
A deep learning approach for identifying
sarcasm in text
Bachelor’s thesis in Computer Science and Engineering

OSCAR BARK
ANDREAS GRIGORIADIS
JAN PETTERSSON
VICTOR RISNE
ADELE SIITOVA
HENRY YANG

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Bachelor of Science Thesis

A deep learning approach for identifying sarcasm
in text

Testing and analysis of recurrent and convolutional neural networks

OSCAR BARK
ANDREAS GRIGORIADIS

JAN PETTERSON
VICTOR RISNE
ADELE SIITOVA
HENRY YANG

Department of Computer Science and Engineering
University of Gothenburg

Chalmers University of Technology
Gothenburg, Sweden 2017

A deep learning approach for identifying sarcasm in text
Testing and analysis of recurrent and convolutional neural
OSCAR BARK
ANDREAS GRIGORIADIS
JAN PETTERSSON
VICTOR RISNE
ADELE SIITOVA
HENRY YANG

© OSCAR BARK, ANDREAS GRIGORIADIS, JAN PETTERSON, VICTOR RISNE,
ADELE SIITOVA, HENRY YANG, 2017.

Supervisor: Mikael Kågebäck
Examiner: Richard Johansson

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish theWork electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or
other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Department of Computer Science and Engineering
Göteborg 2017

iii

A deep learning approach for identifying sarcasm in text
OSCAR BARK
ANDREAS GRIGORIADIS
JAN PETTERSSON
VICTOR RISNE
ADELE SIITOVA
HENRY YANG
Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg

Bachelor of Science Thesis

Abstract
The aim of this work is to evaluate the performance of deep learning, specifically
models of Recurrent Neural Networks (RNN) and Convolutional Neural Networks
(CNN), on the problem of detecting sarcasm in tweets. This is done partly by com-
paring our results to current state-of-the art performance, and partly by making a
qualitative analysis of network functionality. In addition to this, we also conduct a
survey to examine the human ability to detect sarcasm in tweets for result compar-
ison.

We examine three models: Two RNNs, one with Long Short Term Memory (LSTM)
cells and one with Gated Recurrent Unit (GRU) cells, and also a CNN. Sarcasm de-
tection is done by binary classification on the same datasets used by related works,
and our performance is then compared to that of those works’.

The main questions we aim to answer by analyzing the network functionality are
what features affect the outcome, and how. By comparing our classifications with
those of a basic bag-of-words model, scrambling the word content in tweets and
looking at repeatedly misclassified tweets we are able to get a deeper understanding
of the networks’ decisions.

Experimental results suggest that the networks’ predictions mainly are based on
word occurrence in the tweets. The best performance reach an F1-score of 0.842
when using the RNN with LSTM-cells. This network performed better overall among
our models, indicating it might be the best option for this particular task.

When conducting the survey, the model performed with an F1-score of 0.775 whereas
humans reached an average score of 0.701. The model also performed better than a
basic bag-of-words model, indicating that deep neural networks might be a feasible
approach in tackling the problem of sarcasm detection in text.

Keywords: sarcasm detection, deep learning, RNN, CNN.

iv

Sammanfattning
Målet med projektet har varit att undersöka hur väl deep learning, i synnerhet
Recurrent Neural Networks (RNN) och Convolutional Neural Networks (CNN),
fungerar för sarkasmdetektion i tweets. Detta görs dels genom att jämföra våra
resultat mot nuvarande state of the art och dels genom att utföra kvalitativa anal-
yser av nätverkens funktionalitet utifrån olika experiment. Utöver detta genomför vi
även en undersökning för att ta reda på människors förmåga att detektera sarkasm
i jämförelse med vårt bäst presterande nätverk.

Vi undersöker tre modeller: Två RNN, ett med Long Short-Term Memory (LSTM)
celler samt ett med Gated Recurrent Unit (GRU) celler, och ett CNN. Binär klas-
sifikation används för att detektera sarkasm på samma datasets som använts av
liknande arbeten, för att sedan jämföra våra resultat med deras.

De huvudsakliga frågorna vi ämnar att besvara genom att analysera nätverkens
funktionalitet är vilka egenskaper som påverkar resultatet och hur. Detta gör vi
genom att jämföra våra klassifikationer mot dem hos en grundläggande bag-of-words
modell, blanda ordinnehållet i tweets och undersöka återkommande felklassificerade
tweets.

Våra slutsatser indikerar på att modellens förutsägelser baseras huvudsakligen på
förekomsten av ord hos tweets. Den bästa prestandan når ett F1-score på 0.842
vid använding av modellen RNN med LSTM-celler. Denna modell presterade bäst
bland alla de tre modellerna som undersöktes.

När undersökningen för mänsklig sarkasmdetektion genomfördes, presterade vår
modell med ett F1-score på 0.775, medan människor nådde medelpoängen 0.701.
Modellen presterade även bättre än en grundläggande bag-of-words modell, vilket
ger en indikation på att deep learning modeller kan vara en möjlig ingångspunkt i
problemet att detektera sarkasm i text.

Nyckelord: Sarkasmdetektion, deep learning, RNN, CNN.

Acknowledgements
Mainly, we would like to thank our supervisor Mikael Kågebäck for guidance through-
out the course of the project. We would also like to thank Tomáš Hercig, former
Tomáš Ptáček, creator of two of the datasets used in this project and also taking
his time to answer our concerns over email. Finally we would like to show apprecia-
tion to the people of the department for technical language for helping us with our
report.

vi

Glossary
ANN: Artificial Neural Networks
Bag-of-words model: A rule based classification method where the occurrence,
or frequency, of words are the features.
Base case: In this thesis, we refer to the best performing network on a certain
dataset as the base case.
Class: A subset of the dataset, for example: sarcastic and not sarcastic tweets.
CNN: Convolutional Neural Network archetype, a neural network often used in
image classification.
Corpus: A synonym for a collection of text, in our case the dataset.
Dataset: A set of datapoints which together make up the dataset.
Dropout: A method to prevent overfitting. Weights are randomly set to 0 according
to the dropout rate.
F1-score: A measure of a tests accuracy suitable for unbalanced datasets.
Feature: Measurable property of data.
Generalizability: Ability to perform well on unknown data.
GRU: Gated Recurrent Unit, a special type of activation in a RNN.
Hyperparameters: Adjustable parameters which affect the training or the model.
Key feature: A feature which is outweighs other features in a decision.
Label: See class.
LSTM: Long Short-Term Memory, a special type of activation in a RNN.
Majority class: The class which makes up the majority of a dataset.
Maximum Entropy: A classification method, also known as multinomial logistic
regression.
Overfitting: Training a model to overly specialize on a specific set of data, losing
generalizability.
Regularization: A method to prevent overfitting. A regularization term propor-
tional to a norm of the weights are added to prevent them from growing too large.
RNN: Recurrent Neural Network, a neural network often used for processing se-
quential information, e.g. text.
Saddle point: A stationary point where a function is a minima with respect to
some variables and a maxima with respect to others.
Scoring method: The metric by which the performance of a classifier is measured.
Supervised learning: Optimizing a model to fit a set of given data.
SVM: Support Vector Machine, a supervised learning model used primary in binary
classification analysis.
Tensorflow: A package of API’s for implementing machine learning methods.
Unsupervised learning: Inferring a function to reveal hidden structure in unla-
beled data.
Vanilla: Default, unextended version.

viii

Contents

List of figures xii

List of tables xiv

1 Introduction 1
1.1 Purpose . 2
1.2 Scope . 2
1.3 Related works . 3
1.4 Contributions . 4
1.5 Roadmap . 4

2 Artificial Neural Networks 5
2.1 General Artificial Neural Networks 6
2.2 Convolutional Neural Networks . 9

2.2.1 Convolution . 9
2.2.2 Max pooling . 10

2.3 Recurrent Neural Networks . 11
2.3.1 Long Short-Term Memory . 13
2.3.2 Gated Recurrent Unit . 14

2.4 Training . 15
2.4.1 Cost function . 16
2.4.2 Gradient Descent . 16

2.4.2.1 Adaptive moment estimation 17
2.4.3 Backpropagation . 19

2.5 Overfitting . 20
2.6 Scoring methods . 22

2.6.1 Accuracy . 23
2.6.2 F1-score . 23

2.7 Word embeddings . 24

3 Method 25
3.1 Datasets . 25

3.1.1 Data preprocessing . 26
3.2 Description of used models . 27
3.3 Hyperparameter optimization . 28
3.4 Training and testing models . 28
3.5 Analysis of network functionality . 28

x

Contents

3.5.1 Bag-of-words model . 29
3.5.2 Word scrambling . 29
3.5.3 Trouble makers . 30
3.5.4 Impact of word embeddings 30

3.6 Human ability to detect sarcasm . 30

4 Results and discussion 32
4.1 Training and testing the models . 33
4.2 Analysis of network functionality . 36

4.2.1 Bag-of-words model . 36
4.2.2 Word scrambling . 37
4.2.3 Trouble makers . 37
4.2.4 Impact of word embeddings 40

4.3 Human ability to detect sarcasm . 41
4.4 Quality of the datasets . 42
4.5 Obstacles . 44

4.5.1 Previous experience . 44
4.5.2 Finding quality data . 44

4.6 Impact on society . 44

5 Conclusion 45

References 46

A Appendix I

xi

List of figures

2.1 The picture describes the activation of a single neuron. Neighbouring
neurons provide inputs of different strength, represented by the size
of the neurons and the thickness of their connections. These inputs
are summed up and determines the activation of the neuron. 6

2.2 A visual representation of a general neural network. A multidimen-
sional input is put into the first layer of neurons, called the input
layer, where it is represented as a vector a(1). The signal at the next
layer, a(2), is formed by two operations. First a weighted linear com-
bination of individual inputs from the first layer is formed, by matrix
multiplication W (1)a(1) = z(1). The signal is then put through an
activation function, f(z(1)) = a(2). This procedure may repeat itself
for several layers until it produces an output vector whose elements
are in the interval [0,1]. 8

2.3 Figure based on figure 9.1 from Goodfellow et al. (2016). The figure
shows how the convolution operation works. 10

2.4 Image depicting max pooling. The value of the pooled cells are the
maximum of 2x2 cells in the initial layer. 11

2.5 A simple model of a recurrent hidden layer h where the black box
indicates a delay for each and every time step. 11

2.6 A RNN unfolding over time where each word is a input at different
time steps. The colored geometrical shapes mimics the conservation
of contextual information. 12

2.7 Adopted from Graves (2008), the figure visualizes with shading that
early context have less impact in later time step. Thus the first input
have no impact on the output since new input overwrite the activation
of hidden unit. 12

2.8 Figure of a LSTM, taken with permission from Chung et al. (2014). . 14
2.9 Figure of a GRU, taken with permission from Chung et al. (2014). . . 15
2.10 Figure demonstrating optimization paths taken by the vanilla gradi-

ent descent and Adam algorithm, both starting from the same initial
point. The blue line represents GD, while the red line represents
Adam. Note that Adam in this figure converges to the global min-
imum whereas vanilla GD converges to a local due to the moment
property of Adam. 18

xii

List of figures

2.11 The picture shows two different classifiers, black and purple curves, for
predicting dots and crosses based on position. The black curve depicts
the overall trend among the datapoints in the training set, which is
preferable for classifying future data. The purple curve represents an
overly complex model which is perfectly adjusted to the training data
but is unfavorable for classifying future datapoints. In the latter case
the model is said to be overfitted. 21

2.12 The picture describes the effect of overfitting. After an initial decrease
of both the Test set’s and Cross validation set’s Cost function, the
latter tends to increase due to loss of generality in the classifier. The
early stopping method can be used to prevent this, where the training
ends at the minima of the Cost function. 22

3.1 The implemented LSTM/GRU network using 256 LSTM/GRU cells,
20,000 vocabulary size, word embeddings of size 200, and 75 time steps. 27

4.1 This figure displays all the F1-scores, and the generalizability across
datasets when trained on D3 and tested on D1 ranging from Ptáček
et al. (2014), Joshi et al. (2015), Poria et al. (2016) to our results. . . 35

4.2 Histogram of tweets ranging from always correctly classified (0) to
tweets that were always wrongfully classified (1). 38

4.3 Zoomed y-axis of the previous figure 4.2’s histogram of tweets rang-
ing from always correctly classified (0) to tweets that were always
incorrectly classified (1). 39

4.4 Histogram of human performance, showing the number of participants
with a certain F1-score. 42

A.1 Every F1-score that we gathered during to our result and discuss
section. II

xiii

List of tables

3.1 Table describing the handling of tags 26
3.2 Overview of the used models. 27
3.3 Hyperparameters used while conducting the hyperparameter search

ranging from the lowest to the highest value. 28

4.1 Chosen hyperparameters, used for all conducted training experiments
in this work. 32

4.2 Result table for the RNN with LSTM-cells where the metrics are
represented in F1-score. 33

4.3 Result table for the RNN with GRU cells where the metrics are rep-
resented in F1-score. 33

4.4 Result table for the CNN where the metrics are represented in F1-score. 34
4.5 Comparison of F1-scores with related works on different datasets. . . 35
4.6 Word frequencies of occurrence in the interval [-1,1] for tags in D1,

where 1 and -1 represents sarcastic and non sarcastic respectively. . . 36
4.7 Result table for the bag-of-words model where the metrics are repre-

sented in F1-score. 36
4.8 Result table for the RNN with LSTM-cells trained on the original

datasets and evaluated on both the original and word scrambled test
partitions. 37

4.9 Result table for the RNN with GRU-cells trained on the original
datasets and evaluated on both the original and word scrambled test
partitions. 37

4.10 Result table for the CNN trained on the original dataset and evaluated
on both the original and word scrambled test partitions. 37

4.11 10 randomly selected troublemaker samples which were never classi-
fied correctly by the 30 networks trained on D1 with different initial
weights. 40

4.12 Results for randomly initialized word embeddings versus pretrained
GLoVe or Word2Vec model compared with Poria et al. (2016). 41

4.13 Average F1-score of 110 survey participants vs. F1-score on LSTM
network classifications on the same dataset. Standard deviation of
the neural network performance is based on 30 different runs. 42

4.14 Example of flawed sample tweets from our datasets 43

xiv

1
Introduction

At least as far back as written history extends, humans have used language to express
emotions and share information (World, 2017). Language is however more than its
constituent parts of words and sentences, often filled with nuances and insinuations
that convey meaning that on the surface can seem contradicting or otherwise hard to
discern. To effectively express ourselves we therefore often use additional means of
communication, such as our tone of voice or facial expression. A dramatic example
of contradicting sentiment can be found in the use of sarcasm.

