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A Constraint Programming Approach to Finding Stable Matchings within Airline
Manpower Planning

JAKOB JARMAR
FABIAN SÖRENSSON
Department of Computer Science & Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
The objective of airline manpower planning is to have the right number of pilots
with the right qualifications at the right time. To accomplish this, one has to solve
the subproblem of assigning pilots to promotion courses such that pilots’ seniority
ranks and preferences are taken into account: no senior pilot should be able to find
a junior pilot with a promotion that the senior pilot would have preferred. We call
this subproblem the airline promotion assignment problem (APA). The objective of
this thesis is to develop an efficient model for APA.

We show how APA can be modelled as a stable matching problem, and more
specifically how it can be formulated as an instance of the hospitals/residents prob-
lem with ties and forbidden pairs. A constraint satisfaction problem model for APA
is presented, which we have implemented in a constraint programming system. We
also present a model for an extension to APA, which we call the airline promo-
tion assignment problem with detailed preferences (APA-D), and which involves
additional rules used within a specific airline. We show results from running our
constraint programming implementation on different types of test data derived from
real airline data. The thesis is concluded with a discussion of our work and some
remarks on how the problem could be modelled and solved differently.

Keywords: stable matching, hospitals/residents problem, stable marriage problem,
constraint satisfaction, constraint programming, airlines, manpower planning
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1
Introduction

The airline industry, with its large operational scale, multiple cost factors such as fuel
and personnel, and many planning problems, is an interesting context for applying
optimization methods. As such, the industry has attracted much attention from the
operations research community [63]. In 2015, SAS employed over 11 000 people, had
more than 800 departures daily and over 150 aircraft in service [50]. With SAS just
being a mid-sized airline, it is easy to see how crucial optimization can be to stay
competitive.

One planning problem in the airline industry relates to manpower planning: the
airline manpower problem involves predicting the supply and demand of pilots and
then closing the gap between the two [24]. This is achieved by planning for example
hiring, transitioning, vacation times and training times. The airline manpower prob-
lem has been the subject of some prior research. Yu, Dugan, and Argüello [64] have
written one of the first papers to thoroughly analyze the problem, and they present
a decision support system which uses specialized heuristics to help find optimized
solutions. Other solution methods, such as integer programming [46, 65, 54] and
stochastic algorithms [54], have been proposed and utilized. Different methods are
typically used for different subproblems in the larger planning problem.

Central to airline manpower planning is a promotion bidding system often em-
ployed by airlines: pilots are allowed to list promotions by preference, and who is
assigned which promotion is primarily based on pilot seniority [46]. Due to union
rules, a senior pilot must never be able to find a junior pilot with a promotion that
the senior pilot would have preferred [56]. In order to get a promotion, a pilot must
take a training course. We call the subproblem of assigning pilots to promotion
training courses according to their bid preferences and seniority rankings the airline
promotion assignment problem (APA), which is the focus of this thesis.

The objective of this thesis is to develop an efficient model for APA. We approach
APA by showing how the problem can be naturally described as a stable matching
problem: more specifically as an instance of the hospitals/residents problem with
ties and forbidden pairs (HRTF). We are to our knowledge the first to make this
connection between airline manpower planning and stable matching problems. By
mapping APA to HRTF, we have been able to utilize the existing body of research in
stable matching problems. Mainly taking inspiration from [44], we formulate APA
as a constraint satisfaction problem (CSP), and use constraint programming (CP)
to solve it.
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1. Introduction

1.1 Jeppesen
This master’s thesis has been conducted at Jeppesen, which has provided us with this
problem, a supervisor and a workplace, as well as necessary software and hardware.
Jeppesen is a subsidiary of The Boeing Company, and specializes in aviation infor-
mation systems, with customers including Delta Airlines, Lufthansa, Qatar Airways
and SAS. Their Gothenburg office, with around 300 employees, focuses on planning,
scheduling and optimization software.

Multiple master’s theses dealing with pilot transitioning have been conducted
at Jeppesen prior to this thesis. Holm’s thesis from 2008 deals with a number of
subproblems within airline manpower planning, and includes mathematical models
for the different problems, one of which is the problem of planning training and va-
cation for pilots [24]. This problem includes ensuring that the demands for different
positions are met, and thus planning for when pilots should take courses in order to
be promoted. Holm used a mixed integer programming solver to solve the problem.
Her model, however, does not deal with whether pilots should transition, only when
they should do so. The theses of Thalén [56] and Morén [41] deal with the larger
staffing and transitioning problem, and their solutions use tabu search and branch
and bound methods respectively.

Jeppesen has a commercially available solver under continuous improvement for
the airline manpower problem, which uses a combination of heuristics and mathe-
matical programming to find good plans. The objective of this thesis is to develop
a model for APA, and since APA is a subproblem of the larger airline manpower
problem, such a model could be effectively used as a subroutine within a larger
manpower planner.

1.2 Outline
In Chapter 2, we explain the necessary background in stable matching problems
and constraint programming needed to understand how we model and solve APA.
In Chapter 3, a comprehensive description of APA is presented, together with a
mapping of the problem to an instance of HRTF. Also explained is an extension
to APA which we call APA-D, and which comprises additional rules for a specific
airline. Chapter 4 contains our constraint satisfaction problem (CSP) models for
APA and APA-D, with proofs of correctness, and a short description of the model
software we have implemented, including a pre-processing step. In Chapter 5, we
present test data derived from some different airlines, and performance results for
our model on these data sets. Finally, the thesis is concluded in Chapter 6 with a
discussion of our solution methods and results, and some suggestions for possible
future work.
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2
Background

This chapter describes the necessary theoretical background to understand how we
model and solve the airline promotion assignment problem (APA). In Section 2.1,
we present variations of stable matching problems, including solution methods. We
model APA as a constraint satisfaction problem (CSP) and solve it using constraint
programming (CP); thus, in Section 2.2, we describe how CSPs can be modelled
and what solution methods are typically used by CP solvers.

2.1 Stable matchings
In this section, we present the stable marriage problem (SM) as well as the hos-
pitals/residents problem (HR), and variations of these problems that are relevant
to this thesis. Also presented are solution methods for the computationally harder
variants of SM and HR.

In their seminal paper from 1962, Gale and Shapley present two stable matching
problems: the well-known and well-studied SM, and the more general HR (under the
name college admissions problem), along with polynomial-time algorithms to solve
both [16]. In short, HR considers a set of hospitals, each with a maximal quota
of residents (medicine student interns), and a set of applicants seeking residency
at the hospitals. Hospitals rank applicants by preference, omitting only those they
would not accept under any circumstances, and applicants similarly rank acceptable
hospitals by preference. The goal is to assign residents to hospitals in such a manner
that the assignment is stable:

Definitions
A matching of residents to hospitals is stable if there is no resident r and
hospital H, such that:

• either r is unassigned and finds H acceptable
• or r is assigned to another hospital but prefers H

and

• either H still has unfilled positions and finds r acceptable
• or H prefers r to its least preferred assigned applicant.

If such a pair 〈r, H〉 exists, we call it a blocking pair.

3



2. Background

r1 H1 H2
r2 H2 H1
r3 H1 H2

H1 r1 r2 r3
H2 r1 r3 r2

quota(H1) = 2, quota(H2) = 1

Example instance of HR. On the left hand side are the residents and the hospi-
tals, on the right hand side are their respective preference lists. Hospital quotas
are also given. All preference lists are complete in this example, although this
is not a requirement in HR.

r1 H1 H2
r2 H2 H1
r3 H1 H2

H1 r1 r2 r3
H2 r1 r3 r2

(a) Stable assignment.

r1 H1 H2
r2 H2 H1
r3 H1 H2

H1 r1 r2 r3
H2 r1 r3 r2

(b) Stable assignment.

r1 H1 H2

r2 H2 H1
r3 H1 H2

H1 r1 r2 r3

H2 r1 r3 r2

(c) Unstable assignment.

Figure 2.1: Example instance of the hospitals/residents problem (HR), along with
all possible complete assignments. Assignment (a) and (b) constitute legal solutions;
however, assignment (c) contains the blocking pair 〈r1, H1〉 and is thus unstable.

Figure 2.1 shows an example of a HR instance and all its possible complete
assignments: two stable assignments (a) and (b) and an unstable assignment (c).
Assignment (a) is optimal for the residents: they are assigned as good hospitals as
they can get, which in this case are their most preferred hospitals. It is easy to see
that this assignment is stable, since all residents get their most preferred option.
Assignment (b) is optimal for the hospitals: they are assigned as good residents as
they can get. Hospital H2 did not get its most preferred resident r1; no legal solution
would allow this assignment, since r1 and H1 top each other’s preference list. In
assignment (c), r1 and H2 are assigned to each other: this makes 〈r1, H1〉 a blocking
pair, since r1 prefers H1 over H2 and H1 prefers r1 to its least preferred assigned
resident r3. Thus, assignment (c) is not stable.

The stable marriage problem (SM), while typically formulated in terms of men
and women, is the special-case where all hospital quotas are equal to 1, and where
all preference lists are complete [16]. The variation of SM where preference lists may
be incomplete is known as the stable marriage problem with incomplete lists [17,
39]. It is worth noting that any instance of HR can be formulated as an instance of
SM with incomplete lists using a technique called cloning [42].

4



2. Background

HR was studied further by Roth in a paper from 1984 [48]. He analyzed the
method used in the National Resident Matching Program, which matches American
residents to hospitals, and showed that the algorithm used was equivalent to the one
provided by Gale and Shapley for HR—despite being developed more than 10 years
prior to the publication of Gale’s and Shapley’s paper. This is when the problem
got the name hospitals/residents problem. Later, in 2012, Gale and Roth received
The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel for
their work on stable matchings [7].

r1 (H1 H2) H3
r2 H1 (H2 H3)
r3 H3

H1 r1 r2
H2 r2 r1
H3 r1 (r2 r3)

quota(H1) = 1, quota(H2) = 1 quota(H3) = 1

Example instance of HR with ties. See Figure 2.1 for a syntax explanation.
Hospitals and residents within parentheses in the preference lists are tied.

r1 (H1 H2) H3
r2 H1 (H2 H3)
r3 H3

H1 r1 r2
H2 r2 r1
H3 r1 (r2 r3)
(a) Stable, maximum

assignment.

r1 (H1 H2) H3
r2 H1 (H2 H3)
r3 H3

H1 r1 r2
H2 r2 r1
H3 r1 (r2 r3)
(b) Stable, maximum

assignment.

r1 (H1 H2) H3
r2 H1 (H2 H3)
r3 H3

H1 r1 r2
H2 r2 r1
H3 r1 (r2 r3)
(c) Stable assignment.

