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Abstract 

Cut-in maneuvers are events when a vehicle changes lane and moves close to another 
vehicle in the adjacent lane. This phenomenon is quite common on highways and has 
adverse impact on traffic safety. Statistics from the Fatality Analysis Reporting System 
(FARS) by National Highway Traffic Safety Administration (NHTSA) show that there 
have been more than 290,000 traffic crash injuries associated with cut-in maneuvers 
(including rear-end, angle or sideswipe collision) between years 2015 and 2019. Active 
safety systems and autonomous vehicles are being developed to achieve safe driving 
and should be able to detect potentially dangerous scenarios like critical cut-ins, and 
act to avoid them. Statistical models of cut-in scenario trajectories are useful for 
developing and evaluating both active safety systems and autonomous vehicles. This 
thesis aims to increase our understand of and model cut-in trajectories of vehicles 
performing cut-in maneuvers, using SHRP2 (The Second Strategic Highway Research 
Program) naturalistic driving data. To conduct the study, the SHRP2 event data has 
been manually categorized. Thereafter, a dataset of kinematic variables, which were 
extracted using a video annotation tool, has been prepared to enable studying the 
trajectories in detail. Specifically, this study uses a quintic polynomial of time to model 
lateral and longitudinal trajectories of the vehicle that cuts in (or principle another 
vehicle; POV). One of the required inputs is the event duration which is calculated by 
identifying maneuver start and end times . The event durations follow a normal 
distribution and range from 2.1 to 6.4 seconds. Then, two linear models of event 
duration are built to calculate the remaining two variables required for a polynomial 
trajectory model, which are initial POV lateral acceleration and final POV longitudinal 
position. Using these three variables a range of trajectories have been generated, 
representing SHRP2 naturalistic driving for right to left single lane change cut-ins. This 
thesis also uses a probabilistic regression model to calculate the distribution of 
parameters of quintic polynomial of lateral position of POV. Using this model, new 
(other than training data) trajectories have been generated. Both these generative 
models of trajectories can be used as one of the inputs to simulations used in the 
design and evaluation of active safety systems and automated driving systems. 
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1 Introduction 
From the year 2000 to 2016 the road traffic death rate marginally decreased from 
18.8 to 18.2 death per 100,000 population, while the number of deaths in absolute 
terms increased from 1.15 to 1.35 million (World Health Organization, 2018). Road 
injuries are among the top 10 leading causes of death in lower-middle and upper-
middle income countries (WHO, 2019). Road safety is a global issue and hence it has 
been considered as an important part of global sustainable development goal 
(Stockholm Declaration, 2020). Because of its impact, many nations have been trying 
to improve road safety for a long time. For example, the vision zero concept, 
introduced in 1995 in Sweden, is aimed at reducing the road safety by promoting a 
holistic view on road safety. This view shifts the focus of research related to improve 
road safety from “accident prevention to the goal that no one should die or be 
severely injured in traffic” (Trafikverket, 2020). One of the major contributors for 
road injuries are human factors which contributed to up to 90% of road crashes 
(Pakgohar et al., 2011). Intelligent Safety Systems (ISS) are developed to reduce 
human error in driving activities and thus reduce road crashes. ISS are systems which 
have the ability to sense the vehicle’s environment and either warn the driver or 
control the vehicle in safety critical situations (Hannan et al., 2010). 
 
Bärgman et al. (2017) points out that, during last few decades, the focus of the 
automotive industry has shifted from development of passive safety systems to 
development of ISS where ISS include both Autonomous Driving (AD) and Advance 
Driver Assistance Systems (ADAS). Nowadays, there is a continuous development of 
such ISS systems with an aim to increase the safety benefit of the system for all road 
users and achieve a system capable of handling the entire driving task on its own 
(NHTSA, 2021). 
 
The Society of Automotive Engineers (SAE) standard J3016_202104 (SAE 
International, 2021) provides the classification and definitions for terms related to 
motor vehicle automation systems. According to this standard there are six levels of 
automation as shown in Figure 1, starting from no automation (Level 0) to full driving 
automation (Level 5). 
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Figure 1: Levels of automation defined by SAE J3016 (SAE International, 2021) 

According to this standard, crash mitigation and avoidance capability are part of 
automated driving functionality for levels 3 to 5. Apart from this, levels 0-2 also have 
the functions of assisting human driver through warnings or momentary assistance 
when the system detects a safety critical scenario in the driving environment. 
Automated driving can be divided into two sub domains: perception and localization, 
and planning and control (Murthy & Bharadwaj, 2020). The perception and 
localization domain senses the vehicle environment and identifies the location of 
vehicle in the environment. The planning and control domain plans the optimal path 
for the vehicle in the given environment and provides necessary control inputs to the 
vehicle.  
 
The systems of automated driving, which replace the human driving shall identify 
potential crash scenarios while driving and take necessary action to prevent fatality 
or serious damage (Jin et al., 2020). Also, given the current lifespan of vehicles, 
autonomous vehicles must interact with manually driven vehicles for decades after 
their introduction (Shams El Din 2020, Zhao et al., 2017). As the level of automation 
increases, the AD systems have to deal with many uncertainties in real world 
including imperfect human driver behaviors  (Zhao, et al., 2017). This makes 
understanding the driver behavior in manual vehicles an important factor for 
development of AD/ADAS systems. 
 
Feng et al. (2019) reviewed the following approaches of designing test scenarios for 
evaluating ADAS systems, including their pros and cons. These five in the sequence 
of evolution are Naturalistic Field Operational Testing (N-FOTs), Monte Carlo 
Simulations (MCS), Accelerated evaluation methods (AE) and Test Matrix approach 
(TM). N-FOTs evaluated the system through real world driving but had low level of 
exposure to safety critical crashes/near-crashes. MCS has been used to develop 
driver models using stochastic/random parameters based on data collected through 
naturalistic studies and generate scenarios using these driver models. For example, 
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in Yang et al. (2008) a car following model was developed with driver distraction and 
lead vehicle deceleration as stochastic/random processes which produced scenarios 
similar to the field testing data. AE methods were proposed by Zhao, et al. (2016) to 
speed up the evaluation process of active safety systems by generating critical 
scenarios for simulation and validation of the systems. TM methods evaluate the 
systems by collecting factors such as positions, speeds and accelerations of the 
system being evaluated and generating testing scenarios using them. An example for 
the use of TM is the EuroNCAP standard for AEB evaluation where a TM with 
different configurations of the test vehicle and obstacle was presented. Feng et al. 
(2019) identified that one of the common limitations of these methods was lower 
availability of safety critial scenario data compared to non critical driving data in the 
available data sources like naturalistic driving data.  
 
