Structural Design,
Diss., Chalmers University of Technology, Majornas Copyprint, Göteborg. ISBN:
91-7291-753-9

[Ottosen, Pettersson (1992)] Ottosen, Niels, Petersson, Hans, (1992) Introduction
to the Finite Element Method Harlow: Paerson Education Limited

[Robert McNeel & Associates (2016)] Robert McNeel & Associates, (2016),
Rhinoceros, [online], accessed 2016-04-28, <http://www.rhino3d.com>

[Sanderson (2010)] Sanderson, Conrad (2010) Armadillo: An Open Source C++
Linear Algebra Library for Fast Prototyping and Computationally Intensive Ex-
periments. Technical Report, NICTA

[Tedeschi (2011)] Tedeschi, Arturo, (2011), MixExperience Tools1, pp. 28-31
accessed 2016-05-02,
<http://content.yudu.com/Library/A1qies/mixexperiencetoolsnu/resources/28.htm>

[TU Delft (2015)] TU Delft, (2015), Getting Started with Grasshop-
per, [online], accessed 2016-05-02, <http://wiki.bk.tudelft.nl/toi-
pedia/Getting_Started_with_Grasshopper>

[Univ. of Tennessee et al (2016)] Univ. of Tennessee; Univ. of California, Berkeley;
Univ. of Colorado Denver; NAG Ltd; (2016), LAPACK — Linear Algebra PACK-
age, [online], accessed 2016-05-02, project sponsored in part by MathWorks and
Intel, <http://www.netlib.org/lapack>

[Vierling, R (2014)] Vireling, R., (2014), octopus, [online], Food4Rhino,
page sponsor Robert McNeel &Associates, accessed 2016-05-24,
<http://www.food4rhino.com/project/octopus?etx>

[Zaha Hadid (2016)] Zaha Hadid Architects, (2016), King Abdullah Financial
District Metro Station, [online], accessed 2016-05-24, <http://www.zaha-
hadid.com/architecture/king-abdullah-financial-district-metro-station/>

132

Bibliography

Figure references
All figures are the work of the authors of this report, if not otherwise stated.

Figure 3.4

Foofy (Wikipedia user), (2005), Overview of the Common Language Infrastructure,
accessed 2016-05-04,
<https://upload.wikimedia.org/wikipedia/commons/6/6a/Overview_of_the_
Common_Language_Infrastructure.png>

Figure 5.7

Courtesy of Zaha Hadid Architects, n.d., render, accessed 2016-05-24,
<http://www.zaha-hadid.com/architecture/king-abdullah-financial-district-metro-
station/#asset/slide/b1e546>

Figure 5.8

Courtesy of Zaha Hadid Architects, n.d., render, accessed 2016-05-24,
<http://www.zaha-hadid.com/architecture/king-abdullah-financial-district-metro-
station/#asset/slide/d20221>

133

Appendices

I

A
Comparison of FE calculations

A test structure was designed and analysed using both MATLAB and CIGull. In
order to verify only the finite element calculations, the geometrical and material
constants used in MATLAB were taken directly from CIGull.
The following was the problem analysed:

Figure A.1: A three-dimensional structure consisting of three beams. The beams are rigidly
connected at the top. The structure is restrained in the x-, y- and z-directions at the bottom, but
free to rotate. It is loaded with forces in the free node, in all three directions. All elements have
their starting point at the top.

II

A. Comparison of FE calculations

The following input data was used:

Section property RHS80x80x6 [-]
E 210 [GPa]
G 80.77 [GPa]
A 19.2 [cm2]
Iy 1.7303 · 10−6 [m4]
Iz 1.7303 · 10−6 [m4]
Kv 2.5005 · 10−6 [m4]

Applied loads (at the top node):

Direction Magnitude Unit
x -10 [kN]
y -5 [kN]
z -20 [kN]

In order to verify the calculations in CIGull, the element displacements were com-
pared. The results from the CIGull calculations are presented in fig. A.2 below,
and the entire MATLAB/CALFEM script is attached after that. Note that CIGull
calculations are in [mm] and MATLAB results in [m]. The resulting displacements
can be summarised as follows:

El. Pos. u v w φ
CIGull M/C* CIGull M/C* CIGull M/C* CIGull M/C*

1

1 0.247 0.247 -0.324 -0.324 -0.800 -0.800 0.005 0.005
2 0.185 0.185 -0.245 -0.245 -0.604 -0.604 0.005 0.005
3 0.123 0.123 -0.164 -0.164 -0.405 -0.405 0.005 0.005
4 0.062 0.062 -0.082 -0.082 -0.203 -0.203 0.005 0.005
5 0.0 0 0.0 0 0.0 0.000 0.005 0.005

2

1 -0.137 -0.137 -0.324 -0.324 -0.826 -0.826 0.075 0.075
2 -0.103 -0.103 -0.246 -0.246 -0.613 -0.613 0.075 0.075
3 -0.069 -0.069 -0.165 -0.165 -0.405 -0.406 0.075 0.075
4 -0.034 -0.034 -0.083 -0.083 -0.202 -0.202 0.075 0.075
5 0.0 0 0.0 -0.000 0.0 0 0.075 0.075

3

1 -0.055 -0.055 -0.404 -0.404 -0.800 -0.800 -0.270 -0.270
2 -0.041 -0.041 -0.296 -0.296 -0.602 -0.602 -0.270 -0.270
3 -0.027 -0.027 -0.194 -0.194 -0.403 -0.403 -0.270 -0.270
4 -0.014 -0.014 -0.096 -0.096 -0.202 -0.203 -0.270 -0.270
5 0.0 0 0.0 0.000 0.0 0.000 -0.270 -0.270

Table A.1: Comparison of displacements and rotations in the three elements for calculations
made in CIGull and CALFEM. For all elements position 1 is at the top and position 5 at their
respective supports.
*M/C - MATLAB / CALFEM

III

A. Comparison of FE calculations

As can be seen in table A.1 the element displacements do not differ significantly.
There are some discrepancies, which to some extent could be explained by rounding
errors. When comparing the element forces (not included here) the differences were
also small.

Figure A.2: The resulting element displacements in local directions. The results are structured
in the grasshopper "tree-structure". Each branch (three branches in total) is an element and each
item (five items on each branch) is an evaluation point. Results in [mm]

IV

Namnlös% DofsEdof = [1 1 2 3 4 5 6 7 8 9 10 11 12; 2 1 2 3 4 5 6 13 14 15 16 17 18; 3 1 2 3 4 5 6 19 20 21 22 23 24];
% Boundary conditionsbc = zeros(9,2);bc(:,1)=[7 8 9 13 14 15 19 20 21]';
maxDOF=max(max(Edof));K = zeros(maxDOF);
% Loadsf=zeros(maxDOF,1);f(1)=-10e3;f(2)=-5e3;f(3)=-20e3;
% Coordinatesex1=[0 0]; ex2=[0 1]; ex3=[0 0];ey1=[0 0]; ey2=[0 0]; ey3=[0 2];ez1=[2 0]; ez2=[2 0]; ez3=[2 0];eo1=[1 0 0]; eo2=[0.894427 0 0.447214]; eo3=[1 0 0];
% Element propertiesE=210e9;G=80769230769.2308;A=0.001737;Iy=1.564008e-6;Iz=Iy;Kv=2.5005e-6;ep=[E G A Iy Iz Kv];
% ElementsKe1=beam3e(ex1,ey1,ez1,eo1,ep);Ke2=beam3e(ex2,ey2,ez2,eo2,ep);Ke3=beam3e(ex3,ey3,ez3,eo3,ep);
% AssemblyK = assem(Edof(1,:), K, Ke1); K = assem(Edof(2,:), K, Ke2); K = assem(Edof(3,:), K, Ke3);
% Solve[a,r]=solveq(K,f,bc);
% DisplacementsEd=extract(Edof, a);

