Deep Learning Methods for MRI Brain
Image Analysis:

3D Convolutional Neural Networks for Alzheimer’s Disease
detection and Brain Tumor classification

Master’s thesis in Complex Adaptive Systems

Mahmood Nazari and Karl Backstrom

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2017, EX085/2017

MASTER’S THESIS 2017

Deep Learning Methods for MRI Brain Image Anal-
ysis:

3D Convolutional Neural Networks for Alzheimer’s Disease detection
and Brain Tumor classification

Mahmood Nazari and Karl Backstrom

Supervisor and Examiner: Prof. Irene Yu-Hua Gu,
Dept. of Electrical Engineering, Chalmers Univ. of Technology

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2017, EX085/2017

Deep Learning Methods for MRI Brain Image Analysis

3D Convolutional Neural Networks for Alzheimer’s Disease detection and Brain
Tumor classification

Mahmood Nazari & Karl Backstrom

© Mahmood Nazari & Karl Backstrom, 2017.

Master Thesis EX085/2017
Department of Electronic Engineering
Chalmers University of Technology
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: Illustration of a 3D brain image being analyzed by a neural network.

Typeset in BKTEX
Gothenburg, Sweden 2017

v

Deep Learning Methods for MRI Brain Image Analysis

3D Convolutional Neural Networks for Alzheimer’s Disease detection and Brain
Tumor classification

Mahmood Nazari & Karl Backstrom

Department of Electrical Engineering

Chalmers University of Technology

Abstract

In this thesis, we investigate deep learning methods for medical image analysis,
in particular brain disease detection and classification. We attempt to solve two
problems, namely (1) Alzheimer’s disease (AD) detection and (2) Brain tumor (BT)
classification into high-grade and low-grade gliomas. Efficient and accurate diagnosis
of AD is essential for initiating treatment at an early stage, increasing the chances
of postponing the irreversible neurodegenerative effects of the disease. To this end,
many studies have investigated image processing and machine learning methods for
computer-aided-diagnosis (CAD) of AD. In the first part of our work, we continue
along this line, and propose a simple 3D CNN architecture for feature extraction and
classification of pre-processed T1-weighted MRI brain images for AD detection. The
dataset used for training and evaluation consists of 340 subjects, and was obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The resulting test
performance on unseen data is a classification accuracy of 98.74%, with a sensitivity
(AD detection rate) of 100% which is comparable with the current state of the art.
In this thesis, we thoroughly investigate the effect of some parameters involved in the
CNN training process, such as dropout probability and learning rate. We also show
the impact of data pre-processing on the end performance, by comparing several
different pre-processing pipelines. For the second part of our work, namely brain
tumor classification, we employ a similar method using CNNs, but using a different
architecture. The dataset was obtained from the MICCAI BRaTS competition 2017
and consists of 285 subjects. Our preliminary study on brain tumor classification
has shown promising results with a classification accuracy of 85.96%, but further
work is required for a more in-depth study of the topic.

Keywords: Machine Learning, Deep Learning, Artificial Intelligence, Medical Imag-
ing, Alzheimer’s Disease, Convolutional Neural Network, Brain Tumor, High Grade
Gliomas, Low Grade Gliomas, MRI

Acknowledgements

We would like to express our deepest gratidue to friends and family for their
support and encouragement during our work on this thesis.

Also, we thank our supervisor and examiner Irene Yu-Hua Gu of the Electronic
Engineering department at Chalmers University of Technology for all her help during
this thesis, and for providing the necessary hardware without which this work would
not have been possible.

Mahmood Nazari & Karl Backstrom, Goteborg, August 2017

vii

List of Figures

List of Tables

1 Introduction

Alzheimer’s Disease .
Brain Tumor
Machine Learning . .
Convolutional Neural Networks and Deep Learning
Aims of this project .

1.1
1.2
1.3
1.4
1.5

Contents

2 Background Theory and Methods: review
2.1 Overview of Related Works on AD Detection
2.2 Machine Learning and Deep Learning
Artificial Neural Networks

2.3

24

221
2.2.2
2.2.3
224
2.2.5

2.3.1

Neurons . . .

Activation Functions, Nonlinearity
Feedforward Neural Network
Classification Problems
Deep Learning
Convolutional Neural Networks
2.3.2 Recurrent Neural Network

2.3.2.1 Long

Training the Network
Performance Measures

24.1

24.2
24.3
244

2.4.5

2.4.6

2.4.1.1 Loss

Short-Term Memory (LSTM)

24.1.2 Accuracy
Parameter Optimization
Back Propagation Algorithm

Training Data

2441 TestData

Overfitting . .

2.4.5.1 Regression Problems
2.4.5.2 Overfitting in an ANN Classifier
2.4.5.3 Preventiono

Regularization

ix

Contents

24.6.1 FEarly Stopping oL
2.4.6.2 L-Regularization
2.4.6.3 Dropout
2.5 Weight Initialization
2.5.1 Xavier Initialization
2.6 Graphic Process Unit oL
2.7 Deep Learning Software and Libraries
Methods
3.1 Selection of CNN Architecture
3.2 Dataset Description
3.2.1 Alzheimer’s Disease Detection
3.2.2 Brain Tumor Classification
Experiments and Results
4.1 Data Pre-processing Lo
4.1.1 Alzheimer’s Disease
4.1.1.1 Dataset Dy
4.1.1.2 Dataset Dy
4.1.1.3 Dataset Dyo
4114 Dataset Ds
4.1.2 Brain Tumors
4121 Dataset Dy
4.2 Hardware and Software for Deep Learning
4.3 Partitioning of Training/Validation/Test Sets
4.4 Case Study 1
4.4.1 Dataset Dy
4.4.1.1 Effect of Batch Normalization
4.4.1.2 Selection of Best Hyperparmeters
44.1.3 Discussion
4.42 Dataset Dy
4421 Discussiono
4.4.3 Impact of Data pre-processing on CNN Performance
44.3.1 Dataset Dy
4432 Dataset Ds
4433 Discussiono
4.5 Case Study 2
4.5.1 Dataset Dy
4.6 Case Study 3
4.6.1 Dataset Dy
4.7 Case Study 4 for Brain Tumor Classification
4.71 Dataset Dy
4.8 Summary e
4.9 Comparison with Existing Works
Conclusion

5.1 Future Work

27
27
29
29
30

31
31
31
32
33
33
34
34
34
34
35
35
35
38
38
40
41
45
45
45
46
47
47
47
48
48
49
49
50
o1

53

Contents

Bibliography 55

A Appendix 1 I

X1

Contents

xii

1

Introduction

1.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is a chronic neurodegenerative disease which is presently
incurable, the cause of which is not yet understood. As of 2015, roughly 30 million
people around the world suffer from AD [1]. Some of its symptoms consist of dis-
orientation, language difficulties, memory loss and mood swings. The average life
expectancy after onset is about 3 to 9 years and the disease progressively worsens
the patient’s quality of life. With the aging population, efforts have been made
to find better treatments for this disease. However, attempts to develop more effi-
cient drugs have seldom been successful [2]. For this reason, more focus has shifted
towards finding more efficient methods for early diagnosis [3] of the disease, and
postponing the irreversible damage caused by it.

Currently, the diagnosis of AD is done in a clinical setting by observing the progres-
sion of the symptoms of dementia. This implies that the patient must show signs of
gradual mental deterioration, either by direct observation of the doctor or reported
by family members or close friends. Apart from the subjective nature of clinical
methods, theoretical approaches are also of importance. For example, the detection
of specific biomarkers in the patient’s cerebrospinal fluid (CSF) [3]. Retrieval of the
CSF is done through an invasive method, which could be risky. Therefore it seems
advantageous to look at non invasive methods such as imaging techniques.

Advanced medical imaging techniques such as Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI), Single-Photon Emission Computed Tomography
(SPECT), Position Emission Tomography (PET) are currently used to assist in the
diagnostic process [4] by manual inspection of a neurologist. This can give an indi-
cation regarding the correct diagnose, as the difference between a scan of a healthy
person and one diagnosed with AD is clear in many cases (see Figure 1.3). Still, this
requires a medical expert to manually inspect the image, which is time consuming,
and might give varying outcomes depending on the experience of the examiner. In
order to quickly and accurately determine the diagnosis, it is desirable to have system
for Computer-aided diagnosis (CAD). For example, a system for automatic analysis
of medical images could provide a medical doctor with markers giving indications
of the correct diagnosis. This could potentially reduce the time and cost for the
diagnostic process, as well as patient discomfort. To this end, we will in this project
investigate the possibility of applying methods of artificial intelligence and machine

1. Introduction

learning to develop a system that can automatically, without the requirement for
manual inspection, detect AD using one MRI scan of a patient.

(a) Patient diagnosed with (b) Healthy subject (NC)
AD

Figure 1.1: Visualization of the difference between the MRI scan of a patient
diagnosed with Alzheimer’s disease, compared to a healthy, elderly person in original
MRI images.

Figure 1.2: Examples of slides from a 3D MRI scan of a patient diagnosed with
Alzheimer’s disease (from dataset Dy, see section 4.1.1.2).

Figure 1.3: Examples of slides from a 3D MRI scan of an elderly healthy person
(from dataset Dy, see section 4.1.1.2).

1. Introduction

1.2 Brain Tumor

A glioma is a type of malignant Brain Tumor (BT) that origins in the brain
or spine. The symptoms of a glioma depends on it’s position, but can include
headaches, vomiting, seizures, or even visual loss if the optic nerve is affected. The
exact causes of gliomas is yet unknown, although some risk factors have been inves-
tigated, such as age, radiation exposure, genetics, diet with varying results [5].
There are several glioma grading systems, one of the most common one is the World
Health Organization (WHO) [6]. Gliomas can be divided into low-grade gliomas
(WHO grade II) and high-grade gliomas (WHO grade III-1V). Low-grade gliomas
tend to exhibit benign tendencies, and hence a better prognosis for the patient, but
increase in grade over time, and is hence classified as malignant. The prognosis for
patients suffering from a glioma is generally poor. It has been reported that for
low-grade gliomas, the age-standardized 10-year relative survival rate was 47% [7].
However, for high-grade gliomas the median overall survival for WHO grade III is
approximately 3 years, and for glioblastoma multiforme a poor overall survival of
around 15 months [8].

(a) HGG (b) LGG

Figure 1.4: Slices of FLAIR MRI 3D images corresponding to both low and high
grade gliomas

Figure 1.5: WHO glioma grading system

Type Grade Description Median survival (years)

Astrocytoma 1l Found diffusely infiltrating into surrounding neural tissue; 6-8
increased hypercellularity, no mitosis

Oligodendroglioma 1l Occur in the white matter and cortex of the cerebral 12
hemispheres, low mitotic activity, no necrosis

Oligoastrocytoma 1l Diffuse mixed tumor with mixed glial background 3to>10

Anaplastic-astrocytoma/] Highly infiltrating tumors with increased mitotic activity; =

oligodendroglioma no necrosis or vascular proliferation

Glioblastoma \% Infiltrating glial neoplasm with necrosis and 1to2

micro-vascular proliferation; high rate of mitosis

1. Introduction

1.3 Machine Learning

One machine learning topic is Artificial Neural Networks (ANNs) (see full def-
inition in Theory), which is a computational system that has been proven useful
in problems such as classification, pattern recognition, and regression. An ANN
consists of a set of neurons with a corresponding weights that controls the influ-
ence of the signals between them (see details under Theory). The training process
of an ANN consists of adjusting the trainable parameters of the network, e.g. the
above mentioned neuron weights, using an iterative optimization method based on
Stochastic Gradient Descent (SGD). This gives rise to the problem of efficiently
computing the gradients of the performance of the ANN, for which, in 1986, Rumel-
hart, Hinton and Williams [9] proposed the back propagation algorithm to solve,
and showed experimentally it’s usefulness in practice. Back propagation was quickly
adopted by the front line researchers of machine learning at the time. An example of
this is LeCun who successfully performed handwritten digit recognition using arti-
ficial neural networks, trained with back propagation [10], in combination with fea-
ture maps and weight sharing techniques. Later on, this structure became known as
Convolutional Neural Networks (CNN) [11]. During this time, many advances
using ANN variants were made, an example of which is the Long Short-Term
Memory (LSTM) unit [12] proposed by Hochreiter et al. in 1997. The LSTM unit
is a type of stateful neuron to be used in Recurrent Neural Networks (RNN),
which solves the problem of long-term dependencies. The long-term dependency
problem was investigated more in detail 1994 by Bengio et al. in [13]. These are
examples of several advances that were made during this time using ANN:s, but still,
they were outperformed by analytical machine learning methods such as Support
Vector Machines (SVM) [14] and Gaussian processes [15]. One reason for this
can be that the training process of ANN is computationally expensive, and the run-
ning time scales rapidly in the number of trainable parameters. As computer power
became more easily accessible, ANN approaches grew more common. Even though
the training process of an ANN is in general more computational heavy, the struc-
ture is more flexible than e.g. SVM with regards to the input, and also often faster
in the prediction step. Ever since, the research on CNN:s started growing rapidly,
and proposed structures such as AlexNet [16], VGG [17], GoogLeNet [18] have been
found to perform excellently, even super-human, on tasks such as character/digit
recognition, traffic sign recognition, image classification and similar problems.