To overcome the limited availability of critical scenarios extensive research is being 
done using naturalistic driving data (NDD). NDD is a data collection method that 
provides information about the normal driving behavior of people on roads. This 
data is collected by equipping vehicles with data acquisition systems which have 
sensors like cameras, RADARs to continuously collect data about the driver, vehicle, 
and the surrounding environment. This type of data has the potential to add 
significant value to understanding crash causation, providing a large database for 
analyzing crash and crash related behaviors (Schagen & Sagberg, 2012). This thesis 
uses second Strategic Highway Research Program (SHRP2) naturalistic driving data 
and the L3Pilot classification scheme for different types of cut-in maneuvers. SHRP2 
is the world’s largest naturalistic database, collected by Virginia Tech Transportation 
Institute (VTTI) with more than 3000 participants, for a duration of two years, in the 
United States. The dataset consists of 8769 crash and near-crash events. According 
to SHRP2 data definitions, crash and near-crash are defined as  “Any contact that the 
subject vehicle has with an object, either moving or fixed, at any speed in which 
kinetic energy is measurably transferred or dissipated.”, and “Any circumstance that 
requires a rapid evasive maneuver by the subject vehicle or any other vehicle, 
pedestrian, cyclist, or animal to avoid a crash”, respectively (Transportation Research 
Board of the National Academies of Science, 2013). L3Pilot is a large-scale pilot study 
of SAE level 3 and level 4 automated driving functions. It started in 2017 and is 
expected to finish by the end of 2021. 
 
Different types of critical scenarios are observed in NDD analysis which lead to 
crashes and near-crashes, and the focus of this thesis is on one of such scenarios 
which occurs due to a vehicle performing dangerous lane changing maneuver. 
According to Lee et al. (2016), lane changing causes negative shockwaves on roads. 
That is one car brakes and so other cars should subsequently brake which leads to 
traffic safety issues. In the U.S., cut-ins account for approximately 5% of all crash 
fatalities (Hou et al., 2015). According to statistics of SHRP2 data from the 
SHRP2insight website (Virginia Tech Transportation Institute, 2020), there are 1426 
critical events (crashes and near crashes) out of 8769 events which were caused due 
to another vehicle changing lane. Critical cut-ins are maneuvers where a vehicle 
(Principal Other Vehicle, POV) changes lane and moves very close to the vehicle 
(Subject Vehicle, SV) in the adjacent lane (Wang et al., 2019) causing the SV to 
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perform a sudden evasive maneuver like braking or steering, or both. This is shown 
in Figure 2. 

 
Figure 2: Critical cut in manoeuvre starting from right side. By the end of the 
manoeuvre (Right most figure), the gap between SV and POV is small, causing a 
sudden evasive manoeuvre of the SV. 

Yang et al. (1996) classified lane changes as either Mandatory Lane Change (MLC) or 
Discretionary Lane Change (DLC). In a mandatory lane change, the driver executed a 
compulsory lane change to stay on the desired path – for example, taking the exit 
ramp to exit highway. In a discretionary lane change the driver execute a voluntary 
lane change to maintain the desired driving conditions. According to SHRP2 there 
were crashes and near-crashes due to both MLC and DLC lane changes. 
 
Lane changing models were extensively researched during the last three decades 
(Gipps, 1986; Toledo et al., 2007). In Toledo et al. (2003), lane change maneuvers 
were modelled in two phases: 

1. Lane change decision phase 
2. Lane change execution phase 

 
In the decision phase the motivating factors (traffic conditions, driver intensions, 
etc.) for the driver to perform a lane change were modelled. In the execution phase 
the kinematics of the vehicle movement were modelled. Different types of lane 
change decision models were compared and suggested that for future development 
of lane change models’ large datasets of driver lane changing trajectories are 
required (Moridpour et al., 2010). Bernard et al. (2012) also highlighted the 
importance of trajectory models in the context of improving road safety by stating 
that trajectory models were required to understand the interactions between 
vehicles, drivers and road infrastructure in detail, which in turn enable development 
of warning and intervention functions of ADAS systems. 
 
According to Bernard et al. (2012) a trajectory of vehicle is the representation of the 
position, velocity, and accelerations of the vehicle as functions of time. Models of 
cut-in trajectories are important as they represent the critical lane changing events 
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and are useful for overcoming the limited availability of critical scenario data 
necessary for evaluation of AD/ADAS systems that were mentioned by Feng et al. 
(2019). An example of a cut-in trajectory is shown in Figure 2, represented as blue 
and orange curves. Three types of modelling approaches have identified for lane 
change trajectories and are shown in Figure 3. 
 

 
Figure 3: Three modelling approaches for lane changing trajectories found in 
literature review 

Heuristic methods are typically based on Artificial Intelligence (AI) logic which use 
techniques like random sampling and search-based methods (Zhang et al., 2018, 
McNaughton et al., 2011). These methods have been used to solve path planning 
problems for autonomous driving applications. In models based on virtual electric 
field the vehicle movement is attributed to a force which is defined as the negative 
gradient of a virtual electric field. The minimum electric field potential between the 
vehicle and obstacle objects are considered as a basis for collision avoidance and 
path optimization problems. According to Peng, et al. (2020), this type of models 
have high computational complexity. Geometric methods generate trajectories 
based on parametric geometric curves such as splines, clothoids, polynomials, etc. 
According to Bai et al. (2017) and Wang et al. (2014), polynomial curves are simple, 
have continuous curvature and have better real time performance in case of AD 
applications. 
 
This thesis focuses on a type of lane change maneuver known as critical cut-in. The 
goal of this thesis is to build  statistical models for the POV trajectory in cut-in 
maneuvers by using the variables extracted using video annotation tool developed 
during last year thesis work (Shams El Din, 2020) and also by creating some 
classification variables, and aims to develop a generic trajectory model for a group of 
classified maneuvers  that can be used to interpolate between and extrapolate from 
available naturalistic driving data from SHRP2. The dataset derived from SHRP2 by 
(Shams El Din, 2020) is used for this thesis. The details of the dataset, heuristics used 
to filter the required type of trajectories and variable extraction is explained in 
Section 2.  
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2 Method 
This section has two parts. The first part explains the variables extracted from SHRP2 
and new annotations done in this thesis, for classification of cut-ins resulting in a 
specific group of trajectories for further analysis. The second part describes two 
different trajectory models aimed at enabling interpolation and extrapolation of 
SHRP2 trajectories for a selected group of data. 
 
 

2.1 Data 

A total of 57 cut-in events’ annotation data were used in this thesis. The events in 
this dataset are a mixture of different trajectories with respect to different POV 
speeds, different direction of lane change (right to left and left to right), different 
number of lane changes performed by the POV in the event, and they include 
Mandatory (MLC) and Discretionary (DLC) lane changes. This dataset consists of 75% 
DLC type lane changes and 25% of MLC type lane changes.  
 
There are two types of variables associated with this data: kinematic variables and 
classification variables. The kinematic variables representing POV cut-in trajectories 
were extracted using a video annotation tool, developed by (Shams El Din, 2020), 
and manual annotation which is explained in Section 2.1.1. The kinematic variables 
obtained from the annotation tool are listed in Table 1 and other kinematic variables 
were provided by VTTI. The classification variables used for grouping the trajectories 
are derived through manual annotation and are explained in Section 2.1.2. 