The Cambridge (2017) dictionary defines sarcasm as ”remarks that mean the op-
posite of what they say, made to criticize someone or something in a way that is
amusing to others but annoying to the person criticized”. When used in text, the
intended sarcastic meaning is easily lost, due to the lack of some of the previously
mentioned queues, otherwise present in speech. This presents problems not only for
everyday written communication, but also for people studying language, as in the
field of Natural Language Processing (NLP) (Ptáček et al., 2014).

Chowdhury (2005) describes NLP as an area of research dealing with how com-
puters interact with, and understand, natural human language. This ability can be
useful for performing tasks in a wide ranging field of technologies. Different research
areas include computer- and information Sciences, linguistics, mathematics, robotics
and artificial intelligence. There are many practical applications of NLP, including
Machine Translation, Multilingual and Cross-language information retrieval (CLIR).
Microsoft Cortana, Apple Siri and Google Assistant are examples of existing soft-
ware applications and services that make use of NLP.

In this work we are interested in detecting sarcasm specifically in short text. But
why detect sarcasm in text? In the field of NLP many tasks require understanding
the sentiment of a given text (Ptáček et al., 2014). According to Poria et al. (2016),
sarcasm is key for sentiment analysis and has the ability to completely overturn the
polarity of the underlying sentiment.

Other than pure academic interest, there exists a commercial demand. For in-
stance, in 2014 a work order from The Secret Service stated that they were looking
for analytic software where one of the requirements were the following: ”ability to
detect sarcasm and false positives” (Service, 2014).

1

1. Introduction

The majority of work prior to the current state of the art has relied on language-
specific lexical resources (Ptáček et al., 2014). In this work however, we have used
deep learning, an approach that has shown great promise in recent years (Poria
et al., 2016). Deep learning is a burgeoning field of Machine Learning, using deep
neural networks. Neural networks are used for their ability to learn generalized
representations of data, meaning that they do not merely memorize information,
but learn the underlying trend or concept represented. A deep network, having
many layers, gives the ability to learn generalized representations on many different
levels of abstraction (Deng and Yu, 2014). For this report, we have implemented
and evaluated three deep neural network models for the task of sarcasm detection:
Two Recurrent Neural Networks with different activation cells and one Convolutional
Neural Network.

1.1 Purpose
The purpose of this thesis was to evaluate the performance of deep learning, specif-
ically by implementing models for recurrent neural networks (RNN) and convolu-
tional neural networks (CNN), on the problem of detecting sarcasm in text. To do
this, we have performed three main tasks:

• A comparison of the results was made to those of current state of the art meth-
ods as reviewed in recent scientific papers. By accessing the same datasets used
or developed by other authors, the neural network performance was evaluated
by the same scoring methods.

• A comparison of network performance was also made to the human ability to
detect sarcasm in tweets, which was examined by conducting an online survey.

• A qualitative analysis of the networks’ functionality, i.e. which features affect
the classification and how, and performance was made. The latter includes
a comparison to a bag-of-words model, which is commonly used due to its
simplicity and often high accuracy (Le and Mikolov, 2014).

1.2 Scope
The scope of the thesis is limited to be comparable to the current state of the art
in the field of sentiment analysis, as it pertains to sarcasm detection. English is the
primary focus of study in the field, and as sentiment such as sarcasm is dependent
on language and culture (Joshi et al., 2016a), the datasets will be constrained to
the English language. Sarcasm is also very much dependent on context. Therefore
this thesis will limit itself to data in contained short text form. Twitter is the most
commonly used data source in related works on short text, and will be used in this
work accordingly.

The datasets used by Poria et al. (2016), see section 1.3, meet the criteria of our
scope. Thus these three datasets were used for the report, and our results were
compared to those of Poria et al. (2016).

2

1. Introduction

1.3 Related works
Sarcasm detection in sentiment analysis is a rather new subject that only recently
has gained popularity according to Poria et al. (2016). Throughout the years several
works have been accomplished using different techniques. Joshi et al. (2016b) pre-
sented a table with numerous past works summarizing their datasets, approaches,
annotations, features and context. The following works of those we have found, are
seen as state-of-the-art.

Ptáček et al. (2014) tackled the problem using Maximum Entropy and SVM as
classifiers in their paper Sarcasm Detection on Czech and English Twitter. They
researched on two languages, English and Czech, gathering their data from Twitter.
The English datasets, consisting of one balanced and one imbalanced, were obtained
through collecting all tweets with the hashtag #sarcasm to indicate sarcastic tweets.
Each English dataset contains 100,000 tweets, where the first dataset is balanced
(50,000 sarcastic tweets and 50,000 regular tweets) and the second dataset is imbal-
anced (25,000 sarcastic tweets and 75,000 regular tweets). On the balanced dataset
they acquired an F1-score of 0.946 and on the imbalanced they acquired an F1-score
of 0.924.

A different approach was used by Poria et al. (2016) in their paper A Deeper Look
into Sarcastic Tweets Using Deep Convolutional Neural Networks. As the title sug-
gests, they used neural networks for the task, specifically deep CNNs. They ex-
tracted key features from the CNN and later used the features as input in a SVM
for the final classification. For their experiment, they used three different datasets
containing sarcastic and non-sarcastic tweets. Two of the datasets were obtained
from Ptáček et al. (2014) and the third was obtained from The Sarcasm Detector
1. They acquired an F1-score of 0.977 using a baseline CNN and three pretrained
features: emotion, personality and sentiment. Their baseline method alone without
the pretrained features acquired an F1-score of 0.95 on the balanced dataset from
Ptáček et al. (2014) when using CNN.

The neural network approach was also used by Ghosh and Veale (2016), in their
paper Fracking Sarcasm using Neural Network, who used a neural network model
composed of a CNN, followed by a LSTM and ending with a DNN obtaining an
F1-score of 0.92. They compared this neural model with a recursive SVM. They
also evaluated the performances of the networks individually, CNN+CNN (F1-score:
0.872) and LSTM+LSTM (F1-score: 0.879), where e.g LSTM+LSTM means that
the networks are on top of each other. Apart from testing their models on a dataset
they built themselves containing 39,000 tweets they also evaluated their system with
two available datasets from Riloff et al. (2013) and Davidov et al. (2010).

Two of the three mentioned works above used the neural network approach sim-
ilarly to us. The exception is Ptáček et al. (2014) who instead used maximum
entropy and SVM as classifiers.

1http://thesarcamsdetector.com

3

1. Introduction

The difference between our tested models and the ones used in Ghosh and Veale
(2016) is that our models are not as complex as theirs. As mentioned above Ghosh
and Veale (2016) used a model of several networks on top of each other, whereas
we test CNN and RNN individually with only one hidden layer. Though, Ghosh
and Veale (2016) also evaluated the performance for each network individually as
stated above. Another difference is that unlike Ghosh and Veale (2016) who only
uses LSTM in their RNN, we make use of both LSTM and GRU in our RNNs.

1.4 Contributions
Several models have been proposed within the field of sarcasm detection. One of the
proposed models in this work, the RNN with GRU-cells, has never been used before
for this task. Our use of this model, especially in comparison to the RNN model
with LSTM-cells, might thus contribute to a general evaluation of its performance.

In addition to this, a part of our work has been centered around doing a quali-
tative analysis of the network functionality. It’s a common perception that, while
deep learning works incredibly well, no one really knows how or why (Knight, 2017).
None of the papers reviewed in Joshi et al. (2016b) did any kind of analysis as to
what the function of their network was. In an effort to contribute to a better under-
standing of neural networks within this field, a few experiments have been conducted
as described in section 3.5.

As a final contribution, we have conducted an experiment to examine human ability
to detect sarcasm in tweets. While this has been done before by González-Ibáñez
et al. (2011), they only used three people in the test group. Our thesis has done the
experiment on a larger scale, with a total of 219 people participating, which might
yield a better indication of general human ability.

1.5 Roadmap
The first chapter gives an introduction of the project. Chapter two covers the
theoretical background for this project, describing the concept of an Artificial Neural
Network and the notion of training a network. Chapter three explains the used
methods. The finishing chapters cover the results, discussion and conclusion of our
project.

4

2
Artificial Neural Networks

In this section the concept of Artificial Neural Networks (ANN) and model archetypes
used for deep learning are thoroughly described. Initially a simple and intuitive de-
scription is given while subsequent subsections deals with the mathematics, details
and submethods of this subject. Additionally, how a network model is trained with
respect to a set of data is covered.

ANN refers to a general field of computational methods which is inspired by the
brain’s function of processing information, using a cluster of neurons (McCulloch
and Pitts, 1943; Rosenblatt, 1958; Rumelhart et al., 1986). Given a certain multi-
dimensional input, ANN acts upon this input and produces some kind of output.
Depending on the application, this output can range from a continuous probability
distribution for some quantity, like the weight of an elephant, to a categorization
of a certain property, for example if a patient is sick or not (Bridle, 1990). The
actual model consists of layers, rather than clusters, of artificial neurons connected
similarly to the brain’s axons.

The activation, or output, of a certain neuron is dependent on a linear combina-
tion of neighboring neurons’ activations, as well as the strength of the connections
between them, see figure 2.1. These connections determines the qualities of the net-
work. Adapting them to a certain ”trainig stimulus” is essentially what gives the
model the ability to learn. In general, the structure of the network is in the form of
multiple neuron layers, where outputs of one layer becomes the input to the next.
The input to the network goes to a first layer, called the ”input layer”, where each
neuron in turn is connected to each of the neurons in the next layer, through axons
(Kriesel, 2007).

5

2. Artificial Neural Networks

Figure 2.1: The picture describes the activation of a single neuron. Neighbouring
neurons provide inputs of different strength, represented by the size of the neurons
and the thickness of their connections. These inputs are summed up and determines
the activation of the neuron.

2.1 General Artificial Neural Networks
The previous section’s intuitive concepts forms the basis for the mathematical model
in ANN. In this section, the model is described in a general sense while the follow-
ing subsections deal with some of the specific archetypes commonly used in practice.

The signal at each of the layers is represented by a vector a(i) with the same di-
mension as the number of neurons in the layer, and indexed by the corresponding
layer’s number (i). The k:th neuron in the i:th layer is denoted a(i)

k . The activation
of a single neuron is determined by two separate operations. First, a weighted linear
combination z(i+1) is formed from the n neurons in the previous layer, with the con-
necting axons representing these weights w(i)

jk . The subscripts denotes a connection
between the j:th neuron in the first layer and the k:th one in the second layer. A
bias term a

(i)
0 is also added to the expression, which represents a constant i.e. not

dependent on any neutron.

z
(i+1)
k = w

(i)
0ka

(i)
0 + w

(i)
1ka

(i)
1 + w

(i)
2ka

(i)
2 + ...+ w

(i)
nka

(i)
n (2.1)

Then an activation function f operates on each element of z(1+i), which produces
the output from the neuron. It is common to choose a logistic activation function,
in which case f(zj) produces an output in the range (0, 1). The activation is thus
determined by equation (2.2).

a
(i+1)
k = f(z(i+1)

k) = f(a(i)
0 + w

(i)
1ka

(i)
1 + w

(i)
2ka

(i)
2 + ...) (2.2)

The function of the whole axon cluster between two layers is to take a vector of n
elements a(i) ∈ Rn as input and produce a vector of m elements z(i) ∈ Rm as output.