1.4 Convolutional Neural Networks and Deep Learn-

ing

Convolutional neural networks [11] consist of convolutional layers, that makes
use of the efficiently computable gradients to allow a number of filters to be trained
to recognize features in an image. The layer outputs a feature map that is the result
of a convolution of each filter with the pixels of the image. Since each filter is applied
at several positions in the image, weight sharing is achieved which results in both
a greatly reduced number of trainable parameters, as well as translation-invariant

4

1. Introduction

feature detection. It is common to use several consecutive convolutional layers to
form deep convolutional neural networks, where the resulting feature map
from one layer is input to the next. This allows the system to learn a hierarchical
abstract representation of features from complex data, a process known as deep
learning. As mentioned above, this way of learning has been empirically proven
to be advantageous for replacing humans in classification tasks. The reason for this
might be that it is similar to the way the human sensory systems work; some studies
have shown that the human visual perception, as well as speech production systems
processes the data in layered hierarchical structures [19].

1.5 Aims of this project

In this project, we aim to address mainly the following issues:
o Deep learning methods, more specifically 3D CNNs, for Alzheimer’s disease
detection and brain tumor classifcation, using MR images.
« Finding the optimal choice of CNN architecture and hyperparameters of the
training process.

1. Introduction

2

Background Theory and Methods:
review

In this chapter, we review the theoretical background of the methods that are related
to our study. We begin by discussing other works that are related to ours. Then,
to further increase the understanding of the underlying theory of our methods,
some fundamental concepts of machine learning with artificial neural networks are
introduced.

2.1 Overview of Related Works on AD Detection

In this section, we give an overview of publications related to our thesis, and com-
pare their results with ours.

DeepAD: Alzheimer’s Disease Classification via Deep Convolutional Neu-
ral Networks using MRI and fMRI [20]

In this article, pipelines for processing both Magnetic Resonance Imaging (MRI)
and functional MRI (fMRI) images are described, and a deep convolutional neural
network model is trained to classify these images into either Alzheimer’s Disease
(AD) of Normal Control (NC). Two different sets of data were used for training and
testing the model, which were of sizes 144 (AD: 52, NC: 92) and 302 (AD: 211, NC:
91). Methods of augmenting the data is then used in order to generate an incred-
ible amount of several hundred thousands of input images, with which the model
is trained. In this work, they combine the output probability distribution of the
CNN with what they call a decision making algorithm, which chooses to disregard
the output of the CNN in ambiguous cases, i.e. if the probability of one class is not
sufficiently higher then the probability of the other. This is a relevant step towards
developing a system that is applicable in a clinical setting, since if the output of
the system does not show certainty in it’s prediction, it should not be taken into
account in the diagnostic process. The threshold of allowance for uncertainty can
then be tuned, to allow arbitrarily high performance, which might be why several
cases studies in this article presents a resulting accuracy of 100%. The details of this
decision-making algorithm, and how it’s parameters were tuned are left out of this
article. However, for our purpose, it is relevant only to compare the performance
of the CNN component of their system, since this is the main topic of our thesis.
The best performance in this related work was achieved using the Googl.eNet ar-
chitecture, with which they achieved a classification accuracy of 98.84%. The class

7

2. Background Theory and Methods: review

distribution of the datasets used, as well as a confusion matrix that shows the class
specific sensitivities of their model, are also left out of this article which makes com-
parison with our results more difficult. Of the work that has been done on this
topic, this article represents the current state of art. In the Conclusion of this
thesis, we compare the methods and corresponding results in this article with the
the ones used in this thesis, which is a simple and straight-forward CNN structure,
keeping the original structure of the input MRI image intact and analyzing it using
3-dimensional convolutions. Also, our results are achieved with a larger dataset and
a simpler preprocessing pipeline. In this thesis, we also make an effort to declare
all details regarding the performance, such as the class distribution, class sensitivity
and specificity, and discussing correlation between training and test datasets due to
several images per patient.

Predicting Alzheimer’s disease: a neuroimaging study with 3D convolu-
tional neural networks [21]

This project makes use of 3D convolutional neural networks, trained to perform clas-
sification into three classes: AD, MCI (mild cognitive impairment) and NC, and the
resulting accuracy in AD-NC classification is 95.39%. The dataset used is claimed
to be downloaded from ADNI, and to consist of 755 patients in each class, even
though it is specified on the fact sheet from ADNI [22] that their projects in total
has included only 350 patients diagnosed with AD. In this paper it is mentioned
that their data was provided from [23] in which the number of NC/AD subjects
were 232/200. This type of confusion regarding the dataset used for training and
evaluation makes comparison more difficult.

Alzheimer’s disease diagnostics by adaptation of 3D convolutional net-
work [24]

Dataset consists of 70 diagnosed AD patients and 70 NC. Accuracy for NC/AD
classification is 97.6%. The model used in this work combines a pretrained model
for feature extraction with additional task-specific layers.

Earl Diagnose Of Alzheimer’s Disease With Deep Learning [25]

This work makes use of stacked, sparse auto encoders, in combination with a softmax
regression layer. Their dataset consists of 65 patients diagnosed with AD, and 77
NC. Highest classification accuracy achieved is 88.57%.

2.2 Machine Learning and Deep Learning

The fundamentals of deep learning begin with artificial neural networks, which will
be introduced in the next section. Note that in this project, supervised learning
is used, which means that we apply machine learning methods using labeled training
data.

2. Background Theory and Methods: review

2.2.1 Artificial Neural Networks

An Artificial Neural Network is a computational structure that consists of one or
more computational units known as neurons (defined below). A neuron acts as a
mathematical function R® — R, where the elements of the input vector are the
outputs of other neurons (nodes) and the output later on an input to a different
neuron, with the exception of so called input and output neurons. The input to
the input neurons of an ANN are given by the user of the ANN, usually a computer
program, who also fetches the output of the output neurons once the computation
of an ANN is finished. The normal usage of an ANN is hence that the input neurons
are fed some data by the user, and after that data has been processed and passed
through the neurons of the ANN, the output of the output neurons is collected. It
is desirable if the output given by the output nodes is some non-trivial, more easily
interpreted information about the input data, for example the class of the input in
the case of classification problems. The design of more Complex ANN designs that
consist of more than one hidden layer are commonly refereed to as Deep Neural
Networks (DNN).

Figure 2.1: Simple artificial neural network

2.2.2 Neurons

A neuron is, as mentioned above, a function R” — R where n is the number of inputs
to the neuron. Each neuron has a set of internal parameters, namely a weight vector
w and a bias b. The output y of a neuron, given inputs x = (z, ..., z,) is computed
as follows

y=f(wx+0b) (2.1)

where ¢ is the activation function, the definition of which follows in the next
section. An ANN with a set of neurons for a fixed set of internal parameters (weights,
bias) is known as a model.

2. Background Theory and Methods: review

Bias
b
(X O——>W;
Activation
Function
Output
Inputs< *2 2 s f ¥
X O W,
Weights

Figure 2.2: Visualization of a neuron [26]

2.2.3 Activation Functions, Nonlinearity

The choice of activation function for the neurons of an ANN is vital for the net-
work’s ability to process nonlinear input data. The activation function should be
chosen in a way such that nonlinearity is introduced to the system. Otherwise,
the ANN will merely be an affine transform of the input to the output, since it
is a composition of such transforms. The ANN would hence not be able to, for
instance, be useful when it comes to regression problems with non-affine functions.
The introduction of a nonlinear activation as in eq. (2.1) solves this problem, and
the non-linearity that is introduced can then be scaled, and shifted, by the weights
and the bias. The activation must also be differentiable, the reason for which is
shown in the section Back Propagation Algorithm below.

Below are some common choices of activation functions.

Hyperbolic tangent

2
f(z) = tanh(x) = Tooo (2.2)
Arcus tangent
f(z) = arctan(x) (2.3)
Rectified linear unit (ReLU)
0 <0 ey
@) = { T ro=o 2.4

2.2.4 Feedforward Neural Network

Considering an ANN as a directed graph, we define a Feedforward Neural Net-
work (FNN) as an ANN that is acyclic. This means that during the computation
of one input to an ANN, the output from any node will never, through other nodes

10

2. Background Theory and Methods: review

or directly, reach that node again. This is not the case for a general ANN, and if an
ANN is not an FNN it is called a Recurrent Neural Network (RNN). For the
remainder of this text, when ANN:s are mentioned, it should be interpreted as an
FNN, unless it is explicitly denoted RNN.

INPUT |:\’>
\ _~ output

A Yy Q 4

Figure 2.3: Visualization of an FNN

Feed-forward neural networks are usually considered organized into layers, with an
input and output layer. The remaining layers, i.e. the ones between the input and
output layers, are known as hidden layers. For an FNN, the data will be passed
monotonously through the layers in one direction, and never go backwards.

2.2.5 Classification Problems

A common way to use ANN:s in classification problems is to use categorical output,
which means that the output layer of the ANN will have the same number, N, of
nodes as classes, each node representing one unique class. It desirable that the ANN
outputs a probability distribution of the class of the input, i.e. that each output
node outputs the probability of the input belonging to the node’s corresponding
class. This is achieved using the special activation function softmax

f(z); =

e
i, e
where z; is the output of output neuron j before activation (z; = W,;x+b;) and f(z);
is the final output of node j. The class of the input is now naturally estimated as
the one corresponding to the output node with the largest output. Note that unlike

the activation functions above (Eq. 2.2-2.4), the input to the softmax function is
based on all the nodes of the output layer, instead of just one.

forj=1,...,N (2.5)

2.3 Deep Learning

Complex ANN designs that consist of more than one hidden layers are commonly
referred to as deep neural networks, the training process of which is known as
deep learning. There is however no universally agreed upon threshold for the
number of hidden layers required for the ANN to be referred to as deep. DNN:s
allow composition of several nonlinear transformations throughout the layers, and
hence enable higher level feature learning by ’late’ layers. This is based on low
level features learned by preceding layers, allowing in the end for a more sparse
hierarchical representation of the features. DNN:s has been been proven useful in
applications like feature extraction and pattern recognition in combination with
convolutional layers.

11

2. Background Theory and Methods: review

2.3.1 Convolutional Neural Networks

When a neural network consists of one or more layers known as convolutional
layers, the ANN is referred to as a convolutional neural network (CNN). The con-
volutional layer is a layer specifically designed for translation-invariant feature ex-
traction, i.e. features independent of position in the input data. The layer has a
fixed number of filters (also known as kernels), typically with small receptive fields,
the parameters of which are optimized during the learning process. In a convolu-
tional layer, each filter is convolved across input, computing the dot product of the
filter coefficients and the input, giving a so-called activation map of that filter. This
gives convolutional layers the ability to learn filters that activate when detecting a
specific feature at any position in the input. The list of activation maps from all
filters of one convolutional layer is the the output for the layer.

-

— Activation map

Input

A
y v, ':’

Figure 2.4: CNN Visualization

The convolutional layer has three fixed parameters that are not learn-able, also
known as hyperparameters

e Number of filters i.e. how many filters to be convolved over the entire input,
which represents how many different types of features to be extracted in the
layer.

o Stride is the step length for the convolution. When the stride is 1 the filter
is moved one pixel at a time, for stride 2, two pixels at a time, etc.

o Zero-padding i.e. how the problem of changed spatial dimension of the
output is to be handled. For some cases, it can for instance be appropriate to
pad the output so that the spatial dimension of the input is maintained.

The spatial dimension of the output O is easily computed given the input dimension

12

2. Background Theory and Methods: review

I, the filter /kernel size K, the stride S, and the zero-padding P used to fill the edges

I-K+2P

© S

+1 (2.6)
where the division is component-wise for multi-dimensional input. Naturally, K, P,
and S are chosen so that O is an integer.