2.1.1 Kinematic variables 

To process the video data from SHRP2 and extract kinematic variables of vehicles 
involved in cut-in scenarios, a python based video annotation tool was developed in 
a previous project by (Shams El Din, 2020). The User Interface (UI) of the tool 
enables the user to perform the following operations: 

1. Select a video file along with the related data files 
2. Identify and mark the POV doing the cut-in maneuver 
3. Mark the lane markings 

 
These markings are done for few frames in the video and based on these markings, 
kinematic variables of POV—position, velocities in x, y coordinates—are calculated 
as the output and the position output of the tool is aligned with the radar data to 
correct the annotation error as explained in (Shams El Din, 2020). The tool used the 
following data sources of SHRP2 to calculate the kinematic variables: 

1. Video data Front camera – Data acquisition system  
2. RADAR data – Data acquisition system 
3. Speed and accelerations of SV – CAN data 

 
All these variables were calculated in the coordinate system of Subject Vehicle (SV) 
and then transformed into the coordinate system of the lane center of the target 
lane. The final coordinate system is shown in Figure 4 and the list of variables are 
shown in Table 1. 
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Table 1: List of variables extracted from SHRP2 video data using video annotation 
tool. 

 
 

 
Figure 4: Reference frame with respect to target lane centre, shown in grey on top 
left of image (Shams El Din, 2020) 

 
The trajectory of the POV for one event built using the extracted kinematic variable 
data is shown in Figure 5. 
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Figure 5: POV trajectory of one event built using the extracted kinematic variable 
data of the video annotation tool. 

2.1.2 Classification variables 

Apart from the kinematic variables of the event trajectories, classification of the 
events was necessary to identify maneuvers with similar characteristics. The idea 
behind such a classification is to build a generic trajectory model for each category of 
cut-in maneuver. The list of variables used for classification are summarized in Table 
2. As seen in the table some of these variables are based on L3Pilot classification 
scheme (Hibberd, et al., 2018) and the others were identified by the author. All these 
variables are manually observed by watching the front video data of SHRP2 dataset. 
  
Table 2: List of variables used for classifying annotation data into categories. 

Variable Name Reference 

Cut-in motivation L3Pilot 

Starting side of cut-in L3Pilot 

Type of lane change Author 

Total number of lane changes Author 

Leading vehicle presence on target lane L3Pilot 

Leading vehicle – target lane influence Author 

Leading vehicle presence in origin lane Author 

Leading vehicle – origin lane influence Author 

 
 
The definitions of the cut-in classifications defined by L3Pilot project are explained 
below: 
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2.1.2.1 L3Pilot classification variables  

• Cut-in motivation: This variable describes the motivation of POV driver to 

perform the cut-in maneuver. 

o Cut-in after overtaking the SV (example in Figure 6, Figure 7) 

o Overtake a slower moving vehicle (example in Figure 8) 

o Entry ramp - Entering from another road (before the cut-in, the 

vehicle was on another roadway) (example in Figure 9) 

o Exit ramp - Exiting the road (after the cut-in the vehicle will exit 

the roadway) (example in Figure 10) 

o Avoiding a work zone or other obstacle (static) (example in Figure 

11) 

o Approaching an intersection in situations where the vehicle must 

change lanes to be in the correct lane (example in Figure 12) 

o Ending lane (the origin lane on which the cut-in vehicle was 

traveling is ending) (example in Figure 13) 

o Other (other motivation that is not included in the above 

categories). 

• Starting Side of Cut-in: 

o Cut-in from left lane 

o Cut-in from right lane. 

• Leading vehicle presence on target lane: 

o Yes 

o No. 

 

 
Figure 6: Cut-in after overtaking the ego vehicle.  Single lane cut-in. Cut-in from left. 
Principal Other Vehicle (POV), Subject Vehicle (SV) and leading (L) vehicle. Leading 
vehicle can be present or not. 

SV L 

POV 

Original lane 

Target lane 
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Figure 7: Cut-in after overtaking the ego vehicle.  Single lane cut-in. Cut-in from right. 
Principal Other Vehicle (POV), Subject Vehicle (SV) and leading (L) vehicle. Leading 
vehicle can be present or not. 

 
Figure 8: Overtake a slower moving vehicle. Principal Other Vehicle (POV), Subject 
Vehicle (SV), slower vehicle (S). Cut-in from left. Single lane cut-in. Leading vehicle can 
be present or not. 

 
Figure 9: Entry ramp.  Single lane cut-in. Cut-in from right. Principal Other Vehicle 
(POV), Subject Vehicle (SV). Leading vehicle can be present or not. 
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Figure 10: Exit ramp.  Cut-in from left. Multiple lane cut-in. Principal Other Vehicle 
(POV), Subject Vehicle (SV). Leading vehicle can be present or not. 

 

 

Figure 11: Avoiding a work zone or other obstacle. Principal Other Vehicle (POV), 
Subject Vehicle (SV), obstacle (O). Cut-in from left. Single lane cut-in. Leading vehicle 
can be present or not. 

 
Figure 12: Approaching an intersection (cut-in vehicle plans to turn right at the 
intersection).  Single lane cut-in. Cut-in from left. Principal Other Vehicle (POV), Subject 
Vehicle (SV) and leading (L) vehicle. Leading vehicle can be present or not. 
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Figure 13: Ending lane.  Single lane cut-in. Cut-in from left. Principal Other Vehicle 
(POV), Subject Vehicle (SV) and leading (L) vehicle. Leading vehicle can be present or 
not. 

 

 
Figure 14: Multiple lane cut-in. Principal Other Vehicle (POV), Subject Vehicle (SV) and 
leading (L) vehicle. Cut-in from left. Leading vehicle can be present or not. 

 

2.1.2.2 Author defined classification variables  

• Type of lane change: This variable represents if the cut-in maneuver is 

Mandatory Lane Change (MLC) or Discretionary Lane Change (DLC). 

o MLC 

o DLC 

• Total number of lane changes: This variable represents the total number 

of lane changes performed by the POV in a single cut-in maneuver. 

o N = number of lanes that the POV changes during the cut-in 

maneuver 

• Leading vehicle – target lane influence: This variable captures the 

influence of a leading vehicle on the target lane. The influence is ‘yes’ if 

the POV changes acceleration during cut-in maneuver due to the leading 

vehicle on target lane.  

o Yes 

o No 

SV L 

POV 

Origin lane 

Target lane 

POV 

SV L 

Origin lane 
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• Leading vehicle presence on origin lane: This variable captures the 

presence of a leading vehicle on the original lane of POV. 

o Yes 

o No 

• Leading vehicle - origin lane influence: This variable captures the 

influence of a leading vehicle on the target lane. The influence is ‘yes’ if 

the POV changes acceleration during cut-in maneuver due to the leading 

vehicle on original lane. 

o Yes 

o No 

Now there are two datasets for trajectory modelling: a kinematic variables dataset 
(Section 2.1.1) and a classification variables dataset (Section 2.1.2). 

