Prediction of mass transport properties
in 3D microstructures using 2D CNNs

Master’s thesis in Engineering Mathematics and Computational Science

Szevar Oli Valdimarsson

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

MASTER’S THESIS 2022

Prediction of mass transport properties in 3D
microstructures using 2D CNNs

Szevar Oli Valdimarsson

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022

Prediction of mass transport properties in 3D microstructures using 2D CNNs
SAEVAR OLI VALDIMARSSON

© SAEVAR OLI VALDIMARSSON, 2022.

Supervisor: Magnus Roding, Research Institutes of Sweden, RISE
Examiner: Aila Sarkka, Mathematical Sciences

Master’s Thesis 2022

Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: A virtual 3D microstructure with three orthogonal cross-sections.

Typeset in BKTEX
Printed by Chalmers Reproservice

Gothenburg, Sweden 2022

v

Prediction of mass transport properties in 3D microstructures using 2D CNNs
SAEVAR VALDIMARSSON

Department of Mathematical Sciences

Chalmers University of Technology

Abstract

Porous materials and the relationship between their 3D microstructure and their
mass transport properties is of interest in multiple fields. To analyse this relationship
and build an understanding of it requires a great quantity of data, but obtaining
experimental 3D data is difficult and expensive. An alternative is to generate virtual
microstructures and simulate their mass transports, which can then be used to
estimate the relationship. 2D experimental data is easier to obtain and work with
than 3D experimental data, e.g. it requires less storage space and memory. It is
of interest to investigate models that can estimate mass transport properties of 3D
microstructures from 2D data. In this work, 2D data is extracted from a pre-existing
3D virtual microstructure dataset and the viability of using 2D convolutional neural
networks (CNNs) to predict the mass transport properties is explored.

Keywords: microstructure, mass transport properties, convolutional neural network,
2D, 3D.

Acknowledgements

I would like to thank and acknowledge my supervisor Magnus Roding at RISE
and examiner Aila Sarkka, as their help has been invaluable. Their guidance and
feedback carried me through all stages of the thesis.

I would also like to thank my family, who have always been supportive and there
for me.

Saevar Oli Valdimarsson, Gothenburg, 12 2022

vii

Contents

List of Figures

List of Tables

1 Introduction
2 Background
2.1 Mass Transport Properties
2.2 The Lattice-Boltzmann Method
2.3 Machine learning
2.3.1 Artificial Neural Networks
2.3.2 Convolutional Neural Networks
3 Data
3.1 Generation Methods
3.2 Training Dataset
3.3 2D Data Extraction
4 Model Architecture
4.1 Architecture Design
4.2 Examined Models
4.3 Data Augmentation
5 Discussion and Results
5.1 Training Sessions L.
5.2 Results
6 Conclusion
Bibliography

xi

xiii

12
13

17
17
19
23

27
27
28

33

35

ix

Contents

2.1

2.2

2.3

24

2.5
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

List of Figures

Example of D2Q9 lattice. Velocity vectors are denoted by ¢, the
stationary vector cq is not depicted.
An individual neuron. It has inputs zy,...,zy, the corresponding
input weights wy, . .., wy, bias b, value y and output that is regulated
by the activation function f.o
An example of an artificial neural network (ANN) with multiple layers
of neurons without the biases. It has an input layer followed by L
hidden layers which terminate in the output layer. The processing of
the data takes place in the hidden layers.
An example of convolution where a convolution is being applied to
a matrix with a kernel to extract features. The kernel (blue border)
iterates over the input matrix and performs element wise multiplica-
tion and sums up the results. The sum is the extracted feature of
that 3 x 3 area and is stored in the feature map.
A simple example of average pooling.

9 types of microstructures
3D sample of a microstructure generated using the smoothed hard
ellipsoid method. This sample will be used to demonstrate the ex-
traction methods used. oo
A demonstration of how a 2D binary slice is extracted from a 3D
volumetric cube.o
The 2D cross-section obtained from the 3D volumetric cube, showing
pores (black) and solids (light yellow).
A demonstration how three orthogonal cross-sections are extracted
from a 3D volumetric cube.o
Three binary cross-sections extracted from a volumetric cube. The
cross-sections are orthogonal to each other.
A volumetric cube rendered with orthographic projection (left) with
the corresponding obtained density map (right), showing regions of
high density (bright) and low density (dark). To show the transi-
tion, a transparent version of the orthographic projection has been
superimposed over the density map (center).
Three extracted density maps, which are orthogonal to each other,
showing regions of high density (bright) and low density (dark).

Model architecture diagram.

8

15

16

19

el

List of Figures

xii

4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1

5.2
2.3

Learning rate changes over epochs. 19
Examples of the two types of input data used in training 2D CNN
models. 20
Model 1 is trained on a single 2D binary cross-section. The cross-
section is perpendicular to direction of transport. 20

Model 2 is trained on a single 2D binary cross-section. Here, two
cross-sections parallel to the direction of transport in the same or-
thogonal set are depicted. One of them is selected at random during
training. 21
Model 3 is trained on three orthogonal cross-sections extracted from
the same microstructure. The input is a 3 x 192 x 192 matrix, which

is obtained by concatenating the cross-sections together. 21
An example of how a pseudo-RGB image could be constructed from
an orthogonal cross-section set. 22
Model 4 is trained on a single 2D density map. The map is perpen-
dicular to direction of transport. 22

Model 5 is trained on three orthogonal density maps extracted from
the same microstructure. The input is a 3 x 192 x 192 matrix, which
is obtained by concatenating the maps together. 23
Model 6 is a combination of model 3 and 4, and trains on three
orthogonal cross-sections and a density map. The input is a 4 X
192 x 192 matrix, which is obtained by concatenating the 2D data

together. L 23
Augmentations used during training. The example binary slice has
been selected for its recognizable features. 25

An example of training and validation loss over 2 training sessions

from model 5. The visible spikes are from the changing learning rate. 28
Scatter plots of diffusivity with true values M and predicted values M. 30
Scatter plots of permeability with true values x and predicted values 4. 30

3.1

4.1

4.2
4.3

5.1

5.2

List of Tables

Sample memory sizes in binary file format. Individual 2D data is
included for comparison with the final orthogonal sets. The down-
scaled cubes used by Prifling et al [9] is included for comparison.
Binary values are represented by integers, integers are stored with 1
byte (8 bits) and floating numbers with 4 bytes (32 bits).

Model parameters. N is the number of channels or layers in the input

Learning rates.
Examined models and corresponding data arrangements

Diffusivity results. The corresponding 3D CNN model by Prifling et
al [9] is included for comparison.
Permeability results. The corresponding 3D CNN model by Prifling
et al [9] is included for comparison.

xiii

List of Tables

Xiv

1

Introduction

Porous materials are everywhere, from simple coffee filters to aquifers that allow
the flow of groundwater, and they are of interest in multiple fields: pharmaceuticals
[1], catalysis, filtration and separation [2], and geological events [3].They have the
property of allowing or restricting the flow of liquids and gases through themselves.
This movement of fluids is called mass transport or mass transfer. However it is often
not the porous material itself that is of interest but the matter being transported
through: how the matter behaves and how it is affected by the material.

The aforementioned coffee filter provides a good example of this. Its purpose
is to allow coffee to pass through it but not the coffee grounds, which enables the
brewing process. Therefore, the functionality of the filter relies heavily on the mass
transport properties of the filter.

