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A Lane Departure Detection System Based on Uncertainty Aware Machine Learning

JESPER LARSSON
MATTIAS SJÖSTEDT
Department of Electrical Engineering
Chalmers University of Technology

Abstract
In the effort to reduce traffic-related accidents and fatalities, the use of autonomous
active safety systems has become increasingly important. A key component in au-
tonomous active safety systems is how to accurately predict potential future threats.
In this thesis, we use uncertainty aware machine learning models for lane departure
detection by performing time series regression, on real-world automotive data, to
predict the future lateral relative distance to lane markers. We propose a decision
making algorithm based on the estimated probability of departure and evaluate its
performance in terms of the true-positive-rate and false-positive-rate. The perfor-
mance is compared to baseline machine learning models, as well as a kinematic
model that is common in the automotive industry. The results indicate that the
uncertainty aware model, despite delivering well-calibrated uncertainty estimates,
does not improve the decision making performance, when compared to the baseline
machine learning model. Moreover, we show that the ensemble-based models can
be distilled to recover a computationally cheaper model while still retaining most of
the predictive performance of the full ensemble.

Keywords: Collision avoidance, Lane departure detection, Gaussian output net-
works, Ensembles
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1 Introduction

Recently, autonomous active safety systems have become an important cornerstone
in the pursuit of reduced traffic-related fatalities. New sensor technology and cheaper
computational power have accelerated the development of highly effective and ad-
vanced collision avoidance systems. By utilizing collision avoidance systems, fatality-
prone accidents, due to driver mistakes or inattentiveness, could be prevented. One
of the major challenges in the development of an active safety system is how to
accurately predict future threats so to assist the driver correctly.

Essential to automated safety, and especially for Collision Avoidance Systems (CAS),
are real-time, highly robust Threat Assessment (TA) methods. Discerning the cor-
rect threat level using a classical engineering approach is typically hard, especially
in a possibly high dimensional input space provided by the extensive sensor suite of
modern cars. Moreover, due to individual driving skill and style, how to precisely
distinguishing safe or unsafe driving behaviours remains non-trivial.

Furthermore, the system performance is directly dependent on hardware and soft-
ware limitations as well as the driver’s behavior. These factors combined give rise to
predictive uncertainties. Without any information on the predictive uncertainty, an
autonomous intervention can only be based on the threat level predicted by the TA
model. However, if the predictive uncertainty can be estimated, this information
could be included in the decision making process of whether the predicted threat
level warrants an autonomous intervention. By including the predictive uncertainty
in the decision making process, it may be possible to increase the performance of
the collision avoidance system.

In order to estimate the future threat level an accurate prediction model is required.
A possible prediction model for this purpose is a Machine Learning (ML) based
model, that approximates a function relating the input state to an output state.
These relations are purely inferred from data in the form of a training set. An
uncertainty aware ML approach however also relates a confidence measure to this
output state. With the recent rise and success of deep machine learning techniques
in numerous fields, it is of interest to evaluate whether an uncertainty aware ML
approach could be used as a basis for a TA system. By using an uncertainty aware
ML model, it may be possible to capture the complex dynamics and approximate
the threat level using a sufficiently large, excited and annotated dataset for this
specific purpose.

1.1 Collision Avoidance
A collision avoidance system aims to avoid or mitigate collisions. These types of
systems are commonly referred to as Advanced Driver-Assistance Systems (ADAS)
and they all require some sort of TA in order to properly function. A simple example
of a CAS today is blind spot detection, that monitors threats in the driver’s blind
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spot. This system reduces the collision risk by simply informing the driver whether
a lane change is unsafe at the moment.

Adaptive cruise control is another example of a CAS. Such a system keeps a safe
distance to the vehicle in front by adjusting the set speed as well as braking when
necessary. This is done by using sensors to monitor the car in front of the ego
vehicle. Compared to blind spot monitoring, such a system is more powerful as
it actually actuates the car when engaged. Similar systems, such as Lane-Keeping
Assistance (LKA) and Lane-Centering (LC) systems actuate by steering to avoid
lane departures.

1.2 Threat Assessment
The purpose of TA is to predict how a given scenario will evolve over time. Despite
the multitude of existing approaches and methods, TA systems can be divided into
model-based and data-driven methods

There exist a large variety of different model-based threat assessment systems. Ac-
cording to [1] the model based methods can be divided into: Single-Behaviour Threat
Metrics (SBTM), optimization methods, formal methods and probabilistic methods.
Examples of such methods are presented in [2]–[6]. Amongst these methods, this
thesis is limited to SBTM methods for performance comparisons.

In general a SBTM predicts the future threat based on a specific assumptions on
driver actions, i.e. keeping constant velocity or braking with constant acceleration.
An important metric in this matter is Time to Collision (TTC) [7]. Given two
moving objects, TTC is calculated as their relative distance divided by their relative
velocity. Similarly, in the spatial domain, a constant lateral velocity model can be
used to predict the distance to the lane marker [8].

