
QBIS Authentication
Integrating an Authentication System Into QBIS

Degree Project Report in Chalmers’ Data Program

Jessica Barai
Erik Gjers

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se




Degree Project Report 2022

QBIS Authentication

Integrating an Authentication System Into QBIS

Jessica Barai
Erik Gjers

Department of Computer Science and Engineering
Division of Data

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2022



QBIS Authentication
Integrating an Authentication System Into QBIS
Jessica Barai
Erik Gjers

© Jessica Barai
Erik Gjers, 2022.

Supervisor: Piyumal Ranawaka, Department of Computer Science and Engineering
Examiner: Jonas Duregård, Department of Computer Science and Engineering

Degree Project Report 2022
Department of Computer Science and Engineering
Division of Data
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: QBIS Logo.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Gothenburg, Sweden 2022

iii



Abstract
The process of identifying a user’s identity in a system is called authentication. This
process requires high security and a user-friendly interface, since the authentication
system is often the first section of a service a user encounters. The scope of this
project is to implement an independent authentication service for QBIS. QBIS is a
project- and time-management product and owned by QLogic AB. A majority of
the project consisted of researching what leading authentication systems were avail-
able on the market that fulfill QBIS’ requirements and selecting one to implement
with QBIS’ systems. The project’s scope also included the implementation of a
REST API including automated documentation for QBIS’ web services. The open
source authentication project IdentityServer4 was selected and implemented. The
implemented authentication service offers most functionalities that QBIS offers to-
day. The product was not launched since it needs further development, but much of
the structure and design was implemented. A REST API connected to QBIS’ web
services was implemented alongside automated documentation on its methods. Con-
sumers of the API are able to authenticate themselves with the new authentication
system. There were many factors that went into the decision of which authentica-
tion service to implement including licensing, pricing, functionalities, maintenance
and familiarity. The project in its entirety is the majority of the journey towards
an independent authentication and authorization server with expansion of current
features to be implemented.

Keywords: Authentication, Authorization, Entity Framework, IdentityServer4, OAuth,
OpenID Connect.



Sammanfattning
Nästan alla system använder sig av någon form av autentisering för att identifiera
användare. Ett autentiseringssystem ska vara användarvänligt men också ha höga
säkerhetskrav på sig. Det finns många authentiseingssytem på marknaden, i det här
projektet har en mängd sådana system undersökts. Syftet med det här projektet
är att hjälpa företaget QLogic AB att ta fram ett nytt sätt att authenticera sina
användare i deras affärs- och redovisningssystem, QBIS. Företaget har krav på ett
authenticeringssystem som underlättar en eventuell utökning av deras affärs- och re-
dovisningssystem men som samtidigt bibehåller all funktionalitet som finns i deras
nuvarande authenticeringssystem idag. QLogic AB efterfrågar även ett REST API
för QBIS tjänster där användare kan identifiera sig via det nya autentiseringssys-
temet.

Efter undersökningar av open source projekt hittades ett projekt som mötte
kraven, IdentityServer4. Ett demo exempel implementerades först för att demon-
strera produkten. Sedan återskapades mycket av funktionaliteten som finns i QBIS
nuvarande system samt ett REST API där användare kan logga in genom Identi-
tyServer4. Även automatisk dokumentation för API:et implementerades samt ett
administrationsverktyg för konfigurationer inuti IdentityServer4.

Samtliga deltagare är nöjda med arbetet som utförts. Tjänsten kommer
användas i QBIS testmiljö för att bearbeta projektet vidare.

Nyckelord: Autentisering, Auktorisering, Entity Framework, IdentityServer4, OAuth,
OpenID Connect.

v



Acknowledgements
We are incredibly grateful to Martin Augustsson at QLogic AB for creating and
granting us the opportunity to work on this project and his assistance in organizing
the project. A special thanks also goes to the head developer at QBIS, Can Pesker-
soy for the technical help, directives and advice. We would also like to state our
appreciation for the entirety of the QBIS staff as they have been superbly welcom-
ing and made QBIS wonderful to be a part of. We would also like to thank Piyumal
Ranawaka, our writing advisor at Chalmers, for his advice and direct approach. We
would also like to thank Sakib Sistek at Chalmers for his advice, discussion and
always lending an ear.

Jessica Barai and Erik Gjers

vi



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.6 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 3
2.1 Basic Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Interrupts and Events . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Web Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Hypertext Transfer Protocol . . . . . . . . . . . . . . . . . . . 4
2.2.2 HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 HTTP status codes . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Application Programming Interfaces . . . . . . . . . . . . . . 5

2.2.4.1 Over-Posting and Mass Assignment . . . . . . . . . . 5
2.2.4.2 Endpoints . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4.3 Simple Object Access Protocol . . . . . . . . . . . . 5
2.2.4.4 Representational State Transfer . . . . . . . . . . . . 5

2.2.5 JavaScript Object Notation . . . . . . . . . . . . . . . . . . . 6
2.2.6 Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.6.1 JSON Web Token . . . . . . . . . . . . . . . . . . . 6
2.3 Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 OAuth 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Means of Authentication . . . . . . . . . . . . . . . . . . . . . 8

2.4.2.1 Basic Authentication . . . . . . . . . . . . . . . . . . 8
2.4.2.2 BankID . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.3 Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.4 Token-based Authentication . . . . . . . . . . . . . . . . . . . 9
2.4.5 OpenID Connect . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.5.1 Authentication flow . . . . . . . . . . . . . . . . . . 10

vii



Contents

2.4.5.2 PKCE extension for extra security . . . . . . . . . . 10
2.5 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Structured Query Language . . . . . . . . . . . . . . . . . . . 10
2.6 Authorization and Authentication Servers . . . . . . . . . . . . . . . 11

2.6.1 Identity Providers . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.1.1 Security Assertion Markup Language . . . . . . . . . 12
2.6.1.2 Shibboleth Service Provider . . . . . . . . . . . . . . 12

2.7 .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7.1 Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 IdentityServer4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8.1 Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8.2 Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8.3 Skoruba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9.1 Agile Software Development . . . . . . . . . . . . . . . . . . . 14
2.9.2 Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9.3 Postman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9.4 Swagger Documentation . . . . . . . . . . . . . . . . . . . . . 14
2.9.5 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9.6 Atlassian Products . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9.7 Microsoft Teams . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Method 16
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Use of Agile Practices . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Choice of Authentication Service . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1.1 Maintenance . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1.2 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1.3 Licensing . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1.4 External authentication system . . . . . . . . . . . . 17

3.3.2 Initial review of services . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Out-of-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3.1 Keycloak . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 IDPs as a Framework . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.4.1 IdentityServer4 . . . . . . . . . . . . . . . . . . . . . 18
3.3.4.2 Duende IdentityServer . . . . . . . . . . . . . . . . . 19
3.3.4.3 FusionAuth . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.5 Creating an IDP . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 System 20
4.1 QBIS’ Current Authentication System . . . . . . . . . . . . . . . . . 20

4.1.1 CUP format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Basic Authentication . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Single-sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.4 Authentication with BankID . . . . . . . . . . . . . . . . . . . 21

4.2 Database structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

viii



Contents

5 System Implementation 22
5.1 Integrating IdentityServer4 . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Initial Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Creating a User Store . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.3 Multitenancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.4 Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.5 External Authentication . . . . . . . . . . . . . . . . . . . . . 23

5.2 Restful API with Entity Framework . . . . . . . . . . . . . . . . . . . 23
5.2.1 Prevent Over-posting with Data Transfer Objects . . . . . . . 23
5.2.2 API Documentation . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.3 Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Skoruba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Result 25
6.1 Basic Authentication and Authorization . . . . . . . . . . . . . . . . 25
6.2 BankID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 SAML Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 RESTful API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.4.1 Retrieving Correct Data . . . . . . . . . . . . . . . . . . . . . 26
6.4.2 API Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4.3 API Documentation . . . . . . . . . . . . . . . . . . . . . . . 26

6.5 Skoruba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Discussion 28
7.1 The Choice of Identity Provider . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.1.2 Usage and Documentation . . . . . . . . . . . . . . . . . . . . 28
7.1.3 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.2 Further Developments . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3 Ethical and Ecological Aspects . . . . . . . . . . . . . . . . . . . . . . 29
7.4 The Effect of Agile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.5 Critical Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Conclusion 31

Bibliography I

ix



List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

API Application Programming Interface
CUP Company, User, Password
EF Entity Framework
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDP Identity provider
JSON JavaScript Object Notation
JWT JSON web token
OIDC OpenID Connect
PKCE Proof Key for Code Exchange
REST Representational State Transfer
SAML Security Assertion Markup Language
SQL Structured Query Language
SSO Single Sign-On
TLS Transport Layer Security

x





1
Introduction

All systems require a secure and user friendly method for identifying users. Authen-
tication is the process of verifying a user’s identity. A good authentication system
should be accessible and welcoming, since the authentication system is often the
first section of a service that a user encounters.