Understanding the relationship between the structure of porous materials and
their mass transport properties is of interest in various fields, whether it is describing
mass transport in existing materials or designing new materials that control mass
transport to achieve certain effects.

The most fundamental characteristic of porous materials is their porosity, i.e. the
fraction of empty space in the material. The spatial arrangement of the empty space
or the pores in the material also has a great effect on the mass transport. Due to
the small size of the pores, often at microscopic scale, the structures are referred to
as microstructures. The relationship between microstructural geometry and mass
transport properties is highly complex. Any attempts to understand it requires high
quality data to learn from and analyse. Geometric characteristics have been used
alongside statistical methods to explore this relationship [1], but another approach
has been through machine learning methods, especially with the advancements of
convolutional neural networks in image recognition [4].

Large amounts of varied data is needed for such methods and 3D data is difficult
and expensive to acquire experimentally. Instead, virtual microstructures that have
similar characteristics as experimental structures are generated and then their mass
transport is calculated using simulations [5-10].

Experimental 2D data can be easier to acquire than experimental 3D data [11].
To apply information learned from virtual data on experimental 2D data, 3D data
must be simulated to compute the mass transport properties. Then extract the 2D
data to mimic how experimental 2D data is acquired. 2D simulations [5-7] do not
provide the required 3D context that 3D simulations do [8, 9].

Faster prediction methods that give mass transport properties with reasonable
accuracy would allow for improvements in workflow. The faster methods can be
used to get approximate values, before committing to a slower prediction method

1. Introduction

that produces more accurate results [12].

Prifling at al [9] generated a large dataset of virtual microstructures and simulated
their mass transport properties. Then they used different methods to predict the
mass transport properties, including 3D CNNs. That paper forms the basis of the
current work as the same dataset is used here.

In this work, prediction of mass transport properties from 2D data extracted from
3D data, through 2D CNNs will be investigated. 2D data is extracted from the 3D
data in multiple ways. The dataset that will be used in this work was generated by
Prifling et al [9]. It is large and varied which is highly useful for training machine
learning models.

The report is organized as follows. In chapter 2, the relevant background infor-
mation needed to understand the thesis is explained. It covers a brief explanation
of the relevant mass transport properties, a numerical method used to calculate
the mass transport and finally some machine learning topics. Chapter 3 introduces
the dataset used, the methods used to generate it and how the dataset is used in
training, with details how 2D data is extracted from the 3D dataset. In chapter
4, the implementation of the models, as well as how the models are used with the
extracted 2D data, are presented. Additionally, data augmentation methods used
in training are presented. Chapter 5 details how the training was carried out, with
the results presented and discussed. Finally, the conclusion is presented, with some
ideas for further work in chapter 6.

2

Background

In this chapter, some background information on relevant mass transport properties
and the numerical method used to compute them will be discussed. Additionally an
introduction to machine learning and neural networks will be given.

2.1 Mass Transport Properties

The mass transport properties that will be investigated in this work are diffusivity
and permeability.

Diffusivity is a measurement of the rate at which particles diffuse in a solution.
In regards to porous materials diffusivity describes the diffusion of particles through
the porous space. Diffusion is described by the diffusion equation,

J = —DyVe, (2.1)

where J = (J,, J,, J.) is the diffusive flux, Dy the free diffusion coefficient and V¢ the
concentration gradient. The transport in porous material is commonly characterized
by the effective diffusion coefficient D.g, that describes the rate of diffusion in the
presence of obstacles. It is defined by

(J) = —Deg Ve, (2.2)

which describes diffusion driven by a concentration difference ¢yt — ¢, at the inlet
and outlet, on either side of a porous structure of length L. (J) is the diffusive flux in
the first dimension, averaged out over the porous structure and Ve = (Cout — Cin)/ L.
The diffusivity M is the ratio between the effective and free diffusion coefficients,

(2.3)

Permeability is the ability of a material to pass fluid through it. The permeability
is obtained by calculating fluid flow using the Navier-Stokes equations and then using
Darcy’s law to extract the permeability & [13],

kAp

i =
pd

(2.4)

where u is the average velocity, Ap is the applied pressure difference, p is the dynamic
viscosity and d is the length of the microstructure in the flow direction.

2. Background

6 2)
A
C6 C2 Cs,
3 be C3 0 C1 .l
Cr Cq (&
Y
7 4 8

Figure 2.1: Ezample of D2Q9 lattice. Velocity vectors are denoted by c, the sta-
tionary vector cqy is not depicted.

2.2 The Lattice-Boltzmann Method

The Lattice Boltzmann method (LBM) is a numerical method that can be used to
simulate fluid flow (liquid or gas). From such simulations it is possible to extract
the mass transport properties using the equations mentioned in the previous section.
One way to explain how LBM works is to briefly describe the categories of fluid flow
numerical solvers and how LBM fits within that scope.

There are multiple numerical methods that can be used to describe and solve
fluid flow. One way to organize the methods is to group them into microscopic,
mesoscopic and macroscopic scales [14].

At microscopic scale, individual molecules or particles are simulated, and posi-
tions, velocities and collisions are tracked. Particle-based solvers are computation-
ally expensive and usually used for problems on a relatively small scale. At macro-
scopic scale, the fluid is treated as a continuum, where the individual molecules are
not modelled but rather the fluid velocity and density. The Navier-Stokes equa-
tions are often used to describe that continuum. The mesoscopic scale is between
the microscopic and macroscopic scales, and tracks distributions or representative
collections of molecules. This is the scale that concerns the LBM.

LBM originates from the lattice gas method, a particle-based solver. Gas particles
move between nodes in a lattice, represented by velocity vectors. This movement
is governed by a streaming rule. When two or more particles meet in a node they
are redistributed in a way that conserves mass and momentum within the node.
This is governed by a collision rule which alongside the streaming rule describes the
behavior of the particles.

Instead of tracking individual particles and their velocities, the LBM uses a dis-
tribution function to track the density of particles with specific velocities, at specific
times. There is still streaming and collisions but they are handled differently within
the context of particle densities. Lattices are denoted by Dm@n where m represents
the dimension of the problem and n represents the number of velocities. For exam-
ple D2Q)9 represents a lattice with 2 dimensions and where each lattice node has 9
velocities. A lattice node of D2Q9 can be seen in Figure 2.1. 8 velocities can be
seen but the velocity 0 which denotes stationary particles is not depicted.

4

2. Background

If the reader wants to learn more about this topic, they are directed to the book
"The Lattice Boltzmann Method: Principles and Practice" by Timm Kriiger et al
[14].

2.3 Machine learning

Machine learning is a group of methods where an algorithm builds a model that
'learns’ to perform a specific task, instead of explicitly implementing it from the
start. This enables defining tasks implicitly and then letting the model figure out
how to carry it out. There are different ways to implement the learning process and
each one has a impact on what the model can learn. The typical way is to organise
machine learning methods into supervised, unsupervised and reinforcement learning.
The one of interest here is supervised learning, where the model is given labelled
data, i.e. the input data is paired with output data used to evaluate the performance
and then to improve it. It is called supervised learning since there is a feedback loop
where known and predicted outputs are compared. This approach has seen great
benefits when there are large amounts of labelled data that can be used to direct
the learning process.

Supervised learning is commonly split into classification and regression. Clas-
sification relates to categorising inputs into discrete classes. Regression relates to
predicting numerical output values from based on input values. This latter case
correpsonds to predicting mass transport properties from microstructures and will
be used here.

