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Multi-objective Bayesian optimization of tokamak disruptions using fluid and ki-
netic models
IDA EKMARK
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Abstract
The generation of highly energetic runaway electron beams during tokamak disrup-
tions is a major challenge facing tokamak fusion reactors. One of the most studied
disruption mitigation schemes is massive material injection. Finding injected ma-
terial densities, such that the consequences of the resulting disruption – runaway
electron impact, localized heat losses and mechanical stresses – are tolerable, is still
an open question, and it represents a multi-objective optimization problem. We have
used a Bayesian optimization framework to optimize the injected densities of deu-
terium and neon in a non-activated ITER-like tokamak set up. The cost function was
constructed systematically to maximize information gain, combining the maximum
runaway current, final ohmic current, current quench time and conducted thermal
losses. The simulations of plasma evolution were performed using the disruption
modelling tool Dream. Optimization of the developed cost function was performed
in two layers of physics fidelity, using both fluid and kinetic plasma models. The
fluid model is computationally less expensive, which is advantageous for exploring a
large parameter space. Once promising parameter regions are located using a wide
search with fluid models, these are further studied in higher physics fidelity using
kinetic simulations. These simulations resolve the energy distribution of the fast
electrons allowing us to also account for fast electron impact ionization and energy
transfer. Using two layers, the advantages of each model can be utilized resulting in
an efficient optimization with a reliable examination of relevant areas. Additionally,
a qualitative comparison of the two models was made to illuminate the differences
between the two layers. In general, the kinetic model generated more optimistic re-
sults for the disruption consequences. More specifically, the kinetic model favoured
higher neon densities and slightly lower deuterium densities compared to the fluid
model. In both models, the optima are fairly insensitive to the radial distribution of
neon as long as there is a higher neon density at the edge. Furthermore, the optima
occurred for a moderately core-localized deuterium density. The explanation for the
differences between the fluid and kinetic models was concluded to be that the fluid
model overestimates the hot-tail runaway generation for certain injected material
densities, resulting in larger runaway currents.

Keywords: fusion plasma, disruption mitigation, runaway electron, material injec-
tion, Bayesian optimization, fluid kinetic model
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EI Estimated improvement
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RE Runaway electron
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Nomenclature

Below is a list of the parameters that have been used throughout this thesis, includ-
ing their typical units.

Ip Plasma current [A]
Ire Runaway current [A]
IΩ Ohmic current [A]
R0 Major radius [m]
a Minor radius [m]
b Wall radius [m]
B0 Toroidal magnetic field on axis [T]
δB/B Magnetic perturbation normalized to the unperturbed magnetic

field [%]
Vp Plasma volume [m3]
T Temperature [eV]
n Particle density [m−3]
c Radial density variation parameter
τCQ Current quench time [s]
ηcond Fraction of initial thermal energy lost from the plasma through

radial heat transport [%]
L Cost function
µ GP-approximation of cost function (or cost function components)
E Electric field [V/m]
B Magnetic field [T]
θp Pitch angle – angle between magnetic field and electron velocity

[rad]
P Conducted power [J/s]
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1
Introduction

As society progresses, the need for energy is constantly increasing, while global
warming is putting a significant constraint on which energy sources can be utilized
in the future. A possible energy source which does not put a strain on the envi-
ronment while having the potential of supporting our future energy needs is fusion
energy. Nuclear fusion is the energy source powering the sun, and it is the mech-
anism of two lighter nuclei fusing into a single nuclei under circumstances of high
temperature and pressure. In this process, energy is released due to the reaction
products having a smaller combined mass than that of the two initial nuclei. Hydro-
gen isotopes, such as deuterium and tritium, are viable fusion fuels. Since deuterium
can be found in abundance in our oceans and tritium can be produced from lithium
which can be mined, fusion energy would be able to satisfy our energy needs for the
foreseeable future [1]. There is no long-lived nuclear waste or significant green house
gas emissions produced since the major by-product is the stable isotope helium-4.
Furthermore, it would be a non-intermittent energy source since it is not dependent
on any fluctuating and unpredictable factor such as the weather [2]. Consequently,
fusion would be an ideal source of energy if it were to be developed.

The difficulty with fusion is to create the conditions for the reaction to happen –
to sustain the temperatures and pressures of the sun for a longer time is unattain-
able with our technology today, and thus alternative approaches are needed for the
development of fusion reactors. Fusion energy research is today on the verge of a
new era because of the current development of two fusion devices, SPARC [3] and
ITER [4], with the purpose of being the first to produce net energy gain, and they
are expected to be operational within a couple of years. Both devices are tokamaks,
which is a proposed fusion reactor using magnetic confinement of the the fusion fuel,
which must be in the form of plasma to be hot enough for the fusion reaction to be
possible. As the name suggests, the magnetic confinement uses magnetic fields to
confine the fusion plasma. Tokamaks utilize this approach by shaping the plasma
into a torus with both poloidal and toroidal magnetic fields, see figure 1.1. This
requires driving a high – several megaampere – current through the plasma, which
is achieved by an induced electric field. For tokamaks to be able to operate safely,
there are still a number of challenges waiting to be solved.
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1. Introduction

Figure 1.1: Visualization of a tokamak, showing the helical magnetic field and the
plasma current.

One of the most important challenges is the occurrence of disruptions. Disruptions
are the events when confinement of the plasma energy is lost due to instabilities
or system malfunctions. During disruptions there can be rapid and concentrated
depositions of heat causing some components of the tokamak to melt or otherwise get
damaged, and there are also risks of mechanical stresses due to electromagnetic forces
between the plasma and tokamak device [5]. During disruptions, runaway electrons
can be generated, which are problematic when they make up a significant fraction
of the plasma current in the tokamak. Runaway electrons are electrons which are
accelerated by the electric field in the fusion device without restraint, causing them
to become relativistic [6]. Such a beam of relativistic electrons is difficult to manage
or subdue, and can cause serious damage to the wall of the device as previously
mentioned [7]. It is imperative to mitigate or avoid the occurrence of significant
runaway beams and other negative effects of the disruption. The most studied
approaches for mitigation of disruptions are material injection into the plasma or
inducing magnetic perturbations. Massive material injection (MMI) is the injection
of cold gases or cryogenic pellets of material to quickly cool down the plasma, ideally
causing the thermal energy to be lost due to radiation [8]. Magnetic perturbations
cause runaway electrons to be transported into the wall in a more controlled fashion,
preferably before they become too energetic or numerous, which avoids the problem
of rapid deposition of energy into a concentrated area of the tokamak wall.

The runaway electron generation rate is exponentially sensitive to the initial plasma
current, and as such, is expected to be an incomparably larger problem in reactor-
scale devices than in today’s experiments. With the risks posed to the fusion device
in mind, it is necessary to develop viable strategies in numerical rather than physical
experiments. There are several models for describing plasma physics; single parti-
cle models, kinetic models and fluid models are three examples [9]. Single particle

2



1. Introduction

modelling describes the evolutions of each particle in the plasma based on electro-
magnetic theory such as the Lorentz force law, which becomes deeply complex and
computationally demanding when many particles are involved. Fluid modelling de-
scribes each particle species of the plasma as a fluid with local densities, velocities
and temperatures, which are evolved by fluid equations (integral moments of the ki-
netic equation). The most fundamental model, apart from single-particle modelling,
is kinetic plasma theory where the distribution function of the plasma is evaluated
and evolved in the phase space using kinetic equations.

Returning to runaway electron mitigation, massive material injection can be im-
plemented using several methods and parameter combinations – for example which
materials to inject and the amount of each material. As of yet, it is unknown
when MMI is successful in mitigating the risks of disruptions, and when it fails. It
would be highly beneficial to study massive material injection, for example explor-
ing the injected density parameter space to find regions of safe operation during a
tokamak disruption, and which parameters result in the safest disruption scenario.
A suitable method, which simultaneously searches for optima while developing an
approximation for an objective function, is Bayesian optimization, which is an op-
timization concept based on Bayes theorem and stochastic processes [10]. Bayesian
optimization has previously been used to investigate massive material injection as
a runaway mitigation strategy during tokamak disruptions in the master thesis of
Hannes Bergström and Peter Halldestam [11] and the subsequent article by István
Pusztai et al [12]. In these works, massive material injection of both radially uni-
form and varying deuterium and neon densities were explored using fluid plasma
models. The aim of this thesis is to go beyond these works by doing a more sys-
tematic construction of the cost function and performing the optimization in two
layers of physics fidelity, using both fluid and kinetic plasma models. Expressly, the
objectives of the project are as follows.

• To systematically develop an informative cost function to reliably quantify
disruption evolutions of massive material injection scenarios following good
optimization practises.

• To find safe operational regions and the optimum of this cost function in the
input space spanned by the injected material densities, as well as their radial
variation, using fluid plasma models.

• To explore the discovered safe operational regions using both fluid and kinetic
plasma models, and perform a qualitative analysis of the differences between
the two models.

• To study the electron energy and pitch-angle distribution of the discovered
optimum and a runaway-dominated case using the kinetic model.

• To examine the significance of fast electron impact ionization in a high and
low runaway case.

3



1. Introduction

1.1 Thesis outline
The theoretical background that this thesis is based on is presented in chapter 2.
Firstly, some relevant aspects of physics related to plasmas and tokamaks will be
reviewed in section 2.1. Here, the risks associated with disruptions will be explained
in deeper detail than in the current chapter, and the concept of runaway electrons
together with relevant runaway generation mechanisms will be described. In section
2.2, the key factors of Bayesian optimization as well as the basic logic behind it will
be explained.

Before moving to the results, important aspects related to the simulations performed
in the thesis will be presented in chapter 3 – here the numerical tool Dream and
the physical disruption model will be covered. Both the results and methods related
to the optimization are presented in chapter 4. To begin with, in section 4.1, the
derivation of the cost function will be explained. This discussion includes a pre-
sentation of the components from which the cost function is constructed, as well
as how these are combined. Following this, the optimization algorithm is described
in section 4.3, including both the specifications regarding the Gaussian processes,
Bayesian optimization and moving between layers of physics fidelity, as well as the
black box composition. The results from the optimization of uniformly distributed
and radially varying injected densities are presented in section 4.4 and 4.5, respec-
tively.

In chapter 5, the studies of fast electron impact ionization and electron energy
and pitch angle distributions are presented for two specific density combinations,
together with an analysis of the runaway generation disparities between the fluid
and kinetic models. Finally, the conclusions are summarized in chapter 6 together
with a review of possibilities for future research.
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2
Theoretical background

This thesis utilizes Bayesian optimization for studying massive material injection
scenarios during tokamak disruptions, and as such basic knowledge of both the
physics related to tokamak disruptions and Bayesian optimization is needed. In this
chapter, relevant aspects of plasma and tokamak physics will be reviewed and the
principles of Bayesian optimization will be described.

2.1 Plasmas and tokamak physics
This section will cover the plasma physics necessary for this thesis, including some
basic plasma concepts as well as different means of modelling plasmas. Additionally,
the tokamak concept for magnetic confinement will be reviewed. Finally, runaway
electrons will be explained, including how they are generated in a tokamak.

2.1.1 Basic plasma physics
Plasma is the fourth fundamental state of matter – being the state of higher energy
than gas. It characterized by being sufficiently ionized for electromagnetic collective
effects to dominate its dynamics, rather than atomic collisions. A plasma is defined
as being a macroscopically neutral gas containing charged particles that exhibit
collective behaviour due to the long range electromagnetic forces of the charged
particles [9].

Charged particles will in the presence of electric and magnetic fields experience the
Lorentz force

F = q (E + v × B) . (2.1)
A charged particle in the presence of an electric field will thus be accelerated parallel
to the electric field. When a charged particle is in the presence of a homogeneous,
static magnetic field, the velocity components parallel and perpendicular to the
magnetic field evolve as

dv∥

dt
= 0 (2.2)

dv⊥

dt
= q

m
(v⊥ × B) , (2.3)

5



2. Theoretical background

meaning that the particle will circulate while travelling along the magnetic field
with constant speed, resulting in a helical orbit around the magnetic field line.
The angle between the velocity and the magnetic field is called the pitch angle
θp. When a magnetic field is present in combination with an additional force, the
force component perpendicular to the magnetic field will cause the particles to drift.
Common causes of such drifts include electric fields and spatial inhomogeneities in
the magnetic field.

2.1.2 Plasma models
The most accurate approach of modelling a plasma would be to model the dynamics
of each particle in the plasma, taking into consideration all of the electromagnetic
forces acting on each particle at any given time, including the forces from the electric
fields of all other charged particles [9]. However, these single-particle models are
computationally intractable. The numerical complexity of modelling interactions of
all particle pairs is proportional to (at least) N2, where N is the number of particles.
For a typical fusion plasma N > 1020, which would clearly be intractable to model
using this method.

There are techniques for modelling plasmas based on the collective behaviour of
the charged particles as a group, and the most fundamental of these is the kinetic
plasma model. In the kinetic model, the distribution function f(r, v, t) is used to
describe the plasma, and as such the kinetic model is a statistical approach. The
distribution function is defined such that f(r, v, t)drdv represents the expected
number of particles within the six-dimensional volume-element drdv in position and
velocity space (or, equivalently, momentum space). The evolution of the distribution
function is governed by the Boltzmann equation [9]

∂f

∂t
+ v · ∇f + F

m
· ∇vf =

(
∂f

∂t

)
c
, (2.4)

where (∂f/∂t)c is a collision operator and the force F can be replaced by the Lorentz
force in equation (2.1) if it is purely electromagnetic. In kinetic theory, macroscopic
quantities of the plasma can be obtained as velocity moments of the distribution
function, such as [13]

Density, zeroth order: n(r, t) =
∫

f(r, v, t)dv (2.5a)

Mean velocity, first order: u(r, t) = 1
n

∫
vf(r, v, t)dv (2.5b)

Temperature, second order: T (r, t) = 2
3n

∫ m

2 |v − u|2f(r, v, t)dv. (2.5c)

The distribution function describing a plasma in local thermodynamic equilibrium
is the Maxwell distribution [9]

fM ∝
(

1√
πvth

)3

exp
(

− v2

v2
th

)
. (2.6)
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2. Theoretical background

Here, the so called thermal speed vth = (2T/m)1/2 determines the width of the
distribution, where T (measured in units of energy, typically eV) is the temperature
of the particle species and m the particle mass.

The Boltzmann collision operator is rather cumbersome to work with. A more
tractable form of the Boltzmann equation is obtained by using a Fokker–Planck
collision operator in equation (2.4), and the resulting equation is called the Fokker–
Planck equation. The Fokker–Planck collision operator is derived by assuming that
all collisions occur between charged particles, so called Coulomb collisions, and that
they only cause small deflections of the respective velocities, which allows expressing
the effect of collisions through the following differential operator in velocity space(

∂f

∂t

)
c

=
∑

k

∑
l

∂

∂vk

[
−Akf + ∂

∂vl

(Dklf)
]

, (2.7)

which is a sum over all phase space coordinates and where Ak is an advection vector
and Dkl a diffusion tensor [14].