6

2. Artificial Neural Networks

This is done with multiplication between a(i) and a weight matrix W (i) ∈ R(m×n)

according to equation (2.3)

W (i)a(i) = z(i+1) (2.3)

where the weight matrix has the form:

W (i) =

w11 w12 .. w1n

w21 w22
..
wm1 wmn

containing the weights for all individual axons. The purpose of the activation func-
tion mentioned above is to control the degree of activation for a neuron. This func-
tion can technically have any form but generally it is continuous and has an ”s shape”
with arguments on the reel line. Common choices for this is the ”sigmoid function”
and tanh function. More recently, the Rectified linear unit function (ReLU) is also
becoming a choice of use in the hidden layers (Glo Dahl et al. (2013)). By indexing
the layers from one and upwards equation 2.4 is yielded for the equivalent vectors
and matrices.

a(2) = f(z(2)) = f(W (1)a(1)) (2.4)

7

2. Artificial Neural Networks

Figure 2.2: A visual representation of a general neural network. A multidimen-
sional input is put into the first layer of neurons, called the input layer, where it
is represented as a vector a(1). The signal at the next layer, a(2), is formed by two
operations. First a weighted linear combination of individual inputs from the first
layer is formed, by matrix multiplication W (1)a(1) = z(1). The signal is then put
through an activation function, f(z(1)) = a(2). This procedure may repeat itself for
several layers until it produces an output vector whose elements are in the interval
[0,1].

In brief, a general ANN takes an input in the form of a vector a which is multiplied
with a weight matrix W . This yields a new vector z whose elements is put through
an activation function f which gives a new vector as input for the next neuron layer,
see equation (2.5).

a(1) → W (1)a(1) = z(1) → f(z(1)) = a(2) → W (2)a(2) = z(2) → f(z(2)) = a(3) (2.5)

This new vector then goes through the same operations for the next layer until an
output from the ANN is produced.

The number of layers used is referred to as layer depth, in practise there are often
several layers in a model. This branch of machine learning is called Deep Learning
and is centred around Artificial Neural Networks (ANN) of greater layer depth. In-
formation travels from input neurons to output neurons, passing through multiple
processing layers composed of linear, and non linear transformations (Goodfellow
et al., 2016). For each new layer used, a weight matrix is added and so the equation
(2.4) operates over and over again.

8

2. Artificial Neural Networks

2.2 Convolutional Neural Networks
As described by Goodfellow et al. (2016) CNN (LeCun et al., 1998) is a type of neural
network that processes data with a grid-like topology, e.g image data that can be
viewed as a 2D grid of pixels. The network gets its name from the mathematical
linear operation convolution. While regular neural networks use regular matrix
multiplication in its layers, CNNs make use of convolution instead.

2.2.1 Convolution
Convolution is an operation on two functions of a real-valued argument (see equation
2.6). Goodfellow et al. (2016) state that in CNN terminology the first argument, x,
is known as the input, the second argument, w, is known as the kernel and lastly
the output is referred to as the feature map. Figure 2.3 depicts an example of 2D-
convolution where the output is restricted to positions where the kernel lies within
the input. This implies that the convolution is "valid" according to Goodfellow et al.
(2016).

s(t) =
∞∑

a=−∞
x(a)w(t− a) (2.6)

Goodfellow et al. (2016) also state that convolution enables improvement in systems
with help from three concepts: sparse interactions, parameter sharing and equivari-
ant representations.

In regular network layers every input unit interacts with every output unit, due
to the use of matrix multiplication. However, the interaction between the input
units and output units is usually sparse in CNNs. The interaction can be mini-
mized by making the kernel smaller than the input. According to Goodfellow et al.
(2016) sparse interactions come with several advantages. Imagine image process-
ing where the image input has millions of pixels. Essential features can be detected
with kernels that take up fewer pixels. This leads to the need of fewer parameters,
which decreases the memory requirements of the model and also improves its statis-
tical efficiency. Furthermore, less operations are required for computing the output.
This gives us a significant improvement in efficiency.

9

2. Artificial Neural Networks

Figure 2.3: Figure based on figure 9.1 from Goodfellow et al. (2016). The figure
shows how the convolution operation works.

Parameter sharing is used in a CNN to reduce the number of parameters in the
network. The idea is to use the same type of parameters for more than one function
in a model. Parameter sharing only occurs in a CNN due to the convolution operator,
where each element in the kernel is used at each element of the input except for the
outer pixels if no padding is used, see figure 2.3. In a traditional network, however,
each element in a weight matrix is used exactly once when multiplied by an input,
meaning that no parameter sharing takes place. While the run time of the model
remains unaffected, the storage requirements reduces significantly due to parameter
sharing. Thus, in terms of memory requirements convolution is preferable over
matrix multiplication. The layers in a CNN inherit a property called equivariance,
caused by parameter sharing. The meaning behind the equivariance property is that
when there is a change in the input, the same change will happen on the output
(Goodfellow et al., 2016).

2.2.2 Max pooling
Max pooling is a function that helps preventing overfitting by reducing the number
of parameters and operations for computing the output. The function does this by
taking the maximum value in a rectangular area by applying a filter on each region
(Goodfellow et al., 2016), see figure 2.4 where the input is a 4x4 matrix with a 2x2
filter.

10

2. Artificial Neural Networks

Figure 2.4: Image depicting max pooling. The value of the pooled cells are the
maximum of 2x2 cells in the initial layer.

2.3 Recurrent Neural Networks
A simple RNN can be thought of as a network that processes a sequence on the
vector x(t) where t is the time index ranging from 1 to τ (Goodfellow et al., 2016).
Therefore some sort of recursion must be present in order to include previous time
steps in such a way that the output is dependent on the whole sequence. As Graves
(2008) previously have mentioned, if the condition of ANN is relaxed, and allow
cyclical connections, the result would yield a RNN. This concept is illustrated in
figure 2.5 where the black box indicates a delay for each and every time step.

Figure 2.5: A simple model of a recurrent hidden layer h where the black box
indicates a delay for each and every time step.

Mathematically speaking, this recurrent hidden layer utilizes equation (2.7) to define
the next hidden state vector, thus making h depend on its predecessor and the
current input. This equation is an adaptation from what Goodfellow et al. (2016)
uses when describing the recursion in RNN.

ht = σ(Wxt + Uht−1) (2.7)

Furthermore, looking back at figure 2.5 there is no good visual cue for how the RNN
over time stores each hidden layer’s information from previous time step. Therefore
figure 2.6 presents a more elaborated version of figure 2.5 where output y(t) is also

11

2. Artificial Neural Networks

present. This figure presents the unfolding of the network over time, and visualizes
how the current hidden states contain information from previous time step with
the help of geometrical shapes. Also, the same figure illustrates the concept of a
many-to-one network where a sequence of data is classified by the last output, for
instance, sentiment classification (Karpathy, 2015). Therefore the ”dotted” outputs
are discarded.

Figure 2.6: A RNN unfolding over time where each word is a input at different
time steps. The colored geometrical shapes mimics the conservation of contextual
information.

This idea of conserving contextual information between input and output is what
makes a RNN beneficial over other archetypes (Graves, 2008). Though, there are
unfortunately limitations for how long the context can be accessed. The problem
here lies in the reoccurring inputs in the hidden layer which eventually make the
network’s output, either to blow up or decay as it recursively cycles around the
connections (Graves, 2008). This phenomenon is brought up by Hochreiter et al.
(2001) and is entitled the vanishing gradients problem, visualized by figure 2.7.

Figure 2.7: Adopted from Graves (2008), the figure visualizes with shading that
early context have less impact in later time step. Thus the first input have no impact
on the output since new input overwrite the activation of hidden unit.

12

2. Artificial Neural Networks

With the introduction of vanishing gradients it’s a quite natural course of action to
present a solution in form of a new type of RNN architecture named Long Short-
Term Memory.

2.3.1 Long Short-Term Memory
Hochreiter and Schmidhuber (1997) introduced the LSTM unit, a RNN architec-
ture, as a way of learning long time dependencies and thus reducing the vanishing
gradient problem. Since then, the unit has been slightly modified. The following
implementation is taken from Chung et al. (2014).

The LSTM unit is composed of three gates: input i, forget f, output o and two
memory cells: existing memory cell, c, and new memory cell content, c̃. The idea
is that by using gates to control the flow of information in the unit, it can decide
whether to keep or discard certain information in the memory cells for each layer at
time step t. See figure 2.8 for an illustration.

The memory cell is computed by equation (2.8), where it is updated by partially
forgetting the current memory state whilst also adding new memory content. Equa-
tion (2.9) describes the computation for the new memory content, where Wc, Uc are
weight matrices and tanh is the activation function.

ct = ftct−1 + itc̃t (2.8)

c̃t = tanh(Wcxt + Ucht−1) (2.9)

The input gate regulates the amount of new memory content that is added to the
memory cell. See equation (2.10). Moreover, the forget gate in equation (2.11)
controls how much the existing memory is forgotten. W , U , V are weight matrices
and σ is the activation function.

it = σ(Wixt + Uiht−1 + Vict−1) (2.10)

ft = σ(Wfxt + Ufht−1 + Vfct−1) (2.11)

The output of the LSTM unit, h, can be described as in equation (2.12), where
o, denotes the output gate seen in equation (2.13). The output gate regulates the
amount of memory that is exposed to other units in the network.

ht = ot tanh(ct) (2.12)

ot = σ(Woxt + Uoht−1 + Voct) (2.13)

13

2. Artificial Neural Networks

Figure 2.8: Figure of a LSTM, taken with permission from Chung et al. (2014).

2.3.2 Gated Recurrent Unit
Cho et al. (2014) proposed a type of unit called Gated Recurrent Unit (GRU), which
shares a similar architecture to the LSTM unit. Both units regulate the flow of in-
formation with the use of gates. However, the GRU lacks an output gate which
means that unlike the LSTM unit, the amount of exposed memory to other units
is not regulated at all. Thus, at each time step the GRU fully exposes its memory
content (Chung et al., 2015).

Studies comparing the LSTM unit and the GRU have shown that both units per-
form similarly (Chung et al., 2014).

The following implementation of the GRU is taken from Chung et al. (2014). Like
the LSTM uses its three gates to update its memory cell, the GRU updates its
memory content, h, by using the reset, r, and update, z, gate. See figure 2.9 for an
illustration of the unit. The memory content is a linear interpolation between the
previous state of the unit and the new candidate memory content, h̃.

The memory content is controlled by the update gate, as it determines precisely
how much the content is updated. See equation (2.14), where h̃ is the new candi-
date memory content.

ht = (1− zt)ht + zth̃t (2.14)

The candidate memory content is computed by using the reset gate, which allows
the unit to forget its previous state to a degree which is determined by the reset gate,
as shown in equation (2.15), where W , U are matrices and � denotes element-wise
multiplication between the reset vector and the previous state of the unit, ht−1.

h̃t = tanh(Wxt + U(rt � ht−1)) (2.15)

The reset gate is computed by equation (2.16). Wr, Ur are matrices and σ is a
sigmoid function.

rt = σ(Wrxt + Urht−1) (2.16)

Similar to the reset gate, the update gate is computed by equation (2.17). Wz, Uz

are matrices and σ is a sigmoid function.

14

2. Artificial Neural Networks

zt = σ(Wzxt + Uzht−1) (2.17)

Figure 2.9: Figure of a GRU, taken with permission from Chung et al. (2014).

2.4 Training
In order for an ANN to generate desirable output, the weights must adopt proper
values. This is accomplished by training the network. There are two common
types of training for different tasks: supervised learning and unsupervised learning
(Goodfellow et al., 2016). This thesis will focus on supervised learning for a binary
classification task.

The goal of supervised learning is to find the set of weights which optimizes the
model to fit a given set of input and output data. A dataset contains a list of dat-
apoints consisting of input data and the corresponding output data of an unknown
model. This dataset is randomly partitioned into three subsets: the training set, the
cross validation set and the test set. The training set is the set of points to which the
model is optimized during the training process. The cross validation set is used to
evaluate how well the trained model generalizes, that is, how it performs on data on
which it has not been trained. By analyzing the cost function, see section 2.4.1 below
on the cross evaluation set with respect to hyperparameters, these can be adjusted
to build a model which generalizes better. Finally, the test set is the set on which
the built and trained model is evaluated, and this will return the reported score.
The test data should not in any way influence the network optimization process in
order to ensure a fair and accurate estimation of model performance on general data.

Since a dataset is an essential tool for training a classifier, the end result is heavily
dependent on the quantity and quality of it. A general guideline for acceptable
results is to have a dataset of at least 5000 datapoints (Goodfellow et al., 2016),
a demand that the datasets in this paper meets with good margin. A common
definition of data quality is ”correct representation of the real-world construct to
which the data refers” (Roebuck, 2011). As such, a dataset must not contain a
high proportion of noisy datapoints, such as incorrectly labeled or inconsistently
attributed.

15

2. Artificial Neural Networks

2.4.1 Cost function
In order to fit a model to a training set, a quantitative measurement network output
error with respect to the weights must be defined. This is achieved with a so called
cost function, J(W). Different cost functions may be used for different tasks, but
they are in general defined to strictly grow as the outputs of a model deviate from
the target outputs given a set of data. (Elkan, 2001) Therefore, finding the weights
that minimize this cost function will yield a model which performs well on the set
on which it is trained. For the task of binary classification, the binary cross entropy
loss function is commonly used. The function is stated in equation (2.18) where
t(i) ∈ {[0, 1], [1, 0]} denotes the true label, and y(i) ∈ {[0, 1], [1, 0]} is the model
output for data point m. [1, 0] and [0, 1] are the numerical representations of the
two distinct labels.