1.1 Background
QBIS is a web-based time- and project management system created and maintained
by QLogic for almost 20 years. QLogic plan to update their authentication services
for higher security and scalability. QBIS has over 800 customers and over 20000
users. QLogic is expanding their market with a larger international reach while
their current main market is in Sweden, which is 98% of their customer base[1].

1.2 Purpose
The purpose of this thesis is to provide a better means of authenticating users for
QLogic and integrating such a service into the current QBIS system. The means
involve both the ability to authenticate users through an independent authentication
and authorization server as well as an API that allows users to authenticate.

1.3 Research Problems
The initial research problem the thesis will attempt to answer is concluding what
authentication service is best for QBIS. In order to evaluate the initial question it is
essential to understand how to best evaluate the service and how that service would
integrate into QBIS’ current systems.

1.4 Aim
The project’s aim is to integrate a new authentication system into the QBIS product
and develop a REST API, an interface for communicating the data in a standardized
fashion, to handle the authentication services. The service needs to cover the current
authentication features which QBIS’ current authentication system offers.

1



1. Introduction

1.5 Limitations
The project’s focus is on authentication and authorization, verifying users’ identity.
The project is also limited to QBIS system and not any other QLogic products.
The system that is tested is QBIS test application and implementation on the sold
product does not fall under the scope of the project.

1.6 Previous Research
The online environment consists of many protocols that are in use and the service
needs are constantly changing as new services fulfill prior ones. While some use
SAML such as in [2] where servers are moved from on premises to a cloud base
others find other means. It can be seen that RESTful APIs have increased in
popularity - something that [3] attributes in part to the change in data formats
that are being sent online, with JSON being more popular as an incredibly flexible
data format. While all these protocols are the widespread standard of authorization
and authentication there is research done to find vulnerabilities in implementations
of these such as studies done by [4]. There is little consensus about how much
authentication is required for various tasks, but comparisons are made such as those
by [5].

2



2
Theory

The following section include basic terminology and technical aspects allowing an
understanding of this project’s scope and problems.

2.1 Basic Communication
Much of software development involves delivering data from an external source to a
client that intends to utilize it. A client can be a piece of hardware or software that
wants access to a service, whether that service be data or functionality. Sending
something back from a function, server or device is designated returning. There are
a variety of ways this can occur[6].

2.1.1 Polling
Polling is when the source receives requests repeatedly from the client in order to
complete the transaction. These requests can also be something as simple as a single
byte read, but the same principles still apply for those situations as with larger data
payloads. For each request the source returns a message indicating the status of
the request, whether that be the request is invalid, it is being initialized, it has not
completed yet or that it returns the requested data.

Polling is generally inefficient and is to be avoided. It is not an expensive
process to send and receive a few messages, but this form of communication does
not scale well as you may have a source that is receiving several hundred requests
at any given moment. If all of those clients are constantly requesting the server it
may overwhelm the communication channel. It is also suboptimal if the client would
like the requested information as soon as possible, as that means it would require a
high polling-rate, meaning it would send many requests over a short time period, in
order to shorten the delay[7].

2.1.2 Interrupts and Events
Interrupts and events are possible solutions to the problems of polling. Interrupts are
signals that inform the hardware that it needs attention, interrupting the current
flow and executing handling. Events are the software equivalent of an interrupt.
Regardless of whether an event or interrupt is used they both trigger the handling
of the delivered data as soon as possible. This means the smallest possible wait
period, since the client will receive a response as soon as the request has been

3



2. Theory

handled, and amount of wasted resources, as only one request needs to be sent and
only one response[7].

2.1.3 Interfaces
An interface is a programming term for a description of how communication can
occur with an object. An example would be play and pause. Play and pause exist
in many different media: In remote controls and voice recorders. Regardless of the
media the interface remains the same.

Programming interfaces allow us to swap out implementations of functions.
Once the interface is defined and documented it means that others can use the same
protocol to allow them to be swapped[8].

2.2 Web Communication
All web communication occurs between a client, a software that is accessing the web,
and a server, a service provider that relays information to some specific addresses on
the web. These entities can be referred to as being client-side or server-side. When
transferring data it is imperative to understand how this communication occurs and
when it is secure from external view[9].

2.2.1 Hypertext Transfer Protocol
Hypertext Transfer Protocol, or simply HTTP, is a protocol that is used for commu-
nicating data between a user’s computer and a website hosting on a web server. A
HTTP call or request consists of a request method, sometimes called a HTTP verb.
The most common types of methods and potentially most important are GET and
POST.

GET retrieves information for the user. POST attempts to change the
state of the server they are communicating with. The information that the user
requests is contained in the body of the HTTP response. In the case of a POST the
HTTP request body contains the information to be posted. Beyond a body HTTP
request and responses also contain metadata, data about itself, in the HTTP header.
In the HTTP header there is information such as where the request came from, or
what type of file is in the body[9].

2.2.2 HTTPS
HTTPS stands for Hypertext Transfer Protocol Secure and is HTTP with added
security. The security added is called Transport Layer Security, or TLS. When a
user attempts to connect via HTTPS, the site’s security certificate is shared. In
this certificate is a public key that the user can use to encode a message to get a
session key from the server. The initial message is decrypted by using the private
key held secret by the server. The session key is then used to encrypt the message
for the remainder of that connection. All communication is thereby unintelligible to
outsiders[9].

4



2. Theory

2.2.3 HTTP status codes
A HTTP status code is a server response to a client’s HTTP request. It is useful for
identifying errors in the requests to the server, usually along with an error message
with details about the request[10].

2.2.4 Application Programming Interfaces
An application Programming Interface, or API, is a specified communication for
software. An API defines, through documentation and programming, how it is
communicated to and from allowing a program to communicate to it to utilize the
information or services it provides. The communication between protocol differs
depending on which type of API there is[11].

2.2.4.1 Over-Posting and Mass Assignment

One aspect of API design is to make sure that the consumer of an API should not be
able to write to properties in the database that should not be manually controlled
by the user, so called over-posting or mass assignment. The consumer should not
be able to view or change sensitive properties in the database, such as password
or personal identity number[12]. The solution to these problems is protecting the
data by having the methods not write directly to the sensitive data, but instead to
a container that is then filtered or reconfigured.

2.2.4.2 Endpoints

An API may not and most often will not have a single point of contact. Instead an
API may have multiple points of contact offering different services. These endpoints
have different addresses allowing them to be differentiated[13].

2.2.4.3 Simple Object Access Protocol

Simple Object Access Protocol, or SOAP, is a protocol defining how an API should
communicate. SOAP is popular in enterprise and was a standard, but has lost
popularity. SOAP has a single endpoint to perform all of its communication[14].

2.2.4.4 Representational State Transfer

Representational State Transfer, or REST, is a set of guiding principles for API
communication. It is not a strict protocol and instead a set of guidelines. These
guidelines include things such as a uniform set of commands to contact the API,
streamlined interactions due to data saving and being stateless. Stateless means
that each request is independent and unconnected to other requests. APIs built
with these principles in mind are called RESTful and named REST APIs[15].

5



2. Theory

2.2.5 JavaScript Object Notation
JavaScript Object Notation, commonly and hereinafter JSON, is a text format to
indicate the properties of a given data class. It is one of the most common ways
of sending information between applications[16]. JSON is a list of properties with
given values. These properties can then be read as key-value pairs, where a given
key corresponds to a certain variable or value. A key can correspond to a set of
values. Figure 2.1 shows an example JSON string.

Figure 2.1: A JSON string. This string is an example of how a book might be
formatted. Note that the same property "title" appears both within chapters and
the book itself.

JSON can be read and generated in all modern programming languages and
is therefore useful in contexts where you may have entities that are using different
languages and need to communicate[17].

2.2.6 Tokens
Tokens are encrypted pieces of information that act as digital keys. They allow
access to a resource. There are two main kinds of tokens discussed in this report:
access tokens and identity tokens. Both of these contain the information allowing
an application or user access to a resource. These tokens can then be transmitted
online[17].

2.2.6.1 JSON Web Token

A JSON web token, commonly and hereinafter JWT, is a form of token using the
JSON format. A JWT consists of three parts: header, payload and signature. In
figure 2.2 an example token is displayed.