Figure 2.2: Example instance of HR with ties, and some possible assignments. All
given assignments are stable. However, assignment (c) is smaller than (a) and (b).
With ties in preference lists, solutions may be of varying sizes.

2.1.1 Variations on stable matching problems
Further variations of SM and HR include SM with ties and incomplete lists [30] and
HR with ties [29]. These variations do not require preferences to be strictly ordered:
ties are allowed in the preference lists. SM with ties (and complete lists) has also
been studied, and a polynomial time algorithm for it is presented in [18]; however,
when both ties and incomplete lists are allowed, the problems become harder: stable
matchings may be of varying sizes, and it has been proven that the problem of finding

5



2. Background

a minimum or maximum cardinality solution for SM with ties and incomplete lists
or HR with ties is NP-hard [30, 29]. This is true even for restricted variants, such
as when ties are one-sided [39].

With ties in preference lists, one can have different definitions of stability. Weak
stability is similar to the previously defined notion of stability, and requires both
parties in a blocking pair to strictly prefer each other to their assignments. Strong
stability requires only one party to strictly prefer the other, while the second party
may be indifferent to the first party compared to its assignment. Super-strong stabil-
ity allows blocking pairs to form even when both parties are indifferent to each other
compared to their assignments (“the grass is always greener on the other side...”)
[27]. For this thesis, we are only interested in weak stability, and will hence refer to
it simply as stability in the remainder of the report.

An example instance of HR with ties together with some solution assignments
to the example are given in Figure 2.2. Both assignment (a) and (b) are maximum
cardinality solutions, since no larger assignments are possible. Note however that
assignment (c) lacks assignments for resident r3 and hospital H2; still, the assignment
is stable, since there are no blocking pairs. Ties and incomplete lists make this a
possibility: had r2 not been indifferent to H2 and H3, or if r3 had considered hospital
H2, then assignment (c) would not have been possible.

Dias et al. [13] introduced the concepts of forced and forbidden pairs to SM. In
these variants, some pairs of men and women either must be in the final solution,
or cannot be in the final solution—but the solution must still be stable with regard
to these pairs. In other words, the participants of a forced couple may still be part
of other blocking pairs, and a forbidden couple may also form a blocking pair. For
this thesis, the concept of forbidden pairs is of special interest.

An example instance of HR with forbidden pairs, and its possible assignments, is
given in Figure 2.3. The resident-optimal assignment (a) is stable and is therefore a
legal solution; however, assignment (b) is not stable, since 〈r1, H2〉 makes a blocking
pair. According to preference lists, the two would prefer to be assigned to each
other, but because the pair is also forbidden, the assignment is illegal.

2.1.2 Solution methods for stable matching problems
For the basic versions of SM and HR, Gale and Shapley provide a polynomial-time
algorithm, which produces an assignment of residents to hospitals that is not only
stable, but also optimal for the residents: every resident is at least as well off as
under any other stable assignment. The Gale-Shapley algorithm is a simple greedy
algorithm: all unassigned residents apply to their most preferred hospitals, and hos-
pitals temporarily take in their most preferred residents among the applying ones,
such that the hospital quotas are not exceeded. If a resident is not assigned to
the hospital he/she applies to, that hospital is removed from the resident’s pref-
erence list. This process is repeated until all residents are assigned to a hospital,
or all hospital quotas are filled up. The Gale-Shapley algorithm has a time com-
plexity of O(nm), where n is the number of men/residents and m is the number of
women/hospitals [16].

Simple polynomial-time variations of the Gale-Shapley algorithm have been pre-

6



2. Background

r1 H1 ��H2
r2 H2 H1

H1 r2 r1
H2 ��r1 r2

quota(H1) = 1, quota(H2) = 1, forbidden pairs: 〈r1, H2〉

Example instance of HR with forbidden pairs. See Figure 2.1 for a syntax
explanation. Forbidden pairs are crossed out.

r1 H1 ��H2
r2 H2 H1

H1 r2 r1
H2 ��r1 r2

(a) Stable assignment.

r1 H1 ��H2

r2 H2 H1

H1 r2 r1

H2 ��r1 r2

(b) Unstable assignment.

Figure 2.3: Example instance of HR with forbidden pairs, and its possible assign-
ments. Both assignments follow preference lists correctly. However, in the unstable
assignment, 〈r1, H2〉 constitutes a blocking pair, since they would prefer to be as-
signed to each other over being unassigned. Since 〈r1, H2〉 is a forbidden pair, they
cannot be assigned to each other.

sented for both SM with incomplete lists [17] and SM with ties [18]. When both
ties and incomplete lists are allowed, however, the situation is different; due to the
NP-hardness of finding maximum cardinality solutions for these problems, another
approach must be taken. Below, we list some solution methods for these harder
variants of SM and HR.

A number of polynomial-time approximation algorithms have been proposed for
SM with ties and incomplete lists. The simplest one, which has been shown to
yield a 2-approximation to the maximum cardinality problem, consists of arbitrarily
breaking all ties and then using the standard Gale-Shapley algorithm [39]. The
best solution today uses a modification of the Gale-Shapley algorithm, and gives
a 3/2-approximation for the general maximum cardinality problem [33]. There are
however algorithms that yield even better approximations for special instances of the
problem. One such example is the 22/15-approximation algorithm for SM with one-
sided ties and incomplete lists, which also uses a modification of the Gale-Shapley
algorithm, and which is presented in [25].

Specialized heuristics for HR with one-sided ties (on the hospital side) and incom-
plete lists have also been devised. By employing the Gale-Shapley algorithm, but
doing more sophisticated tie-breaking than arbitrary, good results can be achieved.
Two examples of such algorithms, and an empirical study of their use on both real
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and generated data, can be found in [28].
There are many general approaches to solving combinatorial problems. Ap-

proaches that have been studied and used for SM with ties and incomplete lists
and HR with ties include integer programming [35], SAT [22], and answer set pro-
gramming [10]. Local search methods have also been employed to solve SM with ties
and incomplete lists [19]. A method using adaptive search has been shown to be very
effective in finding solutions efficiently [43]. While local search heuristics typically
use randomization, the methods used have experimentally been shown to almost
always find maximum solutions when used on generated data [19, 43]. The adaptive
search method has also been shown to work particularly well with parallelization,
and has been extended to solving HR with ties [42].

One of the more well-studied solution methods for different variants of SM and
HR is constraint programming (CP). CP allows for intuitive modelling of problems
that can be expressed as a set of variables and a set of constraints (see Section 2.2
below), and the stable matching community has shown growing interest in CP solu-
tion methods [37]. Various CP models and encodings for different stable matching
variants have been proposed, such as for SM with and without incomplete lists [21],
SM with ties and incomplete lists [20], HR [38], HR with ties [44] and HR with
forced and forbidden pairs [53]. Encodings based on binary constraints as well as
specialised constraints have been considered [38, 58].

2.2 Constraint programming
Constraint programming (CP) is a declarative programming paradigm where a pro-
gram is stated as a constraint satisfaction problem (CSP) [1]. CSP is a general type
of problem formulated as a set of variables with corresponding domains, and a set
of constraints on these variables. A solution to a CSP is an instantiation of the
variables such that all constraints are satisfied [47].

A more mathematical definition, adapted from [47], follows.

Definitions
A CSP is defined by a triple P = 〈X, D, C〉, where:

• X is an n-tuple of variables X = 〈x1, ..., xn〉,
• D is an n-tuple of corresponding domain sets D = 〈dom(x1), ..., dom(xn)〉,

such that xi ∈ dom(xi), and
• C is a t-tuple of constraints C = 〈C1, ..., Ct〉.

Each constraint Cj is a pair 〈RSj
, Sj〉, where:

• Sj is a scope, a set containing a subset of the variables in X, and
• RSj

is a relation on the variables in the scope Sj.

8



2. Background

Thus, RSj
is a subset of the Cartesian product of the domains of the variables in

Sj. With this formulation, a solution to P is an n-tuple A = 〈a1, ..., an〉, where
ai ∈ dom(xi) and each constraint Cj ∈ C is satisfied, meaning that relation RSj

holds on the projection of A on Sj.

In subsequent formulations of CSPs, we do not define all these sets explicitly, and
we write constraints simply as relations, with scopes implicit.

With this broad definition, many tasks can be formulated as CSPs [34]. When
formulated in a CP language or framework, the problem can be solved—or deemed
unsolvable—by a general CP solver. Thus, in CP, the developer’s focus is typically
put on problem modelling, rather than finding a solution method. A relevant quote:

Constraint programming represents one of the closest approaches com-
puter science has yet made to the Holy Grail of programming: the user
states the problem, the computer solves it. (Freuder, [15])

One of the earliest systems to utilize a CSP formulation is the ground-breaking
Sketchpad system, presented by Sutherland in [55]. Sketchpad uses constraints to
reason about geometric objects, and a specialized constraint solver to ensure the
geometrical correctness of images. Since then, CSP has become more formalized,
and much has been written about CSP properties such as local consistency and the
related constraint propagation methods [36] (more on this in Section 2.2.2).

In this section, we will describe different aspects of CP. First, we will give a
typical example of a CSP. Then, we will describe the general solution methods used
by CP solvers, and delve further into modelling concerns. Finally, we will give a
quick overview of the systems used by today’s CP community.

2.2.1 Constraint satisfaction problem example
A simple example of a problem that naturally can be formulated as a CSP is the
map-coloring problem. The map-coloring problem is a well-known combinatorial
puzzle, which asks the question: given a map and a finite set of colors, can the
regions of the map be colored, such that no two adjacent regions have the same
color? More generally, the problem is often called the graph-coloring problem, and
the general graph-coloring problem is known to be NP-complete [32].

Let’s look at an instance of the map-coloring problem. In Figure 2.4a, we see a
map of New England, which should be colored with the colors red, green and blue.
To make this problem instance more interesting, we have added two additional re-
quirements: Maine should not be colored green, and Massachusetts must be colored
red. We formulate this problem instance as a CSP. First, the variables with their
common domain:

ME,NH,VT,MA,CT,RI ∈ {red, green, blue}

In the problem, neighboring regions are not allowed to be of the same color. We
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ME

NH

VT

MA

RICT

(a) A map depicting the states of New
England. (ME is Maine, NH is New
Hampshire, VT is Vermont, MA is Mas-
sachusetts, CT is Connecticut and RI is
Rhode Island.)

