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Abstract

In a burning plasma, such as the next generation tokamak experiment ITER,
significant numbers of highly energetic alpha particles will be produced. The
presence of energetic particles may excite kinetic instabilities and affect the
transport and heating of particles in the plasma. Of particular interest is the
so called toroidal Alfvén eigenmode (TAE) which can be excited by the super
Alfvénic alpha particles through resonant wave-particle interaction. In this
thesis we identfy the linear TAEs with corresponding bursting nonlinear evo-
lution in a discharge on the spherical tokamak MAST using the equilibrium
code HELENA and the linear codes CSCAS and MISHKA. If this mode is ex-
cited there is a consecutive exponential growth of the linearized perturbations
when the linear growth rate due to the fast particles is slightly larger then the
total damping in the plasma. Nonlinear theory is then needed to describe the
evolving nonlinear modes, which are observed to sweep in frequency with a
preferred frequency sweeping directivity that changes in time. We investigate
a possible reason for the change in preferred frequency sweeping directivity and
derive an expression for the radial motion of the mode during the frequency
sweeping.

Keywords: Fusion plasma physics, toroidal Alfvén eigenmode, wave-particle
interaction, linear growth rate, frequency sweeping
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1
Introduction

Throughout the world there is a steadily increasing demand for energy pro-
duction, more than what the current energy sources can provide for in an
economically feasible and environmentally friendly manner [1]. From an envi-
ronmental point of view, there are limits to how much energy can be supplied
from fossil fuels such as oil and coal. Together with the increasing energy de-
mand in the world it is clear that there is a necessity for new environmentally
friendly energy sources. This is where fusion comes in.

Thermonuclear fusion is the energy source of the stars. It is the process
where two nuclei merge to one nuclei which has a lower binding energy and
therefore energy is released. The candidates for fusion energy production here
on Earth involves the hydrogen isotopes deuterium (D) and tritium (T) in the
following reactions:

D + D −→ He3 + n+ 3.27 MeV (1.1a)

D + D −→ T + H+ 4.05 MeV (1.1b)

D + T −→ He4 + n+ 17.58 MeV (1.1c)

The reaction probability and energy output is highest for the D-T reaction.
The temperature required for this reaction is approximately 108 K. At these
temperatures the gas is completely ionised and is known as a plasma. To use
thermonuclear fusion as an energy source there are some problems that need
to be overcome. One problem is the confinement of the plasma. In stars,
confinement of the particles is provided by gravitation. Here on Earth, the
current main schemes are inertial fusion and magnetic confinement. Inertial
fusion is the compressing and heating of a capsule of D-T by uniform radiation
from a laser. An outer layer evaporates with a resulting implotion of the
capsule that creates the condition for fusion to occur. Magnetic confinement

1



2 Chapter 1 Introduction

is currently the most promising confinement scheme and uses the basic fact
that a plasma consists of charged particles which follow magnetic field lines.
The problem is the design of magnetic field topology for the confinement.

Tokamaks [2] are axisymmetric, toroidal configurations which confine plasma
particles through the use of an externally generated toroidal magnetic field
with a smaller poloidal magnetic field generated inside the device by running
currents through the plasma. There is a large number of tokamak experimen-
tal facilities operating or being constructed, the largest currently in operation
is the Joint European Torus (JET), see Figure (1.1). Spherical tokamaks,
like MAST (Mega Ampere Spherical Tokamak), see Figure (1.2), are small,
fat tokamaks with a large ratio of minor to major radius. This geometry al-
lows it to operate with a high ratio of particle to magnetic pressure but also
puts a lower limit on the magnetic field strength, due to the narrow inner
leg. The largest experimental tokamak facility, currently under construction,
is the internationally funded facility ITER (International Thermonuclear Ex-
perimental Reactor) which will be almost twice the linear size of JET. ITER
aims to demonstrate that it is possible to produce commercial energy from
fusion [3]. The main objectives are: To momentarily produce ten times more
thermal energy from fusion heating than is supplied by auxilary heating, i.e
Q = 10. To produce a steady state plasma with Q > 5. To maintain a fusion
pulse for up to eight minutes.

Figure 1.1: JET Figure 1.2: MAST

The tokamak D-T plasmas are heated ohmically by a current in the plasma
and from the fusion born alpha particles, but external heating schemes are also
necessary, such as neutral beam injection (NBI) and radio frequency heating.
NBI consists of a highly energetic beam of neutrals injected into the plasma
where they are ionized and heat the plasma through collisions. Radio frequency
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waves heat the plasma through resonant interaction between the waves and
the plasma particles. The resulting fast particles, be it fusion born or injected
into the plasma, are highly energetic with velocities exceeding the thermal
velocity of ions in the plasma. Moreover, their velocities do not conform to a
Maxwellian distribution function like the bulk plasma. Thus, the presence of
fast particles provides free energy available to drive instabilities in the plasma
[4]. These instabilites are mainly unwanted since they may degrade the plasma
particle heating, cause alpha particle losses and damage the first wall.

The remainder of the thesis is organized as follows: In Chapter 2, we look
at general properties of a plasma and investigate the motion of a single charged
particle in a given magnetic field. We present the magnetohydrodynamic model
which we use to look at the equilibrium and stability properties of a plasma. In
Chapter 3, we consider toroidal systems. We investigate Alfvén waves and their
behaviour in tokamaks, magnetohydrodynamic features such as the Alfvén con-
tinuum and its associated damping, toroidal Alfvén eigenmodes and excitation
of modes by fast particles. We also present the possible nonlinear evolution of
the fast particle induced instabilities and derive an expression for the radial
motion of particles in a wave with time-dependent frequency. In Chapter 4 we
identify the linear modes with corresponding bursting nonlinear evolution in
a MAST discharge and propose a possible reason for the change in preferred
frequency sweeping directivity of the nonlinear evolution.
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2
Theoretical Description of a

Plasma

A plasma is often thought of as a hot ionised gas whose behaviour is dominated
by long-range electric and magnetic fields. One definition of a plasma is [5]:

A plasma is a quasi-neutral gas consisting of charged and neu-
tral particles exhibiting collective behaviour.

The keywords here are quasi-neutral and collective behaviour. Quasi-neutrality
means that there may occur deviations from neutrality on a microscopic level,
but the plasma is macroscopically neutral. Collective behaviour refers to the
fact that a particle in a plasma interacts with a large number of other particles
simultaneously. This, since the electrical force between charged particles is long
range.

For the long range collective effects to dominate over short range Coulomb
interactions and for the plasma to have the ability to screen out changes in
the electric field certain conditions need to be fulfilled. To formulate these
conditions we use a characteristic length scale, λD, called the Debye length

λ2D ≡ ǫ0kBTe
ne2

, (2.1)

and a characteristic frequency of oscillations

ω2
p =

ne2

meǫ0
, (2.2)

called the plasma frequency. In these expressions ǫ0 is the permittivity of free
space, n is the plasma number density, kB is the Boltzmann constant and e,
me and Te are the charge, mass and temperature of electrons, respectively.

5



6 Chapter 2 Theoretical Description of a Plasma

The Debye length is the distance at which local, microscopic deviations from
quasi-neutrality are effectively screened out, which must be small compared to
the plasma dimensions in order to permit quasi-neutrality. Furthermore, to be
able to use electromagnetic laws for the description of a plasma, collisions can
not be too frequent. Note that the fact that a plasma effectively screens out
the change in electric fields and that there are few Coulomb collisions imply
a high conductivity. Finally, the number of particles in a sphere of radius λD
need to be large for the statistical laws behind the distribution function to be
valid. These conditions can be expressed as

λD ≪ L (2.3a)

ν ≪ ωp (2.3b)

4π

3
λ3Dn0 ≫ 1 (2.3c)

where L is the macroscopic dimension of the plasma and ν is the collision
frequency between charged particles. When a system fulfills (2.3) it is said to
constitute a plasma.