Plasmas can be further approximated by treating the plasma as a fluid. The fluid
model simplifies the kinetic theory by averaging over the velocity, taking the velocity
moments of the Boltzmann equation, yielding a set of so called fluid equations [9].
As such, plasmas are described by the previously mentioned macroscopic quantities
in equation (2.5), obtained via taking the moments of the distribution function.
Using a fluid model greatly reduces the complexity found in the kinetic model – the
kinetic model describes up to six dimensions while the fluid model considers at most
three – but resolution of processes in the velocity space is lost.

2.1.3 Tokamak
One of the most promising fusion reactor concepts is the tokamak, which uses mag-
netic fields to confine the fusion plasma. The tokamak is a torus-shaped fusion
reactor, associated with a toroidal coordinate system and two characteristic geo-
metric parameters – the plasma minor radius a and major radius R0 – as defined in
figure 2.1.

A toroidal magnetic field is applied by external magnetic field coils, as illustrated in
figure 1.1, with the purpose of guiding the charged particles around the torus. How-
ever, such a magnetic field exhibits spatial gradients, and specifically this toroidal
magnetic field varies as 1/R [15], causing vertical drifts of the particles and, without
any additional measures taken, large particle losses. The (vertical) direction of the
drift due to these spatial gradients will only depend on the charge of the particle,
and since the charge of the particle will not change, neither will the vertical direction
of the drift. Notably, the direction of the vertical drift will be the same on both the
upper and lower halves of the plasma torus [13].

Introducing a smaller poloidal magnetic field allows to twist the magnetic field
around the torus, which solves the particle loss caused by the spatial magnetic

7



2. Theoretical background

φ

Z

R
R0 a

r
θ

Figure 2.1: Illustration of the tokamak geometry, where the plasma minor radius
a and major radius R0 are labelled together with the radial coordinate r, poloidal
coordinate θ and toroidal coordinate φ. Additionally, the toroidal coordinate forms
a cylindrical coordinate system together with the radial coordinate R and vertical
coordinate Z. The red, orange and yellow torus surfaces represent nested flux sur-
faces.

field gradients. If the particle drifts away from the plasma column in the upper half
of the plasma torus, it will drift towards the plasma column on the lower half and
these drifts will cancel out as the particle moves along the twisted magnetic field.

The magnetic field lines trace out closed toroidal surfaces, so called flux surfaces [15],
and here we have chosen to define the radial coordinate r to be constant on such
a surface. Nested flux surfaces are illustrated as the nested red, orange and yellow
toroidal surfaces in figure 2.1. The degenerate flux surface at r = 0 is called the
magnetic axis. The poloidal magnetic field is produced by driving a high toroidal
plasma current through the torus. Additionally, the toroidal current is driven by a
toroidal electric field. For example in ITER, the plasma current needs to be on the
order of 10 MA.

In practice, a tokamak plasma does not always have a circular cross section. Typ-
ically, the cross section shape of the flux surfaces is more triangular and verti-
cally elongated compared to a circle. The actual flux surface geometry may be
parametrized by the so called shaping parameters, as illustrated in figure 2.2 to-
gether with the plasma minor radius a and wall radius b. Elongation is parametrized
by κ(r) and triangularity parametrized by δ(r) – both of these are dimensionless
quantities [16]. In this thesis, the Shafranov shift ∆(r) parametrizes the horizontal
displacement of the centre of a flux surface from the magnetic axis [15].

2.1.4 Tokamak disruptions
Plasma confinement is one of the most important tasks of fusion reactors, and the
tokamak concept is based on confining the fusion plasma magnetically. Still, there
may be off-normal events during tokamak discharges when the plasma confinement
is rapidly lost; these events are called disruptions [15]. As mentioned in chapter 1,

8



2. Theoretical background

∆(a)

a

b

a
κ

(a
)

a sin δ(a)

Figure 2.2: Shaping parameters for a tokamak; elongation κ(r), triangularity δ(r)
and Shafranov shift ∆(r) evaluated at the flux surface at r = a. The increasingly
elongated and triangular circular shapes are nested flux surfaces, and the degenerate
flux surface at r = 0 is marked with a black dot. The blue cross marks the centre
of the outermost, blue flux surface, with radius a (plasma minor radius). The red
cross marks the centre of the tokamak wall, with wall radius b.

disruption events constitute a major challenge facing the success of the tokamak as
a viable fusion reactor because of the significant mechanical stresses and high heat
loads on the machine.

A disruption is often divided into a number of characteristic phases [15], which are
visualized in figure 2.3. Initially, instabilities are introduced to the plasma due to
some change in the underlying conditions of the discharge. These instabilities cause
the temperature of the plasma to rapidly drop by several orders of magnitude due
to radiation and heat transport, during the phase called thermal quench (TQ). For
ITER, the thermal quench duration is of the order of milliseconds. As the temper-
ature decreases, the resistivity of the plasma increases such that the ohmic plasma
current, carried by electrons with thermal velocities, starts to decay. The phase
during which the current decays is known as the current quench (CQ), and usually
lasts longer than the thermal quench – on the order of 10–100 ms for ITER. As the
current decays, an electric field is induced according to Faraday’s law. This increase
in electric field can enable the generation of a significant current of relativistic elec-
trons, also called runaway electrons. If a significant runaway current is generated,
there is an additional phase of the disruption called the runaway plateau. During

9



2. Theoretical background

Ire IΩ

Ip

Plasma current

TQ CQ Runaway plateau

Electric field / temperature

E‖

Te

TQ CQ Runaway plateau
Time Time

Figure 2.3: Illustration of the three important stages during a disruption: the
thermal quench (TQ) during which the temperature decays, current quench (CQ)
during which the ohmic current decays, which induces an electric field enabling a
significant runaway current to be generated. If a significant runaway current is
generated, it might reach a stable level during the stage known as the runaway
plateau. Note that the total plasma current consists of the ohmic current IΩ and
runaway current Ire. (Source: M. Hoppe, Runaway electron model development and
validation in tokamaks [17].)

the runaway plateau, the runaway current has reached a stable and dominant level,
but may still be slowly evolving.

The duration of the current quench is important for the safety of a disruption, and
it may be quantified by the CQ time

τCQ =
tIΩ=0.2Imax

p − tIΩ=0.8Imax
p

0.6 , (2.8)

where Ip is the plasma current and IΩ the ohmic current. If the current quench
time is too short, the forces due to the eddy currents (loops of currents within a
conducting material due to varying electromagnetic fields [18]) are large enough
to damage certain modules and the first wall of the tokamak [5]. However, if the
current quench lasts too long, there is sufficient time for the plasma to drift into the
tokamak wall resulting in high heat loads and mechanical stresses. For ITER, the
CQ must be longer than 50 ms but shorter than 150 ms according to Ref. [5].

Another important factor related to the safety of a disruption is the heat that
has been transported out of the plasma through radial transport, and thus into
the surrounding machine. One metric to quantify this is the fraction of the initial
thermal energy content in the plasma Wth(t = 0) that has been lost from the plasma
through radial heat transport, also called the conducted heat load

ηcond =
∫ τd

0 P (t)dt

Wth(t = 0) , (2.9)
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2. Theoretical background

where P (t) is the radially transported power at time t and τd is the duration of the
disruption. In ITER, heat loads larger than 10 % are expected to enable melting of
important tokamak components [5].

Apart from the total radial transport of heat, there can be heat related damages
on the machine if a large amount of energy is deposited on a small area during
a short period of time [8]. These are common features of the impact of runaway
current on the tokamak wall, as the runaway current may contain a large fraction
of the stored magnetic energy in the form of highly energetic electrons. The risk of
significant runaway currents increase exponentially with maximum plasma current,
and thus pose a substantial threat to tokamak projects such as ITER. Thus, runaway
electron avoidance constitutes a crucial component of disruption mitigation research,
especially for large machines such as ITER.

There are several proposed disruption mitigation schemes, and massive material
injection (MMI) is the most studied one. As the name suggests, massive material
injection consists of injecting large amounts of material into the plasma in order to
cool it down by increasing radiation, and thus avoiding large heat loads on the plasma
facing components [8]. Furthermore, controlling the plasma composition allows a
certain degree of control over the temperature and the plasma current evolution.
MMI can be achieved in a number of ways, and two examples are massive gas
injection and injection of cryogenic pellets [5].

Common candidates for injection materials are deuterium and the noble gases. As
deuterium only contains one electron per atom and gets fully ionized at rather low
temperature it will not be subject to the same large radiation losses of heavier atoms,
and thus the injected deuterium will mostly function to dilute the plasma without
triggering instabilities associated with runaway electron generation [19]. Injection of
noble gases, such as neon, will initialize heat loss through radiation and transport.
More specifically, a transport event will be triggered at a certain plasma radius after
which radial heat and particle transport will be strongly elevated [20]. One notable
feature of deuterium pellet injection is that a pure deuterium pellet cloud is expected
to drift significantly, but this can be suppressed by introducing a small amount of
neon [21].

An additional possible runaway electron mitigation scheme is to perturb the mag-
netic field by external coils [22–25]. The idea is that a perturbed magnetic field will
increase radial transport of runaway electrons. Magnetic perturbations also occur
naturally during the TQ phase when the flux surfaces are broken and there are large
fluctuations of the magnetic field [17].

2.1.5 Runaway electrons

The motion of an electron inside a tokamak will be affected by the Lorentz force
due to the electric field and forces due to Coulomb collisions. Thus, the equation of
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2. Theoretical background

motion parallel to the magnetic field can be approximately written as

dv∥

dt
= e

me

∣∣∣E∥

∣∣∣− νcv∥, (2.10)

where the collision frequency νc ∝ 1/v3 for superthermal velocities. Thus, for high
enough velocities, the Lorentz force will become larger than the collisional friction
forces, resulting in a continuous acceleration. Electrons experiencing this kind of
unhindered acceleration due to the electric field are called runaway electrons and
they are accelerated to relativistic speeds. The velocity at which an electron becomes
a runaway in a plasma is called the critical velocity. A specific electric field value,
the so called critical electric field, is of particular importance for the dynamics of
runaway electrons. It is derived by solving equation (2.10) under the condition that
the friction force is minimal, which occurs at v∥ ≈ c [26], yielding

Ec = e3ne ln Λ
4πϵ2

0m
2
ec

2 , (2.11)

where ne is the electron density, and ln Λ is the Coulomb logarithm quantifying
the maximum impact parameter of Coulomb collisions [9]. This is the minimum
electric field at which runaway electrons can be generated – for lower electric fields
the collisional forces will always be stronger than the Lorentz force.

In a tokamak, there are several physical mechanisms via which runaway electrons
can be generated. The generation process of electrons collisionally diffusing above
the critical velocity causing them to run away is called the Dreicer process. The Dre-
icer generation mechanism is thus highly dependent on the electric field strength.
When electrons just above the critical velocity in phase-space are accelerated, colli-
sions tend to restore the Maxwellian distribution and fill in the resulting gap in the
distribution function.

The hot-tail mechanism occurs when the plasma cools down sufficiently rapidly such
that electrons of high enough velocity, which are not as collisional, do not have time
to slow down [27]. In such a scenario, the energy distribution of the electrons, which
initially would be approximated by a Maxwellian, develops a “tail” into the higher
energy regions. If the electric field then is rapidly increased, which is what happens
during the CQ, following the TQ, of a tokamak disruption, the electrons of this so
called hot-tail of the distribution will be turned into runaways.

The aforementioned generation mechanisms are primary ones, meaning that they
are not dependent on runaway electrons already existing in the plasma. Some gen-
eration mechanisms are dependent on the existence of runaway electrons, so called
secondary generation mechanisms, and one such is avalanche generation. Avalanche
generation occurs when there is a large momentum exchange during a Coulomb
collision between a runaway electron and another electron, resulting in both elec-
trons having high enough velocity to be accelerated by the electric field and become
runaways [28]. Since this process is proportional to the number of already existing
runaway electrons, it leads to an exponential increase of the runaway population.
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The opposite may also be true, namely that both electrons have lower velocities than
the critical velocity after the collision, and this runaway annihilation mechanism will
here be referred to as reverse avalanche.

The last two runaway generation mechanisms of relevance to tokamak disruptions
are tritium and Compton generation. Tritium is an unstable isotope which de-
cays through β-decay into a helium-3 nucleus, an electron and an electron antineu-
trino [29]. If the released electron has a speed larger than the critical speed, it will
accelerate and become a runaway. Compton generation occurs when the tokamak
walls become activated by the neutrons produced during the fusion reaction, emit-
ting γ-rays which can Compton scatter on the electrons, possibly increasing their
energy sufficiently for them to become runaways [29].

This concludes the physics part of the theoretical background necessary for this
project. However, the method employed to investigate MMI during tokamak dis-
ruptions is heavily dependent on Bayesian optimization. Bayesian optimization will
now be presented, since a basic knowledge of how it works is beneficial for under-
standing and analyzing the results of this thesis.

2.2 Bayesian optimization

Black box optimization refers to optimization methods which do not depend on the
structure of the function to be optimized. Instead, they map inputs to outputs
and bases their progression on the values of these input-output pairs. Bayesian
optimization is a common black box optimization method, which is based on Bayes’
theorem.

Bayes’ theorem regards conditional probabilities and describes the probability of
an event based on prior knowledge related to the event. Let A and B denote two
events, and p(A|B) is the probability that A transpires given that B is true. Bayes’
theorem states that

p(A|B) = p(A)p(B|A)
p(B) , (2.12)

where p(B|A) is the probability that B transpires given that A is true [30]. Bayes’
theorem is a way of determining the probability of an event based on prior knowledge.

Fundamentally, Bayesian optimization uses Bayesian inference, and Bayes’ theorem
is applied on probability distributions: “Bayesian inference is a framework for in-
ferring uncertain features of a system of interest from observations grounded in the
laws of probability” [10]. This is achieved by assuming that all unknowns of the
system to be inferred are random variables. In the context of Bayesian optimiza-
tion, on a small scale this means inferring the value ϕ = f(x) of the objective or cost
function f to be optimized at a certain point x. Bayesian optimization extends this
to a large scale, by inferring the objective function on a finite domain.
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At small scales, Bayes’ theorem for probability distributions of the objective function
value at a certain point x is

p(ϕ|x, y) = p(ϕ|x)p(y|x, ϕ)
p(y|x) , (2.13)

where the variable y is the measurement received when observing the objective
function f at x [10]. Here, p(ϕ|x) is called the prior distribution (or just prior), and
describes our prior knowledge of how plausible different function values ϕ are, before
observing any data. The likelihood function p(y|x, ϕ) (called likelihood) describes
the likelihood of getting the measurement y as a function of ϕ = f(x) when making
an observation of the objective function at x. These two probability distributions
determine the posterior distribution function (or just posterior) p(ϕ|x, y), which
describes the probability distribution over the objective function value ϕ given x
and the measurement y observed at x. The denominator of (2.13) is called evidence
and ensures the normalization of the posterior,

p(y|x) =
∫

p(ϕ|x)p(y|x, ϕ)dϕ. (2.14)

This can be extended to find the posterior distribution function of the entire function
f(x)

p(ϕ(x)|D) = p(ϕ(x)|x)p(D|x, ϕ(x))
p(D) , (2.15)

where ϕ(x) represents the actual function values in a subset to the domain of f .
Here, the knowledge we have about the objective function is collected in the data
set D = {(xi, yi)}N

i=1, which is compromised of N observation pairs – measurements
yi observed at xi.