MA

VT

NH

ME

CT RI

6=
6=6=

6=

6=
6=

6=

(b) A multigraph representation of
the corresponding map-coloring prob-
lem. Nodes are variables and edges are
binary constraints.

Figure 2.4: An instance of the map-coloring problem for the states of New England.

formulate this as a list of inequality constraints:

ME 6= NH
NH 6= VT
NH 6= MA
VT 6= MA
MA 6= CT
MA 6= RI
CT 6= RI

Also, as stated above, Maine should not be colored green, and Massachusetts
must be colored red:

ME 6= green
MA = red

From this formulation, a CP solver would be able to find a solution using general

10



2. Background

techniques. An example of a solution is:

ME = red
NH = green
VT = blue
MA = red
CT = green
RI = blue

2.2.2 Solution techniques
The two most common methods for solving CSPs are search and constraint prop-
agation [1]. While they can be used by themselves, the most typical approach is
to use both methods together. In short, this approach uses constraint propaga-
tion to reduce the variable domains by removing values inconsistent with the given
constraints. One may vary the amount of propagation performed. If the domains
after constraint propagation only contain single values, a solution is found; if any
domain contains multiple values, the problem is decomposed into simpler subprob-
lems, effectively creating a search tree. Both search and constraint propagation are
explained in the upcoming subsections.

2.2.3 Search
The search method usually employed in CP systems is called backtracking search.
Backtracking search is a form of depth-first search. At each iteration, the domain of
a variable is reduced: either the domain is reduced to a single value (i.e. the variable
is instantiated to that value) or multiple values remain (typically the domain is split
in half). Then, all constraints involving that variable are checked: if any constraint
is violated by the domain reduction, the algorithm backtracks and eliminates that
domain reduction from the search tree [34]. When all variables’ domains are down
to a single value, and no constraints are violated, a solution is found. The method
is complete, meaning it is guaranteed to find a solution if there is one; or if there
is no solution, the method can determine that [47]. This is one of the strengths
of CP, compared to incomplete heuristics. However, the time complexity for the
method is exponential, but by interweaving variable instantiations with constraint
propagation, the run-time can be reduced for many problem instances [34].

One problem that may still occur is thrashing. Thrashing is when the search keeps
failing in different parts of the search tree, but for the same reason. Enforcing local
consistency can reduce the amount of thrashing [34], but another important factor
is the order in which variables are selected for instantiation/domain reduction, and
the order in which values are instantiated/the way the domain is reduced.

Variable orderings and value orderings can be crucial for solving a problem ef-
ficiently [47], and can be selected by the user in many modern CP solvers, such
as Gecode [51] and Google or-tools [26]. Examples of variable ordering heuristics
include using the input order, assigning variables with the smallest domain first, or
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Fixed variables Violated Backtrack
Step Action ME NH VT MA CT RI constraint to step
1 ME := r r
2 NH := r r r ME 6= NH 1
3 NH := g r g
4 VT := r r g r
5 MA := r r g r r VT 6= MA 4
6 MA := g r g r g MA = r 4
7 MA := b r g r b MA = r 3
8 VT := g r g g NH 6= VT 3
9 VT := b r g b
10 MA := r r g b r
11 CT := r r g b r r MA 6= CT 10
12 CT := g r g b r g
13 RI := r r g b r g r MA 6= RI 12
14 RI := g r g b r g g CT 6= RI 12
15 RI := b r g b r g b

Begin search

1: r

2: r 3: g

4: r

5: r 6: g 7: b

8: g 9: b

10: r

11: r 12: g

13: r 14: g 15: b

ME:

NH:

VT:

MA:

CT:

RI:

Figure 2.5: Backtracking search example without constraint propagation. Note
that color values are abbreviated. The levels of the search tree correspond to the vari-
able ordering, and each node indicates which value instantiation was attempted at a
given step. The children of each node follow the value ordering 〈r, g, b〉. Rectangles
represent instantiations which were backtracked from due to constraint violations,
while ellipses represent successful instantiations.
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assigning variables involved in the fewest or most constraints first [47] [52]. Exam-
ples of value ordering heuristics include using the input order, assigning the smallest
value first (only for integers), or splitting the domain in half and trying the lower
values first (also only for integers) [51].

Let’s look at an example of using backtracking search, without constraint prop-
agation, in order to solve the map-coloring problem from Section 2.2.1. We use the
simple input order heuristic as both variable and value ordering, where the vari-
able input order is 〈ME,NH,VT,MA,CT,RI〉, and the value input order for each
variable domain is 〈red, green, blue〉. The steps performed and the corresponding
search tree are shown in Figure 2.5. While this approach works, it can be made
much more efficient by performing constraint propagation before each search step,
which is shown in an example in the next section.

2.2.4 Constraint propagation
Constraint propagation can be described as domain reduction by processing one
constraint at a time. By looking at only one constraint and its involved variables,
one can view this as solving a small part of the problem without worrying about the
rest of the problem, that is, with a local view. The goal of constraint propagation
is to achieve some degree of local consistency, which will be exemplified below.

Constraints may be categorized by their arity (how many variables they affect). A
unary constraint simply restricts the domain of its variable, and a binary constraint
defines a relation between two variables. While n-ary constraints (n > 2) are also
well defined, classic CSP literature [40, 36] focuses on unary and binary constraints,
since they are easier to reason about, and every n-ary constraint may be reduced into
a set of binary constraints if auxiliary variables are introduced [49]. This makes it
possible to visualize a CSP as a multigraph, where nodes represent variables and arcs
represent constraints (possibly multiple between a pair of nodes, if there are multiple
constraints involving that pair). An example of such a graph is given in Figure 2.4b,
which shows the binary constraints of the example problem in the previous section.
From this type of visualization, the terms node-consistency, arc-consistency and
path-consistency—all forms of local consistency—were derived [23].

A CSP instance is node-consistent if all values in each variable’s domain are legal
with regard to all unary constraints. Arc-consistency ensures that each legal value of
any variable has a legal match in any other variable’s domain, with regard to binary
constraints. Path-consistency takes this one step further: for any legal instantiation
of two variables there is a legal instantiation of any third variable [11]. When only
taking into account unary and binary constraints, node-consistency, arc-consistency
and path-consistency may also be called 1-, 2- and 3-consistency, respectively. This
reasoning can be generalized to what is called i-consistency, meaning that any con-
sistent instantiation of i − 1 variables can legally be extended to any other i’th
variable. When a CSP is i-consistent for every i ≤ n, where n is equal to the num-
ber of variables in the problem, the problem is said to be globally consistent, and is
essentially solved [11].

By using constraint propagation to remove inconsistent values from variable do-
mains, the search space of the subsequently used search algorithm can be reduced.
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Higher degrees of consistency remove more values, thus reducing the search space
further. However, there is a trade-off between the level of consistency achieved and
the computational complexity of the algorithm that achieves it [11]. Algorithms
that achieve i-consistency typically have a time and space complexity exponential
in i [11].

Research in the CSP community has mainly been focused on arc-consistency
algorithms, since they yield a good trade-off. A number of algorithms to enforce
arc-consistency have been presented and discussed in the CSP literature. The basic
AC-1, which essentially just uses brute-force to remove inconsistent values, has a time
complexity of O(enk2), where e is the number of binary constraints, n the number
of variables and k the maximum domain size [11]. AC-3, an algorithm utilizing a
priority queue, has a time complexity of O(ek3). AC-4 has a time complexity of
O(ek2), but with a worse best-case performance than both AC-1 and AC-3 [11].
Many later arc-consistency algorithms are based on either AC-3 [6, 14] or AC-4 [3, 5,
2] and these two families of arc-consistency algorithms are often called coarse-grained
and fine-grained, respectively [6].

A modern arc-consistency algorithm, called AC-2001/3.1, is presented in [6].
AC-2001/3.1 is a coarse-grained algorithm with a time-complexity of O(ek2), and is
the algorithm used for user-added constraints in the CP solver Gecode [52]. A state-
of-the-art method for achieving arc-consistency, called Compact-Table, is described
in [12]; this is the method used in the CP solvers Google or-tools [26] and OsCaR
[45].

In addition to letting users define their own constraints, CP solvers provide spe-
cialized constraints with corresponding specialized, and oftentimes very efficient,
propagation algorithms. These constraints are commonly known as global con-
straints, since they may define relations between an arbitrary number of variables.
A commonly used example is the all_different constraint, which defines that a
set of variables all must be pairwise distinct. These global constraints not only make
modelling easier, but often also help make the solving process more efficient [47].

Many CP solvers also make it possible for the user to define their own special-
ized constraints with corresponding propagation algorithms (called propagators). A
propagator for a constraint is defined by what should happen when a variable af-
fected by that constraint has its domain reduced. With specialized propagators, it
is sometimes possible to achieve stronger and more efficient propagation. Examples
of specialized constraints and propagators for HR are given in [38, 58].

Let’s look again at the map-coloring instance from Section 2.2.1 as an example
of performing constraint propagation. Our aim is to make the problem node- and
arc-consistent with regard to all constraints. The steps performed and the variable
domains after each step are shown in Figure 2.6.

After these steps, no more propagation can be performed, and the problem is
arc-consistent. In order to solve the problem, search must be performed. Between
each search step, further propagation might be possible. The process of solving the
problem to completion using both search and propagation is illustrated in Figure 2.7.
The number of search nodes and backtracking steps are considerably lower than in
the example without propagation shown in Figure 2.5, illustrating the need to use
propagation for efficient search.
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Variable domains Propagated
Step ME NH VT MA CT RI constraint
Start {r, g, b} {r, g, b} {r, g, b} {r, g, b} {r, g, b} {r, g, b}
1 {r, b} {r, g, b} {r, g, b} {r, g, b} {r, g, b} {r, g, b} ME 6= g
2 {r, b} {r, g, b} {r, g, b} {r} {r, g, b} {r, g, b} MA = r
3 {r, b} {g, b} {r, g, b} {r} {r, g, b} {r, g, b} NH 6= MA
4 {r, b} {g, b} {g, b} {r} {r, g, b} {r, g, b} VT 6= MA
5 {r, b} {g, b} {g, b} {r} {g, b} {r, g, b} MA 6= CT
6 {r, b} {g, b} {g, b} {r} {g, b} {g, b} MA 6= RI

1. We enforce node-consistency with regard to constraint ME 6= green, thus
removing green from dom(ME).

2. We enforce node-consistency with regard to constraint MA = red, thus
removing green and blue from dom(MA).

3 - 6. We enforce arc-consistency with regard to constraints NH 6= MA, VT 6=
MA, MA 6= CT, MA 6= RI, thus removing red from dom(NH), dom(VT),
dom(CT) and dom(RI).