Data-driven methods, such as deep neural networks are very versatile. Recent devel-
opment has resulted in models with impressive performance in complex tasks such
as image classification [9], object detection [10] and natural language processing
[11]. Deep neural networks have also shown promising results when applied to TA
systems [12].

Despite being powerful and versatile, modern deep neural networks do not necessar-
ily output well-calibrated uncertainty estimates [13]. Here, the term well-calibrated
refers to that the predicted uncertainty complies with the true uncertainty. Reli-
able uncertainty information is beneficial in a safety critical application in order to
correctly assess the situation. By including a calibrated uncertainty measure in the
Decision Making (DM), it might be possible to increase the performance of the CAS.

1.3 Project Description
This thesis aims to develop an uncertainty aware TA system capable of detecting
unintended lane departures or run-off-road events before they occur. The system is
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based on a data-driven model that predicts the lateral position of the ego vehicle,
and the associated predictive uncertainty, at a future time horizon H.

A prediction model, based on an Artificial Neural Network (ANN), is trained for
time series regression on real-world automotive data to predict the lateral distance
to the lane marker as well as the associated predictive uncertainty.

The prediction model is then used as a basis for threat assessment to detect lane
departures. The predicted lateral position as well as the associated predictive uncer-
tainty is merged into a single threat level metric, used to make decisions of whether
an autonomous intervention is needed.

Moreover, in real applications computational power is limited in an on-board com-
puter, and the resources must be shared by numerous processes. Therefore, an at-
tempt to reduce the computational complexity of the tested models using ensemble
distillation is evaluated.

In essence this project can be divided into three distinct parts: i) preparation of data
used for training and evaluation; ii) implementing uncertainty aware ML models,
and iii) finally evaluating the implemented models.

1.4 Related Work
In recent years, a lot of progress has been made in uncertainty estimation of data-
driven methods. Various successful approaches exist and are here summarized.

Lakshminarayanan et al. [14] suggest training an ensemble of identical ANNs , where
each ensemble member outputs the parameters of a Gaussian distribution, namely
the mean and the variance. The individual networks are each trained on the full
dataset, but will learn slightly different things due to random initialization. These
models are able to learn the variance from the data by maximizing the likelihood
of the Gaussian output parameters using the negative log likelihood loss function.
Therefore, no explicit target has to be provided for the uncertainty estimate. This
is the main uncertainty aware ML approach used throughout the thesis.

Bui et al. [15] proposes using Deep Gaussian Processes (DGP) for regression. A
DGP is a layered Gaussian process (GP) that resembles ANNs with infinitely wide
hidden layers [16]. When using multiple layers, it is intractable to perform exact
Bayesian inference. Instead, the authors use stochastic expectation propagation as
a Bayesian approximation [17].

Dropout during training is a common method to prevent over-fitting the training
data. However, it may also be used during test time to construct an ensemble based
on a single network. This is called Monte Carlo Dropout (MCD) and according to
Gal and Ghahramani [18] the technique approximates Bayesian posterior inference.
The predictive distribution is obtained by performing a number of forward passes
through the network while sampling different dropout realisations.

Blundell et al. [19] describe a possible approach of Bayesian Neural Networks (BNNs)
that uses weights represented by probability distributions instead of weights repre-

3



sented by a single value. In this case, every weight is defined by its mean and
variance, resulting in an increase in the number of model parameters by a factor of
two. However, getting the exact Bayesian posterior for the large number of weights
of a neural network is intractable and a variational approximation is utilized in-
stead. The authors suggest using a cost function based on minimising the Kullback
Leibler divergence between the weight distributions and the Bayesian posterior on
the weights. Here, the unknown Bayesian posterior is expressed in terms of the
known prior on the weights and likelihood of the data using the Bayes rule. This
cost function regularizes the weights by penalizing too low variances. Such a network
can, using this cost function, be trained using backpropagation and the method has
therefore been named Bayes by backprop. However, training this network is more
expensive than a standard network with the same architecture as the probability
distributions on the weights require more parameters. Much like MCD, the model
output is obtained by sampling multiple realisations of the same network in order
to leverage the weight distributions and get an uncertainty estimate.

Pearce et al. [20] present a Bayesian approximation method applicable in classifica-
tion and regression. They use a method called Randomized Maxmimum a Posteriori
Sampling (RMAPS)1 and show that this can be used to calculate the true Bayesian
posterior given that the parameter likelihood is known in advance. Knowing this
is generally not possible, and an approximate method for obtaining the posterior,
denoted by the authors as Anchored Ensembling, is presented. Unlike Bayes by
Backprop [19], the weights are not represented by probability distributions. For this
method, the predictive output is represented by sample mean, sample variance and
a data noise estimate.

Moberg et al. [21] present an ANN trained to output mean and variance representing
a Gaussian distribution. The predicted Gaussian variance as well as the activations
of the last hidden layer, are then used to perform Bayesian Linear Regression (BLR).
Having access both to the predicted Gaussian variance and BLR gives an estimate
of both the epistemic and aleatoric uncertainty. While already giving good results
in terms of predictive Negative Log-Likelihood (NLL), even better results can be
achieved by using a BLR ensemble.