6



2. Theory

Figure 2.2: An example JSON Web Token. It consists of three parts separated by
dots. The part in red is the header while the part in green is the payload. These two
parts are legible as they are simply encoded. The part in blue is the signature which
is generated by a variety of methods. It uses the header and payload alongside a
secret piece of information so that the token cannot be modified without having to
alter to signature.

The header and payload are encoded so that anyone can read them. The
header contains information on what kind of token it is and what algorithm is used
to encrypt the signature. The payload has information known as claims that are
key-value pairs as they are following the JSON format. There are some standard
claims such as "sub" that indicates who the holder of the token is or "iss" for which
application created the token. The final part of a JWT is the signature. The
signature is the entire contents of the token encrypted with the hashing algorithm
listed in the header alongside a secret that the issuer of the token knows. This way
the issuer can verify if the token has been tampered with or not. JWTs can be also
be unsigned meaning that the signature is empty and hashing algorithm is listed
as none. These are more useful in contexts where verification of the source is not
necessary[17].

2.3 Authorization
Authorization is the process of granting permissions to a user or application. These
permissions can be such things as writing or reading from a source of information
or any number of abilities[18].

2.3.1 OAuth 2.0
OAuth 2.0 is a protocol that deals with authorization on the web. Companies such
as Google, Facebook and Spotify use this protocol. It provides a variety of methods
to authorize a client, a software that a user is applying, to various resources. A
verified user can authorize their software to access the resources that the user has
permissions to access.

In OAuth there is generally a separate authorization service or server, re-
source owner and user-client. If a user attempts to connect to a protected resource
and is not verified, the user-client will be redirected to the authorization service.
Once the user is identified, they can then authorize the client to access the resource
if the user has that permission. The client is then granted an access token to indicate

7



2. Theory

to the resource that the client has authorization. OAuth only deals with authoriza-
tion, but has an additional protocol on top of it to handle authentication[18].

2.4 Authentication
Authentication is a process whereby a user is able to to be verified or prove their
identity. Authentication can then be used to allow users to gain access to sensitive
user data or services that require an identity by authorizing the clients that they are
using. When a user provides their credentials, commonly a username and password,
to an application, an authentication service must handle the request and inform the
application, or separate authorization entity, if the user is who they are intended to
be[18].

2.4.1 Credentials
The credentials of the user may not be username and password. There are many
forms of credentials to verify the identity of a user. Credentials can be in the forms
of a code that the user has received or even a specific item that the user has, that
can be identified in some way via a unique code[13].

2.4.2 Means of Authentication
There are many ways a user can prove their identity. Below is a non-exhaustive list
of options that are relevant to the project at hand.

2.4.2.1 Basic Authentication

Basic authentication is the simplest form of authentication in use. When a user logs
in, a header is sent with password and username arguments to the back-end service.
For every request made to the server, the username and password are also sent in
order to authenticate the user. This process exposes the credentials often, making it
more vulnerable to outside access. If this information was sent over a network that
was not secure someone else could access the credentials thereby allowing them to
authenticate falsely[13].

2.4.2.2 BankID

BankID is an electronic identification system. BankID utilizes personal identity
numbers which are unique 10 digit codes tied to a Scandinavian citizen. This num-
ber contains the date of birth and gender in most cases[19]. By using Swedish
personal identity number and a personal code in a connected app, users can authen-
ticate themselves. The method for acquiring authentication from BankID involves
polling when the client application sends repeated requests to the BankID API. On
a successful authentication the API returns a JWT with user specific information
including their personal identity number.

8



2. Theory

Figure 2.3: The workflow for a user using BankID. Users can select to authenticate
on the same device or a different one. The user has to verify with a code regardless
of method chosen.

In figure 2.3 the flow for a user authenticating by BankID can be seen.
The user enters their personal identity number in order to use the service. They
can then choose to authenticate themselves on the current device or a separate one.
In order to gain access to the service the user must be registered with a bank for
the service. Once ordered it is attached to a file on the device that is desired and a
required code is set for its use. This code is required for each use of the BankID.

One of the rules limiting the implementation of BankID is ID-exchanging.
ID-exchanging is when a user tries to create a new identity through their current one.
This could mean that a user authenticated with their BankID unlocks additional
permissions even when using username and password to authenticate themselves in
the system in the future. This is strictly prohibited by the service[20].

2.4.3 Sessions
One type of authentication is session-based authentication. The most traditional is
cookie-based server-side sessions, where cookies are small client-side files attached
to a browser containing user information. The process starts with users filling in
credentials and submitting these to an application. The application validates the
credentials server-side, which then stores and returns a session ID to the client-side.
The ID is saved as a cookie in the browser. Every request coming from the client
is now sending the session ID to the server which crosschecks it with the stored ID.
This means the credentials required for authentication are only sent once[13].

2.4.4 Token-based Authentication
Token-based authentication starts with the user sending credentials to the applica-
tion and behaves in the same manner as session-based authentication. The server
returns an encoded token instead of a session ID. Tokens can be decrypted by the
server to check their validity. The user sends their token for actions requiring au-
thentication. The difference from session-based is subtle, but this requires no storage
server-side. This means a token based solution is generally more scalable than ses-
sion based systems[13].

2.4.5 OpenID Connect
OpenID Connect, or simply OIDC, is an additional layer that is used in the OAuth
2.0 protocol. This layer allows clients to authenticate an end user. Once authenti-

9



2. Theory

cated the user can authorize various clients to access protected information[21].

2.4.5.1 Authentication flow

OIDC and OAuth define a variety of authentication flows, also called grant types.
One of the most common types of flows for web application projects is the autho-
rization code grant type. The flow consists of two processes for the user’s client:
One with the authorization server and one with the resource owner. The user logs
in at the authorization server, potentially having been redirected from the resource
owner, if the resource owner and request is valid. The authorization server confirms
the authenticity of the user with information inside its data store. Once the user
is successfully logged in the server sends an authorization code to the client. The
client sends this code to the resource owner which then contacts the authorization
server and returns an access token[13].

2.4.5.2 PKCE extension for extra security

When a client is making a request to get the authorization code through the browser
it is possible for a third party to acquire that code. There are ways of preventing
the code from being useful to a third party by means of a security extension. The
extension is called Proof Key for Code Exchange, or PKCE. When enabling this
extension the client must generate a random value and encrypt it, returning it to
the user. The client is the only one who knows the value this since it generated it.
The user is then authenticated in order to receive the authorization code. When
using the authorization code to gain a token the encrypted value must also be
passed to the resource owner. The resource owner then passes the encrypted value
and the actual value to the authorization server and this acts as an additional layer
of security, ensuring that the request in the later stage is related to the request for
the code in the earlier stage.[13].

2.5 Databases
A database is an organized collection of structured data or information stored in a
computer system. The database is usually controlled by a database management
system, known as DBMS, a software system acting as a communication channel
between the user and the database storage[22].

2.5.1 Structured Query Language
Structured Query Language, commonly referred to as SQL, is the language used in
relational databases. The language is defined by an ISO standard, [23]. There are
many implementations of the standard such as PostgreSQL, MySQL and Microsoft
SQL Server to name a few. Relational databases have tables that hold their data
which then relate to each other. A table has columns and rows. A row is an instance
of data while a column is a trait of that data. While other forms of databases are
gaining popularity, relational databases are the strong majority of all databases. A

10



2. Theory

request for data is known as a query. A query will have a variety of constraints
applied such as which tables to fetch data from, how those tables should be merged,
which columns should be fetched and what values those columns should have[22].

2.6 Authorization and Authentication Servers
Authorization and authentication can be integrated directly into an application. It
can also be an independent service that has its own server. In such cases applications
that require authentication and authorization redirect to this server and it will
redirect the user back when appropriate. This section covers some of the concepts
regarding such independent authorization and authentication services[13].

2.6.1 Identity Providers
An identity provider, IDP hereinafter, authenticate users, provide identities to users
and validate those identities. There are many ways for an IDP to validate a user,
but the most common way is by knowledge. If the user knows their password the
IDP will return an identity that the user can use with the appropriate permissions
to use the service they are requesting[13].

Most modern applications need some sort of security check at multiple
points in the system. In figure 2.4 an example of the flow of an identification
is shown. A user needs to authenticate themselves from their browser to a web
application and this, in turn, needs to be authorized to be able to get data from a
web API or other service provider.

Figure 2.4: How Authentication works in most modern applications. The user
must be authenticated and then authorize the application in order to access the
application page. If the user is not authenticated a redirect will occur allowing the
user to authenticate themselves[13].

