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Abstract
In this thesis, a system for autonomous navigation using the Microsoft Kinect sen-
sor and the utility function (UF) method for decision-making, has been developed. In
the UF method an artificial brain decides what control system procedures to activate or
deactivate, based on their utility. The system uses the Kinect sensor for obstacle avoid-
ance and localization. The Kinect sensor readings are matched to a predefined map,
using a scan matching algorithm based on the Hough transform, in order to correct
pose estimates acquired through odometry. The A∗-algorithm is used for path plan-
ning and the algorithm is applied on a grid representing the operating area accessible
to the robot.

The results show that the UF method can be applied in systems for autonomous
navigation, using the Kinect sensor for localization and obstacle avoidance. The Kinect
sensor has proven to be a useful alternative to more expensive range sensors, despite
its limitations in terms of field of view, range, and accuracy. On the other hand, the
results indicate that improvements are needed, in order to improve the robustness of
the system. During testing, the robot completed on average 87.6 % of a 45.1 m long,
predefined course and on average 121 m when choosing random targets. Tuning the
parameters of the decision-making system and improving the maneuverability at low
speeds are examples of future work that could increase the performance of the naviga-
tion system.

Key words: Localization, navigation, path planning, Kinect, Hough scan matching,
utility function method.
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Chapter 1

Introduction

1.1 Background
In many lines of business high efficiency and quality demands have forced the produc-
tion to become partly or fully automated. This thesis is focused on the development of
a navigation control system for a small autonomous robot working in a typical indoor
office environment. The control system will include methods for localization, path
planning, and decision-making. The robot will operate in an office and it constitutes
a step towards the development of fully autonomous construction machinery. In ad-
dition, the robot will be used as a platform for evaluation and development of future
functions related to autonomous vehicles.

Even though the conditions vary greatly between an indoor environment and a con-
struction site, many of the fundamental features of a control system should be similar.
The main differences are the hardware available, the safety and robustness require-
ments and the properties of the operating environment available for e.g. localization.

1.2 Autonomous navigation
For any mobile, autonomous agent, navigation is of great importance since virtually
every task requires the agent to travel between different positions. In order to navigate
safely and efficiently, the agent must be able to localize itself and to plan its future
movements. Humans and animals [37], as well as robots [33, 14], commonly perform
the localization by estimating the path traveled and by comparing the surroundings to
known landmarks.

Since mobile robots are usually built with wheels, the core of most localization
algorithms is odometry, in which wheel encoder measurements are used to calculate
an estimate of the pose and velocity. Measurement noise, mechanical imperfections
and model simplifications will, however, result in erroneous position estimates and
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unless the estimates are corrected by an odometry-independent source, the error will
tend to grow.

As the operating area of the agent becomes larger, the area that needs to be stored
in memory in order to navigate grows and the need for some kind of map arises. If a
mobile robot is to navigate autonomously in an unknown environment it must therefore
be able to carry out some type of mapping in addition to localization and path planning.
Simultaneous localization and mapping (SLAM) is, as Leonard and Durrant-Whyte
[23] stated, ”a question of which came first, the chicken or the egg?” since localization
requires an accurate map and mapping requires an accurate estimate of the position.
The problem has been the focus of many papers, such as [16, 25, 30], and many tech-
niques for solving it have been proposed.

The robot considered in this thesis faces the somewhat easier task of navigating
in a known environment, i.e. given a map a priori. In many cases, the assumption of
knowing the surroundings is valid since maps or blueprints are often easy to obtain for
indoor environments (excluding, of course, movable objects, such as furniture). The
major simplification of this problem, as compared to the SLAM problem, is that as
long as the robot is able to reliably match a scan of the surroundings to the map, an
accurate estimate of the position can be found. In addition, no exploration phase (a
by no means trivial task) is needed, the robot can instead directly focus on its primary
tasks.

1.2.1 Localization through scan matching
Once a map of the environment has been acquired, it can be used for localization by
comparing it to the surroundings. Scan matching is a commonly used technique for
localization. The idea of scan matching is to find a transformation, i.e. a rotation and a
translation, that will minimize the difference between a current scan of the surround-
ings and a reference scan (e.g. a part of the map). If a suitable transformation is found,
it can be used to correct the estimated position.

The most common scan matching methods can roughly be divided into point-
based methods [3, 12, 24, 29], feature-based methods [27, 41], and correlation-
based methods [10, 38]. The point-based methods compare the raw data points of
a scan to the reference and by minimizing some cost function, the transformation is
found. Feature-based methods instead rely on extracting features such as lines, cor-
ners, or planes from the scans and then comparing these features. The feature ex-
traction phase of course requires additional computations. If the extraction is done
efficiently, however, the total computational time might be reduced, since the num-
ber of features is usually a lot smaller than the number of points. Correlation-based
methods try to utilize the angular information of the points in polar coordinates by
correlating spectra or histograms in order to find the poses with maximum correlation.

In [12], Cox presents a scan matching technique based on minimizing the distance
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between scan data points and the line segments used to represent obstacles in the map.
Besl and McKay use a somewhat similar method in [3] but their algorithm is based
on the iterative closest point (ICP) algorithm. The method iteratively finds pairs of
closest points from the scan and reference and then tries to find a transformation that
minimizes the error between the sets of pairs. Lu and Milios [24] created a faster
version of the algorithm by using the fact that if the translation is small, a pair of
corresponding points can be found by comparing only the distances to the origin of
points with polar angles within a certain range.

Sandberg et al. [29] use a technique which compares the current scan of a laser
range finder (LRF) to a virtual LRF scan (vLRF). The method continuously places
the vLRF in different positions close to the best position estimate and simulates an
LRF scan. If the match is better than for previous vLRF scans the position is stored as
a new best position estimate.

Many of the papers describing feature-based localization algorithms are proba-
bilistic and rely on Kalman filtering but there are also feature-based scan matching
algorithms. In [27], Pradalier and Sekhavat compare triangles of identified landmarks
in order to accurately match scan and reference. Zezhong et al. [41] instead focus on
matching line segments from the map to line segments extracted from the scan. By
comparing the lengths of the line segments, different position candidates are found
and evaluated.