1.5 Contributions
The main contribution of this thesis is the creation and evaluation of an uncertainty
aware data-driven TA system, and can be divided as follows:

• Implementation of state of the art uncertainty aware ML models on real-world
automotive data for time series regression

• Formulation of an uncertainty aware lane departure detection criterion

• Investigation of the properties and performance of the proposed detection cri-
terion

1Note that the authors refer to this as RMS, but due to the overlap with the more common
interpretation, Root Mean Square, we refer to it as RMAPS.
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• Comparison of the performance of the proposed TA method with respect to
baseline ML models as well as a kinematic model, commonly used in the
automotive industry

1.6 Outline
The remainder of this thesis follows the theory, method, result and conclusion for-
mat. The relevant background theory for regression, ANN, uncertainty estimation
and theory relevant for the implemented models is presented in Chapter 2. In Chap-
ter 3 pre-processing, annotation and usage of the dataset is presented, along with
model implementation details and model training setup. Furthermore, the model
evaluation procedure concludes the method chapter. The evaluation results are
presented in Chapter 4, starting with regression performance. This is followed by
evaluating the predictive uncertainty estimates. Performance in a TA setting then
concludes the result chapter. Finally, a discussion and conclusions for regression
performance and TA evaluation are presented in Chapter 5.
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2 Theory

The methods used throughout the thesis are tailored for an uncertainty aware re-
gression task. This chapter presents fundamentals for regression as well as theory
regarding ML methods that are capable of estimating uncertainty. Different kinds
of uncertainty and how the uncertainty may be calibrated is also described.

2.1 Regression
A simple regression task aims to infer the relationship between some input data x
and a target y. This may be expressed as

ŷ = f(x) (2.1)

where ŷ is the model estimate of y. For the simplest one dimensional linear case,
the data may be visualised on a coordinate system where x represents the input
data and y the target value. Assuming that there is a linear relationship between
these, a line

ŷ = w0 + w1x (2.2)

that fits the available data would be calculated. An example of such a regression
model fit to data of some sort is presented in Fig. 2.1. The linear model seems
suitable in the example, but relationships exist where more complex models are
required to get an acceptable mapping. For such cases, more weights can be used
in order to represent a higher order polynomial such that

ŷ = w0 + w1x+ w2x
2 + ...+ wnx

n = f(x,W). (2.3)

A polynomial of higher order could be better at fitting the data, although it may
also suffer from over-fitting the data points instead of generalizing. This may result
in a model that is good for the training data, but that deviates much from the true
value when exposed to new unseen data.

2.1.1 Frequentist Linear Regression
Frequentist Linear Regression (FLR) is a common way to perform regression [16].
It is based on the concept presented above and may be optimized using different
error metrics such as the absolute or the squared error. The squared error case is
presented here and is also known as the least squares approach. The least squares
error is defined as the squared distance from the predicted point ŷ to the target
point y and is given as

Li(f(xi,W),yi) = (yi − ŷi)2, (2.4)

for the data point i in a given dataset. A function used for optimizing a model like
this is also referred to as a loss or cost function in the literature. Optimal parameters
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Figure 2.1: Regression example. A linear model fits the available training data.

for the entire dataset minimize the average least squares, also known as the Mean
Squared Error loss function

L(f(X,W),y) = 1
N

N∑
i=1

(yi − ŷi)2. (2.5)

This function aims to find the optimal parameters minimizing the loss such that

argmin
W

(f(X,W),y), (2.6)

which has a closed form solution for W. The solution is obtained by differentiating
Eq. (2.5) with respect to the model parameters W for the available training data.
The partial derivatives are then equated to zero for optimal parameters. It can be
shown that this indeed corresponds to a minimum of Eq. (2.5).

The simple linear case corresponds to Eq. (2.2) with the weights w0 and w1, with
the closed form solutions

ŵ1 = xy − x̄ȳ
x2 − x̄2

(2.7)

ŵ0 = ȳ − w1x̄. (2.8)

Here, the bar notation indicate the dataset average. For example, the different bar
notation should be interpreted as

xy = 1
N

N∑
i=1

xy (2.9)

x̄ȳ = 1
N

N∑
i=1

x
1
N

N∑
i=1

y. (2.10)

The same method can easily be extended for polynomials of a general degree n in
matrix form. Each row in the input matrix X then represents one data point as in
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Eq. (2.3)

X =


1 x1 x2

1 ... xn1
1 x2 x2

2 ... xn2
... ... ... . . . ...
1 xN x2

N ... xnN

 . (2.11)

The closed form matrix solution can then be written as

W = (XTX)−1XTy. (2.12)

Note that y represents a column vector of all training targets. With the model in
place, it may be used for predictions as

ŷ = WTx, (2.13)

where x = [1, x, x2, ....xn]T .