When describing a plasma it is important to have a model that is able to
describe the collective behaviour of particles and interaction between the par-
ticles and fields. The particles in the plasma interact with both internal fields
produced by the particles themselves and with externally applied fields. This
gives rise to nonlinear behaviour. Given the trajectory and velocity of each
particle, the electric and magnetic field can be evaluated using the Maxwell
equations

∇× E = −∂B
∂t

, (2.4a)

∇×B = µ0ǫ0
∂E

∂t
+ µ0J , (2.4b)

∇ · E =
ρ

ǫ0
, (2.4c)

∇ ·B = 0 , (2.4d)

where E and B are the electric and magnetic field vectors, J is the current
density vector, ρ is the charge density and µ0 is the vacuum permeability.
Simultaneously, given the instantaneous electric and magnetic field, the forces
on each particle can be evaluated using the Lorentz force equation of motion

m
dv

dt
= q(E+ v×B) , (2.5)

where v, m and q are the velocity vector, mass and charge of the particle,
respectively. This equation can then be used to update the trajectories and
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velocities of particles. However, due to a large number of particles and com-
plexity of the electromagnetic field this approach is impractical if not impos-
sible. For instance, initial conditions for all the particles would be needed.
Nevertheless, we can still gain some understanding by considering the motion
of a single particle.

2.1 Single-Particle Motion

When considering the motion of a single charged particle in a plasma we will
assume collisionless motion and will not include the currents and correspond-
ing induced magnetic fields from the flow of charged particles. The resulting
motion in a magnetized plasma will consist of a circulating motion, the Larmor
gyration, superimposed on the so called guiding center motion which mainly
follow the magnetic field lines, and slowly drifts across them.

2.1.1 Larmor Gyration

The equation of motion for a charged particle is the Lorentz force equation
(2.5). With a homogeneous magnetic field, and in the absence of an electric
field, it becomes

m
dv

dt
= qv×B . (2.6)

The solution describes particle circular motion around a point, called the guid-
ing center, in the plane perpendicular to the magnetic field. The frequency of
gyration is

ωc =
|q|B
m

, (2.7)

referred to as the cyclotron frequency or the Larmor frequency [5], here B = |B|
is the magnitude of the magnetic field. The direction of the circular motion
depends on the sign of the particle charge such that the generated magnetic
field will decrease the total magnetic field. The guiding center also moves along
the magnetic field with a speed v‖, so the resulting motion is helical.

2.1.2 Particle Drifts

In the presence of a force or when the fields are slowly varying in space the
resulting motion is a drift of the particles across the magnetic field lines. If
the fields are inhomogeneous, we can no longer solve the equation of motion
exactly. When they are slowly varying however, we can use a perturbative
approach. By slowly we mean that rL ≪ L is satisfied, where rL is the radius
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of the gyration around the guiding center, called the Larmor radius, and L is
the length scale characterizing the variation of the fields. We then write

v = vgc + vL (2.8)

where vgc is the guiding center velocity and vL is the velocity of the Larmor
gyration. We can express the guiding center velocity as

vgc = vd + v‖ , (2.9)

where vd and v‖ are the drift- and parallel velocity, respectively. The parallel
motion is determined by

m
dv‖
dt

= qE‖ − µ∇‖B , (2.10)

where
∇‖ = b · ∇ , b ≡ B/B (2.11)

is the gradient along the magnetic field, and

µ =
mv2L
2B

(2.12)

is the magnetic moment of the gyrating particle.
The perpendicular motion of the guiding center motion is a drift across the

magnetic field lines, and can be expressed as [6]

vd =
E×B

B2
+

v2L
2ωc

b×∇ lnB +
v2‖
ωc

× ~κ , (2.13)

where
~κ ≡ (b · ∇)b , (2.14)

is the magnetic field curvature. The different terms in the drift velocity (2.13)
are called the E×B-, the ∇B- and the curvature drift respectively. Note that,
the drift velocity is only valid for weakly varying electric fields when the orbit
nearly closes in on itself after one Larmor gyration.

Let us consider now an equilibrium plasma with no equilibrium electric
field and under the assumption of

β ≡ P

B2/2µ0

≪ 1 , (2.15)

where P is the particle pressure. Thus, β is the ratio of particle and magnetic
pressures which is assumed to be low, called the low β limit. In this limit the
magnetic curvature becomes

~κ ≈ ∇⊥B

B
=

b× (∇B × b)

B
, (2.16)
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and the guiding center velocity (2.9) can be written as

vgc ≈ v‖b+
1

ωcB

[

v2‖ +
1

2
v2L

]

b×∇B . (2.17)

2.1.3 Adiabatic Invariants

For a Hamiltonian system that consists of rapid oscillations superimposed on
a slow drift, there always exist adiabatic invariants [6]. This is also the case of
a charged particle in a strong magnetic field where the rapid oscillation is the
Larmor gyration. When the magnetic field changes slowly in space and time
the magnetic moment (2.12) is a constant of motion, called the first adiabatic

invariant.
Assume that the magnetic field changes sufficiently slow for the Larmor

radius of a particle to be approximately constant during each orbit. If we dot
the Lorentz force equation (2.5) with the velocity v, and neglect the drift of
the particle in the LHS, the result is

d

dt

(

mv2‖
2

+
mv2L
2

)

= qv‖E‖ + qv⊥ · E , (2.18)

which together with equation (2.10) becomes

d

dt

(mvL
2

)

= µv‖∇‖B + qv⊥ · E . (2.19)

We average over a Larmor orbit

〈v⊥ · E〉L =
ωc

2π

∮

orbit

E · v⊥ dt . (2.20)

Integration of the Maxwell equation (2.4a) over the gyration surface, and using
Stoke’s theorem, then results in

∮

E · dl = ωcr
2
L

2

∂B

∂t
, (2.21)

where rL = vL/ωc is the Larmor radius. When using (2.21) and v⊥dt = dl,
equation (2.20) becomes

〈v⊥ · E〉L =
ωcr

2
L

2

∂B

∂t
. (2.22)

Finally, using (2.7), the Larmor average of (2.19) becomes
〈

d

dt

(

mv2L
2

)〉

L

=
mv2L
2B

dB

dt
, (2.23)
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where
dB

dt
=
∂B

∂t
+ v‖∇‖B. The Larmor orbit kinetic energy can be expressed

as W⊥ = mv2L/2, equation (2.23) then becomes

1

W⊥

dW⊥

dt
=

1

B

dB

dt
(2.24)

which has the solution
W⊥

B
≡ µ = Const. (2.25)

Furthermore, in the absence of forces, the particle kinetic energy

W =
mv2

2
, (2.26)

is an exact constant of motion. Together with the magnetic moment we then
write the expression for the parallel particle velocity in terms of the invariants
of the particle motion,

v‖ = ±
√

2

m
(W − µB) , (2.27)

which changes only due to the variation of B. The guiding center velocity
(2.17) can then be expressed as [7]

vgc = v‖b− v‖b×∇
(

v‖
ωc

)

. (2.28)

There are also higher order adiabatic invariants associated with other pe-
riodic motions. For instance, when considering timescales longer than the
bounce period of a so called trapped particle that reverses it’s motion parallel
to the magnetic field, there is a second order adiabatic invariant:

J =

∮

v‖ dq , (2.29)

where q is the arc length along the bounce orbit.