Figure 2.6: Performing initial constraint propagation on the domains of the map-
coloring example. Note that color values are abbreviated.

Variable domains Propagated
Step Action ME NH VT MA CT RI constraints
Start {r, b} {g, b} {g, b} {r} {g, b} {g, b}
1 ME := r {r} {g, b} {g, b} {r} {g, b} {g, b}
2 NH := g {r} {g} {b} {r} {g, b} {g, b} NH 6= VT
3 CT := g {r} {g} {b} {r} {g} {b} CT 6= RI

Begin search

1: r

2: g

3: g

ME:

NH:

CT:

Figure 2.7: Backtracking search example with constraint propagation. The same
variable and value orderings as in Figure 2.5 are used. The initial propagation is
explained in Figure 2.6. After steps 2 and 3, further propagation is performed.
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2.2.5 Modelling
For a developer interested in solving a combinatorial problem using CP, the main
focus is not on the solving techniques used, but how the problem is modelled as a
CSP.

There may be many different ways to model a problem, and different models may
yield the same solution but vary greatly in efficiency. A common concern is deciding
what should be represented by variables, and what should be represented by val-
ues. In some cases auxiliary variables may be helpful for a good formulation, and
constraints can often be described in different ways [1]. Apt notes that choosing a
representation “requires proper understanding of the underlying alternatives and oc-
casionally some good insights. Even then it is difficult to draw hard conclusions.”[1]
He still proposes some rules of thumb, such as using less variables and not using dis-
junctive constraints. Also recommended is to prefer using global constraints, since
their special constraint propagation algorithms typically are more efficient and yield
better propagation than general consistency algorithms [1]. However, that there are
no hard and fast rules to a good CSP formulation is a shared belief in the research
community:

Sadly, for a method with so many advantages, there is very little we
can say about reformulation because there is no fully general technique
known. [...] There is a wonderful research opening for the discovery of
general techniques [...], moving the area of reformulation from a black
art to a science where questions were on tradeoffs and implementation
issues, rather than the need for magical insights. (Rossi, Van Beek, and
Walsh, [47])

2.2.6 Constraint programming systems
There are a number of different CP systems available. The classic approach to
CP has been to extend the Prolog programming language, with systems such as
CHIP [59], ECLiPSe [61] and SWI-Prolog [62]. Most systems today, however, inter-
face through a programming language library, which provides facilities for creating
variables with respective domains, defining constraints on these variables and find-
ing solutions with a built-in solver. CP systems often feature a number of global
constraints, and the possibility to choose which variable and value orderings to
use. Many CP systems also allow use of MiniZinc, which is a high-level, solver-
independent language for modelling CSPs. MiniZinc compiles into a lower-level
language called FlatZinc, which is used as input for the respective CP solver [8].

A competition for CP solvers, called the MiniZinc Challenge, is held yearly [9].
The aim of the challenge is to compare solvers using the same problem set, which is
defined in MiniZinc. A number of different CP systems, such as Gecode, Opturion
CPX and JaCoP, have performed well in the challenge. In the latest MiniZinc
Challenge (2016), Google or-tools won in the fixed category, in which the solver
must follow a specified search heuristic [9]. Google or-tools is a software suite for
combinatorial optimization developed internally at Google, and which includes a CP
solver. It is implemented in C++, but with interfaces for a variety of programming
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languages. Google or-tools is open-source and free, and released under the permissive
Apache License 2.0 [26].
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Problem

The objective of this thesis is to develop a model for the airline promotion assignment
problem (APA). In this chapter, in Section 3.1, a formal definition of APA is given.
In Section 3.2, we present a mapping from APA to a known stable matching problem,
the hospitals/residents problem with ties and forbidden pairs (HRTF). Finally, in
Section 3.3, we describe an extension to APA, which we call the airline promotion
assignment problem with detailed preferences (APA-D).

3.1 The airline promotion assignment problem
The airline promotion assignment problem (APA) is concerned with assigning pilots
to promotion courses, such that all course demands are met, the pilots’ seniority
ranks and preferences are respected and all assignments are legal. Definitions of
important terms follow:

position A pilot’s position within an airline is determined by factors such as the
pilot’s rank (whether they are a captain or a first officer), qualification (what
types of airplane they are allowed to fly) and home base (where they are
stationed) [46].

promotion A promotion is defined as a transfer to a certain position at a certain
date or date range.

course A course lets a pilot get a promotion. Not every pilot is allowed to take
every course: courses are sometimes only for pilots transitioning from one
certain position to another.

seniority Seniority is in essence a measure of how long a pilot has worked within
an airline. However, it also encompasses other rules regarding precedence.
One example is so-called lock-in periods, meaning that a recently promoted
pilot cannot be promoted to certain positions for a period of time, but might
for example still be eligible for a promotion within the same aircraft type (i.e.
from first officer to captain). Thus, seniority is dependent on the combination
〈pilot, course〉. The seniority rank for each pilot is unique within a course. Not
every pilot must have a seniority rank for every course, since not every pilot
is eligible for every course.

preference Each pilot has a list of all courses they are interested in, ordered by
preference. This list contains a subset of all courses, and may contain ties.
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legality Under certain conditions, a pilot may have a course on their preference
list, and a seniority rank for that course, but is still not allowed to take that
course. We then refer to that assignment as illegal (see example below).

demand Each course has a demand that must be met, that is, the number of pilots
that must be assigned to that course.

Due to union rules, when two pilots are interested in the same promotion, the
company has to pick the more senior pilot [56]. This gives us an important constraint
on our solution, which we will call the seniority criterion: for a solution to be
valid all senior pilots must be content, meaning that no pilot should be able to find
a junior pilot who received a promotion they would have preferred to what they got.

Note that the seniority criterion holds even when a senior pilot p would prefer
to be assigned to a course c, but the assignment 〈p, c〉 is illegal: this means that
no pilots junior to p may be assigned to course c, even if pilot p cannot legally be
assigned to c. As a motivation for this, consider the case where a junior and a senior
pilot are interested in the same position, but the time period under consideration
only contains the course relevant for the junior pilot, and not the course relevant for
the senior pilot. In this case, and under the seniority criterion, it would be unfair
to assign the course to the junior pilot.

A more formal description of the problem parameters follows. The input given
consists of:

• a set of pilots P = {p1, . . . , pn},
• a set of courses C = {c1, . . . , cm},
• for each pilot pi ∈ P a preference list containing a subset of C, possibly

including ties between courses pi prefers equally,
• for each course cj ∈ C a seniority list strictly ranking a subset of P ,
• for each course cj ∈ C an integer dj indicating its demand, and
• for each possible assignment 〈pi, cj〉 a boolean indicating its legality.

The task is to find a total assignment of pilots to courses such that all assignments
are legal, all course demands are met, and the seniority criterion holds. An example
of an APA instance, along with a solution, is given in Figure 3.1.

One should note that the rules described are more due to policy, rather than
inherent to the theoretical problem. They may therefore be subject to change,
making a flexible solution method important. Also, different airlines may have
slightly different rules; one such problem variation is described in Section 3.3.

3.2 Stable matching model
APA appears natural to describe as a stable matching problem, and there is a
straightforward mapping between APA and the hospitals/residents problem with
ties and forbidden pairs (HRTF). For the relevant background on stable matching
problems, see Section 2.1.
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p1 (c1 c2) c3
p2 ��c1 (c2 c3)
p3 c1 c3

c1 p1 ��p2 p3
c2 p2 p1
c3 p1 p2 p3

demand(c1) = 1, demand(c2) = 1, demand(c3) = 1

Illegal pairs: 〈p2, c1〉
An example APA problem instance, with an example solution. Syntax is similar
to the HR examples in Section 2.1.

p1 (c1 c2) c3
p2 ��c1 (c2 c3)
p3 c1 c3

c1 p1 ��p2 p3
c2 p2 p1
c3 p1 p2 p3

(a) Solution example.

p1 (c1 c2) c3

p2 ��c1 (c2 c3)
p3 c1 c3

c1 p1 ��p2 p3

c2 p2 p1
c3 p1 p2 p3

(b) Invalid assignment.

Figure 3.1: An example APA problem instance, with an example solution. Note
the similarity to HR examples in Section 2.1. Here, however, ties are one-sided:
they can only occur in pilots’ preference lists. Note also that if pilot p1 was assigned
to course c2, as in assignment (b), then pilot p3 could not have been assigned to
course c1, since 〈p2, c1〉 would form a blocking pair. This is despite 〈p2, c1〉 being an
illegal assignment.
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In a mapping between APA and HRTF, pilots correspond to residents, courses to
hospitals, pilot preferences to resident preferences, seniority ranks to hospital prefer-
ences, illegal assignments to forbidden pairs and the seniority criterion to stability.
Course demands are mapped to hospital quotas. For a given instance of APA, a
complete solution (meaning that all hospital slots are filled) to the corresponding
HRTF instance could be directly translated back to a solution to APA.

This mapping also allows us to define blocking pairs for the seniority criterion in
APA: a pair 〈pi, cj〉 is a blocking pair if pi is senior to cj’s least senior assigned pilot,
and pi is either unassigned or assigned to a course it strictly prefers less than cj

(note that we can safely assume that all course slots are filled, since that is needed
for all course demands to be met). With this definition, the seniority criterion holds
as long as there are no blocking pairs in the assignment.

3.3 Extension: The airline promotion assignment
problem with detailed preferences

The problem described in Section 3.1 above is the basic variant of APA. Since
different airlines may have different rules, and rules may be subject to change, our
model should also be able to handle extensions of APA.