2.1.2 Bayesian Linear Regression
Another popular approach to linear regression is Bayesian Linear Regression (BLR).
This approach differs from FLR in the sense that the model consists of probability
distributions instead of a deterministic weight vector. The output of such a model
is therefore also represented by a distribution known as the Bayesian predictive
posterior. Another important difference is that any prior knowledge of the problem
may be included in the model to help it perform better, especially when the available
data is limited.

BLR has its core in the Bayes rule

P (A|B) = P (B|A)P (A)
P (B) , (2.14)

which gives a relationship between the conditional probabilities of two events. The
left hand side denotes the probability of an event A occurring given that another
event B occurs. This is equal to the probability of B given A times the probability
of A divided by the probability of B.

In Bayesian linear regression, Eq. (2.14) is rewritten as

p(W|y,X) = p(y|X,W)p(W)
p(y|X) . (2.15)

and consists of three key parts. These are the Bayesian prior distribution on the
weights p(W), likelihood of the data p(y|X,W) and posterior distribution p(W|y,X).
The prior is a belief of how the data is distributed without having seen it. The like-
lihood indicates the probability of observing the targets given the inputs and model
parameters. Finally, the posterior represents the weight distribution given the avail-
able training data and is used for making predictions. The denominator p(y|X),
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represents the probability of the targets given the input data and is model inde-
pendent. This quantity is a normalization constant, and is in general difficult to
calculate [16].

Finding the posterior is the goal of Bayesian linear regression. The posterior does
not have an analytical solution in general, but special cases exist. The likelihood
and prior can form pairs said to be conjugate [16]. If this is the case, the posterior
will have the same form as the prior and can be calculated analytically. For example,
using a Gaussian prior and likelihood makes the posterior Gaussian as well. The
denominator of Eq. (2.15) is in this case not required for finding the exact posterior.
The proportionality of

p(W|y,X) ∝ p(y|X,W)p(W), (2.16)

is enough for finding the parameters of the Gaussian [16]. The procedure for finding
the parameters is presented below with an assumption that the data noise,N (ε; 0,σ2)
is known. This assumption is not always true and σ2 may be treated as a random
variable itself, but assuming it is known slightly simplifies the procedure. This yields

p(W|y,X,σ2) ∝ p(y|X,W,σ2)p(W|µ0,Σ0), (2.17)

where µ0 and Σ0 denote the choice of parameters for the Gaussian prior.

The posterior p(W|y,X,σ2) only depends on its mean and covariance parameters
which here will be denoted µW and ΣW . The posterior is Gaussian by conju-
gacy, and its parameters can be extracted from the product obtained by multiplying
Gaussian prior and likelihood in Eq. (2.17)

p(W|y,X,σ2) ∝ 1
(2π)N/2|σ2I|1/2

exp
(
−1

2(y−XW)T (σ2I)−1(y−XW)
)

× 1
(2π)N/2|σ2Σ0|1/2

exp
(
−1

2(W− µ0)TΣ−1(W− µ0)
)

∝ exp
{
−1

2

( 1
σ2 (t−XW)T (t−XW) + (W− µ0)TΣ−1

0 (W− µ0)
)}

.

As mentioned, the posterior is Gaussian by conjugacy. Therefore, constants that
don’t include W may be omitted, which results in

p(W|y,X,σ2) = N (µW ,ΣW ) ∝ exp
{
−1

2(WTΣ−1
W W− 2µTWΣ−1

W W)
}
. (2.18)

Rewriting this further gives expressions for the posterior parameters

ΣW =
( 1
σ2 XTX + Σ−1

0

)−1

µW = ΣW ( 1
σ2 XTy + Σ−1

0 µ0).

This motivates why the constant parameters may be omitted. Note also how the
choice of prior parameters affect the posterior.
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Table 2.1: Examples of conjugate prior pairs. More examples can be found in [16].

Prior Likelihood Posterior

Gaussian Gaussian Gaussian
Gamma Gaussian Gamma
Beta Binomial Beta

Table 2.1 summarizes some additional conjugate prior pairs that gives an analytical
posterior following the same procedure as above. For the cases where an analytical
solution cannot be found, it is possible to draw samples from the the known prior
and likelihood to get an approximate posterior. This is a common approach, and
is utilized in other Bayesian methods such as Bayes by Backprop and MCD. These
methods are introduced in Section 2.5.

2.2 Artificial Neural Networks
In this section some of the underlying theory for Artificial Neural Networks is pre-
sented. ANNs are common machine learning models to use, and lots of variations
exist for different applications. This section is limited to the function and training
of a basic ANN. For a more thorough introduction see [22].

2.2.1 Artificial Neural Networks
Artificial Neural Networks (ANN) are general mathematical function approximators
that can be used for tasks like regression and classification. In short, an ANN is
trained to map a set of inputs x to a desired target y using a dataset of known
mappings to infer the parameters W of the model such that:

ŷ = f(x,W), (2.19)

where ŷ indicates a model prediction. The ANN is trained to generalize from the
training data and can then be used to make predictions for new, previously unseen
data.

