
Remote Control of Test Stations
Software solutions in TestStand

Bachelor’s thesis in Electrical engineering

Kevin Johansson
Henrik Kahl

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Bachelor’s thesis 2015

Remote Control of Test Stations

Software solutions in TestStand

Kevin Johansson
Henrik Kahl

Department of Signals and Systems
Chalmers University of Technology

Gothenburg, Sweden 2015

Remote Control of Test Stations
Software solutions in TestStand
KEVIN JOHANSSON AND HENRIK KAHL

© Henrik Kahl and Kevin Johansson, 2015.

Supervisor at Chalmers: Manne Stenberg, Chalmers University of Technology
department of Signals and System
Supervisor at SAAB: Lennart Berlin, Specialist Microwave Measurement Tech-
nology
Examiner: Bertil Thomas, Chalmers University of Technology department of
Signals and System

Bachelor’s Thesis 2015
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2015

iv

Remote Control of Test Stations
Software solutions in TestStand
KEVIN JOHANSSON AND HENRIK KAHL
Department of Signals and Systems
Chalmers University of Technology

Abstract

The problem that arise when testing transmission and receiver units for radar
applications can be noted when a sensitive noise figure test is run concurrently
with a high-power transmission test. A hardware solution to diminish the in-
duced interference is costly, and a software solution is instead sought. This
paper describes several solutions that attempts to tackle the problem that
has been presented at SAAB’s testing facility. The work has been limited to
general solutions and does not cover the implementation of one (or several) so-
lutions. The solutions presented herein provides a significant improvement in
simulations over the current testing program put in place. Implementation of
the solution will require redesigning the current testing program, and it is sig-
nificant at larger scales to implement a priority functionality to the presented
solution.

Keywords: SAAB, EDS, Radar, Distributed Testing, LabVIEW, TestStand,
Master-Slave, Prioritisation.

v

Fjärrstyrning av teststationer
Mjukvarulösningar i TestStand
KEVIN JOHANSSON OCH HENRIK KAHL
Signaler och System
Chalmers tekniska högskola

Sammanfattning

Problem uppstår när man testar sändnings- och mottagarenheter för radar-
tillämpningar då känsliga brusfaktormätningar genomförs samtidigt som hög-
effekts sändningstester. En hårdvarulösning för att minska inducerade störningar
är dyrt, och en mjukvarulösning är istället eftersökt. Detta dokument beskriver
flera lösningar som försöker ta itu med problemet som har presenterats vid
SAABs testanläggning. Arbetet har begränsats till generella lösningar och
omfattar inte implementation av en, eller flera lösningar. De lösningar som
presenteras här ger en avsevärd förbättring vid simuleringar gentemot det
nuvarande testprogrammet. Genomförande av lösningen kommer att kräva
omkonstruktion av aktuellt testprogram, samtidig som stora vinster kan upp-
nås med en automatiserad testning vid en storskalig produktion.

Nyckelord: SAAB, EDS, Radar, Distribuerade test, LabVIEW, TestStand,
Master-Slave, Prioritering

vii

Acknowledgements

We would like to thank our supervisor at SAAB, Lennart Berlin for the sup-
port during this project. Our supervisor at Chalmers Manne Stenberg, and
our examiner Bertil Thomas for their input. We would also like to thank Sakib
Sistek for making this project possible for us, the personnel at National In-
struments’ for helping out with software support. And last but not least we
would like to thank our colleagues at SAAB EDS for answering our questions.

Kevin Johansson and Henrik Kahl, Gothenburg, June 2015

ix

Contents

List of Figures xiii

Abbreviations xvii

1 Introduction 1

1.1 Background . 1

1.2 Purpose . 1

1.3 Deliminations . 2

1.4 Definition of task . 2

2 Technical Background 3

2.1 Radar . 3

2.1.1 Transmitter . 3

2.1.2 Duplexer . 4

2.1.3 Receiver . 4

2.1.4 Antenna . 4

2.1.5 Indicator . 5

2.2 Radio frequencies . 5

2.3 Distributed testing . 6

2.4 National Instruments LabVIEW 7

2.5 National Instruments TestStand 8

xi

Contents

2.5.1 Process models . 8

3 Method 11

3.1 Components . 11

3.2 Planning and specification of requirements 11

3.3 Solutions and tests . 12

3.4 Presentation and report . 12

4 Process 13

4.1 Specification of requirements . 13

4.1.1 Program description . 14

4.2 Software . 15

4.3 Synchronisation steps . 15

4.3.1 Auto-schedule - Overview 15

4.3.2 Auto-schedule - This project 16

4.4 Master-Slave . 17

4.5 Master-Slave with remote execution 19

4.6 Prioritisation . 20

5 Results 23

5.1 Auto-schedule . 23

5.2 Master-Slave . 23

5.3 Remote execution . 24

5.4 Prioritising . 24

5.5 Conclusion . 25

5.6 Environmental and ethical aspects 25

Bibliography 27

A Gantt chart I

xii

Contents

B Run times III

B.1 Two stations . III

B.2 Four stations . IV

B.3 Eight stations . IV

xiii

Contents

xiv

List of Figures

2.1 Simplified schematic of a phased array antenna. From the top:
antenna elements, phase shifters, transceiver, [2], CC-BY 5