2.3.1 Artificial Neural Networks

One of the most popular machine learning methods is artificial neural networks
(ANNs). It was inspired by the behavior of biological neurons and how signals
propagate through the network. Each artificial neuron has one or more inputs which
may originate from other neurons or the input dataset, see Figure 2.2. These inputs
are weighted to give them different importance. The weighted inputs are summed
up together alongside the neuron’s default value, which is called bias. Finally an
activation function is used to transform the value before passing it on.

X b
wq
x w
t 2 f(v)
s

TN
Figure 2.2: An individual neuron. It has inputs x1, ..., xy, the corresponding input
weights wy, ..., wy, bias b, value y and output that is requlated by the activation

function f.

This neuron output is calculated by Eq. 2.5, where z; are the input values, w;
the input weights, b the bias and f the activation function.

2. Background

fly) =7 <Z w;z; + b> (2.5)

These neurons are arranged in multiple layers, where the neurons in the previous
layer provide the input for the next one, see Figure 2.3. When all neurons in a layer
connect to all the neurons in the next layer, the layers are referred to as dense. The
initial input propagates through the layers to the final output neuron which returns
the predicted output.

15¢ hidden layer L™ hidden layer

‘ output layer

Figure 2.3: An ezample of an artificial neural network (ANN) with multiple layers
of neurons without the biases. It has an input layer followed by L hidden layers
which terminate in the output layer. The processing of the data takes place in the
hidden layers.

input layer

The evaluation of the network is done by comparing the predicted values to the
true values through a loss function, which calculates the error of the model. The
model is then improved by attempting to minimise that error which is how the
ANN learns. The required adjustments, i.e. the gradients are calculated through
backpropagation. Different from regular propagation of values through the network,
i.e. from the input to the output, backpropagation traverses the network backwards,
calculating the gradient of each weight and bias. The gradients are adjusted by a
learning rate and a momentum and then applied through a gradient descent method.
Learning rate specifies the magnitude of the applied change. Higher values mean
faster learning by the model but too large of a learning rate can also cause the model
to diverge, i.e. perform badly and never recover. Momentum is inertia applied to
the gradient to smooth out behavior characteristics of gradient descent.

As a loss function provides the value being optimised for, it has a big impact on
the learning process. One loss function often used is the mean squared error:

1 —~\2
MSE = ; (x: - Xi)". (2.6)

The function is quadratic which provides greater incentive to improve primarily the
worst errors. With a linear loss function, improvements of the worst error and a

6

2. Background

minor error would result in the same overall improvement, which may introduce
outliers and worsen generalisation.

Each training iteration over the test data is called an epoch. Training time is
often discussed in terms of the number of epochs. The number of epochs that is
required for convergence varies. Some approaches fix the amount of epochs or time
spent on training, others stop the training when the model stops improving.

When an ANN model is trained on a dataset it may learn specifically the training
input, i.e. overfit to training data and perform badly on any previously unseen input.
For this reason, the dataset is typically split into three sets: training, validation,
and test sets. The training set is used for calculating the gradient and adjusting
the weights. The validation set is used to assess the progress of the training but
is not used directly in the training, which prevents over-fitting. To evaluate the
performance of the model, neither the training nor validation set can be used. That
is the purpose of the test set which has not been used during any steps of the
training.

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) have been used to great effect in image
recognition [15] and have been applied successfully in recognizing pertinent features
from the structural topology of images[4]. Convolutional neural networks are ANNs
that have been extended by the addition of convolution and pooling layers.

A convolution layer applies convolution to the input with a kernel, which extracts
features into a feature map. An example of convolution can be seen in Figure 2.4.
It is difficult to say which features are important and useful for the neural network.
For this reason, multiple trainable kernels are used to extract multiple feature maps.

001100

001100 | 2332

11001 1 L | B B A P
X1 X1 x1 * 111 =

110011 001 372 2 3

001100 2332

001100

Figure 2.4: An example of convolution where a convolution is being applied to a
matriz with a kernel to extract features. The kernel (blue border) iterates over the
input matrixz and performs element wise multiplication and sums up the results. The
sum is the extracted feature of that 3 x 3 area and is stored in the feature map.

These feature maps can then be used as inputs for the artificial neural network,
as the features add emphasis on what may be important to the network. A con-
volution by itself is a linear operation. Applying multiple convolutions to an input
does increase potential expressiveness over a single convolution. However, applying
a non-linear activation function after each convolution makes layering them more
expressive and capable of extracting nonlinear features. Therefore it is beneficial
to apply multiple convolutions to extract nonlinear features and refine the feature
map. These features can then be consolidated with pooling layers. A pooling layer

7

2. Background

i)
1243 3.5
e g
1331

Figure 2.5: A simple example of average pooling.

compresses a feature map into a smaller feature map with the intention of conserv-
ing the most important features and decreasing the amount of data to a level that
is feasible to be trained on by the neural network. The pooling is performed by
combining multiple values into a single one, e.g. taking the highest value or taking
the average. This convolution and pooling step is the main feature of CNNs and
can be repeated multiple times to further refine and compress the feature maps.

3

Data

Supervised learning needs a large and varied dataset to produce a model that per-
forms well. Obtaining and digitising experimental data is a relatively expensive
and time consuming process, and the data produced may not be suited for machine
learning purposes. For that reason, many have turned to generating virtual mi-
crostructures that can be easily produced and then used to simulate and model the
mass transport properties.

The dataset used here was generated by Prifling et al [9]. Each virtual sample in
the dataset is a 192 binary matrix, where 1 represents solid matter and 0 represents
void (or a pore space). The dataset is generated using 9 different periodic and sta-
tistically isotropic methods. Isotropic refers to a structure that is uniform regardless
of rotation, but since the samples are generated through stochastic methods, they
can only be claimed to be the same on average in all directions. Being periodic
refers to it being possible to repeat the structure on the boundaries while preserving
the geometry.

These different generation methods produce different types of geometries, yielding
different mass transport properties. There are numerous geometric characteristics
that influence the mass transport. Porosity, i.e. the proportion of pore space to the
total space in the volume, the surface area, i.e. the interface between solid and pore
parts, and tortuosity, i.e. how curved and restrictive the mass transport paths are,
all have an effect on the flow.

In this chapter, the different methods used for generating the microstructures are
explained to give some understanding of the microstructures in the dataset. Then it
is explained how the dataset is split up for training purposes. Finally, it is explained
how 2D data is extracted from the generated 3D microstructures.

3.1 Generation Methods

Here the different generation methods used by Prifling et al [9] are described briefly.
As mentioned earlier, the different methods produce microstructures with different
geometries: some methods produce binary structures, others produce continuous
valued structures that need to be transformed to binary values. Continuous struc-
tures are transformed to binary matrices by defining a threshold value and setting
the matrix entries as a solid or a pore. The threshold value allows for adjusting
the porosity values as desired. Porosities of structures produced through binary
methods can also be adjusted through different configurations. This is important
for producing a dataset with sufficiently large variety of different structures.

3. Data

These methods are: Gaussian random fields, spinodal decomposition, spatial
stochastic graphs, fiber systems, channel systems and four different ellipsoid struc-
tures.