An ANN consists of layers of neurons (nodes) connected by weight links (edges) as
illustrated in Fig. 2.2. A vanilla feed forward ANN is fully connected, in the sense
that every neuron has an individual link to each neuron in the next layer. This
kind of vanilla ANN is also referred to as a Multilayer Perceptron (MLP). A MLP
is schematically propagated from left to right, with inputs to the left and outputs
to the right.

More formally, given an input x ∈ Rn the output or activation a of a single neuron
is given by

a(x) = g(z) = g(wTx + b), (2.20)
where w ∈ Rn are weights specific for the neuron, g is a differentiable activation
function and b is a bias term. By including the bias term it is possible to shift the
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x1

x2

x3

ŷ

Figure 2.2: A schematic representation of a neural network with three input neu-
rons and one output neuron.

activation function, which is not possible using only the term wTx. The bias b can
be considered as an additional weight associated to the neuron and can be rewritten
as such e.g. w̃ = [wT , b]T and x̃ = [xT , 1]T .

Single neurons can be grouped into a layer l containing m neurons and a MLP
can then be constructed by assembling L layers, with possibly different numbers of
neurons in each layer. The output al ∈ Rm

l of layer l > 1 can then be computed
using the output of the preceding layer l − 1 as

al = g(zl) (2.21)
zl = Wlal−1 + bl, (2.22)

where Wl = wlij connects the j:th neuron in layer l − 1 to the i:th in layer l and
bl = bli is the bias vector containing bias of each neuron i in layer l. Moreover, the
activation function g(·) is applied element-wise to the intermediate zl. In the case of
the final layer l = L it is common to use a different activation function appropriate
for the current problem setting. For the case of regression, a linear mapping g(x) = x
is preferred. For the specific case l = 1, often referred to as the input layer, the
activation a1 is simply given by a linear mapping of the input x ∈ Rn

a1 = x. (2.23)

By using a linear activation function g the MLP may only learn a linear mapping
from the training data relating the input state to the output state. However, if
the activation function is non-linear the MLP may learn to approximate more com-
plex non-linear mappings. Common choices for activation functions include the
Rectified-Linear-Unit given as ReLU(x) = max(0, x), the sigmoid function, given as
Sigmoid(x) = 1

1+exp(−x) or the tanh function, which are all shown in Fig. 2.3. Note
that the ReLU is the most commonly used activation function [23] today.

2.2.2 Training
Since a MLP is a composition of differentiable parts the full MLP is differentiable
as well. By defining a loss function

L(f(x,W),y) = L(ŷ,y), (2.24)
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Figure 2.3: Common activation functions used for ANNs.

it is possible to train the MLP. As an example the Mean Squared Error between the
predicted output and the true targets is often used as a loss function for regression.

By differentiating L with respect to the weights and biases of the model, it is possible
to find how these contribute to the loss and adjust them in order to minimize the loss.
This can be done effectively using the chain rule and memoization to compute the
gradients of the loss function with respect to the weights and biases. This process is
commonly referred to as backpropagation and is the standard way of training ANNs.

Starting from the output layer the error δl can be computed recursively as follows

δl−1 = g′(zl)� (Wl)T δl (2.25)
δL = g′(zL)�∇aLL, (2.26)

where g′ is the derivative of the activation function and � indicates element-wise
multiplication. The gradients of the loss function with respect to the parameters of
a layer l is then given by

∇WlL = δl(al−1)T (2.27)
∇blL = δl. (2.28)

Given the gradients of the loss function with respect to the weights and biases it is
possible to use gradient descent methods to minimize the loss

Wl ←Wl − η∇WlL (2.29)
bl ← bl − η∇blL, (2.30)

where η is the step size, or more commonly referred to as the learning rate. Using
the full dataset to update the parameters of the ANN is referred to as one epoch. It
is common to train the ANN for multiple epochs using the training data multiple
times to minimize the loss.
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Although it is in principle possible to compute the gradients using the full dataset,
this is rarely done. Instead, it is more common to compute the gradient using small
subsets of the full dataset, so called mini-batches, and update the weights and biases.
Thus, one epoch consists of multiple weight and bias update steps. The main benefit
of using mini-batch gradient descent, also known as stochastic gradient descent, is
that it renders the training process tractable for large datasets and it may improve
the ANNs ability to generalize [24].

Adam [25] is a popular optimizer algorithm based on stochastic gradient descent.
It uses an adaptive learning rate involving the current and previous gradients. This
is a handy feature, since the selecting a suitable learning rate is often non-trivial.
Adam is usually a good first choice, even though other optimizers may be more
efficient in certain cases.

From the general formula of the gradient for an arbitrary layer, presented in Eqs. (2.27)
and (2.28), a problem with using the the sigmoid and tanh as activation functions
becomes apparent. Namely, they saturate for large positive and negative inputs z,
that is g′ → 0, causing the gradient to vanish. This happens since

|∇lL| ∼ (g′(z))L−l, (2.31)

where |∇lL| is the magnitude of a gradient vector for the layer l. This slows down
learning and is called the vanishing gradient problem that can be especially prob-
lematic for deeper networks with many layers. A solution to the vanishing gradient
problem is to use the ReLU activation function which has a constant derivative of
one for z > 0.