An efficient way to reduce the dimensionality of the data between layers is by using
spatial pooling, which performs a non-linear down sampling. The most common
non-linear pooling method is max pooling which divides the data into disjunct rect-
angles, for each the maximum value is output. This can be justified by arguing
that the exact position of the feature-matching data is not as important as the fact
that the maximum of the activations within a neighborhood of that data indicates
weather there is a match in that region at all. For spatial pooling, the kernel size
is a hyper-parameter i.e. the size of the rectangle within which to output the maxi-
mum, for which a common choice is kernel size 2.

Below, we show some successful well-known CNN architectures:

LeNet, 1998 [27] LeCun et al.

As mentioned in the introduction, LeCun was the first to make use of weight sharing
and feature maps in neural computing, a technique which later on would be known
as a convolutional layer. In 1998, LeCun proposed a CNN architecture known as
LeNet (Figure 2.5), that performed well on document recognition, which is to say
handwriting recognition.

Figure 2.5: LeNet-5 architecture, by LeCun et al. 1998 [27]

8@28 x 28 z e, °5: layer
Input @ $2: f. maps _ (| ;(}l V' E6:layer Output
32x32 | 8@14 x 14 SN 84 _ 10

| B e

| Full connection |Gaussian

AlexNet, 2012 [16] Krizhevsky et al.

AlexNet is a deep convolutional neural network, shown in Figure 2.7, that was the
winner of the ImageNet ILSVRC challenge in 2012 [16]. Is is named after one
of its designers, Alex Krizhevsky, and consists of 650,000 neurons, and 60 million
parameters. The structure is deeper and wider than LeNet-5, and is unique in the
way it makes use of 11 x 11 receptive fields for filters, that were convolved with
stride four. The structure is tailored to the way the system is implemented, namely
using two GPU:s in parallel, that both execute one stream of the network each, with
limited communication in between.

13

2. Background Theory and Methods: review

Figure 2.6: AlexNet architecture, by Krizhevsky et al. 2012 [16]

%

i 2046 4/ 20aa \dense

dense dense

1000

128 Max
Max 138 Max pooling
posling pooling

20de 2048

GoogLeNet, 2014 [18] Szegedy et al.

In 2014, Szegedy proposed a deep convolutional network architecture known as
inception [18], the idea of which is to use an optimal sparse structure, that consists
of several dense components. This enables a very deep structure, with a lower
number of parameters. GoogleNet was the winner of the ILSVRC challenge in
2014.

Figure 2.7: GoogLeNet architecture, by Szegedy et al. 2014 [18]

2.3.2 Recurrent Neural Network

In terms of our definition of an ANN above, a recurrent neural network (RNN) is,
as mentioned, a cyclic ANN. This means that information can propagate in cycles
through the network, which can be used to allow the ANN to have an internal
memory to store information regarding previous inputs. In most applications, these
cycles consists of only one neuron (sometimes called recurrent unit), see Figure
2.8. This way, omitting the bias, the output of a neuron at time ¢ is slightly changed
to

ye = fF(W"s,) (2.7)

where f is an activation function, and s, is the state of the neuron at time ¢, defined
as

sy = g(Whzy + Whhs,_1) (2.8)

14

2. Background Theory and Methods: review

where z; is the input to the neuron at time ¢, ¢ is an activation function, H" and
H™) are weights associated with the neuron. The neuron weights are trainable
using back propagation, since eqgs. (2.7) and (2.8) both constitute differentiable
transformations.

Figure 2.8: RNN with three layers, unrolled over time

YI Yt Yl+1 Y1+2
Fy F 3 F 3 F 3
woh wuh woh woh
hh wnn |WM Wnn
w h h > h | > h |—
A ~ A~ A~
h ol h > h > h —>
A Fy A A
h h > h > h —
LY ~ ~ ~
whf wm whf whf

@ @ xt+1 X|+2

2.3.2.1 Long Short-Term Memory (LSTM)

RNN:s are promising for solving problems that require consideration of previous
inputs, i.e. what has happened before, e.g. predicting an event in a video, which
would require at least considering the last few frames of the video. However, for
applications that are more dependent on temporal information, i.e. require consider-
ation of input that could have been given at a much earlier time, general RNN:s fail
to achieve convincing performance. This problem is known as the long-term de-
pendency problem, and is apparent in applications such as translation, and other
time-dependent event prediction. The problem arises in the back propagation algo-
rithm, when generalized to take the temporal dependency into account. The reason
for this is that H™" is applied to the state arbitrarily many times, or more precisely
as many times as there are time steps. That way, during one pass of back propaga-
tion, if H" is small, or more precisely has an eigenvalue A such that A € (—1,1),
the gradient signal over time will vanish as the number of time steps increase. Sim-
ilarly, if A ¢ (—1,1), the signal can grow out of proportion, and be rendered useless.
These phenomena are known as the vanishing gradient problem and exploding
gradient problem, respectively.

The LSTM[12] unit solves the above mentioned problems, by introducing a specific

structure for storing information, known as the memory cell (see Figure 2.9). The
memory cell consists of four parts: an input, output and forget gate, and a neuron.

15

2. Background Theory and Methods: review

The vanishing/exploding gradient problem is avoided by letting the re-currency
weight be identity, which means that the state of the memory cell is not scaled over
time. The influence of the input over the memory is determined by the input gate,
which can either block the signal, or allow it to alter the state, and the output gate
can decide to block the output of a cell, or allow it to influence other neurons.

Figure 2.9: Basic LSTM structure

|

Recurent
connection

SESRERRREES SRR SU— y SR
Input Gate Forget Gate Ouput Gatfe

2.4 Training the Network

In this section, we introduce the concept of training an ANN for a specific task. We
begin with defining some ways to measure the performance of an ANN.

2.4.1 Performance Measures

The performance of a model (recall, an ANN for a fixed set of weights and biases)
is a measure on how well it performs its computational task on certain input data,
which is measured by comparing the model’s output with the desired or correct out-
put. In the example of a classification problem, the performance of a model is good
if the model output is often corresponding to the true class of the input.

The concept of training an ANN is the process of altering the trainable parameters of
the ANN, namely the weights and biases of the neurons, so that the resulting model
has a higher performance. Training an ANN is hence an optimization problem,
namely optimizing the performance in the parameter space.

The performance is usually measured in two ways, Loss and Accuracy

2.4.1.1 Loss

The Loss is a measure on how large the error of the model is, and can be defined
in different ways. Below we descrobe some common ways to define loss.

e Mean-squared error
1 n
MSE = — E (Yipred — Y2 (2.9)

i=1

16

2. Background Theory and Methods: review

where n is the input dimension, Y™ is the model output for the :th input,
and Y™ is the correct output.
o Categorical cross-entropy

H(p,q) = =)_p(x)logq(x) (2.10)
where p is the true probability for x, and ¢ is the model output.

2.4.1.2 Accuracy

Accuracy over a dataset is the percentage of correct outputs

2.4.2 Parameter Optimization

The training of an ANN can now be defined as an optimization problem, namely
to minimize the loss over the space of trainable parameters. The most common
approach to this problem is to use optimization algorithms based on stochastic
gradient descent[28], i.e. in each iteration moving in the direction of the steep-
est descent in parameter space, in turn lowering the loss. This approach requires
that the gradient of the loss function can be efficiently computed, which is accom-
plished by using the back propagation algorithm (see below). There are many
different specialized algorithms for ANN training, that are all based on SGD, e.g.
Adagrad[29], Adam[30], Adadelta[31] and others.

2.4.3 Back Propagation Algorithm

We introduce the idea of the Back Propagation algorithm (BackProp) taking only
the neuron weights into account, and omitting the bias. For a full description see
[32]. The principle of the BackProp algorithm is to calculate the gradient of the loss
function with respect to each trainable parameters of the ANN, i.e.

oL

z
owy;

(2.11)

where wfj is the i:th weight of node j in layer k, which will allow the optimization
algorithm to update the weights step by step using SGD

oL

gz (2.12)
0

E _ k
Wy = Wy — N

where 7 is the step length, in this context known as the learning rate. Note that
1 can be varied during training, depending on if optimizer is adaptive or not.

The gradient computation is achieved as follows
1. The first step is to do a forward pass of the the ANN, i.e. feeding data to the

input layer, and computing the loss of output. In the output layer, given the

17

2. Background Theory and Methods: review

activation and loss function, the loss gradient with respect to each weight of
the neurons in the output layer can be computed.

oL
ow

p (2.13)
ij
where wf; is the i:th weight of node j in the output layer.

2. Using the chain rule, one can, using (2.13), calculate the gradient of the loss
with respect to any weight in the last hidden layer as follows

oL y? 0L
= L 2.14
awfj’l 8w§’j’1 Yy, ()

where ¢! is the output of neuron 4 in layer [. Here it is made use out of that the
local gradients of the neurons can be easily computed, and used for computing
the gradients for the previous layers. Similarly to (2.14), all gradients are
computed recursively, and finally the complete loss gradient with respect to
all ANN parameters can be computed, and the SGD algorithm iterated. This
step is known as the backward pass.

Using this, a backward pass is done, where we use the chain rule to, layer
by layer, calculate the loss gradient with respect to the parameters of each
neuron.

2.4.4 Training Data

The set of inputs that are fed to an ANN during the training process is called the
training data. The size of the training data, and the structure of the individual
inputs play an important role when deciding on the ANN structure, for instance
when it comes to image-like inputs, using convolutional and spatial pooling layers in
the first layers of the network will help extract important features from the image,
and reduce the dimensionality for following layers, without the need to deal with
the optimization of a huge amount of parameters unnecessarily.

2.4.4.1 Test Data

A common way to determine the general performance of a model is to have a separate
set of data, known as the test data, on which the model is tested, and the resulting
test loss and test accuracy is noted. During the training process of an ANN, no
information (such as size, dimensionality, input examples etc) regarding test data
is used, since if it was, the test performance is less likely to reflect the general
performance of the model.

2.4.5 Overfitting

A problem within machine learning is what is known as overfitting, which means
that a system adapts to noise in the data, where by noise we mean information that
is uncorrelated to the features we wish our machine to learn.

18

2. Background Theory and Methods: review

2.4.5.1 Regression Problems

A simple example of overfitting in regression is the problem of fitting a polynomial to
a set of data points {x;}' ™!, namely modeling the data by a N-degree polynomial.
This is sufficient for the approximation error to vanish for the right polynomial
coefficients, but is most likely not a useful model when applied for more data from
the same distribution.

15

10

Figure 2.10: Overfitting in regression
Data approximated by a linear function and a higher-degree polynomial. The poly-

nomial is a perfect fit, but might not be expected to perform well in general. (By
Ghiles - CC BY-SA 4.0)

2.4.5.2 Opverfitting in an ANN Classifier

When it comes to training of ANN classifiers, one can expect that it will result in
a model that has learned the simplest way to sort the inputs into different classes.
An example of overfitting here would be if for instance we wish to train an ANN
to classify pictures into to classes, dogs and cats. If all the pictures of dogs happen
to have green grass in the background, while that is less common in the pictures of
cats, the training might lead to a model that only takes the color of a few pixels
in one corner into account, and based on that performs the classification. A way
to prohibit this would naturally be to have more, and more diverse training data,
where there are pictures of both dogs and cats with several different background
environments, which hopefully will enforce the training process to yield a model
that has learned more relevant features.

2.4.5.3 Prevention

As mentioned, adding more data can help the classifier to focus on the desired
features. Other methods to prevent overfitting includes:

o Data augmentation, i.e. increasing the amount of training data by altering

it by some transformation. E.g. in the example of pictures of dogs and cats,

a simple data augmentation would be to simple flip all pictures horizontally,

19

2. Background Theory and Methods: review

which would result in a training data set of twice the size. Depending on the
features that the classifier should learn, other augmentation methods could be
used for images, such as warping, color or intensity altering.

o Batch normalization, normalizes the input data to layers in the ANN, and
thereby reduces the internal co-variance shift. Batch normalization has not
only been found to reduce overfitting, but also speed up the training by al-
lowing higher learning rates[33]. The effect of normalization is decided by
trainable parameters, and thus the model can learn to deactivate the effect.

o A generalizing architecture, which means that the ANN structure should
be chosen so that it has the parameters necessary to learn the desired features,
and not too many more.

» Use regularization (defined below)

2.4.6 Regularization

In this section, we describe some methods for counteracting overfitting in an ANN
classifier.