(b)

(d) (f)

(8) (h) (i)
Smoothed hard ellipsoids Soft ellipsoids Smoothed soft ellipsoids

Figure 3.1: 9 types of microstructures

Gaussian random fields are random processes characterised by their mean and
covariance function. They are well known within stochastic geometry and have been
used in modelling 3D microstructures, for example, anodes in lithium-ion batteries
and electrodes in solid oxide cells [16]. To generate a Gaussian random field with
a desired covariance function, its spectral density can be multiplied with the Fast
Fourier transform (FFT) of white noise and then inverse transformed. This produces
a continuous field, on which a threshold needs to be applied to obtain a binary struc-

10

3. Data

ture. The threshold can be varied to yield the desired porosity [8, 17].

Spinodal decomposition is when a uniform phase separates into two distinct
phases. The phase separation mechanism is simulated by the Navier-Stokes and
Cahn-Hillard equations and the computation was performed using Lattice Boltz-
mann method. The separation mechanism is determined by several factors such as
surface tension, density and viscosity ratio between the two phases. These charac-
teristics are varied to yield different behaviors and in turn different geometries. As
the structure coarsens with time, the number of timesteps is specifically selected to
ensure the structure has appropriate length scale. Then it is thresholded to ensure
the desired porosity.

Spatial stochastic graphs are based on a model introduced by Gaiselmann et al
[18]. Vertices are introduced randomly to a volume through a stochastic process.
There are various parameters that control this process, such as vertices per volume
density. Two vertices are connected by an edge if there does not exist a vertex in
the critical region between them. The critical region is defined as the intersection
between two spheres centered on the vertices and have radius equal to the distance
between the vertices.

The fiber system used in the dataset is generated by the method described by
Townsend et al [19] in their paper. Modifications were made by Prifling et al [9] to
generate periodic and isotropic structures. Fibers are represented by a set of nodes
and a Bézier curve that goes through them. The nodes are created by a random walk
with limited angle of direction. The thickness of the fibers is randomly selected from
a discrete distribution. Fibers are then added to an empty system until a desired
porosity is reached.

The channel system is the inverse of the fiber system. Channels are generated in
the same manner as the fibers, Bézier curves are generated through random walk
with limited angle of direction. The difference is how they are used in the construc-
tion. The microstructure generated by the channel system starts out solid and then
channels are ’subtracted’ from it. This continues until a desired porosity is reached.

For hard ellipsoids, ellipsoid particles are randomly placed with random orien-
tations. Then the configurations are relaxed by applying random translations and
rotations until no ellipsoids overlap. Attempted translations and rotations are only
performed in the cases where they lead to a less or equal amount of overlap of the
particles in question. The specifics of how the desired porosity is achieved is out of
the scope for this thesis and reader is pointed to the paper by Roding et al [8] where
this structure is discussed in more detail.

Smoothed hard ellipsoid structures are generated in the same manner as hard
ellipsoid structures, but with an additional step. The final discretized structure is
smoothed by applying a Gaussian filter and then thresholded which results in a
semi-continuous solid phase in contrast to the original discrete structure.

11

3. Data

For soft ellipsoids, ellipsoid particles are randomly placed with random orienta-
tions. Particles can overlap and new particles are added until the desired porosity
is achieved. Ellipsoid sizes are selected at random to obtain an appropriate range of
length scales. The shape is also varied between oblate and prolate ellipsoids.

Smoothed soft ellipsoids are generated as smoothed soft ellipsoids, a Gaussian
filter is then applied to the structure and then thresholded to smooth it out and
obtain a semi-continuous solid phase.

3.2 Training Dataset

10000 samples of each of the 9 structure types were generated, which results in a
dataset containing 90000 virtual microstructure samples. The distribution of porosi-
ties within each structure type was kept uniformly distributed to ensure a variety
within each microstructure type.

The Lattice Boltzmann method was used to simulate mass transport through the
sample structures and then permeability and diffusivity values were extracted from
the simulations. This was done for each of the samples with the direction of flow
being parallel to the first dimension. The resulting mass transport property values
were then transformed to simplify training. Diffusivity M, which has values between
0 and 1 was logit-transformed,

=1 T — 3.1
y=log (1=57) (31)
while permeability &k, which has positive values, was log-transformed,

y = log(k). (3.2)

These values were then used as labels, which enables the use of supervised learning
to train a CNN to predict the mass transport properties of the virtual samples.

For the convolutional neural network the dataset is split into 3 sets: training,
validation and test. It was split in a stratified manner 70% (63000), 15% (13500),
15% (13500) such that all sets have an equal amount of microstructure types, 7000
per type in training and 1500 per type in validation and testing. This is the same
split as used by Prifling et al [9], which facilitates an easy comparison between their
methods and the 2D CNN models trained here.

12

3. Data

3.3 2D Data Extraction

The aim of this work is to predict mass transport properties in 3D microstructures
using 2D data. Therefore a 2D representation needs to be extracted. The 1923
volumetric cube in Figure 3.2 will be used as an example of the process.

Figure 3.2: 3D sample of a microstructure generated using the smoothed hard
ellipsoid method. This sample will be used to demonstrate the extraction methods
used.

One way the data can be represented is by selecting one 1922 slice from the 1923
cube. This produces a 192 x 192 binary cross-section where 1 represents solid and 0
represents pore space, the same as it does for the binary cube sample. An example of
how a cross-section is selected and extracted is shown in Figure 3.3 and the resulting
2D binary sample is shown in Figure 3.4.

Figure 3.3: A demonstration of how a 2D binary slice is extracted from a 3D
volumetric cube.

13

3. Data

Figure 3.4: The 2D cross-section obtained from the 3D volumetric cube, showing
pores (black) and solids (light yellow).

Extracting a cross-section can be performed on the fly for each sample during
training. However, this can have a high computational cost. When feasible, it is
better to perform expensive computations once and store the results. Additionally,
storing all the volumetric cubes in the dataset takes up a large amount of space and
is difficult to keep in memory during training. The entire volume is not needed for
the training, only the extracted 2D data.

From each cube sample, it is possible to extract binary cross-sections from 3
different orientations. These orientations are orthogonal to each other and the re-
sulting cross-sections would be orthogonal as well. An example of how three or-
thogonal cross-sections are extracted is shown in Figure 3.5 and the resulting 2D
binary samples are shown in Figure 3.6. These binary samples are used to construct
an orthogonal set, which takes less memory than the original cube. There are mul-
tiple options for constructing orthogonal sets. Each orientation offers 192 possible
cross-sections. A single volumetric sample can therefore provide multiple orthogonal
sets. In this work, eight sets of orthogonal cross-sections are extracted from each
volumetric sample, with each cross-section being selected at random.

Figure 3.5: A demonstration how three orthogonal cross-sections are extracted from
a 3D volumetric cube.

14

3. Data

Figure 3.6: Three binary cross-sections extracted from a volumetric cube. The
cross-sections are orthogonal to each other.

Another way to extract 2D data from a 3D volume is to calculate the mean value
of the 1923 binary matrix in a single direction. This produces a 1922 density map
with values ranging from 0 to 1, with higher values representing higher densities of
solid matter. An example of how the density map in one orientation is obtained is
shown in Figure 3.7.

Figure 3.7: A volumetric cube rendered with orthographic projection (left) with the
corresponding obtained density map (right), showing regions of high density (bright)
and low density (dark). To show the transition, a transparent version of the ortho-
graphic projection has been superimposed over the density map (center).