11



2. Theory

The reason for such a flow is centralizing the authentication and authoriza-
tion functionalities. An example without centralization would be a security system
where the authentication is being integrated into the system, without the usage of
an independent IDP. The application would require its own login page and cookie
to be issued. If several more applications were created then they would each re-
quire their own login page, cookies and implementation. It is far more scalable and
user-friendly to decouple the authentication and authorization services by central-
ising those services into an IDP. This allows independent updates and management
of the authentication system so that such changes do not affect other products as-
sociated with the IDP and need to be implemented anew there.

To centralize the authentication part of an application means that the
authentication server will know who your users are, authenticate them and generate
a token. These services mean that the applications that utilize the IDP do not need
to handle information such as credentials which is helpful in limiting data breaches.

2.6.1.1 Security Assertion Markup Language

Security Assertion Markup Language, commonly and hereinafter SAML, is a stan-
dard for sending and receiving identities. What SAML allows sending of identities to
other trusted service providers securely. This allows for single sign-on, SSO, which is
a common feature in many web applications. SSO entails that a user that is logged
in through one service can be logged into another, without being asked for creden-
tials. SSO is implemented by using SAML to transfer the identity from one service
provider to another[24].

2.6.1.2 Shibboleth Service Provider

Shibboleth is an open-source software implementing a SAML protocol. In QBIS
Shibboleth Service Provider is used to connect with external IDPs[25].

2.7 .NET
.NET is an open-source development framework created by Microsoft. The frame-
work offers tools for web APIs and mobile development. The .NET framework
mainly runs on Windows’ operating system while .NET core, the newer version, is
a cross-platform framework. ASP.NET core is a part of the .NET framework and is
used for developing web applications[26].

2.7.1 Entity Framework
Entity Framework, or simply EF, is a object-relational mapping framework working
as a component in the .NET framework. In data-base first implementations devel-
opers can abstract objects from a database and its tables by using EF. This allows
the the programmer to simply deal with objects rather than querying a table in
the database for information. EF connects to the database and creates a session in

12



2. Theory

the form of a DbContext, short for database context. This context can be used to
perform queries and save information to the database[26].

2.8 IdentityServer4
IdentityServer4 is the name of an authentication and authorization server software
that implements OIDC and OAuth 2.0. The software is a framework in ASP.NET
core and needs to be configured for the system it will be used in. IdentityServer4
acts as a middleware that connects the framework for users to the framework for
the authorization to resources. It handles the authentication of the user, creation
of endpoints and protection of resources.

The tokens generated by IdentityServer4 are JWTs. Such a token contains
information about the user and is signed by the authentication service. Identity-
Server4 acts as a centralized token service, both for creation and validation for the
applications. Its job is to authenticate the users and authorize appropriate clients
for those users[13].

2.8.1 Claims
IdentityServer4 emits data about clients and users into tokens using the claims in
the payload of the JWT. Claims can be customised for users or applications and
can be added or removed as such.[13].

2.8.2 Scopes
Scopes are a license for clients to gain access to various resources and functionalities.
For example, a scope could specify if a client has read and/or write access to a web
API. This is handled and configured for each client in the IdentityServer granting
them a set of scopes to utilize. Scope is generally a claim inside of token to indicate
the permissions the token can grant[13].

2.8.3 Skoruba
In order to configure resources such as scopes and client credentials it is useful to have
software that allows those to be changed as needed, without having to write directly
to the database from code. Jan Skoruba,[27], wrote an administrator application for
handling these sort of scenarios. It has its own authentication service and therefore
protects the internal information and functionalities while allowing authenticated
users to edit, add or delete roles, scopes, clients and more.

2.9 Tools
In the following sections a list of various tools used for the project can be found.

13



2. Theory

2.9.1 Agile Software Development
Agile Software Development, or simply Agile, is a collection of frameworks and
practices that teams can use to develop software products [28]. One of the foremost
ideas of Agile is having a variable scope of the project at hand. This means that
what quality and size product becomes developed is not known from the outset of
a project, but rather decided based on the amount of time and work input into the
project.

2.9.2 Visual Studio
Visual studio is an integrated development environment, or IDE, developed by Mi-
crosoft. It mainly focuses on .NET applications which have a variety of versions[29].

2.9.3 Postman
Postman is an application that allows formulation of HTTP requests. It allows you
to set parameters and turn them on or off at will, making testing various requests
much simpler than simply writing them out[30].

2.9.4 Swagger Documentation
Swagger is a tool used for documentation, design and ease implementation of REST-
ful APIs[31].

2.9.5 Git
Git is the dominant version control system on the market. Version control software
allows developers to easily share code and work on code simultaneously. The code
is then merged together at a later point. Generally a programmer will work in
their own branch, or copy of the code, that is later merged into the master or main
branch. [32] When writing code with Git, it is done locally. This is then pushed to
the remote repository for the code. Other coders can then fetch the changes to the
code when they want to update their local copies. The remote repository can be
open to the public. If allowed a new set of programmers can take such a repository
and fork it. This entails splitting the project into two different branches that are
functionally different and could or could not be merged back together.

2.9.6 Atlassian Products
Jira is a web application that is used for project planning. This was an additional
channel of communication as the entire team could see what each individual was
working on. Confluence is another web application that is used for creating a forum
of documentation that belongs to the Atlassian suite of products. Belonging to this
quite is also Bitbucket which is a version controller that uses Git [28].

14



2. Theory

2.9.7 Microsoft Teams
For communication with QLogic Microsoft Teams, or Teams, was used.

15



3
Method

In this section the systematic approach to reach the solutions to the thesis’ problems
and answer research questions is described.

3.1 Overview
Amajority of the project was researching the general concepts within authentication.
The next step was to select a product to implement into QBIS which was split into
understanding the current QBIS-system and researching products that could fulfill
QBIS’ needs.

After that had been completed the next step was to implement the product
into the system. The project was built in a ASP.NET Core 3.1 environment. The
specifics of the working methodology can be found in the sections below.

3.2 Use of Agile Practices
In the project several agile practices were applied. Sprint planning was used where
the sprints were 1 week long. Sprints are a a period of time where one designates
the tasks that are to be completed in that period. After each sprint a retrospective
was performed consisting of reflection and evaluation on whether the goals had been
reached and what practices should remain, be altered and/or be removed.

In this project Jira was used for planning sprints and tasks as QBIS uses
several Atlassian products for organisation. In this project Confluence was used for
documenting meetings and what has been done in the project while BitBucket was
used in this project as the primary tool for version control.

3.3 Choice of Authentication Service
The first choice of the project was to select a means to implement the authorization
service whether this was by middleware, an out-of-box product or building from the
ground up. In this section various aspects of this choice are revealed. Not all choices
that were reviewed are listed, but rather a selection of some of the more appropriate
services for the project.

16



3. Method

3.3.1 Requirements
While looking at the services some requirements were checked that were used for
evaluation of various implementation methods.

3.3.1.1 Maintenance

The requirement for maintenance means that the authentication system needs to
be scalable, preferably maintained and supported by some reputable and reliable
source. It should also be understandable and function within the environment of
QBIS products meaning that they don’t need to hire further expertise to support it.

3.3.1.2 Pricing

Lower is better in this case and free is the best alternative. This led to some open-
source projects being the primary potential choices considering some of them are
free of charge.

3.3.1.3 Licensing

An appropriate license, a document that provides rights to users for the product, is
vital as QLogic is a for-profit company. Many of these services offer free licenses to
smaller companies. Since QLogic does not tend to fall into such a category generally
a subscription becomes necessary. Freeware licenses that require the software only
be used in other freeware would also be off-limits such as freeware that is licensed
with a copyleft license[33].

3.3.1.4 External authentication system

One of the most important requirements for the authentication system to be im-
plemented is the independence of such a system. QBIS preferred an authentication
server which should work as an independent unit in the system. If the authentica-
tion system is integrated into the current QBIS system then it may suffer some of
the effects of the current system. If QBIS were taken down momentarily for updates
or other reasons then all sessions stored in memory would be cleared. This would
cause users to have to log in again. By centralizing the authentication system all
connected systems will be more maintainable since authentication and authoriza-
tion is decoupled from the working of the products. The functionality can also be
changed to allow user logins to be stored in an operational database and/or tokens.

3.3.2 Initial review of services
Services were found by search, using key terms such as authentication as a service,
AaaS, authentication and authorization. This was helped by looking for selections
of such services with keywords such as top or best. A list was then made of various
services and limited down to thirteen choices by means of reviewing information if
the service was an independent authentication and authorization server. Services
were often independent implementations of authentication methods, which did not

17



3. Method

qualify. From these thirteen the requirements were reviewed for pricing, licensing
and, to a lesser extent, functionality. These options were then discussed with QLogic
and 5 options were selected to investigate further, listed below.