J(W) = − 1
m

m∑
i=1

t(i) · log
(
y(i)

)
+ (1− t(i)) · log

(
1− y(i)

)
(2.18)

2.4.2 Gradient Descent
Minimizing the cost function of a large ANN is a problem which is too complex
for an analytic approach. Instead a numerical approach must be used. The method
ofGradient Descent is used to find a local minimum of an arbitrarily variate function.

Ruder (2016) states that there are three different variants of gradient descent: Batch
Gradient Descent (BGD), Stochastic Gradient Descent (SGD) and Mini-batch Gra-
dient Descent (MbGB). The reason behind these modifications is to minimize the
long computation time for batch gradient descent since the three methods depend
on different amount of data used for each step in the algorithm. This is one of three
difficulties that White and Ligomenides (1993) mention in their paper where they
describe that a large neural network is prune to slow training and a more complex
error surface. Even though this project isn’t directly utilizing any of these, it is
important to understand the basics and their challenges. This project uses the op-
timized gradient descent algorithm Adaptive Moment Estimation (Adam) which is
later described in section 2.4.2.1.

For the GD algorithm, the initial weights are randomized and then updated it-
eratively by taking steps in the opposite direction of the gradient ∇J(W) evaluated
on the current weights, see the update rule equation (2.19) where i denotes iteration.
The size of the step taken is the absolute value of ∇J(W) multiplied by the learning
rate coefficient α.

Wi+1 = Wi − α∇J(Wi) (2.19)

The gradient of the cost function is the vector defined in the space of weights given
by the partial derivatives, see equation (2.20). Calculating the gradient of a cost
function in an ANN is a challenge in its own which is achieved using the Backprop-

16

2. Artificial Neural Networks

agation Algorithm, see section 2.4.3 below.

∇J =
(
∂J

∂W1
,
∂J

∂W2
, . . .

)
(2.20)

Because the gradient size |∇J(W)| decreases with the rate of change of J(W) in
the gradient direction, Wi+1 ≈ Wi where J(W) changes slowly, that is, at local sta-
tionary points. If the weights converge to a stationary point, it will be a minimum.
This is because −∇J(W) at any given point is oriented in the direction in which the
cost function J(W) decreases most rapidly (Weisstein). Unless an iteration yields
W that is exactly a local maximum or a saddle point, which is very unlikely, the
next iteration will diverge from the larger values of J(W). Thus, only in the close
proximity of a local minimum will the weights converge.

The BGD algorithm is simply the algorithm described above where J(W) is the
cost function with respect to the entire training set, the full cost function. For
SGD, partial cost functions are defined which take into account one randomly cho-
sen data point each per iteration. The full cost function is the sum of all partial cost
functions, meaning that the cost function gradient is the sum of all partial gradi-
ents. Despite not necessarily yielding sets of weights W closer to the cost function’s
minimum every step, the method has been shown to almost surely converge to a
local minimum nevertheless (Bottou, 1998). This method is advantageous in that
fewer calculations are needed for each step which may be directed toward the local
minimum, and thus faster convergences are achievable. MbGD is similar to SGD,
but instead of only taking one data point into account for every iteration, a batch
of n datapoints is used. This yields steps with less variance in direction than SGD,
increasing the probability that each step is headed in the right direction while also
taking less time to calculate than BGD.

2.4.2.1 Adaptive moment estimation

The vanilla gradient descent algorithm presented above is not without its flaws.
Ruder (2016) pointed out that choosing an appropriate learning rate α for the al-
gorithm is a difficult task where smaller values will slow down the process whereas
larger values might hinder convergence. The algorithm also tends to converge to
sub-optimal local minima rather than the global minimum. Additionally, Dauphin
et al. (2014) argues that in the proximity of stationary points the gradient tends to
take on small values in all directions, causing slow progression of the search. They
have also shown that saddle points in particular are very prevalent in higher dimen-
sional problems.

To overcome said challenges, numerous gradient descent optimization algorithms
have been developed with more sophisticated update rules based on the vanilla.
Among these is the Adaptive Moment Estimation algorithm (Adam) proposed by
Kingma and Ba (2014) which aims to improve SGD and MbGD firstly by setting a
step size invariant to the gradient and secondly having moment from the previous
iteration preserved in the next. The invariant step size ensures that the search will

17

2. Artificial Neural Networks

Figure 2.10: Figure demonstrating optimization paths taken by the vanilla gra-
dient descent and Adam algorithm, both starting from the same initial point. The
blue line represents GD, while the red line represents Adam. Note that Adam in
this figure converges to the global minimum whereas vanilla GD converges to a local
due to the moment property of Adam.

18

2. Artificial Neural Networks

not slow down close to saddle points, and in conjunction with moment it also allows
for skipping past sub-optimal minima as demonstrated in figure 2.10. By utilizing
moment, that is setting the new step direction to a weighted sum of the current
gradient and the last step direction, the problem introduced with stochastic opti-
mization of not stepping in the right direction is diminished by taking into account
the directions of partial gradients in all iterations. Adam also implements an adap-
tive learning rate for different weights by having the influence of partial gradients
exponentially vanish which gives sparse features greater impact on the search path.
This is useful in our problem where many words in our dataset that may have impact
on the classification are infrequent, see section 3.1.

2.4.3 Backpropagation
To calculate the gradient used in SGD, previously mentioned in section 2.4.2, bacprop-
agation is utilized. According to Nielsen (2015), the usual way is to propagate dat-
apoints through the neural network to the output layer, compare the output value
of the network with the desired output for the said data point using a cost function,
and than propagating the error backward through the network to find the error
gradient in each of the components in the network.

Since interest lies in finding the gradient, the whole procedure of propagating the
error backwards can be done by a long chain of differentiations of the error function
with respect to each of the components in the model using Hamiltonian/Lagrangian
formalism (Le Cun et al., 1988).

Hecht-Nielsen (1989) describes the mathematics behind the backpropagation al-
gorithm can be described with following: The first step is to differentiate the cost
function J(W) with respect to the output yj for a neuron in the output layer. Which
in the general case are annotated as equation 2.21.

∂J

∂yj

(2.21)

The output yj is also a function of the input to said layer zji, i.e equation 2.22.

yj = g(zji) (2.22)

With zj being the scalar product of the weights Wji and the outputs of the ”layer
below”(i.e. zji = W T

ji · yi), which can also be viewed as a function. The chain rule of
differentiation can be utilized in finding the gradients of the weights in the network.
For a network with one neuron in each layer, the gradients can be calculated as
equation 2.23.

∂J

∂zji

= ∂J

∂yj

· δyj

δzji

(2.23)

Using the chain rule, and the already calculated differentiation of the cost function
with respect for the output, the differentiation of the error with respect to the input
zji to the output neuron yj are the said calculation, performed above. This results is

19

2. Artificial Neural Networks

later used to differentiate the cost function with respect to the output of the ”layer
below” (yi). See equation 2.24.

∂J

∂yi

= ∂J

∂zji·
· δzj

δyi

(2.24)

By inserting equation 2.25 in equation 2.24 equation 2.26 is obtained.

zji = W T
ji · yi =

∑
i

Wjiyi ⇐⇒
δzj

δyi

= Wji (2.25)

∂J

∂yi

= ∂J

∂zj·
· δzj

δyi

= ∂J

∂zj·
·Wji (2.26)

Now, to calculate the error gradient with respect to the weight to the layer Wji

equation 2.27 is used.

∂J

∂Wji

= ∂J

∂zj

· δzj

δWji

(2.27)

And then again equation 2.28.

zj = W T
ji · yi =

∑
i

Wjiyi ⇐⇒
δzj

δWji

= yi (2.28)

Inserting equation 2.28 into equation 2.27 yields equation 2.29.

∂J

∂Wji

= ∂J

∂zj

· δzj

δWji

= ∂J

∂zj

· yi (2.29)

The calculations for a network with more than one neurons in each layer, the differ-
entiations are almost the same, but since the output of one neuron can now affect
multiple neurons in the ”layer above”, all of these has to be taken into consideration.
Hence a sum has to be added in the step where the error function is differentiated
with respect to the layer below the output (i.e. ∂J

∂yi
, see equation 2.24). In other

words, the error gradient with respect to the output from a layer below is equal
to the sum of each error gradient from the layer above that are connected to the
neuron in equation 2.30

∂J

∂yi

=
∑

j

∂J

∂zji·
· δzji

δyi

=
∑

j

∂J

∂zji·
·Wji (2.30)

The error gradient ∂J
∂zji

is calculated the same way as in equation 2.23. And the
weight gradient ∂J

∂Wji
is calculated the same way according to equation 2.27

2.5 Overfitting
The training process as described above in section 2.4, is essentially the adaptation
of the model to a certain set of datapoints. As the training proceeds, the model will
fit better and better to this specific set. If the model is designed properly, this will
capture the general trend among this type of datapoints. If the training proceeds

20

2. Artificial Neural Networks

for too long, while using a too complex model relative to the number of datapoints
however, the fit to this particular set will be ”too good” in the sense that the model
will start to remember this specific data. Rather than just learning the general, the
classifier captures even small deviations from normal tendencies. This leads to a
loss of generality where the classifier gets overly sensitive to noise in the data, see
figure 2.11.

Figure 2.11: The picture shows two different classifiers, black and purple curves,
for predicting dots and crosses based on position. The black curve depicts the overall
trend among the datapoints in the training set, which is preferable for classifying
future data. The purple curve represents an overly complex model which is perfectly
adjusted to the training data but is unfavorable for classifying future datapoints. In
the latter case the model is said to be overfitted.

This effect is called overfitting and means that the training has produced an overly
complex model. Having too many parameters relative to the number of datapoints
is another situation where the model might tend to overfit. To minimize the effect of
overfitting, a few techniques are available. Using cross validation during the training
phase will make it possible to monitor how well the model generalizes, which can
be used with the early stopping technique. Early stopping basically means that the
training is completed as soon as the cross evaluation cost function start to increase
after passing its global minimum, which can be seen in 2.12.

21

2. Artificial Neural Networks

Figure 2.12: The picture describes the effect of overfitting. After an initial decrease
of both the Test set’s and Cross validation set’s Cost function, the latter tends to
increase due to loss of generality in the classifier. The early stopping method can be
used to prevent this, where the training ends at the minima of the Cost function.

Regularization refers to a technique where a weighted Regularization term, R(W),
is added to the cost function, in order to dampen the model’s complexity. The
Regularization term can be defined in different ways. One of the simplest ways is to
use a sum of the squared weights in the weight matrix (Bishop, 2006) (page 257).
With this term, the problem thus becomes to minimize the cost function with the
the added weighted regularization term, see equation 2.31.

min
W

J(W) + λ ·R(W) = min
W

J(W) + λ ·
∑

i

|wi|2 (2.31)

The effect of this is that the model still is fitted to the training data, but with the
constraint of limiting the complexity of the function that the weight matrix repre-
sents. In simpler terms, the goal is to find the ”simplest function that solves the
problem”. The strength of the regularization term is controlled through the param-
eter λ, which thus decides the degree of this regularization effect.

Another method that is commonly used to avoid overfitting is Dropout. Srivas-
tava et al. (2014) describes this method to work in such a way that it randomly
turns off units, both in the visible and the hidden layer, to avoid the model learning
the dataset by heart.

2.6 Scoring methods
Multiple methods exist for evaluating binary classifiers. They are usually based on
the use of datapoints that belong to one of four categories: True positive (TP), True
negative (TN), False positive (FP) and False negative (FN). These subsets describe
if the classification was correct or not (i.e. true or false) and what the classification

22

2. Artificial Neural Networks

was (positive or negative), (Fawcett, 2006). The notion of positive is arbitrary, but
is usually defined to mean the ”relevant” category. In this report, positive means
the tweets belonging to the sarcastic class. This subset of points can be used to
describe the evaluation methods as follows in the following subsections. Two of the
most common methods within the field of sarcasm detection will be described here:
Accuracy (ACC) and F1-score (F1), though other metrics have been used as well
(Joshi et al., 2016b). F1 is by far the most common choice. The reason is due to the
fact that the accuracy measure tend to be problematic, especially on unbalanced
datasets (Parker, 2013). Both these methods outputs a number between one and
zero, where a higher number signals classification with greater confidence.

2.6.1 Accuracy
ACC is in a sense a measure of the ”absolute” accuracy. It measures the proportion
of correctly classified datapoints to the total number of datapoints. In mathematical
notation, this can be written as equation 2.32.

ACC = TP+TN
TP+TN+FP+FN (2.32)

The reason that the ACC measure might be misleading is that it tends to give an
unreasonably good score by favoring the majority class in a very imbalanced set.
For example, when diagnosing patients for a rare disease, a doctor might blindly
give every single patient a negative diagnose. This will give a very high accuracy
even though the doctor made a poor job. For this reason, better metrics exist for
imbalanced datasets.