Sida 1

Namnlös[es1,edi1,eci1]=beam3s(ex1, ey1, ez1, eo1, ep, Ed(1,:), [0 0 0 0], 5);[es2,edi2,eci2]=beam3s(ex2, ey2, ez2, eo2, ep, Ed(2,:), [0 0 0 0], 5);[es3,edi3,eci3]=beam3s(ex3, ey3, ez3, eo3, ep, Ed(3,:), [0 0 0 0], 5);
edi1
edi1 =
 1.0e-03 *
 0.2467 -0.3243 -0.7999 0.0054 0.1850 -0.2448 -0.6042 0.0054 0.1234 -0.1639 -0.4049 0.0054 0.0617 -0.0822 -0.2030 0.0054 0 0 0.0000 0.0054
edi2
edi2 =
 1.0e-03 *
 -0.1371 -0.3243 -0.8258 0.0752 -0.1028 -0.2457 -0.6129 0.0752 -0.0685 -0.1650 -0.4055 0.0752 -0.0343 -0.0828 -0.2018 0.0752 0 -0.0000 0 0.0752
edi3
edi3 =
 1.0e-03 *
 -0.0548 -0.4037 -0.7999 -0.2698 -0.0411 -0.2961 -0.6025 -0.2698 -0.0274 -0.1942 -0.4028 -0.2698 -0.0137 -0.0961 -0.2018 -0.2698 0 0.0000 0.0000 -0.2698

echo off

Sida 2

B
Cross sections

2d and 3d Frame

Index Cross section Area[mm2] Iy[mm4] Iz[mm4]
1 RHS30x30x8 635 0.05 · 106 0.05 · 106