In order to use (2.15) to make viable predictions for the objective function, an
assumption of the probability distribution of ϕ(x) is needed. For this, Bayesian
optimization uses stochastic processes, which are infinite collections of random vari-
ables [10]. An especially common stochastic process used for Bayesian optimization
is the Gaussian process (GP), in which the random variables are distributed ac-
cording to multivariate Gaussian distributions. A Gaussian process on the objective
function f(x) is specified by a mean function µ(x) = E[ϕ|x], which determines the
expected function value ϕ = f(x) at any x, and a covariance function, or kernel,
K(x, x′), which measures the correlation between ϕ for points x and x′ [10].

The covariance function K(x, x′) can be defined in different ways. Thus, the kernel
needs to be specified before a GP can be used. One widely used kernel is the Matérn
kernel, with which the desired degree of smoothness for the objective function can
be controlled with a parameter, ν [10]. The smoothness parameter determines how
smooth the functions drawn from the GP should be, which in turn impacts the
smoothness of the mean function determining the expected values of the objective
function. Some specific values of ν correspond to specific features of the function,
for example ν = 3/2 and ν = 5/2 correspond to being once or twice differentiable
functions, respectively.
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In Bayesian optimization, the mean and the covariance functions set in the GP are
used together with an acquisition function to determine which new point in the
domain would yield most information regarding the position of the optimum of the
objective function. There are several kinds of acquisition functions, and a commonly
used one is the expected improvement acquisition function (EI). Using EI, the new
points are selected based on the maximum of the expected improvement

xnew = arg max
x

[E[I(x, y∗)]] = arg max
x

[∫
I(x, ϕ, y∗)p(ϕ|x, D)dϕ

]
, (2.16)

where

I(x, ϕ, y∗) =

 max(ϕ − y∗, 0) (for maximization)
max(y∗ − ϕ, 0) (for minimization)

(2.17)

is a measure of the improvement [31]. Here, y∗ is the optimal objective function
value encountered so far.

To summarize, the Bayesian optimization method starts with a GP prior, determined
by the initial knowledge and assumptions we have made about the objective function.
By using the data set D of previous observations, a likelihood distribution function
is obtained which, together with the GP prior, yields a GP posterior. This GP
posterior is then used by the acquisition function to determine the most promising
new point x to observe in order to improve the current optimum, yielding a new
data point (xnew, ynew) to D. Finally, the Bayesian optimization relies on an iterative
process, where each new observation, based on the acquisition function’s proposition,
can be added to D and the method can be repeated with the new D to obtain the
next, best point to observe proposed by the acquisition function.

As with many stochastic optimization algorithms, the concepts of exploration and
exploitation are relevant [10]. An optimizer which favours exploitation will prefer to
look for the optimum close to the best candidate for an optimum found so far. On
the other hand, if exploration is favoured, the optimizer will prefer to look for the
optimum in regions far from other observations where the uncertainties are large.
For Bayesian optimization, the exploration–exploitation trade-off is modelled in the
acquisition function.
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3
Simulations

For the Bayesian optimizer, the objective function to be optimized can be viewed as
a black box, where its content is irrelevant to the optimization progression – it only
connects the inputs given to the black box to the output received. However, the
contents of the black box is vital for interpreting and understanding the results of the
optimization. The major ingredient of our black box representing MMI in tokamak
disruptions is the simulation performed. Since the simulations play such a crucial
role for this thesis, this chapter will describe Dream, which is the numerical tool
used to simulate the disruption scenarios, as well as how the disruption scenarios
have been modelled.

3.1 Numerical tool DREAM

The simulation code Dream (Disruption Runaway Electron Analysis Model) used
in this thesis was specifically developed to study runaway electrons during tokamak
disruptions by members of the Plasma Theory group at the Chalmers University of
Technology [32]. It self-consistently evolves the plasma parameters most important
to tokamak disruptions. The background parameters, such as the temperature and
electric field, are simulated using fluid models, while electrons can be treated with
several different options of plasma models – within the DREAM community referred
to as fluid, isotropic, superthermal or fully kinetic – ranging from low to high kinetic
treatment and computational cost.

Since Dream was developed to study runaway electrons, the electron evolution of
the simulated disruption is important. In the context of disruptions, the electrons
can be divided into three distinct populations – cold (thermal) electrons, hot elec-
trons and runaway electrons – based on momentum as shown in figure 3.1. There
are several plasma models to choose from in Dream, corresponding to different
degrees of kinetic treatment for the three electron populations. Kinetic modelling
means that the distribution of electrons is determined in momentum and pitch angle
space. Recall that the fluid model does not determine the distribution of electrons
in momentum space, as described in section 2.1.2. In the fully kinetic model, both
the cold and hot electrons are treated kinetically, as illustrated in figure 3.1a and
evolved using the same distribution function. In the isotropic and superthermal
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(b) Electron populations in the isotropic and
superthermal models without runaway electron
resolution. The cold and runaway electron
populations are treated as fluids and thus not
treated kinetically.

Figure 3.1: Illustration of the separation of electron populations in the momentum
space in the fully kinetic, isotropic and superthermal models. The fluid model is not
as computationally expensive as the isotropic/superthermal models, by not explicitly
describing the hot electron population.

models, only the hot electrons are treated kinetically, as shown in figure 3.1b. In
the fluid model, only the spatial density of electrons is evolved, and the details about
the electron momentum is generally neglected. Additionally, the runaway electrons
can be treated either kinetically or as a fluid, regardless of how the cold and hot
electrons are treated.

The cold, or thermal, electron population is assumed to be distributed according to a
Maxwell distribution. In Dream, it is represented by the cold electron temperature
Tcold, the ohmic current density jΩ, and the cold electron density which is evolved
to preserve quasi-neutrality.

In all models of Dream except the fluid model, the hot electron population is
treated explicitly during the simulations. The hot electron population consists of
electrons with momentum above phot, which is the momentum value separating the
hot from the cold population. In Dream, the hot electrons are represented by the
distribution function fhot, from which the electron density nhot and current density
jhot can be calculated. The distribution function is evolved according to the Fokker–
Planck equation, as described in Ref. [32]. In the isotropic and superthermal models
of Dream, the cold electron population is treated as a fluid, and there is a flux of
particles from the hot electron population to the cold electron population through
a particle sink at p = 0.

Finally, there is the runaway electron population represented by the runaway elec-
tron density nre, current density jre and optionally the distribution function fre, and
is separated from the hot electron population at the critical momentum value pre.
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When the runaway electrons are not treated kinetically, they are assumed to move
along the magnetic field with the speed of light.

One major difference between the superthermal model and the fully kinetic model
is that the plasma can practically have two temperatures in the former, one for the
cold population and one for the hot [32]. In the fully kinetic model, the cold elec-
trons are treated kinetically as described above, and they are then described by the
hot distribution function fhot alongside the hot electrons. The initial distribution
function is therefore described by a modified Maxwell distribution – the Maxwell–
Jüttner distribution which takes relativistic effects into account – at temperature
Tcold. Since the cold and hot electrons are described by the same distribution func-
tion with one temperature, the fully kinetic model is similar to the fluid model
where all non-runaway electrons are part of the cold electron population with one
temperature. In the superthermal model, in which only the hot electron population
is treated kinetically, the electron–electron collision frequencies in the collision op-
erator are taken at the Tcold → 0 limit. The cold electron population will still have
the temperature Tcold, but since fhot no longer describes the cold electron popula-
tion, the hot electron temperature Thot derived from taking the second moment of
fhot would be different from Tcold, although Thot is not explicitly calculated as an
output in Dream. This could be particularly suitable for a MMI scenario, where
cold electrons are generated from ionization of the cold injected material, while the
bulk of the initial plasma is part of the hot electron population with a much higher
temperature.

In Dream, the superthermal and isotropic models are very similar, with the isotropic
model being a further simplification of the superthermal model by analytically av-
eraging the Fokker–Planck equation over pitch angle [32]. The analytical deriva-
tion is based on the assumption that pitch angle scattering dominates the electron
dynamics, meaning that the fastest process is the collisional isotropization of the
distribution function (hence the name “isotropic”). The lowest order deviation from
isotropy (that gives the hot electron current) is analytically calculated. This makes
the isotropic model less complex and computationally expensive, since the resolution
dimensionality is reduced.

In the fluid simulations, the runaway electron density is evolved according to

dnre

dt
= ΓAvanre+γDreicer + γhot-tail + γtritium + γCompton

+ 1
V ′

∂

∂r

[
V ′
(

Anre + D
∂nre

∂r

)]
,

(3.1)

where ΓAva is the avalanche growth rate, and the rest, except the final term, are
primary runaway rate terms due to the respective mechanisms [32]. The final term of
the equation is the advective and diffusive radial transport of the runaway electrons,
where A and B can specified, and V ′ = V ′(r) is the spatial Jacobian at radius r.
Different models can be used for each of the runaway mechanisms, and those used
in this thesis will be described in section 3.2.
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In the kinetic models (namely the isotropic and superthermal models used in this
thesis) the runaway density is evolved as

dnre

dt
= Φ(p)

hot + ΓAvanre + γtritium + γCompton + 1
V ′

∂

∂r

[
V ′
(

Anre + D
∂nre

∂r

)]
, (3.2)

and the Dreicer and hot-tail runaway generation processes are automatically in-
cluded as a consequence of the detailed modelling of the plasma collision physics
and as such are part of the momentum space flux Φ(p)

hot. In the fluid model, these
runaway rates must be added explicitly as there is no flux Φ(p)

hot of electrons as shown
above.

Besides the electrons, Dream also evolves the background plasma parameters,
such as the temperature, electric field and ions, in space and time. The elec-
tron temperature is modelled through the evolution of the cold electron energy
Wcold = 3ncoldTcold/2. In turn, the cold electron energy depends on ohmic heating
due to the energy transferred from the electric field, collisional heat transfer from the
other electron populations and ions, energy losses due to inelastic atomic processes
(radiation) and radial transport of heat through diffusion and advection. The distri-
bution of ion charge states is evolved through ionization and recombination, which
are based on the rate coefficients of the Open-ADAS database [33] for the thermal
electron population. The effects of opacity for the hydrogen isotopes to Lyman radi-
ation can be taken into account, relevant at low temperatures, and for this case the
the rate coefficients from the AMJUEL database [34] are used instead. Additionally,
ionization by the non-thermal electron populations – so called fast electron impact
ionization – can be included [32]. The fast electron impact ionization is modelled
by a kinetic ionization rate based on the ionization cross-section in Ref. [35]. The
current density jtot = jΩ + jhot + jre and electric field are evolved via Ampère’s and
Faraday’s laws. If the runaway electrons are not treated kinetically, they are all
assumed to travel at the speed of light parallel to magnetic field lines so that their
contribution to the current density is jre = ecnre.

Finally, there are some technical aspects to review. The tokamak-specific param-
eters, such as the magnetic field, time-varying shaping parameters as well as ma-
jor, minor and wall radii need to be set. For time evolution, there is the option
of either having a fixed time step length or an adaptive one based on the ioniza-
tion time scale [36]. The equation system is evolved using the first-order implicit
time-stepping. Specifically, due to the non-linear nature of the equation system, a
Newton solver is used to obtain the solution for each time step. Alternatively, the
system may be linearized in time, yielding a so-called linearly implicit time-stepping
method. In this thesis, the iterative Newton’s method will be used for converging
to this solution, and adjustable tolerances are used to determine whether or not the
solver has converged.
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3.2 Disruption model
An ITER-like tokamak setup has been used for the simulations, because of its im-
portance towards reaching the goals of the global fusion program. Furthermore, the
risk of runaway electrons will be high in ITER due to its large size and high current.
To achieve an ITER-like setup, the major radius is set to R0 = 6 m, the minor radius
is set to a = 2 m and the toroidal magnetic field on axis is set to B0 = 5.3 T. Addi-
tionally, the wall radius, or effective radius of the first toroidally closed conducting
structure, is set to b = 2.833 m consistent with the value calculated in Ref. [37] by
matching the poloidal magnetic energy to that in simulated ITER discharges.

It is worth noting that the toroidicity of the plasma has been taken into account along
with realistic shaping, rather than using the cylindrical limit a/R → 0. The radially
varying shaping parameters used are the same as the ITER-like, and physically
consistent, shaping parameters used in Ref. [38].

During activated operation, the plasma fuel will contain tritium, which is a radioac-
tive isotope. In our model, the plasma fuel is assumed to consist solely of deuterium
for the modelling of non-activated operation, while the activated model has 50 %
deuterium and 50 % tritium, with all particles being fully ionized at the start of
the simulation. In both cases, the initial electron density is 1020 m−3. The hydro-
gen isotope populations in the plasma are assumed to not be fully transparent to
the emitted line radiation. Instead, bound-bound electron transitions involving the
hydrogen isotope ground state are neglected to account for the hydrogen isotopes
being opaque to Lyman line radiation [39].

As for initial conditions of other parameters evolved in Dream, the initial plasma
current Ip = 15 MA and initial plasma temperature on axis T (r = 0) = 20 keV,
which are based on the plasma current and temperature that a high fusion per-
formance plasma discharge will have in ITER. In our simulations, the initial elec-
tron and ion temperatures are equal, but they are evolved as separate parameters
in Dream and as such can be different during the simulations. Furthermore, the
initial current density profile is assumed to be

ĵ(r) =
[
1 −

(
r

a

)2
]0.41

(3.3)

and the initial temperature profile

T̂ (r) = 1 − 0.99
(

r

a

)2
, (3.4)

which are based on Ref. [40] but takes into consideration that T̂ (r = a) ̸= 0. The
current and the temperature profiles are shown in figure 3.2a and 3.2b, respectively.
It is worth noting that current density relaxation expected at the onset of an ITER
disruption is neglected during the TQ in our disruption model; possible effects of
such relaxation are discussed in Ref. [38].
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(c) Illustration of the (i) density profile n̂i(r) and (ii) injected density distribu-
tion ni(r) for different values of the inputs ni and ci, and i ∈ {D, Ne}. For all
curves of (ii) except the red dash-double-dotted, the injected density parameter
ni = n, while for this dash-double-dotted curve ni = 2n. Note that the circu-
lar cross section of the plasma favours higher peak densities for negative ci, as
shown for ci = −1 (dashed purple line) compared to ci = 2 (dash-dotted red
line).