2.2 A sample overview of a distributed testing environment 6

2.3 Left: The source code for a simple division calculator.
Right: Front panel showing the calculator. 7

4.1 Overview of the intended program flow 14

4.2 An overview of the different testing methods described in section
4.3.1 (Here UUT equals DUT), image by National Instruments
[8] . 16

4.3 The left panel shows the ’Master Sequence’ code, and the right
panel shows the available sequences of the program 18

4.4 Flowchart visualising the remote execution sequences described
in section 4.5 . 20

xv

List of Figures

xvi

Abbreviations

DUT Device Under Test

EDS Electronic Defense Systems

NI National Instruments

RF Radio Frequency

RFI Radio Frequency Interference

UUT Unit Under Test - same as DUT

VI Virtual Instrument

xvii

List of Figures

xviii

1
Introduction

SAAB Group is a global company that serve both the military as well as the
civil market with defense and security solutions within their six business areas.
The SAAB Group has over 14’000 employees in over 100 countries.

This thesis is carried out within the business area of ’Electronic Defense Sys-
tems’ (EDS) at the office in Kallebäck, Gothenburg.

1.1 Background

During the production of circuit boards for radar applications at SAAB’s fac-
tory in Kallebäck a series of tests are carried out on each board. If one test
station performs noise figure tests and another station decides to do transmis-
sion tests at the same time then the transmission tests will, because of their
high output power, interfere with the noise figure tests on the first station.

All test stations run a specialised version of National Instruments’ TestStand
that has been developed for the sole purpose of testing equipment. TestStand
is a software developed to create, manage and run automated test and verifi-
cation systems. As well as a developer view, TestStand offers a user friendly
interface for the test operator with possibilities to control the tests and run
entire sequences or just part of it.

1.2 Purpose

The purpose of this thesis is to find a number of software solutions to control
what types of tests that are allowed to run in the production and testing
environment at any given moment.

1

1. Introduction

Today the test engineers at SAAB manually redo tests, or accept the faulty
ones even if they think they are muddled with noise due to the interference that
transmission tests might induce; interference upon sensitive tests stems from
performing high power tests at the same time. The goal of the project is, by
setting up rules in the test executive and get the test stations to communicate
with each other, to prevent transmission tests and noise figure tests to run at
the same time.

1.3 Deliminations

The simplest solution to this project might be to improve the electromagnetic
shielding around the units during tests, but since the tests are carried out very
early during the production process of the circuit boards it is not possible.
This project is therefore delimited to a software solution for the problem.

This project will only look at solutions based on a standard TestStand in-
stallation, but with some limitations set up by SAAB EDS and their testing
environment.

1.4 Definition of task

• Is it at all possible to run tests in autonomous selected order?

• Is it possible to let a master computer synchronise which tests are allowed
to run at the moment?

• Will this type of test execution improve the test results and save time
compared to today’s methods?

2

2
Technical Background

This chapter contains the theoretical background needed for this project. It
will describe the functionality behind a radar system, why tests are distributed
in a network, and what software is used in this project.

2.1 Radar

The general purpose of a radar system stems from the desire to detect objects in
a certain direction/perimeter from the radar itself; this is of interest when it is
essential to avoid collision, detect hidden objects, or attain a general overview
of the surrounding landscape. Gaining such advantages can be beneficial in
maritime, aerial and defense areas. But radar can also provide measurements
within e.g. weather observations, and is as such a quite versatile tool.

As with most applications and equipment, the purpose and functions of it may
appear simple and mundane, but more often than not it is built on a complex
foundation. The following information will explain it all in layman’s terms:
from the bare essential parts, to the system as a whole during operation, and
under what circumstances it may run.

For radar, the first step in achieving an image is to emit an electromagnetic
energy pulse, a process that starts with the transmitter. [1]

2.1.1 Transmitter

The transmitter’s job is to produce a waveform signal with enough average
and mean Radio Frequency (RF) power, suitable RF bandwidth, stability,
and reliability. For this project the focus have been on solid-state amplifiers
used in conjunction with phased array antennas due to the product that SAAB
utilises.