In [38], Weiss et al. try to find the transformation by maximizing the cross corre-
lation between scan and reference. The method relies on finding the angles of vectors
connecting consecutive points and summing them up in angle histograms, since these
are roughly invariant to translation [38]. The angle histograms for scan and reference
are cross-correlated in order to find a rotation estimate. The translation is then found
in the same manner, by correlation of x and y histograms respectively.

In 2005, Censi et al. [10] presented a method which is similar to the one described
by Weiss et al. but uses the Hough transform for scan matching. They introduced
the Hough spectrum which resembles the histograms in [38] and these spectra are
correlated to find the transformation. Since the spectra are not based on consecutive
points, they are not as sensitive to noise as the angle histograms.

1.2.2 Path planning
The fundamental problem of path planning is to produce a collision free path from a
given starting point A, to a desired end point B. Along with localization and mapping,
this is a central part in the design of a system for autonomous navigation.

Several methods for navigating in a known environment have been presented and
depending on how the operating area is defined, there are different ways to solve the
path planning problem. The most common approaches to navigation are using grid-
based navigation methods [33, 34, 39, 40] and potential field methods [22, 35].
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In the grid-based methods, the operating area is described as some sort of grid,
with nodes and edges connecting the nodes. The grid may have arbitrary shape but,
for the sake of convenience, it is represented as a set of rectangular cells in this thesis.
At each grid cell (where a node is the center point), the autonomous agent is allowed
to move to successive cells, as long as the line connecting them is free from obstacles.
Numerous graph and tree search algorithms solving the problem of path planning in
a grid-based representation have been presented, e.g. best-first search (BFS), Dijk-
stra’s algorithm, and the A∗-algorithm.

In the BFS algorithm, presented by Pearl [26], the robot finds its way through the
grid by estimating the cost of going from the neighboring nodes to the target using
a heuristic cost function, typically the euclidean distance. The node associated with
lowest cost is chosen as the next node and the previous step is repeated until the goal
is reached.

Dijkstra’s algorithm, presented in [15], also requires a grid and, to determine which
path to choose, it repeatedly evaluates the euclidean distance between the current node
and the neighboring nodes. The algorithm then expands outwards from the the starting
node until the target is found. The path can then be found by going backwards through
the parenting nodes, following the path associated with the lowest accumulated cost.

In [34], Wang et al. use Djikstra’s method to find the shortest path for their maze
robot in a two dimensional grid map with only static obstacles. Wahde et al. [33] use a
convex navigation grid and generate a path using Dijkstra’s algorithm. In order to solve
the problem of moving obstacles, the path planning procedure is updated frequently
and a penalty is added for the paths where an obstacle is detected, making such paths
unusable.

The A∗-algorithm, first introduced by Hart et al. [21], is a combination of the BFS
and Dijkstra’s algorithms. The algorithm is described in more detail in Section 3.2.2,
and has been widely used in robotic path planning [39, 40].

In potential field methods for navigation, introduced by Khatib [22], there is no
need to describe the operating area as a grid, unlike in the grid-based navigation meth-
ods. In methods based on potential fields, the robot can be seen as a ball moving on
a surface under the influence of gravity. The goal is to create a field with a gradient
which is attractive toward the desired position (global minimum) and repellent from
the obstacles (local maxima) in the arena.

1.2.3 Obstacle detection and avoidance
Once a mobile agent can autonomously navigate, a known or unknown environment,
by successfully localizing itself and planning paths, the matter of doing so safely re-
mains. When navigating in a dynamic environment, this means detecting and avoiding
objects not included in the map, such as people or movable furniture. The first problem
is to detect an obstacle and some early methods [5, 13] try to detect edges of obstacles,
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while others [6, 7, 32], are based on an evenly spaced grid where the probability of
occupancy is estimated for each cell. Another kind of method for avoiding obstacles
is based on the idea of tentacles sensing the surroundings for obstacles and it has been
used in recent papers [9, 11, 32]. The approach is similar to the dynamic window
approach, introduced by Fox et al. [19].

In [6], Borenstein and Koren combine the concepts of occupancy grids [17] and
potential fields [22]. Their method, called virtual force field (VFF), use the idea that
obstacles exert repulsive forces on the robot, in order to avoid obstacles. Because of
shortcomings of the VFF method, they developed a new method, called the vector
field histogram (VFH), which maps the grid based histogram onto a polar coordinate
histogram. Directions free from obstacles are then found from the polar histogram.

Wahde et al. [33] use a method where a scan of the environment is compared to the
expected result of the scan. If a set of measurement points deviate too much from the
expected result, they are added to a list of potential obstacles. Depending on where the
obstacle is found, different measures are taken to avoid it.

Buschmann et al. [9], Cherubini et al. [11], and von Hundelshausen et al. [32] all
use the tentacles approach but in slightly different ways. They all use circular arcs as
tentacles examining the surroundings but in [11] and [32] the tentacles are evaluated
by comparison to a local map. In [9] the tentacles are evaluated by direct comparison
to camera images instead. The evaluation criteria also differ and a notable difference
is that von Hundelshausen et al. include the desired heading in their evaluation, while
the other methods are purely reactive, choosing the path associated with the least direct
risk.

1.3 Decision-making
In order for an autonomous agent to be able to complete a set of predefined tasks,
e.g. navigate in an indoor office environment while avoiding collisions with obstacles,
the robot needs a system for decision-making. In the literature of autonomous robots,
there are two main approaches for designing the control architecture, the classical AI
approach [31] and the behavior-based decomposition [2, 8, 33, 36].

In classical AI, the decision-making is designed in a sense-model-plan-act (SMPA)
framework. From the sensor inputs a (typically rather complex) world model is cre-
ated and based on deliberations carried out within this model, a decision is reached
and executed. A disadvantage is that if the model is complex, this method will be very
time consuming.