2.2.3 Regularization
ANN models may vary infinitely by adjusting the number of hidden layers as well as
the number of hidden neurons in them. Smaller models have in general less capacity,
meaning that they cannot learn the most complex behaviors. Too large models may
on the other hand be prone to over-fitting the data instead of generalizing. Over-
fitting an ANN is basically the same concept as for FLR, where a complex high order
model would fit all training points. By over-fitting the model to the training data it
does not generalize well to new unseen data resulting in poor performance. There
are however methods for reducing over-fitting, often referred to as regularization.

While training an ANN a validation set is often used. This is an often small subset
of the dataset, and is different to the training set. After each epoch the validation
set is used to evaluate the loss without updating the weights. This is done in order to
determine whether the model is still learning or if the model has begun over-fitting
the training data. The validation loss usually decreases for the initial epochs until,
at some point, it starts increasing again. The increase of validation loss is a sign
of over-fitting and the training may be stopped at that point. This regularization
method is called early stopping.

Another common method of regularization is L1 or L2 regularization, where a
penalty is imposed on the norm of the weights. This penalty is added to the loss
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function in order for the training process to favour smaller weights, resulting in a
simpler model. Specifically, the penalty is given by

λ
∑
k

|wk| or λ
∑
k

w2
k (2.32)

for the L1 and L2 case respectively, where wk are the weights of the model and
λ > 0.

Other regularization methods include weight decay [26] where in addition to updating
the weights according to the gradients in Eqs. (2.27) and (2.28), the update step
also subtracts a constant times the weight. This procedure reduces the norm of the
weights, resulting in a simpler model.

Another regularization method is dropout [27] where the activation of a neuron is set
to zero with some probability p ∈ (0, 1). Dropout can be used for all neurons or just
be applied to single layers and is often only used during the training process. Using
dropout forces neurons to learn different things and use the available information
more efficiently, thereby reducing over-fitting and improving generalization.

2.2.4 Ensembles
While a single ANN may be performing well for a given task, it is also possible to use
a collection of multiple ANNs trained for the same task. This is commonly known
as an ensemble of ANNs and has some advantages over single models.

One approach is to use an ensemble with models of the same architecture with ran-
domly initialized weights and biases. The random weight initialization and stochas-
ticity in the training should bring the models into different local minima of the loss
function and by that give them slightly different predictive properties [14]. It is also
possible to train the models on different subsets of the data if a sufficient amount
of data exists.

A trained ensemble may then be used for predictions in multiple ways. One way
to do this is weighting ensemble members differently based on loss function scores.
However, since the models are trained on the same data, similar losses are likely
obtained and a simple average prediction may be used instead

ŷ = 1
M

M∑
m=1

ŷm. (2.33)

Here, ŷ refers to the ensemble prediction and ŷi to the individual model predictions.
The averaging properties of an ensemble tend to give more robust and accurate
predictions than a single model.

Another useful property of using an ensemble is the sample variance of the ensemble
members, which could be used as an uncertainty estimate. The sample variance is
given by

σ2 = 1
M

M∑
m=1

(ŷm − ŷ)2, (2.34)
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and is an indicator of the assembly disagreement. Models vastly disagreeing for
some given sample may be an indication that the result should be looked at with
caution.

2.3 Dynamic and Kinematic Models
In order to describe the time evolution of a system, a dynamic model can be used.
Such a dynamic model describes the movement of an object over time as a function
of the forces applied to the object. A common dynamic model used to describe
vehicles is the Bicycle model.

In the context of lane departure detection it can be reduced to an in-lane form
considering only the lateral and yaw dynamics. In this setting the dynamics of the
bicycle model takes the form [28]

mv̇y = −mvxψ̇ + 2(Ff + Fr) (2.35)
Jzψ̈ = 2(lfFf − lrFr) (2.36)

where m is the mass of the vehicle, Jz the yaw inertia, lf and lr are the distance
from the front and rear axles to the center of gravity, vx and vy the longitudinal and
lateral velocity, Ff and Fr are the lateral force applied to the front and rear axles,
and ψ̇ is the turning rate with the orientation ψ defined with regards to a global
frame. While the vehicle frame is defined such that the y-axis points to the left side
of the vehicle and the x-axis points forward.

Performance comparisons in TA are often presented relative to some reference model.
It is therefore important that the reference model is simple to implement, such
that the reported performance is reproducible. Although it is possible to use a
dynamical model as a reference model, it has some drawbacks. Namely the fact
that a dynamical model requires multiple parameters, specific to the vehicle and
which may vary over time, to be estimated in order to produce accurate predictions.
Therefore, recreating an equivalent dynamical model as a baseline can be difficult for
others who are using a different dataset. Especially since datasets in the automotive
industry are sometimes proprietary, as is the case for the dataset used in this thesis.