2.2 Kinetic Theory

The most accurate closure of Maxwell’s equations is the kinetic model, where
the particle distribution functions, fe(r,v; t) and fi(r,v; t) for electrons and
ions, respectively, provide a statistical description of the system. Then, the
kinetic equations governing the evolution of the distribution functions in the
six-dimensional phase space need to be solved, which is in general complicated.
The evolution equation is the Boltzmann equation
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∂f

∂t
+ v · ∂f

∂r
+

q

m
(E+ v×B) · ∂f

∂v
=

(

∂f

∂t

)

c

, (2.30)

where (∂f/∂t)c is the collision operator representing the rate of change of f due
to collisions. Note that there is no exact expression for the collision operator.
In general it is a complicated nonlinear function of f . Collisions can however
be neglected when νc ≪ ω, where νc is the collision frequency and ω is the
frequency characterizing the time rate of change of the macroscopic forces.
The Boltzmann equation (2.30) then becomes

∂f

∂t
+ v · ∂f

∂r
+

q

m
(E+ v×B) · ∂f

∂v
= 0 , (2.31)

which is the so called Vlasov equation.
For a steady state, homogeneous and collisionless plasma, the solution to

(2.30) is the Maxwell distribution function [5]

f = n

(

m

2πkBT

)
3

2

e
−mv

2

2kBT . (2.32)

In the kinetic model, we can use velocity moments to express the quantities in
Maxwell’s equations, such as

ρ = q

∫

f dv , (2.33a)

J = q

∫

vf dv . (2.33b)

2.3 Magnetohydrodynamic Model

In fluid models, we use macroscopic properties such as densities, temperatures
and pressures to describe the plasma. These quantities are derived from the
velocity moments of the distribution function for each plasma species. When
using the moment procedure, it always leads to a system of more unknowns
than equations so one needs to truncate the series of moments by some proper
assumptions, usually referred to as closure.

Magnetohydrodynamics (MHD), which is often used to study macroscopic
plasma phenomena, is derived by taking the fluid models one step further:
Here, ion and electron fluids are combined into one single fluid. For the MHD
description to be valid the plasma needs to be collision dominated, which
requires a locally Maxwellian distribution function. This also means that the
MHD time scale must be sufficiently long for there to be adequately many
collisions. The displacement current can then be neglected in the Maxwell
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equations. Without the displacement term, Ampére’s law (2.4b) is not Lorentz
invariant, which means that it is only valid for velocities much lower than the
speed of light in vacuum. This is not a problem in the MHD description, since
the time scale is much longer than the time it takes light to traverse the plasma.
Furthermore, the dominant fluid velocity is the E×B-drift, which means that
MHD describes low frequency phenomena with respect to the plasma frequency
(2.2)

ω ≪ ωp . (2.34)

Finally, the plasma pressure is assumed to be finite compared to the magnetic
pressure.

The characteristic properties of the MHD fluid are expressed by the total
mass density

ρm ≡ mini +mene , (2.35)

where mi,me and ni, ne are the masses and number densities of ions and elec-
trons, the total charge density

ρ ≡ e(Zini − ne) , (2.36)

the center-of-mass velocity

v ≡ miniui +meneue

mini +mene

, (2.37)

where vi and ve are the fluid velocity vectors of ions and electrons, and the
current density

J ≡ e(Ziniui − neue) , (2.38)

where Zi is the ion charge number. With the assumption of quasi-neutrality,
Zini ≈ ne, one finds ρ = 0 and v ≈ vi. Under the further assumption that the
total pressure is P = Pe + Pi, where Pe and Pi are the scalar electron and ion
pressures, the MHD set of equations becomes

• The continuity equation

∂ρm
∂t

+∇ (ρmv) = 0 , (2.39a)

• The momentum equation

ρm
dv

dt
= J×B−∇P , (2.39b)
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• The adiabatic equation of state

d

dt

(

P

ργm

)

= 0 , (2.39c)

• The resistive Ohm law

E+ v ×B = ηJ , (2.39d)

• The Ampére law (without the displacement current)

∇×B = µ0J , (2.39e)

• The Faraday law

∇× E = −∂B
∂t

. (2.39f)

Here, γ is the ratio of specific heats at constant pressure and constant volume
and η is the plasma resistivity. Note that the Maxwell relation ∇ · B = 0 is
implied. The fact that the displacement current is neglected in Ampére’s law
also means that

∇ · J = 0 . (2.40)

In many cases a further simplification is made by assuming that the plasma
conductivity is so high that η = 0. Then, the so called ideal Ohm law reads

E+ v×B = 0 . (2.41)

The resulting model is called ideal MHD, and is used to describe plasma equi-
librium and stability of waves in the low frequency range, ω ≪ ωp. It seems
to provide an accurate description of the macroscopic fusion plasma behaviour
even though it is not obvious that the criteria for ideal MHD are fulfilled [8].
For instance, one of the consequences of ideal Ohm’s law is that the parallel
component of the electric field is zero.

2.3.1 Equilibrium Analysis

In equilibrium the momentum equation (2.39b) describes a force balance

J0 ×B0 = ∇P0 , (2.42)

where the subscript 0 denotes equilibrium quantities. This means that the
plasma can be confined by a magnetic field if the plasma pressure is balanced
by a magnetic pressure. An important result from the force balance equa-
tion (2.42) together with Ampére’s law (2.39e) is that the sum of the particle
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pressure, P0, and magnetic pressure is constant when the magnetic field is ho-
mogeneous in the direction of the field. One can show this by substituting the
current in Ampére’s law into the force balance equation with the result

∇P0 =
1

µ0

(∇×B0)×B0 =
1

µ0

[

(B0 · ∇)B0 −
∇B2

0

2

]

. (2.43)

When B0 · ∇ = 0 equation (2.43) implies

P0 +
B2

0

2µ0

= Const. (2.44)

Note that if the equilibrium plasma is uniform,

∇×B0 = 0 , (2.45)

Ampére’s law (2.39e) becomes J0 = 0 which together with the force balance
(2.42) results in a constant equilibrium pressure P0.

2.3.2 Stability Analysis

When we have an equilibrium plasma the next step is to look at its stability
properties. To simplify the analysis we will restrict ourselves to linear stability,
and represent the dependent variables as the sum of an equilibrium part plus
a small perturbation,

B = B0 +B1 , J = J0 + J1 , (2.46a)

P = P0 + P1 , ρ = ρ0 + ρ1 , (2.46b)

where the equilibrium and perturbed quantities are denoted by the subscripts
0 and 1, respectively. We can transform the MHD equations to a frame of
reference moving with the equilibrium velocity v0, which means that v = v1

and, by the ideal Ohm law (2.41), E = E1. The equilibrium quantities are
then functions of space only while the perturbations are of space and time.
From the set of equations (2.39a) - (2.39f), with the ideal Ohm law, we obtain
sets of equations to zeroth order for the equilibrium (cf. section 2.3.1) and to
first order for the stability:

• Equilibrium

J0 ×B0 = ∇P0 , (2.47a)

∇×B0 = µ0J0 , (2.47b)
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• Linear stability

∂ρ1
∂t

+∇ · (ρ0v1) = 0 , (2.47c)

ρ0
∂v1

∂t
= J0 ×B1 + J1 ×B0 −∇P1 , (2.47d)

∂P1

∂t
+ v1 · ∇P0 +

γP0

ρ0

(

∂ρ1
∂t

+ v1 · ∇ρ0
)

= 0 , (2.47e)

∂B1

∂t
= ∇× (v1 ×B0) , (2.47f)

∇×B1 = µ0J1 . (2.47g)

Since the equilibrium equations are independent of time,

Q0(r, t) = Q0(r) , (2.48a)

and the stability equations are linear, we can represent the perturbations as
normal modes

Q1(r, t) = Q1(r)e
−iωt . (2.48b)

If we introduce the perturbed displacement vector ~ξ as

v1 =
∂~ξ

∂t
= −iω~ξ(r)e−iωt , (2.49)

the linear stability equations (2.47c) yield [8]

− ω2ρ1~ξ = F(~ξ) , (2.50)

which is an eigenvalue equation with the frequency ω as the eigenvalue. Here,
F is given by

F(~ξ) =
1

µ0

{

(∇×B0)×
[

∇× (~ξ ×B0)
]

+∇×
[

∇× (~ξ ×B0)
]

×B0

}

+∇(~ξ · ∇P0 + γP0∇ · ~ξ) . (2.51)

What is important to note is that F is Hermitian [8]. This means that ω2 ∈ R.
If ω2 > 0 then ω ∈ R and the solution to (2.50) is a mode with frequency ω,
and if ω2 < 0 then iω ≡ γ ∈ R and there is an instability with Re(ω) = 0.
The eigenvalue problem (2.50) needs to be solved for a given magnetic field in
a certain geometry, with given initial values and boundary conditions. Note
that, it is customary to Fourier transform.