2.2 Trajectory modelling 

This section explains the trajectory modelling methods of this thesis. It starts with 
identification of start and end time of each maneuver, which is essential to calculate 
the independent variable for subsequent models: the event duration. Then, a 
polynomial model is built for interpolating the trajectories in the input dataset. 
Finally, a probabilistic model of lateral trajectory of POV built for extrapolation of 
trajectories from input dataset is explained. 
 
Using the classification variables derived in previous section, the cut-in maneuvers 
occurring from right to left in which POV performs a single lane change are 
considered for building a trajectory model. 33 out of 57 of the events were in this 
category. The data of these 33 inputs is the input dataset for the trajectory model. 

 

2.2.1 Start and end points of the maneuver 

The start and end points of the maneuver are required for calculating the event 
duration for different trajectories. Event duration is further used as an independent 
variable in models explained in further sections. In the ideal case where the SV is 
travelling straight in the target lane and the POV is cutting in onto SV’s lane, the POV 
is initially travelling in its original lane without any lateral movement, changes lane 
and stabilizes on the target lane. In this case the lateral range rate of POV looks like 
the example shown in Figure 15 where the lateral range rate starts from 0 𝑚/𝑠, 
increase to a maximum value (in case of cut-in from right to left lane) and then end 
at 0 𝑚/𝑠.  
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Figure 15: POV lateral range (dotted black curve) and lateral range rate (Orange bell 
shaped curve) for an ideal cut-in manoeuvre. 

However, in the data derived from the annotation tool two differences were 
observed. First, the lateral range rate profile of POV is not a smooth bell-shaped 
curve like the ideal trajectory and had multiple peaks as shown in Figure 16. 
Secondly, the start and end points of the data are not at 0 𝑚/𝑠 as shown below. 
These issues were because of manual annotation procedure employed in the video 
annotation tool (Shams El Din, 2020). 
 

 
Figure 16: POV lateral range rate profile showing multiple peaks. 

 
To overcome the first issue, the start and end points are identified by first identifying 
the maximum peak in POV lateral range rate profile and scanning on either side of 
the peak to determine the points. And the second issue is addressed by considering a 
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threshold value (±0.2 𝑚/𝑠; positive for cut-in maneuvers from right side to left side) 
to identify start and end points while scanning from the peak. A similar approach has 
been used in Wang et al. (2014) and Shams El Din (2020), and according to Wang et 
al. (2014), changing the threshold value changes the average value of the event 
duration but the distribution trend of the event duration is not much affected. The 
start and end points identified through this method are shown for one event in 
Figure 17. 
 
 

 
Figure 17: POV lateral range on left y axis and POV lateral range rate profile on right 
y axis, against event duration on x axis of one event. Start and end points marked on 
either side of the lateral range rate peak. 

 
Once the start and end points are calculated, the trajectories are plotted together to 
verify their shape. The lateral and longitudinal components of POV trajectories are 
shown in Figure 18 and 19 respectively. 
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Figure 18: Lateral trajectories of cut-in manoeuvres occurring from right to left in 
which POV performs a single lane change. 

 

 
Figure 19: Longitudinal trajectories of cut-in manoeuvres occurring from right to left 
in which POV performs a single lane change. 
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Now the event durations of the trajectories are calculated as: 
𝐸𝑣𝑒𝑛𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 

 
After obtaining the event duration for  all the events, the distribution for the 
duration is found by fitting 10 different distributions in the JMP Pro software and the 
best fit is found using Akaike Information Criterion (AIC) as a measure of goodness of 
fit. 

2.2.2 Polynomial model for interpolation of trajectories 

The trajectory of the POV can be defined by any of the kinematic variables - position, 
speed, and acceleration in longitudinal and lateral directions of POV. These variables 
can be expressed as functions of time as shown in equations 1 to 6. 

𝑥𝑃𝑂𝑉 = 𝑓(𝑡)  (1) 

𝑥̇𝑃𝑂𝑉 = 𝑓̇(𝑡)  (2) 

𝑥̈𝑃𝑂𝑉 = 𝑓̈(𝑡)  (3) 
𝑦𝑃𝑂𝑉 = 𝑔(𝑡)   (4) 
𝑦̇𝑃𝑂𝑉 = 𝑔̇(𝑡)   (5) 

 𝑦̈𝑃𝑂𝑉 = 𝑔̈(𝑡)    (6) 
 

Based on the literature study, it was found that a lane change maneuver can be 
expressed in the form of a quintic polynomial in time. The trajectory of the POV is 
expressed as the function 𝑓(𝑥, 𝑦, 𝑡) and is built based on the initial state ( 𝑆𝑠 ) and 
final state ( 𝑆𝑒 ) of the POV, represented by equations (19), (20). 
 

𝑆𝑠 = (𝑥𝑠, 𝑥̇𝑠, 𝑥̈𝑠, 𝑦𝑠, 𝑦̇𝑠, 𝑦̈𝑠)  (19) 
𝑆𝑒 = (𝑥𝑒 , 𝑥̇𝑒 , 𝑥̈𝑒 , 𝑦𝑒 , 𝑦̇𝑒 , 𝑦̈𝑒)  (20) 

 
Where 𝑥𝑠 , 𝑥̇𝑠, 𝑥̈𝑠 are the longitudinal displacement, velocity and acceleration 
respectively, and 𝑦𝑠, 𝑦̇𝑠, 𝑦̈𝑠 are the lateral displacement, velocity and acceleration 
respectively. The equations of quintic polynomials of lateral and longitudinal 
displacements in terms of time, equations (1) and (2) can be rewritten as below. 
 

𝑦 = 𝑎5𝑡𝑛
5 + 𝑎4𝑡𝑛

4 + 𝑎3𝑡𝑛
3 + 𝑎2𝑡𝑛

2 + 𝑎1𝑡𝑛 + 𝑎0  (21) 
 

𝑥 = 𝑏5𝑡𝑛
5 + 𝑏4𝑡𝑛

4 + 𝑏3𝑡𝑛
3 + 𝑏2𝑡𝑛

2 + 𝑏1𝑡𝑛 + 𝑏0  (22) 
 
Similarly, the equation for velocities and accelerations in lateral and longitudinal 
directions can be obtained by taking derivatives of equations (21) and (22). So, in 
total there are six unknown parameters for each of the directions (lateral and 
longitudinal) and six equations which can be represented as the following set of 
linear equations. The equations for lateral and longitudinal components are shown 
below: 
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[
 
 
 
 
 
 

𝑡𝑠
5 𝑡𝑠

4 𝑡𝑠
3 𝑡𝑠

2 𝑡𝑠 1

𝑡𝑒
5 𝑡𝑒

4 𝑡𝑒
3 𝑡𝑒

2 𝑡𝑒 1

5𝑡𝑠
4 4𝑡𝑠

3 3𝑡𝑠
2 2𝑡𝑠 1 0

5𝑡𝑒
4 4𝑡𝑒

3 3𝑡𝑒
2 2𝑡𝑒 1 0

20𝑡𝑠
3 12𝑡𝑠

2 6𝑡𝑠 2 1 0

20𝑡𝑒
3 12𝑡𝑒

2 6𝑡𝑒 2 1 0]
 
 
 
 
 
 

.