3

2. Technical Background

In this case the solid-state amplifiers consists of high power transistors. Each
individual transmitter has low power, but combined they have the much larger
quantity of power that is needed for radar application. This accumulated power
can then be sent on to the antenna.

2.1.2 Duplexer

Due to the high power output of the transmitter during its pulses, it is neces-
sary to implement a duplexer to protect the sensitive receiver and still retain
the convenience of using only one antenna. This is achieved by a switch that
is designed in the frequency band of the transceiver, and that is able to with-
stand the power output from the transmitter. The duplexer will continuously
switch between the transmitter and receiver giving them alternate access to
the antenna.

2.1.3 Receiver

The receiver works on the premise that the transmitted signal does not merge
with the inbound signal that the antenna picks up. As mentioned in section
2.1.2, the duplexer solves this problem by isolating the path of the signal from
the antenna to receiver, which allows for a clear signal to be received. The
receiver then proceeds with amplifying this signal, and is designed in such a way
that the amplification does not increase the noise figure more than necessary:
low-noise amplifier.

2.1.4 Antenna

To allow the radar to transmit and receive signals it is theoretically required
that two antennas are available, but since a duplexer is commonly used there
is no need for two separate antennas and only one antenna is therefore needed.
There are numerous different antennas used in radar, but it is only of interest
to talk about phased array antennas since the units handled in the project are
components of SAAB’s phased array radar systems.

The structure and function of a phased array can be noted in figure 2.1, where
the transceiver unit is connected to the phase shifters that phase shifts the
signal for each antenna that they are individually connected to; this provides
an ability to angle the signal along the antenna elements. However, exceeding
±60◦ shifting reduces the quality of the transmitted and received signal sub-
stantially, and is generally the limitation of phase shifting in a phased array
antenna. The frequency can also be changed to allow a directional change

4

2. Technical Background

perpendicular to the phase shifting. (The information regarding Phased Array
antennas were acquired during conversations with supervisor Lennart Berlin)

Figure 2.1: Simplified schematic of a phased array antenna. From the top:
antenna elements, phase shifters, transceiver, [2], CC-BY

2.1.5 Indicator

A radar system would be rendered moot without the ability to handle received
information. It is therefore imperative to read and convert the received infor-
mation and display it for human use. To simplify the process: the signal is
amplified and rendered on a screen for interpretation. However, not all radar
applications require human interpretation to use the received information, such
systems may include automatic traffic surveillance systems to monitor speed-
ing.

2.2 Radio frequencies

As radar systems transmits its signals it is common for the radar’s design to
omit interference that might occur in the receiving part. It is to be noted that
at the stage of production that the units are at, they are far from sufficiently
shielded. This leads to problems when high power transmission tests occur in
the proximity of other test stations in progress of testing the noise figure.

5

2. Technical Background

The problem is caused by Radio Frequency Interference (RFI) that occurs in
electrical or electronic devices when energy is radiated or conducted. This
is prominent when high-power radio frequencies are transmitted, such as in
Radar. If a high-power transmission test were to occur it will with great
probability induce interference in nearby devices.

2.3 Distributed testing

Traditionally, automated testing is carried out on local test stations, which are
often situated on a computer that run the tests and store results.

In a modern production environment multiple products are often produced
simultaneously, this creates a need for test stations to be able to do different
kinds of tests on the different products that are manufactured. To solve this
issue a distributed test system is a good idea, and by setting up a network
environment where all test stations fetch the test scenario needed for the cur-
rent product from a "test scenario server" this is accomplished. In figure 2.2 a
sample environment is shown where three test stations, each compatible with
all the different test objects, fetch the test scenario needed from the "test sce-
nario server" depending on which kind of test object is connected. After the
tests are done the test results are saved to the "Test result server".

Figure 2.2: A sample overview of a distributed testing environment

6

2. Technical Background

Another benefit of distributed testing is that if changes are done to a test
scenario not all test stations needs to be manually updated, as soon as the
new scenario is available at the server all stations will automatically use it for
all future testing.

2.4 National Instruments LabVIEW

LabVIEW(Laboratory Virtual Instrument Engineering Workbench) is devel-
oped by National Instruments(NI) in Austin, Texas. NI released their first
LabVIEW version in 1986.

LabVIEW is a software development application for creating virtual instru-
ments (VI) in a graphical interface based on two parts both shown in figure
2.3: the front panel designer, where the graphical user interface is situated;
and the block-diagram designer, where the source code is designed and re-
sides. These virtual instruments can be designed to communicate with local
instruments connected directly to the computer running LabVIEW, or over
the network with network connected instruments as well as databases to store
measurement results and instrument settings. [3]

Figure 2.3: Left: The source code for a simple division calculator.
Right: Front panel showing the calculator.