3.3.3 Out-of-box
Out-of-box, or preconfigured, solutions were looked at as potential candidates. There
were major issues with out-of-box systems. QBIS does not run a standard setup for
authentication, being multi-tenant and using the CUP format. While an out-of-box
solution could be configured for this case such options are realistically improbable.

3.3.3.1 Keycloak

Keycloak was an interesting alternative for authentication services. Most of the
documentation assumed a code-first approach. It is simple to get going and use it for
minor projects. Connecting it to QBIS’ current database would be a challenge and
would require a middleware to abstract the multitenancy aspect of the database[34].

There were several attractive aspects of the software. It is open-source, free
of cost and backed by Red Hat, a major contributor to the free software movement
and leading within open-source enterprise software.

It is run in a Java environment which is not a detriment in and of itself,
but negative when combined with QBIS. Since QBIS runs within ASP.NET and
adjacent environments it is not ideal for the developers of QBIS to maintain the
server being run within a Java environment.

3.3.4 IDPs as a Framework
Some software does not run as an application that can be configured, but rather
provides a set of tools that can assist coding a possible solution.

3.3.4.1 IdentityServer4

IdentityServer4 was the chosen product. It is a middleware and provides strong
customizability. Since it is so customizable and in wide use there is plenty of doc-
umentation and projects available online. Some of these show solutions similar to
those needed by QBIS.

It is widely used and even mentioned many times in .NET documenta-
tion[35] when stating options for dealing with identity, authentication and autho-
rization software. The pricing is also ideal as it is free of charge and will be free to
use indefinitely.

It is open-source freeware and will reach its end of life cycle in November
2022[13]. This means that it will no longer be receiving updates after this point.
This means that this product is weaker in terms of the maintenance aspect as QBIS
would need to fork it and perform security patches to use it in the not too distant
future.

18



3. Method

3.3.4.2 Duende IdentityServer

The successor of IdentityServer4 is Duende IdentityServer. The developers moved
away from their free model to a paid subscription model with the option of a com-
munity edition which can be used for charities, smaller projects and small compa-
nies[32].

Duende shares much with its predecessor, being a framework that works
very well in the .NET Core environment. It is also listed in[36] that the identity
and login handling packages of the .NET Core environment, was designed to work
with Duende. This package is known as Identity.

QBIS has little interest in working with Identity as QBIS uses a legacy
database which was not created with Identity in mind. While it has lower costs
compared to other alternatives on the market, the functionality here is very close
to IdentityServer4’s own. QBIS was more interested in seeing the improvements
provided by an authorization server product and then making a more informed
decision later, on what to dedicate themselves to.

3.3.4.3 FusionAuth

Another IDP of interest was FusionAuth. FusionAuth is also an incredibly flexible
tool that can be used as a framework and/or preconfigured. The main strength
over IdentityServer4 and the like is that it has a built in solution for multitenancy
where by default it runs with a single tenant, making it very easy to add other
tenants. This does not solve QBIS multitenancy problem entirely, because it requires
a certain database structure. The framework is flexible and a solution could likely
be implemented within it[37].

One of the major issues is that the cost would be about six times as much
as Duende IdentityServer for QBIS purposes, making it a much less interesting
alternative and the reason it was not pursued further.

3.3.5 Creating an IDP
While implementing the OAuth and OpenID Connect protocol to create an IDP
could be a lucrative product to develop, the approach has many flaws. In terms of
maintainability this is a poor alternative as it would provide a whole product that
requires updates regularly. If QLogic wanted to expand their product line to include
an IDP product then that would be appropriate, but that was not the purpose of
the project at the outset. Developing one’s own solution implementing OAuth and
OIDC would take a significant amount of time upfront and perpetually as security
is a full-time endeavour. This option would only have been used if no other option
was available which was not the case. Considering the scope of such a project it was
deemed not worth the cost of the investment.

19



4
System

QBIS current implementation has been developed over more than 15 years. There
are a multitude of frameworks applied and far more developers that have worked
on the product. The system is intricate and the entire product consists of over 100
.NET projects using a large variety of framework versions. This chapter detail some
of these systems that are relevant to the research questions and give an idea of how
QBIS’ current authentication system operates before any implementations in this
project.

4.1 QBIS’ Current Authentication System
QBIS’ system provides users with a variety of ways to authenticate. By the end of
this project all authentication methods should still be available in the new authen-
tication system.

4.1.1 CUP format
Unlike many other credentials, QBIS uses 3 parameters: Company name, username
and password. This is called the CUP format within their documentation and
hereinafter.

4.1.2 Basic Authentication
Users of QBIS’ system can enter the system by specifying their company name,
username and password. This type of authentication is a basic https authentication.

4.1.3 Single-sign-on
Single-sign-on, or SSO, is a token-based authentication method in QBIS’ system
using the SAML protocol for exchanging authentication data between different sys-
tems. This is accomplished via Shibboleth. This means that users do not need
additional credentials to log into QBIS since they can authenticate themselves via
a different IDP connected by Shibboleth instead.

QBIS also provides a SAML endpoint to immediately redirect a user beyond
the login page if the user is authenticated to an SSO service. If they do not connect
to this endpoint they are instead authenticated when attempting to login on the
login page.

20



4. System

4.1.4 Authentication with BankID
To be able to use BankID in QBIS’ system users must register their account for
authentication with BankID. Once BankID is activated for an account the user is
not able to login via basic authentication. This is a precaution added due to ID-
exchanging. If a user registered with BankID tries to login with basic authentication
in QBIS, the user will receive an error message encouraging them to login with
BankID.

QBIS provides their users with two methods of BankID authentication: on
the same device or on a different device. If users have their BankID app installed
on a different device from where they attempt to log in to QBIS they need to start
their BankID app manually and scan a QR-code that the BankID server provides.
When users select to authenticate via the same device they are on, they will receive
a notification to launch BankID.

On the QBIS login page users are able to select an option to login with
BankID. If this option is pressed the QBIS Web API will send a request to the
BankID server after acquiring the personal identity number of the user. Since QBIS
requires the company name, a separate database table is used here storing company
identities against personal identity numbers. This table allows QBIS to identify
which company or companies the person is associated with.

If the users are registered in QBIS’ system with more than one company
they will be redirected to an intermediate page where they choose which company
they want to log into. If a user logs in successfully the BankID server returns a valid
token along with the user’s personal identity number to the QBIS server. This is
then used to log the user in normally.

4.2 Database structure
The project can be considered data-first, this means that there is already an es-
tablished database that is in use. There are varying tables that are of use in the
authentication process and others that are useful as information for users to fetch
using a potential RESTful API.

The database is of a multitenant structure. Multitenancy is when you have
several tenants, or multiple structurally similar databases within the same database
environment. For each customer, which is a company, a separate database is held
that has the same schema as the other customers’ databases. Each contains its
own information that should only be accessible by the employees, or users, of that
company. In each of these tenant databases is user authentication information. This
means that two users can have the same username and password as long as they are
at different companies. Each company id and name must be unique.

There is a central database that contains information about how to connect
to each of these databases. This database also has additional tables, such as the
additional table mentioned for BankID that identifies users’ companies based on
their personal identity number.

21



5
System Implementation

The project also included the implementation of IdentityServer4, a REST API as
well as an administrator application for editing future clients, scopes and other
configuration information.

5.1 Integrating IdentityServer4
The integration of IdentityServer4 into QBIS’ systems consisted of several sections
and steps. Initially developed was a test environment for IDS4 before moving on to
implement a login page, validation and endpoints.

5.1.1 Initial Setup
IdentityServer4 provides a quick-start template that was used for the project. An
additional text field was added for the company name. In order to connect appropri-
ately to the database several classes within IdentityServer4 needed to be rewritten.

Clients were set in the startup of the server when a seed command was
given. This was altered later. A local database was used for the configuration- and
operational-store. In here any information regarding active tokens or similar could
be stored and information on clients could be set. Initial tests were done in-memory,
but eventually a full database approach was adopted even in the testing stages.

5.1.2 Creating a User Store
QBIS’ systems made no use of Identity since it would require a specific database
structure to function. In order to utilize some of the tools of IdentityServer4 a
customised user storage class was created and used in place of the original. This
means that users could be defined from the QBIS’ database design and that the new
class could be used instead, abstracting away the database users at this layer. In
order to get any information on a user the Employee class was made. This class can
be populated from the relevant DbContext, from EF, thereby allowing reading and
writing of information from the database. This information could then be used to
validate any user inputting credentials in the CUP format.

5.1.3 Multitenancy
In order to deal with the multitenancy the user stores were generated from a factory
class. The factory generates the user store requested by utilizing the connection

22



5. System Implementation

string found in the central database context: The company id determines which
user information to fetch and the user information populates the user store.