The simplest case of a homogeneous magnetic field in an infinite geometry
results in two kinds of waves, the shear and compressional Alfvén waves. For
us the most interesting is the shear Alfvén wave

ω2 = k2‖v
2
A , (2.52)
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where k‖ is the parallel wave number with respect to the magnetic field and
vA is the Alfvén velocity

v2A ≡ B2

µ0ρ0
. (2.53)

This wave propagates along and at angles to the magnetic background field
but all fluctuations are perpendicular to the magnetic field, hence the name
shear wave. Furthermore, this wave is incompressional and therefore has no
density or pressure fluctuations.

For later purposes, we consider a nonuniform magnetic field in a general
geometry: The linearization procedure leads to the following equation [9]:

∇ ·
(

ω2

v2A
∇⊥φ

)

+B0 · ∇
{

1

B2
0

∇ ·
[

B2
0∇⊥

(

B0 · ∇φ
B2

0

)]}

= 0 , (2.54)

for the electrostatic potential φ of a shear Alfvén wave with high toroidal mode
number and in the low β limit.



3
Toroidal Systems

Magnetic confinement of plasma particles can be implemented in several differ-
ent ways. Many of these methods utilize externally generated magnetic fields
designed in such a way that the field lines define a torus, i.e a cylinder deformed
until it closes on itself [8]. The most common type of toroidal magnetic con-
finement device is the so called tokamak. In tokamaks, the plasma particles are
confined by means of a large magnetic field in the toroidal direction, which is
generated by external coils. This results in circulating particles, which follow
the magnetic field lines around the torus. However, a small poloidal field com-
ponent produced by a transformer induced plasma current is also necessary in
order to average out radial drifts. This is because the toroidal magnetic field
varies radially in space, with the associated ∇B- and curvature drifts of the
particles resulting in a vertical separation of electrons and ions. The charge
separation leads in turn to a potential difference and an associated E × B-
drift, which results in a radial drift outwards of both ions and electrons.

In general, a tokamak cross section may be elliptically elongated, D-shaped
and asymmetric with respect to the horizontal and vertical midplanes. In this
thesis, however, we will use a circular approximation described by the toroidal
coordinates (r, θ, ζ) and (R, ζ, z), see Figure(3.1). The asymmetry with respect
to the vertical midplane will be included in some calculations as a so called
Shafranov shift.

3.1 Equilibrium Analysis

Tokamak equilibria are efficiently analyzed by the MHD equilibrium equations
(2.47a) and (2.47b). Note that this implies that

B0 · ∇P0 = 0 , (3.1)

17
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Figure 3.1: Poloidal cross section of a circular tokamak, displaying the
toroidal coordinates (r, θ, ζ).

which means that the magnetic field lines lie on surfaces of constant pressure.
Since the magnetic field has both poloidal and toroidal components, these so
called flux surfaces close on themselves both toroidally and poloidally, and
must therefore be nested tubes with the innermost known as the magnetic
axis. Hence, P = P (ψ), where ψ, the poloidal flux, is constant along magnetic
field lines, i.e a function only of r. In a toroidal device the poloidal magnetic
flux can be expressed as

ψ =

∫

V (r)

B0 · ∇θ d3x , (3.2)

where d3x =
√
gdrdθdζ, 1/

√
g is the Jacobian and V (r) is the volume bounded

by the magnetic flux surface of radius r.
In a tokamak, we may express the magnetic field as

B = BP +BT , (3.3)

where BT ≫ BP and the toroidal magnetic field strength varies radially as
R−1:

BT ≡ I(r)

R
=

Bs(r)

1 + ǫ cos θ
. (3.4)

Here, Bs ≡ I(r)/R0, I(r) is the current in the exterior field coils, R0 is the
distance from the axis of symmetry to the magnetic axis and

ǫ ≡ r/R0 (3.5)
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is the inverse aspect ratio, which is generally small throughout a tokamak.
Another useful way to express the magnetic field is

B = I(ψ)∇ζ +∇ζ ×∇ψ . (3.6)

If we consider a plasma in an axisymmetric magnetic field, all derivatives with
respect to the toroidal angle ζ vanish. Using the force balance equation (2.50),
and the magnetic field (3.6) together with Ampére’s law, we get the Grad-
Shafranov equation [6]

R2∇ ·
(∇ψ
R2

)

= −µ0R
2dP

dψ
− I(ψ)

dI

dψ
, (3.7)

whose solutions describe the possible plasma equilibria.

3.2 Guiding Center Motion

In the absence of wave fields, the trajectory of a particle can be characterized
by the following three invariants of motion:

• The total particle energy, E

• The generalized toroidal momentum, pζ

• The magnetic moment, µ

To derive the invariants we use the Lagrangian for a single particle in an
electromagnetic field

L =
Mv2

2
+ Ze (v ·A− φ) , (3.8)

where M , Ze and v are the mass, charge and velocity of the particle and A is
the vector potential used to describe the electric and magnetic field according
to

E = −∇φ− ∂A

∂t
, (3.9)

B = ∇×A . (3.10)

The total energy of the particle is given by E = H, where H is the Hamiltonian
of the system and can be found by the Legandre transformation [10]

H = v · ∂L
∂v

− L = W + Zeφ , (3.11)
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where W is the particle kinetic energy. By the Euler-Lagrange equation

∂L
∂ri

=
d

dt

(

∂L
∂ṙi

)

, (3.12)

where ri, i = 1, 2, 3, represent the coordinates (in this case (r, θ, ζ)), we find
that

dE

dt
=
∂H

∂t
= 0 . (3.13)

Note that in the presence of a wave field, L will depend explicitly on time and
E is no longer invariant.

From the Lagrangian description we also find the second invariant, the
generalized momentum,

pζ =
∂L
∂ζ̇

. (3.14)

By the Euler-Lagrange equation we see that whenever the Lagrangian does
not depend on a certain variable, the associated canonical momentum is an
invariant. Thus, for an axisymmetric tokamak, independent on the toroidal
angle ζ,

dpζ
dt

= 0 . (3.15)

The generalized momentum can be expressed, using equations (3.8) and (3.14),
as

pζ =MRvζ + ZeAζ . (3.16)

where vζ and Aζ are the toroidal components of v and A. Note that, in the
presence of an external wave field depending on ζ, axisymmetry will be broken
and pζ will no longer be invariant.

Finally, the magnetic moment, given by (2.12), was shown in section (2.1.3)
to be an adiabatic invariant, i.e constant as long as the gradients in the mag-
netic field are sufficiently small as compared to the plasma dimensions. This
is also true in a tokamak since the magnetic field varies on a large scale as
compared to the Larmor radius.

In the low β limit and in the absence of forces, the particle guiding center
motion can be easily calculated using (2.28). Componentwise in the toroidal
coordinates (r, θ, ζ), we have

dr

dt
= r̂ · vgc =

v‖
r

∂

∂θ

(

v‖
ωc

)

, (3.17a)

dθ

dt
=
θ̂

r
· vgc =

v‖
qR0

[

1− q

ǫ

∂

∂r

(

v‖
ωc

)]

, (3.17b)

dζ

dt
=
ζ̂

R
· vgc =

v‖
qR

[

1 +
ǫ

q

∂

∂r

(

v‖
ωc

)]

, (3.17c)
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where q is the safety factor,

q =
∇ζ ·B0

∇θ ·B0

, (3.18)

i.e the number of toroidal revolutions a field line executes during one poloidal
revolution.

3.3 Trapped and Passing Particles

The magnetic field (3.4) has a maximum poloidally. Due to the conserva-
tion of the magnetic moment µ, this means that particles may bounce when
approaching this maximum, depending on their ratio of perpendicular and
parallel energy. Hence, there are two kinds of particles, trapped and pass-
ing particles. The trapped particles bounce toroidally and poloidally at the
points where their velocities parallel to the total magnetic field vanish, while
the passing particles encircle the magnetic axis and the torus toroidally and
poloidally.