[
 
 
 
 
 
𝑎5

𝑎4

𝑎3

𝑎2

𝑎1

𝑎0]
 
 
 
 
 

=  

[
 
 
 
 
 
𝑦𝑠

𝑦𝑒

𝑦̇𝑠

𝑦̇𝑒

𝑦̈𝑠

𝑦̈𝑒]
 
 
 
 
 

  (23) 

 

[
 
 
 
 
 
 

𝑡𝑠
5 𝑡𝑠

4 𝑡𝑠
3 𝑡𝑠

2 𝑡𝑠 1

𝑡𝑒
5 𝑡𝑒

4 𝑡𝑒
3 𝑡𝑒

2 𝑡𝑒 1

5𝑡𝑠
4 4𝑡𝑠

3 3𝑡𝑠
2 2𝑡𝑠 1 0

5𝑡𝑒
4 4𝑡𝑒

3 3𝑡𝑒
2 2𝑡𝑒 1 0

20𝑡𝑠
3 12𝑡𝑠

2 6𝑡𝑠 2 1 0

20𝑡𝑒
3 12𝑡𝑒

2 6𝑡𝑒 2 1 0]
 
 
 
 
 
 

.

[
 
 
 
 
 
𝑏5

𝑏4

𝑏3

𝑏2

𝑏1

𝑏0]
 
 
 
 
 

=  

[
 
 
 
 
 
𝑥𝑠

𝑥𝑒

𝑥̇𝑠

𝑥̇𝑒

𝑥̈𝑠

𝑥̈𝑒]
 
 
 
 
 

  (24) 

 
To reduce the number of inputs in equations (23) and (24), the following 
assumptions are made: 

• The start time, initial longitudinal and lateral displacements are zero as the 
starting point of POV was considered as zero. 

• The final lateral displacement is equal to the lane width (i.e., the movement 
between the center of two lanes).  

• The initial and final longitudinal velocity of POV is constant and hence the 
initial and final longitudinal accelerations are zero. This was because the 
observed longitudinal trajectories of the 33 events appeared to be straight 
lines with a constant slope (as shown in section 2.2.1). 

• The initial and final lateral velocities and final lateral acceleration are zero. 
With these assumptions’ equations (23) and (24) can be rewritten as: 
 

[
 
 
 
 
 

0 0 0 0 0 1
𝑡𝑒
5 𝑡𝑒

4 𝑡𝑒
3 𝑡𝑒

2 𝑡𝑒 1
0 0 0 0 1 0

5𝑡𝑒
4 4𝑡𝑒

3 3𝑡𝑒
2 2𝑡𝑒 1 0

0 0 0 2 1 0
20𝑡𝑒

3 12𝑡𝑒
2 6𝑡𝑒 2 1 0]

 
 
 
 
 

.

[
 
 
 
 
 
𝑎5

𝑎4

𝑎3

𝑎2

𝑎1

𝑎0]
 
 
 
 
 

=  

[
 
 
 
 
 
0
𝑦𝑒

0
0
𝑦̈𝑠

0 ]
 
 
 
 
 

  (25) 

 

[
 
 
 
 
 

0 0 0 0 0 1
𝑡𝑒
5 𝑡𝑒

4 𝑡𝑒
3 𝑡𝑒

2 𝑡𝑒 1
0 0 0 0 1 0

5𝑡𝑒
4 4𝑡𝑒

3 3𝑡𝑒
2 2𝑡𝑒 1 0

0 0 0 2 1 0
20𝑡𝑒

3 12𝑡𝑒
2 6𝑡𝑒 2 1 0]

 
 
 
 
 

.

[
 
 
 
 
 
𝑏5

𝑏4

𝑏3

𝑏2

𝑏1

𝑏0]
 
 
 
 
 

=  

[
 
 
 
 
 
0
𝑥𝑒

𝑥𝑠̇

𝑥̇𝑒

0
0 ]

 
 
 
 
 

  (26) 

 
 
Now there are four unknown variables for building trajectories using above 
equations and they are: 

1. End time, which is equal to the event duration, since the start time is zero 
2. Initial lateral acceleration of the POV 
3. Final longitudinal displacement of the POV 
4. Longitudinal velocity of the POV 
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The event duration was calculated in section 2.2.1 and its distribution was 
determined. 
 
The initial lateral acceleration of the POV was first obtained by differentiating the 
lateral range rate. However when the trajectories were generated using this 
acceleration values they were showing a different shape compared to the actual 
trajectory and hence initial lateral acceleration of POV was determined by 
minimizing a cost function shown in Equation (27), which is calculated as the sum of 
squares of the difference in distances between original and generated trajectories at 
each timestep.  
 

𝐶𝑜𝑠𝑡 =  ∑ (𝑦𝑝𝑜𝑣,𝑛 − 𝑦𝑝𝑜𝑣,𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙,𝑛)
2𝑁

𝑖=1   (27) 

 
 
Where 𝑦𝑝𝑜𝑣,𝑛 is the lateral position of the POV at each time step 𝑛 and 

𝑦𝑝𝑜𝑣,𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙,𝑛 is the lateral position of the POV generated by equation (25). The 

value of initial lateral acceleration is searched in the range of −4 𝑚/𝑠2  to 6 𝑚/𝑠2 
and cost is calculated. Then, the minimum cost acceleration is used for generating 
trajectories. The comparison of trajectories generated using differentiated 
acceleration and the low-cost acceleration can be seen in Figure 20 and 21. 
 

 
Figure 20: Comparing trajectories generated from differentiated acceleration and 
low-cost acceleration Event1. 
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Figure 21: Comparing trajectories generated from differentiated acceleration and 
low-cost acceleration Event2. 

 
Using the minimum cost lateral acceleration values of all the events, a linear model is 
built using MATLAB’s ‘𝑓𝑖𝑡𝑙𝑚()’ function to determine the initial lateral acceleration, 
using the event duration as independent variable. This function creates a linear 
model which is used to calculate initial lateral acceleration values of POV for any 
event duration. The general form of such linear model is 𝑦 = 𝑐1𝑥 + 𝑐0, where 𝑦 is 
the dependent variable, lateral acceleration in our case, and 𝑥 is the independent 
variable, which is event duration in our case and 𝑐0, 𝑐1 are coefficients of the linear 
model which are calculated using the input data of minimum cost acceleration 
values of all events. Likewise, another linear model is built for final longitudinal 
displacement of POV using event duration as the independent variable.  
 
The longitudinal velocity of POV is calculated as 
 

𝑥̇𝑠 = 𝑥̇𝑒 = 𝑥̇ =
𝑥𝑒−𝑥𝑠

𝑡𝑒−𝑡𝑠
=

𝑥𝑒

𝑡𝑒
  (28) 

 
Finally, a range of interpolated trajectories are generated by following sequence 
mentioned below and any number of trajectories could be generated in the range of 
cut-in durations: 

1. Select an event duration from the event duration distribution 
2. Calculate initial POV lateral acceleration, final POV longitudinal position using 

the linear models of event duration and POV longitudinal velocity using 
equation (28) 

3. Generate trajectories by using equations (25) and (26) 
 
This is further presented in section 3.1.2.1. 