Figure 3.2: Illustrations of initial profiles of important plasma parameters.

The runaway dynamics is governed by equation (3.1) in the fluid model and (3.2)
in the kinetic model, where all possible runaway generation mechanisms are listed,
but all might not be present in a given disruption scenario. For the non-activated
disruption model, Dreicer, avalanche and hot-tail runaway generation processes are
included. Additionally, Compton and tritium generation rates are included for the
activated model. The avalanche generation rate is of the form

ΓAva ∝ ntot

ncold

(
E∥ − Eeff

c

)
, (3.5)

where Eeff
c is the effective critical electric field and ntot is the total electron density,

including bound electrons, as derived in Ref. [41]. In the fluid model, the Dreicer
generation rate is determined with a neural network established in Ref. [42] and
the hot-tail generation is evaluated based on the critical momentum found using an
angle-averaged kinetic equation in the limit of high charge numbers, as in Ref. [43].

22



3. Simulations

Furthermore, the runaway electrons can be lost from the plasma through transport
due to magnetic perturbations, as described below.

In our simulations, MMI is modelled as a material already distributed in the plasma.
The injected material is assumed to consist of cold atom populations distributed
instantaneously, either spatially uniformly or with the radial profile

n̂i(r; ci) = 1 + tanh
[
ci

(
r

a
− 0.5

)]
, (3.6)

with the index i ∈ {D, Ne} referring to the atom species. Note that the uniform
density distribution corresponds to ci = 0. The radial density distribution as a
function of the radius r becomes

ni(r; ni, ci) = nin̂i(r; ci)
Vp∫

Vp n̂i(r; ci)dV
, (3.7)

where Vp is the plasma volume, and ni without argument is a scalar parameter that
is used in the optimization. Both the density profile and density distribution are
visualized in figure 3.2c.

The magnetic perturbations in our disruption model are only employed during the
TQ, and they are chosen to be constant both radially and in time. Magnetic pertur-
bations affect the runaway electron and heat transport, and consequently the plasma
evolution. This thesis uses the Rechester–Rosenbluth model [44] which assumes that
the magnetic field is fully ergodic and models the transport as a diffusion process
with the diffusion coefficient

D = πR0

∣∣∣v∥

∣∣∣ (δB

B

)2

, (3.8)

where δB/B is the magnetic perturbation normalized to the unperturbed magnetic
field. Here, v∥ is the velocity of the electron along the magnetic field line, which
is, to good approximation, the speed of light c for runaway electrons. When calcu-
lating the electron heat diffusivity for the cold electron population using the same
model, the parallel velocity is integrated over the bulk velocity distribution such
that v∥ ∼ vth [32]. For the hot population, included in the isotropic and superther-
mal models, the parallel velocity is based on the momentum and pitch angle. The
parallel correlation length of the magnetic perturbations should appear in place of
the R0 factor in (3.8), but since it is comparable to the R0, R0 has been used instead.
Any order unity factors that may appear in reality due to the parallel correlation
length are instead absorbed into (δB/B)2.

Finally, there are some minor specifications in our disruption model worth mention-
ing. In the kinetic simulations, the hot electron current will be counted towards the
runaway current, to allow fair comparisons between the isotropic and fluid models –
the total plasma current is thus divided into the ohmic current and the non-thermal
current in both models. The collision frequencies, which are only relevant in the
kinetic models, in the isotropic and superthermal models use the Tcold → 0 limit of
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collision frequencies according to equation (34) of Ref. [32]. Partial screening of the
nucleus is accounted for during collisions [45]. The Coulomb logarithm is dependent
on the electron energy, as defined in equation (18) in Ref. [32]. Bremsstrahlung
losses, caused by Coulomb collisions, are taken into account using a mean-force
model [32]. The momentum dependent components of the avalanche, Compton and
tritium runaway rates are set to not take trapping effects into consideration, as
inspired by Ref. [46]. The conductivity is evaluated from a numerical fit of the neo-
classical conductivity to Fokker–Planck simulations, as performed in Ref. [47]. Fast
electron impact ionization is included in the kinetic models [32].
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In this chapter, the optimization algorithm and its components will be presented.
Firstly, the design and motivations of the cost function will be discussed. Thereafter
the algorithms and results of the optimizations will be presented. The results will be
divided into two sections based on the dimensionality of the optimizations run. The
first optimizations are two-dimensional – the input space consists of the densities
of the injected materials, which are distributed uniformly. For the four-dimensional
optimization, the radial variation of the densities adds two dimensions.

4.1 Cost function

The cost function of an optimization problem is crucial for the optimization to yield
meaningful results. A good cost function should reliably quantify the development
inside the black box while following good optimization practices. In this section we
describe the design of the cost function we have used.

4.1.1 Components of the cost function

The aim of our cost function is to quantify the risks associated with tokamak disrup-
tions. Here it will be constructed from four disruption parameters, with associated
safe operational limits, which have been deemed relevant.

As described in Ref. [5], the runaway current should be small for a safe disruption.
However, the runaway current output received from Dream is a time vector while
a representative scalar value is required for the cost function. Here we consider
two plausible choices for representing the runaway current contribution to the cost
– the maximum runaway current maxt Ire(t) and the runaway current at the time
when it makes up 95 % of the plasma current Ire(tIre=0.95Ip), which we will call the
95-percent runaway current. If a runaway current plateau is reached during the
disruption, the runaway current will in most cases be slowly but monotonically
increasing with time. In this case the maximum runaway current will be dependent
on the simulation length, which is impractical.
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Figure 4.1: Illustration of possible issues with the two representative runaway
current definitions. (a) A runaway plateau is reached during the disruption, such
that the runaway current is slowly increasing and the maximum runaway current
depends on the simulation length. If the simulation is stopped at 200 ms (150 ms) the
blue (purple) star marks the maximum runaway current. (b) The runaway current
never reaches 95 % of the total plasma current. (c) The runaway current constitutes
95 % of the total plasma current twice, marked by red crosses. (d) The runaway
current peaks significantly early during the simulation (blue star), but reaches 95 %
of the total plasma current when both currents are negligible (red cross).

Using the 95-percent runaway current would solve this problem, but it gets compli-
cated when Ire(t) < 0.95Ip(t) throughout the simulation or when Ire(t) = 0.95Ip(t)
for several t. Furthermore, for a hypothetical case where the runaway current near
the end of the simulation fulfills Ire = 0.95Ip while being small, but peaks early
during the simulation with an order ∼ 1 MA without reaching 95 % of the plasma
current, Ire(tIre=0.95Ip) would not be a representative value.

To account for the advantages and disadvantages of both options (illustrated in Fig.
4.1), we chose to use the first occurrence of Ire(tIre=0.95Ip) unless maxt Ire(t) occurred
before Ire(tIre=0.95Ip) or if Ire(t) < 0.95Ip(t) throughout the simulation, and will call
it the representative runaway current Irepr

re .

Additionally, the ohmic current at the end of the simulation has the potential of
being converted into runaway current, and signifies an incomplete TQ, and conse-
quently it should also be minimized to reduce the uncertainty with the simulation
results. Based on [48], the upper safe operational limit of the runaway current is
150 kA, and due to the correlation between the ohmic and runaway current the two
currents will be weighted equally.

The CQ time in the cost function was defined as

τCQ =


tIΩ=0.2Imax

p −tIΩ=0.8Imax
p

0.6 if tIΩ=0.2Imax
p ∈ [0, tfinal]

tfinal−tIΩ=0.8Imax
p

0.8−Ifinal
Ω /Imax

p
otherwise,

(4.1)

and as stated in Ref. [5], its safe operational interval is [50, 150] ms. The last con-
tribution to the cost function is the conducted heat load, defined by (2.9), which
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should be minimized and for a safe disruption it should be below 10 %, according to
Ref. [5].

4.1.2 Cost function composition
As previously stated, the cost function will consist of four components with associ-
ated safe operational limits, which when simultaneously satisfied, correspond to a
safe operational region in the parameter space. Three of the components should be
minimized while one should be within a certain interval. In the interest of maxi-
mizing the amount of information gained from the cost function values, we intend
the function to yield function values below one inside the safe operational space and
above one outside of this space. In practice, this will approximately be achieved
by normalizing the components to their safe operational limits and combining them
using the Euclidean norm.

To achieve this boundary value of one between safe and non-safe cases, each com-
ponent should yield exactly unity at the limit of its safe interval when normalized.
Thus, both currents were normalized by 150 kA and the conducted heat by 10 %. In
order to get the same characteristics for the CQ time, it was shifted and normalized
according to |τCQ − 100 ms|/50 ms. In order for the prompt, namely for safety to be
equivalent to the cost function L < 1, to be precisely realized, we would need to use
the maximum norm, i.e.

L = max
(

Irepr
re

150 kA ,
Ifinal

Ω
150 kA ,

ηcond

10 % ,
|τCQ − 100 ms|

50 ms

)
. (4.2)

However, this would result in the cost function not being once differentiable (or
smooth) and only one component would contribute with information about the
disruption scenario to the optimizer in any given point.

A solution to this problem could be combining the normalized components by simply
adding them together, i.e.

L = cIrepr
re

Irepr
re

150 kA + cIfinal
Ω

Ifinal
Ω

150 kA + cηcond

ηcond

10 % + cτCQ

|τCQ − 100 ms|
50 ms (4.3)

where cIrepr
re + cIfinal

Ω
+ cηcond + cτCQ = 1. While this would imply L ≤ 1 for all four

parameters being inside of their safe operational interval, the opposite implication
would not be true, namely L ≤ 1 implying safety. If there would be a case where
only component x is non-zero, this component may rise to 1/cx with L ≤ 1 still
satisfied.

Both (4.2) and (4.3) are extreme special cases of the p-norm, namely p = ∞ and
p = 1 respectively. The order of the p-norm is thus the trade-off parameter between
the largest normalized component dominating the cost function value, and thus
loosing information about the other parameters, and having unity as the exact
border between safe and unsafe parameter choices. For the prompt to be valid, the
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Figure 4.2: Illustration of the relation between p-norm and accuracy of L ≤ 1
implying safety. For this example, the cost function consists of three components
f1, f2 and f3, weighted equally. The blue box represents the safe operational region
and the red surface implies the L = 1 surface. Note that the red surface intersects
the axes at 1/c.

weights must be set as

cj

(∑n
i=1 cp

i )1/p
→ cj, (4.4)

where cj for j = 1, ..., n are the components of the cost function. In figure 4.2,
the relation between the value of p and the accuracy of L ≤ 1 implying safety is
illustrated for three arbitrary components f1, f2 and f3. We deemed the Euclidean
norm (p = 2) to be close enough to L ≤ 1 implying safety, without any component
being too dominant while large. We chose to use equal weights for all components,
specifically c = 0.5. With these weights, any component can at most be a factor
1/c = 2 too large for L ≤ 1, and if L ≤ 0.5 it is definitely safe.

28



4. Optimization

To summarize the cost function so far, we have four components

xIrepr
re = Irepr

re
150 kA

xIfinal
Ω

= Ifinal
Ω

150 kA
xηcond = ηcond

10 %

xτCQ = |τCQ − 100 ms|
50 ms ,

(4.5)

which could be directly combined to yield L ≲ 1 equivalent with safety, using the
weight c = 0.5 and the Euclidean norm, accordingly

L =
√(

cxIrepr
re

)2
+
(
cxIfinal

Ω

)2
+ (cxηcond)2 +

(
cxτCQ

)2
. (4.6)

This alternative would satisfy all requirements previously stated, but it would give
equal significance to minimization of all components (relative to their normaliza-
tion). For instance, the cost function would take the same value for

Irepr
re = 120 kA

Ifinal
Ω = 50 kA

ηcond = 3 %
τCQ = 100 ms

and

Irepr
re = 0 kA

Ifinal
Ω = 50 kA

ηcond = 3 %
τCQ = 60 ms.

(4.7)

However, while the runaway current should always be as small as possible, even
below its tolerable limit of 150 kA, there is no similar reason for τCQ = 100 ms being
safer than τCQ = 60 ms, as they are both within the interval [50, 150] ms.

When inside the safe operational space, we would want minimizing the currents to be
more important than minimizing the conducted heat, which in turn should be more
important than minimizing |τCQ − 100 ms|. Therefore we would like to introduce
the possibility to adjust the sensitivity of the cost to the various components inside
their respective safe regions. Outside of the safe operational space, we would not
want any term to be too dominating, as previously stated, or for the cost function to
blow up – as this could impact the optimizer negatively. Furthermore, it is beneficial
for the optimization if the cost function is continuous and differentiable. Therefore,
we have instead used

L =
√(

cfIrepr
re

)2
+
(
cfIfinal

Ω

)2
+ (cfηcond)2 +

(
cfτCQ

)2
, (4.8)

where

fi =

 (xi)ki , if xi ≤ 1
kixi + 1 − ki, if xi ≥ 1,

(4.9)
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Figure 4.3: Short and long range behaviour of the functions for the currents
I ∈ {Irepr

re , Ifinal
Ω }, the conducted heat ηcond and CQ time τCQ. The first row shows

the function behaviours close to the safe operational region, while the second row
shows the linear behaviours for their full domains. Note that all functions have the
same order of magnitude for their long range behaviour.

with kIrepr
re = kIfinal

Ω
= 1, kηcond = 3 and kτCQ = 6, i.e.

fIrepr
re = Irepr

re
150 kA (4.10)

fIfinal
Ω

= Ifinal
Ω

150 kA (4.11)

fηcond =


(

ηcond
10 %

)3
, if ηcond < 10 %

3
(

ηcond
10 %

)
− 2, if ηcond ≥ 10 %

(4.12)

fτCQ =


( |τCQ−100 ms|

50 ms

)6
, if 50 ms < τCQ < 150 ms

6
( |τCQ−100 ms|

50 ms

)
− 5, if τCQ ≤ 50 ms or τCQ ≥ 150 ms.