Following [7] we insert the expression (3.4) for the magnetic field into the
expression (2.27) for the parallel velocity, we obtain

v‖ =
v‖0
κ

√

κ2 − sin2 θ

2
, (3.19)

where we have defined the trapping parameter

κ2 ≡ W − µBs(1− ǫ)

2µBsǫ
, (3.20)

and

v‖0 = v‖(θ = 0) = ±κ
√

µBsǫ

M
, (3.21)

Note that W and µ are invariants of the particle motion, and that we have
assumed that Bs(r) is constant. Hence, κ2 depends on the radius r only
through the ǫ-factor. The trapped particles reverse their motion parallel to
the magnetic field at the poloidal angles θB = ±2 arcsinκ where v‖ = 0. By
conservation of energy and magnetic moment, we see that κ2 < 1 for trapped
particles, and that the passing particles satisfy κ2 > 1. Due to the curvature
and ∇B-drifts, the particle orbits may also differ slightly radially from the
magnetic flux surfaces. This is known as finite orbit width effects, and is the
result of the second terms within the brackets on the right hand sides of (3.17b)
and (3.17c).
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The period of a poloidal orbit for trapped and passing particles is

τB =

τB
∫

0

dt . (3.22)

To calculate it we use the expression for the θ-component of the guiding center
motion (3.17b) to relate t and θ

dt =
qR0

v‖

[

1− q

ǫ

∂

∂r

(

v‖
ωc

)]−1

dθ . (3.23)

Note that all quantities in (3.23) are to be evaluated at the average particle
radial position during a poloidal orbit. When we neglect the finite orbit width
effect we then have

dt ≈ qR0

v‖
dθ , (3.24)

and the period of a poloidal orbit for passing particles becomes

τB =

τB
∫

0

dt ≈ qR0κ

v‖0

θ(τB)
∫

θ(0)

dθ
√

κ2 − sin2 θ
2

=

=
4qR0

v‖0

π

2
∫

0

dφ
√

1− κ−2 sin2 φ
=

4qR0

v‖0
K
(

κ−1
)

, (3.25)

where K(κ) is the complete elliptic integral of the first kind. The poloidal
frequency is then

ωB =
2π

τB
=

πv‖0
2qR0K(κ−1)

. (3.26)

For the trapped particles, the bounce period between the angles θB = ±2 arcsin κ
is

τB = 2
qR0κ

v‖0

θB
∫

−θB

dθ
√

κ2 − sin2 θ
2

= 8
qR0κ

v‖0

arcsinκ
∫

0

dφ
√

κ2 − sin2 φ
=

= {sinφ = κ sinϕ} =
8qR0κ

v‖0

π

2
∫

0

dϕ
√

1− κ2 sin2 ϕ
=

8qR0κ

v‖0
K (κ) , (3.27)

and the associated frequency becomes

ωB =
2π

τB
=

πv‖0
4qR0κK (κ)

. (3.28)
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3.4 Toroidal Instabilities

In periodic, toroidal systems, any linear instability may be Fourier decomposed
according to

φ(r, θ, ζ; t) =
∑

m,n

φm,n(r)e
i(nζ−mθ−ωt) , (3.29)

where m and n are the so called poloidal and toroidal mode numbers. If
the inverse aspect ratio ǫ is small, as in tokamaks, the equilibrium magnetic
field is dominated by the toroidal magnetic field (3.4). This magnetic field is
symmetric in ζ, but because of the ǫ cos θ term there is no symmetry in θ. For
Alfvén type instabilities this leads to a coupling between neighboring poloidal
harmonics of φ. If we assume that the mode numbers m and n are large, the
equations describing this coupling are [11]

[

Lm L1

L1 Lm+1

] [

φm

φm+1

]

= 0 , (3.30)

where

Lm =
d

dr

[

(

ω2 − ω2
A

) d

dr

]

− m2

r2
(

ω2 − ω2
A

)

, (3.31a)

L1 = ǫ̂ ω2 d
2

dr2
. (3.31b)

Here, the Alfvén frequency is defined as

ωA (r) ≡ k‖mn (r) vA (r) , (3.32)

and the parallel wave number and the Alfvén velocity are given by

k‖mn ≡ b · k =
1

qR0

(nq −m) , (3.33)

v2A (r) =
B(r)2

µ0ρ(r)
, (3.34)

with ǫ̂ = 5r/2R0 [12]. Note that the Alfvén frequency ωA varies radially via
the combinded variation of k‖mn and vA.

3.4.1 Cylindrical Limit

In the cylindrical limit ǫ→ 0, the magnetic field strength (3.4) is approximately
constant. This means that the translational symmetry in θ is restored, and
the set of coupled equations (3.30) decouples into

d

dr

[

(ω2 − ω2
A)
dφm

dr

]

− m2

r2
(ω2 − ω2

A)φm = 0 , (3.35)
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for each poloidal harmonic. A branch of solutions to (3.35) has ω2 = ω2
A.

However, these modes are logaritmically divergent, as can be seen by Taylor
expanding ω2 − ω2

A, and are therefore almost completely damped throughout
the plasma. This damping is known as continuum damping, and the logarit-
mically divergent modes define the so called cylindrical Alfvén continuum. In
Figure (3.2), the qualitative behaviour of the Alfvén frequency as a function
of radius is plotted.
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Figure 3.2: Qualitative figure displaying the Alfvén frequency ωA when n = 5,
using realistic profiles for the density, safety factor and magnetic field strength.

3.4.2 Toroidal Alfvén Eigenmodes

Toroidal Alfvén eigenmodes (TAEs) are discrete frequency waves [13] that
exist due to toroidicity induced coupling between poloidal harmonics. In the
cylindrical limit, neighbouring poloidal continua cross at the surfaces r = rm
(see Figure (3.2)), where

k‖mnvA = −k‖m+1nvA ≡ ω0 , (3.36)

which implies that

q (rm) ≡ qm =
2m+ 1

2n
. (3.37)

Inserting (3.37) in (3.36) yields

ω0 =
vA

2qmR0

. (3.38)
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Accounting for toroidicity by letting ǫ become finite, only the proximity of rm
is affected, where small gaps of width ∆ω ≈ ǫ̂ ω0 are induced in the Alfvén
continuum, see Figure (3.3). The distance between neighbouring such gaps is
approximately [14]

|rm+1 − rm| ≈
rm
nqS

, (3.39)

where the magnetic shear, S, is defined as

S ≡ r

q

dq

dr
. (3.40)

Nonzero ǫ also results in a discrete frequency eigenmode, which forms due

Q0 = 1.0000
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Figure 3.3: Alfvén continuum for n = 4, discharge 42979 at JET, as calculated
by the MHD linear instability code CASTOR.

to the interaction of neighbouring poloidal harmonics in the vicinity of the
gap. In the low shear limit, S ≪ 1, the distance between the gaps (cf. Figure
(3.39)) is sufficiently large for the eigenmode to be localized near its own
gap and not interact with modes from neighbouring gaps. According to the
boundary layer theory [14] which is used to analyze the system (3.30), the
coupling between different harmonics takes place in a narrow inner region and
in the outer region each poloidal mode satisfies the cylindrical mode equation
(3.35). To determine the mode structure, a matching procedure for the outer
and inner regions has to be used [14]. The result in the low shear limit is a
discrete frequency eigenmode at the bottom of each toroidicity induced gap.
The frequency of this downshifted eigenmode is given by

ωTAE = ω0

[

1− ǫ̂

(

1− π2S2

8

)]

. (3.41)
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Since the mode is inside the gap it does not fulfill the condition for continuum
damping. This eigenmode is therefore weakly damped and it consists of an
even combination of the coupled neighbouring poloidal harmonics, see Figure
(3.4).
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Figure 3.4: Coupled, neighbouring poloidal harmonics constituting an even
TAE for n = 4, discharge 42979 at JET. The eigenmode is found by means of
the MHD code MISHKA.