Brooks [8] introduced the idea of a behavior-based decomposition, in which the ar-
tificial brain of the autonomous agent relies on a set of basic behavior functions. These
functions are organized into layers of increasing complexity, e.g. the first layer can be
avoid obstacles followed by explore environment and build map etc. All layers run in
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parallel, accessing sensor data and generating actions, and the higher levels subsume
the actions of the lower ones. In [2], Arkin presented a motor-scheme-based architec-
ture. Two different types of schemes are created, perceptual and motor schemes, and
the interaction between these behaviors (schemes) is the base for the decision-making.

Sakagami et al. [28] used a behavior-based architecture relying on agents (sym-
bolizing different behavior modes), in a deliberative and a reactive layer, for an au-
tonomous robot. Each agent in these layers runs simultaneously, based on input from
the sensors, and once a condition is fulfilled, the agent will try to perform its corre-
sponding task.

Watanabe et al. [36] presented a similar approach, but in addition to Sakagami et
al.’s [28] method, their agents are clustered into three groups (reflexive, purposive and
adaptive agents) handling different tasks, e.g. agents in the purposive group handles
detection- and avoidance of obstacles. The decisions are taken by the motion executor,
a process getting information from all three groups. This method was introduced in
order to increase the robustness in the decision-making procedure.

Wahde et al. [33] proposed a system for decision-making based on utility, i.e.
usefulness to the system. Control system processes, here called brain processes, for
the different activities are generated and divided into cognitive and motor behaviors.
Each brain process is then related to a utility function and the brain processes having a
positive utility are the ones chosen to be active, with the exception that only one motor
behavior can be active at a time, the one with highest utility.
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Chapter 2

Hardware

2.1 The Microsoft Kinect sensor
Commonly used sensors for distance measuring within the field of robotics are IR sen-
sors, ultrasonic sensors, and laser range finders. Since both IR and ultrasonic sensors
are limited in terms of range and accuracy, LRFs are used for localization and map-
ping in many applications [29, 41]. LRFs are usually very accurate and have a wide
field of view but they are much more expensive (typically at least 1000 USD) than
IR or ultrasonic sensors. A range sensing technology, which has become popular in
robot navigation applications, is the Microsoft Kinect1 sensor [1]. The sensor was re-
leased in 2010 and was originally produced as a device for hands-free video gaming.
The characteristics and the low price (around 100 USD) of the sensor have since then
attracted the attention of researchers of various fields, e.g. in the fields of mapping,
mobile robot navigation, and 3D modelling.

In this thesis the Kinect sensor is used as depth measuring device, providing the
eyes to the robot, during localization and obstacle avoidance. The Kinect sensor con-
sists of an IR light source, an IR camera, an RGB camera, a multi-array microphone,
and an electrical motor, providing the tilt function to the sensor. In Table 2.1, the
product specification of the Kinect sensor is presented.

1Kinect is trademark of the Microsoft Corporation.
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Table 2.1: The Kinect product specification

Connectivity USB 2.0
Resolution RGB camera 640 × 480 pixels
Resolution IR depth camera 640 × 480 pixels
Frame rate 30 Hz
Range: 0.7-6 m
Tilt range 54◦

Field of view Horizontal 57◦, Vertical 43◦

2.1.1 Functionality
The depth sensor technology used in the Kinect sensor is handled by the PS1080
System-on-a-Chip (SoC) and was developed in 1997 by PrimeSense. The depth data
from the Kinect sensor comes in the form of a depth frame, i.e. an i by j matrix
filled with depth values. It is acquired through a technique called light coding. The
common way of finding a range is using the time-of-flight (TOF) technology, where
the distance is found by measuring the time for a beam to travel from the source to
reflection and back. Instead of using the TOF approach, the light coding technology
used in the Kinect sensor works in an entirely different way.

The Kinect sensor is equipped with an IR light source, constantly emitting light.
This light is scattered in a pattern of small dots, projected on the environment ahead
of the sensor. The pattern is detected by the IR camera and since the lens distortion
and the distance between emitter and receiver is known, the distance to each dot can
be calculated by a triangulation process inside the PS1080. This triangulation process
is described in more detail in [20]. After the PS1080 has been processing the IR data,
a depth frame describing the environment can be obtained.

2.2 Robot
The robot used in this thesis is two-wheeled, differentially steered, and was developed
as a bachelor thesis at Chalmers University of Technology [4]. The base of the robot
is almost rectangular, with length 0.51 m and width 0.45 m. The height is 0.85 m and
the weight approximately 23 kg. The height (from the ground) to the kinect sensor
is 0.85 m. The robot is equipped with two batteries, each 30 Ah 12 V, supplying the
robot and the Kinect sensor with power. Besides the Kinect sensor, the robot is also
equipped with range sensors. Four analogous SHARP IR sensors, GP2Y0A21YK, two
placed in the robot’s direction of heading and the other two pointing in the opposite
direction. In addition, the robot is equipped with two digital ultrasonic Maxsonar-
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EZ1 from MaxBotix pointing forward. The IR and ultrasonic sensors are used for
emergency situations only, bypassing the navigation system by braking the motors in
case the risk of collision is imminent.

The robot is equipped with four microcontrollers. Two of the microcontrollers read
wheel encoder values and control the rotational speed of the two motors. The third
microcontroller controls the power supply and monitors the charging of the batteries.
The fourth microcontroller handles communication between the other controllers as
well as processing of sensor input from the IR and ultrasonic sensors. It also handles
the communication between the robot and the laptop running the navigation system.
The robot and the Kinect sensor are connected via USB to the laptop placed on top of
the robot.
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Chapter 3

Method

This chapter aims at describing the methods used to solve the tasks outlined in the
introduction, namely, localization, path planning, obstacle detection and avoidance,
and decision-making.