2.6.2 F1-score
F1 presents a better metric than ACC in the case of imbalanced sets, since it takes
into account the disproportional distribution of the two classes. To understand F1,
the two statistics Precision and Recall need to be presented. Precision and recall
are mathematically defined as (Powers, 2011). See equation 2.33 and 2.34.

Precision = TP
TP+FP (2.33)

Recall = TP
TP+FN (2.34)

In terms of sarcasm classification, Precision is the proportion of the tweets classified
as sarcastic that actually are sarcastic. Recall is the proportion of the sarcastic
tweets that was correctly classified. F1 is defined as the harmonic mean of precision
and recall, which means that F1 can be described as equation 2.35.

F1 = 2 · Precision · RecallPrecision + Recall = 2TP
2TP+FP+FN (2.35)

The metric F1 punishes tendencies to overly classify towards the majority class,
which is preferable especially when using unbalanced datasets.

23

2. Artificial Neural Networks

2.7 Word embeddings
One of the first problems within machine learning, and data analysis in general is,
to find a suitable numerical representation of the collected data samples. In the case
of text classification problems, which sarcasm detection is a part of, the problem is
to find a suitable numerical representation of the text that is to be classified.

One way of doing this is to represent every word in the text as a real value vec-
tor in a multidimensional space. This is called word embedding.

In a word embedding model, every word is represented as a vector in a D dimen-
sional space, where D is a relative small number (usually 50 - 1000). Words with
similar semantic meanings will be grouped together with similar words, which means
that their vectors will be similar in the sense that their coordinates are close to each
other in the vector space.

The term word embedding was introduced by Bengio et al. (2003). Bengio also
proposed that such a model shall be trained using a neural network like architecture
of function decomposition to train a such a model. The paper proposes that this is
way to achieve the objective of finding a good model f(wt, ..., wtn+1) = P̂ (wt|wt1)
such that it gave a good out of sample likelihood.

The technique was not utilized as frequently in until recently, with the develop-
ment of the Word2Vec training algorithm in 2013 by Mikolov et al., at Google.

Another word embedding training algorithm was presented in 2014 by Pennington
et al. at Stanford University called the GloVe model.

24

3
Method

The datasets used contained labeled tweets. Before they were used for training
the models they needed to be preprocessed. This entails transforming them into a
numerical representation, and removing any labeling information, for instance the
sarcasm hashtag.

To proceed with the training step, we needed to design the networks and their
properties. The different properties we could have controlled are commonly called
hyperparameters. These influence a network’s ability to learn, which means that
finding an effective configuration of hyperparameters could be an important step
for maximizing performance. To implement the network we have chosen the open
source software library Tensorflow developed by Google.

To examine our trained network’s functionality, we have used a couple of meth-
ods. Most importantly, we were concerned with whether the network looks at a
tweet as a whole, which means taking into account features such as the order of the
words and whether the tweets contain words of opposing sentiment. We have also
examined the influence of randomness during the training, that is whether a large
fraction of tweets tend to differ in classification from a training to the next. Another
point of interest is what type of data the network trained on a single dataset can
handle, specifically whether it can generalize to one of the other datasets.

In order to obtain a baseline of human performance we performed an online sur-
vey using volunteer Chalmers students.

The following sections describe these concepts in detail, starting with details regard-
ing datasets, survey for human ability to classify sarcasm, training, model designs,
training and testing proposed models and implementation of the networks.

3.1 Datasets
In order to compare our results with state-of-the-art we chose the dataset created
by Ptáček et al. (2014), which as previously mentioned was also used by Poria et al.
(2016), see section 1.3. The datasets are comprised of 100,000 tweets each: one
balanced and one imbalanced. The balanced set contains 50,000 sarcastic and an
equal amount of non sarcastic tweets, and the imbalanced contains 75,000 non sar-
castic and 25,000 sarcastic tweets. The #sarcasm hashtag was used to label the

25

3. Method

sarcastic tweets. As we were only able to acquire the tweet ID, we had to download
the datasets from Twitter using their API. Some tweets were no longer available,
consequently our datasets are smaller, around 75,000 tweets each.

Another dataset that we used was obtained from The Sarcasm Detector, which
contained ca 150,000 sarcastic and ca 330,000 non sarcastic tweets. They collected
their data similarly to Ptáček et al. (2014), where they gathered the sarcastic tweets
with the use of the #sarcasm hashtag and non sarcastic tweets under a three week
period. The difference from the dataset we obtained from Ptáček et al. (2014) is
that the dataset from The Sarcasm Detector contained raw text, which meant that
we had to give them separate tweet ID’s and were not able to obtain the same infor-
mation as to when we extracted the dataset of Ptáček et al. (2014) from Twitter’s
API. The benefit of the dataset from The Sarcasm Detector is that no tweets were
lost as compared to when collecting the dataset of Ptáček et al. (2014).

3.1.1 Data preprocessing
This project utilized two different types of preprocessing, strict and non-strict. The
two different types determine to which extent the datasets are cleaned. The main
cleaning method used in this project for all the networks is the non-strict method,
whereas the strict method is used for special purposes which will be described below.

The strict cleaning method removed all tweets if they began with a user men-
tion (@), a retweet (RT) or if they contained any urls. We also decided to remove
duplicate tweets and tweets generated by bots. Lastly all tweets with a length
smaller than three, after the tags were removed, were disposed of. The non-strict
cleaning method keeps all tweets as they are. In both cases the hashtag #sarcasm is
completely removed. Additionally, we included an option on how we want to handle
tags such as other hashtags, user mentions and urls. This was done in order to
remove any information that could bias the classifier, but at the same time save the
syntactic significance. See table 3.1 for an overview of tags and no-tags.

Table 3.1: Table describing the handling of tags

Type Hashtags User mentions Url
Tags <hashtag> <user> <url>
No-tags

Since we wanted to compare our results with state-of-the-art, we wanted to clean
our data equivalently to them. Their cleaning method represents the non-strict one.
The strict preprocessing method was used for the survey covered in section 3.6 below.

Both Poria et al. (2016) and Ptáček et al. (2014) use the non-strict cleaning method.
The difference is how they handle the tags in the tweets. Poria et al. (2016) do not
replace hashtags, user mentions and urls with any tags, see table 3.1. They remove
them from the tweet entirely. Ptáček et al. (2014) on the other hand replace the
tags as depicted in table 3.1. We also wanted to evaluate how tag handling affected

26

3. Method

our results, i.e if including or removing tags in our dataset would yield better results.

The next step was to split the tweets into words, or tokens. The tokens include
non-word strings that convey meaning, such as emojis. To achieve this the NLTK
library was used, which provides the ability to tokenize informal language. The
tokenized words where then counted and the total occurrences within the corpora
tallied. The most common n words where then used to build a dictionary, mapping
each word to an unique integer value, called the vocabulary. The uncommon words
that didn’t fit were given the same placeholder value. When feeding the tweets to
the network we made use of word embedding, see section 2.7.

3.2 Description of used models
For the task at hand, three different models have been implemented and tested. Two
different RNNs, one using LSTM-cells and the other GRU-cells with 256 hidden units
each (see 3.2), as well as a CNN model with a filter size of 128 and a filter width
of 3, 4 and 5. See table 3.2 for full model description. Each has the input layer
connected to an embedding layer that is connected to the specific main units of
the networks. Depending on which network, it is either the LSTM, GRU or CNN
layer, which in turn is connected to the fully connected output layer with a softmax
activation function.

Table 3.2: Overview of the used models.

Model Number of parameters
LSTM hidden memory unit = 256
GRU hidden memory unit = 256
CNN filter size = 128 + filter width = 3,4,5

Figure 3.1: The implemented LSTM/GRU network using 256 LSTM/GRU cells,
20,000 vocabulary size, word embeddings of size 200, and 75 time steps.

27

3. Method

3.3 Hyperparameter optimization
A part of optimizing the network performance sometimes lies in finding the optimal
configuration of the hyperparameters. Some networks are very sensitive to these
parameters and finding them is crucial. In our case we were interested in conducting
experiments with several distinct values ranging from lowest to highest specified
value, see table 3.3.

Table 3.3: Hyperparameters used while conducting the hyperparameter search
ranging from the lowest to the highest value.

Parameter Lowest value Highest value
Dropout 0.4 0.8
Learning rate 0.0005 0.0015
Weight decay 0.01 0.06

To do this, scalar values of the hyperparameters were selected according to a ran-
dom uniform distribution from table 3.3 values before training the network, and
the training process was repeated iteratively with randomly selected values. Our
approach to the problem would not necessarily yield the best possible hyperparam-
eters, but should provide some decent ones or even better, prove that the model was
not that sensitive to changing the hyperparameters.

In order to evaluate whether or not the choice of hyperparameters had a significant
effect on network performances, each iteration was logged along with the results for
further analysis.

3.4 Training and testing models
Since a method of preprocessing the datasets has been decided upon, and a suitable
choice of hyperparameters has been found, each model was trained and evaluated on
each of the datasets. After a model has been trained on a dataset, it is also evaluated
on test partitions of the data in the other datasets. This is to yield additional results
for better evaluation whether the trained model generalizes well.

3.5 Analysis of network functionality
To examine the functionality of the networks, we have conducted a few experiments.
An interesting question to be answered was whether the network actually base its
decisions on features resembling sarcastic intent. This is not a trivial question even
though the results might look good at a first glance. The reason is that the network
might pick up on other trends for sarcastic tweets, such as a high frequency of typ-
ically sarcastic words, length of the tweet and excessive use of hashtags. Since one
might yield decent performance just by looking at word content, the results of the
network were compared to those of a word frequency model for classification.

28

3. Method

Sarcasm may also be highly dependent on sequential information, with strong changes
in sentiment as possible indicators of sarcasm. Figuring out if the model takes se-
quence into account was made by randomly scrambling the order of the words in
a tweet, and looking at changes in the output. The following experiments were
conducted to yield results that helped us answer these questions. Each of the exper-
iments were limited to only being conducted with the network and dataset which
yielded the highest F1-score on the test partition in the initial tests. This is referred
to as the base case in the experiments. Furthermore, said network was trained and
evaluated 30 times on the dataset to measure mean and standard deviation of the
F1-score with respect to randomly initialized weights, hyperparameters and batches
for ADAM optimization. A small standard deviation would indicate that the exper-
imental procedures are mainly responsible for deviations in scores compared to the
base case.

3.5.1 Bag-of-words model
If a decent chunk of tweets of one label or the other happen to contain certain words,
then there is a chance that the network picks up these as key features for labeling.
To find out whether this was the case, we performed a word frequency analysis of
the tweets in our dataset, by using a basic bag-of-words model. First, a glossary was
created from all individual words in the dataset. For each of these words we counted
the number of times they belong to a sarcastic tweet (ns) and a non sarcastic tweet
(nu). If a certain word occurred more often in the sarcastic tweets, it was deemed to
be a sarcastic word. We scaled how sarcastic a word was as the relative frequency
of occurrence (nf) between the two classes according to equation 3.1.

nf = ns − nu

ns + nu

(3.1)

nf is measured on a scale in the interval [−1, 1] where 1 corresponds to a sarcastic
word, and -1 to a non sarcastic word. When classifying a certain tweet, the model
added up the individual words’ nf value. If the sum was greater than 0, the word was
labeled as sarcastic. The F1-score of the output was then compared to the network
score. From these results, a comparison between neural network performance and a
simple rule based model was made.

3.5.2 Word scrambling
For this experiment, the test partition was preprocessed in such a way that the
words in each tweet occur in a random order. This was done by randomly shuffling
the words in each tweet. We compared the performances of models trained on a
dataset and then tested on both the original test partition and the word scrambled
version of it. This allowed us to draw conclusions on whether the network takes into
account the sequential order of words in the tweets.

29

3. Method

3.5.3 Trouble makers
All tweets are given unique ID’s which remain set during all operations. Exploiting
these, we could after several training sessions of the base case determine if certain
tweets tend to be incorrectly classified by a trained network regardless of the initial
weights. Data points incorrectly classified by 30 classifiers were informally defined
as trouble makers for further analysis. Identifying the trouble makers helped us an-
alyze the network functionality by manual inspection of features that may bias the
network output. In order to draw conclusions, these features were also inspected in
the set of tweets correctly labeled in every run. Additionally, we conducted an ex-
periment using the trouble makers to potentially improve the network performance
on the dataset. This was done by training the base case network initially only on
these tweets in order to subsequently train it on the rest of the training data using
the yielded weights for initialization.

In order to find the trouble makers on our datasets, the network training process
was run 30 times. For each run, the network predicted the labels of all data points in
the training set. Each tweet and the number of times it was correctly evaluated was
stored in a table along with the true label of the tweet. From this table, a histogram
of the fraction of correctly labeled data was constructed. A large encapsulated area
at the lower end of the histogram indicates a large amount of trouble makers in the
dataset.

3.5.4 Impact of word embeddings
We also wanted to evaluate what impact word embeddings have on our results, by
conducting an experiment where we tested random initializing our word embeddings
instead of using the initialization by the GLoVe model. The obtained results will be
compared to the results of Poria et al. (2016) who conducted a similar experiment.
See section 4.2.4.