2.2.3 Probabilistic model for extrapolation of trajectories 

In addition to calculating the quintic polynomial parameters for lateral and 
longitudinal trajectories of POV, a probability distribution of the parameters 
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calculated using the input dataset was built. According to Rogers & Girolami (2016) 
textbook, probabilistic regression models can be used as generative models which 
calculate the probability distribution of the model parameters using training data. 
 
A model built for lateral trajectory of POV is explained here. In this model, the POV 
lateral position is the output variable which is represented as the quintic polynomial 
of time (input variable). In a probabilistic model, a random noise variable is added to 
the input variable to include the uncertainty of input measurements into the model. 
The basic form of the model is shown below: 
 

𝑦𝑃𝑂𝑉 = 𝑓(𝑡) + 𝜖  (29) 
 

Here, 𝑓(𝑡) is the quintic polynomial shown in equation (21) and 𝜖 is an additive noise 
term. The noise is modelled as a random variable with gaussian distribution for ease 
of mathematical computation. This is shown in equation (30) along with the 
parameters of gaussian distribution. 
 

𝜖 =  𝒩(0, 𝜎2)  (30) 
 

The mean of the noise variable is zero and variance is 𝜎2. For any given time step 𝑛, 
the model will be as shown in equation (31). 
 

𝑦𝑛,𝑃𝑂𝑉 = 𝑐5𝑡𝑛
5 + 𝑐4𝑡𝑛

4 + 𝑐3𝑡𝑛
3 + 𝑐2𝑡𝑛

2 + 𝑐1𝑡𝑛 + 𝑐0 + 𝜖𝑛   (31) 
 
In vector form, equation (31) can be written as: 
 

𝑦𝑛,𝑃𝑂𝑉 = 𝒄𝑇𝒕𝑛 + 𝜖𝑛  (32) 
 
Where 𝒄 = [𝑐0, 𝑐1, … , 𝑐5]

𝑇 and 𝒕𝑛 = [1, 𝑡𝑛, 𝑡𝑛
2, … , 𝑡𝑛

5]𝑇.  
 
Stacking all responses into single matrix, 𝒚𝑃𝑂𝑉 = [𝑦1, 𝑦2, … , 𝑦𝑁]𝑇 and all the inputs 
into single matrix, 𝑻 = [𝒕1, 𝒕2, … , 𝒕𝑁], we get the following equation for one event 
for entire event duration. Here, N is the total number of timesteps or length of one 
event from start to end. 
 

𝒚𝑃𝑂𝑉 = 𝑻𝒄 + 𝝐  (33) 
 
The parameters of the above model are represented by the vector 𝒄 and the 
probability distribution of 𝒄 is to be calculated to generate the additional 
trajectories. This is possible by using the Bayes rule of probability. The Bayes 
equation for the above model can be expressed as shown in equation (34) 
 

𝑃(𝒄|𝒚𝑃𝑂𝑉, 𝑻, 𝜎2, Δ) =  
𝑃(𝒚𝑃𝑂𝑉|𝒄, 𝑻, 𝜎2, Δ) ∗ 𝑃(𝒄|Δ)

𝑃(𝒚𝑃𝑂𝑉|𝑻, 𝜎2, Δ)
  (34) 

 
The numerator in the right part of equation (12) has two terms – likelihood 
𝑃(𝒚𝑃𝑂𝑉|𝒄, 𝑻, 𝜎2, Δ), and prior 𝑃(𝒄|Δ). Where Δ represents some set of parameters 
to define prior over 𝒄 as explained in the following paragraphs. 



 

CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2021:37  22 

 

 
The likelihood is the probability distribution of 𝒚𝑝𝑜𝑣 calculated from the input data. 

In equation (33), addition of gaussian random variable noise also makes 𝒚𝑃𝑂𝑉 a 
gaussian random variable. Hence the equation for likelihood term becomes: 
 

𝑃(𝒚𝑃𝑂𝑉|𝒄, 𝑻, 𝜎2, Δ) =  𝒩(𝑻𝒄, 𝜎2𝑰𝑁)  (35) 
 

Where 𝑰𝑁 is an identity matrix of size N. 
 
According to Section 3.1 of Rogers & Girolami (2016), a likelihood-prior pair is said to 
be conjugate if they result in a posterior which is in the same form of prior. To get 
the exact expression for posterior term, which is explained in next paragraph, a prior 
is chosen such that it forms a conjugate pair with the gaussian likelihood. This results 
in a gaussian prior shown below. 
 

𝑃(𝒄|Δ) =  𝒩(𝜇0, Σ0)  (36) 
 
Hence Δ represents the parameters 𝜇0, Σ0, which are the mean and covariance of 
the gaussian distribution of prior over 𝒄. The mean 𝜇0 is a null matrix since there is 
no prior information about the parameter values. The covariance Σ0 is an identity 
matrix as the assumption is that the individual parameters are independent and 
have equal variances. 
 
The left part of equation (34) is known as the posterior term and this is what is to be 
calculated. This term represents the probability distribution of parameters of the 
quintic polynomial, 𝒄, given the input data of lateral positions 𝒚𝑃𝑂𝑉, the time 𝑻, and 
variance of the noise 𝜎2. This can be used to generate new sets of values of 
parameters which can further be used to generate extrapolated trajectories for new 
time values using equation (37). 
 

𝑃(𝒚𝑃𝑂𝑉,𝑛𝑒𝑤|𝒙𝑛𝑒𝑤 , 𝑻, 𝜎2, Δ) = ∫ 𝑃(𝒚𝑃𝑂𝑉,𝑛𝑒𝑤|𝒙𝑛𝑒𝑤, 𝒄, 𝜎2) ∗ 𝑃(𝒄|𝒚𝑃𝑂𝑉, 𝑻, 𝜎2, Δ) (37) 

 
By choosing a conjugate likelihood-prior pair, the form of posterior is known which is 
a gaussian. The expression of posterior and its gaussian parameters are shown 
below. 
 

𝑃(𝒄|𝒚𝑃𝑂𝑉, 𝑻, 𝜎2, Δ) =  𝒩(𝜇𝑐, Σ𝐶)   (38) 
 

Σ𝑐 = (
1

𝜎2 𝑻𝑇𝑻 + Σ0
−1)

−1

   (39) 

 

μ𝑐 = Σ𝑐 (
1

𝜎2 𝑻𝑇𝒚𝑃𝑂𝑉 + Σ0
−1𝜇0)  (40) 
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3 Results 
 
This section explains the results obtained for trajectory modelling starting from data 
classification and then results from the polynomial modelling of trajectory are 
presented, followed by the probabilistic model for trajectory generation. 

3.1.1 Data Classification 

As explained in section 2.1.2, classification variables were collected via manual 
annotation of SHRP2 video data. These classification variables were then used to 
identify the similarities in cut-in trajectories. 
 