2.4.6.1 Early Stopping

We introduce a new term Validation data, by which we mean a subset of the
training data, the elements of which are mot used in the training process. The
validation data is instead used to occasionally validate the performance of the model.
Measuring the performance on the validation data will give an indication on how the
general performance of the model is, and overfitting is easily detected by noticing
that the training accuracy (performance accuracy over the training data) continues
to increase, whilst the performance on the validation data worsens. This is caused by
that the classifier has learned undesirable features that are sufficient for performing
well on the training data, but not in general. In this scenario, it is unlikely that
the training process will recover, and that the validation performance will increase
eventually (since this would the require the model to "unlearn’ the currently learned
features, before learning the desirable ones), and it is hence usually advantageous to
stop and reinitialize the training process. This is known as Early stopping, and
instead of using the model finally output by the training process, the model that
during the training had the highest validation performance is considered the result
of the training, and is then tested on the test data.

20

2. Background Theory and Methods: review

Loss

Validation data

Training data

Figure 2.11: Early stopping

2.4.6.2 L-Regularization

Also known as weight decay, this regularization method consists of penalizing the
loss function by adding a multiple of the norm of the model weights. Two common
norms used for weight decay are

k
Ly norm: A |wl
i=1
and
k
Ly norm: A w?

Weight decay promotes weight sparsity and has been found to improve the generality
of the model and reduce overfitting [34].

2.4.6.3 Dropout

A simple, but effective method for reducing overfitting, known as dropout[35],
forces the model to learn general features by dropping out neurons in the computa-
tion, i.e. ignoring the output of these neurons. This prohibits so-called specialized
neurons that can allow for the ANN to memorize the training data, rather than
learning the desired general features. The neurons to drop out are selected at ran-
dom, with a certain fixed probability denoted by py, given as a hyperparameter.

21

2. Background Theory and Methods: review

(a) Without dropout

Figure 2.12: Dropout visualization

2.5 Weight Initialization

In this section, we describe an important step in the training process that can be
vital in succeeding in training a useful model, but often overlooked (or unmentioned)
by researchers in the field. The gradient descent-based optimization method of the
parameters naturally requires an initialization in parameter space, which can be
achieved in many ways. One easy way is to initialize all parameters to zero, with
the hope that a global optimum is close to, or easily found from, origo. There is
however no justification for this, and this initialization method has accordingly not
been found to be useful in practice. Though SGD is used, the training process of
ANN:s in practice often ends up in local optima. That is why, it is a good idea to
run the training several times, and vary the weight initialization. To this end, the
most common parameter initialization is random, from a standard distribution with
low variance.

2.5.1 Xavier Initialization

For convolutional layers specifically, it is common to see Xavier initialization being
used, which helps initialize the weights within a reasonable interval so that the
signals passing through the layers of a deep network are not scaled several times
by layer weights too large/small, so that they eventually could be rendered useless.
This is achieved by generating the weights from a distribution so that the variance of
the output of a neuron will be same as the input, which if we for simplicity consider
a linear neuron, gives

var(y) = var(wi 1 + wads + - -+ + wyy + b) (2.15)
=Y var(w;z;) + var(b) (2.16)

i=1
= > var(w;r;) (2.17)

i=1

22

2. Background Theory and Methods: review

from linearity of variance, where b is a constant. We have, assuming that w; and z;
are independent

var(w;x;) = B(w;)*var(x;) + var(w;)var(z;) + E(z;)*var(w;) (2.18)
which, if we assume that w;, x; are Gaussian distributed with u = 0 gives
var(w;x;) = var(w;)var(z;) (2.19)
which yields
var(y) = Y _ var(w;)var(z;) (2.20)

=1

which, if we assume identically distributed variables, gives

var(y) = n - var(w;)var(z;) (2.21)

from which it is obvious that y being distributed identically to x implies
n-var(w;) =1 (2.22)
= var(w;) = 711 (2.23)

Hence, the initial weights of a neuron should be generated randomly from a zero-
mean Gaussian distribution with variance o2 = %, where n is the number of inputs
to the neuron.

2.6 Graphic Process Unit

In recent years, Graphics Processing Units (GPUs) have been utilized for deep learn-
ing. Even though the GPU is slower than a Central Processing Unit (CPU) when
it comes to sequential processing, it greatly outperforms the CPU in parallel pro-
cessing, due to it’s high number of processing cores. A CPU usually has 4 to 6
cores, while a GPU might have hundreds, or even thousands. The drawback of
using GPU for computation is that it has specific requirements on hardware and
software, in order to be able to distribute the computational tasks among the cores.
Providers of such software is mainly the producers of such GPU:s, which is mainly
AMD and NVIDIA. For GPU:s produced by NVIDIA, their own application pro-
gramming interface CUDA is a common choice. Other API:s are available, such
as Open Computing Language (OpenCL), which is an open source API that can be
used for GPU:s produced by both NVIDIA and AMD.

2.7 Deep Learning Software and Libraries

There are many libraries and platforms for machine learning. Some are open source
such as Theano, Theano, Lasagne, Keras, Caffe which we will summarize them in
this section. There are some others worth mentioning include TensorFlow by Google
(in python and C++), Mocha (in Julia), CNTK by Microsoft (Microsoft Cognitive
Toolkit Written in C++), Darch (Package in R), Convnet.js (in JavaScript, for
learning) and H20 Web APL

23

2. Background Theory and Methods: review

Theano

Theano is a library developed at the University of Montreal [36] for mathematical
expressions in Python with the goal of facilitating research in deep learning. It
is a back-end engine using tensor for handling and manipulating the data and is
centered based on the idea of computational graphs. It uses SciPy-NumPy, native
libraries such as native C++4 codes to convert a computational graph structure into
very efficient codes that can be run in the fastest way possible on CPUs or GPUs
in C+4 or CUDA. Theano is know to be a good tool for implementing Deep Con-
volutional Network, Stacked Denoising Auto-Encoders and Deep Belief Networks.
Keras, Lasangne, and Blocks are libraries built on top of Theano as wrapper APIs.

Torch

Torch[37] is a scientific library and framework for computation and a script language
based on the Lua that highly supports machine learning algorithms and prioritize
the GPU. Torch is being used within Facebook, Google, Twitter, NYU, IDIAP, Pur-
due and several research labs. Lua is a scripting language intended for embedded
devices. In Torch graphs of neural networks can be built and then be parallelized
over CPUs and GPUs in an efficient way. It allows to a deep network to be built in
a sequential way consist of many stacks of layers. Torch is recommended primarily
platform for research in reinforcement learning. In Torch many of the state of the
art machine learning algorithms are implemented

Calffe

Caffe[38] is a Python library developed by Yangqing Jia during his Ph.D in at
the Berkeley Vision and Learning Center for supervised computer vision problems
written mostly in C++ for deep learning and it uses python as its API. The primary
focus of Caffe is CNN and it may be the best library for this purpose. One of the
most interesting and benefit aspect of Caffe is the number of pre-trained networks.
These networks can be downloaded from the Caffe Model Zoo and used immediately.
Even though Caffe is recommended for CNN but it is not as strong for RNN. On
the abstraction level, Caffe is higher than Cuda-Convnet but lower than Torch.

Keras

Keras[39] is a high-level and user friendly neural networks API and wrapper in
python designed and consist of a sequence or a graph of standalone from fully con-
figurable modules. Keras runs on top of Theano, CNTK and Tensorflow. Keras
will not show any of the underlying work and designed to allow for fast and easy
prototyping of machine learning algorithms with as little as possible overheads.

24

2. Background Theory and Methods: review

Tensorflow

Tensorflow[40] is a an open-source software library for machine learning developed by
researchers at Google Brain with Python and C++ API. It included many pre-built
functions to facilitate the built of different neural networks. Tensorflow accommo-
dates the computation distribution across different computers, or multiple CPUs
and GPUs in a single machine. It facilitate and speed-up experimentations, while
remaining fully transparent. TensorFlow is the second generation machine learning
system of Google brain and released as open source and its version 1.0.0 was released
on February 11, 2017.

A short summary of these libraries can be found in Table 2.1.

Table 2.1: Deep learning libraries summary

Open
Name Language Back-end (C}(;Ian% Source/ Reconlég;ended
P Readable
CH+, CNN, Auto-
Theano Python CUDA, Yes Yes/No Encoders,Deep
OpenCL Belief Networks
Torch Lua %S;%‘i’ Yes Yes/Yes Re?j;ii?g;ent
Caffe PC}I};Z ’n %ggl]éé’ Yes Yes/Yes CNN
Theano,
Keras Python CNTK, Yes Yes/Yes -
Tensorflow
Python G+,
Tensorflow ’ CUDA, Yes Yes/No RNN
CH++ OpenClL
pen

25

2. Background Theory and Methods: review

26

3

Methods

In this chapter, we describe the methods we have developed for brain image analysis.
Our work can be divided into two parts, Alzheimer’s Disease (AD) detection and
Brain Tumor (glioma) classification. Since the methods used for the two parts are
similar, they will be described in general below, and any differences will be pointed
out.

We aim to develop a system that can perform brain disease detection/classification
based on an MRI brain scan of the patient. We propose to do this using a deep
convolutional neural network, trained and evaluated on datasets consisting of
MRI brain scans. The effect of certain aspects of the CNN architecture will be inves-
tigated by comparing the performance of different architectures. The importance of
some hyperparameters such as dropout probability, learning rate will also be investi-
gated, by optimizing the system performance with respect to these hyperparameters.

Figure 3.1 shows an outline for the classifier training process. Early stopping is
used to determine when to terminate training. This means that the performance
of the system is monitored on a set independent of the training data, called the
validation data, and when the validation performance is the highest, the training
is terminated, and the resulting classifier is tested on the test data.

- l |
Training

data CNN training CNN validation
MRI T1 Br i
Brain images eprocsssing W |
Test CNN testing Result

data

Figure 3.1: Overview of the training process of a CNN

3.1 Selection of CNN Architecture

We propose a deep convolutional neural network for the task of brain disease
classification from MRI images. The proposed structure has five convolutional lay-
ers, which is beneficial since this allows a hierarchical representation of the features
learned, and is less computationally intensive when used in combination with pool-

27

3. Methods

ing layers. Inspired by AlexNet[16], the first convolutional layer utilizes contains
a large kernel size, and stride 2. The remaining convolutional layers use a smaller
kernel with stride 1. After the convolutional layers, there are two fully-connected
hidden layers that will use the feature activation maps from the last convolutional
layer to perform the final classification. The effect of both the choice of kernel and
stride in the first layer, as well as the depth chosen will be investigated by comparing
the performance of this architecture with two others.

Convolution 1 Convolution 2 Convolution 3 Convolution 4

|4 |4 /I Convolution 5 .. FEL
@' “a___‘:|; |4 |4 _ /I E‘ ' N
v I

| L

MRI

[-]
] [

Pooling

Pooling

Figure 3.2: 3D-CNN visualization

The details of the proposed CNN architecture are shown in Table 3.1 and is denoted
architecture A. We compare architecture A with two other architectures, namely B
and C. The details of these architectures are shown in Tables 3.2 and 3.3. More
detailed specification of the CNN architectures are included in Appendix A.1, A.2,
A3

Table 3.1: Architecture A

Layer type Kernel size | Stride | No.Filters | No.Neurons
Convl (7,7,7) (2,2,2) 64 -
Conv2 (3,3,3) (1,1,1) 64 -
Conv3 + MaxPool (3,3,3) (1,1,1) 128 -
Conv4 + MaxPool (3,3,3) (1,1,1) 128 -
Convb + MaxPool (3,3,3) (1,1,1) 128 -

FC1 - - - 256
FC2 - - - 256
FC3 - - - 2

Table 3.2: Architecture B. Similar to A, except for only the kernel size in the first
convolutional layer

Layer type Kernel size | Stride | No.Filters | No.Neurons
Convl (3,3,3) (2,2,2) 64 -
Conv2 (3,3,3) | (1,1,1) 64 ;
Conv3 + MaxPool (3,3,3) (1,1,1) 128 -
Conv4 + MaxPool (3,3,3) (1,1,1) 128 -
Convb + MaxPool (3,3,3) (1,1,1) 128 -

FC1 - - - 256
FC2 - - - 256
FC3 - - - 2

28

3. Methods

Architecture C is similar to model A, except for that one intermediate convolutional
layer is left out.

Table 3.3: Architecture C. Similar to A, except for that one intermediate convo-
lutional layer is left out

Layer type Kernel size | Stride | No.Filters | No.Neurons
Convl (7,7,7) (2,2,2) 64 -
Conv2 (3,3,3) (1,1,1) 64 -
Conv3 + MaxPool (3,3,3) (1,1,1) 128 -
Conv4 + MaxPool (3,3,3) (1,1,1) 128 -

FC1 - - - 256
FC2 - - - 256
FC3 - - - 2

3.2 Dataset Description

In the following sections, we describe the data for Alzheimer’s disease and Brain
tumor used in this project, and how it was acquired.