3.6 Human ability to detect sarcasm
As previously mentioned the survey’s purpose was to provide a human baseline for
the classification of tweets as sarcastic or non sarcastic.

The survey was performed in the form of a quiz, hosted as a web application and
shared among students at Chalmers University of Technology. A batch of three
random samples from the dataset were displayed at a time. The displayed samples
each had two buttons for labeling the sentence sarcastic or not. When the third
and last sample had been classified, a new batch of three samples was presented
together with a table of all the previously mentioned scoring metrics (see section
2.6). The participants were not exposed to any samples of the collected data before
the survey, to prevent biased judgment.

Each individual’s F1-score was recorded, and the mean of all participants’ score

30

3. Method

was taken as a measure of human ability. To assure a level of certainty concern-
ing an individuals performance, we only included contributions where a participant
completed at least five rounds of samples, that is at least 15 classifications.

The strict cleaning method was implemented for use in human sarcasm detection,
and to test the hypothesis that certain tweets, such as re-tweets, bot posts, and links,
contain little information describing sentiment. Consequently such tweets were hy-
pothesized to be boring to read for humans, so as not to discourage participation
in the survey, it also employed the strict cleaning method. In order to compare
our model with human performance in the classification task, we also evaluated the
strictly cleaned data on our RNN with LSTM-cells model.

The dataset used in the survey was the balanced dataset from Ptáček et al. (2014).

31

4
Results and discussion

In this chapter we present the yielded results when training and testing the different
networks. Values and patterns in the results are then discussed and compared to
the results of the related works described in section 1.3.

The search for optimal hyperparameters showed that the models were relatively
insensitive to different settings. F1-scores only varied marginally with randomly
generated sets of hyperparameters, initial weights and batch sizes for training. Thus,
the reported scores are all produced by networks with the same hyperparameters,
which was chosen from a run which yielded promising results, see table 4.1.

Table 4.1: Chosen hyperparameters, used for all conducted training experiments
in this work.

Dropout 0.63
Learning rate 0.001
Regularization parameter 0.038

We also present and discuss the results from the experiments for the network analy-
sis. Throughout all the experiments we used the network and dataset which yielded
the best result, namely the RNN with LSTM-cells model and the balanced dataset
from Ptáček et al. (2014), unless stated otherwise. See table 4.2(b) in section 4.1.

Additionally, later in the chapter we present the results from the experiment of
humans detecting sarcasm described in section 3.6. Other subjects that are re-
flected upon in this chapter are quality of the datasets, obstacles within the project
and impact on society.

From now on for readability, the used datasets are assigned with an acronym as
follows:

• Ptáček et al. (2014) balanced - D1

• Ptáček et al. (2014) ratio - D2

• The Sarcasm Detector - D3

32

4. Results and discussion

4.1 Training and testing the models
The following section presents the results for the training and testing of the three
different models: RNN with LSTM, RNN with GRU and CNN. Each dataset was
partitioned into a training, validation and test set; using 70%, 15% and 15% of the
samples respectively.

Each row in the table that is underlined and color coded red (DX), indicates the
dataset the network was trained on. The columns, color coded blue (DY), indi-
cate which dataset the network was evaluated (tested) on, yielding the F1-score
displayed in the cell. For each network the presented tables include the evaluation
of the datasets with and without tags, which is described in section 3.1.1.

Note that the results achieved by cross-dataset evaluation between D1 and D2 are
not presented in the table. This is because many tweets are shared between the
datasets. Consequently, the network could train on several data points in the train
partition of one set which occur in the test partition of the other, causing biased
results.

Table 4.2: Result table for the RNN with LSTM-cells where the metrics are rep-
resented in F1-score.

(a) Dataset with tags ex-
cluded.

D1 D2 D3
D1 0.816 - 0.678
D2 - 0.67 0.615
D3 0.698 0.475 0.762

(b) Dataset with tags included.
D1 D2 D3

D1 0.842 - 0.697
D2 - 0.723 0.67
D3 0.717 0.49 0.796

Table 4.3: Result table for the RNN with GRU cells where the metrics are repre-
sented in F1-score.

(a) Dataset with tags ex-
cluded.

D1 D2 D3
D1 0.817 - 0.679
D2 - 0.656 0.615
D3 0.687 0.472 0.764

(b) Dataset with tags included.
D1 D2 D3

D1 0.836 - 0.698
D2 - 0.697 0.664
D3 0.703 0.473 0.786

33

4. Results and discussion

Table 4.4: Result table for the CNN where the metrics are represented in F1-score.

(a) Dataset with tags ex-
cluded.

D1 D2 D3
D1 0.811 - 0.669
D2 - 0.637 0.594
D3 0.667 0.434 0.756

(b) Dataset with tags included.
D1 D2 D3

D1 0.824 - 0.694
D2 - 0.676 0.633
D3 0.695 0.466 0.787

In the result tables, it holds in general that the network performance is best on D1,
drops with a mean of 0.0492 for D2 and further with a mean of 0.0987 for D3. The
highest overall score of 0.842 on D1 was achieved by the RNN with LSTM-cells where
the dataset was processed with tags kept. This network is outperformed by Ptáček
et al. (2014) using either their SVM or Max Entropy classifier, yielding scores in the
range of 88.39 to 94.66. When preprocessing D1 without tags as proposed and done
by Poria et al. (2016), the scores drop with a mean of 0.0193 across the networks,
indicating better performance with tags remaining. These results are toppled by
Poria et al. (2016) by a great margin as they achieved a score of 95.04 with their
CNN classifier.

When training on D1 and testing on D3, the test set scores dropped significantly
with a decrement of 0.145, 0.138, and 0.13 respectively for the networks. This indi-
cates that our networks did not generalize very well to other datasets for the task
of sarcasm classification. However, the same test performed by Poria et al. (2016)
generated a greater decrease of score to 0.21, indicating that their results is even
less representative of the general performance. The other way around, training on
D3 and testing on D1 is visualized in figure 4.1 and table 4.5.

Examining the differences in scores between the networks on the datasets reveals
that there is very little change in performance on the data where tags are excluded.
On the datasets with tags, the differences are notably higher, where RNN with
LSTM scores on average 0.0087 higher than RNN with GRU which in turn is on
average 0.0091 higher than CNN. It thus seems as the RNN with GRU-cells model,
which had not been used before, does not add anything to this field in terms of
performance.

It is clear from the results displayed in the tables of section 4.1 that the performance
of the network models varies on each of the datasets. There might be multiple factors
that affect the training performances. This includes initial weight initialization, the
hyperparameters, dataset distributions and so on. Individually though, the variety
of network performance is small.

34

4. Results and discussion

Figure 4.1: This figure displays all the F1-scores, and the generalizability across
datasets when trained on D3 and tested on D1 ranging from Ptáček et al. (2014),
Joshi et al. (2015), Poria et al. (2016) to our results.

Table 4.5: Comparison of F1-scores with related works on different datasets.

Method D1 D2 D3 D3 => D1
Ptáček et al. (2014) 0.947 0.924 0.634 0.530
Joshi et al. (2015) 0.651 0.624 0.608 0.473
Poria et al. (2016) CNN 0.950 0.893 0.880 0.7681

Our model 0.824 0.676 0.787 0.717

The more interesting part arises from observing the results from testing a trained
model across datasets, i.e. testing a model on a different dataset from which it was
trained on. One can observe the trend in the test results that the scores will drop
significantly when testing across datasets. There are many reasons for this drop in
testing results. If small enough, for instance, it might be dismissed as floating point
error. The reason for the large variance might be related to learning a less applicable
model across the datasets.

Since these are different datasets, it might not be surprising that the distributions
across the datasets may vary. The results in tables above seem to reflect this. Which
can be viewed as a good thing, since this could indicate that the networks managed
to learn the features of the datasets, and the catches the correlations between them.
Another indication of this is that it is quite difficult to train a general model for
sarcasm detection, using only a subset of sample data, even when it comes to tweets.

1CNN + pretrained features combined with SVM.

35

4. Results and discussion

4.2 Analysis of network functionality
The following section presents results from the experiments, followed by discussion
of how they strengthen or weaken the validity of our models. For the following
experiments, the RNN network with LSTM-cells and dataset D1 was used. This
base case yielded a mean F1-score of 0.8395 on the test set with a standard deviation
of 0.0029 after 30 sample runs.

4.2.1 Bag-of-words model
In this section, the performance of the bag-of-words model is presented. The tables
are structured the same way as in section 4.1, which means all datasets are used.
The highest performance of 0.809 was measured on D1 when including tags, as
in the case of the neural networks. The performance after removing tags varied,
with a mean decrease of 0.002, which we consider negligible. This small deviation
can be explained by the frequency values seen in table 4.6, and the occurrence of
respective tags. The most frequently occurring tag, <hashtag> has a very low
frequency, meaning that the presence will have minimal impact on the classification
by the bag-of-words model. <url> has a greater negative score, but the tag occurs
quite infrequently in the datasets. Thus, even though the presence might have a
significant impact on the classification of a single tweet, the few tweets whose label
would change would not greatly impact the F1-score on the dataset as a whole.

Table 4.6: Word frequencies of occurrence in the interval [-1,1] for tags in D1,
where 1 and -1 represents sarcastic and non sarcastic respectively.

Tag Frequency
D1 <hashtag> 0.037
D1 <user> -0.12
D1 <url> -0.67

Table 4.7: Result table for the bag-of-words model where the metrics are repre-
sented in F1-score.

(a) Dataset with tags ex-
cluded.

D1 D2 D3
D1 0.807 - 0.673
D2 - 0.619 0.672
D3 0.679 0.421 0.743

(b) Dataset with tags in-
cluded.

D1 D2 D3
D1 0.809 - 0.67
D2 - 0.64 0.67
D3 0.679 0.419 0.742

The overall agreement between the network and bag-of-words model was examined
by comparing the classification for each sample between the models. The proportion
of agreements was computed to 86 %, a minor indication that the two model share
some functionality.

36

4. Results and discussion

4.2.2 Word scrambling
In this section, the performance when testing on a scrambled test partition is pre-
sented. The training and testing was all done within the same dataset, i.e. no
cross-dataset performance is used in this section. The dataset notion and color cod-
ing follows the same structure as in section 4.1. Scrambled data and Original data
describes that the testing was done on the scrambled and original version of the test
partitions respectively.

Table 4.8: Result table for the RNN with LSTM-cells trained on the original
datasets and evaluated on both the original and word scrambled test partitions.

Scrambled data Original data
D1 0.827 0.842
D2 0.683 0.723
D3 0.77 0.796

Table 4.9: Result table for the RNN with GRU-cells trained on the original datasets
and evaluated on both the original and word scrambled test partitions.

Scrambled data Original data
D1 0.821 0.836
D2 0.639 0.697
D3 0.755 0.786

Table 4.10: Result table for the CNN trained on the original dataset and evaluated
on both the original and word scrambled test partitions.

Scrambled data Original data
D1 0.800 0.824
D2 0.643 0.676
D3 0.759 0.787

As can be seen from the tables, the performance decreased when testing was done on
the scrambled test partitions. The decrease varies between the models and datasets,
with a mean score decrease of 0.03 for the nine cases. This equates to a relative
decrease of about 4 %. While this indicates that the network captures some type of
information related to sequence, this effect seems quite small.

4.2.3 Trouble makers
The following section contains the results and discussion around the analysis of
tweets that was never correctly classified during the training of the network, i.e. the
following datapoints are from the training partition of D1.

37

4. Results and discussion

Among the tweets that were correctly classified 100% of the time, 51.5% were sarcas-
tic, whereas among those classified incorrectly 100% of the time, 45% were sarcastic.

Figure 4.2: Histogram of tweets ranging from always correctly classified (0) to
tweets that were always wrongfully classified (1).

To further display the amount of wrongfully classified tweets, the y-axis is limited
from 45,000 tweets to 4,500, see figure 4.3.

38

4. Results and discussion

Figure 4.3: Zoomed y-axis of the previous figure 4.2’s histogram of tweets ranging
from always correctly classified (0) to tweets that were always incorrectly classified
(1).

Listed in table 4.11 are 10 randomly selected tweets which never were classified cor-
rectly by any of the 30 networks. By manually inspecting the entire set of collected
data, we sought out key features relating to network classification. Among the trou-
ble makers which always were classified incorrectly, 634 non sarcastic tweets and 78
sarcastic tweets all ended with the token <hashtag>. Tweets featuring the token
in the end of the sentence among those that always were classified correctly were
comprised by 2382 non-sarcastic and 8916 sarcastic. This indicates that tweets end-
ing with the <hashtag> word might be key feature biasing output to the sarcastic
label.

39

4. Results and discussion

Table 4.11: 10 randomly selected troublemaker samples which were never classified
correctly by the 30 networks trained on D1 with different initial weights.