3.1 Localization

3.1.1 Odometry
The core of the localization task is odometry, in which the distance each wheel travels
is calculated from wheel encoder measurements. The simple motion model used in
this thesis is described in [14]. At each time t the distance traveled since t - dt and the
change in heading is approximated as

δd =
dr + dl

2
(3.1)

δθ =
dr − dl

b
(3.2)

where dr and dl are the distances travelled by the right and left wheel respectively, since
the last sample, and b is the wheel base. Using these approximations, the estimate of
the robot’s pose can be updated according toxtyt

θt

 =

xt−dt

yt−dt

θt−dt

+

δd cos(θt−dt + δθ
2

)
δd sin(θt−dt + δθ

2
)

δθ

 (3.3)

The error between the actual pose and the estimated pose will, however, generally
tend to grow over time due to mechanical imperfections and modelling errors. This
phenomenon is known as odometric drift and the pose estimate will eventually need

10



to be corrected by some function independent of odometry, such as a scan matching
algorithm.

3.1.2 Processing of Kinect data
In order to correct the pose estimates through scan matching, a suitable representation
of the surroundings is needed. Many algorithms therefore require some preprocessing
of the raw data. The Kinect data comes in the form of a depth frame and the first
preprocessing step consists of creating a point cloud. In the point cloud, the depth
values have been transformed into points in a 3D-coordinate system originating at the
center of the Kinect. The z-coordinate is extracted directly from the depth frame,

zij = dij (3.4)

where dij is the depth value at the ith row and jth column of the depth frame. The x
and y-coordinates are calculated as linear functions of the z-coordinate and the frame
indices,

xij =

(
i− Rh

2

)
zijf (3.5)

yij =

(
Rw

2
− j
)
zijf (3.6)

where Rw × Rh is the size of the depth frame in pixels and f is a scaling factor found
by calibration to be 0.0017. An example of a point cloud created by these equations is
shown in Figure 3.1.
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Figure 3.1: Upper left panel: Picture of a room at the CPAC office. Upper right panel: A
point cloud of the same room, created from a depth frame from the Kinect sensor. Lower left
panel: The histogram created from the point cloud. The walls and larger pieces of furniture
result in high peaks. Lower right panel: The Kinect scan created from the histogram. This kind
of 2D-representation of the environment is used for the scan matching.

Once the point cloud has been created, some scan matching algorithms (such as
the ICP algorithm) could be applied directly on the 3D-points. Matching up to 307200
(640 × 480) points every frame is, however, computationally heavy. The approach
in this thesis therefore requires additional preprocessing, before the scan matching is
applied.

The second preprocessing step transforms the 3D-point cloud into a set of 2D-
points at the edges of obstacles (referred to as a Kinect scan). To create the Kinect scan
from the point cloud, a 2D-histogram grid is used. In the histogram all points in 3D-
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space lying within a certain square cell of the YZ-plane are summed up. This means
that objects with clear edges along the X-axis (e.g. walls or furniture) will result in high
peaks in the histogram. If only cells with a sum above some threshold are considered
occupied, a set consisting of 2D-points with (y, z)-coordinates can be extracted, see
Figure 3.1. The histogram grid is set to span a rectangular area of size 5 m× 4.15 m in
front of the robot because it roughly corresponds to the range of the Kinect. The size
of each cell is one square centimeter.

The Kinect scan, acquired by the method described above, resembles an LRF scan
but with the great advantage of being a 2D-representation of all objects within the field
of view, not just those present at a certain height. The disadvantage of the Kinect scan,
as compared to an LRF scan, is the limited field of view and the poor accuracy. The
fact that the Kinect scan is able to include walls, despite obstacles being in the way,
makes it very useful in such a cluttered and dynamic environment as an office.

3.1.3 Reference scan
When the Kinect scan has been created, it can be compared to a map, stored in the
memory, in order to correct the pose estimate. To make the comparison effective, a
local map needs to be extracted from the global map. The method used to extract a
local map is the one used in [29], where an LRF scan is simulated. The scan (referred
to as the reference scan) is, however, simulated to resemble a Kinect scan instead.

3.1.4 Hough Scan Matching
The aim of the scan matching algorithm is to find a correction (xc, yc, θc) of the pose
estimate by matching the Kinect scan to a reference scan. The scan matching technique
used is the one introduced in [10], in which the Hough transform is utilized.

In general, the Hough transform is used to map the input space to a parameter
space, specifically the 2D Cartesian space to the parameter space representing lines in
polar coordinates. This means that each point Pi of the scan is mapped to a set Si of
lines passing through that point. A line can be described in polar coordinates as,

x cos θ + y sin θ = ρ (3.7)

where ρ is the perpendicular distance from the origin to the line and θ is the direction
of the line’s normal, see Figure 3.2. The set Si is therefore a set of (θ, ρ)-combinations
defining lines passing through Pi. In theory, the number of lines passing through a
single point is infinite but in practice the discrete Hough transform (DHT) is used
and the the set Si is limited by boundaries and by the choice of resolution of the
transform. By summing up the sets S1, S2,..., Si corresponding to points P1, P2, ..., Pi,
the DHT for the entire scan is found. The DHT is calculated in the following way:
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1. Choose boundaries and resolution of the transform i.e. ρmin, ρmax, ∆ρ and θmin,
θmax, ∆θ.

2. Create an empty matrix of size M × N where M is equal to ρmax

∆ρ
and N is equal

to θmax

∆θ
, i.e. every row corresponds to a certain ρ value and each column to a

certain θ value. Repeat 3 and 4 for each point Pi.

3. For each value of θ solve Equation 3.7, with (x, y) being the coordinates of Pi,
to get a value of ρ.

4. If ρ is within the boundaries, increase the matrix element corresponding to (ρ, θ)
by one. Otherwise, continue with the next θ value.

Figure 3.2: The figure shows how the DHT is calculated. The blue area corresponds to a (θ,
ρ) combination and all points (such as P1) inside the area will increase the value of DHT(θ, ρ)
by one. The point P2 on the other hand would not increase DHT(θ, ρ) but rather DHT(θ, ρ +
∆ρ).