One airline, which we call Airline Blue, has some additional rules regarding pro-
motions. Airline Blue’s rules involve so-called preference groups and detailed prefer-
ences, and we call the problem with these added rules airline promotion assignment
problem with detailed preferences (APA-D). We introduce the following definitions:

preference group Each pilot may belong to (at most) one preference group.

detailed preference Each pilot that belongs to a preference group has, in addition
to their default preference list, a detailed preference list. The detailed prefer-
ence list must contain the same courses as the pilot’s default preference list. It
must also have the same total preorder as the default preference list, meaning
that the detailed preference list may be stricter or looser than the default pref-
erence list, but may not have a reversed ordering between any pair of courses.
Formally, let ranki(c) be the rank of course c in pilot pi’s default preference
list (tied courses have the same rank), and equivalently define rankdet

i (c) for
pilot pi’s detailed preference list. Then, for each pair of courses cj and cl in
pi’s preference lists,

ranki(cj) ≤ ranki(cl) ⇔ rankdet
i (cj) ≤ rankdet

i (cl)

All rules in basic APA are still present in APA-D. However, in addition to the
seniority criterion, APA-D involves a preference group criterion. It is defined
as follows: for each pair of pilots 〈p1, p2〉 belonging to the same preference group,
where p1 is senior to p2, p2 may not be assigned to a course which is better ranked
on p1’s detailed preference list than the course p1 is assigned to. This is equivalent
to the seniority criterion, except it is only enforced for pairs of pilots within the
same preference group, and their detailed preference lists are used instead of their
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p1 g1 ([c1 c2] c3)
p2 g1 (��c1 [c2 c3])
p3 g2 c1 c3

c1 p1 ��p2 p3
c2 p2 p1
c3 p1 p2 p3

demand(c1) = 1, demand(c2) = 1, demand(c3) = 1

Illegal pairs: 〈p2, c1〉
An example APA-D problem instance. Here, g1 and g2 refer to different prefer-
ence groups, and brackets indicate detailed preferences.

p1 g1 ([c1 c2] c3)
p2 g1 (��c1 [c2 c3])
p3 g2 c1 c3

c1 p1 ��p2 p3
c2 p2 p1
c3 p1 p2 p3

(a) Solution example.

p1 g1 ([c1 c2] c3)
p2 g1 (��c1 [c2 c3])
p3 g2 c1 c3

c1 p1 ��p2 p3
c2 p2 p1
c3 p1 p2 p3

(b) Solution example.

Figure 3.2: An example APA-D problem instance, with two example solutions.
Note the similarity to the APA example given in Figure 3.1: the seniority lists are
the same, and the detailed preferences here are equivalent to the default preferences
in the Figure 3.1. However, in this example, p1’s and p2’s default preferences consist
entirely of ties, and p3 does not belong to the same preference group as p1 and p2.
As a consequence, it is possible to assign p3 to c1, as in solution example (b).

default preference lists. As a motivating example for the preference group criterion,
take a situation where a senior pilot should have priority over pilots with similar
background (i.e. pilots belonging to the same preference group) but not over other
pilots; this could be modelled by letting the pilot’s detailed preference list be stricter
than their default preference list.

Thus, the task of APA-D is to find a total assignment of pilots to courses such
that all assignments are legal, all course demands are met, the seniority criterion
holds and the preference group criterion holds. An example of an APA-D instance,
together with a solution, is given in Figure 3.2.

Unlike APA, which corresponds to HRTF, no established stable matching prob-
lem directly corresponds to APA-D. However, since the preference group criterion
is similar to the seniority criterion, it is also similar to the notion of stability in
stable matching problems. Thus, we can define blocking pairs in the context of the
preference group criterion in APA-D: a pair 〈pi, cj〉 is a blocking pair if pi is senior
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to cj’s least senior assigned pilot belonging to the same preference group as pi, and
pi is either unassigned or assigned to a course cl, where rankdet

i (cl) < rankdet
i (cj).

With this definition, the preference group criterion holds as long as there are no
blocking pairs in the assignment.
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4
Model

This chapter describes the model we have developed for the airline promotion as-
signment problem (APA). In Section 4.1, we describe our constraint satisfaction
problem (CSP) model for APA, adapted from the HR with ties model in [44], and
prove its equivalency to APA. In Section 4.2, we present a constraint for the APA-D
extension. Finally, in Section 4.3, we shortly describe our model implementation,
including a symmetry-reducing method we used for data pre-processing.

4.1 CSP model for APA
Our CSP model is adapted from O’Malley in [44].

Sets

P = available pilots
C = courses
F = illegal pilot assignments (F ⊆ P × C)

A(pi) = courses found acceptable by pilot pi

B(cj) = pilots ranked by course cj

Note that cj ∈ A(pi) ⇔ pi ∈ B(cj). Further, note that |A(pi)| is the length of pi’s
preference list, and that similarily |B(cj)| is the length of cj’s seniority list. Also,
note that we require that all course slots are filled, so |P | ≥ ∑

C dj (with dj defined
below).

Parameters

dj = the demand for course cj

ranki(cj) = the rank of course cj in pilot pi’s preference list
prefi(cj) = the position of course cj in pilot pi’s linearized preference list
senj(pi) = the position of pilot pi in course cj’s seniority list

The preference and seniority lists are ordered such that items that occur earlier
(i.e. with lower position) are more preferred or more senior, respectively. Note that
both prefi(c) and senj(p) are bijective, and thus have well-defined inverse functions,
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which we call pref−1
i (a) and sen−1

j (b) respectively; we use these in our constraint
definitions below.

Variables

xi corresponds to the course assigned to pilot pi pi ∈ P

yj,k corresponds to the pilot assigned to slot k of course cj

cj ∈ C

k ∈ {1, . . . , dj}

Domains

dom(xi) = {|C|+ 1} ∪ {1, . . . , |A(pi)|} \ {prefi(cj) : 〈pi, cj〉 ∈ F} pi ∈ P

dom(yj,k) = {1, . . . , |B(cj)|} \ {senj(pi) : 〈pi, cj〉 ∈ F}
cj ∈ C

k ∈ {1, . . . , dj}
The domains of the variables refer to the positions of courses and pilots, respectively,
in the preference and seniority lists. E.g., x2 = 5 encodes the case where pilot p2
is assigned the course in the fifth position on their linearized preference list. The
special value |C|+ 1 refers to the case where a pilot is not assigned to a course.

Note that illegal assignments are removed from the domains. This is equivalent
to using the inequality constraint for forbidden pairs given in [58], which would
perform the same domain reduction.

Constraints
Course slots are filled in increasing order:

yj,k < yj,k+1
cj ∈ C

k ∈ {1, . . . , dj − 1}
(4.1)

If pi is assigned a course strictly less preferred than cj, then all slots of cj

should be filled by pilots senior to pi:

xi > a+ ⇒ yj,k < senj(pi)
pi ∈ P

a ∈ {1, . . . , |A(pi)|}
k ∈ {1, . . . , dj}

(4.2)

where

cj = pref−1
i (a)

a+ = max
{
k ∈ {1, . . . , |A(pi)|} : ranki(pref−1

i (k)) = ranki(pref−1
i (a))

}
In other words, a+ is the position of the last course tied with the course at position
a in pilot pi’s preference list.
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If pi is not assigned to cj, no slots of cj should contain pi:

xi 6= a⇒ yj,k 6= senj(pi)
pi ∈ P

a ∈ {1, . . . , |A(pi)|}
k ∈ {1, . . . , dj}

(4.3)

where

cj = pref−1
i (a)

For each slot s on cj, if pi is assigned to cj and all slots previous to s are
assigned to pilots senior to pi, slot s should be filled by a pilot at least as
good as pi:

First, the special case for the first slot:

xi = a⇒ yj,1 ≤ senj(pi)
pi ∈ P

a ∈ {1, . . . , |A(pi)|}
All remaining slots:

(xi = a ∧ yj,k−1 < senj(pi))⇒ yj,k ≤ senj(pi)
pi ∈ P

a ∈ {1, . . . , |A(pi)|}
k ∈ {2, . . . , dj}

(4.4)

where

cj = pref−1
i (a)

If the last slot of cj is filled by a pilot senior to pi, pi is not assigned to cj:

yj,dj
< b⇒ xi 6= prefi(cj)

cj ∈ C

b ∈ {dj, . . . , |B(cj)|}
(4.5)

where

pi = sen−1
j (b)

Now, a short motivation for the constraints is given. Constraint 4.1 ensures that
course slots are assigned in seniority order: this reduces symmetry in the solution
space, and is a prerequisite for the formulations of the other constraints. Con-
straint 4.2 encodes the seniority criterion. Constraint 4.3, 4.4 and 4.5 all ensure
that course and pilot variables have consistent assignments. Constraint 4.3 says
that if pilot pi stops considering course cj (i.e., if prefi(cj) is removed from the do-
main of xi), then course cj should stop considering pilot pi (and thus remove senj(pi)
from all its course variables’ domains). Constraint 4.4 and Constraint 4.5 together
ensure that if a pilot pi is assigned a course cj, then one of cj’s slots will contain
pi. Constraint 4.5 states the reverse of Constraint 4.3: if course cj stops considering
pilot pi (if the last of cj’s slot variables, which must refer to the least senior of cj’s
assignments, only has pilots more senior than pi in its domain), then pilot pi should
stop considering course cj (and thus remove prefi(cj) from the domain of xi).

27



4. Model

4.1.1 Correctness of the model
Now, we will argue that our CSP model is equivalent to APA. With Lemma 1, we
show that a solution to this CSP is a solution to APA, and with Lemma 2 that
a solution to APA is a solution to this CSP. These two lemmas together support
Theorem 1, which says that a complete algorithm looking for a solution to an APA
instance encoded with this CSP model is guaranteed to find one if one exists. Our
argument is similar to the one given by O’Malley in [44] as to why his HR with ties
model yields all stable matchings.

Lemma 1. Let I be an instance of APA and let P be a translation of I to a CSP
using the model above. Then, a solution to P is also a solution to I.

Proof. To show this, we will argue that in the solution to P , all demands are met,
no illegal assignments are included, the course and pilot assignments are consistent
and the seniority criterion holds.

We begin by showing that all course demands are met in the solution to P .
First, note that for each course, the number of course slot variables is equal to that
course’s demand. While the domains of the pilots’ assignment variables each include
a sentinel value corresponding to that pilot not being assigned a course, the course
slot variables do not. As such, each course slot variable must be assigned a value
corresponding to a pilot, meaning that all course demands must be met.

Now, we argue that there are no illegal assignments in the solution to P . By
the definitions of the domains, illegal assignments are not included. Thus, no illegal
assignments can be present in a solution to our CSP encoding.