Note that to arrive at the system (3.30), ideal Ohm’s law has been used,
which neglects any parallel electric field. In the inner regions, we should re-
ally include both the toroidicity induced coupling and nonideal effects. The
nonideal effects are due to parallel electron dynamics and first order finite
ion Larmor radius (FLR) effects. Also note that the theory presented here
only gives criteria for the existance of toroidal Alfvén eigenmodes. A driving
mechanism is needed to excite these modes, such as e.g. resonant interaction
between the wave and fast particles.

3.5 Excitation of Alfvénic Modes

The dispersion relation (2.50) has been derived within the framework of ideal
MHD, using a linear approach where all quantities are assumed to consist of
a stationary part and a small perturbation. This results in a real frequency
ω = ωTAE. Fast ions, with vf ≫ vth, where vth is the thermal velocity of the
bulk ions in the plasma, need to be treated using kinetic theory. The result
can then be added to the MHD result, with the fast particles contributing to
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the imaginary part of the linear frequency, which becomes ω = ωTAE+iγL [15].
Since all perturbed quantities vary in time as e−iωt, the fast particles result in
an exponential growth of the wave provided that γL > 0. This also means that
the linear theory is only valid initially.

Free energy is available to drive the mode when the fast particle pressure
is large enough to overcome the total damping by the bulk plasma. For a TAE
mode this is when [16,17]

γL
ωTAE

= −
(

1− ω∗f

ωTAE

)

F

(

vf
vA

)

≥ γd
ωTAE

, (3.42)

where ωTAE is the frequency of the considered mode, γL is the linear growth
rate of the wave caused by the fast particles, ω∗f is the fast particle drift fre-
quency and γd is the total damping rate associated with the bulk plasma. The
function F (vf/vA) depends on the distribution function of the fast particles
in velocity space.

In a tokamak, the fast ions gyrate in circles of radius rL ≃ vf/ωcf . Simulta-
neously, the density profile of the fast particles in a tokamak plasma decreases
with increasing radius which means that there are more particles that gyrate at
smaller radii then at a larger radii. An unbalanced particle flux in the poloidal
direction produces a drift velocity called the diamagnetic drift velocity. The
associated drift frequency is given by [16]

ω∗f = −m
r

v2f
ωcf

1

pf

dpf
dr

(3.43)

where m is the poloidal wave number and ωcf and pf are the cyclotron fre-
quency and the pressure of the fast ions. If ω∗f is larger than the wave fre-
quency, there is an effective inversion of the velocity space distribution function
gradient ∂f/∂v, so that

ω − ω∗f

ω

∂f

∂v
> 0 , (3.44)

which means that the free energy available from the fast ions can drive the
mode.

3.6 Nonlinear Behaviour

Linearized MHD theory, as presented in section (2.3), describes the possible
modes of magnetohydrodynamic oscillations, and the onset (and initial expo-
nential growth) of these in the presence of available free energy, provided by
e.g. super Alfvénic fast particles. However, as the perturbations grow, and
eventually become comparable to the equilibrium quantities, i.e. when e.g.
B1 ∼ B0, the modes evolve into a nonlinear phase and the linearized approach
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in section (2.3) brakes down. At this point, higher order terms need to be
included to accurately describe the wave-particle interaction.

The nonlinear evolution of isolated instabilities was thoroughly analyzed
in [18] and [19] by means of a simple 1D, electrostatic bump-on-tail model.
Note that the highly simplified 1D geometry contains qualitatively the same
physics features as more realistic, fully toroidal models [20]1, although quanti-
tative results may well depend on the actual plasma equilibrium. In principle,
two major regimes were detected: Away from threshold, i.e. when the linear
drive γL from the fast particles by far exceeds the total damping rate γd from
the background plasma, linear perturbations evolve into a quiescent nonlinear
stage characterized by initial saturation of the mode amplitude and formation
of phase space plateaus, followed by a gradual decay of the mode amplitude
and the plateau width [21]. In the so called threshold regime,

0 < γL − γd ≪ γL, γd , (3.45)

on the other hand, there are four possible types of nonlinear evolution, and the
linear perturbations may evolve into either of these depending on the collision
frequency of the fast particles [18]: After the initial exponential growth the
mode amplitude evolves nonlinearly and different evolution regimes can take
place.

i. Saturation of the mode amplitude: If the collisionality is high enough,
the mode amplitude saturates at a level that reflects the closeness to
threshold.

ii. Modulation/pitchfork splitting: At somewhat lower collisionality, the
mode develops closely situated sidebands, whose presence result in a
characteristic splitting of the eigenfrequency.

iii. Spectral broadening: With even less collisions, the amplitude saturates
but oscillates chaotically. The corresponding spectral signal consists of
a broadening of the resonance lines.

iv. Bursting-type mode: With low enough collisionality, the mode develops
highly persistent sidebands with time dependent frequencies and their
own trapping regions in phase space (so called holes and clumps).

3.7 Particle Motion in Waves

Bursting type eigenmodes move radially within the plasma as their frequencies
evolve in time. This motion can be calculated by recognizing that fast particles

1At least for TAEs, as long as the resonances are well separated in phase space and the
frequencies remain close to those of the linear excitations.
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trapped in the wave field move in synch with the mode localization radius. The
particle velocity is represented as v = vgc + vL, see section (2.1.2). For low
frequency Alfvén waves, we will, however, consider only the gyrocenter motion.
This can be motivated by looking at the resonance condition. For fast particles
to be synchronized with the wave, they must satisfy

ω = 〈k · v〉B , (3.46)

where k = k‖ + k⊥, v = v‖ + vD + vL and

〈...〉B =
1

τB

∫ τB

0

(...) dt , (3.47)

defines the bounceaverage. Taking 〈k⊥ · vL〉B ∼ lωc, where l ∈ N, and since
the Alfvén waves has ω ≪ ωc, we must have l = 0. We will therefore only
consider gyrocenter motion and neglect the Larmor motion.

To derive an approximate expression for the radial motion of the wave, we
limit ourselves to well passing particles, with κ2 ≫ 1, in a large aspect ratio
tokamak, ǫ ≪ 1, for which the particle drifts are negligable. The condition
(3.46) for wave-particle resonance becomes then

ω(t) = k‖ v‖ , (3.48)

where ω(t) is the wave frequency, k‖ is given by (3.33) and v‖ is given by
(2.27). We assume that k‖ is a function of radius only through the safety
factor, meaning that all equations will be evaluated at the major radius of the
torus R = R0. Equation (2.27) for the parallel velocity then becomes

v‖ = ±
√

2

m
(W − µB0) . (3.49)

Since µ is an adiabatic invariant, the differentiation with respect to time of
equation (3.48) results in

ω̇ =
dk‖
dr

v‖ṙ +
dv‖
dW

k‖Ẇ =
mS

qR0r
v‖ṙ +

k‖
Mv‖

Ẇ , (3.50)

where S is the magnetic shear, given by (3.40). The Hamiltonian of the system
can be expressed as a sum of kinetic and potential energy. For particles trapped
in the wave, the time rate of change of the potential energy is small, so we can
assume that Ẇ ≈ Ḣ = Ė, where E is the total particle energy. We now wish
to get an expression for Ė in terms of r.