Similarly to the binary cross-sections, it is possible to extract three density maps
orthogonal to each other from each volumetric sample. An example of orthogonal
density maps obtained from the cube in the beginning of the section (Figure 3.2) are
shown in Figure 3.8. It is only possible to extract a single set of orthogonal density
maps from each cube.

A comparison of the amount of memory used for the different collections of 2D
data can be seen in Table 3.1. Note that the listed examples compare storing the
samples in a binary file format which stores binary values as integers which takes 1
byte and floating numbers in density maps take 4 bytes.

15

3. Data

Figure 3.8: Three extracted density maps, which are orthogonal to each other,
showing regions of high density (bright) and low density (dark).

’ Sample Dimensions | Memory/Sample \ Memory /Dataset ‘
Volumetric cube 1923 7.1 MB 637.0 GB
Binary cross-section 1922 36.9 KB 3.3 GB
Density map 1922 147.5 KB 13.3 GB
Orthogonal set of binary cross-sections 3 x 1922 110.6 KB 9.9 GB
Orthogonal set of density maps 3 x 1922 442.4 KB 39.8 GB
Eight sets of binary cross-sections 8 x 3 x 1922 884.7 KB 79.6 GB
Down-scaled cube 963 884.7 KB 79.6 GB

Table 3.1: Sample memory sizes in binary file format.

Individual 2D data is

included for comparison with the final orthogonal sets. The down-scaled cubes used
by Prifling et al [9] is included for comparison. Binary values are represented by
integers, integers are stored with 1 byte (8 bits) and floating numbers with 4 bytes

(32 bits).

16

4

Model Architecture

In this chapter, the architecture of the various models and how it was designed will
be explained. The differences in the examined models will then be discussed in a
separate section. Additionally, data augmentation and how it is used in training
will be briefly explained.

4.1 Architecture Design

To determine the viability of the different 2D data types for predicting mass trans-
port properties, multiple arrangements of the data will be examined to be compared
and contrasted. A different model will be trained for each data arrangement. To
make the comparison more fair, the same CNN model architecture will be used.
This does not include the input layer of the CNNs which needs to be adapted to the
input data in each case.

The starting point for the architecture design is the 3D CNN model used by
Prifling et al [9]. One purpose of this work is to compare the performance of 2D
CNNs and 3D CNNs using data that originates from the same dataset. As their 3D
CNN model has been established to perform well on the dataset it is reasonable to
assume that it would perform decently when adapted for 2D inputs. This adaptation
involved replacing the 3D convolutional layers with 2D convolutional layers. Keeping
the architecture similar has the additional benefit of making comparisons between
the 3D and 2D CNNs easier, provided the changes to the architecture of the latter
are not too extreme. However, it should not be taken for granted that it is the best
possible 2D CNN design and variations should be explored.

The main hyper-parameters explored were the number of dense layers after the
convolution layers, the number of neurons per dense layer and the number of feature
maps in the convolution layers. The exploration was performed using random search
due to ease of implementation [20]. The hyper-parameters were selected uniformly
randomly from a selection of values deemed reasonable and then the networks were
trained for a predefined amount of time. After training, the results were compared to
the original architecture used as a starting point. However, no clear improvements
were discovered so another attempt was made by adding two convolution layers
and a pooling layer and repeating the random search. This yielded no significant
improvement either so the number of dense layers and neurons per dense layer were
kept the same. The number of feature maps was increased to compensate for the loss
of 3D context. However, there were no significant improvements. The final CNN
model architecture can be seen in Table 4.1, where N is the number of channels in

17

4. Model Architecture

the input data. A visual representation of the architecture is shown in Figure 4.1.
The model was implemented in Tensorflow 2.9.0 [21].

’ Layer \ Activation \ Specifics \ Output shape ‘
Input 192x192x N
Convolution ELU | 3x3 Kernel 190x190x32
Convolution ELU | 3x3 Kernel 188x188x32
Pooling AVG 94x94x32
Convolution ELU | 3x3 Kernel 92x92x64
Convolution ELU | 3x3 Kernel 90x90x64
Pooling AVG 45x45x64
Convolution ELU | 3x3 Kernel 43x43x128
Convolution ELU | 3x3 Kernel 41x41x128
Pooling AVG 20x20x128
Flatten 51200
Dense ELU Dense 64
Dense ELU Dense 64
Dense ELU Dense 64
Dense ELU Dense 64
Output Linear Dense 1

Table 4.1: Model parameters. N is the number of channels or layers in the input
data.

The activation function used in the CNN model is called ELU which stands for
Exponential Linear Unit and is defined as,

x, ifx>0
f@) = {a(exp(:z:) —1), ifr<0’ (4.1)

with parameter a = 1. It was chosen because it has been shown to perform well
with CNNs [22]. Average pooling (AVG) was used to consolidate the feature maps.

The change from 3D convolution to 2D convolution freed some computational
resources, which could then be used to speed up the training. Increasing the batch
from 16 to 512 enables more computations to be performed in parallel, decreasing the
time spent on each epoch. However increasing the batch size necessitates increasing
the learning rate as well. The learning rates in the original 3D CNN would change
during the training. In the beginning it would be small to prevent the model from
diverging, then increase to speed up the convergence as the training goes on, before
decreasing again to allow for finer adjustments. The new learning rates follow the
same behavior and can be seen in Figure 4.2, the values can be seen in Table 4.2.

18

4. Model Architecture

L 1A
@ Conwv2D ' AveragePooling2D ' Flatten ' Dense

Figure 4.1: Model architecture diagram.

1072

Learning rate

IOg1o(LR)

LR

-3.50
-3.25
-3.00
-2.75
-2.50
-2.25
-2.50
-2.75
-3.00
-3.25
-3.50

0.000316
0.000562
0.001000
0.001778
0.003162
0.005623
0.003162
0.001778
0.001000
0.000562
0.000316

0 200 400 600 800
Epoch

Figure 4.2: Learning rate changes over epochs.

4.2 Examined Models

Table 4.2:
rates.

Learning

The extracted 2D data comes in two types: 2D binary cross-sections and density
maps. Both are stored in orthogonal sets. To investigate how viable and useful
the 2D data is in comparison to the original 3D data, multiple models with different

19

4. Model Architecture

input criteria are created. For 2D CNNs it is possible to layer multiple 2 dimensional
matrices together to use as an input. Using this method, 6 different arrangements
of 2D input data will be created, resulting in the training of 6 CNN models..

(a) Density map (b) Cross-section

Figure 4.3: FEzxamples of the two types of input data used in training 2D CNN
models.

The first model will train on 2D cross-sections perpendicular to the direction of
transport. This gives a view of the transport cross section, however 3D contex-
tual information will be missing, such as whether the transport paths are tortuous.
Fortunately due to the statistically isotropic properties of the cubic samples, some
topological properties may be estimated. An example of input data can be seen in
Figure 4.4.

Figure 4.4: Model 1 is trained on a single 2D binary cross-section. The cross-
section is perpendicular to direction of transport.

The second model will train on 2D cross-sections parallel to the direction of
transport. This gives a cross-section view of the transport paths, making it easier to
view obstruction and tortuosity though the complete 3D data is not available. This
model should have similar properties as the first one due to the statistical isotropy of

20

4. Model Architecture

the samples, but is still worth exploring. Cross-sections are stored in orthogonal sets
which makes it possible to select between them during training, increasing variety.
An example of input data can be seen in Figure 4.5.