(4.13)

The behaviour of the cost function components fI , fτCQ and fηcond close to and far
from their safe operational region are plotted in figure 4.3. By implementing these
changes inside the safe operational intervals of the CQ time and conducted heat load,
they will not be the dominating terms in the cost function if they are relatively far
from the interval limits, unless the other cost function terms are negligible as well.
This will in turn act to drive the optimization away from the safe interval limits, as
intended.
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4.2 Initial exploration of optimization space
During the development of the cost function, scans of the activated and non-activated
disruption models were made for the optimization using the fluid model input space
of logarithmic injected densities,

log
(
nD/[1 m−3]

)
∈ [20, 22.5]

log
(
nNe/[1 m−3]

)
∈ [15, 20]

or
nD ∈ [1020, 3.16 × 1022] m−3

nNe ∈ [1015, 1020] m−3.
(4.14)

The resulting point clouds over the plasma parameters used in the cost function,
namely the maximal runaway current Imax

re (note that it is not the representative
runaway current), final ohmic current Ifinal

Ω , CQ time τCQ and conducted heat load
ηcond, are presented in figure 4.4. Each point in the point cloud corresponds to one
simulation, where the location is determined by the value of the aforementioned
plasma parameters evolved in the simulation. Since the point clouds exist in the
four dimensions spanned by the four cost function components, the data points have
been projected on the two-dimensional planes. The safe intervals for each component
have been plotted as thin, grey lines, and each safe region in two dimensions as black
boxes. Furthermore, all data points that are safe – inside the safe interval of each
cost function component – are blue while all other data points are red. Since the
data clouds are plotted in two dimensions instead of four, some unsafe points are
within the bounds of a two-dimensional plot, meaning that they are not within the
bounds of one of the other two parameters, which explains why there are red points
within the plotted safe boundaries.

There exist safe data points for the non-activated scenario, as shown in figure 4.4a
where there is a clear overlap between the data clouds and safe intervals in all
projection planes. For the activated case, however, there are no safe data points, as
shown in figure 4.4b. Furthermore, the figures suggest it is not possible to achieve
any combination of low maximum runaway current, low transported heat fraction
and CQ time in the safe interval for the activated case with our MMI model. This is
especially clear for the maximum runaway current and conducted heat as all cases
with sufficiently low maximum runaway current have ηcond > 75 %, and all cases
with tolerably low conducted heat load have Imax

re ≳ 5 MA.

For the non-activated case the Imax
re –τCQ and τCQ–ηcond plots show a similar behaviour

compared to the activated case, but they are slightly deformed such that they overlap
with the safe intervals. The Imax

re –ηcond plot has a completely different appearance.
In this thesis we intend to focus on studying the behaviour in the safe regions of
the MMI input space, and thus we will only consider the non-activated case for the
remainder of this chapter.

Some interesting observations to note from figure 4.4 are the correlations between
the cost function components. For both the activated and, especially, the non-
activated cases, it seems that just one of Ifinal

Ω and Imax
re can be large at a time – as

deduced from the data points lying very close to both axes. Since runaway electron

31



4. Optimization

0 5 10
Imax

re [MA]

0

2

4

6
I

fi
n

al
oh

m
[M

A
]

0.0 0.5
0.0

0.5

0 5 10
Imax

re [MA]

0

100

200

300

τ C
Q

[m
s]

0 5 10
Imax

re [MA]

0

25

50

75

η c
on

d
[%

]

0.0 2.5 5.0

Ifinal
ohm [MA]

0

100

200

300

τ C
Q

[m
s]

0.0 2.5 5.0

Ifinal
ohm [MA]

0

25

50

75
η c

on
d

[%
]

0 200
τCQ [ms]

0

25

50

75

η c
on

d
[%

]

(a) Point cloud for the non-activated disruption model.
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(b) Point cloud for the activated disruption model.

Figure 4.4: A scan over the optimization using the fluid model input space with
each point representing a simulation in the scan. With four cost function com-
ponents, the data cloud becomes a surface in the four dimensional space. Here,
it is projected on all possible two-dimensional sub-spaces for the four cost func-
tion components; representative runaway current, final ohmic current, CQ time and
transported heat fraction.
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generation is highly dependent on the electric field, and the electric field is induced
by the current drop during the CQ, a large ohmic current would suggest a small
induced electric field, which would be unfavourable for runaway electron generation.

Another interesting relation is between the final ohmic current and CQ time, where
the current is very low until τCQ ∼ 200 ms, followed by a correlation ∼ 1/(c − x).
This is expected, as the two components are closely linked through equation (4.1),
and suggests that the numerator of (4.1) is approximately constant while Ifinal

Ω /Ip
increases.

4.3 Optimization algorithm
In this section the method used for the optimization will be presented. Firstly,
the details and composition of the black box used for the optimization will be de-
scribed. Secondly, the Bayesian optimization algorithm and the related parameter
and model choices will be explained. Both the optimization of uniform and radially
varying densities used analogous algorithms for the optimizations. Thus, they will
be presented simultaneously and the differences will be discussed.

4.3.1 Black box
In Bayesian optimization, the objective function is treated as a black box, since
the optimization process only depends on the inputs and outputs. In this thesis,
the black box contains the Dream simulations described in chapter 3 and the cost
function evaluation described in 4.1. Furthermore, our black box has either two or
four inputs – the densities nD and nNe in the two-dimensional optimizations as well
as the density profile parameters cD and cNe in the four-dimensional optimizations.
These are MMI parameters and used in connection with the material injection. The
injected material is initialized as neutral and at a negligible temperature compared
to the plasma temperature (∼ 20 keV).

The numerical modelling in the black box is divided into several simulations, most
importantly separating the TQ and CQ phases. Firstly, a test TQ simulation is
performed to determine when the thermal quench is finished. This simulation is
performed for 20 ms, adding a margin of order 10 to the anticipated TQ time of
1–2 ms according to Ref. [5] – if the TQ time is longer than this, we can assume
that the TQ was not successfully completed and other complications might arise.
The condition used to determine when the TQ is completed is that the averaged
plasma temperature has dropped below 20 eV, i.e. below 0.1 % of the initial plasma
temperature on axis.

After the TQ time has been assessed, the actual TQ simulation is performed with the
duration of the simulation having been updated to the time at which the previously
mentioned condition was fulfilled in the temporary TQ simulation. Finally, a CQ
simulation is performed for 200 ms, as this was deemed long enough to determine
if the CQ time is within its safe limits. With the isotropic model, another three
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initial simulations are needed, in order to evaluate the initial electric field needed
to achieve the correct initial current density. This is needed because the isotropic
model requires a consistent steady-state solution of the Fokker–Planck equation for
the given electric field, which is not known a priori. These initial simulations are
not needed with the fluid model, because it has a function to prescribe the initial
current density – this only requires Ohm’s law to be solved for the electric field,
which Dream can perform in the initialization stage.

The effect of magnetic perturbations, arising from magnetic flux surfaces breaking
up during the TQ, are modelled in the simulations by adding runaway electron and
thermal energy transport. The magnetic perturbation value is fixed for each opti-
mization, but it was varied between optimizations. We have optimized for magnetic
perturbations of δB/B = 0.2 % and δB/B = 0.5 %. These values of the magnetic
perturbations are only used in the TQ simulations. For the CQ simulation, the
magnetic perturbations should be turned off, since the magnetic flux surfaces are
re-healed, and this is done for the runaway electron transport. A small value of
δB/B = 0.04 % is still used for the thermal energy transport, however, to avoid
numerical errors due to non-physical thin current sheets. All electron populations
in the simulations account for the particle, and subsequent heat, transport due to
the magnetic perturbations – namely the cold and runaway electrons in the fluid
model and additionally the hot population in the isotropic model.

When both the TQ and CQ simulations have been performed, the cost function value
for an input pair (nD and nNe), or quadruple (nD, nNe, cD and cNe), is evaluated
according to section 4.1. However, in some instances, the cost function value cannot
be evaluated. In these cases, the cost function returns a large value, which we chose
to be 75 because it is larger than, but still comparable to, most encountered cost
function values for our input spaces. There are mainly two reasons for why the cost
function cannot be evaluated.

In most cases when the cost function cannot be evaluated, the temperature does not
reach below 20 eV during the initial TQ simulation, which signifies an incomplete
TQ. Since this means that the TQ time is more than an order of magnitude larger
than the anticipated TQ time of ITER at 1–2 ms, we assume the TQ will not have
completed successfully and does not represent an interesting (safe) scenario, and
thus, there is no need to perform the rest of the simulations. It was discovered
that incomplete TQs occur in a certain region of the input space for each magnetic
perturbation value. A hyperbola was fitted to the boundary of this region in the nD–
nNe input space for the fluid simulations, such that the black box returns the large
value directly when a nD–nNe input pair was within this region and no simulations
were performed. No similar approximation of the boundary of incomplete TQs was
performed for the four-dimensional optimizations.

The second case when the cost function cannot be evaluated is when the simulation
fails. When using numerical tools, such as Dream, there is always the risk of
the time resolution not being sufficient to find converging solutions, resulting in
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the simulations crashing, however there can be other reasons for the simulations
failing as well. The black box has the ability to increase the time resolution if
such complications occur – but not indefinitely. We set upper limits for the time
resolution, and if these are reached the simulations are aborted and the cost function
returns the previously mentioned large value. It is worth noting however that these
simulation failures that could not be resolved with increased time resolution were
rare, and only occurred for less than 1 % of the optimization samples, for both the
fluid and isotropic models.

Resolution is as previously mentioned important for the numerical accuracy and
reliability of the code, and now the choices regarding resolution in this thesis will
be presented. With regards to reliability, higher resolution is always preferred, but
higher resolution leads to longer computational times which we want to minimize
in this project and all our resolution choices represent a trade-off between these two
factors. We decided to use 20 radial grid points, and for the isotropic simulations, 80
momentum grid points were also used, with the upper limit of the momentum space,
i.e. the critical momentum value separating the hot and runaway populations, being
p = 2.5mec.

The time resolution is handled differently for the TQ and CQ simulations. The
TQ simulations used the adaptive time stepper function of Dream, that chooses
the time step length on the ionization time scale. The initial time step length was
10−11 s in the fluid simulations and 10−13 s in the isotropic simulations, while the
maximum time step length was 10−5 s for both. If the TQ simulations crashed due
to insufficient time resolution, the initial time step length could be decreased to at
most 10−13 s and 10−14 s for the fluid and isotropic simulations, respectively. For the
CQ simulations, the simulation length was as previously stated 200 ms and initially
10 000 time steps were used for both fluid and isotropic simulations. When numerical
complications due to time resolution were encountered, the number of time steps
could be increased up to 200 000 in the fluid simulations and up to 50 000 in the
isotropic simulations.

4.3.2 Bayesian optimization

For this thesis, we have utilized the Bayesian optimization Python package [49].
The Bayesian optimization functions of this package require a hyper-rectangle in
the input space to be used as optimization bounds. Initially, the optimizer explores
a specified number of data points chosen randomly before proceeding to using the
acquisition function to select new data points. The selection of further data points
is then based on the already known data points. Furthermore, the GP kernel and
acquisition function type can be specified and the ratio between exploration and
exploitation can be controlled.

Since the injected densities for MMI varies with orders of magnitudes, the common
logarithm of the injected densities have been used as optimization parameters. The
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bounds of the densities have been chosen as

nD ∈ [1020, 3.16 × 1022] m−3

nNe ∈ [1015, 1020] m−3 or
log
(
nD/[1 m−3]

)
∈ [20, 22.5]

log
(
nNe/[1 m−3]

)
∈ [15, 20]

(4.15)

based on [12], where similar bounds were used and an optimum was found within
these bounds. More specifically, the upper bounds are chosen by experimental limi-
tations – higher concentrations of these gases cannot be assimilated in the plasma –
and the lower limits are chosen because they are on the border of where the injected
quantities begin to have an effect on the plasma evolution. For the radially varying
densities, the profile parameter bounds have been chosen as

cD ∈ [−5, 5]
cNe ∈ [−5, 20].

(4.16)

The profile parameter intervals are centred around the optimal values found in
Ref. [12].

When choosing the number of sample points to use for the optimization, there is a
trade-off between how well the input area is explored and the computational time
needed to obtain the objective function value. How “well the input area is explored”
refers to how scattered the sample points are in the input space, which determines
how probable it is that the optimum discovered is the global optimum (as opposed
to a local optimum) and how accurate the mean function of the GP, or the GP
approximation of the cost function, is. Furthermore, simulations in Dream take a
considerable amount of time – one fluid simulation takes ∼ 5 min while one isotropic
simulation takes ∼ 30 min. For the two-dimensional optimization using the fluid
model, 50 data points were used for the initial random exploration and 200 data
points were used in the actual optimization, as this was deemed to yield a sufficient
exploration in both interesting (safe) and uninteresting areas. Since the optimization
region of the isotropic case is smaller, as described later in this section, the two-
dimensional optimization using the isotropic model used 20 initial data points and
80 optimization data points. When the dimensionality is doubled, which is the case
for the radially varying density optimization, more data points are needed to explore
the now larger optimization space. For this reason the number of data points used
were doubled, namely 100 (40) initial data points along with 400 (160) optimization
data points for the optimization using the fluid (isotropic) model.

The Matérn Kernel was used for the optimizer GP, with the smoothness parameter
ν = 1.5 was chosen because our function is once differentiable (see section 2.2) –
at the borders of the safe intervals of τCQ and ηcond the cost function is only once
differentiable. For the acquisition function, we chose EI, defined in (2.16) due to
it being widely used in Bayesian Optimization for its empirical effectiveness [50].
In Ref. [49], the EI has been modified by introducing an exploration-exploitation
trade-off parameter, ξ, to (2.16) according to

I(x, ϕ, y∗) = max(ϕ − y∗, 0) → max(ϕ − y∗ − ξ, 0), (4.17)
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where exploration increases with ξ. For both the optimizations using the fluid and
isotropic models, we wanted a well-resolved map of the cost function in the basin
of safe values containing the global optimum. If ξ was chosen too small, most of
the samples taken by the optimizer would be placed in a very small vicinity of the
optimum, which would not be suitable to produce this map. Thus, we chose ξ = 0.05
for the optimizations using the fluid model and ξ = 0.1 for the optimizations using
the isotropic model, taking into the consideration the size of the optimization region
compared to the interesting region for each plasma model.

To visualize the cost function after an optimization, a GP was used to fit an approx-
imation µ to the cost function based on the optimization data points. The GP used
for visualizing the results was identical to the optimizer GP with ν = 1.5. One dif-
ference from the optimizer GP however was that the data points corresponding to a
failed simulation, or a simulation when the cost function could not be evaluated and
instead 75 was returned, were disregarded. Since 75 did not quantitatively represent
the actual cost function value in these data points – the high value was returned
because we did not know the actual value – they did not give relevant information
for the GP regarding approximating the cost function. In reality, they would have
obstructed the cost function approximation because they were not continuous with
other data points in the vicinity, making it difficult for the GP to find a valid and
continuous approximation.

Finally, the remaining part of the method left to be described is how the bounds used
for the optimization of the isotropic case were determined based on the optimization
of the fluid case. Concisely, the idea of the method is to evaluate the approximated
cost function µ on a hyper-rectangle of increasing size until all cost function values
on the sides of the hyper-rectangle are above one – and this hyper-rectangle is then
used as the bounds for the optimization using the isotropic model. In practice, only
a two-dimensional algorithm was implemented. This will now be presented and we
will subsequently explain how this was used in higher dimensions.