In the absence of wave fields the toroidal angular momentum pζ is a con-
stant of motion due to axisymmetry. In the presence of an external wave field,
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depending on ζ, the axisymmetry will be broken and pζ and E are no longer
constants of motion. However, it can be shown that

ṗζ −
n

ω
Ė = 0 , (3.51)

holds. In a tokamak the potential φ is given by (3.29). In the presence of a
wave the Lagrangian becomes

L = Lunp + Lpert , (3.52)

where Lunp is the unperturbed Lagrangian for a single charged particle (3.8)
and Lpert is the perturbed Lagrangian due to the wave. In the expression
(3.29) for the electrostatic potential φ the only dependence on ζ and t is
in the propagation factor meaning that in the perturbed Lagrangian these
dependences appear only in that form, so

∂Lpert

∂ζ
= −n

ω

∂Lpert

∂t
. (3.53)

The generalized momentum is given by (3.14) and using the Hamiltonian

H = pir
i − L , (3.54)

one obtains that the time derivative of energy is

dE

dt
= −∂L

∂t
. (3.55)

Furthermore,
dE

dt
= {E,H}+ ∂E

∂t
=
∂E

∂t
, (3.56)

where {·, ·} is the Poisson bracket. We have shown in section (3.2) that

∂Lunp

∂t
= 0 . (3.57)

Consequently
∂Lpert

∂ζ
= −n

ω

∂L
∂t

=
n

ω

dE

dt
, (3.58)

which by using the Euler-Lagrange equation becomes (3.51).
Using also the poloidal magnetic flux (3.2), which in a large aspect tokamak

becomes

ψ ≈
∫

rB0

q
dr , (3.59)

we obtain
∂ψ

∂r
=
rB0

q
. (3.60)
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The toroidal angular momentum (3.16) can be expressed using the poloidal
flux,

pζ ≈MRv‖ − Zeψ , (3.61)

which after the bounce averaging and differentiation with respect to time be-
comes

ψ̇ =
1

Ze

(

M
d

dt

〈

Rv‖
〉

B
− ṗζ

)

. (3.62)

To calculate the bounceaverage we use the θ-component of the gyrocenter
motion (3.17b) to relate t to θ, where we neglect the drifts. For passing particles
we have θ(0) = −π and θ(τB) = π which leads to

〈

Rv‖
〉

B
≈ 2π

qR2
0

τB
. (3.63)

Taking the bounce time as given by (3.25), equation (3.63) becomes

〈

Rv‖
〉

B
≈ R0v‖0 . (3.64)

Inserting (3.51), (3.60) and (3.64) into (3.62) yields the expression for Ė, which
substituted into (3.50) gives the radial drift of the particles as

ṙ

r
= − ω̇

ωc

m

k2‖r
2

(

1− m2S

k3‖r
2qR

ω

ωc

)−1

. (3.65)
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4
Frequency Sweeping TAEs on

MAST

The purpose of this thesis is the analysis of the frequency spectrum in Figure
(4.1), which displays a set of peculiar perturbations observed in discharge 27177
at the spherical tokamak MAST. This discharge consists of a D-D plasma,
heated by two beams of neutral deuterium with average particle energies 69
and 60 keV, respectively, which are injected into the plasma. MAST, see Figure
(1.2), has a minor radius a = 0.5 m and a major radius R0 = 0.7 m. The fact
that the ratio of minor to major radius is large allows it to operate with a high
ratio of particle to magnetic pressure, β ∼ ǫ = a/R0, but also puts a lower limit
on the toroidal magnetic field strength, due to the narrow inner leg. The low
magnetic field strength in turn implies a low Alfvén velocity (2.53). The NBI
injected fast particles, which have a much larger parallel than perpendicular
energy, slow down due to collisions with thermal plasma particles and can fulfil
the resonance condition (3.48). Consequently a mode can be excited when the
parallel velocity of the fast particles matches the Alfvén velocity.

The spectrum in Figure (4.1) was obtained using the so called Mirnov coils,
which measure the magnetic field outside the plasma vessel. The observed
waves have frequencies of about 100 kHz, which is typical for the MHD insta-
bilities in the TAE range at MAST. The perturbations can be detected at the
edge of the plasma even when the amplitude is small. This is because the kHz
range frequency leads to timescales much shorter then typical timescales for a
change in the equilibrium magnetic field. The resulting electromagnetic fields
induced in the Mirnov coils are then transformed to a frequency spectrum by
means of the Fast Fourier Transform. Note that the TAEs are observed to
evolve into bursting type modes, but the associated frequency sweeping has a
preferred direction that changes in time. In this thesis we identify the TAEs

33
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which evolve into the nonlinear bursting modes in Figure (4.1) and propose
a possible mechanism behind the change in preferred direction which will be
investigated further in a subsequent project.

Figure 4.1: Frequency spectrum for discharge 27177 at MAST, measured by
Mirnov coils at the plasma edge.

4.1 Method of Analysis

To identify the modes and later be able to describe the mechanism behind
the continuous change of the preferred direction of the frequency sweeping
in Figure (4.1), we use a combination of numerical modeling and analytical
estimates. In this section, we present tools and expressions used to clarify the
observed behaviour of the TAEs.

4.1.1 Mode Identification

To investigate the linear instabilities leading to the bursting nonlinear be-
haviour observed in Figure (4.1), one has to perform numerical modeling, with
toroidal, elliptic and triangularity effects taken properly into account, as well
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as a finite β and ǫ. The following three MHD codes have been used in the
analysis:

i. HELENA: A Fortran 77 code that solves the Grad-Shafranov equation
(3.7) for axisymmetric toroidal plasma equilibria, given inputs such as
poloidal current flux, magnetic fields, etc. , as measured by diagnostic
instruments at MAST. HELENA creates an output file that contains all
relevant information about the instantaneous equilibrium, e.g. profiles
for the MHD pressure and the safety factor and the Jacobian for a flux-
type, straight field line coordinate system. This output file is needed for
further modeling of the linear instabilities.

ii. CSCAS: A code that calculates the Alfvén continuum for a given plasma
equilibrium. The input for CSCAS is the output file generated by HE-
LENA.

iii. MISHKA: A code used to find eigenmodes of the linearized MHD equa-
tions (2.39). The code is designed to take as input the HELENA output
file, described above, and a first guess for the eigenmode normalized
frequency:

λ =
γR0

vA(0)
, (4.1)

where γ = iω, ω is the frequency of the mode and vA(0) is the Alfvén
velocity (2.53) at the magnetic axis. The code then iterates and closes
in on the nearest solution, which may be either a true eigenmode or the
logaritmically singular continuum.

Note that CSCAS utilizes MISHKA to calculate the Alfvén continuum, by
looking specifically for logarithmically singular solutions, satisfying the con-
tinuum condition ω2 = ω2

A(r).

4.1.2 Description of Preferred Sweeping Directivity

The linear modes, which will be identified by the three MHD codes described
in the previous section, are seen to quickly evolve into the bursting nonlin-
ear regime (cf. Figure (4.1)). During the subsequent frequency sweeping, the
modes are conveyed radially inside the plasma. To obtain a lowest order esti-
mate of the radial transport, one may utilize that the trapped resonant parti-
cles are locked in the wave field of the mode. Hence the modes move in synch
with the trapped particles, as their nonlinear frequencies evolve according to
equation (3.65). The hypothesis is then made that the preferential direction of
the frequency sweeping is such that the corresponding radial motion transports
the mode towards higher values of the linear growth rate (3.42).
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4.2 Results

First, HELENA, was run successfully, using inputs obtained from diagnostic
instruments at the times t = 144 ms and t = 158 ms. (See Figs. (4.2) and
(4.3) for examples of the safety factor profile and magnetic flux surfaces).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

Normalized minor radius, r/a

q(
r)

 

 
t = 144ms
t = 158ms

Figure 4.2: Safety factor profiles in discharge 27177, as calculated by the
MHD equilibrium code HELENA.

Next, the Alfvén continuum was calculated at both times by means of
CSCAS, in order to obtain an overview picture and provide first guesses of
the eigenmode frequencies. The resulting plots are presented in Figure (4.4).
Finally, the modes were identified as n = 1, global TAEs, with normalized
frequencies λ = 0.147i at time t = 144 ms and λ = 0.125i at t = 158 ms, using
MISKA. The normalized outputs from MISHKA were transformed to proper
frequencies using the line averaged number density presented in Figure (4.5)
and assuming a density profile of the form

ne = n0

(

1− r2

a2

)

, (4.2)

where n0 is the density at the magnetic axis. According to equation (4.1) the
frequencies are ω = 130 kHz at t = 144 ms and ω = 100 kHz at t = 158
ms. Note that, the plasma rotation due to the injected fast particles gives
rise to a Doppler shift and the difference at MAST is 10 − 20 kHz between
the measured frequencies from the Mirnov coils (cf. Figure (4.1)) and the
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Figure 4.3: Magnetic flux surfaces at time t = 144 ms, as calculated by the
MHD equilibrium code HELENA.

numerically calculated frequencies. Plots of the corresponding radial structures
for the n = 1 TAEs are shown in Figure (4.6). Note that a zero reflection
boundary condition was set at r/a = 0.8 in these runs in order to avoid a
continuum resonance close to the plasma edge. Also note that the maximum
amplitude of the global TAE in Figure (4.6) is at a larger radii at t = 158 ms
then at t = 144 ms.