The front panel is shown for the user during execution of a LabVIEW program,
and therefore hosts all controllers and indicators the developers want the user
to see and interact with.

7

2. Technical Background

The source code or block diagram is built up of graphical blocks containing
all common functions found in most programming languages. In addition to
the common functions there are ready built libraries that can, for example,
communicate with databases and other network resources.

2.5 National Instruments TestStand

TestStand, by National Instruments, is a software to develop and execute se-
quences for automated testing. TestStand cannot complete any test itself, but
by running programs previously built in LabVIEW or any other applicable
programing language such as C or C++ it can communicate with the Device
Under Test(DUT).

Results from tests performed by TestStand can either be displayed directly
in TestStand or published as reports in a variety of formats and directly to a
number of database formats.

2.5.1 Process models

The process models can be described as a framework for the complete test
sequence, without the process model the developer would have to set up the
test environment manually for each project. With the process model in place,
TestStand takes care of tasks like identifying the DUT and generating reports.
[4]

There are three different process models in TestStand: Sequential Model, Par-
allel model and Batch model. [5]

Sequential Model

The Sequential model is the most basic version of the process models in Test-
Stand; it allows for tests to be performed consecutively - one device at a time.

Parallel Model

In the parallel model multiple devices can be tested at the same time - and on
the same test station. This is useful if there are multiple resources connected
to the same test station that are needed during the test procedure. There is
no need to start and stop all tests at the same time since there are control

8

2. Technical Background

steps available in TestStand to make sure only one DUT is connected to each
resource at any given time.

Batch Model

The batch model can be seen as a combination of the two methods mentioned
above. A batch of DUTs can be connected to the test bench at the same time
and can therefore be carried out on all the DUT’s simultaneously, or sequential
if they need a resource that can be used only once at the time. [6]

9

2. Technical Background

10

3
Method

This chapter describes in short the initial plan for the project,how the plan
was followed, and how the project as a whole will be presented.

3.1 Components

Since this project completely aims to find a software solution to the problem
no other hardware then the PC workstations handed out by SAAB has been
used. Since license costs for LabVIEW and TestStand are very high, Chalmers
University of Technology’s license has been used for this project after approval
from National Instruments.

3.2 Planning and specification of requirements

The project started off by collecting the required resources and making a rough
plan for the upcoming work, this first project plan is presented as a Gantt chart
in appendix A. Interviews were made with key personnel for the project, and
a specification of requirements was made. These specifications are presented
in chapter 4: Process.

Initially, the plan was to investigate how a change in testing order would harm
the test results and statistics; the circumstances for each individual test might
change the perimeters for following tests e.g. heating of components may differ
depending on previous performed tests. But due to limited time and heavy
workload that the colleagues at SAAB were subjected to, this part of the
project had to be removed but might make a reappearance in future work.

After an initial learning period were LabVIEW and TestStand’s ’Getting started’-
manual [7] were rigorously read and followed, the work with finding potential
solutions to the described problem was started.

11

3. Method

3.3 Solutions and tests

The solutions presented in this project has been developed through an agile
process where small changes has been tested and evaluated continuously during
the project.

3.4 Presentation and report

The finalised project is to be presented in this report, as a business case for
the staff at SAAB EDS, and in an oral presentation at Chalmers.

12

4
Process

The process chapter will explain how the work have developed throughout the
project, which problems that have been encountered and the solutions to them.

4.1 Specification of requirements

The project started out with an extensive accumulation of information and
specification. To carry out the project certain information was required in
regard to which specifications the result needed to fulfil and how these re-
quirements would be meet.

A couple of interviews were conducted with a number of people at SAAB’s
facilities in Kallebäck: the ones responsible for the development of automated
test executives, and the personnel involved in the production and daily use of
the test stations. This gave us a solid ground to build the project on.

Today SAAB conducts a series of test on circuit boards in an early stage
of the production. Each of these tests are compiled of multiple short tests,
testing different functions on the circuit boards, that all takes up to one hour
to complete. Each small test can be divided into three different categories:

• Receive - Tests the receiver on the circuit board, this test is insensitive
and can be ran at all times

• Transmit - Tests the transmitter on the board, this test will disturb the
noise figure test if run simultaneously

• Noise figure - Tests the noise figure of the receiver, this test will be
disturbed by the transmission test if run simultaneously

In every solution presented in this project all programming has been based on
these three aforementioned categories, every program has been built so that it
runs three different sections of code, and the goal has always been to minimise
the risk of running interfering code blocks simultaneously.