Sample tweet
Predicted label Actual label

Arrived in Florida all safe and sound except
that my suitcase is still in Amsterdam, just
my luck of cooooourse :-) :-) :-)

Not sarcastic Sarcastic

Sooo my tablet and mobile phone are fully
loaded I AM READY for <hashtag> <user>

Sarcastic Not sarcastic

I cant believe My French teacher tickled my
friend while she was laughing :O <user>

Not sarcastic Sarcastic

When the beer and food is so good it dis-
tracts you from the shitty service

Sarcastic Not sarcastic

Print isn’t dead. It just smells funny. <hash-
tag> <hashtag>

Sarcastic Not sarcastic

It feels like sumthings heating up can i leave
wit u <hashtag>

Sarcastic Not sarcastic

"You need to learn to love yourself, because
no one’s gonna love you if you don’t love
yourself"

Sarcastic Not sarcastic

<user> and I thought we had problems.....
The end of big Sam?

Sarcastic Not sarcastic

I thought we was suppose to be a team I
guess not every body for they self right now

Sarcastic Not sarcastic

After that last interview, I just can’t wait to
read Dries interview w/ Zap2It tomorrow.

Not sarcastic Sarcastic

An initial RNN with LSTM-cells was trained only on the trouble makers from D1,
and was then trained on the rest of the dataset, including the trouble makers. This
network was yielded a F1-score of 0.843 on the test set whereas the non-boosted
counterpart yielded 0.842. This marginal increase from the base case is insignificant
as it is well within the standard deviation of 0.0029 from the mean F1-score.

4.2.4 Impact of word embeddings
This experiment evaluated how the initialization of the word embeddings affected our
results. Both training and testing were carried out on partitions from the balanced
dataset (D1), one case where the embeddings were initialized randomly and one
where we used word vectors from a GLoVe model. As visible in table 4.12 the
impact was much smaller than experienced by Poria et al. (2016), who demonstrated
a significant drop in F1-score when using randomly generated embeddings.

40

4. Results and discussion

Table 4.12: Results for randomly initialized word embeddings versus pretrained
GLoVe or Word2Vec model compared with Poria et al. (2016).

Model F1-score
Our model with random embeddings 0.8220
Our model with GLoVe embeddings 0.8420

Poria et al. (2016) with random embeddings 0.8623
Poria et al. (2016) with Word2Vec embeddings 0.9771

These numbers may indicate that the GLoVe model might have been ill-suited for
our task unlike the Word2Vec model. Poria et al. (2016) results indicates that
Word2Vec word embeddings was a better suit since the increase in performance is
greater compared to our model where GLoVe was used.

4.3 Human ability to detect sarcasm
In the survey, a total of 4086 classifications were collected from 219 participants.
After removing the ones with 15 or fewer classifications, 3768 classification and 110
participants remained. A histogram with the number of participants with a certain
F1-score can be seen in figure 4.4, where the mean F1-score was 0.701 with a stan-
dard deviation of 0.149. Our LSTM implementation trained and tested on the same
dataset, achieved an F1-score of 0.775.

We further investigated the usefulness of the dataset for this task. A high agreement
between human classifications would indicate a dataset well-suited for this exper-
iment. The opposite case would instead result in values close to 50 % agreement,
representing zero correlation and bad data. Among the 3768 classifications, 202
tweets had been classified by at least two different users. In 78.3% of these cases,
there was an agreement between the users of what label belonged to the tweet. This
number is in the middle of the interval mentioned above, and therefore does not
allow for us to draw conclusions on the validity of the experiment.

41

4. Results and discussion

Figure 4.4: Histogram of human performance, showing the number of participants
with a certain F1-score.

Table 4.13: Average F1-score of 110 survey participants vs. F1-score on LSTM net-
work classifications on the same dataset. Standard deviation of the neural network
performance is based on 30 different runs.

Survey Network
F1-score 0.701 0.775

Standard Deviation 0.149 0.011

The results of this experiment showed that the network performed slightly better
than the human participants, however the network performance value was within
one half standard deviation. Assuming a normal distribution of human performance,
we estimate that there is a 69 % chance that the network performs better than
humans at this particular task. While one might expect humans to excel in sarcasm
detection, we will not speculate too much on why the results showed the opposite.
We would like to point out however, that a neural network has access to lots of
similar data from its training part, while humans were not shown any data before
the survey. Qualities such as sarcasm frequency or content of certain words might
thus be features that the network is better accustomed to.

4.4 Quality of the datasets
The datasets that we used in this project were acquired from Twitter by two au-
thors: The Sarcasm Detector and Ptáček et al. (2014), where the sarcastic tweets

42

4. Results and discussion

were collected by using the sarcasm hashtag as, stated by Ptáček et al. (2014), ”an
indicator for sarcastic tweets”.

We believe that the said method for collecting sarcastic tweets was flawed, since
the presence of a sarcasm hashtag in a sentence does not necessarily indicate a sar-
castic tweet. A concrete example of such a case is when it is used as a part of a
sentence that is not otherwise sarcastic, see tweet id 1 in table 4.14. Additionally,
since the datasets were collected from Twitter it meant that it was up to the Twitter
users to correctly label their tweets in the case of a sarcastic tweet. This is an issue
since sarcasm is a difficult concept to grasp for some people, which means that some
tweets in the corpus labeled as sarcastic were non-sarcastic, see tweet id 5 in 4.14.

Another problem with the collection method is the strong correlation between the
sarcasm hashtag and use of other hashtags among twitter users, as presented in sec-
tion 4.2.3. This connection clearly influence the outcome, as seen from the results
in section 4.1. A sarcasm hashtag as indicator of sarcastic content might therefore
not be the best choice.

Other flaws that we noticed when examining the data were cases where tweets were
not of English origin, bot-generated tweets or when the context for the sarcasm
hashtag lied in another hashtag, see tweet id 2-4 in table 4.14.

The observations made in this section were lacking in both Ptáček et al. (2014),
the creator of two of the datasets, and Poria et al. (2016) who used the said datasets
in their work.

Table 4.14: Example of flawed sample tweets from our datasets

Id Sample tweet Flaw
1 Jonathan is my name. #Sarcasm is my game. #Sarcasm tag part of

sentence
2 Por que todos los partidos del mundial son en

Brasil? #sarcasm
Other language

3 #AcakFilm [rnaygn tge oruy ngu] (1940) Edith
Conrad, p:gambling c:USA poin: 19

Bot-generated tweet

4 5:14 am and im still awake. #wonderful #sarcasm Context in adjacent
hashtag

5 I hate when I’m putting the finishing touches
on something and my photoshop freezes and the
crashes. #sarcasm

Not sarcastic

In addition to points made above, we noted that the tweets collected from the Twit-
ter database do not comprise the entirety of the datasets D1 and D2 gathered by
Ptáček et al. (2014), as stated in section 3.1. This means that we have only been
able to train on approximately 75% of the data available to the previous researchers
in the field.

43

4. Results and discussion

These points highlight that the data used in the twitter sarcasm detection field
is imperfect, and future works might want to look into alternate ways of data col-
lection.

4.5 Obstacles
This section is dedicated to obstacles that were encountered during the course of
the project.

4.5.1 Previous experience
Since none of our group members had any previous knowledge in the field of machine
learning the extensive period that would be dedicated to studying the field was
more complex than it should have been if prior knowledge had been possessed.
Throughout the implementation process new concepts were introduced and pieces
of necessary information were overlooked.

4.5.2 Finding quality data
One of our biggest obstacles, which we assume everyone pursuing this field has, was
to find a solid quantity of quality data. We eventually came to a point where we
had to settle with data that were used by previous academic papers such as Ptáček
et al. (2014) and Poria et al. (2016). Our ambitions were presumably too grand in
a way where we wanted to find a dataset manually labeled.

4.6 Impact on society
In today’s society, sarcasm presents problems not only due to verbal, but especially
in written communication. If the research goes far enough to evolve NLP to a point
where identifying sarcasm in real time text conversation or spoken language, there
could be an aid for e.g. autistic people, who often have difficulties classify sarcasm
(Persicke et al., 2013). Ranick et al. (2013) writes that autistic kids more often
are victims of bullying, since they often have trouble understanding non-literal lan-
guage. This of course is nothing that any child, or adult for that matter, should
have to withstand. Therefore sarcasm detection could help people who suffers from
a mental condition such as autism.

As mentioned in the previous paragraph, detecting sarcasm surely would have pos-
itive outcomes. In today’s field of NLP, many tasks requires the understanding of
the contextual sentiment given in any arbitrary text. As we previously talked about
in chapter 1, we mentioned that Poria et al. (2016) claims that sarcasm is key for
sentiment analysis for the fact that a sarcastic sentence has the ability to overturn
polarity of the underlying sentiment.

44

5
Conclusion

From the results of the previous section we conclude that neural networks perform
reasonably well in the task of predicting sarcastic content in tweets. They outper-
form a basic bag-of-words model in most cases and is on par with human ability.
The proposed models are however inferior to current state of the art. One of the
main flaws with all our proposed models seem to be insufficient use of sequential in-
formation, as performance was only decreased with 4 % when words were scrambled.

Another weakness is that the network seems to struggle when evaluating across
datasets, whose ratio between the sarcastic and non sarcastic partition differ. When
training on D3, the performance is clearly worse when evaluating on D2 than D1 for
all of the networks. An interesting result is that the bag-of-words model significantly
performed better than all of the networks for the case when training was done on
D2 and evaluating on D3. It seems as the effect of going from a balanced to an
unbalanced dataset affects the neural networks more.

The performance decreased when tweets are cleaned of tags. It thus seems like
there is a correlation between use of the sarcasm hashtag and other tags, which the
networks picks up on. When cleaned of tweets, the networks did not perform better
than a bag-of-words model. The agreement of 86 % between the classifications of
the network and bag-of-words model is a minor indicator that they might have some
functionality in common.

The results presented in tables 4.2 - 4.4 varied very little with choice of network,
as discussed in section 4.1. One and the same network did however achieve differ-
ent scores on the different datasets. When training and evaluating the RNN with
LSTM-cells on the dataset preprocessed by the strict means, explained in section
3.1.1, the score drops significantly. Additionally, preprocessing the data with tags
yielded an increase in score by varying degree between the networks. These obser-
vations would imply that different basic deep learning archetypes are able to learn
to classify to the same degree of accuracy, and that the achievable results are very
much bound to the data itself.

Furthermore, our discussion of the quality of the datasets used in the report sug-
gests that there is noise in the form of mislabeling, bot generated tweets and a
strong correlation between sarcastic labels and tags content. Conclusively, future
work which aim to identify sarcasm in text should primarily focus on gathering data
better suited for the task.

45

References

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Image
Rochester NY, page 124, 2008. ISSN 01406736. doi: 10.1007/978-3-642-24797-2.
URL https://arxiv.org/pdf/1308.0850.pdf.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empiri-
cal evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014. URL http://arxiv.org/abs/1412.3555.

Tomá Ptáček, Ivan Habernal, and Jun Hong. Sarcasm detection on czech and
english twitter. 2014. URL http://pure.qub.ac.uk/portal/files/17977967/
Coling2014.pdf.

Aditya Joshi, Vinita Sharma, and Pushpak Bhattacharyya. Harnessing context
incongruity for sarcasm detection. In ACL (2), pages 757–762, 2015.

S. Poria, E. Cambria, D. Hazarika, and P. Vij. A Deeper Look into Sarcastic Tweets
Using Deep Convolutional Neural Networks. ArXiv e-prints, October 2016. URL
https://arxiv.org/pdf/1610.08815.pdf.

History World. History of language, 2017. URL http://www.historyworld.net/
wrldhis/PlainTextHistories.asp?historyid=ab13.

Cambridge. Meaning of “sarcasm” in the english dictionary, 2017. URL http:
//dictionary.cambridge.org/dictionary/english/sarcasm.

Gobinda G. Chowdhury. Natural language processing. Annual Review
of Information Science and Technology, 37(1):51–89, jan 2005. ISSN
00664200. doi: 10.1002/aris.1440370103. URL http://doi.wiley.com/
10.1002/aris.1440370103http://arxiv.org/abs/0812.0143{%}5Cnhttp:
//doi.wiley.com/10.1002/aris.1440370103.

US Secret Service. Computer based annual social media analytics subscrip-
tion. 2014. URL https://www.fbo.gov/?s=opportunity&mode=form&id=
8aaf9a50dd4558899b0df22abc31d30e&tab=core&_cview=0.

Li Deng and Dong Yu. Deep Learning Methods and Applications. now publishers
Inc, 2014.