2 RHS40x30x8 795 0.11 · 106 0.07 · 106

3 RHS50x30x8 955 0.22 · 106 0.09 · 106

4 RHS40x40x8 955 0.15 · 106 0.15 · 106

5 RHS60x30x8 1115 0.37 · 106 0.11 · 106

6 RHS50x40x8 1115 0.29 · 106 0.2 · 106

7 RHS70x30x8 1275 0.58 · 106 0.13 · 106

8 RHS60x40x8 1275 0.48 · 106 0.24 · 106

9 RHS50x50x8 1275 0.36 · 106 0.36 · 106

10 RHS80x30x8 1435 0.85 · 106 0.15 · 106

11 RHS70x40x8 1435 0.73 · 106 0.28 · 106

12 RHS60x50x8 1435 0.59 · 106 0.43 · 106

13 RHS90x30x8 1595 1.2 · 106 0.17 · 106

14 RHS80x40x8 1595 1.06 · 106 0.32 · 106

15 RHS60x60x8 1595 0.7 · 106 0.7 · 106

16 RHS70x50x8 1595 0.89 · 106 0.5 · 106

17 RHS90x40x8 1755 1.47 · 106 0.36 · 106

18 RHS100x30x8 1755 1.62 · 106 0.19 · 106

19 RHS80x50x8 1755 1.27 · 106 0.57 · 106

20 RHS70x60x8 1755 1.04 · 106 0.81 · 106

21 RHS90x50x8 1915 1.74 · 106 0.65 · 106

22 RHS80x60x8 1915 1.48 · 106 0.92 · 106

23 RHS100x40x8 1915 1.96 · 106 0.4 · 106

24 RHS70x70x8 1915 1.2 · 106 1.2 · 106

25 RHS80x70x8 2075 1.68 · 106 1.35 · 106

26 RHS100x50x8 2075 2.3 · 106 0.72 · 106

27 RHS90x60x8 2075 2.01 · 106 1.02 · 106

28 RHS100x60x8 2235 2.64 · 106 1.13 · 106

29 RHS90x70x8 2235 2.28 · 106 1.51 · 106

30 RHS80x80x8 2235 1.89 · 106 1.89 · 106

31 RHS100x70x8 2395 2.98 · 106 1.66 · 106

32 RHS90x80x8 2395 2.55 · 106 2.1 · 106

VII

B. Cross sections
2d and 3d Frame

33 RHS100x80x8 2555 3.32 · 106 2.31 · 106

34 RHS90x90x8 2555 2.81 · 106 2.81 · 106

35 RHS150x40x8 2715 6.02 · 106 0.61 · 106

36 RHS100x90x8 2715 3.66 · 106 3.08 · 106

37 RHS150x50x8 2875 6.83 · 106 1.07 · 106

38 RHS100x100x8 2875 4.0 · 106 4.0 · 106

39 RHS150x60x8 3035 7.64 · 106 1.68 · 106

40 RHS150x70x8 3195 8.45 · 106 2.43 · 106

41 RHS150x80x8 3355 9.25 · 106 3.35 · 106

42 RHS150x90x8 3515 10.1 · 106 4.43 · 106

43 RHS200x50x8 3675 15.0 · 106 1.43 · 106

44 RHS150x100x8 3675 10.9 · 106 5.69 · 106

45 RHS200x60x8 3835 16.4 · 106 2.22 · 106

46 RHS200x70x8 3995 17.9 · 106 3.21 · 106

47 RHS200x80x8 4155 19.4 · 106 4.39 · 106

48 RHS200x90x8 4315 20.9 · 106 5.78 · 106

49 RHS200x100x8 4475 22.3 · 106 7.39 · 106

50 RHS150x150x8 4475 14.9 · 106 14.9 · 106

51 RHS200x150x8 5275 29.7 · 106 18.9 · 106

52 RHS300x80x8 5755 56.2 · 106 6.47 · 106

53 RHS300x90x8 5915 59.6 · 106 8.48 · 106

54 RHS300x100x8 6075 63.0 · 106 10.8 · 106

55 RHS200x200x8 6075 37.1 · 106 37.1 · 106

56 RHS300x150x8 6875 80.1 · 106 27.0 · 106

57 RHS400x100x8 7675 134 · 106 14.2 · 106

58 RHS300x200x8 7675 97.2 · 106 51.8 · 106

59 RHS400x150x8 8475 165 · 106 35.1 · 106

60 RHS400x200x8 9275 196 · 106 66.6 · 106

61 RHS300x300x8 9275 131 · 106 131 · 106

62 RHS400x300x8 10875 257 · 106 165 · 106

63 RHS400x400x8 12475 319 · 106 319 · 106

Table B.1: Cross sections used in 3d frame structure in section 6.2. Sections sorted by area

VIII

C
Cross sections Dome

Index Cross section Area[mm2] Iy[mm4] Iz[mm4]
1 RHS30x30x6 537 0.05 · 106 0.05 · 106