3.2.1 Alzheimer’s Disease Detection

Data used in this project was obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database. The ADNI data collection began in 2004 and is now in
its third phase from ADNI1 to ADNI GO and ADNI2 [22]. The number of normal
control subjects is in total 350, and 400 for patients diagnosed with Alzheimer’s
disease (see Table 3.4). ADNI provides researchers with study data as they work to
determine the progression of AD. ADNI researchers collect, validate and utilize data
such as MRI and PET images, genetics, cognitive tests, CSF and blood biomarkers
as predictors for the disease. Data from the North American ADNI’s study partic-
ipants, including Alzheimer’s disease patients, mild cognitive impairment subjects
and elderly controls, are available from this website http://adni.loni.usc.edu

Table 3.4: ADNI data and samples [41]

Study Type NE)N (Sjl/lzjg(;ts Type of Images

ADNI 1 400 (200/200) MRI, FDG, PIB, Biosamples

ADNI GO 500 (500/-) MRI, FDG, Biosamples, IMRI, DTI, AV45
ADNI 2 350 (150/200) MRI, FDG, Biosamples, fMRI, DTI, AV45

Different pre-processing methods for MRI images will be evaluated, by observing
their effect on the final classification performance. To this end, we let a set of
original MRI images undergo four different pre-processing pipelines. An outline of
the general pre-processing steps is depicted in Figure 3.3, although the individual
steps differs between the pipelines. The details of the pre-processing pipelines will
be described in more detail under Experiments and Results.

29

http://adni.loni.usc.edu

3. Methods

MRIT1 _ | Skullneck | | Normalization
Brain scan removal (correction)

1 2 3 4 3

—= Trim edges = Scale to 110x110x110 = Mormalization [—

Figure 3.3: Overview of the MRI image preprocessing

3.2.2 Brain Tumor Classification

For Brain tumor classification, we use a dataset of MRI images acquired from the
MICCAI BRaTS competition 2017 [42][43]. The dataset contains 210 images cor-
responding to High-grade glioma (HGG), and 75 to Low-grade glioma (LGG) (see
Figure 1.4). Each image in the dataset is available weighted using T1, Tlce, T2 and
FLAIR.

Only basic preprocessing steps were performed on the FLAIR MRI 3D images,
namely trimming off obsolete black volumes in the edges, and scaling to uniform
size (see Table 4.23).

30

4

Experiments and Results

This chapter is divided into different case studies (see Table 4.1), corresponding to
different CNN architectures and pre-processing pipelines. We aim to investigate how
the performance depends on the dataset, and different hyperparameters. In the last
case study, we present our preliminary work on brain tumor classification into

HGG and LGG.

Table 4.1: Summary of case studies

Case study | Mix. subj. | Architecture | Dataset | pg]jfe;tricrfs' ﬁ;/%) ri(;(;

1 (AD) ves A Do | 0.6 | 95.35% | 95.03%
yes A Dy 0.7 | 98.74% 98.37%
yes A Dy 0.2 | 64.13% -
yes A Ds 0.7 61.47% -
no A Dy 0.6 | 85.71% 84.46%
no A Dy 0.8 | 84.16% -

2 (AD) yes B Dy 0.5 | 92.50% -

3 (AD) yes C Do | 0.6 | 88.70% -

4 (BT) no A Dy 0.8 | 85.96% -

4.1 Data Pre-processing

In the following two sections, we describe what type of pre-processing is done on the
data used for Alzheimer’s disease detection and for Brain tumor classification.

4.1.1 Alzheimer’s Disease

To investigate the importance of the data pre-processing, we compare the per-
formance when training and evaluating on four different datasets Dy, Dy, Dy, and
D3, which are obtained by applying different pre-processing pipelines to the same
original MRI images (see details below). All data has been downloaded from ADNI
(see Chapter 3), and has in some cases gone through some steps of pre-processing
before we acquired the data.

A distinction is also made between when the datasets are partitioned randomly, i.e.
mixed subjects, and when they are divided on patient level, so that images from

31

4. Experiments and Results

the same patient are never in more than one of the training, validation, and test
partitions.

In all experiments, the data is partitioned into training (60%), validation (20%), and
test (20%) sets. The partitioning is random, with the exception of when considering
the case of separated subjects. All training processes are limited to 150 epochs, and
the model that is used for evaluation on the test data is the one that had the best
validation performance during the training.

Table 4.2: Details of datasets used for AD detection

Dj;f:st No. Subjects (M/F) | No. Images (M/F) | Images (%)
AD 199 (103/96) 600 (312/288) 50.08%
Do, D1 | NC 141 (75/66) 598 (331/267) 19.91%
Total | 340 (178/162) 1198 (643/555) 100%
AD 152 (77/75) 434 (204/230) 28.95%
Dy [NC 331 (170/161) 1179 (617/562) 78.65%
Total | 483 (247/236) 1613 (821/792) 100%
AD 81 (-/) 293 (/) 36.03%
D; [NC 92 (/) 520 (-/) 63.97%
Total 173 (-/-) 713 (-/-) 100%

4.1.1.1 Dataset D,

As seen in Table 4.2, Dy consists of 1198 T1 weighted MRI 3D images from a total
of 340 subjects. The images in D have undergone the following pre-processing steps
(see Figure 4.1):
1. recon-all from the FreeSurfer software package[44] - includes Motion Correc-
tion and Conform, Non-Uniform intensity normalization, Talairach transform
computation, skull and neck removal and others.

2. Trim i.e. find the smallest box that contains all useful pixels of an image, and
remove obsolete black volumes from the edges.

3. Scale i.e. resample all images uniformly to the same resolution so that they
contain the same number of pixels.

4. Non-Uniform intensity normalization using nu_ correct from FreeSurfer

5. Spatial normalization using flirt from the FMRIB Software Library

Step 1 was performed by ADNI, i.e. already done when downloaded by us. Steps 2,
3, 4 and 5 were done during this project (see Figure 4.1), with the reason that we
had observed other datasets (that for other reasons did not suit our needs) in the
ADNI database that had exactly this pre-processing. These steps also required file
format conversion between NIFTI and MINC using the MINC package, as well as
re-orientation of the axes using fslswapdim from the FMRIB Software Library.

32

4. Experiments and Results

MRI E!ram_h recon-all —= Trim [—| Scale to 110x110x110 — NU |nt.er|sllty
scan normalization

1 2 3 a 5

= Spatial normalization —=

Figure 4.1: pre-processing pipeline for dataset Dy. Steps performed by ADNI are
marked with gray background.

4.1.1.2 Dataset D,

D has the same original MRI images as Dy, and have similar pre-processing, except
that steps 4 and 5 are left out (see Figure 4.2):

1. recon-all from the FreeSurfer software package[44]

2. Trim

3. Scale

MRI Brain
scan

recon-all —= Trim [—=| Scaleto 110x110x110 |—

1 2 3

Figure 4.2: pre-processing pipeline for dataset D;. Steps performed by ADNI are
marked with gray background.

4.1.1.3 Dataset D,

The following pre-processing steps have been applied to the images in Dsy: (see
Figure 4.3)
GradWarp
B1 Correction
N8 Correction
Skull and Neck removal using mri_watershed from the FreeSurfer software
package.

5. Trim

6. Scale
Steps 1, 2, and 3 are done by ADNI, to whom we refer to regarding technical details
of the pre-processing method.

W =

MRI Brain _| GradWarp [— B1 Correction [— N3 Correction [— Skullneck | Trim [~ Scale to 110x110x110 [—
scan removal
1 2 3 4 5 6

Figure 4.3: pre-processing pipeline for dataset D,. Steps performed by ADNI are
marked with gray background.

33

4. Experiments and Results

4.1.1.4 Dataset D3

The images in D3 have undergone the following pre-processing steps: (see Figure
4.4)

1. Skull and Neck removal using mri_watershed from the FreeSurfer software

package.

2. Trim

3. Scale
Note that the dataset D3 were original MRI, meaning that they were not prepro-
cessed by ADNI.

MRI Brain ___| Skullineck
scan removal

1 2 3

= Trim —=| Scaleto 110x110x110 —=

Figure 4.4: pre-processing pipeline for dataset Ds. Steps performed by ADNI are
marked with gray background.

4.1.2 Brain Tumors

In our preliminary work on brain tumor classification, only simple pre-processing
steps are done on the MRI images. This is described in the following section.

4.1.2.1 Dataset D,

D, is the dataset used for brain tumor classification, and contains 286 FLAIR MRI
3D images, one for each patient. 210 of the images contain a high-grade tumor
(HGG), and the remaining 75 low-grade tumors (LGG). Simple pre-processing steps
were performed on this data: (see Figure 4.5)

1. Trim

2. Scale

MRI Brain ___
scan

Trim | Scale to 110x110x110 |—

1 2

Figure 4.5: pre-processing pipeline for dataset D, of brain tumor MR images

4.2 Hardware and Software for Deep Learning

Deep learning requires a huge number of parameters to be optimized while training
thus one of the most challenging consideration is the choice of hardware and soft-
ware to reduce the training time as much as possible. Therefore the following is the
description and specification of our choices for this project.

34

4. Experiments and Results

To design, implement and execute the architectures of this project, as well as train-
ing and testing, Cuda, TensorFlow, Python and Keras were chosen. To handle the
demand for computational power that arises when training models of high complex-
ity, Graphics Processing Unit (GPU) of model NVIDIA GTX Titan XP, alongside
an Intel i7 Central Processing Unit (CPU) 64 bits, 3.40GHz and 128 GB of DDR4
RAM were chosen. More details about the hardware and software can be found in
Table 4.3.

Table 4.3: Hardware and software specification

CPU Intel-i7, 6800K, 3.40GHz, 64bits

GPU NVIDIA Titan XP, 12GB Memory

0OS Ubuntu v.16.04.03, LTS, Xenial

RAM DDR4 128GB

SSD Samsung 64bits, 33MHz

Bus Controller Intel-C610/X99 64bits, 33MHz

GPU Driver NVIDIA v.375-, GLX v.4.5.0

Language Python v.2.7.12, Tensorflow v.1.1.0,
Cuda v.8.0.61, Keras v.2.0.4

4.3 Partitioning of Training/Validation/Test Sets

Some datasets consist of several MRI scans of each patient, which needs to be con-
sidered when evaluating the performance of the architectures. For some test cases,
we make sure that the images from each patient are not part of both the data parti-
tions used for training and test, i.e. that images from different partitions are never
from the same subject. We use the term separated subjects when this is the case,
and mixed subjects otherwise.

4.4 Case Study 1

In this section, we investigate the performance of CNN architecture A used for AD
detection (see Table 3.1), using datasets with different pre-processing methods.

The hyperparameters (i.e. CNN structure, optimizer, pg, 1) for this architecture
were found partly by inspiration from literature and previous works[11][16][19]]20][21][24],
but also through trial and error.

4.4.1 Dataset D,

In this section, we investigate the performance of architecture A (see Table 3.1) on
dataset Dy shown in (see Table 4.2). The pre-processing steps of dataset D, are
shown in Table 4.4. The performance when maintaining separated subjects will be
compared to the one when using mized subjects, and in both cases we will optimize
the performance with respect to dropout probability and learning rate.

35

4. Experiments and Results

Table 4.4: pre-processing steps for dataset D

Step Command Effect
NU, Skull Striping, Intensity
1. recon-all Normalization 2, Spherical Mapping,
Smoothing, and others[44]
2. Trim Remove the black area
3. mri convert Resize to 110*110*110
4. fslswapdim Reorient
D. flirt Spatial Normalization

e Mixed Subjects

The training process is visualized in Figure 4.6, where the performance (accuracy,
as defined in 2.4.1.2, and loss[45]) is plotted. The resulting test accuracy is 95.35%,
and the class sensitivities are shown in the confusion matriz (see Table 4.6).

— Train — Val — Train — Val

+100

190

<80

Loss

170

Accuracy (%)

160

750

i L L 40
0 30 60 90 120 150
Epoch

(a) Accuracy (b) Loss

Figure 4.6: Performance plotted during training of the best model achieved with
structure A, trained and evaluated using dataset Dy with mixed subjects. Learning
rate n = 0.01, dropout probability p; = 0.6. Test accuracy: 95.35%

Table 4.5: Confusion matrix of the performance on the test data, using the CNN
parameters obtained in epoch 136 of Figure 4.6

Prediction

NC AD
NC | 0.941 | 0.059
AD | 0.034 | 0.966

Actual

To verify that the training parameters are reliable, and hence the result reproducible,
the training process is repeated three times with the same hyperparameters. The

36

4. Experiments and Results

result is shown in Table 4.12

Table 4.6: Average test performance accuracy over 3 independent training runs for
dataset Ap“.