46

http://www.deeplearningbook.org
https://arxiv.org/pdf/1308.0850.pdf
http://arxiv.org/abs/1412.3555
http://pure.qub.ac.uk/portal/files/17977967/Coling2014.pdf
http://pure.qub.ac.uk/portal/files/17977967/Coling2014.pdf
https://arxiv.org/pdf/1610.08815.pdf
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?historyid=ab13
http://www.historyworld.net/wrldhis/PlainTextHistories.asp?historyid=ab13
http://dictionary.cambridge.org/dictionary/english/sarcasm
http://dictionary.cambridge.org/dictionary/english/sarcasm
http://doi.wiley.com/10.1002/aris.1440370103 http://arxiv.org/abs/0812.0143{%}5Cnhttp://doi.wiley.com/10.1002/aris.1440370103
http://doi.wiley.com/10.1002/aris.1440370103 http://arxiv.org/abs/0812.0143{%}5Cnhttp://doi.wiley.com/10.1002/aris.1440370103
http://doi.wiley.com/10.1002/aris.1440370103 http://arxiv.org/abs/0812.0143{%}5Cnhttp://doi.wiley.com/10.1002/aris.1440370103
https://www.fbo.gov/?s=opportunity&mode=form&id=8aaf9a50dd4558899b0df22abc31d30e&tab=core&_cview=0
https://www.fbo.gov/?s=opportunity&mode=form&id=8aaf9a50dd4558899b0df22abc31d30e&tab=core&_cview=0

5. Conclusion

Qv Le and Tomas Mikolov. Distributed Representations of Sentences and Docu-
ments. International Conference on Machine Learning - ICML 2014, 32:1188–
1196, 2014. ISSN 10495258. doi: 10.1145/2740908.2742760. URL http:
//arxiv.org/abs/1405.4053.

Aditya Joshi, Pushpak Bhattacharyya, Mark James Carman, Jaya Saraswati, and
Rajita Shukla. How do cultural differences impact the quality of sarcasm anno-
tation?: A case study of indian annotators and american text. Proceedings of
the 10th SIGHUM Workshop on Language Technology for Cultural Heritage, So-
cial Sciences, and Humanities, W16-2111, 2016a. URL https://aclweb.org/
anthology/W/W16/W16-2111.pdf.

Aditya Joshi, Pushpak Bhattacharyya, and Mark James Carman. Automatic sar-
casm detection: A survey. CoRR, abs/1602.03426, 2016b. URL http://arxiv.
org/abs/1602.03426.

A Ghosh and T Veale. Fracking sarcasm using neural network. Proceedings of
NAACL-HLT, 2016. URL http://anthology.aclweb.org/W/W16/W16-0425.
pdf.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva, Nathan Gilbert,
and Ruihong Huang. Sarcasm as Contrast between a Positive Sentiment and
Negative Situation. 2013. URL https://www.cs.utah.edu/{~}riloff/pdfs/
official-emnlp13-sarcasm.pdf.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. Enhanced Sentiment Learning
Using Twitter Hashtags and Smileys. Proceedings of the 23rd International Con-
ference on Computational Linguistics: Posters, (August):241–249, 2010. doi: 10.
1.1.185.3112. URL http://dl.acm.org/citation.cfm?id=1944566.1944594.

Will Knight. The dark secret at the heart of ai, 2017. URL https://www.
technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/.

Roberto González-Ibáñez, Smaranda Muresan, and Nina Wacholder. Identifying
sarcasm in Twitter: a closer look. Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies:
short papers-Volume 2, (2010):581–586, 2011. doi: 10.1.1.207.5253. URL http:
//www.aclweb.org/anthology/P/P11/P11-2102.pdf.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.
ISSN 00074985. doi: 10.1007/BF02478259.

F Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386–408, 1958. ISSN 0033-
295X. doi: 10.1037/h0042519.

David E Rumelhart, Geoffrey E Hinton, and R J Williams. Learining Internal
Representations by Error Propagation, 1986. ISSN 1-55860-013-2.

47

http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
https://aclweb.org/anthology/W/W16/W16-2111.pdf
https://aclweb.org/anthology/W/W16/W16-2111.pdf
http://arxiv.org/abs/1602.03426
http://arxiv.org/abs/1602.03426
http://anthology.aclweb.org/W/W16/W16-0425.pdf
http://anthology.aclweb.org/W/W16/W16-0425.pdf
https://www.cs.utah.edu/{~}riloff/pdfs/official-emnlp13-sarcasm.pdf
https://www.cs.utah.edu/{~}riloff/pdfs/official-emnlp13-sarcasm.pdf
http://dl.acm.org/citation.cfm?id=1944566.1944594
https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/
https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/
http://www.aclweb.org/anthology/P/P11/P11-2102.pdf
http://www.aclweb.org/anthology/P/P11/P11-2102.pdf

5. Conclusion

J.S. Bridle. Probabilistic Interpretation of Feedforward Classification Network
Outputs, with Relationships to Statistical Pattern Recognition. Neurocom-
puting: Algorithms, Architectures and Applications, (C):227–236, 1990. doi:
10.1007/978-3-642-76153-9.

David Kriesel. A Brief Introduction to Neural Networks, 2007. ISSN 14320711. URL
http://linkinghub.elsevier.com/retrieve/pii/0893608094900515.

George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. Improving deep neural
networks for LVCSR using rectified linear units and dropout. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 8609–
8613. IEEE, may 2013. ISBN 978-1-4799-0356-6. doi: 10.1109/ICASSP.2013.
6639346. URL http://ieeexplore.ieee.org/document/6639346/.

Yann LeCun, L??on Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2323, 1998. ISSN 00189219. doi: 10.1109/5.726791.

Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks, 2015.
URL http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gra-
dient flow in recurrent nets: the difficulty of learning long-term dependencies.
A Field Guide to Dynamical Recurrent Networks, pages 237–243, 2001. ISSN
1098-6596. doi: 10.1109/9780470544037.ch14. URL http://www.bioinf.jku.
at/publications/older/ch7.pdf.

Sepp Hochreiter and Jurgen Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1–32, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.
8.1735. URL http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.
8.1735.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
CoRR, abs/1409.1259, 2014. URL http://arxiv.org/abs/1409.1259.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Gated
feedback recurrent neural networks. CoRR, abs/1502.02367, 2015. URL http:
//arxiv.org/abs/1502.02367.

Kevin Roebuck. Lightning Source, 2011. ISBN 1743046316, 9781743046319.
URL https://www.iho.int/mtg_docs/com_wg/TSMAD/TSMAD22/TSMAD22_
DIPWG3-11.7A_S-101_Data_Quality_FINAL.pdf.

Charles Elkan. The foundations of cost-sensitive learning. Depart-
ment of Computer Science and Engineering 0114, University of Califor-
nia, San Diego, 2001. URL https://pdfs.semanticscholar.org/0fba/
3766c7d613da8f35a2872f728c0c9e081092.pdf.

48

http://linkinghub.elsevier.com/retrieve/pii/0893608094900515
http://ieeexplore.ieee.org/document/6639346/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.bioinf.jku.at/publications/older/ch7.pdf
http://www.bioinf.jku.at/publications/older/ch7.pdf
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1502.02367
http://arxiv.org/abs/1502.02367
https://www.iho.int/mtg_docs/com_wg/TSMAD/TSMAD22/TSMAD22_DIPWG3-11.7A_S-101_Data_Quality_FINAL.pdf
https://www.iho.int/mtg_docs/com_wg/TSMAD/TSMAD22/TSMAD22_DIPWG3-11.7A_S-101_Data_Quality_FINAL.pdf
https://pdfs.semanticscholar.org/0fba/3766c7d613da8f35a2872f728c0c9e081092.pdf
https://pdfs.semanticscholar.org/0fba/3766c7d613da8f35a2872f728c0c9e081092.pdf

5. Conclusion

Sebastian Ruder. An overview of gradient descent optimization algorithms. Web
Page, pages 1–12, 2016. URL https://arxiv.org/pdf/1609.04747.pdfhttp:
//arxiv.org/abs/1609.04747.

David White and Panos Ligomenides. GANNet: A Genetic Algorithm for Op-
timizing Topology and Weights in Neural Network Design. In New Trends in
Neural Computation, pages 322–327. Springer, Berlin, Heidelberg, 1993. ISBN
3540567984. doi: 10.1007/3-540-56798-4_167. URL http://link.springer.
com/10.1007/3-540-56798-4_167.

Eric W. Weisstein. Gradient. URL http://mathworld.wolfram.com/Gradient.
html.

Léon Bottou. Online learning and stochastic approximations. ATT Labs–Research,
Red Bank, NJ07701, 1998. URL http://leon.bottou.org/publications/pdf/
online-1998.pdf.

Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli,
and Yoshua Bengio. Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization. arXiv, pages 1–14, 2014. ISSN 10495258.
URL http://arxiv.org/abs/1406.2572.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations, pages 1–13, 2014. ISSN
09252312. doi: http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503.
URL http://arxiv.org/abs/1412.6980.

M. Nielsen. Neural network and deep learning, 2015. URL http://
neuralnetworksanddeeplearning.com/chap2.html.

Yann Le Cun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for
back-propagation. 1:21–28, 1988.

R. Hecht-Nielsen. Theory of the backpropagation neural network. pages 593–605
vol.1, 1989. doi: 10.1109/IJCNN.1989.118638.

Christopher M Bishop. Pattern Recognition and Machine Learning, volume 4. 2006.
ISBN 9780387310732. doi: 10.1117/1.2819119. URL http://www.library.wisc.
edu/selectedtocs/bg0137.pdf.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27
(8):861–874, 2006. ISSN 01678655. doi: 10.1016/j.patrec.2005.10.010.

Charles Parker. On measuring the performance of binary classifiers, 2013. ISSN
02191377.

49

https://arxiv.org/pdf/1609.04747.pdf http://arxiv.org/abs/1609.04747
https://arxiv.org/pdf/1609.04747.pdf http://arxiv.org/abs/1609.04747
http://link.springer.com/10.1007/3-540-56798-4_167
http://link.springer.com/10.1007/3-540-56798-4_167
http://mathworld.wolfram.com/Gradient.html
http://mathworld.wolfram.com/Gradient.html
http://leon.bottou.org/publications/pdf/online-1998.pdf
http://leon.bottou.org/publications/pdf/online-1998.pdf
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1412.6980
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://www.library.wisc.edu/selectedtocs/bg0137.pdf
http://www.library.wisc.edu/selectedtocs/bg0137.pdf
http://jmlr.org/papers/v15/srivastava14a.html

5. Conclusion

D.M.W. Powers. Evaluation: From Precision, Recall and F-Measure To Roc, In-
formedness, Markedness & Correlation. Journal of Machine Learning Technolo-
gies, 2(1):37–63, 2011. ISSN 2229-3981. doi: 10.1.1.214.9232. URL http:
//www.bioinfopublication.org/files/articles/2{_}1{_}1{_}JMLT.pdf.

Y Bengio, R Ducharme, P Vincent, and C Jauvin. A neural probabilistic language
model. Journal of machine learning, 2003. URL http://www.jmlr.org/papers/
v3/bengio03a.html.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation
of Word Representations in Vector Space. URL https://arxiv.org/pdf/1301.
3781.pdf.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global
Vectors for Word Representation. URL https://nlp.stanford.edu/pubs/
glove.pdf.

Angela Persicke, Jonathan Tarbox, Jennifer Ranick, and Megan St. Clair. Teach-
ing children with autism to detect and respond to sarcasm. Research in
Autism Spectrum Disorders, 7(1):193–198, 2013. ISSN 17509467. doi: 10.1016/
j.rasd.2012.08.005. URL http://www.sciencedirect.com/science/article/
pii/S1750946712000980.

Jennifer Ranick, Angela Persicke, Jonathan Tarbox, and Jake A. Kornack. Teach-
ing children with autism to detect and respond to deceptive statements. Re-
search in Autism Spectrum Disorders, 7(4):503–508, 2013. ISSN 17509467. doi:
10.1016/j.rasd.2012.12.001. URL http://www.sciencedirect.com/science/
article/pii/S1750946712001481.

50

http://www.bioinfopublication.org/files/articles/2{_}1{_}1{_}JMLT.pdf
http://www.bioinfopublication.org/files/articles/2{_}1{_}1{_}JMLT.pdf
http://www.jmlr.org/papers/v3/bengio03a.html
http://www.jmlr.org/papers/v3/bengio03a.html
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://nlp.stanford.edu/pubs/glove.pdf
http://www.sciencedirect.com/science/article/pii/S1750946712000980
http://www.sciencedirect.com/science/article/pii/S1750946712000980
http://www.sciencedirect.com/science/article/pii/S1750946712001481
http://www.sciencedirect.com/science/article/pii/S1750946712001481

I

A. Appendix

A
Appendix

Figure A.1: Every F1-score that we gathered during to our result and discuss
section.

II

	List of figures
	List of tables
	Introduction
	Purpose
	Scope
	Related works
	Contributions
	Roadmap

	Artificial Neural Networks
	General Artificial Neural Networks
	Convolutional Neural Networks
	Convolution
	Max pooling

	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit

	Training
	Cost function
	Gradient Descent
	Adaptive moment estimation

	Backpropagation

	Overfitting
	Scoring methods
	Accuracy
	F1-score

	Word embeddings

	Method
	Datasets
	Data preprocessing

	Description of used models
	Hyperparameter optimization
	Training and testing models
	Analysis of network functionality
	Bag-of-words model
	Word scrambling
	Trouble makers
	Impact of word embeddings

	Human ability to detect sarcasm

	Results and discussion
	Training and testing the models
	Analysis of network functionality
	Bag-of-words model
	Word scrambling
	Trouble makers
	Impact of word embeddings

	Human ability to detect sarcasm
	Quality of the datasets
	Obstacles
	Previous experience
	Finding quality data

	Impact on society

	Conclusion
	References
	Appendix