We will now show that the assignments must be consistent. First, we show that
if pilot pi is assigned course cj, then exactly one of cj’s slots is assigned pi. By
Constraint 4.1, all course slots must follow strict seniority ordering, meaning that
no two slots in the same course can be assigned pilots with equal seniority rank.
Since the seniority rank of a pilot is unique within each course, this means that a
course cannot be assigned the same pilot more than once. Now, we use proof by
contradiction to show that if pilot pi is assigned course cj, then one of course cj’s slots
is assigned pi. Assume that pilot pi’s assignment variable xi = prefi(cj), but all of
course cj’s slot variables yj,k 6= senj(pi), k ∈ {1, ..., dj}. According to Constraint 4.4,
if pi is assigned cj, then either there is a slot cj which is assigned pi, or all of cj’s slots
are assigned pilots senior to pi. By our assumption, no slot is assigned pi, thus each
slot must be assigned a senior pilot, meaning that yj,k < senj(pi), k ∈ {1, ..., dj}.
However, by the contrapositive of Constraint 4.5, xi = prefi(cj) ⇒ yj,dj

≥ sen(pi),
we see that cj’s last slot must be assigned pi or a pilot junior to pi—this contradicts
the statement that all slots are assigned senior pilots. Thus, if pilot pi is assigned
course cj, exactly one of cj’s slots must be assigned pi.

Now, the converse: if one of course cj’s slots is assigned pilot pi, then pilot pi is
assigned course cj. This means that if one of course cj’s slot variables yj,k = senj(pi),
then pilot pi’s assignment variable xi = prefi(cj). This is shown by the contrapos-
itive of Constraint 4.3, yj,k = senj(pi) ⇒ xi = pref(cj). Thus, the assignments in
the solution to P are consistent.

Finally, we want to show that the seniority criterion holds in a solution to our
CSP. Assume that we have a blocking pair (with the definition for APA from
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Section 3.2) 〈pi, cj〉 in our solution. This means that either pi is unmatched and
xi = |C|+ 1, or pi is assigned to a course it prefers strictly less than cj: either way,
xi > a+, with a+ being the position of the last course tied with cj in pi’s prefer-
ence list, as defined above. Thus, from Constraint 4.2, we get that yj,k < senj(pi),
k ∈ {1, ..., dj}—this contradicts that 〈pi, cj〉 is a blocking pair. As such, the solution
to P will not contain any blocking pairs, and therefore the seniority criterion must
hold.

Thus, to conclude, a solution to the CSP instance P must be a solution to the
APA instance I.

We have shown that a solution to our CSP is a solution to APA: now, to ensure
that our model does not risk missing any solution, we must show that an arbitrary
solution to APA is also a solution to our CSP.

Lemma 2. Let I be an instance of APA and P be the encoding of I using our CSP
model. Then, a solution to I is also a solution to P .

Proof. We instantiate the variables like this: For each pilot pi, if pi is assigned
to a course cj, then xi = prefi(cj), and if pi is unassigned, then xi = |C| + 1.
For each course cj assigned to a set of pilots {pik

: k ∈ {1, ..., dj}}, such that
senj(pik

) < senj(pik+1), k ∈ {1, ..., dj−1}, we instantiate corresponding slot variables
according to this seniority order, yj,k = senj(pik

), k ∈ {1, ..., dj}. This gives us an
assignment in P equivalent to the solution to I. We will now show that all constraints
in P hold for this assignment.

First, consider Constraint 4.1. Since course slot variables were instantiated in
seniority order, this constraint must hold.

Next, consider Constraint 4.2. Assume that the left-hand side, xi > a+, is true
for some pi and a = prefi(cj). This means that there is a course cj that pilot pi

would strictly prefer to their assignment. Since the seniority criterion must hold in
the solution to I, we know that cj must be assigned dj pilots that are all senior to
pi: by the instantiation, this means that yj,k < senj(pi), k ∈ {1, ..., dj}—which is
the right-hand side of Constraint 4.2. Thus, Constraint 4.2 must hold.

Now, consider Constraint 4.3. Assume that the left-hand side, xi 6= a, is true for
some pi and a = prefi(cj). This means that pilot pi is not assigned course cj. Thus,
since the solution to I by definition must be consistent, cj is not assigned pilot pi:
by the instantiation, this means that yj,k 6= senj(pi), k ∈ {1, ..., dj}—which is the
right-hand side of Constraint 4.3. Thus, Constraint 4.3 must hold.

Consider the special case for the first slot in Constraint 4.4. Assume that the
left-hand side, xi = a, is true for some pi and a = prefi(cj). This means that pilot
pi is assigned course cj. Since the solution to I by definition must be consistent, we
know that cj is assigned pilot pi: by the instantiation, this means that some slot
variable yj,v = senj(pi), ∃v ∈ {1, ..., dj}. We know that slot variables are instantiated
in seniority order: thus, if pilot pi is the most senior pilot, then yj,1 = senj(pi);
otherwise, yj,1 < senj(pi). Either way, yj,1 ≤ senj(pi)—which is the right-hand side
of the special case of the constraint. Thus, the special case of Constraint 4.4 must
hold.

Now, we consider the general case for Constraint 4.4. Assume that the left-hand
side, xi = a ∧ yj,k−1 < senj(pi), is true for some pi and cj, where a = prefi(cj),
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and some value k ∈ {2, . . . , dj}. This means that pilot pi is assigned course cj, and
(since slots are instantiated in seniority order) that there are k − 1 pilots assigned
to cj which are senior to pi. Since the solution to I by definition is consistent, we
know that there is some slot yj,v = senj(pi), ∃v ∈ {1, ..., dj}, and since there are
k−1 pilots senior to pi, we know that v ≥ k. If v = k, then yj,k = senj(pi); if v > k,
then yj,k < senj(pi). Either way, yj,k ≤ senj(pi)—which is the right-hand side of
the general case of the constraint. Thus, Constraint 4.4 must hold.

Finally, consider Constraint 4.5. Assume that the left-hand side, yj,dj
< b, is true

for some cj and b = senj(pi). This means that the least senior pilot assigned to
course cj is more senior than pilot pi. By the seniority criterion, we then know that
pi cannot be assigned cj: by the instantiation, this means that xi 6= prefi(cj)—which
is the right-hand side of the constraint. Thus, Constraint 4.5 must hold.

Since all constraints of P hold for the assignment in P , the assignment is a
correct solution. Thus, a solution to an APA instance I must be a solution to the
corresponding CSP instance P .

Lemma 1 and Lemma 2 lead to the following theorem:

Theorem 1. Let I be an instance of APA and P be the corresponding CSP in-
stance encoded by our CSP model. Then, if a solution to P is found, that solution
corresponds to a solution to I. If no solution to P is found when using a complete
algorithm, then no solution to I exists.

4.2 A constraint for APA-D
In order to solve the airline promotion assignment problem with detailed preferences
(APA-D) (as described in Section 3.3), we use the same CSP model as described for
APA above, but with an added constraint to handle the preference group criterion.
For this constraint, we must first define some parameters:

rankdet
i (cj) = the rank of course cj in pilot pi’s detailed preference list

group(pi) = the set containing all pilots in the same preference group as pi

(an empty set if pi does not belong to a preference group)

If pi is assigned a course with strictly worse rank in pi’s detailed preference
list than cj, then all pilots in pi’s preference group assigned a slot in cj

must be senior to pi:

(xi > a+
d ∧ ps ∈ group(pi))⇒ yj,k < senj(pi)

pi ∈ P

a ∈ {1, . . . , |A(pi)|}
k ∈ {1, . . . , dj}

(4.6)
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where

cj = pref−1
i (a)

ps = sen−1
j (yj,k)

a+
d = max

{
k ∈ {1, . . . , |A(pi)|} : rankdet

i (pref−1
i (k)) = rankdet

i (pref−1
i (a))

}
In other words, a+

d is the position of the last course tied with the course at position
a in pilot i’s detailed preference list. Note that function prefi(c) and its inverse
pref−1

i (a) work equivalently for pi’s detailed preference list as they do for pi’s default
preference list: since the two lists have the same total preorder (as explained in
Section 3.3), we can use the same linearization for the two lists.

4.2.1 Correctness of the model
Similar to our argument for APA in the last section, let us now show that our model
with the added Constraint 4.6 is equivalent to APA-D. With Lemma 3, we show that
a solution to this CSP is a solution to APA-D, and with Lemma 4 that a solution
to APA-D is a solution to this CSP. The two lemmas together support Theorem 2,
which says that a complete algorithm searching for a solution to our CSP encoding
of APA-D is guaranteed to find one if one exists.
Lemma 3. Let I be an instance of APA-D and P be the encoding of I using our
CSP with the added Constraint 4.6. Then, a solution to P is also a solution to I.
Proof. For a solution to P to be a solution to I, all course demands must be met,
there can be no illegal assignments, the course and pilot assignments must be consis-
tent and the seniority criterion must hold. All these criteria have been been proven
to hold for APA with Lemma 1: this proof applies to APA-D too. For APA-D,
however, the preference group criterion must also hold.

To show that Constraint 4.6 ensures that the preference group criterion is met, we
make an argument similar to the one for the seniority criterion and Constraint 4.2
in the proof to Lemma 1. Assume that we have a blocking pair (according to the
definition for APA-D in Section 3.3) 〈pi, cj〉 in a solution to P . This means that
either pi is unmatched and xi = |C|+ 1, or pi is assigned a course cl, rankdet

i (cl) <
rankdet

i (cj): either way, xi > a+
d , with a+

d being the position of the last course tied
with cj in pi’s detailed preference list, as defined above. Now, if there is any pilot
ps assigned to one of cj’s slots, meaning ps = sen−1

j (yj,k), ∃k ∈ {1, ..., dj}, who also
belongs to the same preference group as pi, that is ps ∈ group(pi), it is clear from
Constraint 4.6 that any such ps must be senior to pi—this means that 〈pi, cj〉 cannot
be a blocking pair, giving us a contradiction. Thus, there can be no blocking pairs
in the solution, and Constraint 4.6 guarantees that the preference group criterion is
met.

Thus, we can conclude that a solution to P must also be a solution to I.

As in the last section, we will now show that any solution to APA-D is also a
solution to the CSP with Constraint 4.6 included.
Lemma 4. Let I be an instance of APA-D and P be the encoding of I using our
CSP model with Constraint 4.6 included. Then, a solution to I is also a solution to
P .
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Proof. For a solution to I to also be a solution to P , all constraints from Section 4.1
must hold. Again, we can reuse our arguments from one of our previous lemmas:
the conclusions from Lemma 2 apply for the case of APA-D too. Now, all we have
to prove is that after translating the solution to I to a solution to P , Constraint 4.6
will hold.