N 72

Figure 4.5: Model 2 is trained on a single 2D binary cross-section. Here, two
cross-sections parallel to the direction of transport in the same orthogonal set are
depicted. One of them is selected at random during training.

The third model will train on three 2D binary cross-sections which are orthogonal
to each other and use all the cross-sections in the orthogonal set. This gives a cross-
section of the transport from the three main orientations and preserves more of the
spatial context. An example of input data can be seen in Figure 4.6.

Figure 4.6: Model 3 is trained on three orthogonal cross-sections extracted from
the same microstructure. The input is a 3 X 192 x 192 matriz, which is obtained by
concatenating the cross-sections together.

This is not the first time a CNN model has been trained on multiple cross sections
to estimate properties of a volumetric structure. Rong et al [23] did so with thermal
conductivity of composite materials and obtained good results. However, multiple
parallel cross-sections were used instead of orthogonal ones. The performance impact
of the number of parallel cross-sections in the input data was one of the factors
investigated.

Materials science is not the only field where applying 2D CNNs to process 3D
data has been attempted. The medical field works a great deal with volumetric data,

21

4. Model Architecture

e.g MRI, and there have been similar attempts of utilising 2D CNNs instead of 3D
CNNs. Yu et al [24] compared 2D and 3D CNNs in reducing the number of false
positives in lung cancer screenings. The 2D CNNs were trained on a pseudo-RBG
image dataset where the color channels represented an orthogonal cross-sections from
3D voxel samples. For an example of how pseudo-RGB image could be constructed
from cross-sections of a microstructure, see Figure 4.7. Orthogonal cross-sectional

data has been given other names, Prasoon et al [25] called this method triplanar
and Roth et al [26] called it 2.5D.

Figure 4.7: An example of how a pseudo-RGB image could be constructed from an
orthogonal cross-section set.

The fourth model will train on a density map perpendicular to the direction of
transport. This gives more complete information about the samples such as porosity
and some idea about the distribution of solid and pores. An example of input data
can be seen in Figure 4.8.

Figure 4.8: Model j is trained on a single 2D density map. The map is perpendic-
ular to direction of transport.

The fifth model will train on three density maps orthogonal to each other, which
will use all the cross-sections in the orthogonal sample set. The porosity can be
obtained from the density maps. The distribution of solid and pores can be more
accurately estimated due to the three orientations. An example of input data can
be seen in Figure 4.9.

The sixzth model will be a combination of the third and fourth models. This is
to examine and contrast the different types of extracted 2D data. An example of
input data can be seen in Figure 4.10.

22

4. Model Architecture

Figure 4.9: Model 5 is trained on three orthogonal density maps extracted from

the same microstructure. The input is a 3 X 192 x 192 matriz, which is obtained by
concatenating the maps together.

Figure 4.10: Model 6 is a combination of model 3 and 4, and trains on three
orthogonal cross-sections and a density map. The input is a 4 X 192 x 192 matriz,
which is obtained by concatenating the 2D data together.

Method | Type Orientation
Model 1 | Binary Perpendicular
Model 2 | Binary Parallel
Model 3 | Binary 3 Orthogonal

Model 4 | Density map | Perpendicular
Model 5 | Density map | 3 Orthogonal
Model 6 | Mixed Mixed

Table 4.3: Ezamined models and corresponding data arrangements

4.3 Data Augmentation

As discussed earlier, over-fitting is a problem in machine learning. One way to pre-
vent overfitting is to have a large and varied training dataset. The size of the training
set can be artificially increased by creating new samples from the pre-existing ones.
This often involves modifying existing samples in a way that does not require recal-
culation of the label. Such augmentations come with a computational cost, but if the
operations are relatively cheap then it offers great benefits if storage space is limited.

When augmenting the microstructures, care is needed not to affect the morpho-
logical features. The microstructures are statistically homogeneous, isotropic and

23

4. Model Architecture

have periodic boundary conditions. The microstructures can be rotated, mirrored
and transposed without affecting their properties, as long as the direction in which
the mass transport is simulated, the x axis, is not altered. Therefore augmentations
that affect the direction of transport will not be chosen. Alterations on the y and
z axes are fine as the structures have periodic boundaries, they can be swapped,
flipped and shifted.

The augmentations used in this work can be seen in Figure 4.11. They are applied
at random to each sample during training.

24

4. Model Architecture

G

(a) Original (b) Swap Y and Z azxes.
(c) Mirror along Y-axis. Same as (d) Mirror along Z-axis. Same as
MIrroring across Z-aris. mirroring across Y-axis.

(e) Circular shift on Y-azis. (f) Circular shift on Z-axis.

Figure 4.11: Augmentations used during training. The example binary slice has
been selected for its recognizable features.

4. Model Architecture

26

O

Discussion and Results

In this chapter, organisation of the training and related topics will be covered. Then
the results will be presented and discussed.

5.1 Training Sessions

The training was performed on the Alvis GPU computer cluster at Chalmers Centre
for Computational Science and Engineering (C3SE). The training of each model
utilised a single NVIDIA Tesla A40 GPU with 48GB RAM, with Intel(R) Xeon(R)
Gold 6338 CPU @ 2GHz, with 16 CPU cores allocated for the training.

The models were trained over three training sessions, 5 days each, due to the wall
time limit on the cluster. In each session, the models were trained for 825 epochs
for binary inputs and 3300 epochs for density maps and mixed input. The training
on the density maps and mixed input took less time due to the smaller training
sets, which resulted in each epoch taking less time. The number of training epochs
was increased to 3300 to take advantage of all the allocated training time. This was
done both for permeability models and diffusivity models.

For the first session each model was initialised four times, each with random
weights and biases. In second session, the weights from the best performing models
of the first session were used to set the weights of the new models. This allowed for
continuation of training despite the wall time limit. Additionally, each model was
trained with new random weights during the second session. The intention was to
see if the models from the previous training session had reached a point of diminish-
ing returns and training more instances of the model could produce improvements.
However, in only a few instances did the models initialised with random weights
outperform the best models from previous session. Even in those cases, the improve-
ment had been minor. Therefore, the third and final session was only initialised with
the best performing models. However, this training session only resulted in minor
improvements for some of the models. The other models did not improve.

Examples of the training progress as a function of loss over epochs from two
training sessions can be seen in Figure 5.1. As mentioned earlier, little to no im-
provements occurred during the last training session. For that reason it is not
included in the loss progression figure.

27

5. Discussion and Results

1071 4

102

1073 1

—— Training Loss
—— Validation Loss

P

T
1000

T
2000

T
3000

T
4000

T T
5000 6000

(a) Diffusivity.
0 J
107 3 —— Training Loss
1 —— Validation Loss
1071 4
1072
T T T T T T T
1000 2000 3000 4000 5000 6000

(b) Permeability.

Figure 5.1: An example of training and validation loss over 2 training sessions

from model 5. The visible spikes are from the changing learning rate.

5.2 Results

The results from the trained models can be seen in Tables 5.1 and 5.2, for diffusivity
and permeability respectively. The error of the models is quantified in terms of

28

5. Discussion and Results

Mean Squared Error,
n

1 —~\2
MSE = — X, —X;) 5.1
N) (5.1)
the same error used for training loss, and in terms of Mean Absolute Percentage
Error

MAPE — 100%2 X — X .

no I X

The results from the 3D CNNs trained by Prifling et al [9] are included for compar-
ison.