A GP-generated cost function approximation was obtained from the optimization
data of the optimization using the fluid model, as described above. Using this
approximation, a rectangle was centred around the minimum of µ, with the length
of the sides being defined from some minimum length of the bound interval. If
all values of the approximation were above one on the rectangle, or the side has
reached the bounds of the optimization space when using the fluid model, these
will be used as the new optimization bounds, see figure 4.5b. Otherwise, each side
of the rectangle is moved one small increment, connected to the resolution of the
GP approximation, outwards sequentially until all values of the approximation on a
side are above one, as in figure 4.5a. Thus, suitable optimization bounds are found
when all sides have values above one, or some of the sides of the rectangle reaches
the bounds of the optimization space when using the fluid model. In the case when
there is no region of safe values below one in the input space, the rectangle of given
minimum side lengths centred around the optimum will be used as new bounds.
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1 1 1 11

(a) A rectangle is centred around the optimum, and each side is extended sequen-
tially until all values of the cost function on each side of the rectangle are above one.
Note that each side will be fixed independently from the others.

1

(b) The dashed rectangles repre-
sent cases where there are still val-
ues on the rectangle that are be-
low one. The solid black box is the
smallest rectangle where all values
are above one on the box. The grey
box represents how margins can be
added by the algorithm.

1

1

(c) For the case when there are several re-
gions with values below one, the algorithm
can choose bounds that maximizes the rect-
angle area. In this illustration, the global
minimum is within the smaller, dashed rect-
angle, but since the other rectangle is larger
(corresponding to a more robust minimum) it
will be used for the new optimization bounds.

Figure 4.5: Visualization of the algorithm which is used to find the bounds for
the optimization using the isotropic model. The coloured curves are level curves
encircling a local minimum. The colour scale of the level curves and optimum goes
from blue for low values to red for higher values

As larger regions of safe values are more robust, a feature of our algorithm was to
return the bounding rectangle of the largest safe region in the input domain. Thus
the same procedure was performed around all local minima. If another safe region
corresponds to a larger new bound rectangle, this rectangle will be used for the
bounds instead, as illustrated in figure 4.5c. Lastly, a margin can be added to the
final bounding rectangle, see figure 4.5b.

The computational resources required by this method increase exponentially with
dimensionality, which results in it not being feasible to adapt this method in two
dimensions to four dimensions within the bounds of this thesis. Regarding the
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optimization of radially varying densities, the two-dimensional method was used
for every pair of input parameters while keeping the other two input parameters
fixed at their optimal value. For each input parameter, the lowest lower bound and
highest upper bound found were used. It is worth noting that since this method
does not consider the whole of the four-dimensional space, it can cut off regions
with safe operational values that could be of interest to study using the isotropic
model. This risk was deemed to have small enough impact on the results to be
disregarded in this project. The exploration of other safe operational regions in
four dimensions become problematic with the two-dimensional method, since two
separate regions in two dimensions can be connected in higher dimensions. Because
of this, the two-dimensional boundary adjustment method was not implemented for
the four-dimensional case.

This method for finding new bounds has a couple of free parameters – the size of
the margins and resolution of the GP approximation. The optimization of uniform
density used margins of 2 % of the optimization bound length when using the fluid
model and a resolution of 400 data points in each direction when evaluating the
approximation of the cost function, i.e. resulting in a grid of 4002 = 160 000 cells.
To mitigate the risk of cutting of regions of safe values when using the method
of finding new bounds in two dimensions for the four dimensional optimization, a
larger margin of 5 % was used in the radially varying density optimization to increase
the probability of enclosing the entirety of the safe operational region in the hyper-
rectangle. The minimum bounds interval size for each input parameter, i.e. the
minimal side of the hyper-rectangle in each input parameter direction, was selected
as 0.5 for log nD, 1 for log nNe, and 1 for both cD cNe.

4.4 Optimization with uniform densities
In this section the results of the optimization of MMI with radially uniform densities
will be presented and discussed.

4.4.1 Results
The two-layer optimization was performed for radially uniform deuterium and neon
densities and magnetic perturbations δB/B = 0.2 % and δB/B = 0.5 %, and the
results can be found in figure 4.6. In table 4.1, the minima of different optimizations
are presented together with another isotropic optimization that will be presented
below.

For the lower magnetic perturbation case, shown in figure 4.6a, there is a fairly large
region of safe values for both models and the shape and size of both of these regions
are somewhat similar. The two models predict different locations for the minimum,
with values given in the first two rows of table 4.1. Close to the optimum discovered
using the fluid model, the two models give similar cost function values, but with
the isotropic model yielding µ = 0.025 being somewhat lower than the fluid model
yielding µ = 0.037. The difference between the two models is most significant in the

39



4. Optimization

1020 1021 1022

nD (m−3)

1016

1018

1020

n
N

e
(m
−

3
)

1021.5 1022

1018

1019

1020 1021 1022

nD (m−3)

1016

1018

1020

n
N

e
(m
−

3
)

1022 1022.25

1018.5

1019

0.001

0.01

0.1

1

10

µ

0.1

1

10

µ
(a) δB

B
= 0.2 % (b) δB

B
= 0.5 %

Fluid Fluid

Isotropic Isotropic

Figure 4.6: Contour plots of the approximated cost functions found using the two-
layer, two-dimensional, optimization for two different magnetic perturbations. The
large plots in the background are the results generated by the fluid model, and the
smaller plots in the lower left corners are obtained by the isotropic model with the
inset representing the explored region. The black star represents the minimum of
the optimization and the dots are the samples taken by the optimizer. Note that the
colour mapping is adapted such that blue shades are below one and red values are
above one, and white corresponds to one. The grey areas in the lower left corners
are the regions where the TQ was not successful.

upper left quadrant of the input space explored by the isotropic model, around the
minimum discovered using the isotropic model. Here, the values of the cost function
approximation for the optimization using the fluid model are in the vicinity of one,
while the approximation based on the isotropic model is on the order of 0.001.

For the high magnetic perturbation, shown in figure 4.6b, again, safe regions exist
with both the fluid and isotropic models, but there are now large disparities between
them. The safe region with the fluid model is small enough to use the minimal bound
lengths (0.5 for log nD and 1 for log nNe) to be used for the new bounds instead of
the actual bounds of the safe region. On the other hand, the safe region in the
isotropic case is reaching outside of its optimization region. In fact, the minimum
discovered for the isotropic case might not be the actual minimum of this region since
it lies very close to the upper optimization boundary of the neon density. As with
δB/B = 0.2 %, the behaviour is somewhat similar between the two models close to
the optimum discovered using the fluid model, but while the cost function increases
with the fluid model in the upper left direction, it decreases with the isotropic model.
However, the cost function does not decrease by several orders of magnitude with
the higher magnetic perturbation, as it did for the lower perturbation case, when
increasing the neon density and lowering the deuterium density.

In order to further explore the safe region of the isotropic model with the higher
magnetic perturbations, and find the minimum with better confidence, another op-
timization using the isotropic model was performed but with manually determined
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Table 4.1: Table listing the minima found using different kinds of optimizations.
The first two columns specify the physics model used. The following four columns
describe the optimal deuterium and neon densities. Finally, the last column lists
the cost function value of the minimum.
∗ Second isotropic optimization with manually defined bounds.

Model δB/B [%] log nD nD [m−3] log nNe nNe [m−3] min L

Fluid 0.2 22.01 1.02 · 1022 18.53 3.37 · 1018 0.04
Isotropic 0.2 21.55 3.52 · 1021 19.39 2.47 · 1019 0.001
Fluid 0.5 22.08 1.21 · 1022 18.77 5.93 · 1018 0.4
Isotropic 0.5 21.98 9.46 · 1021 19.34 2.17 · 1019 0.1
Isotropic∗ 0.5 21.95 8.83 · 1021 19.38 2.40 · 1019 0.1

boundaries. This time the density boundaries used were

nD ∈ [3.16 × 1021, 1.78 × 1022] m−3

nNe ∈ [3.16 × 1015, 5.62 × 1020] m−3 or
log
(
nD/[1 m−3]

)
∈ [21.5, 22.25]

log
(
nNe/[1 m−3]

)
∈ [18.5, 19.75],

(4.18)

as these were assumed to encompass the safe region discovered using the isotropic
model better. The results of this new optimization using the isotropic model are
presented in figure 4.7. With these new optimization boundaries, the safe operational
region discovered using the isotropic model is much better encompassed. As this
new optimization shows, the safe region discovered using the isotropic model is much
larger than in figure 4.6, but the minimum did not move significantly; compare the
last two rows of table 4.1.

To further explore the differences between the fluid and isotropic models, each sam-
ple taken during the optimization using the isotropic model with manually defined
boundaries was repeated using the fluid model. In figure 4.8, a GP approximation
of the components of the cost function, namely the representative runaway current,
final ohmic current and conducted heat load, for both the fluid and isotropic models
are presented.

In figure 4.8, we see that the runaway current deviates the most in the two models.
The normalized representative runaway current, shown in figure 4.8a, is significantly
smaller in the isotropic case – and there are several orders of magnitude of difference
between the two models for the majority of the explored region. Whereas the fluid
model has a normalized runaway current below one in a fraction of the lower half
of the explored space, the isotropic model predicts negligibly small values in almost
three quarters of the input space – and several optimization samples have no runaway
current.
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Figure 4.7: Contour plots of the approximated cost functions for δB/B = 0.5 %
using the fluid and isotropic models. The bounds of the optimization using the
isotropic model have been set manually. Note that the plot with the fluid model is
the same as in figure 4.6b, and is displayed to demonstrate the new optimization
space and simplify the comparison.

There is also a fairly large difference between the final ohmic currents in the two
models, as shown in figure 4.8b, with several orders of magnitude of difference in
the upper left half of the region. With both models, most parts of the regions are
below one, representing safe ohmic currents, but the isotropic model, again, gives
more optimistic predictions.

The transported heat fraction is quantitatively and qualitatively very similar, as
shown in figure 4.8c, but it is the only component for which the fluid model gives
better results than the isotropic model. However, this difference is very small –
small enough to not impact the overall improvement of the isotropic model over the
fluid one. Furthermore, there are only insignificant differences in CQ time between
the models.

To summarize, the isotropic model favours higher neon densities and lower deuterium
densities compared to the fluid model. In the lower magnetic perturbation case, the
shapes and sizes of the safe regions in the two models are comparable, but inside the
safe regions the cost function values can differ by orders of magnitude. In the higher
magnetic perturbation cases, the magnitude of the cost function in its respective
safe regions did not vary as much, but the shape and size of the safe regions are
profoundly different. The main reason for the differences between the two models is
the currents, and especially the runaway current.

4.4.2 Discussion
The main reason for the difference in location of the minimum in the two models
is the current components of the cost functions. These decrease with the isotropic
model and increase with the fluid model when increasing the neon density and
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(a) Contour plot of the representative runaway current. There are several black
crosses, signifying the minimum runaway current, because all of these samples re-
sulted in no runaway current and are global minima.
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(b) Contour plot of the final ohmic current component.
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Figure 4.8: Contour plots of approximations to the normalized cost function com-
ponents, as functions of deuterium and neon densities, for both the fluid and isotropic
models. The black star represents the minimum of the optimization, the black cross
the minimum of the plotted component and the dots the optimization samples.
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decreasing the deuterium densities from the optimum discovered using the fluid
model, while the CQ time and conducted heat load do not vary significantly.

Generally, the optimum is determined by the trade-off between the runaway current
– favouring low injected densities – and conducted heat load – favouring high in-
jected densities. As figures 4.8a and 4.8c show, the minimum discovered using the
fluid model lies on the very edge of the safe region for both the conducted heat and
representative runaway current and there is no point with better trade-off. For the
isotropic case, the optimum still lies fairly close to the safe boundary for the repre-
sentative runaway current, but further away from the boundary for the conducted
heat. The main reason for this is the fast decrease of the representative runaway
current when moving away from its safe border. Because such a minimum is very
sensitive to small positive deviations of the injected densities, this optimum could
be a bad alternative for MMI in a real tokamak, owing to the sensitivity to the
safe operational limits of the runaway current and conducted heat. However, the
sensitivity of the optimum should be studied further, since sufficient accuracies in
injection may perhaps be achievable, noting that the densities are logarithmic in the
plots.

For the higher magnetic perturbation case, the cost function value of the minimum
discovered using the isotropic model is still of the same order of magnitude as the
optimum discovered using the fluid model – this is because the conducted heat load
is large enough to dominate the cost function when the currents are minimized.
We can be fairly certain that the CQ time component does not dominate here
because of the high order of fτCQ in equation (4.13) – the normalized CQ time of
the explored region is xτCQ ∼ 0.5 which would yield fτCQ ∼ 0.01. Furthermore, both
the normalized runaway and ohmic current should contribute negligibly to the cost
function in the isotropic case. The normalized conducted heat, with the isotropic
model, in the upper left half of the explored region in figure 4.8c is ∼ 0.8 which is
equivalent to ηcond = 8 % and would yield fηcond = 0.83 ≈ 0.5, which would dominate
the other components. However, the lower magnetic perturbation value must have
a significantly lower transported heat fraction than the higher perturbation case for
the difference in the cost function values to be over several orders of magnitude, as
observed here. This is not unexpected as the heat transport increases with magnetic
perturbation value.

The main reason for the representative runaway current being larger in the fluid
case might be because the Dreicer and/or hot-tail rate formulae used in the fluid
model overestimate the actual rates observed with the isotropic model, which will be
further studied in chapter 5. This is possibly not the entire reason for the difference
in runaway currents between the models, as the CQ is more successful for not only
the representative runaway current, but final ohmic current and CQ time as well, in
the isotropic case.
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4.5 Optimization with radially varying densities
In this section the results of the optimization of MMI with radially varying densities
will be presented and discussed.

4.5.1 Results
Only the higher magnetic perturbation case δB/B = 0.5 % was considered when the
optimization was performed for radially varying deuterium and neon densities. The
results of the optimization using the fluid model are presented in figure 4.9 together
with the new optimization bounds used for the optimization using the isotropic
model – since the optimization space is four dimensional, the figures show contour
plots of two dimensional cross sections that include the optimum point.

Compared to the fluid case for the uniform densities, we now obtain a much lower
optimum value and a larger safe operational area in the nD–nNe plane, at the optimal
profile parameter values. This region is still slightly smaller than the minimum
bound length in the density directions, just like in the two-dimensional case, but
in the profile parameter directions it is large enough. Interestingly, there is little
variation in the neon profile parameter direction resulting in the new bounds for the
neon profile parameter being the same with the isotropic case as in the fluid case.