13

4. Process

4.1.1 Program description

Figure 4.1: Overview of the intended program flow

In figure 4.1 a basic block-diagram of the intended test sequence flow is shown.
The principle is that if possible, the tests will be conducted in the same order
as today, but if another test station is busy doing a type of test that might
get disturbed or disturb the system it will automatically select another test to
run while waiting for the possibility to perform a disturbant tests.

The final program has to be started from the local test station, so even if the
solution requires a server to control the run state of the test sequence, it has
to be started by an operator at the station that is going to perform the test.
This is so since not all tests will take the same amount of time, and because
the DUTs are manually connected to the testing equipment and registered by
scanning a barcode on the physical DUT.

14

4. Process

4.2 Software

Due to the projects nature – software oriented rather than hardware oriented,
a significant amount of time was spent accumulating theoretical knowledge and
proficiency in the new software TestStand. This knowledge could be acquired
with the help of SAAB employees and through NI’s own documentation. The
documentation and knowledge acquired from SAAB was necessary due to the
company’s own specialised software that is built on NI’s TestStand application,
but also because of SAAB’s programming standards that its employees abide.

There was an initial intention to learn both LabVIEW and TestStand. How-
ever, as was quickly realised, LabVIEW could be dismissed at an early stage
due to the versatility of TestStand. This limited the amount of documenta-
tion that had to be processed, and the (laborious) learning process of another
programming language could be disregarded. At this part of the project all of
the time was spent planning, on-the-go, as the agglomerated documents were
thoroughly read.

The learning process of TestStand was by and large simplified with access to
NI’s extensive introduction manual ’Getting Started’, but as with all manuals
it lacked the necessary information for how one would be able to implement cer-
tain features, something other documentation could not provide either; herein,
lies one of the challenges of this work.

4.3 Synchronisation steps

To provide a solid solution in a software such as TestStand, it is more often
than not beneficial to use a readily available function that performs said task
without errors. One such function, which stood out from the rest, was the
Auto-Schedule function.

4.3.1 Auto-schedule - Overview

To perform multiple tests at the same time, a parallel testing technique is
required. TestStand offers a couple of different choices and the one that seems
to fit this application the best was ’Auto-Schedule’.

With limited testing equipment, one traditionally have to perform tests se-
quentially on one DUT at a time. If there is equipment available that enables
your measurement instruments to be connected to multiple DUT’s simultane-
ously via a switch, the tests can instead be carried out in parallel. This means

15

4. Process

that as soon as a DUT is done with the needed instrument the next DUT can
use it; hence, the complete batch will be finished faster.

Figure 4.2: An overview of the different testing methods described in section
4.3.1 (Here UUT equals DUT), image by National Instruments [8]

In TestStand’s Auto-Schedule function the tests are no longer required to be
completed in a predetermined order, instead the computer automatically as-
signs a DUT to a free instrument. The difference between the described testing
methods is visualised in figure 4.2

This leads to the realisation that tests are not guaranteed to be performed in
the same order every time they are done. If, for example a DUT is heated up
from a certain test, it might affect the following test results and make them
deviate from each other.

4.3.2 Auto-schedule - This project

After finding out about the Auto-schedule function, the work started to form
mainly from the acquired documentation distributed with the software, but
also through the support forums at National Instruments’ web page. With
working example code, made for a standard test station with all DUT’s con-
nected to the same test bench, the work turned towards achieving a stable
local network communication.

16

4. Process

At first, a program intended to work in the same manner as National In-
struments’ example code as described in their manuals was created, but this
time in a local network environment. This ended up being unsuccessful as
nothing seemed to work the way it should. The problem was in the limit-
ing constraints that the function had been made with. An e-mail contact
within National Instruments’ technical support was therefore contacted when
it became necessary, it did actually turn out to be impossible to get this par-
ticular solution to work according to National Instruments; auto-scheduling
was therefore rejected.

4.4 Master-Slave

To minimise the amount of variables sent back and forth between different test
stations it was necessary to introduce an intermediary - in this case a Master
computer. The Master, whose sole purpose is to issue commands, would act as
a hub for which the Slaves (test stations) could communicate through. Without
a Master there would be a need to send an excessive amount of information,
something that would tax the overall system and clutter it if too many test
stations were to be in use.

Without access to the test stations themselves, nor the actual software run
on them (Amelia), there was a need to simulate the solution. As such, the
TestStand program utilised the sequence capability within TestStand. Figure
4.1 in chapter 4.1.1 shows the basic structure of the program, and was realised
almost exclusively through TestStand.

The program consists of several sequences: a ’Main Sequence’, a ’Master Se-
quence’, and an indefinite number of ’Station Sequences’, and is designed in
such a way that a single computer will run it. As such, it simulates not only
a Master computer but also several Slaves concurrently.