Run 1 2 3 Average
Accuracy (%) | 94.35 | 95.35 | 95.39 95.03

e Separated Subjects

Here, we maintain separated subjects, and thus prevent correlation between im-
ages in the train, validation, and test data. This method of evaluation should hence
give a better measure on the potential classification performance of the model on
input from a new, unknown subject.

— Train — Val

+100 — Train _— val 1.6

- i80

1 i i i L [1 i I L.
0 30 60 90 120 150 0 30 60 90 120 150
Epoch Epoch

Accuracy (%)
Loss

(a) Accuracy (b) Loss

Figure 4.7: Performance plotted during training of the best model achieved with
structure A, trained and evaluated using dataset Dy with separated subjects. Learn-
ing rate n = 0.01, dropout probability p; = 0.8. Test accuracy: 84.16%

The performance of architecture A on dataset Dy with separated subjects is, as seen
in Figure 4.7, worse than on Dy with mixed subjects. The test accuracy is 11.19
units of percentage lower in comparison, and visual inspection of Figure 4.7 reveals
signs of overfitting early during the training. Due to limitation of computer power,
we have not performed three runs for obtaining the average performance.

Table 4.7: Confusion matrix of the performance on the test data, using the CNN
parameters obtained in epoch 63 of Figure 4.7

Prediction

NC AD
NC | 0.838 | 0.162
AD | 0.156 | 0.844

Actual

37

4. Experiments and Results

4.4.1.1 Effect of Batch Normalization

There is no universally accepted convention on if the batch normalization layers
should be applied before or after the activation function. In order to find out the
optimum method for our circumstances, we investigate both cases, and also the
effect of leaving out batch normalization completely. From Figure 4.8 we see that
applying batch normalization before the activation function gives by far the most
stable learning, and best performance. Applying batch normalization after the
activation function shows slower and more unstable convergence, in addition to
lower performance. Leaving out batch normalization seems to completely prevent
the model from learning.

— Before — None — afterloo — Before — None — After

<90

g A +.7
ol 3 : : ‘80 g : ‘6
g | ; s : 3
: B | B P e
N 3 . . o 70 9o b
< : : : : B =] :
.g : : : : S : _4
= ‘ : : : : T - :
g B : : : : 5260 = 3
E 2 . ! . . . =
1 I I | ! ;;40] I fo
0 30 60 90 120 150 0 30 60 90 120 150
Epoch Epoch
(a) Accuracy (b) Loss

Figure 4.8: Performance during training, using dataset AJ"". Learning rate n =
0.01 and d, = 0.6.

4.4.1.2 Selection of Best Hyperparmeters

First, we to optimize the model performance over learning rate (n) and the
dropout probability (pg). This is done using grid search, which is an exhaustive
search -style optimization method that evaluates all possible parameter combina-
tions from sets of parameter values. The optimization is performed over the domains
below (Eqs. 4.1, 4.2)

n € {0.0001,0.0005,0.001,0.005,0.01, 0.02} (4.1)
d, € {0.4,0.5,...,0.8} (4.2)

The result of the grid search is shown in Table 4.8 and Figures 4.9, 4.10. We see
in Table 4.8 that the best performance is achieved using learning rate n = 0.01 and
dropout probability p; = 0.6, resulting in an accuracy of 95.39%.

38

4. Experiments and Results

Table 4.8: Grid search result on dataset AJ"* optimizing w.r.t. learning rate n
and dropout probability pg

d 1 0.0001 | 0.0005 | 0.001 | 0.005 | 0.01 0.02
P

0.4 71.96 | 85.35 | 85.51 | 92.88 | 91.63 | 92.88
0.5 69.87 | 81.58 | 87.86 | 91.63 | 91.21 | 90.37
0.6 66.94 | 73.22 | 81.58 | 93.30 | 95.39 | 90.79
0.7 67.36 | 71.96 | 76.15 | 93.30 | 88.70 | 91.21
0.8 48.11 | 72.38 | 69.3 | 82.42 | 85.77 | 91.63

100
T
/\:‘,_v__;\' NAJo DN PRGN :

190

<80

270

Train Accuracy (%)

160

Validation Accuracy (%)

£50

—: 0.8 :
L L 40
0 30 60 90 120 150 0 30 60 90 120 150
Epoch Epoch

i ; ; ; i 40 i ; ; i

(a) Train Accuracy (b) Validation Accuracy

Figure 4.9: Effect of different values of p,; for a fixed learning rate n = 0.01, on
dataset Dy.

— 0.0001 — 0.0005 — 0.001 0.005 — 0.01 — 0.02
100 —

Test Accuracy (%)

i :
0.4 0.5 0.6 0.7 0.8
Drop out

Figure 4.10: Test performance dependency on the dropout probability for fixed
learning rates on dataset AJ"*.

The time requirements for the grid search are shown in Table 4.9. One CNN training

run takes 15 hours, and the entire grid search completed in approximately 18 days
and 18 hours (450h).

39

4. Experiments and Results

Table 4.9: Training time table for dataset Djy. Values mentioned in this table are
approximated.

Dataset No. Image Train (valid) Total Time Grid
Images Resolution time p. epoch (150 epochs) Search
Dy 1198 110x110x110 312s (43s) 15h 450h

Next, we optimize the learning with respect to the Batch size. This is done by
testing and comparing the performance of models trained with 4 different values,
namely 1, 5, 10, and 15. From Figure 4.11 we see that from the values tested, a
batch size of 5 results in the best validation performance.

1 — 5 — 10 — 15
-9
- B
S - =7
g g = 6
£ S ;
g 5 - 2
< =
8 S - N
= GO - =
3 = >
g :
I I 1 | I | :40 B T 0 \ :0
0 30 60 90 120 150 0 30 60 90 120 150
Epoch Epoch
(a) Accuracy (b) Loss

Figure 4.11: Learning curves for different values batch sizes, dataset A7 n =
0.01, pg = 0.6.

4.4.1.3 Discussion

Effect of separated subjects - We see a drop in performance when comparing the
case of separated subjects with mixed subjects. This is not surprising, since
when the subjects are mixed, images from different partitions (training, validation,
and test) are likely to be correlated. This allows the network to learn features based
on images from the training data, and then test based on other images from the
same patients. Despite of this, the performance of the model on Dy with separated
subjects is promising, and encourages further testing and optimization.

Effect of batch normalization - From Figure 4.8b, we see that applying batch
normalization before the activation function gives, by far, the best performance.
This is to be expected, considering the activation used in this case, namely ReLLU
(see Theory). For input smaller than zero, the activation is the zero function, the
output of which is no use in normalizing. For this domain it hence makes more
sense to apply normalization before the activation, since otherwise it has no effect.
Moreover, for input larger than zero, since ReLLU then is the identity function, ac-

40

4. Experiments and Results

tivation and normalization are commutative (i.e. the order of application irrelevant).

Optimal hyperparameters - From Table 4.8 it is obvious that the performance
as a function of either the learning rate n or the dropout probability p; (keeping one
fixed) has many local optima, which is why hyperparameter optimization is tricky,
and often require many trials, which for deep learning usually requires access to
immense computer power. The resulting performance is of course also dependent
on stochastic elements in the process, such as the parameter initialization, and the
optimization using Stochastic Gradient Descent. 1t is therefore good practice to run
the training several times, keeping the hyperparameters fixed, and taking all the
results into account for evaluation.

4.4.2 Dataset D,

In this section, we evaluate the performance of architecture A trained and evalu-
ated using dataset D;, the pre-processing steps of which are shown in Table 4.10.
Datasets D and Dy are the same, except for a few more additional pre-processing
steps that have been done on D;. The effect of these additional pre-processing steps
will be investigated here, by comparing the performance of architecture A on both
dataset D; and Dy. We will for this case also consider both mized subjects and
separated subjects, as well as completing one grid search to find the optimal training
hyperparameters (see Table 4.13).

Table 4.10: pre-processing steps for dataset D,

Step Command Effect
NU, Skull Striping, Intensity
1. recon-all Normalization 2, Spherical Mapping,
Smoothing, and others[44]
2. Trim Remove the black area
3. mri_convert Resize to 110*110*110

e Mixed Subjects

Grid search was used to find the optimal values of 7 and d, (see Table 4.13). The
training of the resulting optimal model is shown in Figure 4.12, where we see that
using the same model A as above, but changing dataset to D; gives a higher resulting

performance accuracy of 98.74%. The confusion matrix for the test result is shown
in Table 4.11.

41

4. Experiments and Results

— Train — Val — Train — Val

+100 3.0
<80

170

Loss

Accuracy (%)

160

£50
! ! ;;40 \ \ ; \ I L.

0 30 60 90 120 150 0 30 60 90 120 150

Epoch Epoch

(a) Accuracy (b) Loss

Figure 4.12: Performance plotted during training of the best model achieved with
structure A, trained and evaluated using dataset A7"*. Learning rate n = 0.01,
dropout probability pg = 0.7. Test accuracy: 98.74%

In the confusion matrix (Table 4.11), we see the class specific accuracies, i.e. the
test performance on each class. Here we see that a reasonably high detection rate
of NC, namely approx. 98.37%, but an astoundingly good performance of 100%
detection rate of AD. Practically, this means that every image from a patient with
Alzheimer’s disease was flagged by our system, and that approx. 2.4% of healthy
people

Table 4.11: Confusion matrix of the performance on the test data, using the CNN
parameters obtained in epoch 145 of Figure 4.12

Prediction

NC AD
NC | 0.9756 | 0.0244
AD 0.00 1.00

Actual

As for dataset Dy, we establish the reliability of the used hyperparameters by per-
forming three CNN training runs. The result is shown in Table 4.12, where we see
that the resulting performance is repeatable, with an expected reasonable deviation
in the test accuracy.

Table 4.12: Average test performance accuracy over 3 independent training runs
for dataset A7

Run 1 2 3 Average
Accuracy (%) | 98.74 | 98.48 | 97.90 98.37

As mentioned above, we perform a grid search also for dataset D;, where we seek
the optimal values for the hyperparameters n (learning rate) and p, (dropout prob-
ability). The result is shown in Table 4.13, where we see that the best performance

42

4. Experiments and Results

was achieved with n = 0.01, which is the same as the optimum for dataset Dy, and
pa = 0.7 (compared to the optimum py = 0.6 for dataset Dy).

Table 4.13: Grid search result on dataset A7® optimizing w.r.t. learning rate n
and dropout probability py

d 1 0.0001 | 0.0005 | 0.001 | 0.005 | 0.01 n = 0.02
P

0.4 73.64 | 88.28 | 92.46 | 95.81 | 95.39 95.39
0.5 70.71 | 88.28 | 90.79 | 95.81 | 94.56 97.7
0.6 61.92 | 77.40 | 88.28 | 96.23 | 97.70 92.50
0.7 71.96 | 71.12 | 76.98 | 93.72 | 97.90 97.70
0.8 53.55 | 68.20 | 71.54 | 93.72 | 92.88 94.97

The time requirements for the grid search is the same as for dataset Dy (see Table
4.8), and are shown here in Table 4.14. One CNN training run takes 15 hours, and
the entire grid search completed in approximately 18 days and 18 hours.

Table 4.14: Training time table for dataset Dy. Values mentioned in this table are
approximated.

Dataset No. Image Train (valid) Total Time Grid
Images Resolution time p. epoch (150 epochs) Search
Dy 1198 110x110x110 312s (43s) 15h 450h

e Separated Subjects

When evaluating model A on dataset D; with separated subjects, we perform no
optimization with respect to 1, and use a fixed value n = 0.01, since this has resulted
in the best performance for all of the above case studies. Instead, the effect of the
learning rate 7 for this model and dataset is investigated. The training that resulted
in the best model is shown in Figure 4.13, which performed with a 85.71% accuracy
on the test data. In this case study, instead of using grid search, different sets of
values of 7 is tried, for two different step lengths (see Table 4.16 and 4.18). In the
first case, i.e. using step length 0.05, the best performance achieved was 84.87% for
pa = 0.85 (Table 4.16). However, using a larger step length 0.1, and hence covering
a larger range with lower precision, resulted in an optimal performance of 85.71%
for d, = 0.6.