5.1.4 Endpoints
The endpoints were mostly functional with the initial settings. The classes that
needed to be rewritten were related to the generation of tokens and authentication.
Rewriting the token generation class allowed the addition and removal of claims.
Authentication could not be done with the standard class since it was not using the
CUP format and other rules that the validation of QBIS required, such as an active
company and user.

5.1.5 External Authentication
In order to demonstrate how external authenticators could be added, BankID was
implemented. Active Login’s packages for BankID were used for this where most
of the functionality and API calls to the BankID API were handled[38].This uses a
different section of the QBIS central database as it was initially made to handle mul-
titenancy only by finding the company name, but a table for finding companies by
personal identity number of those who use BankID was added to support BankID
functionality when it was implemented for QBIS’ systems. The Callback method,
called after the authentication completes, had logic added to it to handle the selec-
tion of the correct user in the multitenant database and, in the case of a personal
identity number being attached to several companies, a redirection to a company
selection page before finalizing the login of the user.

5.2 Restful API with Entity Framework
As a part for the project a Restful API has been created. This API allows users to
fetch and change information that would ordinarily only be altered through QBIS.

5.2.1 Prevent Over-posting with Data Transfer Objects
One problem with implementing a REST API is the risk of a user over-posting,
writing to properties in the database that violate security. To prevent this Data
Transfer Objects, DTOs, were used. When the consumer of the API uses create or
update methods in the API they are, instead of writing to the database directly,
writing to a so called DTO class. This class contains fields that a user is allowed to
manually change or update, not all fields in the database are accessible to write to
for the consumer of the API. The transfer from DTO classes to the actual database
is a process occurring internally within the code of the methods. The DTO classes
act as an additional protective layer around the database. A DTO class was also
the solution to prevent users from reading sensitive information from the database
such as the password field. By creating a class without these fields consumers are
not able to reach them.

23



5. System Implementation

5.2.2 API Documentation
To be able to consume the API an automatically generated documentation was
generated by means of a package called Swagger. Swagger generates a web page for
the API where all methods can be tested, along with documentation on how to use
all the methods in the API, displaying requests in a JSON format.

5.2.3 Error Messages
To be able to tell the user if something went wrong with the HTTP request to any of
the methods in the API exceptions with error codes and error messages are thrown
and shown as a response from the server. This was accomplished by implementing
a middleware that catches all exceptions thrown in the API project and prints out
the code and message for each request to the user.

5.3 Skoruba
When the above implementations were completed an administration application
became a priority. Skoruba was run as a separate application altering the current
configuration and operational database of IdentityServer4 to include the Identity
package. Skoruba can then be used to add administrators as well as new clients
and scopes. The configuration within Skoruba also replaces the previous method of
initially seeding the database with the new database configuration.

24



6
Result

The project aimed to supply QBIS with the same functionalities as previously fea-
tured in QBIS and improve upon them. In this section a comparison is drawn to
those expectations and requirements with the final implementation provided in the
test server. The IDP of choice was IdentityServer4 due to the factors of no cost
for an applicable license, widespread use, familiar language/framework, excellent
flexibility in features and good documentation availability.

6.1 Basic Authentication and Authorization
The IDP can be used for basic authentication and authorization as well as other
ways which are listed below. By a user providing credentials, including company,
username and password, the user can be authenticated and receive an id token. This
server can be used by other products that QLogic might produce with some extra
implementations in the framework that has been provided.

6.2 BankID
The IDP supports BankID authentication. This can be done on the same device,
with a file, or on a separate device, where the certificate would be stored. The
BankID authentication is counted as an external authentication service and serves
as a basis for adding future external authentication services.

6.3 SAML Authentication
SAML authentication is not handled by the IDP. The current system will continue to
handle the authentication needs of SAML users though it will eventually be provided
by the new IDP as more external providers are included.

6.4 RESTful API
A protected API was implemented and follows the criteria to be considered RESTful;
A GET, POST, PUT and DELETE method was considered enough implementation
to expand upon in the future, giving the developer team all the tools needed to add

25



6. Result

any additional support they wanted. The methods enable access to read or write to
the database where all the employees are stored.

6.4.1 Retrieving Correct Data
To be able to retrieve the right data and limit access to all employees from all
companies additional claims are added in the access token when a user logs in.
When the access token is provided to the API each method in the API is able to
connect to the right company database for the logged in user by reading from the
claims in the token. The API connects to the company database for that specific
user.

6.4.2 API Security
The API was configured to be protected by the IdentityServer instance, meaning to
be able to access the API a valid access-token from the IdentityServer4 instance is
required in each call to any of the API’s methods.

6.4.3 API Documentation
In order for API consumers to be able to understand how to consume the API’s
different functionalities Swagger was used. Swagger provided a user interface where
consumption of all methods of the API was available, shown in figure 6.1. Also
descriptions of each method was explored in the Swagger user interface. In addition
to this, Swagger generated a JSON-format where all API methods are provided with
a description of how to use them.

Figure 6.1: The user interface generated by Swagger.

6.5 Skoruba
An administration tool was connected to IdentityServer4 configuration stores. This
required some minor adaptation of the configuration and operational store of Iden-
tityServer4. This tool allows administrators to add, edit or remove clients that they

26



6. Result

want connected to the back-end of the authorization server, without having to do
so directly in code.

27



7
Discussion

7.1 The Choice of Identity Provider
While this project selected IdentityServer4 as the IDP of choice, there are plenty of
other IDPs that would suit differing situations. Following is a reflection on factors
affecting the choice of IDP in this project.

7.1.1 Maintenance
Maintainability can be tough to quantify. Arguments can be made that it is more
maintainable by QBIS because they are happy with the framework it uses and that
they can adapt it once it becomes an end-of-life project. It is difficult to predict
what will happen with the large pool of IdentityServer4 users. They could move
to a different product, keep their current implementations or fork IdentityServer4
and provide updates for it. One such project may become public and could be
implemented for QBIS needs.

7.1.2 Usage and Documentation
Another aspect that was looked at was how widespread the usage of the software was.
Particularly in the case of QBIS, where there is a complex database structure that
is not cohesive with Identity and use of three parameters for input, it is incredibly
helpful to find others that have tackled similar problems. This both ensures that
these features can be implemented and that there are routes to explore when the
desired functionality is not achieved.

7.1.3 Pricing
Pricing is clearly a huge factor. QBIS is hit quite hard by this as users will generally
be logged in for a short time and need to authenticate again. The pricing schemes
vary heavily from provider to provider. Some evaluate by clients and some do so
by users. It can be an uncomfortable risk to have pricing vary based on how many
clients one connects, which would potentially act as incentive to not offer a service
to customers.

28



7. Discussion

7.2 Further Developments
The project was made with expansion in mind. As such there are many areas where
the project has been left in a state requiring additional implementation. Following
are some of those areas.

An expansion of the REST API needs to be made. While implementations
of POST and GET methods were made these are limited in that not all data can
be fetched from the database and not all features for the employee information are
functional either. Missing features include things such as hindering users without
the correct scope to access the commands. These checks are easily added at a later
time.

SAML login was not implemented in this project and will instead continue
to use QBIS original implementation.

7.3 Ethical and Ecological Aspects
The project does not incur any negative ecological, societal or ethical consequences.
The project could incur positive ethical effects by means of protecting sensitive client
data and offering a valuable service to the company and its users.

7.4 The Effect of Agile
The project did not meet all the initial requirements that were set out. While the
aforementioned sections are incomplete, the work method was agile and some change
in scope was expected and did occur over the duration of the project. Earlier on, the
scope shrunk significantly, but expanded towards the end of the project as various
functions were implemented. Some functionalities that were not mentioned at the
beginning of the project were introduced towards the end.

Overall all participants were pleased with the results of the project, since
tasks had been accomplished in their highest priority over the duration of the project.
Regular communication about the tasks allowed this.

7.5 Critical Discussion
There were issues with defining the proper boundaries of the project. In the early
stages the project was laying the groundwork for a REST API and an IDP service.
This then became researching the field for the best possible solution and then re-
turning to the prior goal while adding on an administrator application. Part of this
is working in an agile fashion, where a change in scope is required, and part of it
was poor communication and knowledge regarding the size of the task at hand.

Researching took up a substantial amount of time early, since knowledge
was lacking on most concepts within authentication and authorization as well as
the working environment. This led to a slow start and it certainly would have
been simpler to have a more defined boundary than finding the ideal IDP for QBIS.