The ’Main Sequence’ was designed in such a way that each new sequence was
called and executed in a new thread on the processor, so that the program
could simulate several Slaves concurrently; the program would continuously
execute the ’Master Sequence’ throughout the lifetime of the ’Main Sequence’.
With the ’Sequence Call’ Step and the ’Wait’ Step it was possible to actualise
this, while also allowing each Slave to start with an interval in-between them
to roughly simulate how the real tests would start.

The ’Master Sequence’ was designed for the sole purpose of allowing either the
Noise tests or the TX tests to run on the Test Stations. Following is the basic
principle behind the ’Master Sequence’ which toggles the permission flag of
the Noise and TX tests.

17

4. Process

whi l e (SlavesRunning) {
NoiseAllow = StationsInTX ? False : True ;
TXAllow = Sta t i on s InNo i s e ? Fa l se : True ;

}

This will only work by specifically designing the ’Station Sequence’ to toggle
the ’StationsInTX’ and ’StationsInNoise’ variables when necessary. In figure
4.3 both the general sequence structure and ’Master Sequence’ of the program
is shown

Figure 4.3: The left panel shows the ’Master Sequence’ code, and the right
panel shows the available sequences of the program

The ’Station Sequences’ work in conjunction with the ’Master Sequence’ to
simulate the testing environment. It works by using the flags that the ’Master
Sequence’ continuously toggles, and provides help in return by toggling the
’StationsInTX’ and ’StationsInNoise’ variables when entering a test. To simu-
late each test, a VI which just put the computer on hold for a predetermined
time was used.

Something that became apparent from observations of the real test environ-
ment was that the length of each type of test varied, so the duration of each
type of test was set accordingly.

18

4. Process

The structure of the ’Station Sequence’ is far more complex than the ’Master
Sequence’, much due to the fact that it is designed to run in a specific way
but also because it has to accommodate the need to quickly and reliably add
more ’Station Sequences’.

4.5 Master-Slave with remote execution

Based on the previous Master-Slave solution, and in collaboration with the
National Instruments support staff the idea to solve the communication issues
with remote execution of TestStand sequence files came up.

In TestStand, one can at any time call a different sequence that is run either in
the same thread, in a new thread or on a remote computer. To run a sequence
on a remote computer, both computers have to be in the same local network
and configured to allow remote execution of TestStand sequences.

One method to control which type of test is allowed to run at a specific moment
would be to let a Master computer remotely control the test sequences and
call the allowed tests on the test stations when allowed to do so. However, this
contradicts the statement of section 4.1.1 that testing of a DUT shall always
be initiated on the local test station.

On the master computer a sequence file aimed to keep track of what type of
tests currently being executed need to be executed continuously. This sequence
will collect incoming signals from the station sequences and set clearance sig-
nals that are passed back to determine if a certain test are allowed to be
executed as described in section 4.4.

Also a station sequence file is stored on the master computer. This sequence
starts when a test station calls it after gathering essential information about
the DUT, such as serial number and type, graphicaly explained in figure 4.4.
The station specific sequence might contain different sets of rules for the test
execution based on the type of DUT and calls a basic sequence on the test
stations only containing the actual instrument communication programs.

To communicate between the different sequences and computers in the network
a TestStand, built-in step called queue were used. The station sequences put
its current state in a queue and the master sequence dequeues it and calculate
the current state flags for the other stations to handle.

19

4. Process

Figure 4.4: Flowchart visualising the remote execution sequences described
in section 4.5

4.6 Prioritisation

When many (6 or more) test stations are running at the same time a new
problem arise: wasting time. The tests begin to wait for one another so that
they can execute, and the more tests that are waiting to start, the more time
accumulates. In an attempt to reduce the amount of time spent waiting an
extension to the Master-Slave solution was developed.

The underlying functionality of this extension was to make a predetermined
schedule for each test station based on the previously started test; once made,
it would stay the same for the remainder of its execution. This makes the
number of variables sent between the Master and Slave computers abate or
disappear completely.

20

4. Process

To realise this, a sequence to compare and fill an array was written. It worked
on the premise that Noise and TX tests had a higher priority level than the
RX test. Below follows a visualisation.

Noise 1
TX 1
RX 0

As can be seen, the noise and TX test has a priority level of 1 and are equal,
while the RX test has a priority level of 0 and is below both noise and TX in
importance.

When the sequence compares the previously started test station’s priority ar-
ray, it takes into consideration where in the array that the test station currently
is. Then it begins to compare the value of the index that is pointed at by the
program along with the index right after the pointed index.

0 TX
1 Noise
2 RX
3 TX

If the previously started test station’s priority array is pointing at index 0
then it will look at both index 0 and 1, compare them to each other, and
insert a value into the newly started test station’s priority array according to
the presented information below. Then it will look at index 1 and 2, 2 and 3,
and so on.