First, we make an instantiation of the variables using the same procedure as in
the proof to Lemma 2. Now, consider Constraint 4.6. Assume that the left-hand
side, xi > a+

d ∧ ps ∈ group(pi), with a+
d defined as above and ps = sen−1

j (yj,k),
is true for some pi, cj and k ∈ {1, ..., dj}. Since the preference group criterion
holds in the solution to I, and pi ranks cj higher in their detailed preference list
than their assignment, we know that any pilot assigned to cj who is also in the
same preference group as pi must be senior to pi with regard to cj. Since pilot
ps is assigned to cj and is in the same preference group as pi, this means that
senj(ps) = senj(yj,k) < senj(pi)—which is the right-hand side of Constraint 4.6. As
such, Constraint 4.6 must hold.

Thus, we can conclude that a solution to I must also be a solution to P .

Lemma 3 and Lemma 4 support the following theorem:
Theorem 2. Let I be an instance of APA-D and P be the corresponding CSP
instance encoded by our CSP model, including Constraint 4.6. Then, if a solution
to P is found, that solution corresponds to a solution to I. If no solution to P is
found when using a complete algorithm, then no solution to I exists.

4.3 Model implementation
Our model for APA was implemented in C++11. It uses the CP system Google or-
tools (see Section 2.2.6) for solving an APA instance encoded using our CSP model:
we have more or less directly translated the variables, domains and constraints to
corresponding CP code. Our model also contains a pre-processing step, which merges
similar courses: see Section 4.3.1 below. In addition, our system contains classes that
model problem instances, courses and pilots; parsers for reading datasets; systems
for verifying input data and solution correctness; a text-based user interface; and a
thorough unit test suite.

4.3.1 Data pre-processing
Our model performs some pre-processing steps in order to simplify the problem. In
particular, it is possible to eliminate a great deal of symmetry from some of our test
cases by identifying and merging courses that are structurally equivalent. That is, a
set G of courses can be replaced by a single replacement course, with demand equal
to the sum of the demands of its constituent courses, if there exists a course c∗ such
that:

∀cj ∈ G. B(cj) = B(c∗)
∀pi ∈ B(c∗) ∀cj ∈ G. senj(pi) = sen∗(pi)
∀pi ∈ B(c∗) ∀cj ∈ G. ranki(cj) = ranki(c∗)
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In this chapter, we present results from running our APAmodel on problem instances
based on data from two different airlines. First, in Section 5.1 we present our test
data. In Section 5.2 we present the different solver configurations used for achieving
our results, such as different variable and value ordering heuristics, comparing their
performance. Finally, in Section 5.3, our main results are presented.

5.1 Test case data
In order to evaluate our model, Jeppesen has provided us with data derived from two
different airlines: Airline Red and Airline Blue (their real names have been removed).
We have two datasets per airline, which we call red-a & red-b, and blue-a &
blue-b, respectively. The b datasets are generally larger than the a datasets. Each
airline dataset contains course and pilot data, including preference and seniority lists,
and lists of illegal assignments. The airline datasets define instances of APA/APA-D,
except for course demands, which are given separately in what we call demand items.
Each demand item defines a subset of courses and their corresponding demands.

For each airline dataset, Jeppesen has provided us with two sets of computer-
generated demand items, with different characteristics: good and typical:

good Generated from near-optimal solutions to the larger manpower problem. Are
known to have stable assignments.

typical Typical examples of demands that would be used in an integrated process.
Some have stable solutions and the rest are in general “almost” solvable.

The combination of an airline dataset and a demand item forms a problem instance.
The problem instances are summarized in Table 5.1. As can be seen, the char-
acteristics of the Airline Red and Airline Blue problems are very different. First
and foremost, all Airline Blue problems are instances of APA-D, while Airline Red
problems are instances of APA. Airline Blue problem instances are also generally
larger in terms of number of pilots, courses and course slots, and the differences
in seniority and preference list lengths are very large. Also, note the differences in
average tie density. Tie density is a measure of the prevalence and size of ties the
preference lists: it is defined as the probability that a course is tied with the next
course in a pilot’s preference list. While the detailed preference lists of Airline Blue
are comparable with regard to tie density to the preference lists of Airline Red, the
default preference lists in the Airline Blue instances generally contain very large ties.
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Demand item set APA-D? Pilots Courses Slots Seniority
list length

Preference
list length

Illegal
assignments

Tie
density

Tie density
(detailed)

# of
instances

red-a-good No 1100 30 100 174 4 6% 29% — 24

red-a-typical No 1100 30 100 188 4 6% 32% — 100

red-b-good No 1600 50 200 180 5 1% 13% — 31

red-b-typical No 1600 60 300 183 6 1% 20% — 100

blue-a-good Yes 1600 190 400 658 76 74% 93% 8% 60

blue-a-typical Yes 1600 210 400 665 86 73% 94% 8% 100

blue-b-good Yes 1900 200 600 752 80 84% 89% 18% 35

blue-b-typical Yes 1900 250 600 798 102 84% 90% 22% 100

Total 550

Table 5.1: Summary of problem instances used for evaluation. Figures given are averages within the demand item set. The numbers
for pilot, course and slot counts have been rounded off for data anonymization reasons. Airline Blue contains detailed preferences
and preference groups, while Airline Red does not, so all Airline Blue problems are instances of APA-D, while Airline Red problems
are APA instances.
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5.2 Solver settings
We have run our problem instances with a number of different solver configurations.
Mainly, we have tested different heuristics for variable and value orderings, which
we present here. We also present some additional settings that we have tested.

5.2.1 Search configurations
We ran tests in order to evaluate a number of different variable and value ordering
heuristics, and whether assigning pilot variables or course slot variables performs
better. The red-b-good and red-b-typical datasets were used for this purpose.
Below, we list the variable and value orderings we used.

Variable orderings

average seniority Only when assigning courses to pilots. Sort pilots according
to their average positions in seniority lists. Select variables corresponding to
pilots in that order.

average preference Only when assigning courses to pilots. Sort courses according
to their average positions in preference lists. Select slot variables (starting with
the slot for the most senior pilot) corresponding to courses in that order.

min size–lowest min Select the variable with smallest domain size: in case of a
tie, select the variable with the lowest minimum value in its domain.

min size–highest min Select the variable with smallest domain size: in case of a
tie, select the variable with the highest minimum value in its domain.

lowest min Select the variable with the lowest minimum value in its domain.

max size Select the variable with the largest domain size.

Value orderings

assign min Assign the minimum value in the domain (corresponding to the most
senior pilot/most preferred course).

assign max Assign the minimum value in the domain (corresponding to the least
senior pilot/least preferred course).

split lower Split the domain in half, select the lower half (corresponding to the
most senior pilots/most preferred courses).

split upper Split the domain in half, select the upper half (corresponding to the
least senior pilots/least preferred courses).
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Assigning courses to pilots assign
min

assign
max

split
lower

split
upper

red-b-good
average seniority 128135* 6599 127841* 6593
min size–lowest min 6496 790 6499 790
min size–highest min 96804* 234973 86693* 234973
lowest min 111822* 98 88631* 93

red-b-typical
average seniority 702 12 702 12
min size–lowest min 69 12 69 12
min size–highest min 323 25 323 25
lowest min 748 16 4223 16

Total average

average seniority 64418*
(10.94 s)

3305
(0.90 s)

64271*
(11.15 s)

3302
(0.87 s)

min size–lowest min 3282
(1.55 s)

401
(0.53 s)

3284
(1.55 s)

401
(0.53 s)

min size–highest min 48563*
(30.20 s)

117499
(6.28 s)

43508*
(30.23 s)

117499
(6.32 s)

lowest min 56285*
(20.21 s)

57
(0.49 s)

46427*
(26.10 s)

54
(0.49 s)

Table 5.2: Average number of branches required to find a solution for different
combinations of variable and value orderings, using the assignment of courses to
pilots as the primary variables. A star indicates that the time limit of five minutes
was reached for at least one instance in the set.

The results can be seen in Tables 5.2 and 5.3. Some additional variable and
value orderings which performed poorly across the board have been excluded for
brevity. It is worth noting that the ordering combinations which give good results
when assigning courses to pilots give very poor results when instead assigning pilots
to courses, and vice versa. This is further discussed in Chapter 6.

We selected the five most performant configurations (marked bold in Tables 5.2
and 5.3), and ran tests on blue-a-good and blue-b-good, with a presolve percent-
age of 75% and a timeout of two minutes. Assigning pilots to courses using average
preference and assign min as variable and value ordering heuristics performed
considerably better than the other alternatives, and this setting was used for the
remaining test runs.

36



5. Results

Assigning pilots to courses assign
min

assign
max

split
lower

split
upper

red-b-good
average preference 31 172199* 204 107160*
min size–lowest min 2474 742573* 2509 1106328*
min size–highest min 10827 621563* 10843 1232136*
lowest min 20 220764 116 2894
max size 77 583989* 5172822* 1786297*

red-b-typical
average preference 8 1025 42 37
min size–lowest min 13 1327109* 28 1069499*
min size–highest min 84 672889* 94 761896*
lowest min 9 15770 52 105
max size 5 384883* 295981 958178*

Total average

average preference 19
(0.47 s)

86612*
(27.39 s)

123
(0.47 s)

53598*
(14.36 s)

min size–lowest min 1243
(0.65 s)

1034841*
(166.67 s)

1268
(0.65 s)

1087913*
(165.73 s)

min size–highest min 5455
(1.33 s)

647226*
(157.15 s)

5468
(1.31 s)

997016*
(155.46 s)

lowest min 14
(0.47 s)

118267
(13.02 s)

84
(0.47 s)

1499
(0.75 s)

max size 41
(0.47 s)

484436*
(229.23 s)

2734401*
(51.11 s)

1372237*
(191.85 s)

Table 5.3: Average number of branches required to find a solution for different com-
binations of variable and value orderings, using the assignment of pilots to courses
as the primary variables. A star indicates that the time limit of five minutes was
reached for at least one instance in the set.
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5.2.2 Additional settings
In addition to using different branching heuristics, these further settings were used
for some of our tests.

Assigning some pilots beforehand

For test cases based on the good demand items, we already have solutions available.
By assigning pilots to a subset of course slots before running the solver, we can in
a way make these test cases smaller. With this, we can evaluate how our model
performs on test cases of different size. We refer to this practice as presolving. We
may select how many pilots we assign, and the pilots are selected in a deterministic
manner based on implementation details.

No course merging

As explained in Section 4.3.1, our model merges courses that always appear in the
same ties in preference lists, and have equal seniority lists. We evaluate how much
this pre-processing step affects problem complexity and solver performance.

5.3 Performance results
We have carried out a series of test runs to answer different questions about our
model and test data. All test runs were performed on a Xeon E5-2667 v2 CPU with
32 GB of available RAM.