A solution to these problems is to use a simple kinematic model as a reference
model instead, where the movement of the vehicle is described using Newton’s laws
of motion, removing the need to estimate a large number of parameters. In this
sense the kinematic model is agnostic to the properties of the specific vehicle and
dataset and is therefore easy to reproduce.

In the automotive industry it is common to use kinematic models to compute
SBTMs. By only considering a single future behaviour, it is possible to use simple
model based state propagation to derive threat level metrics. These metrics can be
divided into time, distance or acceleration domains. One such threat metric is the
Time-to-Lane Crossing (TLC).

Although SBTM often produce simple threat metrics with a low computational cost,
they represent the threat level in an idealized setting. Namely, they assume that in
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any given situation the intention of every participant is known, or at least does not
influence the trajectory mandated by physical state propagation. This assumption is
reasonable for sufficiently short prediction horizons where every traffic participants
trajectory can be considered deterministic.

The estimated TLC can be derived using a Constant Velocity Model (CVM). By
assuming that the instantaneous lateral velocity will remain constant until a lane
crossing event occurs. This assumption will produce accurate TLC predictions given
a sufficiently straight road, which is a valid assumption for highway and country road
driving conditions.

In order to compute the estimated TLC using a CVM, lateral velocity and lateral
distance to either lane marker are needed. The lateral velocity u� can be found from
longitudinal velocity v as well as the heading α� relative to either lane marker. The
lateral velocity is given by

u� = sin(α�)v , (2.37)

where � is a wildcard symbol used to represent either the left or right side of the
vehicle. Dividing the lateral distance to either lane marker with the associated
lateral velocity

TLC = d�

u�
, (2.38)

yields the estimated TLC. The TLC can then be used for a decision of whether an
autonomous intervention is necessary.

2.4 Sources of Uncertainty
Uncertainty estimation is a valuable asset in data science and machine learning where
it can provide additional insights when using model predictions. For example, a de-
cision based on an erroneous prediction could be avoided if the model prediction is
accompanied by a high uncertainty estimate. Furthermore, it is possible and useful
to decompose uncertainty into two different types. Namely, by decomposing the un-
certainty into aleatoric and epistemic uncertainty it is possible to better understand
and use uncertainty measures.

Collected data generally contains inherent noise, affecting the output of a predictive
model. Sensor inaccuracies or the outcome of a random process, such as a roulette
wheel, are examples of such uncertainties. In Bayesian modelling, uncertainties
inherent to the data are referred to as aleatoric uncertainty [29]. The aleatoric
uncertainty can not be reduced by collecting more data, which perhaps is most clear
in the roulette wheel example. While being irreducible, the aleatoric uncertainty
can still be estimated.

Epistemic uncertainty, or model uncertainty, corresponds to facts that could be
known to the model but are not. Unlike aleatoric uncertainty, it is possible to
reduce the epistemic uncertainty by adding more informative data. Hence, an in-
finitely large dataset, exploiting the entire sample space, would tend the epistemic
uncertainty to zero.
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Inspired by [30], one can use the law of total variance in an attempt to formalize
the notion of aleatoric and epistemic uncertainty. Using the variance of a random
variable y ∈ R as a measure of uncertainty it may be decomposed as

Var[y] = Eq(W)[Var[y|W]]︸ ︷︷ ︸
Aleatoric

+ Varq(W)[E[y|W]]︸ ︷︷ ︸
Epistemic

, (2.39)

where W is the parameters of the model and the subscript q(W) indicates that
the quantity is taken over the posterior of W. The first term is the average of
Var(y|W) over q(W), as such this term ignores any contribution to the uncertainty
of y coming from W, and can be interpreted as aleatoric uncertainty. While the
second term is the variance of E[y|W] when W ∼ q(W), and therefore only considers
the contribution of W to the uncertainty.

Moreover, from this decomposition it is also possible to see that the epistemic un-
certainty can be removed provided that sufficient training data exist. Specifically,
as more information is accumulated the posterior q(W) will concentrate and the
second term will vanish. At the same time Eq(W)[Var[y|W]]→ Var[y], leaving only
the intrinsic uncertainty as expected.

Furthermore, it is useful to distinguish two different types of noise or variance, which
in turn gives rise to aleatoric uncertainties. The two different assumptions on the
variance can be divided into homoscedastic and heteroscedastic variance. In the
former case, the variance is constant and independent of the input state. While in
the latter case the variance varies with the input state. Although, the homoscedastic
case is easier to model, it is not a valid assumption in some scenarios.

2.5 Uncertainty Aware Neural Networks
ANNs may be used to capture the different types of uncertainty. As previously
mentioned, it is possible to use an ensemble of standard MLPs in order to get a
sample variance corresponding to an epistemic uncertainty estimate. This section
presents different ANN approaches capable of estimating uncertainty, namely Gaus-
sian MLPs, Bayes By Backprop and Monte Carlo Dropout. Note that only Gaussian
MLPs and ensembles of such models are considered in this work, and that the re-
maining methods are provided for additional information on how uncertainty may
be estimated using ANNs.