Noise + RX -> Noise
TX + RX -> TX
Noise + TX -> RX

Doing this for three pairs of values in consecutive order will provide a prede-
termined priority array for the new test station.

21

4. Process

22

5
Results

The purpose of this project was to find a way for test sequences in TestStand
to autonomously communicate, and in that way control test station so that if
there are multiple stations working at the same time they do not disturb each
other.

5.1 Auto-schedule

As mentioned in section 4.3.2 the auto-schedule function is intended to be used
on a single test station when connecting multiple DUT’s to it. In our scenario
with multiple test stations, but only one DUT at each the limitation of the
standard step type in TestStand showed to be too narrow to fit our intended
solution.

5.2 Master-Slave

The first examined Master-Slave solution works when run on a single machine,
but since this project’s goal is to run the slave sequences on different machines
connected via local network, TestStand lacks the built-in function to share
data in-between the different stations.

One possible solution to this would be to communicate over a database. To
accomplish this one would have to design a LabVIEW VI to read and write
data to the said database.

With a third unit in the chain of communication, valuable time would be lost
and the stations will have to wait for the communication to be completed.
This might lead to one station starting one kind of test, and before the master
have the information about it another station starts a different kind of test,
inevitably leading to disturbance in the production room.

23

5. Results

5.3 Remote execution

As a follow up to the Master-Slave solution, which lacks the ability to commu-
nicate between threads, and after some input from the National Instruments
support crew, the work on a solution based on TestStand’s ability to remotely
execute test sequences began.

With the remote execution functions in place and a communication queue
built up the thread-to-thread communication works and the time spent for
communication seems negligible.

This solution might require more time per test station than it currently do in
the test facility at SAAB. However, the Master-Slave with remote execution
solution reduces time spent overall, and especially so when more and more test
stations are introduced to the testing environment.

Tests were run in three different configurations: two, four, and eight test sta-
tions. For simulation purposes the test time of each test station was set to
6 minutes compared to the real test stations where the tests normally takes
60 minutes. Furthermore, the two-station test was done twice since it seemed
like the time of starting a test station might affect the total runtime. As seen
in appendix B for tests carried out in a two-station environment the time of
start up of the second station significantly affects the total time spent for both
stations. This is since the runtime of different sub tests might differ in time
and therefore hold the other station waiting for a long time.

With the four-station configuration an increase in waiting time can be seen,
but it is to be noted that this configuration is also affected (just as the two-
station one) by the starting time of each test station. However, the increase
in waiting time is almost insignificant in this case.

It is not until an eight-station configuration is established that a noticeable
increase in waiting time is affecting the system. One of the tests wait for a
total of 44 seconds during its execution time, which amounts for a 12.2 %
increase in execution time.

The increased waiting time when more test stations run concurrently was the
reason as to why a prioritisation solution was pursued.

5.4 Prioritising

The task to prioritise and optimise the Master-Slave solution was more complex
than first imagined. It isn’t impossible, but to achieve a prioritisation that is
quicker than the original Master-Slave you will end up with a messy, obtuse,

24

5. Results

and quite advanced solution. This is discouraged by the fact that distributing
such a test network and building upon it at other locations would require more
effort than something simpler and therefore costs more money. It is also more
likely that it will be unstable.

The solution presented in section 4.6 is a simple and incomplete attempt at
prioritising the Master-Slave solution. Alas, it actually increases the execution
time at this stage. Changing the predetermined list into an ever-changing
priority list would allow for better execution times, but at the cost of having
to send more information to and from the Master computer.

Another way to work with the prioritisation of these tests is to somehow track
the time of each test in progress, compare the tests being executed, and from
that start the type of test that provides the fastest execution time for the
whole system. An attempt at such a solution was made, but it was something
that never came to be.

5.5 Conclusion

The results of this project made it apparent that an automatic control of which
tests are allowed to run might improve the testing environment in the early
state of the unit’s production. This is not necessarily true for every single test
case, but over a longer period of time it would decrease the manual labour
required and increase the amount of units successfully tested.

In the case that only a few test stations are attached to the test environment
a noticeable improvement due to the nature of the Master-Slave solution in
comparison to the current installation can be seen. However, the solution is
not optimal at a bigger number of test stations.

A priority-based solution that improves the execution time of the Master-Slave
solution would be the next step forward, but it is something that has not been
presented in the report - not for lack of trying.

5.6 Environmental and ethical aspects

Since the project aims to improve an application already in use no further
environmental studies have been carried out, one clear aspect is that the work
environment for those involved in the production might be improved since the
manual handling of DUTs are decreased.