In figure 4.10 the result from the optimization using the isotropic model is presented
together with the corresponding result using the fluid model evaluated at the samples
from the optimization using the isotropic model. As in the uniform density case,
the regions are larger with the isotropic model compared to the fluid model, but
the difference between the models is smaller than for the uniform density case.
Interestingly, in the 4D optimization the fluid case yields a better result than the
isotropic case by a factor of 10, whereas the opposite was true for the two-dimensional
case. However, both cost function values, 0.05 (fluid) and 0.005 (isotropic), are small
enough to be considered sufficiently safe in a real tokamak. The isotropic model
has mostly moved the optimum in the deuterium density and profile parameter
directions.

The specifics of the minima discovered in the optimizations using the fluid and
isotropic models are presented in table 4.2 together with the fluid model specifics in
the optimum discovered using the isotropic model. As indicated by the lower limit
of the colour bars in figure 4.10 as well, the minimum is one order of magnitude
smaller in the optimum discovered using the fluid model compared to the optimum
discovered using the isotropic model. Interestingly, the cost function value from the
fluid model in the optimum discovered using the isotropic model is smaller than
the minimum discovered during the optimization using the fluid model, suggesting
that this optimum was missed during the optimization using the fluid model. This
indicates that the qualitative behaviours of the models when using radially varying
injection densities are more similar between the fluid and isotropic models than in
the uniform case.
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Figure 4.9: Contour plot representation of the GP approximated cost function for
the four-dimensional input space of radially varying deuterium and neon densities.
The domain of the GP approximations is four-dimensional, which is impossible to
visualize directly. Instead, the contour plots are cross sections in the optimal planes,
i.e. for each contour plot, two parameters are fixed at their optimal value. For
example for the nD–nNe plot in the lower left corner, cD = −1.7 and cNe = 7.3. The
black star represents the minimum of the optimization and the dots the optimization
samples, which have been projected on the planes, and the box represents the new
bounds used for the optimization using the isotropic model.

The main reason for the cost function being smaller with the fluid model is the
value of the conducted heat load, which dominates in all three cases. Because of
the cost function’s dependence on the conducted heat load is cubic for ηcond < 10 %,
a reduction by a factor of 2.5 for the conducted heat load ηcond will decrease the
conducted heat term of the cost function fηcond with a factor of 15.

Besides the conducted heat, the final ohmic current is the only other component of
significant value to impact the cost function, and it is only significant for the isotropic
case. In general though, all components are well within the safe operational limits
and such a case would pose a minimal risk in our ITER-like scenario.

4.5.2 Discussion
From a practical point of view it is advantageous that the safe operational space has
little dependence on the radial density profile parameter for neon, based on the large
size of the optimization bounds for cD in figure 4.9. This indicates that it mainly
matters that the neon is present and peaked at the edge of the plasma column, but
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(a) Contour plot representations found using the isotropic model.
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(b) Contour plot representations of the cost function using the fluid model when
evaluated at the samples of the optimization using the isotropic model. Note that
this is not the same GP approximation as in figure 4.9.

Figure 4.10: Cross sections of the GP approximated cost function that include
the optimum point found using the isotropic model. The black star represents the
minimum of the optimization using the isotropic model, the black cross the optimum
of the optimization using the fluid model (in figure 4.9) and the dots the optimization
samples, which have been projected on the planes. Note that the colour scales differ
between the two figures.
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Table 4.2: Table listing the minima found during the radially varying density
optimization. The columns specify the physics model used. The first six rows
describe the optimal density combinations and the last five rows describe the value
of the cost function and its components at the minimum.
∗ Fluid repetition of the data points of the isotropic optimization.

Fluid model Isotropic model Fluid model∗

log nD 21.82 21.95 21.95
nD [m−3] 6.66 · 1021 9.00 · 1021 9.00 · 1021

log nNe 19.50 19.46 19.46
nNe [m−3] 3.17 · 1019 2.87 · 1019 2.87 · 1019

cD −1.7 −1.4 −1.4
cNe 7.3 8.2 8.2

L 0.005 0.03 0.002
Irepr

re [kA] 0.018 7.7 · 10−5 0.17
IΩ [kA] 0.082 3.8 0.40
τCQ [ms] 78 120 85
ηcond [%] 2.0 3.6 1.5

not so much how strong the peaking. In a tokamak it would be difficult to control
the radial distributions of the injected material densities because of the diffusion
of material in a plasma, and our results indicate that for neon this would not be
a critical aspect of the material injection. An edge-localized neon density probably
generates the best results as this would establish a region of high radiation and
heat transport at the edge of the plasma, while minimizing the avalanche runaway
generation in the centre due to the neon density.

For deuterium, there is a stronger correlation between the profile parameter and
safety. The most probable reason for a centre-localized injected deuterium density
to be favoured is that the deuterium injection would most efficiently dilute the
plasma at the centre, where the temperature is the highest.

That the optimal value for the deuterium profile parameter is negative while it is
positive for neon could indicate that the deuterium should be injected before the
neon giving it more time to migrate into the centre of the plasma column, but due
to the complicated dynamics of MMI it probably would not be this simple. One
difficulty with MMI during disruptions is that the transport event triggered by the
neon injection will not only transport heat in the plasma, but ions as well – in our
simulations ion transport is not present. The ion transport significantly complicates
control of the radial variation of the injected material, so that achieving the optimal
radial density variations found in this thesis might not be impossible.
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To fully utilize the results found in this thesis, an in-depth analysis of MMI-schemes
should be performed to determine if and how it is possible to achieve a centre-peaked
deuterium density and edge localized neon density. One possible MMI scheme to
examine would be an initial injection of a deuterium pellet containing a smaller
amount of neon impurities. To start with, a deuterium pellet should ensure that the
deuterium is mostly deposited at the centre, as this is where the plasma temperature
and fuel densities are the largest. The neon impurities in the deuterium pellet
would have two purposes – reducing the drift deuterium pellets experience as well
as triggering a transport event. When the transport event has been triggered, a
massive gas injection of neon could be performed, which would move slower than a
pellet, and thus hopefully localize the neon density at the edge. However, it might
not be necessary for the optimal profiles to remain throughout the disruption – for
example, an edge localized neon that radiates away the heat is only important until
the radiative collapse is complete.

The fact that the lowest fluid cost function value evaluated on the sample set from
the optimization using the isotropic model is lower than the lowest value discovered
by the optimization using the fluid model – that is, that the optimization failed to
find a better optimum that clearly exists – indicate that the optimization using the
fluid model did not perform flawlessly. The most probable reason is that a minimum
closer to the minimum discovered using the isotropic model would have been dis-
covered with the optimization using the fluid model if more samples had been taken
during the optimization, and that this might indicate that too few optimization
samples were used to explore the four-dimensional input space fully.

That too few optimization samples have been used is further supported by the black
cross of figure 4.10b, corresponding to the optimum of the fluid optimization, not
even being close to the deepest blue regions. This is also confirmed when the ap-
proximation using the fluid model on the samples from the optimization using the
isotropic model were plotted in the optimal plane discovered through the optimiza-
tion using the fluid model. The insufficient amount of optimization samples is also
indicated by the fact that 4.10b looks different from the highlighted rectangles of
figure 4.9. That the four-dimensional data need to be projected on two-dimensional
planes to be visualized obstructs the possibility of clearly seeing which regions have
high resolution. In turn, this makes it difficult to determine where the GP approxi-
mation is reliable, which makes it difficult to draw accurate conclusions.

It is worth noting that a significantly large region of sufficiently low cost function
values were discovered nevertheless, and that the difference in location of the mini-
mum would not impact the safety or outcome of such a disruption scenario. In fact,
in an experimental scenario with uncontrollable uncertainties, it is probably better
to use a parameter combination in the safe region that is furthest away from the
boundary of the safe region, in input space parameters, than the one that has the
lowest cost function value – especially if the optimum is close to the boundary.
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5
Plasma model analysis

Understanding the reasons for the differences between the fluid and isotropic models,
which were discovered in chapter 4, is important for interpreting and using the results
found. In this chapter, the physics differences of the models will be analyzed in the
high magnetic perturbation case, δB/B = 0.5 %. Firstly, the runaway electron
dynamics will be studied and the fluid model will be adapted to discern the reason
for the difference in runaway current for the minimum discovered using the isotropic
model. Secondly, the impact of the fast electron impact ionization will be explored
for cases with high and low runaway currents. Finally, both of these cases will be
explored at even higher physics fidelity using the superthermal model of Dream.
The differences between the isotropic and superthermal models will be examined
and the energy and pitch angle distributions of the superthermal simulations will
be studied.

5.1 Runaway electron dynamics

In the optimal case discovered using the isotropic model, the most significant differ-
ence compared to the fluid model occurred for the representative runaway current.
With regards to the runaway dynamics, the two models treat the Dreicer and hot-
tail runaway processes differently – they are automatically included in the isotropic
model but are implemented as source terms to the runaway density nre in the fluid
model. It is therefore likely that one or both of these runaway generation processes
can explain the differences, at least partly.

To explore this, simulations in the optimal case were performed with both models, as
well as one simulation using the fluid model with the Dreicer runaway rate disabled
and one with the hot-tail runaway generation disabled. In figure 5.1a, important
plasma parameters are presented from all four simulations. Clearly, there are large
differences between the isotropic and the standard fluid model, just as anticipated.
Furthermore, removing the Dreicer rate does not have a significant impact on the
simulations, but removing the hot-tail rate does.

There is a significant improvement on all parameters when disabling the hot-tail
runaway rate, meaning that they behave similarly to their isotropic counterparts.
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Table 5.1: Figures of merit for the found optimum for using isotropic and fluid
models, including results from the fluid model without hot-tail and Dreicer runaway
rates.

Model Irepr
re [kA] Ifinal

Ω [kA] τCQ [ms] ηcond [%]

Isotropic 3.5 0.0046 66 5.8
Fluid 2700 110 48 3.8
Fluid, w/o Dreicer 2700 100 48 3.8
Fluid, w/o Hot-tail 160 0.012 64 3.8

The only apparent difference between the isotropic model and the fluid model with-
out hot-tail runaway rate is that with the latter the runaway current has a small,
but visible, peak for a short period of time. It is thus evident that the fluid hot-tail
runaway rate overestimates the amount of runaway electrons generated from the
hot-tail mechanism.

This is further supported by comparing this optimal case with and without runaway
generation mechanisms relevant for activated operation (not shown here), as the
difference between the fluid and isotropic models were much smaller in the activated
case. With the activated sources, the runaway current was significantly larger over-
all, which can be explained by the additions of the tritium and Compton runaway
rates. With more runaway generation overall, the impact of the hot-tail runaway
rate would be smaller and thus there would be smaller differences between the fluid
and isotropic models.

Another interesting conclusion that can be drawn from the plot of the transported
power in figure 5.1b is that the inconsistency in conducted heat load is a result of
the isotropic model having a large amount of heat transport from the hot electron
population during the TQ. The reason for this transport of hot electron energy
is that there practically exists two temperatures with the isotropic model, one for
the cold and one for the hot electron population, while there only exists one with
the fluid model. In the fluid model, the electrons of the initial deuterium plasma,
with initial temperature T = 20 keV, will instantaneously equilibrate with the cold
injected material, causing the temperature of the cold electron to instantaneously
drop. In the isotropic model however, the temperature of the hot electrons does not
drop as rapidly since the electrons of the injected material will be part of the cold
population. The hot electron temperature will equilibrate with the cold electron
temperature on a longer time scale, during which there will be a larger transported
heat from the hot electron population.

In table 5.1, the various figures of merit of the disruption are listed. As shown in the
table, the fluid model without the hot-tail runaway rate still produces a runaway
current larger than the maximum safe current. This suggests that there are still
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(a) Time evolutions of the currents in the optimal case using the (i) isotropic model,
(ii) standard fluid model, as well as the fluid model with the (iii) Dreicer and (iv)
hot-tail seed generation mechanisms disabled. The range is cropped at 4 MA to
focus on the differences. A blue star marks the representative runaway current.
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(b) Time evolutions of (i) the volume averaged plasma temperature, (ii) the volume
averaged normalized electric field and (iii) the power transported through the edge
(note the logarithmic time axis). With the isotropic model, the total transported
power (black) is a sum of the contribution from the cold electrons (light grey) and
the hot electrons (dark grey), while the total power in the fluid model only comes
from the cold electrons.

Figure 5.1: Time evolutions of important plasma parameters in the optimal case,
comparing the results between the isotropic and fluid models.

some impactful differences between the two models that we have not considered yet.
However, it is worth pointing out that removing a mechanism such as the hot-tail
runaway rate from the simulations can result in obscure consequences with regards
to the plasma evolution, due to the complicated correlations of the dynamics.

Since the only runaway seed generation mechanism left when the hot-tail generation
is removed is Dreicer, some aspect of the fluid model most likely causes the Dreicer
runaway generation to be overestimated as well. Another explanation could be that
the omission of the hot-tail generation rate might implicitly impact other plasma
parameters such that the fluid Dreicer generation is increased. This would explain
why removing the Dreicer generation from the fluid model did not seem to have
an impact on the runaway current, suggesting that the Dreicer runaway rate is, for
this case, negligible. However, when comparing the Dreicer generation rate between
the fluid model with and without the hot-tail generation rate enabled it was found
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that they were similar. This suggests that some aspect of the fluid model causes the
Dreicer runaway rates to be overestimated as well, even though to a lesser degree
than the overestimation of the fluid hot-tail runaway rate.

One could therefore suggest scale down the hot-tail and Dreicer generation rates of
the fluid model. This would cause the fluid model to yield more similar results to
the isotropic model for this simulation of the optimum discovered using the isotropic
model – but it is definitely not guaranteed to yield more accurate results for all
disruption scenarios. The fluid and isotropic models produce very similar results near
the minimum discovered using the fluid model, demonstrating that the differences
are parameter dependent, and as such cannot be bypassed by simply eliminating or
down-scaling any runaway rate.

To conclude, the hot-tail runaway rate is substantially overestimated in the fluid
model for some regions of the two dimensional density space explored in chapter 4.
The Dreicer runaway rate in the fluid model is overestimated as well for the minimum
discovered using the isotropic model, but not to the same degree. However, there
might be a few additional inconsistencies between the fluid and isotropic models –
concerning the electron heat and electric field feedbacks, as well as the fast electron
impact ionization to be studied in the next section – but these are most likely not
as significant as the overestimated hot-tail runaway rate.

5.2 Fast electron impact ionization

To study the effect of the fast electron impact ionization on the simulation results
generated with the isotropic model, two cases with δB/B = 0.5 % were considered
– the optimum discovered using the isotropic model and a case when a significant
runaway current was generated while the CQ time was within the safe interval
[50, 150] ms.