2 RHS50x30x6 777 0.2 · 106 0.08 · 106

3 RHS50x50x6 1017 0.32 · 106 0.32 · 106

4 RHS75x30x6 1077 0.62 · 106 0.13 · 106

5 RHS75x50x6 1317 0.91 · 106 0.47 · 106

6 RHS100x30x6 1377 1.37 · 106 0.17 · 106

7 RHS100x50x6 1617 1.9 · 106 0.61 · 106

8 RHS75x75x6 1617 1.26 · 106 1.26 · 106

9 RHS125x50x6 1917 3.41 · 106 0.76 · 106

10 RHS100x75x6 1917 2.57 · 106 1.62 · 106

11 RHS150x50x6 2217 5.51 · 106 0.9 · 106

12 RHS125x75x6 2217 4.47 · 106 1.98 · 106

13 RHS100x100x6 2217 3.23 · 106 3.23 · 106

14 RHS150x75x6 2517 7.07 · 106 2.34 · 106

15 RHS125x100x6 2517 5.53 · 106 3.9 · 106

16 RHS200x50x6 2817 11.9 · 106 1.2 · 106

17 RHS150x100x6 2817 8.62 · 106 4.56 · 106

18 RHS125x125x6 2817 6.6 · 106 6.6 · 106

19 RHS200x75x6 3117 14.7 · 106 3.05 · 106

20 RHS150x125x6 3117 10.2 · 106 7.66 · 106

21 RHS200x100x6 3417 17.5 · 106 5.89 · 106

22 RHS150x150x6 3417 11.7 · 106 11.7 · 106

23 RHS250x75x6 3717 26.3 · 106 3.77 · 106

24 RHS200x125x6 3717 20.4 · 106 9.79 · 106

25 RHS250x100x6 4017 30.7 · 106 7.21 · 106

26 RHS200x150x6 4017 23.2 · 106 14.8 · 106

27 RHS300x75x6 4317 42.4 · 106 4.49 · 106

28 RHS250x125x6 4317 35.2 · 106 11.9 · 106

29 RHS300x100x6 4617 48.9 · 106 8.54 · 106

30 RHS200x200x6 4617 28.8 · 106 28.8 · 106

31 RHS250x150x6 4617 39.6 · 106 18.0 · 106

32 RHS300x125x6 4917 55.4 · 106 14.0 · 106

33 RHS350x100x6 5217 72.9 · 106 9.87 · 106

34 RHS250x200x6 5217 48.6 · 106 34.5 · 106

IX

C. Cross sections Dome

35 RHS300x150x6 5217 61.9 · 106 21.1 · 106

36 RHS350x125x6 5517 81.8 · 106 16.2 · 106

37 RHS350x150x6 5817 90.7 · 106 24.2 · 106

38 RHS400x100x6 5817 103 · 106 11.2 · 106

39 RHS300x200x6 5817 74.9 · 106 40.1 · 106

40 RHS250x250x6 5817 57.5 · 106 57.5 · 106

41 RHS400x125x6 6117 115 · 106 18.3 · 106

42 RHS400x150x6 6417 127 · 106 27.3 · 106

43 RHS300x250x6 6417 87.8 · 106 66.4 · 106

44 RHS350x200x6 6417 108 · 106 45.8 · 106

45 RHS450x125x6 6717 156 · 106 20.4 · 106

46 RHS400x200x6 7017 150 · 106 51.4 · 106

47 RHS450x150x6 7017 171 · 106 30.4 · 106

48 RHS300x300x6 7017 101 · 106 101 · 106

49 RHS350x250x6 7017 126 · 106 75.4 · 106

50 RHS500x125x6 7317 205 · 106 22.5 · 106

51 RHS450x200x6 7617 200 · 106 57.1 · 106

52 RHS500x150x6 7617 224 · 106 33.5 · 106

53 RHS350x300x6 7617 144 · 106 114 · 106

54 RHS400x250x6 7617 173 · 106 84.3 · 106

55 RHS350x350x6 8217 162 · 106 162 · 106

56 RHS550x150x6 8217 286 · 106 36.6 · 106

57 RHS450x250x6 8217 230 · 106 93.2 · 106

58 RHS400x300x6 8217 197 · 106 127 · 106

59 RHS500x200x6 8217 260 · 106 62.7 · 106

60 RHS550x200x6 8817 330 · 106 68.4 · 106

61 RHS400x350x6 8817 220 · 106 179 · 106

62 RHS600x150x6 8817 359 · 106 39.8 · 106

63 RHS500x250x6 8817 297 · 106 102 · 106

64 RHS450x300x6 8817 259 · 106 140 · 106

65 RHS600x200x6 9417 411 · 106 74.0 · 106

66 RHS550x250x6 9417 375 · 106 111 · 106

67 RHS400x400x6 9417 243 · 106 243 · 106

68 RHS450x350x6 9417 289 · 106 197 · 106

69 RHS500x300x6 9417 333 · 106 153 · 106

70 RHS550x300x6 10017 419 · 106 166 · 106

71 RHS600x250x6 10017 464 · 106 120 · 106

72 RHS500x350x6 10017 370 · 106 215 · 106

73 RHS650x200x6 10017 504 · 106 79.7 · 106

74 RHS450x400x6 10017 319 · 106 266 · 106