The nonlinear modes corresponding to the modes in Figure (4.6) evolve in
time. The direction of the radial drift can be deduced using equation (3.65).
We define the function f(r) as

f(r) =
m2S

R0k3‖r
2q

ω

ωc

, (4.3)

and the maximum of (f) is presented in Figure (4.7). Consequently, the di-
rection of the radial drift is determined by the numerator in equation (3.65),
since according to Figure (4.7) the denominator is approximately one through-
out MAST.
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Figure 4.4: Alfvén continuum for n = 1 at time t = 144 ms (left) and t = 158
ms (right). The radial coordinate s =

√

ψ/ψedge is the normalized poloidal
flux and λ is the normalized frequency given by equation (4.1).

Figure 4.5: Line averaged number density for electrons (left), magnetic field
(right top) and major radius (right bottom) at the magnetic axis.

Using values obtained from diagnostics at MAST at the time t = 144
ms we can calculate the Alfvén continuum in the cylindical limit, see Figure
(4.8). Comparison with the eigenmode spectrum obtained from CSCAS, (cf.
Figure (4.4)), leads us to the conclusion that the TAEs in Figure (4.6) con-
sist of the poloidal mode numbers m = 2 and m = 3, which is confirmed
by MISHKA. According to equation (3.65), the radial motion of upsweeping
modes is then towards larger radii, while downsweeping nonlinear modes move
towards smaller radii.

4.3 Conclusion and Discussion

The aim of this thesis has been to investigate the curious frequency sweeping
exhibited in the spectrum presented in Figure (4.1), whose preferred directivity
changes during the discharge. First, the equilibrium code HELENA was used
to recreate the equilibrium conditions in MAST during the observation of the
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Figure 4.6: Radial structure for n = 1 eigenmodes at time t = 144 ms
(left) and t = 158ms (right). The amplitude of V1 ≡ sVr , where Vr is the
radial component of the perturbed velocity, is shown as a function of the radial
variable s =

√

ψ/ψedge.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

Normalized minor radius r/a

f(
r)

 

 
t=144ms, m=2
t=158ms, m=2

Figure 4.7: The maximum of f(r) as given by equation (4.3).

modes. Then, using the linear codes CSCAS and MISHKA, we were able to
show that there is an n = 1 eigenmode in the system with frequency ω = 130
kHz at t = 144 ms and frequency ω = 100 kHz at t = 158 ms. According
to the theory of Section (3.5), this mode can be excited by the presence of
energetic particles in the plasma, with a consecutive exponential growth of the
linear perturbations when the linear growth rate due to the fast particles, γL,
is slightly larger then the total damping in the plasma, γd. Nonlinear theory
is then needed to describe the evolution of the modes which are observed to
sweep in frequency (cf. Figure (4.1)) and thus correspond to the bursting
modes.

The linear rate at which the wave amplitude initially increases due to the
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Figure 4.8: Crude estimate of the Alfvén continuum for n = 1 in the cylin-
drical limit, calculated using values obtained from diagnostics at MAST.

wave particle interaction is given by equation (3.42), and depends on the radial
coordinate through the fast ion pressure profile. The original intention was to
verify that during the considered time interval, (3.42) has a maximum close to,
and between, the two linear mode excitation points at times t = 144 ms and
t = 158 ms, respectively. If so, depending on whether the frequency sweeping
corresponds to a movement towards or away from the maximum, the preferred
sweeping directivity would be explained as mode amplitude enhancement or
suppression due to increasing/decreasing γL. However, our investigation is not
fully satisfactory for two reasons:

i. According to equation (3.65), there exist a radial motion of the modes as
they sweep in frequency. Assuming a peaked γL with maximum between
the mode excitation points, however, equation (3.65) suggests that the
modes move in the ”wrong” direction.

ii. We have not been able to verify that γL has a radial maximum between
the mode excitation points, mainly because the measurements of the fast
ion pressure profile were not readily avaiable from the MAST diagnostics.
Furthermore, modeling of the fast ion profile by using the numerical code
TRANSP would be too time consuming to be a part of this thesis.

Important to note, however, is that the assumptions behind the expression for
the radial drift (3.65), are too crude to strictly apply to the MAST plasmas. In
particular, ǫ≪ 1 and β ≪ 1 do not hold, and neither does the assumption that
the fast ions do not deviate from the flux surfaces (in fact, NBI ions on MAST
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have huge orbit widths, comparable to the minor radius). We thus conclude
that equation (3.65) can not be used to investigate the sign or magnitude of
the radial drift, but should be interpreted rather as an evidence that there
exists a radial drift corresponding to the frequency sweeping. Hence, equation
(3.65) constitues motivation to perform a more accurate, numerical work on
the radial mode motion, which would quite likely reverse the predicted drift.

The linear MHD simulations revealed that the mode structure of the n = 1
mode on MAST is extremely global, see Figure (4.6), extending more or less
from r = 0 to r = a. This has several implications: At first, it may appear as
a show stopper, since the mode actually covers a large fraction of the tokamak
cross section, and thus the entire normalized fast particle pressure gradient
curve. However, it is natural to assume (as a first approximation) that the
overall linear growth rate derives from the TAE gap surface, where the mode
amplitude is maximum. This view, albeit another crude assumption made in
order to simplify the analysis, is supported by the observation that a major
part of the mode energy is concentrated close to the gap surface [14], in the
so called inner layer. The global extension of the mode also means that it
interacts with the fast particles during the entire poloidal revolution, even
though the trajectories of NBI injected energetic particles at MAST deviate
significantely from the magnetic flux surfaces.

The calculated frequencies for the TAEs match those in the frequency spec-
trum in Figure (4.1) very well when the Doppler shift is taken into account.
When calculating the frequencies we used the line averaged number density for
electrons, as given in Figure (4.5), which due to quasi-neutrality is the same as
that for the deuterium ions. We also used the magnetic field strength at the
magnetic axis and the location of the magnetic axis as given in Figure (4.5).
Note that a dip is observed in all these plots (it is most pronounced in Figure
4.5) at time t = 144 ms, i.e. one of the two distinct times we are considering.
This could be an indication that something happens that we do not consider
in this model, and that may even be the reason for the change in frequency
sweeping directivity. More likely, though, the dips are due to low frequency
MHD activity which should not affect the TAE nonlinear mode evolution: As
can be seen in the plot of the location of the geometric axis, the plasma moves
first toward smaller radii and then toward larger radii as a response to the dip
in electron density, which is very reminiscent of the m = 1 MHD instabilities.
Obviously, these matters are interesting on their own, and should be investi-
gated further to provide certain answers. Ideally for our purposes, though, a
shot without this behaviour should be used to investigate the change in pre-
ferred frequency directivity. However, if one uses this shot it would be better
to consider a later time than t = 144 ms (since that time is at the discontinuity
of the line averaged number density), or simply show that the discontinuity
does not affect the TAE sweeping.
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What is left to be done in order to thoroughly investigate this behaviour
is: First of all, the fast ion pressure profile needs to be modeled in order to
obtain the shape of the linear growth rate at the considered time slices. For all
we know, the frequency sweeping modes could in principle distort the shape
of the linear growth rate and therefore affect the ensuing frequency sweeping.
Second, more accurate, numerical work needs to be performed in order to
determine the actual radial motion of the mode as its frequency sweeps. This
is a formidable task on its own, which requires sophisticated modeling of the
fast ion trajectories under the influence of a frequency sweeping wave. Finally,
the proposed mechanism should be verified by full nonlinear simulations of the
wave-particle interaction in a realistic geometry, using i.e. the numerical code
HAGIS.
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