43

4. Experiments and Results

— Trjaln — VaI1 100 ‘ M Tr!aln — VaI1 25
B ?;90 €2.0
= - 80 i
S +1.5
> : ;
g 70 8
5 : -
S :
O B
< +60
£50 i
] I i I I ;;40 i \ ; i I 10.0
0 30 60 90 120 150 0 30 60 90 120 150
Epoch Epoch
(a) Accuracy (b) Loss

Figure 4.13: Performance plotted during training of the best model achieved with
structure A, trained and evaluated using dataset A7”. Learning rate n = 0.01,
dropout probability pg = 0.6. Test accuracy: 85.71%

The class specific test performance (class sensitivity) is shown as a confusion matrix
in Table 4.15.

Table 4.15: Confusion matrix of the performance on the test data, using the CNN
parameters obtained in epoch 95 of Figure 4.13

Prediction

NC AD
NC | 0.864 | 0.136
AD | 0.167 | 0.833

Actual

The first optimization with respect to py is shown in Table 4.16, where we see that
the best performance (84.87%) is achieved using py = 0.85. In Table 4.17, we show
the result from training using py = 0.85 three times.

Table 4.16: Optimization of the test accuracy w.r.t. p; with step size 0.05, with a
fixed learning rate n = 0.01 on dataset D, with separated subjects.

pq | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 0.85 0.9
Test Accuracy (%) | 82.35 | 83.61 | 81.51 | 79.83 | 81.51 | 84.87 | 76.50

Table 4.17: Average test performance accuracy over 3 independent training runs
for dataset A7

Run 1 2 3 Average
Accuracy (%) 84.87 | 84.35 | 85.29 84.46

The second optimization, where we use a larger step size of 0.1, gave a result incon-
sistent with the first optimization, namely that the optimal performance is achieved

44

4. Experiments and Results

using pg = 0.6, which in this run gave an accuracy of 85.71%, compared to 82.35%
which was the corresponding result from the first optimization.

Table 4.18: Optimization of the test accuracy w.r.t. py with step size 0.1, with a
fixed learning rate n = 0.01 on dataset D, with separated subjects.

pq | 04 0.5 0.6 0.7 0.8
Test Accuracy (%) | 80.67 | 81.93 | 85.71 | 84.30 | 81.93

4.4.2.1 Discussion

Impact of pre-processing - Using dataset D; for training and testing model A
gives a higher performance of 97.9% compared to using dataset Dy. Several runs
with fixed hyperparameter (see Table 4.17) confirms that this is not only by chance,
hence the only possible causing variable is the dataset. Datasets Dy and D; differs
with a few steps in the pre-processing (recall Methods), the effect of which must
have affected the data in such a way so that the features used for detecting AD are
less distinguishable.

separated subjects - We see for dataset D, similarly as for Dy, that the perfor-
mance drops when partitioning with separated subjects. In the initial search for the
best dropout probability py, we found that the optimal value is p; = 0.85, with a
corresponding test accuracy of 84.87%. However, during the search with a larger
time step, we found that p; = 0.6 allows training of a model that performs with a
test accuracy of 85.71%, which is odd, considering that during the first search, this
dropout probability resulted in a model with only 82.35% test accuracy. This is most
likely caused by the stochastic elements of the learning process, which again demon-
strates the importance of performing several training runs for fixed hyperparmeters
before drawing a conclusion.

4.4.3 Impact of Data pre-processing on CNN Performance

In this section, we further investigate the impact of data pre-processing by training
and evaluating our best architecture A on datasets Dy and Ds.

4.4.3.1 Dataset D,

The usefulness of architecture A on dataset Dy (see Table 4.2) is investigated. The
The hyperparameter optimization for this dataset was done mainly through trial and
error of many, as we at this stage in the project were not certain of within which
intervals hyperparameters are more likely to result in the best performing model.
This resulted in n = 0.0001 and p; = 0.2, for which the corresponding learning
process is visualized in Figure 4.14a. In mentioned Figure we note that (1) the
validation accuracy never exceeds 65% and (2) the validation loss is decreasing until
epoch 270, after which it has an increasing trend for the rest of the training duration.
Accordingly with early stopping, the resulting model after the 270th epoch is hence
evaluated on the test data, resulting in a classification performance of 64.13%.

45

4. Experiments

and Results

Table 4.19: Pre-processing steps for dataset Dy

Step Command Effect

1. proc_ ADNI_ script GradWarp

2. proc_ ADNI_ script B1 Correction

3. nu_ correct N3

4. proscale nii Scaled

5. Trim Remove the black area
6. mri convert Resize to 110*110*110

Accuracy (%)

55
150
Z45

! I I I I I i

i i i
0 40 80 120

(a) Accuracy

40
160 200 240 280 320 360 400
Epoch

Loss

i I I 0.50
40 80 120 160 200 240 280 320 360 400

Epoch

(b) Loss

Figure 4.14: Learning curve for model A on dataset B™<, with n = 0.0001 and
pa = 0.2. Test accuracy: 64.13%

4.4.3.2 Dataset Dsg

We investigate the performance of model A on dataset Ds. The hyperparameter
optimization for this case is as for dataset Dy, namely by trial and error, which
resulted in n = 0.01 and p; = 0.7. From Figure 4.15 we see similarities to the
performance on dataset D,, namely that the accuracy at which the model performs
is limited. However in this case, by inspecting the loss curve, we see barely any
improvement. The test accuracy of the resulting model is 61.47%.

Table 4.20: Pre-processing steps for dataset Ds

Step

Command

Effect

1.

mri_ watershed

Skull removed

D.

Trim

Remove the black area

6.

mri_convert

Resize to 110*110*110

46

4. Experiments and Results

— Train — Val

Accuracy (%)
Loss

1 | | | ii50 \ \ ; ; | L.
0 30 60 90 120 150 0 30 60 90 120 150
Epoch Epoch

(a) Accuracy (b) Loss

Figure 4.15: Best result of training model A on dataset D3 with mixed subjects,
n = 0.01 and pg = 0.7. Test accuracy: 61.47%.

4.4.3.3 Discussion

Impact of pre-processing - The performance on dataset Dy and D3 compared to
Dy or Dy demonstrates the importance of what kind of data pre-processing to be
used. For dataset D, in Figure 4.14, one can observe signs of successful learning
until epoch 270, where the validation loss starts to increase. The plot shows clear
signs of overfitting, which was not successfully prevented during this project by using
the usual methods (I.e. data augmentation, dropout, batch normalization, weight
decay, simpler structure). It is possible that a more complex model is required to
successfully extract the desired features, but since overfitting is already a problem
here, this would most likely require more (or augmented) training data.

4.5 Case Study 2

In order to have a comparison to model A, we investigate the performance of the
similar architecture B for AD detection, defined in Table 3.2.

4.5.1 Dataset D,

The performance of architecture B on dataset Dy is investigated. The result of
optimizing with respect to the dropout probability py is shown in Table 4.21, which
shows the best performance for p; = 0.5. The corresponding learning curve is shown
in (Figure 4.16). In the figure, we see stable validation performance improvement
during training. Note, however, that the the performance is not as good as model
A on the same dataset.

47

4. Experiments and Results

— Train — Val — Train — Val

+100 1.2

S
g 2
5 3
19
Q
P
£50
1 1 | ! ! ;;40] \ ; \ I L0.0
0 30 60 90 120 150 0 30 60 90 120 150
Epoch Epoch
(a) Accuracy (b) Loss

Figure 4.16: Training of the best model on dataset A7 n = 0.01, p; = 0.5. Test
accuracy: 92.50%

Table 4.21: Optimization of the performance of architecture B w.r.t. pg, for a
fixed learning rate n = 0.01, using dataset AJ"*.

pa | 04 0.5 0.6 0.7 | 08
Test Accuracy (%) | 92.45 | 92.50 | 89.95 | 91.63 | 87.2

4.6 Case Study 3

In addition to architecture B, we introduce architecture C' (see Table 3.3) to provide
a comparison to architecture A.

4.6.1 Dataset D,

We investigate the performance of architecture C' on dataset Dy with mixed subjects.
No type of optimization was done for this case study, instead the same hyperparam-
eters as in the case of model A were used, i.e. p; = 0.6. The result is shown in
Figure 4.17, and the final test accuracy was 88.70%.

48

4. Experiments and Results

— Train — Val

100 — Tr!am — VaI!

.40
| § s
s ; -3.0

| | 22,0

Accuracy (%)
Loss

: i ‘15

1 ! ! ;:40] \] \ | ‘:0.
0 30 60 90 120 150 0 30 60 920 120 150
Epoch Epoch

o

(a) Accuracy (b) Loss

Figure 4.17: The best result of architecture C' trained on dataset A7, for n = 0.01
and pg = 0.6. Test accuracy: 88.70%

4.7 Case Study 4 for Brain Tumor Classification

In this case study, we aim to achieve brain tumor classification into HGG and
LGG using the 3D-CNN architecture A (see Table 3.1). The system is trained and
evaluated on a dataset of 3D FLAIR MRI images distributed according to Table
4.22, preprocessed according to 4.23.

4.7.1 Dataset D,

During the training of architecture A (see Table 3.1), the learning rate is n =
0.01 since this seemed to be a universally good choice based on the optimization
results on AD detection performance (see e.g. Tables 4.8, 4.13). The dropout
probability p; was varied during initial testing, and the best performance seemed to
be achieved using p; = 0.8. The resulting learning curve is visualized in Figure 4.18,
with a resulting test accuracy of 85.96%, and the class specific performance (class
sensitivities) are shown as a confusion matrix in Table 4.24.

Table 4.22: Dataset D, specification

Type No. Images
Images Distribution

HGG 210 73.68%

LGG 75 26.31%

Table 4.23: pre-processing steps for BRaTS dataset

Step Command Effect
1. Trim Remove the black area
2. mri_ convert Resize to 110%110*110

49

4. Experiments and Results

— Train — Val — Train — Val

Accuracy (%)
Loss

‘ ‘ [40
0 20 40 60 80 100 120
Epoch

(a) Loss (b) Accuracy

Figure 4.18: Performance during training, using Brain Tumor dataset. Learning
rate 7 = 0.05 and d, = 0.8. The test accuracy was 85.96%.

Table 4.24: Confusion matrix of the performance on the test data, using the CNN
parameters obtained in epoch 87 of Figure 4.18

Prediction
HGG | LGG
HGG | 0.88 | 0.12
LGG | 0.24 | 0.76

Actual

4.8 Summary

We have evaluated three different CNN architectures, whereof A is the one that
achieved the best overall performance (see Table 4.1). Despite the low number of
neurons in the fully connected layer, and the fact that the model was not pretrained,
an accuracy of 98.74% and AD detection rate 100% was reached by training model
A using dataset D; with mixed subjects. The optimal learning rate and dropout
probability were found to be n = 0.01 and pg = 0.6.

A drop in performance to an accuracy of 85.71% was observed when using dataset
D; with separated subjects. It has been shown that architecture A cannot suc-
cessfully learn on either of datasets Dy and Djs, the pre-processing of which differs
significantly from the one of dataset Dj.

The significance of batch size is shown in Figure 4.11, the optimal value of which
was empirically established to be five.

The effect of different orders of application of batch normalization and activa-
tion function is investigated. It is shown in Figure 4.8 that the best performance is

achieved by applying batch normalization before the activation function, for which

50

4. Experiments and Results

is also argued theoretically in the discussion appended in the corresponding section.

The results of using architecture B and C' were evaluated only on dataset Dy, and
showed slightly reduced performance compared to model A.

The performance of architecture A on dataset D, containing FLAIR MRI images of
glioma patients was evaluated. The preliminary results achieved for high-grade/low-
grade glioma classification shows a moderately high classification accuracy of approx.

86%.

4.9 Comparison with Existing Works

We conjecture that our system is state-of-art, mainly because of the system perfor-
mance and secondly the large size of the dataset. Our system has been trained and
evaluated on a dataset where the classes are balanced (50% AD and NC) with a
higher number of patients and images than most other related works, and the data
pre-processing is relatively simple and straight-forward in comparison.

Table 4.25: Related Work Results Comparison with our work. Abbreviation used
are : Deep Learning(DL), Sparse AutoEncoders(SAE), Adaptable CNN(ACNN).