MSE shows the loss value of the models for each of the training subsets: training,
validation and testing. Comparing the MSE errors over the subsets shows how well
the models generalize. However it is difficult to understand intuitively what the
values represent in regards to the accuracy of the models. MAPE is easier to put
into context, for example a MAPE of 10 means that on average the predicted value
is 10% off from the true value.

(5.2)

MSE MAPE (%)
Method Train | Validate Test Test
Model 1 | 0.0815 0.0842 | 0.0842 11.66
Model 2 | 0.0810 0.0876 | 0.0876 11.91
Model 3 | 0.0363 0.0389 | 0.0384 7.88
Model 4 | 0.0047 0.0057 | 0.0061 2.97
Model 5 | 0.0012 0.0049 | 0.0047 2.51
Model 6 | 0.0038 0.0068 | 0.0063 3.09
3D CNN | 0.0016 0.0023 | 0.0020 1.65

MSE MAPE (%)
Method Train | Validate Test Test
Model 1 | 0.1491 0.1618 | 0.1581 31.91
Model 2 | 0.1463 0.1678 | 0.1638 31.34
Model 3 | 0.0651 0.0753 | 0.0724 19.79
Model 4 | 0.0119 0.0187 | 0.0177 8.58
Model 5 | 0.0024 0.0109 | 0.0103 6.24
Model 6 | 0.0100 0.0170 | 0.0159 8.39
3D CNN | 0.0033 0.0059 | 0.0050 4.33

Table 5.1: Diffusivity results. The corresponding 3D CNN model by Prifling et al
[9] is included for comparison.

Table 5.2: Permeability results. The corresponding 3D CNN model by Prifling et
al [9] is included for comparison.

Additionally, scatter plots of the predicted and true values from the test set have
been generated, see Figure 5.2 for diffusivity and Figure 5.2 for permeability.

29

5. Discussion and Results

0
Qe 5 1© 3
Q- QM -
(a) Model 1
1
0.75
= 05
0.25
00” S 2 © N
2 : A
N QM 0
(d) Model 4

NS 5 1© 3
Q- QM -
(b) Model 2
1
0.75
<= 05
0.25
Oou S S © N
2 : A
0 QM 0
(e) Model 5

0.75

<= 05

0.25

(c) Model 3
1

0.75

<= 05

0.25

(f) Model 6

Figure 5.2: Scatter plots of diffusivity with true values M and predicted values M.

10*

102

2

10°

1072

107 10° 10*

K

10°

(a) Model 1

10*

10°
<2

10°

1072
1072 10° 102 10*

K
(d) Model 4

1072

1072 10°

(b) Model 2

10°
K

10*

10*

10°
<2

10°

1072
1072 10°

(e) Model 5

102
K

10%

102

10°

1072

107 10°

(c) Model 3

10*

10°

10°

1072
1072 10° 102 10*

K
(f) Model 6

Figure 5.3: Scatter plots of permeability with true values k and predicted values k.

30

5. Discussion and Results

It is clear that the models using density maps (4-6) outperform the ones using bi-
nary cross-sections (1-3). This is expected because a single density map contains all
the information needed to calculate porosity, which is an important characteristic for
the mass transport properties. An estimation of the solid and pore distribution can
also be observed from the density maps which is an additional piece of information
that can be used in training.

Some of the information contained in a density map can be estimated from a
cross-section, but information is lost when it is separated from the 3D context. As
can be seen from model 3, introducing more cross-sections includes more of the 3D
context and the error is decreased, in comparison to model 1 which uses only a single
cross-section as input.

Models 1 and 2 were trained to test if there was any difference between cross-
sections perpendicular or parallel to the direction of transport. As the 3D samples
are statistically isotropic, the orientation should not matter to the CNN models.
This is confirmed by the results, as there is no substantial difference between the
errors.

Model 5 performs better than model 4, as it has the orthogonal density maps
which provide additional information to the CNN. This is similar to how model 3
with three orthogonal cross sections performs better than models 1 and 2, which
only have a single cross section. However the improvements are not as great as they
were for the binary cross-section models. This indicates that the relative informa-
tion increase is smaller. As mentioned earlier a density map provides information
about the porosity and the distribution of pores and solids. Using this as an ex-
ample, additional density maps do not provide any new information about porosity.
However, since they are from different orientations the spatial distribution is also
from different orientations which provides more 3D context.

Model 6 provides a great comparison of density maps and binary cross-sections.
Its performance can be compared to its constituent models, 3 and 4, which utilise
different 2D data. It is an improvement over model 3 which used only orthogonal
cross-sections but not over model 4. In fact the performances are comparable, with
no clear difference in error values that can not be attributed to the stochastic nature
of the CNNs. It can be reasoned that the addition of the orthogonal cross-sections
provides little to no additional information that the CNN could take advantage of
during training.

Comparing the 2D CNN models explored here and the 3D CNN models by Prifling
et al [9], it is clear that the 3D CNN models have the best performance. However
what the 2D CNN models offer is an approach to handle limited data when a full
volumetric sample is not available. Additionally the 2D CNN models take a fraction
of a second to predict a mass transport property, which is substantially faster than
it takes to simulate and extract the properties [8].

31

5. Discussion and Results

32

O

Conclusion

In this thesis, prediction of mass transport properties using 2D CNNs was investi-
gated. The 2D data was extracted from virtually generated 3D microstructures that
had been previously used to train various prediction models, including 3D CNNss.
Two different methods were used to extract 2D data, density maps and binary slices.
The data was then arranged in six different arrangements for six different CNN mod-
els.

The produced models provide insights to how useful different 2D data and differ-
ent arrangements can be, provided that assumptions can be made about the isotropy
of the data. Though models using a singular cross-section performed worse than the
other methods, they can still be used to produce a fast approximation and narrow
down options before committing to a more accurate but more complex and costly
process. Orientation of a cross-section to direction of mass transport had little to
no effect. This was expected due to the isotropy of the samples.

Density maps performed the best but they require more information about the
microstructure than cross-sections. Acquiring this data might not be any cheaper
than acquiring full experimental 3D data. However, the models can still predict
mass transport properties with reasonable accuracy, faster than full mass transport
simulations of the 3D structures. Also 2D CNNs are easier to work with than 3D
CNNs.

Some possible future work on the topics of this work would be to explore multiple
parallel cross-sections and how the number of them would affect the prediction of
mass transport properties, similar to what has been done for thermal conductiv-
ity. As mentioned earlier, the orientation of the cross-sections was explored in this
work, culminating with the combination of all orientations with the set of orthog-
onal cross-sections. That showed that having multiple cross-sections increased the
accuracy and decreased the error. Additionally, it would be interesting to examine
whether different spacing between cross-sections would have some additional effects.
Alternatively, limited density maps could be explored, as in taking a density map
on a fraction of the data or as a mean of multiple cross-sections. There may be
microstructures that are too homogeneous and the resulting density maps would be
too uniform and missing information about spatial distribution. The performance
of prediction models using density maps in those cases would need to be examined

33

6. Conclusion

34

[10]

[11]

[12]

Bibliography

Barman, Sandra et al. “Prediction of diffusive transport through polymer films
from characteristics of the pore geometry”. In: AIChE Journal 65.1 (2019),
pp. 446-457. DOI: 10.1002/aic.16391.