5.3.1 Main results
A summary of our main results is given in Table 5.4. We were able to achieve good
results for the Airline Red datasets. Over all corresponding demand item sets, the
average run time was 338 ms, and no problem instance required more than 540 ms
to either be solved or deemed unsolvable.

For Airline Blue, the results were different. Using the solutions available for
the good demand item sets, we were able to verify that our model accepted those
solutions as stable. However, as seen in Table 5.4, our model was overall only able
to solve two demand items from blue-a-good and none from the other Airline Blue
demand item sets. We also tried attempts with very long timeouts (of an hour or
above) on some demand items from each demand item set, without achieving any
better results. It should however be noted that our model was able to deem some
problem instances in blue-a-typical and all in blue-b-typical infeasible within
the time limit.

5.3.2 Reduced cases of Airline Blue
As noted in Section 5.3.1, we were unable to get good results for Airline Blue. We
therefore attempted to measure how large problems our model is able to handle,
by attempting to solve the blue-a-good and blue-b-good demand item sets with
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Demand item set % solved % infeasible % timeout Run time
(solved)

Run time
(infeasible)

red-a-good 100% — 0% 0.19 s —

red-a-typical 94% 6% 0% 0.20 s 0.19 s

red-b-good 100% — 0% 0.48 s —

red-b-typical 59% 41% 0% 0.50 s 0.43 s

blue-a-good 3% — 97% 1.47 s —

blue-a-typical 0% 27% 73% — 2.58 s

blue-b-good 0% — 100% — —

blue-b-typical 0% 100% 0% — 2.26 s

Table 5.4: Main results from running our model on all datasets. The solver was
configured to assign pilots to courses with variable ordering average preference
and value ordering assign min. The time limit was set to 30 s. Results are divided
between solved problems, problems that were deemed infeasible, and problems for
which the time limit was reached. Run times are given as averages. Note that the
problem instances in the good demand item sets by definition are solvable.
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Figure 5.1: The percentage of demand items that were solvable in 30 s, for a range
of presolving settings. With a presolve setting of 50% (or above), all demand items
were solvable for both blue-a-good and blue-b-good.

varying levels of presolving. The results can be seen in Figure 5.1. Assigning 15% of
pilots beforehand was sufficient to be able to solve over 80% of the demand items in
blue-a-good within 30 s, but achieving the same results for blue-b-good required
a presolve percentage of 40%.

5.3.3 No course merging
To evaluate the effects of merging courses, we ran tests on the Airline Red datasets
with merging switched off. The results can be seen in Figure 5.2. Most problem
instances had similar run times to those achieved when using course merging (see
Table 5.4), but a number of instances timed out despite a high time limit of five min-
utes. In particular, the model without course merging had issues with determining
instances as infeasible.
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Figure 5.2: The results form running Airline Red datasets with course merging
switched off, using a time limit of five minutes. ’OK’ problem instances were cor-
rectly solved or deemed infeasible within the time limit. Note that the model, with
course merging turned off, timed out more on problem instances known to be infea-
sible, suggesting that course merging may be especially efficient for those problems.
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6
Discussion and conclusion

In this chapter, we present some final discussions and conclusions. In Section 6.1,
we discuss the various results from Chapter 5. This is followed by our conclusions
in Section 6.2. We end this final chapter with some suggestions on future work in
Section 6.3.

6.1 Discussion of results

Running our airline promotion assignment problem (APA) model on the two airline
datasets gave different results. We were able to efficiently solve the Airline Red
test cases, but not those from Airline Blue. This is however not very surprising: in
addition to the presence of detailed preferences in Airline Blue, the data in Table 5.1
shows clear differences between the datasets, especially when it comes to seniority
and preference list lengths, the number of illegal assignments, and tie density. Longer
seniority and preference lists and higher tie density should increase the size of the
search space, and thus it is natural that the Airline Blue problems are harder. Since
HR with ties, and thus APA, is NP-hard, it is not very surprising that our model
was not able to find any solutions within reasonable time for the harder problem
instances. However, in the typical testcases, especially blue-b-typical, we were
able to quickly determine if a problem instance was unsolvable. This means that
our model may still be usable for Airline Blue problem instances: even if it does not
solve many problem instances, it is still useful to be able to say if problem instances
are unsolvable. Further, our results from running reduced versions of the Airline
Blue test cases suggest that our model has some potential for being able to solve
similar problem instances.

An open problem listed in [44] is to find well-suited variable and value orderings
for the presented HR with ties model. In Section 5.2, we present the results of run-
ning our model with different search configurations, and we got the best results from
assigning pilots to courses using average preference and assign min as variable
and value ordering heuristics. Other similar search configurations, where the most
preferred courses are given the most senior pilots, also performed well. However,
contrary to our intuition, search configurations where courses were assigned to pi-
lots, and the by average most senior pilots received their most preferred courses first,
did not perform well at all. Instead, the opposite, where senior pilots received their
worst possible choices first, performed much better. This may seem counterintuitive,
but it has been noted for HR and SM problems that there is a relation between one
side being assigned their optimal choices, and the other side being assigned their
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worst possible choices [16]. Since our data is derived from a substep of a larger
airline manpower solver, and that solver primarily works from the perspective of
courses rather than pilots, this is reasonable.

As explained in Section 5.3.3, we also performed some test runs with our course
merging pre-processing step turned off, in order to evaluate how it affects perfor-
mance. Evidently, this step affects the efficiency of our model greatly, and in our
test data it was especially efficient for problem instances known to be infeasible.

6.2 Conclusion
The aim of this thesis was to implement an efficient model for APA, a subproblem
to the airline manpower problem. We approached this by mapping APA to a sta-
ble matching problem, more specifically the hospitals/residents problem with ties
and forbidden pairs, and then utilizing existing stable matching literature to find a
suitable solution method. The method we chose for our APA model was constraint
programming (CP), and the constraint satisfaction problem (CSP) model we devel-
oped was an adaptation of the hospitals/residents problem (HR) with ties model
from [44]. We believe that we are the first to write about and utilize the connection
between the airline manpower problem and stable matching problems. We are also
the first to perform an empirical study of the HR with ties model from [44].

We have developed some extensions to the CSP model from [44]. Our CSP model
contains support for forbidden pairs (illegal assignments), and we have developed a
constraint for the preference group criterion in APA-D.

6.3 Future work

Could a different CSP model yield better performance?

In Section 2.2.5, we discuss the difficulty of coming up with an efficient CSP model
for a problem. As mentioned there, there are no fast and easy rules to a good CSP
formulation: one simply has to try different formulations. We have only thoroughly
evaluated one model for APA, which is an adaptation of O’Malley’s CSP encoding
for HR with ties in [44]. For better performance, one may want to try alternative
models.

Regarding what models could potentially yield a better result, the common con-
sensus of the CP community is to utilize global constraints as often as possible.
Our model does however not contain any global constraints. Could one poten-
tially reformulate some (or all) of our constraints into global constraints, such as
all_different? Or could one potentially keep our constraints, and add redundant
global constraints that make the propagation more efficient? The latter approach
was tried by Gent and Prosser in [20], an early paper presenting a CSP model for
SM with ties and incomplete lists. They added two redundant all_different con-
straints, but found that it did not increase performance. Despite this, it might still
be interesting to try reformulating our problem with global constraints.

As mentioned in Section 2.2.4, it is possible to define specialized constraints with
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corresponding specialized propagators. This approach has been successfully tried
for basic HR, and in [38] both a specialized binary constraint and a specialized n-
ary constraint for HR are presented, both of which performed better than a direct
constraint formulation. We have however not been able to find any specialized
constraints for HR with ties. Unsworth, in [57], presents some early work on a
specialized binary constraint for SM with ties and incomplete lists, and suggests
that it should be possible to extend his work and the work in [38] to both binary
and n-ary constraints for HR with ties. However, while this approach may be more
efficient, it should be kept in mind that one of the strong points of CP is the
directness of the model formulations. Specialized constraints may lead to a less
flexible model, closer to that of a fixed algorithm.

Could better search heuristics yield better performance?

In Section 5.2.1, we present the results of running our model with a number of dif-
ferent search configurations, and it is clear that some combinations of variable and
value orderings are more efficient than others. The most efficient variable ordering
we came up with is based on sorting courses according to their average positions
in preference lists. It might well be possible to come up with more sophisticated
orderings. Since much of the complexity of the problem comes from the presence of
ties in pilots’ preference lists, perhaps an extension of our sorting with more sophis-
ticated tie-breaking could yield better results. Inspiration for better tie-breaking
could perhaps come from heuristics or approximation algorithms for HR with ties
and SM with ties and incomplete lists, since many of them are based on sophisticated
tie-breaking [28, 33].

It may also be interesting to try other general variable and value orderings. How-
ever, our choice of CP system, Google or-tools, does not support a very wide variety
of orderings. For example, variable orderings based on the degrees of variables, i.e.
how many constraints they are involved in [47, p. 105], could be interesting to try.
Such variable orderings can for example be found in the CP system Gecode [52].

Could dynamic constraint satisfaction be utilized?

Our APA model is primarily meant to be used by trying different course demand
values while keeping the same underlying pilot and course data. Used this way,
the solver tries to solve many similar problem instances in sequence, and thus it
is possible that the respective solution spaces also are similar. It would therefore
be interesting to try to utilize this in some way. Dynamic constraint satisfaction
problems are CSPs where the set of constraints or the set of variables may change
during runtime [60]. While some different solution methods for dynamic CSPs have
been proposed [4, 60], we have not been able to find a modern CP system with
any support for dynamic solution methods. The most modern such system we have
found is the PaLM system [31] from 2000, and there does not seem to have been
much progress made since then.
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Could another method altogether perform better when solving APA?

Many methods have been tried and evaluated to solve HR with ties. However, there
is a lack of meta studies that compare different solution methods. We investigated
other methods, such as using an integer programming model, but previous work was
only able to solve small instances [35]. We chose CP since it is a complete method,
which is an advantage when many problem instances may be unsolvable, and since
CP models are easy to extend for various rulesets, such as APA-D. However, recent
studies show that methods based on local search, such as adaptive search [42], may
be very efficient for HR with ties. On the other hand, local search has the drawback
of being an incomplete method, and is less flexible compared to CP.

Of course, yet another method may perform better for solving APA. Methods
such as SAT and answer set programming [10] have been used for solving HR with
ties. Adapting and evaluating those methods for APA could be worthwhile.
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