The DHT now consists of a matrix filled with values indicating to what extent the
scan fits every (θ, ρ)-combination. The scan matching is performed by first finding the
rotational displacement between the Kinect scan and the reference scan, φ, and then
the translation, T = (∆x, ∆y), between them1. In order to find φ, Censi et al. [10]

1Note that (∆x, ∆y) is the translation in the robot’s coordinate system and not the global coordinate
system.
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introduced the Hough spectrum (HS), which is calculated as

HS(θi) =
M∑
j=0

DHT (ρj, θi)
2. (3.8)

By summing the square of each element along each column of the DHT, HS(θi) holds
a measure of how many points occur along lines with normal direction θi (disregarding
at what distance from the origin). An important feature of the HS is that it is invari-
ant to rotations in input space in the sense that the spectrum will only be circularly
shifted if the input space is rotated. This fact is exploited in order to find the rotational
displacement φ. The Hough spectra of the Kinect scan and a reference scan are cross
correlated according to

HScorr(φ) =
θmax∑
θ=θmin

HSscan(θ) ·HSref(θ − φ) (3.9)

and the circular shift corresponding to the maximum of the correlation is used as a
hypothesis for φ, see Figure 3.3. In a global search the correlation may have several
local maxima and in [10] these maxima are used as φ candidates. In this application
however, φ is assumed to be small2 and the correlation is only calculated for shifts |φ|
≤ 20◦. Only the φ corresponding to the global maximum is used.

2The assumption is based on the fact that the pose estimate obtained through odometry and scan
matching should be rather accurate (at the very least within |φ| ≤ 20◦).
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Figure 3.3: Upper left panel: The input to the scan matching algorithm, a Kinect scan (blue)
and a reference scan (red) of a hallway. Upper right panel: The Hough spectra of the Kinect
and reference scan. The highest peaks appear at ≈ 0◦ and ≈ 180◦ because most points lie
along lines with normals in those directions. Smaller peaks appear at ≈ 90◦ and ≈ 270◦.
Lower left panel: An enlarged version of the Hough spectra where the shift between them is
clearly visible. Lower right panel: The correlation of the spectra. The maximum value is found
at -3◦ which will be be used as hypothesis for φ.
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Figure 3.4: Upper left panel: The correlation of rows corresponding to θ1. Lower left
panel: The correlation of rows corresponding to θ2. The dashed lines show the mean values
in both plots. Right panel: The Kinect scan (blue), the reference scan (red), and the corrected
reference scan (green).

Once φ has been found, the columns of the DHT of the reference scan are circularly
shifted by φ, in order to align the reference scan rotationally to the Kinect scan3. The
translation is then found in a similar manner as φ but instead of correlating the Hough
spectra, columns of the DHTs are correlated. This means that the Kinect scan and the
reference scan are correlated by shifting ρ along a certain direction θ,

ρcorr(θ, d) =

ρmax∑
ρ=ρmax

DHTscan(ρ, θ) ·DHTref(ρ− d, θ). (3.10)

By correlating columns of the DHTs corresponding to θ, according to Equation 3.10,
the displacement in the direction of θ is found by taking d(θ) = arg max

d
ρcorr(θ, d).

In order to find T , at least two directions need to be correlated. The directions used
are θ1 = arg max

θ
HS(θ) and θ2 = θ1 + 90◦. d1(θ1) and d2(θ2) are then used to calculate

the translation

T = (∆x,∆y) = (d1 cos θ1 + d2 cos θ2, d1 sin θ1 + d2 sin θ2). (3.11)

Since the result from the scan matching algorithm is used as a direct correction of
the pose estimate, it is crucial to avoid incorrect matchings. A requirement, to even

3Remember that a rotation in input space corresponds to a shift of columns in parameter space.
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start the scan matching, is therefore that both the Kinect scan and the reference scan
contain enough information, i.e. the number of points should exceed a certain value.
If the requirement is met and the algorithm is executed, a measure of its accuracy is
needed.

As Figures 3.3 and 3.4 show, in an indoor environment the HS will typically have
clear peaks when the scan includes walls and the peaks will most likely appear with a
90-degree difference. The correlation of both spectra and DHT columns are normal-
ized and a low correlation mean value indicates that the highest peak is very narrow
(and therefore that there is no ambiguity about the result). In order to increase the
probability that the scan matching result is accurate, three mean value thresholds are
used. The scan matching quality is controlled in the following way:

• If mean (HScorr)< T1 the φ hypothesis is accepted and the algorithm tries to find
the translation, otherwise the result is rejected and the algorithm exits.

• If mean (ρcorr(θ1)) < T2 the translation in the direction of θ1 is accepted.

• If mean (ρcorr(θ2)) < T3 the translation in the direction of θ2 is accepted.

The thresholds T1 = 0.5 and T2 = T3 = 0.1 were chosen empirically after testing and
no formal optimization has been carried out. Figure 3.4 shows an example where the
translation along θ1 is accepted but the translation along θ2 is rejected.

When the scan matching algorithm is completed, it provides a correction (∆x, ∆y,
φ) that will align the Kinect scan with the reference scan. In order to use the result to
correct the pose estimate, the corrections (xc, yc, θc) in the global coordinate system
are calculated according to,

θc = −φ (3.12)

xc = ∆y cos(θp + θc) + ∆x cos(θp + θc − 90◦) (3.13)

yc = ∆y sin(θp + θc) + ∆x sin(θp + θc − 90◦). (3.14)

where θp is the most recent estimation of the heading. The pose estimate is then cor-
rected by simply adding these corrections to the pose estimate.

3.2 Path planning
In this thesis the heuristic A∗-algorithm, described in [21], is used to find the optimal
path between the starting and the desired position. The operating area, a predefined
map given a priori, is described with the grid-based approach, i.e. covered with rect-
angular cells, see the left panel of Figure 3.5.
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Figure 3.5: Path planning: The left panel shows an example of an operating area, described
with rectangular grid cells. The obstacles are marked as black cells. The right panel shows the
final result of the path planning algorithm. In this case, the starting position is in the lower left
corner and the desired target position is in the upper left corner. The blue dots in the figure are
the waypoints chosen by the A∗-algorithm (iterated random points on the edges of the cells)
while the red dots are the interpolated waypoints.