75 RHS600x300x6 10617 517 · 106 179 · 106

76 RHS650x250x6 10617 567 · 106 129 · 106

77 RHS500x400x6 10617 407 · 106 290 · 106

78 RHS550x350x6 10617 464 · 106 233 · 106

79 RHS450x450x6 10617 348 · 106 348 · 106

80 RHS600x350x6 11217 570 · 106 250 · 106

X

C. Cross sections Dome

81 RHS650x300x6 11217 629 · 106 192 · 106

82 RHS500x450x6 11217 443 · 106 378 · 106

83 RHS550x400x6 11217 508 · 106 313 · 106

84 RHS500x500x6 11817 480 · 106 480 · 106

85 RHS650x350x6 11817 691 · 106 268 · 106

86 RHS550x450x6 11817 552 · 106 407 · 106

87 RHS600x400x6 11817 623 · 106 336 · 106

88 RHS600x450x6 12417 676 · 106 437 · 106

89 RHS550x500x6 12417 597 · 106 516 · 106

90 RHS650x400x6 12417 753 · 106 360 · 106

91 RHS650x450x6 13017 815 · 106 466 · 106

92 RHS600x500x6 13017 729 · 106 553 · 106

93 RHS550x550x6 13017 641 · 106 641 · 106

94 RHS600x550x6 13617 782 · 106 685 · 106

95 RHS650x500x6 13617 878 · 106 590 · 106

96 RHS650x550x6 14217 940 · 106 730 · 106

97 RHS600x600x6 14217 835 · 106 835 · 106

98 RHS650x600x6 14817 1000 · 106 888 · 106

99 RHS650x650x6 15417 1060 · 106 1060 · 106

Table C.1: Cross sections used in dome structure in section 6.3. Sections sorted by area

XI

D
Cross sections KAFD

Index Cross section Area[mm2] Iy[mm4] Iz[mm4]
1 RHS80x80x5 1473 1.37 · 106 1.37 · 106

2 RHS100x100x5 1873 2.79 · 106 2.79 · 106

3 RHS100x100x10 3493 4.62 · 106 4.62 · 106

4 RHS250x100x7 4651 35.2 · 106 8.18 · 106

5 RHS150x150x10 5493 17.7 · 106 17.7 · 106

6 RHS350x170x9 8949 141 · 106 45.5 · 106

7 RHS450x150x10 11493 272 · 106 47.2 · 106

8 RHS350x250x16 17901 300 · 106 177 · 106

Table D.1: RHS cross sections used in the KAFD case studie in section 6.3. Sections sorted
by area

Index Cross section Area[mm2] Iy[mm4] Iz[mm4]
1 CHS139.7x5 4310 40.6 · 106 40.6 · 106

2 CHS139.7x10 8463 76.9 · 106 76.9 · 106

3 CHS193.7x8 9535 172 · 106 172 · 106

4 CHS193.7x10 11856 211 · 106 211 · 106

5 CHS273x20 33050 1140 · 106 1140 · 106

6 CHS355.6x20 43429 2600 · 106 2600 · 106

7 CHS457x40 109830 10500 · 106 10500 · 106

Table D.2: CHS cross sections used in the KAFD case studie in section 6.3. Sections sorted
by area

XII

E
3D-frame eigenvalues

Mode Eigenvalue Norm. eigenval.
1 916 1.0
2 916 1.0
3 920 1.01
4 4814 5.26
5 8192 8.95
6 8307 9.07
7 8307 9.07
8 8986 9.82
9 8986 9.82
10 11867 12.96
11 15300 16.71
12 15300 16.71
13 17208 18.8
14 19508 21.31
15 19508 21.31
16 20727 22.64
17 21157 23.11
18 21350 23.32
19 23354 25.51
20 23354 25.51
21 23708 25.9
22 23708 25.9
23 24027 26.24
24 24027 26.24
25 25014 27.32
26 25014 27.32
27 26685 29.15
28 28242 30.85
29 28242 30.85
30 28331 30.95
31 28338 30.95
32 30397 33.2
33 37446 40.9

Mode Eigenvalue Norm. eigenval.
34 37446 40.9
35 38928 42.52
36 39043 42.65
37 40187 43.9
38 40740 44.5
39 41775 45.63
40 41775 45.63
41 42297 46.2
42 42297 46.2
43 42394 46.31
44 42394 46.31
45 43067 47.04
46 43218 47.21
47 43436 47.44
48 43436 47.44
49 44820 48.96
50 45239 49.41
51 46593 50.89
52 46593 50.89
53 46751 51.07
54 46761 51.08
55 47606 52.0
56 47606 52.0
57 52603 57.46
58 52603 57.46
59 60784 66.39
60 60784 66.39
61 61705 67.4
62 62523 68.29
63 66044 72.14