25

5. Results

Radar systems might be used both in military as well as civil applications.
SAAB has signed the United Nations Global Compact that express that the
company should work for human rights and preservation of the environment
as well as working against corruption. [9]

26

Bibliography

[1] M. I. Skolnik and A. (e-book collection), Radar handbook, English. New
York: McGraw-Hill, 2008, isbn: 9780071485470; 0071485473; 9780071621137;
007162113X.

[2] wdwd & based on a PNG drawing from de:Benutzer:Averse, Phased array
parallelfeed. [Online]. Available: http://commons.wikimedia.org/wiki/
File\%3APhased_Array_parallelfeed.svg (visited on 2015-05-28).

[3] National Instruments. (2015). Labview, [Online]. Available: http://www.
ni.com/labview (visited on 2015-05-25).

[4] National Instruments. (2014). Best practices for ni teststand process model
development and customization, [Online]. Available: http://www.ni.
com/white-paper/7958/en/ (visited on 2015-05-25).

[5] National Instruments. (2013). About the teststand process models, [On-
line]. Available: http://www.ni.com/white-paper/2694/en/ (visited on
2015-05-25).

[6] National Instruments, Teststand process models, 370360A-01, 2001-03.
[Online]. Available: http://www.ni.com/pdf/manuals/370360a.pdf
(visited on 2015-05-19).

[7] National Instruments. (). Getting started with teststand, [Online]. Avail-
able: http : / / www . ni . com / pdf / manuals / 373436f . pdf (visited on
2015-04-03).

[8] National Instruments, Testing techniques in teststand. [Online]. Available:
http://www.ni.com/teststand/optimize/ (visited on 2015-06-03).

[9] Håkan Buskhe. (). Code of conduct, [Online]. Available: http://saabgroup.
com/responsibility/responsible-business/code-of-conduct/ (vis-
ited on 2015-06-09).

27

http://commons.wikimedia.org/wiki/File\%3APhased_Array_parallelfeed.svg
http://commons.wikimedia.org/wiki/File\%3APhased_Array_parallelfeed.svg
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/white-paper/7958/en/
http://www.ni.com/white-paper/7958/en/
http://www.ni.com/white-paper/2694/en/
http://www.ni.com/pdf/manuals/370360a.pdf
http://www.ni.com/pdf/manuals/373436f.pdf
http://www.ni.com/teststand/optimize/
http://saabgroup.com/responsibility/responsible-business/code-of-conduct/
http://saabgroup.com/responsibility/responsible-business/code-of-conduct/

Bibliography

28

A
Gantt chart

I

A. Gantt chart

II

B
Run times

B.1 Two stations

First run

Station Start time End time Time spent
1 15:42:19 15:48:22 00:06:03
2 15:42:50 15:49:35 00:06:45

Average time: 00:06:24
Standard deviation: 00:00:21

Second run

Station Start time End time Time spent
1 15:51:05 15:57:07 00:06:02
2 15:52:15 15:58:17 00:06:02

Average time: 00:06:02
Standard deviation: 00:00:00

III

B. Run times

B.2 Four stations

Station Start time End time Time spent
1 15:27:03 15:33:11 00:06:08
2 15:25:01 15:31:11 00:06:10
3 15:25:34 15:31:37 00:06:03
4 15:25:48 15:31:50 00:06:02

Average time: 00:06:06
Standard deviation: 00:00:03

B.3 Eight stations

Station Start time End time Time spent
1 15:10:57 15:17:08 00:06:11
2 15:10:46 15:17:01 00:06:15
3 15:10:33 15:17:01 00:06:28
4 15:14:01 15:20:10 00:06:09
5 15:10:58 15:17:24 00:06:26
6 15:11:21 15:17:29 00:06:08
7 15:11:42 15:17:49 00:06:07
8 15:12:08 15:18:52 00:06:44

Average time: 00:06:18
Standard deviation: 00:00:12

IV

	List of Figures
	Abbreviations
	Introduction
	Background
	Purpose
	Deliminations
	Definition of task

	Technical Background
	Radar
	Transmitter
	Duplexer
	Receiver
	Antenna
	Indicator

	Radio frequencies
	Distributed testing
	National Instruments LabVIEW
	National Instruments TestStand
	Process models

	Method
	Components
	Planning and specification of requirements
	Solutions and tests
	Presentation and report

	Process
	Specification of requirements
	Program description

	Software
	Synchronisation steps
	Auto-schedule - Overview
	Auto-schedule - This project

	Master-Slave
	Master-Slave with remote execution
	Prioritisation

	Results
	Auto-schedule
	Master-Slave
	Remote execution
	Prioritising
	Conclusion
	Environmental and ethical aspects

	Bibliography
	Gantt chart
	Run times
	Two stations
	Four stations
	Eight stations