Slater, Anna G. and Cooper, Andrew 1. “Function-led design of new porous
materials”. In: Science 348.6238 (2015). DOI: 10.1126/science.aaa8075.
Vasseur, Jérémie et al. “Permeability of polydisperse magma foam”. In: Geol-
ogy 48 (Mar. 2020). DOI: 10.1130/G47094.1.

Kondo, Ruho et al. “Microstructure recognition using convolutional neural
networks for prediction of ionic conductivity in ceramics”. In: Acta Materialia
141 (2017), pp. 29-38. DOI: 10.1016/j.actamat.2017.09.004.

Wu, Jinlong et al. “Seeing permeability from images: fast prediction with con-
volutional neural networks”. In: Science Bulletin 63.18 (2018), pp. 1215-1222.
ISSN: 2095-9273. DOI: 10.1016/j.scib.2018.08.006.

Wu, Haiyi et al. “Predicting effective diffusivity of porous media from images
by deep learning”. In: Scientific reports 9.1 (2019), pp. 1-12. DOI: 10.1038/
s41598-019-56309-x.

Graczyk, Krzysztof M and Matyka, Maciej. “Predicting porosity, permeability,
and tortuosity of porous media from images by deep learning”. In: Scientific
reports 10 (2020), pp. 1-11. DOI: 10.1038/s41598-020-78415-x.

Roding, Magnus et al. “Predicting permeability via statistical learning on
higher-order microstructural information”. In: Scientific reports 10 (2020),
pp. 1-17. bor: 10.1038/s41598-020-72085-5.

Prifling, Benedikt et al. “Large-Scale Statistical Learning for Mass Transport
Prediction in Porous Materials Using 90,000 Artificially Generated Microstruc-
tures”. In: Frontiers in Materials 8 (2021). 1SSN: 2296-8016. DOIL: 10 .3389/
fmats.2021.786502.

Kamrava, Serveh et al. “Linking morphology of porous media to their macro-
scopic permeability by deep learning”. In: Transport in Porous Media 131
(2020), pp. 427-448. DOI: 10.1007/s11242-019-01352-5.

Srisutthiyakorn, Nattavadee. “Deep-learning methods for predicting perme-
ability from 2D /3D binary-segmented images”. In: SEG technical program ex-
panded abstracts 2016. Society of Exploration Geophysicists, 2016, pp. 3042—
3046. DOI: 10.1190/segam2016-13972613. 1.

Araya-Polo, Mauricio et al. “Deep learning—driven permeability estimation
from 2D images”. In: Computational Geosciences 24.2 (2020), pp. 571-580.
DOI: 10.1007/s10596-019-09886-9.

35

https://doi.org/10.1002/aic.16391
https://doi.org/10.1126/science.aaa8075
https://doi.org/10.1130/G47094.1
https://doi.org/10.1016/j.actamat.2017.09.004
https://doi.org/10.1016/j.scib.2018.08.006
https://doi.org/10.1038/s41598-019-56309-x
https://doi.org/10.1038/s41598-019-56309-x
https://doi.org/10.1038/s41598-020-78415-x
https://doi.org/10.1038/s41598-020-72085-5
https://doi.org/10.3389/fmats.2021.786502
https://doi.org/10.3389/fmats.2021.786502
https://doi.org/10.1007/s11242-019-01352-5
https://doi.org/10.1190/segam2016-13972613.1
https://doi.org/10.1007/s10596-019-09886-9

Bibliography

[13]

[14]

[15]

[26]

36

Torquato, Salvatore and Haslach Jr, HW. “Random heterogeneous materials:
microstructure and macroscopic properties”. In: Appl. Mech. Rev. 55.4 (2002),
B62-B63.

Kriiger, Timm et al. The Lattice Boltzmann Method. Principles and Practice.
Ist ed. Springer International Publishing, 2017.

O’Shea, Keiron and Nash, Ryan. “An Introduction to Convolutional Neural
Networks”. In: CoRR abs/1511.08458 (2015). arXiv: 1511.08458. URL: http:
//arxiv.org/abs/1511.08458.

Kremer, Lea Sophie et al. “Influence of the electrolyte salt concentration on the
rate capability of ultra-thick NCM 622 electrodes”. In: Batteries € Supercaps
3.11 (2020), pp. 1172-1182. DOI: 10.1002/batt . 202000098.

Lang, Annika and Potthoff, Jirgen. In: 17.3 (2011), pp. 195-214. po1: 10.
1515/mcma.2011.009.

Gaiselmann, Gerd et al. “Quantitative relationships between microstructure
and effective transport properties based on virtual materials testing”. In:
AIChE Journal 60 (2014), pp. 1983-1999. pOI: 10.1002/aic.14416.
Townsend, Philip et al. “Stochastic modelling of 3D fiber structures imaged
with X-ray microtomography”. In: Computational Materials Science 194 (2021),
p. 110433. 18SN: 0927-0256. DOI: 10.1016/j.commatsci.2021.110433.
Bergstra, James and Bengio, Yoshua. “Random search for hyper-parameter
optimization.” In: Journal of machine learning research 13.2 (2012).

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. URL: https:
//www.tensorflow.org/.

Clevert, Djork-Arné et al. “Fast and accurate deep network learning by expo-
nential linear units (elus)”. In: arXiv preprint arXiv:1511.07289 (2015).
Rong, Qingyuan et al. “Predicting the effective thermal conductivity of com-
posites from cross sections images using deep learning methods”. In: Com-
posites Science and Technology 184 (2019), p. 107861. 1SSN: 0266-3538. DOTI:
https://doi.org/10.1016/j.compscitech.2019.107861.

Yu, Juezhao et al. “2D CNN versus 3D CNN for false-positive reduction in
lung cancer screening”. In: Journal of Medical Imaging 7.5 (2020), p. 051202.
DOI: 10.1117/1.JMI.7.5.051202.

Prasoon, Adhish et al. “Deep Feature Learning for Knee Cartilage Segmen-
tation Using a Triplanar Convolutional Neural Network”. In: Medical Image
Computing and Computer-Assisted Intervention — MICCAI 2013. Ed. by Ken-
saku Mori et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 246—
253. ISBN: 978-3-642-40763-5.

Roth, Holger R. et al. “A New 2.5D Representation for Lymph Node Detection
using Random Sets of Deep Convolutional Neural Network Observations”. In:
CoRR abs/1406.2639 (2014). arXiv: 1406 .2639. URL: http://arxiv.org/
abs/1406.2639.

https://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://doi.org/10.1002/batt.202000098
https://doi.org/10.1515/mcma.2011.009
https://doi.org/10.1515/mcma.2011.009
https://doi.org/10.1002/aic.14416
https://doi.org/10.1016/j.commatsci.2021.110433
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/https://doi.org/10.1016/j.compscitech.2019.107861
https://doi.org/10.1117/1.JMI.7.5.051202
https://arxiv.org/abs/1406.2639
http://arxiv.org/abs/1406.2639
http://arxiv.org/abs/1406.2639

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden
www.chalmers.se

CHALMERS

UNIVERSITY OF TECHNOLOGY

www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Background
	Mass Transport Properties
	The Lattice-Boltzmann Method
	Machine learning
	Artificial Neural Networks
	Convolutional Neural Networks

	Data
	Generation Methods
	Training Dataset
	2D Data Extraction

	Model Architecture
	Architecture Design
	Examined Models
	Data Augmentation

	Discussion and Results
	Training Sessions
	Results

	Conclusion
	Bibliography