3.2.1 Grid
Two totally different approaches for generating the grid were examined. The first
approach is based on decomposing the environment using the quadtree algorithm,
first introduced in [18]. In the second approach the operating area is simply divided
into cells by hand. The quadtree algorithm recursively decomposes the operating area
into four identical cells. Each cell can be considered either free (no obstacles within
the cell), full (the cell is totally covered by an obstacle) or mixed (neither free nor full).
Mixed cells are decomposed again and this procedure continues until a user-defined
resolution is reached.

It is desired that the robot should be able to move freely in the the final operating
area and the obstacles were therefore increased by the size of the robot during the grid
generation phase, i.e. as long as the robot stays within the grid, it can safely navigate.

3.2.2 A∗-algorithm
When initializing the algorithm, a rectangular grid consisting of cells, a start position
(cs), and a target position (ct) is given. In the first iteration of the algorithm, the
neighbor cells (c1, c2, ..., cn) of cs are evaluated. This is done by combining the cost
of going to cell ci from cs, h(n), and the cost of going from ci to ct, g(n). In this
implementation, the euclidean distance was used as the cost function for h(n) and
g(n). The total cost

f(n) = g(n) + h(n), (3.15)
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is calculated for all successive cells from cs and the cell associated with the lowest
cost is chosen as the next cell. The algorithm is iterative and this procedure continues
until the target is found. The algorithm still maintains a queue of the alternative path
segments along the way.

In this way, if an encountered cell along the way is associated with a higher cost
than another encountered path segment, it abandons the higher-cost path segment and
traverses the lower-cost path segment instead. This is done by using two lists of paths,
one that keeps track of the paths that have been explored while the other stores the
ones that are yet to be explored. In the list of paths that have been explored, the parent
cells (all cells from cs to the current cell cc) are also stored. Once the target position is
reached by the algorithm, the parent cells are traced back to the starting location and
the complete path is found. All the cells in the grid are necessarily not explored, since
the algorithm explores the cheapest paths first.

The obtained path depends on random points between the cells and the algorithm
is iterated n times in order to optimize the path. When this path is found, the final
path is created by adding interpolated waypoints between the waypoints chosen by the
A∗-algorithm. In the right panel of Figure 3.5 an example of a path is shown.

3.3 Obstacle detection and avoidance
The obstacle detection algorithm is inspired by [7] and it is not based on finding ex-
plicit objects. Instead, the field of view is split into 25 sectors in front of the robot
that are considered either free or occupied. Each sector containing at least one point
from the Kinect scan, within a certain range, is considered occupied. The obstacle
avoidance behavior is divided into two different strategies, Stop and Turn away, each
being executed in separate control system procedures.

In order to determine which strategy to use, five different zones, each containing
five of the sectors, are used, see Figure 3.6. The decision-making system (described in
Section 3.4) chooses when to activate the procedures but in general, if the obstacle is
located in the center zone the Stop-behavior should be activated, while if the obstacle
is on either side, the Turn away-behavior should be activated.
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Figure 3.6: The field of view is divided into five zones (black), each containing five sectors
(red).

If the Stop-behavior is activated, the robot simply stops and waits for the obstacle
to disappear. The rationale for this strategy is that the most likely causes of this state
is either that a person has appeared right in front of the robot or that the localization
has failed. If a person has appeared, he will most likely pass the robot or move aside
soon and the path will be cleared. If the localization has failed, manual handling of the
system failure is most likely needed.

If the Turn away-behavior is activated the robot will try to turn away from the
obstacle by changing its direction (d) in the following way,

d = (N1 +N2 −N4 −N5)α. (3.16)

Ni is the number of occupied sectors within the corresponding zone (see Figure 3.6)
and α is a scalar. This means that if many sectors to the right are occupied, the robot
will turn to the left and vice versa. If obstacles appear on both sides, e.g. at a narrow
passage, the effects will cancel each other out and the robot will continue straight
ahead.

3.4 Decision-making
The decision-making system used in this thesis is based on the utility function method
(UF method), presented in [29, 33]. In the UF method, the artificial brain (the control
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system of the robot) consists of a decision-making system and a set of predefined
brain processes (B1, B2, ..., Bn). The tasks of the artificial brain are to decide which
brain processes that should be active at what time and to execute their corresponding
functions. This is achieved by associating a utility function with every brain process,
providing a weighted value between each brain process to the artificial brain. The
artificial brain then activates and deactivates the brain processes according to these
weighted values. Two types of brain processes are used, cognitive and motor processes.
In order to avoid conflicting control signals being sent to the motors, only one motor
process is allowed to be active at each time.

The utility functions, that indicate whether a brain process should be active or not,
depend on a set of state variables that describe the state of the system. The state
variables (z1, ..., zm) can be chosen in different ways, depending on desired system
performance and available sensors. In this implementation, the values of the state
vector z are acquired during a sensor preprocessing phase. The preprocessing phase
takes, as input, depth data from the Kinect sensor, the pose estimate, and the desired
heading. Whenever new sensor input is available, the state variables are updated. The
utility function ui,

τiu̇i + ui = tanh(ci

m∑
k=1

aikzk + bi + Γi), i = 1, ..., n, (3.17)

is calculated using the most recent state variables available. n is the number of pro-
cesses, m the number of state variables while aik, bi, and ci are parameters that are
tuned separately for each brain process. τi is a time constant determining how quickly
the utility changes. The tanh-function is used to keep the utility in an interval between
{-1,1}. The artificial brain will activate all cognitive brain processes Bi with ui ≥ 0
and the motor brain process Bj with highest utility, provided that uj ≥ 0, and deacti-
vate the other processes not fulfilling these conditions. In Figure 3.7, an example of
how the utility changes over time is presented.
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Figure 3.7: Utility: An example of how four different utility functions change with time at a
regular run with the robot. Note that two of the utility functions have static utility, i.e. do not
depend on the state variables.