The initial data of 57 trajectories was plotted using the kinematic variables from 
video annotation tool. These trajectories look as shown below: 
 

 
Figure 22: Plot of 57 cut-in trajectories from SHRP2. Zero on y-axis represents the 
target lane centre. 

From this image it can be seen that there are cut-ins starting from left side and right 
side and that there are more starting from the right. Also, the cut-in maneuvers were 
classified as either MLC or DLC as explained in section 2.1.2. The distributions of the 
type of lane change and side of lane change is shown below: 
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Figure 23: Distribution of types of cut-ins and starting side of cut-in. 

It can be seen that there are more cut-ins starting from right side and also that 
majority of them are discretionary type lane changes (DLC). The distribution of the 
cut-in motivation is shown below: 
 

 
Figure 24: Distribution of events based on cut-in motivation. 

It can be seen that the major motivation for cut-ins is a slow-moving vehicle in front 
of the POV. Another interesting result is the number of lane changes POV performed 
in a cut-in manoeuvre. The number of lane changes can be classified based on 
starting side of cut-in manoeuvre and type of lane change. These two distributions 
are shown below: 
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Figure 25: Distribution of number of lane changes performed by POV in a cut-in 
manoeuvre grouped based on starting side of cut-in. 

 

 
Figure 26: Distribution of number of lane changes performed by POV in a cut-in 
manoeuvre grouped based on type of cut-in. 

From the above results it can be seen that single lane changes/cut-ins are more and 
are selected for further analysis which resulted in 33 events available for further 
analysis. The lateral and longitudinal trajectories of cut-ins starting from right side 
and having single lane change are shown in Figures  
 
The above trajectories show that the lateral trajectory follows a S shaped curve and 
longitudinal trajectories follow a straight line with constant slope for the selected 
group of manoeuvres. These were further used to build trajectory models, as 
explained in below sections. 
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3.1.2 Trajectory modelling 

This section shows the results of trajectory models built to be used for trajectory 
interpolation and extrapolation. These models used the kinematic data of the 33 
events grouped as explained in previous section.  

3.1.2.1 Start and end points, event duration 

As explained in section 2.1.1, event duration of the trajectories has been calculated 
using the start and end points of the trajectory. Then, different distributions have 
been considered to model the event durations and it was found that the normal 
distribution fits best. The comparison of AIC score for different distributions is shown 
below along with the distribution curve of event durations. The distribution 
modelling has been done in JMP Pro software from SAS using the distribution 
function. To know more about this function refer to (Distributions (jmp.com)) 
 

  
Figure 27: Top: Plot showing the distribution of event duration and the probability 
density curve of normal distribution. Bottom: Comparison of AIC values for different 
distributions. Results obtained using (JMPPro15). 

 
 
The probability density function of normal distribution is 

𝑓(𝑡|𝜇, 𝜎) =  
1

𝜎√2𝜋
𝑒𝑥𝑝 {

−(𝑡 − 𝜇)2

2𝜎2
} 

 
Where 𝑡 is the event duration, 𝜇 and 𝜎 are normal mean and variance of the normal 
distribution. This thesis found that 𝜇 = 4.14 𝑠 and 𝜎 = 0.89 𝑠 describe the normal 

Time [s] 

https://www.jmp.com/support/help/en/15.0/?os=win&source=application&utm_source=helpmenu&utm_medium=application#page/jmp/distributions.shtml#1161929
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distribution of the cut-in duration for the 33 SHRP2 cut-in near-crashes used in this 
study and described in section 3.1.1.  
 

3.1.2.1 Polynomial model for interpolation of trajectories 

The polynomial trajectory built using the equations (23) and (24) for one event is 
plotted along with the original trajectory of the event extracted from the annotation 
tool in figure below. 
 

 
Figure 28: Figure showing data of one event. The original trajectory extracted from 
annotation tool is shown as green line and the red line is the trajectory derived using 
the polynomial model. 

It can be seen that the polynomial model generates a trajectory with similar shape of 
the trajectory extracted from the annotation tool. However, the model only fits well 
the trajectories with ‘S’ shape and is not sufficiently suited to represent trajectories 
with different shape (e.g., linear shape). An example is shown below: 
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Figure 29: Figure showing data of one event in which the polynomial model does not 
fit well the data. The original trajectory extracted from annotation tool is shown as 
green line and the red line is the trajectory derived using the polynomial model. 

As mentioned in section 2.2, the polynomial trajectory model shown above was used 
to generate additional trajectories from the original 33 maneuvers extracted from the  
SHRP2 naturalistic dataset. Also, as mentioned in section 2.2, two linear models have 
been made to interpolate the values of POV initial lateral acceleration and final 
longitudinal position for the range of event duration obtained from the distribution 
shown in Section 3.1.2.1. As described in the Method section, the initial lateral 
acceleration and the final longitudinal position determined with the linear models are 
used for the generation of trajectories. The linear models are shown below: 
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Figure 30: Linear regression model of POV initial lateral acceleration and event 
duration. Blue data points are from SHRP2 data set. Red points are the predictions of 
linear model along with the confidence interval shown as green lines. 
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Figure 31: Linear regression model of POV final longitudinal position and event 
duration. Blue data points are from SHRP2 data set. Red points are the predictions of 
linear model along with the confidence interval shown as green lines. 

It can be seen that the trends in these linear models show that POV lateral acceleration 
is higher for manoeuvres with short duration and decreases as the duration increases, 
and final longitudinal position of POV increases with the event duration. However, 
these models could only capture 18% and 26% of variation in input data and hence is 
not fitting well with the data. These linear models are used to interpolate the required 
inputs for the polynomial trajectory model. For a given event duration, the other 
required variables for polynomial model—final longitudinal displacement of POV, 
initial lateral acceleration and longitudinal velocity—are obtained from the linear 
models, and then trajectories are generated. This method can be used to generate any 
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number of trajectories within the range of event duration. A sample of 25 interpolated 
trajectories is shown below. 
 
 

 
Figure 32: Trajectories of POV generated using polynomial model. 

3.1.2.2 Probabilistic Regression model for extrapolation of trajectories 

To build the probability model, the data of one event annotated by 5 different 
annotators in the previous project (Shams El Din, 2020) is considered and shown 
below: 

 
Figure 33: Figure showing the POV lateral distance data for one event. Five coloured 
curves represent the annotation data from 5 annotators. 

 

POV 

SV 
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Using this input data, the probability distribution of the quintic polynomial trajectory 
coefficients were calculated using equations (37) to (40). Then, a random set of 
these parameters were drawn using the calculated distribution. Any number of 
trajectories can be generated using these parameter sets. A sample of 50 trajectories 
generated for this event using the randomly generated parameters from posterior 
distribution is shown in Figure 34 below. 
 