29



7. Discussion

The issue with this form of research and analysis is that one can not be sure that
the answer is found. There may be another product that has better qualifications.
The project likely should have settled on IdentityServer4 sooner than it did so that
implementation could have started sooner. This would also have provided more
answers regarding the weaknesses and strengths in the product.

Another issue was the vast amount of sections that needed to be imple-
mented. The project consists of database configuration, database management,
database abstraction, web development, security, authentication, front end and
much more. This can be an overwhelming amount of fields for junior developers.
Extra guidance was granted halfway through the project and significantly clarified
priorities which needed to be implemented and this issue was partially solved.

30



8
Conclusion

This report demonstrates how an IDP could be implemented to act as an indepen-
dent service of other services that a company might offer. The service is useful to
the user as they get a familiar login screen for multiple services and the same forms
of identification can be used for various applications. For the programmers it is
beneficial because only a single front end is required for all the login necessities and
authorization can be dealt with the same way in all endpoints. New changes to
these systems will be applied throughout all the services and no longer need to be
implemented individually for each new service.

The API will also be helpful as a stateless API, allowing an alternative
mean of access to information that a client might need. This eases the development
of other applications, both from a user and developer perspective, QBIS or not.
Being able to access the data that QBIS holds allows users to create or configure
their own applications based on it.

Finally the administration tool for user authentication will be centralised
for all future products of QLogic within Skoruba. Within Skoruba client configu-
rations can be set to appropriate values allowing altered behaviour from the IDP,
suited to new products that QLogic release.

The project was not implemented in its entirety. Bugs remain to be fixed,
features remain to be implemented and deployment still needs to be undertaken.
The project has acted as more than simply a proof-of-concept and will be in use in
the near future after further implementation. The report has covered many of the
aspects one needs to understand to begin implementing an independent IDP such
as authentication, authorization and some factors that are important to the choice
of IDP such as licensing, pricing, popularity and documentation quality. There are
strong benefits to having an independent IDP such as benefits to development and
consistency in service.

31



Bibliography

[1] M. Augustsson, High level requirements specification for master thesis, 2022.
[2] T. Kodam, “A roadmap for ensuring saml authentication using identity server

for on- premises and cloud,” Luleå Tekniska Universitet, 2019. [Online]. Avail-
able: https : / / ltu . diva - portal . org / smash / get / diva2 : 1316547 /
FULLTEXT01.pdf (visited on 04/01/2022).

[3] G. Barbaglia, S. Murzilli, and S. Cudini, “Definition of rest web services with
json schema,” Software: Practice and Experience, vol. 47, no. 6, pp. 907–920,
2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/epdf/
10.1002/spe.2466 (visited on 05/18/2022).

[4] W. Li and C. J. Mitchell, “Analysing the security of google’s implementation of
openid connect,” Springer International Publishing, 2016. [Online]. Available:
https://www.researchgate.net/publication/303912803_Analysing_
the_Security_of_Google’s_Implementation_of_OpenID_Connect (visited
on 04/01/2022).

[5] H. Z. U. Khan and H. Zahid, “Comparative study of authentication tech-
niques,” International Journal of Video & Image Processing and Network
Security IJVIPNS, 2010. [Online]. Available: http://ijens.org/103304-
2929%20IJVIPNS-IJENS.pdf (visited on 04/01/2022).

[6] H. S. Oluwatosin, “Client-server model,” IOSR Journal of Computer Engineer-
ing (IOSR-JCE), 2014. [Online]. Available: https://www.researchgate.net/
profile/Shakirat- Sulyman/publication/271295146_Client- Server_
Model/links/5864e11308ae8fce490c1b01/Client-Server-Model.pdf (vis-
ited on 04/01/2022).

[7] H. Levy and M. Sidi, “Polling systems: Applications, modeling, and opti-
mization,” IEEE Transactions on Communications, 1990. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/61446 (visited on
04/01/2022).

[8] H. Seichter, R. Grasset, J. Looser, and M. Billinghurst, “Multitouch interac-
tion for tangible user interfaces,” 2009 8th IEEE International Symposium on
Mixed and Augmented Reality, 2009. [Online]. Available: https://ieeexplore.
ieee.org/document/5336455 (visited on 04/01/2022).

[9] T. S. I. Stanivuk V. Bjelić and Ð. Simić, “Expanding lua interface to sup-
port http/https protocol,” 2017 13th International Conference on Advanced
Technologies, Systems and Services in Telecommunications (TELSIKS), 2017.
[Online]. Available: https : / / ieeexplore . ieee . org / document / 8246311
(visited on 04/01/2022).

I

https://ltu.diva-portal.org/smash/get/diva2:1316547/FULLTEXT01.pdf
https://ltu.diva-portal.org/smash/get/diva2:1316547/FULLTEXT01.pdf
https://onlinelibrary.wiley.com/doi/epdf/10.1002/spe.2466
https://onlinelibrary.wiley.com/doi/epdf/10.1002/spe.2466
https://www.researchgate.net/publication/303912803_Analysing_the_Security_of_Google's_Implementation_of_OpenID_Connect
https://www.researchgate.net/publication/303912803_Analysing_the_Security_of_Google's_Implementation_of_OpenID_Connect
http://ijens.org/103304-2929%20IJVIPNS-IJENS.pdf
http://ijens.org/103304-2929%20IJVIPNS-IJENS.pdf
https://www.researchgate.net/profile/Shakirat-Sulyman/publication/271295146_Client-Server_Model/links/5864e11308ae8fce490c1b01/Client-Server-Model.pdf
https://www.researchgate.net/profile/Shakirat-Sulyman/publication/271295146_Client-Server_Model/links/5864e11308ae8fce490c1b01/Client-Server-Model.pdf
https://www.researchgate.net/profile/Shakirat-Sulyman/publication/271295146_Client-Server_Model/links/5864e11308ae8fce490c1b01/Client-Server-Model.pdf
https://ieeexplore.ieee.org/abstract/document/61446
https://ieeexplore.ieee.org/document/5336455
https://ieeexplore.ieee.org/document/5336455
https://ieeexplore.ieee.org/document/8246311


Bibliography

[10] Microsoft, “The http status code in iis 7.0 and later versions,” Microsoft, 2022.
[Online]. Available: https://docs.microsoft.com/en-us/troubleshoot/
developer/webapps/iis/www-administration-management/http-status-
code (visited on 04/01/2022).

[11] ——, “Om api management,” Microsoft, 2022. [Online]. Available: https :
//docs.microsoft.com/sv-se/azure/api-management/api-management-
key-concepts (visited on 04/01/2022).

[12] ——, “Tutorial: Create a web api with asp.net core,”Microsoft, 2022. [Online].
Available: https://docs.microsoft.com/en-us/aspnet/core/tutorials/
first-web-api?view=aspnetcore-6.0&tabs=visual-studio (visited on
04/01/2022).

[13] Identityserver4, “Welcome to identityserver4 (latest),” Identityserver4, 2022.
[Online]. Available: https://identityserver4.readthedocs.io/en/latest/
index.html (visited on 04/01/2022).

[14] Microsoft, “Soap web services,” Microsoft, 2022. [Online]. Available: https:
//docs.microsoft.com/en- us/dynamics365/business- central/dev-
itpro/webservices/soap-web-services (visited on 04/01/2022).

[15] ——, “Azure rest api reference,” Microsoft, 2022. [Online]. Available: https:
//docs.microsoft.com/en-us/rest/api/azure/ (visited on 04/01/2022).

[16] S. Safris, 2019. [Online]. Available: https://www.toptal.com/web/json-vs-
xml-part-1 (visited on 06/07/2022).

[17] jwt, “Jwt,” jwt.io, 2022. [Online]. Available: https://jwt.io/ (visited on
04/01/2022).

[18] OAuth, “What is oauth 2.0?” auth0.com, 2022. [Online]. Available: https:
//auth0.com/intro-to-iam/what-is-oauth-2/ (visited on 04/01/2022).

[19] Skatteverket, “Personal identity numbers and coordination numbers,” Skat-
teverket.se, 2022. [Online]. Available: https : / / www . skatteverket . se /
servicelankar/otherlanguages/inenglish/individualsandemployees/
livinginsweden/personalidentitynumberandcoordinationnumber (visited
on 04/01/2022).

[20] e-identitet, “E-identitet,” jwt.io, 2022. [Online]. Available: https://e-identitet.
se/auth/e-legitimation/id-vaxling/ (visited on 04/01/2022).

[21] O. Connect, “Openid connect,” openid.net, 2022. [Online]. Available: https:
//openid.net/ (visited on 04/01/2022).

[22] Oracle, “Oracle,”Oracle.com, 2022. [Online]. Available: https://www.oracle.
com/se/database/what-is-database/ (visited on 04/01/2022).