The gamma parameters (Γi), by default set to zero, are used for immediate acti-
vation, or in case the of a high negative value, deactivation of a brain process. The
gamma function is updated according to

τΓ
i Γ̇i = −Γi (3.18)

in order to allow a delay in deactivation once the gamma parameter has been set to a
large value.

3.4.1 Brain processes
The artificial brain of the autonomous robot consists of four brain processes, Local-
ization (B1), Navigation (B2), Turn away (B3), and Stop (B4). B1 is a cognitive brain
process, while the others are motor-related processes. The cognitive processB1 is han-
dling localization, i.e. it keeps track of the current pose and therefore needs to be active
at all time. A brain process can be kept running at all times by setting the correspond-
ing utility function parameter b to an arbitrary positive value and all a-parameters to
zero, i.e. ignoring the state variables. In B1, the pose estimate (x, y, and θ) is up-
dated from odometry readings, see Section 3.1.1. In case a new depth frame from the
Kinect sensor is ready and the Hough scan matching conditions are fulfilled, the HSM
is carried out, see Section 3.1.4, and the pose estimate is corrected.

In B2, a path consisting of a sequence of (x, y)-coordinates is planned by the A∗-
algorithm, described in Section 3.2.2, between the current and the desired position. In
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order to reach the targets, B2 generates control signals that will take the robot to each
waypoint on the path. When the target is reached, a new path leading to the next target
is planned.

B3 is used as a complement to the navigation brain process, B2, with the main
task to avoid getting too close to obstacles. This brain process relies on the sector
values described in Section 3.3. When the robot approaches an obstacle, the process is
activated and the robot will try to turn away.

B4 is the most important brain process, at least from a safety perspective. The aim
of the Stop-brain process is to detect obstacles in front of the robot, at a dangerously
close distance. When the process is active, the robot brakes and stands still until the
danger level decreases.
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Chapter 4

Results

In this chapter, the results from several tests runs are presented. As a measure of the
system performance, the number of successfully reached targets is used.

The arena, in which the test runs were carried out, is an office environment with a
size of approximately 148 square meters; see upper left panel of Figure 4.1. Note that
two hallways in the map were too cluttered with objects for the robot to pass through
them. No grid was therefore created in those hallways, making them inaccessible to
the robot.

4.1 System parameters
The decision-making system used five state variables as input to the utility functions.
The state variables used were, |N1 +N2 −N4 −N5| as z1 (see Section 3.3), N3 as z2,
the percentage of entries in the central third of the depth frame registered as too close
by the Kinect sensor as z3, the difference between the desired and the current heading
(∆θ = θd − θc) as z4, and the percentage of entries in the depth frame registered as
unknown by the Kinect sensor as z5.

Localization (B1), the only cognitive brain process, was set to be active at all time
since knowing the pose is one of the most essential features of the system. Therefore,
the parameters a1k were all set to 0 and b1 to 11.

Navigation (B2), was used as the default motor-related brain process, i.e. the robot
was set to follow the calculated waypoints as long as no obstacles were present close
to the robot. The utility was desired to be a constant positive value, hence a2k were all
set to 0 and b2 to 0.4.

1Observe that an arbitrarily positive constant could have been chosen for b1.
2The brain process Stop was activated after reaching seven targets and travelling 55.5 % of the

distance. Once the Stop-behavior was manually aborted, the robot continued and reached all assigned
targets.

3The brain process Stop was activated after reaching 10 targets and travelling 88.9 % of the distance.
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Table 4.1: The results from the 7 test runs.

Run
Targets Completed Percent of Distance measured Speed
reached distance [m] distance [%] by robot [m] [ms−1]

Run 1 12 / 122 45.1 100 64.3 0.3
Run 2 12 / 122 45.1 100 61.5 0.3
Run 3 11 / 123 42.1 93.4 59.6 0.2
Run 4 10 / 12 40.1 88.9 57.2 0.2
Run 5 7 / 12 25.1 55.5 44.3 0.2
Run 6 12 129.1 N/A 151.5 0.2
Run 7 9 112.9 N/A 138.3 0.2

The remaining two motor-related brain processes, Turn away (B3) and Stop (B4),
were set to be activated only once an obstacle was found on either side or at a critical
distance right in front of the robot.

a3k were set to be {0.05, 0, 0, -0.1, 0} and b3 to 0. a4k were set to be {0, 0.05, 1, -
0.9, 0.5} and b4 to 0. The gamma parameter Γ4 was used in order to avoid deactivation
of B4 too quickly after a stop-procedure had been executed. The gamma parameter
was set to 1 once B4 was activated, decaying with a time constant τΓ

4 = 10 s4. The
parameters ci and τi (corresponds to the reaction time of the robot) were set to be 1.0
and 0.15 s respectively, for all brain processes.

4.2 Test runs
In order to evaluate different system properties, three kinds of tests were carried out.
In Run 1 - Run 3, the interaction between Localization and Navigation, the most basic
brain processes, was tested. In Run 4 and Run 5, the aim was to determine the robot’s
ability to detect and move around obstacles, or in the case of coming too close to
one, stop. In this way, the functionality of the obstacle avoidance brain processes was
tested. In Run 6 and Run 7, the long term navigation capabilities and the path planning
algorithm were tested. The results from the different test runs are presented in Table
4.1 and in Figure 4.1 the trajectories of Run 2, Run 4, and Run 6 are shown.