64, 65 66207 72.32
66 70207 76.69
67 16987143 18554.96

Table E.1: Eigenvalues for the first 46 modes. Normalized to the first eigenvalue

XIII

	Introduction
	Background
	Stiffness redistribution
	Finite element solving
	Canonical stiffnesses

	Aim
	Method
	Limitations
	General
	Section properties

	Outline of the report

	Theory
	Finite elements
	Frame elements
	Bar action
	Beam action
	Torsion
	2D-Frame elements
	3D-Frame elements
	Transformation to global coordinates

	Springs
	Connection stiffness

	Canonical stiffnesses
	Structural Optimisation
	Introduction to structural optimisation
	Design space and solution space
	The need for heuristics

	Optimisation Algorithms
	Iterative section sizer
	Section Rotator
	Mode shape optimisation
	Genetic algorithms

	Method
	Project overview
	Rhinoceros and Grasshopper
	Creating plugins for Grasshopper
	Armadillo
	BLAS and LAPACK

	C++/CLI

	Development of a finite element solver
	Finite element engine
	Structure
	Degrees of freedom
	Nodes
	Elements

	Forces
	Solvers
	Linear solver
	Eigen solver

	Post-processing
	Section forces and displacements
	Utilisation checks

	Optimisers
	Section sizer and rotator
	Mode shape optimiser
	Combined optimiser

	Wrapper
	Grasshopper plug-in
	Overview
	Geometry generation
	Elements
	Material
	Restraints
	Forces
	Structure
	Solver
	Results
	Optimisers

	Verification of results

	Optimisation methods
	Iterative section sizer
	General
	Method 1: Smallest acceptable section
	Method 2: Step-wise incrementation
	Method 3: Step-wise incrementation with down-sizing
	Method 4: First acceptable solution from current section
	Sorting of cross sections

	Section Rotator
	Mode shape optimiser
	Procedure

	Combined section sizer
	Section optimisation using genetic algorithms
	Connection stiffness optimisation

	Strategy for experiments

	Implementation
	Linear solver
	Optimisation methods
	Iterative section sizer and rotator
	Method 1: First acceptable section
	Method 2: Step-wise incrementation
	Method 3: Step-wise incrementation with down-sizing
	Method 4: First acceptable solution from current section
	Section rotator

	Mode shape optimiser
	Combined section sizer

	Case Studies
	Small 2d frame
	Geometry
	Boundary conditions
	Loads
	Optimisation settings

	3d frame
	Geometry
	Boundary conditions
	Loads
	Optimisation settings

	Dome
	Geometry
	Boundary conditions
	Loads
	Cross sections
	Optimisation settings

	KAFD Metro Station
	Geometry
	Boundary conditions
	Loads
	Cross sections
	Optimisation settings

	Results
	Small 2d frame
	Section sizer
	Genetic algorithms
	Canonical stiffnesses and eigenmodes
	Mode section sizer
	Combined section sizer
	Comments

	3d frame
	Section sizer and rotator
	Genetic algorithms
	Canonical stiffnesses and eigenmodes
	Mode section sizer
	Combined section sizer
	Comments

	Dome
	Section sizer and rotator
	Canonical stiffnesses and eigenmodes
	Mode section sizer
	Combined section sizer
	Section sizer with custom settings
	Change of initial condintions
	Combination of methods

	Comments

	KAFD Metro Station
	Section sizer and rotator
	Minimal initial sections
	Original initial sections

	Canonical stiffnesses and eigenmodes
	Mode section sizer
	Combined section sizer
	Comments

	Discussion
	CIGull
	Iterative Section Sizer
	Method 1
	Method 2
	Method 3
	Method 4
	Combining methods
	Section rotator

	Genetic algorithms
	Connection stiffness optimisation
	Mode section sizer
	Combined section sizer
	Package release
	Open source code development
	Future implementation
	Structural Mechanics

	Future studies
	Mode shape optimiser

	Appendix Comparison of FE calculations
	Appendix Cross sections2d and 3d Frame
	Appendix Cross sections Dome
	Appendix Cross sections KAFD
	Appendix 3D-frame eigenvalues