It was apparent that the fast electron impact ionization only impacts the simulations
to a small degree based on the plasma parameters we have plotted – qualitatively,
the only clear difference is in the runaway currents. Table 5.2 clarifies that only
the currents exhibit non-negligible differences. For instance, the runaway current is
almost a factor of 10 larger in the optimal case, but both of these runaway currents
are very small compared to the safe operational limit of 150 kA. The same is true for
the final ohmic current of the high runaway current case. Only the runaway current
for the high runaway case is of a significant size while still exhibiting a notable, but
not too large, difference of about 17 %.

The explanation is that in both of the studied cases the hot electron population is
a relatively small fraction of the total electron population, and as such it does not
enhance ionization much compared to the large cold electron population. In the high
runaway current case, there might have been a significant difference if the runaway
region was also kinetically resolved, as this population would be significantly larger
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Table 5.2: Figures of merit for study of impact of kinetic ionization on simulations
using the isotropic model.

Case Kinetic ionization Irepr
re [kA] Ifinal

Ω [kA] τCQ [ms] ηcond [%]

Minimum Enabled 3.5 0.0046 66 5.8
Minimum Disabled 30 0.0060 66 5.6
High Irepr

re Enabled 1800 35 63 5.0
High Irepr

re Disabled 2100 52 60 5.0

(and contain much more kinetic energy) than the hot population, but this has not
been studied.

As mentioned above, there is a higher runaway current when the fast electron impact
ionization is disabled in the high runaway case. This can be explained by the
avalanche generation, as it is inversely proportional to the number of free electrons
in the plasma according to (3.5). When fast electron impact ionization is disabled,
there should be a slightly smaller number of free electrons then in the case with
the fast electron impact ionization enabled, and this will in turn result in a larger
amount of runaway electrons being generated from avalanche generation.

5.3 Superthermal plasma model

In this thesis, one major theme has been the use of different plasma models to
simulate the fusion plasmas and how they compare. The fluid and isotropic plasma
models in Dream have been utilized because of their relatively low computational
cost, which is highly beneficial when making a large number of simulations. However,
Dream has several more plasma models of higher physics fidelity. The superthermal
mode of Dream is very similar to the isotropic model, except that it evolves also
the pitch angle part of the hot electron distribution function.

Using the superthermal model as part of the optimizations would not be possible
within the time constraints of this project, as the computational cost is much larger
than that of the isotropic model – even when the radial resolution was lowered by
more than 50 % one simulation took several hours. As the impact of plasma model
is still very relevant for the purposes of this thesis, the superthermal model was
used to simulate the same two cases of section 5.2 – the minimum discovered using
the isotropic model case and a case of high runaway current and long CQ time. In
order to reduce the computational cost of the superthermal simulations, a radial
resolution of only seven points was used, in contrast to the 20 points that were used
in the isotropic model. Seven radial points were also used in the isotropic simulations
performed for this section, in order for a fair comparison of the models.
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(a) Time evolutions of the currents in the optimal case/high runaway case with the
(i)/(iii) isotropic and (ii)/(iv) superthermal model. A blue star marks the represen-
tative runaway current.
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(b) Time evolutions of (i) the volume averaged plasma temperature, (ii) the volume
averaged normalized electric field and (iii) the transported power for the high run-
away current case.

Figure 5.2: Time evolutions of important plasma parameters for comparison be-
tween isotropic and superthermal models.

In figure 5.2 the same plasma parameters as in the previous sections are presented for
the isotropic and superthermal simulations of the optimal and high runaway cases.
In the optimal case, all plasma parameters evolved identically according to the plots
(which is why they are not shown here), and this suggests that the isotropic model
is accurate in this case. The plasma parameter evolutions are very similar in the
high runaway current case as well, but there are small differences as shown in both
figure 5.2a and 5.2b. The major difference is that the runaway current is 33 % lower
with the superthermal model in the high runaway case.

In the electric field evolution, there are fewer, but larger, spikes, when comparing
the isotropic cases in this section to those of the previous sections in this chapter.
These spikes are thus most likely caused by a finite radial resolution, which suggests
that even using only 20 points for the radial resolution is less than ideal.

An interesting aspect of the superthermal mode is the energy and pitch angle dis-
tribution of the hot electron population, which we can see in figure 5.3. In the
optimal case discovered using the isotropic model, shown in figure 5.3a, there is a
small but non-negligible hot electron population at t = 75 ms compared to the end
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of the simulation, when all hot electrons have either cooled down and joined the cold
population or become accelerated into the runaway population. The hot electron
population is much larger in the high runaway current case, as shown in figure 5.3b.

Perhaps more unexpectedly, there is still a significant hot electron distribution at the
end of the simulation in the high runaway case. After 200 ms, it could be expected
that the electron distribution is distinctly divided into a bulk (cold) and a runaway
population with very few electrons in between. This is because of the flux of hot
electrons into the cold population through the lower momentum boundary for the hot
electron population, and the runaway generation through momentum flux through
the critical momentum boundary. Recall that the lower momentum boundary for
the hot electron population is at p = 0 since the cold electron population is not
resolved in momentum space, as shown in figure 3.1b. The reason that there is still
a significant hot electron population might be that the electric field is non-negligible
until about 180 ms, which could reduce the flux of electrons from the hot to the cold
populations, however, this should increase the runaway generation as well.

Furthermore, the distributions are shifted towards lower pitch angles, which is ex-
pected since the electrons have smaller average pitch angles because of the electric
field acceleration. However, since the hot electron population is noticeably beamed
in the forward direction, it is not approximately isotropic. This shift towards lower
pitch angles could offer an explanation as to why there is a larger runaway current
in the isotropic simulations. If the assumption about collisional isotropization is
wrong, the isotropic model can be overestimating the runaway electron densities for
higher pitch angles, resulting in a higher runaway current than when the pitch angle
dependence is resolved.

In this thesis, the hot electron current is counted towards the runaway current, but
the hot electrons are not part of the runaway electron population. This is significant
because the runaway electrons can only become part of the thermal electron popu-
lation through reverse avalanche, while there is a constant flux of electrons into the
cold electron population from the hot population. As shown in figure 5.3a, there is
a significant hot electron population in the simulation with the superthermal model
at t = 64 ms. However, most of the hot electrons are located close to the cold
electron population near p = 0, while few electrons sit near the runaway bound-
ary, indicating that there is no significant runaway generation due to momentum
flux from the hot population. In the fluid model, where there is no hot electron
population, these electrons would be already defined as runaways at t = 64 ms. Be-
cause these electrons are part of the runaway population in the fluid model, they
will further power the runaway electron generation through avalanche. Since the
only losses from the runaway population are from transport and reverse avalanche,
the runaway electrons can only return to the cold electron population under certain
circumstances, while there is a constant flux of hot electrons to the cold population
at p = 0. Thus, the inability of the fluid model to resolve the momentum-space
dynamics of the hot-tail generation and subsequent thermalization and acceleration
of the superthermal population impacts the fluid results significantly. As such, the
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(a) Energy and pitch angle distributions from the superthermal model in the mini-
mum discovered using the isotropic model.
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(b) Energy and pitch angle distributions from the superthermal model in the case
with high runaway current and fairly long CQ time.

Figure 5.3: Hot electron distribution as a function of the momentum and pitch
angle, which has been obtained from superthermal simulations. The distribution
functions at r = 0 are presented, and (i) at the time when the representative runaway
current is taken and (ii) the final time step of the simulation.

energy and pitch angle distributions from the superthermal simulations further sup-
ports the conclusion of section 5.1 about the hot-tail runaway rate being the major
reason for the inconsistencies between the fluid and isotropic models.
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Realizing fusion as an energy source would solve many of the environmental prob-
lems our society faces today. One possible path for achieving fusion is through the
tokamak concept, but it still faces many challenges before it can become a viable
source of energy. One of the major challenges is the occurrence of disruptions that
can cause mechanical stresses and heat related damages to the machines. Disruption
mitigation is thus an important subject of research. In this thesis, massive material
injection of deuterium and neon for the mitigation of disruptions have been stud-
ied using both fluid and kinetic plasma models. In chapter 4, optimization of the
injected densities was performed, both with uniform and radially varying density
distributions. A cost function was systematically developed, combining the relevant
disruption parameters – runaway current, final ohmic current, current quench time
and conducted heat loads – in order to reliably quantify the disruption evolution
and maximize the amount of information gain. Bayesian optimization was used to
find the optimum of this cost function, as well as to explore regions of the parameter
space exhibiting tolerable disruption outcomes. The optimization was initially done
in a larger region using the computationally efficient fluid plasma model, and then in
a smaller, promising region utilizing the higher physics fidelity of the kinetic plasma
model. Furthermore, the differences between the models in the kinetic optimiza-
tion domain were analyzed. Finally, specific disruption scenarios were studied more
thoroughly in chapter 5 to determine the reasons for the differences between the
fluid and kinetic models, as well as determining the impact of fast electron impact
ionization and studying the energy and pitch angle distributions obtained from the
kinetic models. Here we will summarize the conclusions related to the objectives of
chapter 1, followed by a review of possible future research directions.

6.1 Conclusions

The specific conclusions from this thesis are now presented together with the corre-
sponding aims specified in chapter 1.

To systematically develop an informative cost function to reliably quantify disrup-
tion evolutions of massive material injection scenarios following good optimization
practises.
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The cost function was designed to yield values lower than one for disruption scenarios
when all disruption parameters were within their safe operational limits, and higher
than one otherwise. Outside the safe operational limits, all disruption parameters
contributed linearly to the cost function. Inside the limits, the disruption parameters
were processed differently, to reflect the order of importance of the various figures
of merit. Namely, the cost function favoured lower currents over lower heat loads,
which in turn would be more favourable than current quench times close to the
middle of its safe operational interval.

To find safe operational regions and the optimum of this cost function in the input
space spanned by the injected material densities, as well as their radial variation,
using fluid plasma models.

For uniformly distributed densities, safe regions of the cost function were discovered
for both higher and lower magnetic perturbation levels mostly centred around the
discovered optimum. For the lower perturbation case, the safe region was fairly
large, but this was not true for the higher perturbation case. The optima were
found around nD = 1022 m−3 and nNe = 1019 m−3, but the optimum moved to a
lower neon density for the case with the lower magnetic perturbation level. When
optimization was performed with radially varying injected densities, a radial profile
of the injected deuterium that is slightly peaked close to the plasma centre was
favoured. The neon density was less sensitive to the radial distribution, but the
optimum corresponded to edge localized neon densities.

To explore the discovered safe operational regions using both fluid and kinetic plasma
models, and perform a qualitative analysis of the differences between the two models.

For radially uniform densities, the kinetic model yielded more optimistic results –
yielding lower values of the cost function for the lower magnetic perturbation, and
a larger region of safe values for the higher perturbation. The optimum is found
at higher neon densities and slightly lower deuterium densities using the kinetic
model, compared to the fluid model. Of the cost function components, the run-
away current was the parameter that attained the most disparate values between
the fluid and kinetic models. This was explained by the hot-tail runaway generation
being overestimated in the fluid model. The only parameter, for which the kinetic
model yielded more pessimistic results, was the conducted heat load, however the
differences between the models was one order of magnitude smaller than the limit of
safe operation. For radially varying densities, the differences were less pronounced.
Fairly large regions of safe values were discovered for all four-dimensional optimiza-
tions, and all optima were orders of magnitude lower than one. However, it was
difficult to draw reliable conclusions regarding the cost function behaviour in the
four dimensional parameter space, as the results indicated that too few optimization
points had been used, resulting in somewhat unreliable GP approximation.

To study the electron energy and pitch-angle distribution of the discovered optimum
and a runaway-dominated case using the kinetic model.
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A non-negligible amount of mildly superthermal electrons were present during the
simulations in the optimal case, but they had disappeared (thermalized) by the end
of the simulation. For the runaway dominated case, there were large amounts of
runaways both in the middle and at the end of the simulation. In both cases the
distributions were shifted in the momentum and pitch angle space towards lower
pitch angles.

To examine the significance of fast electron impact ionization in a high and low
runaway case.

The fast electron impact ionization had negligible effect on both the optimal and
runaway dominated cases. We suspect this tentative conclusion could be changed
in simulations that kinetically resolve also the runaway region, but that is outside
the scope of this thesis.

6.2 Outlook
There are numerous challenges connected with tokamak disruptions and runaway
electrons, and this thesis only touched on a fraction of these. Nevertheless, proceed-
ing from this thesis, there are many possible avenues of research investigations that
can be explored.

One of the more straightforward ideas would be to do a sensitivity scan around the
optima discovered using the isotropic model – it would be advantageous to know
how large perturbations of the input parameters would be needed to have a large
effect on any of the cost function components. This would certainly be needed if
the results of this thesis were to be directly implemented for an ITER-like scenario,
as it would inform about the reliability and stability of the optima.

One natural extension of this thesis would be to add even more layers of higher
physics fidelity to our optimization algorithm. Especially the runaway current was
decreased when going from the fluid to the isotropic model, and the high runaway
scenario indicated that the same could be true when going from the isotropic model
to the superthermal model. However, there is a substantial increase in computational
cost when using plasma models of higher physics fidelity – and thus, this might not
be practical. However higher fidelity checks of a finite number of interesting cases
would definitely be possible and interesting. Regarding optimizations, this would
only be relevant if the computational cost could be lowered. The total computational
time might be lowered by lowering the resolution or computationally using practices
such as parallelization.

Another approach related to plasma models would be to optimize an activated dis-
ruption scenario using the kinetic models of this thesis. Only non-activated dis-
charges were thoroughly studied in this thesis, while activated cases are highly rel-
evant with regards to fusion development. In Ref. [12], a similar optimization was
performed, but using only the fluid model, and no safe scenarios were discovered.
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Exploring an activated disruption scenario more thoroughly, also using kinetic mod-
els and possibly with other MMI compositions, would be very relevant and it would
be very advantageous for the future of ITER-like tokamaks if safe scenarios could be
constructed. As of now, Dream only has the ability of considering fluid-generated
tritium and Compton electrons. Since the momentum-space dynamics of these elec-
trons could potentially play a role, it could be interesting to treat these source terms
kinetically as well.

We have only studied a very simple model of MMI in this thesis, where the injected
material is instantaneously distributed according to radial distributions of very strict
forms and only two injected materials have been used. Further optimization studies
could be made with other injection materials, such as argon, other optimization
parameters, such as when the different materials are injected, as well as changing
MMI model itself, such as how the injected material is distributed in the plasma
over time.

Finally, to fully utilize the results of the radially varying optimization, an in-depth
analysis of MMI schemes would have to be performed to determine if and how
it is possible to achieve the optimal radial density distributions discovered during
optimization. One approach, combining the injection of a deuterium pellet with
small amounts of neon impurities followed by massive gas injection of neon, was
suggested in chapter 4, but it is uncertain whether it would work. Furthermore
there are many possibilities to explore, since there are many realizations of MMI,
for example various forms of pellet injection and massive gas injection, and even
more ways of designing and combining these MMI methods.
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