In Run 1 - Run 3, the robot moved in the arena without any obstacles present (except
for the arena itself). A list of 11 predefined targets was given to the robot; see the upper
left panel of Figure 4.1. Once a target was reached, the next one in the list was chosen
and waypoints were generated. If all targets were reached, the run was considered

Once the Stop-behavior was manually aborted, the robot continued and reached one more target.
4The value was in many cases somewhat large but it was intentionally chosen that way in order to

ensure that people had enough time to move aside.
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successful and was terminated. In Run 1 and Run 2, the robot completed seven targets
before the Stop-behavior was activated, see the trajectory of Run 2 in the upper right
panel of Figure 4.1. The robot did not lose track of its position. Instead, the failure
to reach all its targets was due to improper aik parameter selection. The Turn away-
behavior was activated in a situation where it was not supposed to be activated and the
robot could not avoid the obstacle (a wall), resulting in activation of the Stop-behavior.
Once the Stop-behavior was manually aborted, the robot continued and reached all the
targets. In Run 3, an overshoot from a 90-degree turn resulted in the robot getting too
close to a wall and the Stop-behavior was once again activated.

In Run 4 and Run 5, the robot used the same arena as in the previous test runs,
but with three obstacles present in the operating area5. The same targets were used
as in Run 1 - Run 3. In Run 4, the robot handled the first two obstacles well, i.e. the
Turn Away-behavior was activated. Just before the last obstacle, an overshoot in the
same place as in Run 3 caused the robot to head straight towards the obstacle and the
Stop-behavior was activated instead of the Turn Away-behavior. This was, however, in
accordance with the desired behavior when faced with such a situation, since persons
blocking the path will most likely move soon. The trajectory of Run 4 is shown in the
lower left panel of Figure 4.1. In Run 5, the first obstacle was detected and avoided but
the Stop-behavior was activated after reaching the first seven targets, in the same way
as in Run 1 and Run 2. The robot could not, in that case, be corrected and the test was
terminated.

5Note that these obstacles were not included in the map.
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Figure 4.1: Upper left panel: The operating area and the 11 predefined targets used in the
test runs. Obstacles are marked as black lines, the grid cells as dashed red lines, and the
targets as blue dots. Upper right panel: The trajectory (in green) of Run 2. Note that the
Stop-behavior is activated in the highlighted ellipse. Lower left panel: The trajectory of Run
4 where three obstacles (filled black circles) are present in the arena. Lower right panel: The
targets are given randomly to the robot. After a run of approximately 150 m, a system failure
occurred, and the robot lost track of the pose estimate.

In the last two runs, the targets were chosen randomly by the robot and the max-
imum number of targets was unlimited. In Run 6, the robot reached 12 targets and
ran approximately 150 m before it suffered the same fate as in Run 3. When manu-
ally trying to abort the Stop-behavior the robot suffered from a system failure where it
lost track of the position. This is highlighted by the ellipse in the lower right panel of
Figure 4.1. In the seventh and final run, the robot reached nine targets and ran approx-
imately 140 m before the Stop-behavior was activated. This was caused by oscillating
behavior after the Turn Away-behavior had been activated. The robot could not, in that
case, be corrected and the test was terminated.
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Chapter 5

Conclusions and further work

A system has been developed for autonomous robot navigation in an indoor office
environment. The system uses a Kinect sensor and a decision-making system based on
the utility function (UF) method [29, 33]. The artificial brain consist of the decision-
making system and four brain processes, Localization, Navigation, Turn away, and
Stop. Results show that the UF method can be used for autonomous navigation, using
the Kinect for localization and obstacle avoidance. During testing, the robot completed
on average 87.6 % of a 45.1 m long course. When choosing random targets, the robot
travelled on average 121 m before ending up in emergency mode.

A common reason for failures during testing was overshoots when carrying out
large turns, combined with too slow control of the heading, resulting in activation
of the Stop-behavior. Possible causes of these problems are the robot’s inability to
turn sufficiently slowly and too simple heading control (proportional). Another cause
of problems were the limitations of the Kinect sensor. In some of the cases where
the Stop-behavior was activated, the robot could have continued, but it would have
had to do so without any sensor input, since the Kinect sensor cannot measure short
distances. The risk associated with such behavior was considered too large, resulting
in some unnecessary emergency stops.

The localization, based on odometry and scan matching, works well but there is no
guarantee that the localization will not fail, causing a complete system failure. Possible
causes of localization failures are incorrect scan matchings or large, open areas where
the robot has to rely solely on odometry.

The UF method was successfully used but many of the parameters have been cho-
sen from intuition or test results and no formal optimization has been carried out. The
most difficult parameters to set were a3k and a4k, the weights of the state variables
when calculating the utilities of B3 (Turn away) and B4 (Stop). The results show that
the choices of a4k may have caused B4 to be activated somewhat too easily and the
choices of a3k caused B3 to be activated in improper situations.

To increase the robustness and the system performance, optimization of parame-
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ters and a brain process for recovering from emergency stops is needed. Thorough
testing and optimization is, however, very time-consuming. Hence, using some sort
of simulation environment is recommended. The fact that the robot failed at the same
two locations in Run 1 - Run 6 indeed indicate that further testing is needed and that
solving a few problems could improve the robustness significantly. A simple way to
recover from emergency stops would be to make sure that the area behind the robot is
free and then simply move backwards until the area right in front of the robot is clear.
In case the robot has lost track of its position, a function for global pose correction
would be needed in order for the robot to be able to resume its tasks. Such a function
would match the Kinect scans to the global map, instead of the local. The robot would,
most likely, need to match scans in several directions to the global map in order to find
a reliable result.

An interesting future improvement of the localization could include an alternative
to using the scan matching result as a direct correction of the pose. An example of
a different approach is using a probability-based method, such as a Kalman filter, in
order to reduce the effect of incorrect matchings.

In terms of hardware, the Kinect sensor can be used for localization and obstacle
avoidance but it has clear limitations in terms of range, field of view, and accuracy.
These limitations, especially its inability to measure small distances, suggest that the
Kinect sensor should be complemented with additional sensors. For short range mea-
surements, e.g. sonar sensors could be used, providing accurate measurements at a
relatively low price.

To conclude, the system works rather well but it needs tuning and a brain process
for recovering from emergency stops. The brain processes for navigation and local-
ization work well but in the brain processes for obstacle avoidance and the decision-
making system, there is room for improvements that could increase the system perfor-
mance.
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