No. Subjects No. Images
(NC/AD) (NC/AD) Method Accuracy
Sarrafa,et al.[20] 302 (91/211) - DL-CNN 98.84
Payan, et al.[21] 432 (232/200) | 1510 (755/755) SAE-CNN 95.39
Hosseini, et al.[24] 140 (70/70) - 3D-ACNN 97.6
Liu, et al.[25] 142 (77/65) - Auto-Encode 88.57
Our result 340 (140/200) | 1198 (598/600) 3D-CNN 98.70

References

51

4. Experiments and Results

52

O

Conclusion

Our results show that it is possible to create a 3D-CNN based system that with high
accuracy classifies T1 weighted MRI brain scans to be either Alzheimer’s Disease
or Normal Control, with requirements on a relatively simple and straight-forward
method of preprocessing of the dataset.

We have optimized the parameters for the training process of our deep CNN ar-
chitecture, which resulted in a model that achieved an accuracy of 98.74% on an
independent test set. The model performed with an accuracy of 97.56% on the NC
test images, which means that 2.44% of the NC images were incorrectly classified
as AD (false alarm), but performed with an astounding 100% on the AD images.
This means that every image from a patient with Alzheimer’s disease was flagged
by our system. This is a very desirable behaviour, since it is much more serious to
incorrectly classify a sick patient as healthy, rather than the other way around.

This work shows the potential of applying artificial intelligence in medicine (neu-
rology) and the benefits it would imply, including greatly reduced time and cost for
establishing a diagnose, higher chance of a physician correctly diagnosing a patient
when using Al as assistance, and thus overall earlier disease detection. This is vital
when it comes to e.g. brain tumor classification, since the treatment, that must be
begun the soonest possible after onset, is very dependent on the type of tumor. Our
preliminary results show that using CNN classification systems have potential to
perform this type of classification. A system with higher accuracy would not only
lead to a shorter and less expensive diagnosing process, but more importantly also
a non-invasive patient examination, namely only processing of an MRI brain scan.

5.1 Future Work

Further investigation of the effect of different structures and hyperparameters is
needed, and it would not be surprising if it led to a classifier with a higher accu-
racy. The performance for separated subjects has room for improvement, but this
is likely to require a larger dataset. Moreover, further testing and investigation
regarding data preprocessing, network architecture and other hyperparameters for
glioma classification is needed.

53

5. Conclusion

o4

1]

Bibliography

WHO Dementia. fact sheet n 362. geneva, switzerland: World health organiza-
tion, 2015.

Jeffrey L Cummings, Travis Morstorf, and Kate Zhong. Alzheimer’s disease
drug-development pipeline: few candidates, frequent failures. Alzheimer’s re-
search & therapy, 6(4):37, 2014.

Mei Sian Chong and Suresh Sahadevan. Preclinical alzheimer’s disease: diag-
nosis and prediction of progression. The Lancet Neurology, 4(9):576-579, 2005.
Kenechukwu Monplaisir Monplaisir. Effect of oil palm phenolics on beta amyloid
deposition in cholesterol induced rat model of Alzheimer’s disease: Histological
evidence. PhD thesis, Wayne State University, 2016.

Michael H Repacholi. Low-level exposure to radiofrequency electromagnetic
fields: Health effects and research needs. Bioelectromagnetics, 19(1):1-19, 1998.
David N Louis, Arie Perry, Guido Reifenberger, Andreas Von Deimling, Do-
minique Figarella-Branger, Webster K Cavenee, Hiroko Ohgaki, Otmar D
Wiestler, Paul Kleihues, and David W Ellison. The 2016 world health or-
ganization classification of tumors of the central nervous system: a summary.
Acta neuropathologica, 131(6):803-820, 2016.

Nicolas R Smoll, Oliver P Gautschi, Bawarjan Schatlo, Karl Schaller, and
Damien C Weber. Relative survival of patients with supratentorial low-grade
gliomas. Neuro-oncology, 14(8):1062-1069, 2012.

Fonnet E Bleeker, Remco J Molenaar, and Sieger Leenstra. Recent advances
in the molecular understanding of glioblastoma. Journal of neuro-oncology,
108(1):11-27, 2012.

DRGHR Williams and Geoffrey Hinton. Learning representations by back-
propagating errors. Nature, 323(6088):533-538, 1986.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4):541-551, 1989.
Jirgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85-117, 2015.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157-166, 1994.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273-297, 1995.

95

Bibliography

[15]

[16]

[17]

[18]

[27]

[28]

[29]

[30]
[31]
[32]

56

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for
machine learning, volume 1. MIT press Cambridge, 2006.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1-9, 2015.

Li Deng. Three classes of deep learning architectures and their applications:
a tutorial survey. APSIPA transactions on signal and information processing,
2012.

Saman Sarraf, John Anderson, Ghassem Tofighi, et al. Deepad: Alzheimer’s
disease classification via deep convolutional neural networks using mri and fmri.
bioRziv, page 070441, 2016.

Adrien Payan and Giovanni Montana. Predicting alzheimer’s disease: a
neuroimaging study with 3d convolutional neural networks. arXiv preprint
arXiv:1502.02506, 2015.

ALZHEIMER’S DISEASE NEUROIMAGING INITTIATIVE. About.

Ashish Gupta, Murat Ayhan, and Anthony Maida. Natural image bases to rep-
resent neuroimaging data. In International Conference on Machine Learning,
pages 987-994, 2013.

Ehsan Hosseini-Asl, Robert Keynton, and Ayman El-Baz. Alzheimer’s disease
diagnostics by adaptation of 3d convolutional network. In Image Processing
(ICIP), 2016 IEEE International Conference on, pages 126-130. IEEE, 2016.
Siqi Liu, Sidong Liu, Weidong Cai, Sonia Pujol, Ron Kikinis, and Dagan Feng.
Early diagnosis of alzheimer’s disease with deep learning. In Biomedical Imaging
(ISBI), 2014 IEEFE 11th International Symposium on, pages 1015-1018. IEEE,
2014.

Neural Networks and Machine Learning. Info 2040/cs 2850/econ 2040/soc 2090.
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEFE,
86(11):2278-2324, 1998.

Shun-ichi Amari. Backpropagation and stochastic gradient descent method.
Neurocomputing, 5(4):185-196, 1993.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121-2159, 2011.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

David C Plaut et al. Experiments on learning by back propagation. 1986.

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Confer-
ence on Machine Learning, pages 448-456, 2015.

Anders Krogh and John A Hertz. A simple weight decay can improve general-
ization. In Advances in neural information processing systems, pages 950-957,
1992.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of machine learning research, 15(1):1929-1958, 2014.
James Bergstra, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier
Delalleau, Guillaume Desjardins, Tan Goodfellow, Arnaud Bergeron, Yoshua
Bengio, and Pack Kaelbling. Theano: Deep learning on gpus with python.
2011.

Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular
machine learning software library. Technical report, Idiap, 2002.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the 22nd ACM in-
ternational conference on Multimedia, pages 675—678. ACM, 2014.

Francois Chollet et al. Keras: Deep learning library for theano and tensorflow.
URL: https://keras. io/k, 2015.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiw preprint arXiv:1605.04467, 2016.

ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE. adni-data-
inventory.

Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer,
Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slot-
boom, Roland Wiest, et al. The multimodal brain tumor image segmentation
benchmark (brats). IEEFE transactions on medical imaging, 34(10):1993-2024,
2015.

Mina Rezaei, Konstantin Harmuth, Willi Gierke, Thomas Kellermeier, Martin
Fischer, Haojin Yang, and Christoph Meinel. Conditional adversarial network
for semantic segmentation of brain tumor. arXiv preprint arXiv:1708.05227,
2017.

FreeSurfer. Recon-all.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubin-
stein. A tutorial on the cross-entropy method. Annals of operations research,
134(1):19-67, 2005.

57

Bibliography

58

A

Appendix 1

Table A.1: Detailed description of 3D-CNN architecture A. Abbreviations used in
this table: Batch Normalization (BN), Fully Connected (FC).

ConvNet Structure
Kernel, Filter-

Layer Type Stride/Neuron Input Size | Output Size | Pad
Tnput - 110,110,110 : -

Conv1,BN,Relu 7,7,7,64-(2) 110,110,110 | 52,52,52,64 | NO
Conv2,BN Relu 3,3,3,64-(1) 52,52,52,64 | 50,50,50,64 | NO

Conv3,BN,Relu,MaxPool | 3,3,3,128-(1) | 50,50,50,64 | 24,24,24,128 | NO
Conv4,BN,Relu,MaxPool | 3,3,3,128-(1) | 24,24,24,128 | 11,11,11,128 | NO
Conv5,BN,Relu,MaxPool | 3,3,3,128-(1) | 11,11,11,128 | 4,4,4,128 | NO

Flatten - 4,4,4,128 8192 -
FC1,BN,Relu 256 8192 256 -
FC2,BN,Relu 256 256 256 -
FC3,BN,Relu,Softmax 2 256 2 -

Table A.2: Detailed description of 3D-CNN architecture B. Abbreviations used
in this table: Batch Normalization (BN), Fully Connected (FC).

ConvNet Structure
Kernel,Filter-

Layer Type Stride/Neuron Input Size | Output Size | Pad
Tnput 3 110,110,110 3 3

Conv1,BN,Relu 3,3,3,64-(2) | 110,110,110 | 54,54,54,64 | NO
Conv2,BN,Relu 3,3,3,64-(1) 54,54,54,64 | 52,52,52,64 | NO

Conv3,BN,Relu,MaxPool | 3,3,3,128-(1) | 52,52,52,64 | 25,25,25,128 | NO
Conv4,BN,Relu,MaxPool | 3,3,3,128-(1) | 25,25,25,128 | 11,11,11,128 | NO
Conv5,BN,Relu,MaxPool | 3,3,3,128-(1) | 11,11,11,128 4,4,4,128 NO

Flatten - 4,4,4,128 8192 -
FC1,BN,Relu 256 8192 256 -
FC2,BN,Relu 256 256 256 -

FC3,BN,Relu,Softmax 2 256 2 -

A. Appendix 1

Table A.3: Detailed description 3D-CNN architecture C'. Abbreviations used in
this table: Batch Normalization (BN), Fully Connected (FC).

ConvNet Structure
Kernel,Filter-

Layer Type Stride/Neuron Input Size | Output Size | Pad
Tnput 3 110,110,110 3 3
Convl,BN,Relu 7.7,7.64-(2) | 110,110,110 | 52,52,52,64 | NO
Conv2,BN,Relu 3,3,3,64-(1) | 52,52,52,64 | 50,50,50,64 | NO
Conv3,BN,Relu,MaxPool | 3,3,3,128-(1) | 50,50,50,64 | 24,24,24,128 | NO
Conv4,BN,Relu,MaxPool | 3,3,3,128-(1) | 24,24,24,128 | 11,11,11,128 | NO
Flatten - 44,4128 170368 -
FC1,BN,Relu 256 170368 256 -
FC2,BN,Relu 256 256 256 -
FC3,BN,Relu,Softmax 2 256 2 -

IT

	List of Figures
	List of Tables
	Introduction
	Alzheimer's Disease
	Brain Tumor
	Machine Learning
	Convolutional Neural Networks and Deep Learning
	Aims of this project

	Background Theory and Methods: review
	Overview of Related Works on AD Detection
	Machine Learning and Deep Learning
	Artificial Neural Networks
	Neurons
	Activation Functions, Nonlinearity
	Feedforward Neural Network
	Classification Problems

	Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Network
	Long Short-Term Memory (LSTM)

	Training the Network
	Performance Measures
	Loss
	Accuracy

	Parameter Optimization
	Back Propagation Algorithm
	Training Data
	Test Data

	Overfitting
	Regression Problems
	Overfitting in an ANN Classifier
	Prevention

	Regularization
	Early Stopping
	L-Regularization
	Dropout

	Weight Initialization
	Xavier Initialization

	Graphic Process Unit
	Deep Learning Software and Libraries

	Methods
	Selection of CNN Architecture
	Dataset Description
	Alzheimer's Disease Detection
	Brain Tumor Classification

	Experiments and Results
	Data Pre-processing
	Alzheimer's Disease
	Dataset D0
	Dataset D1
	Dataset D2
	Dataset D3

	Brain Tumors
	Dataset D4

	Hardware and Software for Deep Learning
	Partitioning of Training/Validation/Test Sets
	Case Study 1
	Dataset D0
	Effect of Batch Normalization
	Selection of Best Hyperparmeters
	Discussion

	Dataset D1
	Discussion

	Impact of Data pre-processing on CNN Performance
	Dataset D2
	Dataset D3
	Discussion

	Case Study 2
	Dataset D0

	Case Study 3
	Dataset D0

	Case Study 4 for Brain Tumor Classification
	Dataset D4

	Summary
	Comparison with Existing Works

	Conclusion
	Future Work

	Bibliography
	Appendix 1