[23] iso.org, “Iso,” iso.org, 2016. [Online]. Available: https://www.iso.org/obp/
ui/#iso:std:iso-iec:9075:-1:ed-5:v1:en (visited on 04/01/2022).

[24] Okta, “Saml och oauth: Jämförelse och skillnader,” Okta.com, 2022. [Online].
Available: https://www.okta.com/se/identity- 101/saml- vs- oauth/
(visited on 04/01/2022).

[25] Shibboleth, “What is shibboleth?” Shibboleth.net, 2022. [Online]. Available:
https : / / www . shibboleth . net / about - us / the - shibboleth - project/
(visited on 04/01/2022).

II

https://docs.microsoft.com/en-us/troubleshoot/developer/webapps/iis/www-administration-management/http-status-code
https://docs.microsoft.com/en-us/troubleshoot/developer/webapps/iis/www-administration-management/http-status-code
https://docs.microsoft.com/en-us/troubleshoot/developer/webapps/iis/www-administration-management/http-status-code
https://docs.microsoft.com/sv-se/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/sv-se/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/sv-se/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-6.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-6.0&tabs=visual-studio
https://identityserver4.readthedocs.io/en/latest/index.html
https://identityserver4.readthedocs.io/en/latest/index.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/webservices/soap-web-services
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/webservices/soap-web-services
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/webservices/soap-web-services
https://docs.microsoft.com/en-us/rest/api/azure/
https://docs.microsoft.com/en-us/rest/api/azure/
https://www.toptal.com/web/json-vs-xml-part-1
https://www.toptal.com/web/json-vs-xml-part-1
https://jwt.io/
https://auth0.com/intro-to-iam/what-is-oauth-2/
https://auth0.com/intro-to-iam/what-is-oauth-2/
https://www.skatteverket.se/servicelankar/otherlanguages/inenglish/individualsandemployees/livinginsweden/personalidentitynumberandcoordinationnumber
https://www.skatteverket.se/servicelankar/otherlanguages/inenglish/individualsandemployees/livinginsweden/personalidentitynumberandcoordinationnumber
https://www.skatteverket.se/servicelankar/otherlanguages/inenglish/individualsandemployees/livinginsweden/personalidentitynumberandcoordinationnumber
https://e-identitet.se/auth/e-legitimation/id-vaxling/
https://e-identitet.se/auth/e-legitimation/id-vaxling/
https://openid.net/
https://openid.net/
https://www.oracle.com/se/database/what-is-database/
https://www.oracle.com/se/database/what-is-database/
https://www.iso.org/obp/ui/#iso:std:iso-iec:9075:-1:ed-5:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:9075:-1:ed-5:v1:en
https://www.okta.com/se/identity-101/saml-vs-oauth/
https://www.shibboleth.net/about-us/the-shibboleth-project/


Bibliography

[26] Microsoft, “What is .net?” Microsoft, 2022. [Online]. Available: https : / /
docs.microsoft.com/en-us/shows/net-core-101/what-is-net (visited
on 04/01/2022).

[27] J. Skoruba, “Skoruba user admin,”Github.com, 2022. [Online]. Available: https:
//github.com/skoruba/IdentityServer4.Admin (visited on 04/01/2022).

[28] Atlassion, “Atlassian,” Atlassian.com, 2022. [Online]. Available: https://www.
atlassian.com/agile (visited on 04/01/2022).

[29] Microsoft, “Visual studio,” Microsoft.com, 2022. [Online]. Available: https:
//visualstudio.microsoft.com/ (visited on 04/01/2022).

[30] Postman, “Postman,” Postman.com, 2022. [Online]. Available: https://www.
postman.com/ (visited on 04/01/2022).

[31] Swagger, “Swagger,” Swagger.io, 2022. [Online]. Available: https://swagger.
io/solutions/api-documentation/ (visited on 04/01/2022).

[32] GitHub, “Github,” GitHub.com, 2022. [Online]. Available: https://github.
com/ (visited on 04/01/2022).

[33] Synopsys, “5 types of software licenses you need to understand,” synopsys.com,
2020. [Online]. Available: https://www.synopsys.com/blogs/software-
security/5-types-of-software-licenses-you-need-to-understand/
(visited on 04/01/2022).

[34] Keycloak, “Keycloak,” keycloak.org, 2022. [Online]. Available: https://www.
keycloak.org/ (visited on 04/01/2022).

[35] Microsoft, “Identityserver for asp.net core,” Microsoft.com, 2022. [Online].
Available: https://docs.microsoft.com/en-us/shows/introduction-to-
identityserver-for-asp.net-core/identityserver-for-asp.net-core
(visited on 04/01/2022).

[36] ——, “Introduction to identity on asp.net core,”Microsoft.com, 2022. [Online].
Available: https://docs.microsoft.com/en-us/aspnet/core/security/
authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
(visited on 04/01/2022).

[37] FusionAuth, “Fusionauth,” fusionauth.io, 2022. [Online]. Available: https:
//fusionauth.io/ (visited on 04/01/2022).

[38] ActiveLogin, “What is active login?” activelogin.net, 2022. [Online]. Available:
https://activelogin.net/ (visited on 04/01/2022).

III

https://docs.microsoft.com/en-us/shows/net-core-101/what-is-net
https://docs.microsoft.com/en-us/shows/net-core-101/what-is-net
https://github.com/skoruba/IdentityServer4.Admin
https://github.com/skoruba/IdentityServer4.Admin
https://www.atlassian.com/agile
https://www.atlassian.com/agile
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://www.postman.com/
https://www.postman.com/
https://swagger.io/solutions/api-documentation/
https://swagger.io/solutions/api-documentation/
https://github.com/
https://github.com/
https://www.synopsys.com/blogs/software-security/5-types-of-software-licenses-you-need-to-understand/
https://www.synopsys.com/blogs/software-security/5-types-of-software-licenses-you-need-to-understand/
https://www.keycloak.org/
https://www.keycloak.org/
https://docs.microsoft.com/en-us/shows/introduction-to-identityserver-for-asp.net-core/identityserver-for-asp.net-core
https://docs.microsoft.com/en-us/shows/introduction-to-identityserver-for-asp.net-core/identityserver-for-asp.net-core
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
https://fusionauth.io/
https://fusionauth.io/
https://activelogin.net/


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Introduction
	Background
	Purpose
	Research Problems
	Aim
	Limitations
	Previous Research

	Theory
	Basic Communication
	Polling
	Interrupts and Events
	Interfaces

	Web Communication
	Hypertext Transfer Protocol
	HTTPS
	HTTP status codes
	Application Programming Interfaces
	Over-Posting and Mass Assignment
	Endpoints
	Simple Object Access Protocol
	Representational State Transfer

	JavaScript Object Notation
	Tokens
	JSON Web Token


	Authorization
	OAuth 2.0

	Authentication
	Credentials
	Means of Authentication
	Basic Authentication
	BankID

	Sessions
	Token-based Authentication
	OpenID Connect
	Authentication flow
	PKCE extension for extra security


	Databases
	Structured Query Language

	Authorization and Authentication Servers
	Identity Providers
	Security Assertion Markup Language
	Shibboleth Service Provider


	.NET
	Entity Framework

	IdentityServer4
	Claims
	Scopes
	Skoruba

	Tools
	Agile Software Development
	Visual Studio
	Postman
	Swagger Documentation
	Git
	Atlassian Products
	Microsoft Teams


	Method
	Overview
	Use of Agile Practices
	Choice of Authentication Service
	Requirements
	Maintenance
	Pricing
	Licensing
	External authentication system

	Initial review of services
	Out-of-box
	Keycloak

	IDPs as a Framework
	IdentityServer4
	Duende IdentityServer
	FusionAuth

	Creating an IDP


	System
	QBIS' Current Authentication System
	CUP format
	Basic Authentication
	Single-sign-on
	Authentication with BankID

	Database structure

	System Implementation
	Integrating IdentityServer4
	Initial Setup
	Creating a User Store
	Multitenancy
	Endpoints
	External Authentication

	Restful API with Entity Framework
	Prevent Over-posting with Data Transfer Objects
	API Documentation
	Error Messages

	Skoruba

	Result
	Basic Authentication and Authorization
	BankID
	SAML Authentication
	RESTful API
	Retrieving Correct Data
	API Security
	API Documentation

	Skoruba

	Discussion
	The Choice of Identity Provider
	Maintenance
	Usage and Documentation
	Pricing

	Further Developments
	Ethical and Ecological Aspects
	The Effect of Agile
	Critical Discussion

	Conclusion
	Bibliography