 
Figure 34: Figure showing the generated trajectories from the posterior distribution. 
Blue stars represent raw data of 5 annotators. Coloured dotted lines represent 
generated trajectories. 
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4 Discussion and Conclusion 
AD/ADAS systems have a great potential to improve road safety in the future and 
one of the main factors necessary for designing such systems is understanding 
human driver behavior and predicting correct behavior of other road participants in 
a given scenario. However, the data of critical scenarios is scarce because of low 
chances of occurrence and due to the limitations of current data collection systems. 
One of the ways to overcome this challenge is to develop models of driver 
trajectories using the limited available samples and then interpolate and extrapolate 
new trajectories. Two models in this context have been studied in this thesis – a 
polynomial model for interpolation of trajectories and a probabilistic model for 
extrapolation of trajectories. The limitations and assumptions of these models are 
explained in the following text and some of the potential ways to improve the 
accuracy of these models is also mentioned.  
 
The aim of the thesis were: 1) to build statistical model(s) of the trajectory of a 
vehicle (POV) performing a critical cut-in in front of another vehicle; 2) to use the 
model for generating new trajectories representing a larger number of cut-in 
maneuvers. These trajectory models can be used as part of the development and 
evaluation of AD/ADAS systems (Bernard & Violette, 2012). To achieve the objectives 
of the thesis, first a dataset was prepared using annotated data collected in previous 
project (Shams El Din, 2020) and based on the SHRP2 naturalistic driving study  
(Transportation Research Board of the National Academies of Science, 2013). 
 
In the previous project a total of 1191 cut-in event data were collected from SHRP2 
out of which only 86 were found suitable for the study as mentioned in Section 3.1.2 
of Shams El Din (2020). Out of this 86-events annotation, data was available for 57 
events and this was used as the input dataset for this thesis. This data included 
kinematic variables of SV and POV and initial plots of the trajectories revealed that 
there were different shapes of trajectories with some similarities. Additional 
annotations were performed in this thesis project to provide a more complete 
description about the cut-in maneuvers. Wang et al. (2014) used a clustering method 
to identify similar shaped trajectories and identified that the subgroups of these 
shapes would have been explained with physical meaning if data regarding driver 
characteristics was available. In this thesis some of the driver characteristics were 
used as classification parameters and hence grouping of trajectories could be done 
without using clustering algorithms. As seen in Wang et al. (2014), clustering is useful 
for preliminary separation of similar shaped trajectories specifically for large dataset. 
 
A sample of 20 generated trajectories using the polynomial trajectory model were 
shown in results Section 3.1.2.1. From these results it can be seen that the 
interpolated trajectory shapes follow an ideal shape compared to the input 
trajectories from the annotation tool. Since there is no ground truth trajectory data 
of the POV, it is difficult to comment on the accuracy of the generated data, by only 
using annotated data. However, the shapes of the interpolated trajectories are 
different from the annotation tool outputs because of the model assumptions stated 
in Section 2.2.2. One of the major drawbacks of polynomial model was the fixed 
lateral acceleration of POV whereas in original trajectories the acceleration of POV is 
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not fixed and changed depending on the environmental factors like surrounding 
vehicle positions.  Also, the input variables of polynomial model (POV lateral 
acceleration, longitudinal displacement and velocity) have been modelled using 
linear regression. These linear models generated trajectories that do not fit well the 
annotated trajectories. Hence, more complex models can be considered in future 
research, with the aim to model these variables, which, in turn, likely will generate 
more accurate trajectory shapes. For example, to overcome the limitation of fixed 
acceleration of polynomial models, dynamic models could be explored (Xu, Liu, Ou, 
& Song, 2012). Xu et al. (2012) found that the dynamic lane change trajectory model 
had better fit compared to the polynomial model and one of the major difference in 
these models was that the lateral acceleration of the POV was not fixed and was 
modelled as a linear function of lateral velocity and lateral range. 
 
The probability model was built to extrapolate new trajectories based on SHRP2 
data. Looking at the results in section 3.1.2.2, the generated trajectories have 
different shapes during the start and end of the maneuver, compared to the original 
trajectories. This is because of the assumptions made on likelihood and prior 
distributions: that they are gaussian distributed, considering the coefficients of the 
quintic polynomial to be independent and selecting the noise variance through trial 
and error. Also, the assumption that the noise is a gaussian random variable made 
the variation of lateral position at each timestep random. In future research, the 
noise variable can be modelled using different distributions which can represent the 
uncertainty of measurement of the trajectory more accurately. Also, techniques 
using variational Bayesian methods has in previous literature been found to generate 
more accurate trajectory samples, in terms of their ability to represent actual human 
driving trajectories, from the distributions of trajectory parameters (Ding, Xu, & 
Zhao, 2020). Ding et al. (2020) developed a safety critical data synthesizing 
framework based on variational Bayesian methods. In their model, first the road 
map data is separated from trajectory data, then the trajectory sequences are 
encoded into latent space. In latent space the key parameters required to define the 
trajectory points are identified based on similar patterns and features of the 
trajectories using the convolutional later of a neural network. These latent space 
variables are then interpolated, and new trajectories are generated using a decoder. 
They used two input datasets, one with safe driving data and other with collision 
data. The data from these datasets was used to make the distributions of latent 
space variables using conditional probability and finally critical/near-miss trajectories 
were sampled from this mixed distribution. Ding et al. (2020) concluded that this 
model could generate realistic interpolated trajectory data in between the safe 
trajectory and collision trajectory. However, no direct comparison has been made 
with any naturalistic dataset of near-miss events. The probabilistic model in this 
thesis is directly trained on the critical cut in data occurring on similar road 
environment and hence a simple probabilistic regression model has been used which 
is less computationally expensive compared with models used by Ding et al. (2020). 
However, the shapes of the generated trajectories did not match well with the 
naturalistic trajectory data obtained from video annotation tool. An exact root cause 
for this has not been found in this thesis, but the video annotation tool uncertainty 
could have been a probable cause. Hence, though this model is computationally 
inexpensive, it does not produce accurate results when compared to Ding’s model. 
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For further development of this probabilistic model feature reduction and latent 
space interpolation could increase the accuracy of the model. 
 

4.1 Limitations & Future work 

The initial plan for the thesis was to improve the annotation tool developed in 
previous project and to annotate more events and increase the available data. 
However, due to changes in the original plans during the thesis it was not possible to 
work further on the annotation tool, which resulted in limited availability of cut-in 
data. Hence, future work should increase the available annotation data, which will 
help to identify more categories of cut-in trajectories and build more statistically 
sound models.  
 
Due to the limited time available, the longitudinal trajectory data of the POV could 
not be analyzed in detail, leading to the assumptions considered for building 
polynomial models. Due to this, the polynomial model developed in this thesis did 
not fit all the events as well as expected. This can be considered for future work 
which can improve the model fit for different events.  
 
Initially the probabilistic model was also considered to build a generic trajectory 
model representing all the events in the data set. However, it was not possible 
because the trajectories of different events had substantially different durations and 
hence a generic model was not possible. Such a model can be considered in the 
future when more trajectory data will be available for each duration value. Hence, 
the probabilistic model was built for generating trajectories of an event within the 
uncertainty region caused by the annotation tool. In future research, approximation 
methods could be explored to improve the Bayesian model. Also, non-parametric 
supervised machine learning models like the gaussian process could be considered to 
build a predictive model of trajectories (Liu et al., 2020). 
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