2.5.1 Gaussian MLPs
One way for an ANN to estimate uncertainty is to make it approximate a Gaussian
distribution. This can be done by training the model to output the Gaussian dis-
tribution parameters µ and σ2 through a special Gaussian output layer. So, instead
of just giving a point estimate ŷ(x) for each input x, the Gaussian output layer
produces the parameters of a Gaussian distribution. Each prediction then consists
of the Gaussian mean µ̂ with variance σ̂2 as an aleatoric uncertainty estimate. Such
a layer cannot be trained by the MSE loss function, since an explicit target for the
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output variance does not exist in general. However, by using a training criterion
defined by the maximization of the likelihood, the uncertainty may be inferred with-
out an explicit target. In the rest of this section an example will be presented, in
order to provide some intuition of how the uncertainty may be inferred.

Although it is possible to approximate y = f̂(x) directly, it is sometimes insufficient
in real-world situations, since in most real-world situations the measurements y(x)
are corrupted by noise. Therefore, it is reasonable to assume that the measurements
y(x) can be modeled as

y(x) = f(x) + ε(x), (2.40)

where f(x) is the true value corrupted by additive heteroscedastic noise ε(x) ∼
N (0, σ2(x)). The observations y(x) are then given by y(x) ∼ N (µ(x), σ2(x)), where
µ(x) = f(x).

Given a dataset containing targets y1, . . . ,yN corrupted by noise and corresponding
inputs x1, . . . ,xN , it is possible for the model to also infer the predictive uncertainty
associated with some input x. Assuming the measurements yi to be a sample from a
Gaussian distribution with the predicted mean µ̂(xi) and variance σ̂2(xi) parameter-
ized by the Gaussian output layer, the model may learn to estimate the uncertainty.
In practice this is realized by maximizing the likelihood

p(y1, . . . ,yN |x1, . . . ,xN) =
N∏
i=1

p(yi; µ̂(xi), σ̂2(xi)), (2.41)

with the assumption that y1, . . . ,yn are independent. It is equivalent and numerically
preferable instead to maximize the logarithm of the likelihood function

N∑
i=1

log p(ŷi; µ̂(xi), σ̂2(xi)), (2.42)

where each term of the sum takes the form

− 1
2 log σ̂2(xi)−

1
2σ̂2(xi)

(yi − µ̂(xi))2 − 1
2 log(2π). (2.43)

By convention, training a neural network is a minimization task and the final loss
function is instead the Negative Log Likelihood function (NLL) [14]

NLL = 1
2 log σ̂2(x) + 1

2σ̂2(x)(y − µ̂(x))2 + C, (2.44)

where C is a constant. With the NLL loss function it is therefore possible to capture
the inherent noise of the data without explicitly having a target for it. An MLP
with a Gaussian output layer is here referred to as a Gaussian MLP (GMLP), and
an example of such a network is illustrated in Fig. 2.4.
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Figure 2.4: A schematic representation of a neural network with three input nodes
and a Gaussian output layer parameterizing a Gaussian distribution.

2.5.2 Gaussian Ensembles
Ensembles of standard MLPs (MLPE) are, as mentioned earlier, useful for producing
more robust outputs and for providing an epistemic uncertainty estimate using the
sample variance. A Gaussian MLP ensemble (GMLPE) has the same advantages,
but is also able to estimate aleatoric uncertainty. Such an ensemble may be seen as
a Gaussian mixture model

p(y;µ(x) , σ2(x)) = 1
M

M∑
m=1
N (y;µm(x) , σ2

m(x)). (2.45)

A Gaussian mixture model is a sum of multiple Gaussian distributions and is often
used in clustering applications[16], but may also be used for regression. The mixture
prediction of the GMLPE then consists of the mixture mean µ(x) and variance σ2(x),
given by

µ(x) = 1
M

M∑
m=1

µm(x) (2.46)

σ2(x) = 1
M

M∑
m=1

(
σ2
m(x) + µ2

m(x)
)
− µ2(x) . (2.47)

The mixture variance may be seen as a total uncertainty measure, and can therefore
be divided into an aleatoric and an epistemic uncertainty estimate. This is done by
rewriting the total uncertainty given in Eq. (2.47) and dividing it into an aleatoric
and epistemic uncertainty:

σ2(x) = 1
M

N∑
m=1

σ2
m(x) + 1

M

N∑
m=1

µ2
m(x)−

(
1
M

N∑
m=1

µm(x)
)2

= E[σ2
m]︸ ︷︷ ︸

Aleatoric

+ Var[µm]︸ ︷︷ ︸
Epistemic

(2.48)

A regression toy example in Fig. 2.5 illustrates the benefits of the different uncer-
tainty estimates obtained using a GMLP and a GMLPE. The black line indicates
ground truth with training samples denoted as gray dots. The samples are drawn
with additive heteroscedastic Gaussian noise ε ∼ N (0, σ2(x)) with σ2 varying as

σ2(x) = (|x|+ 0.2)2. (2.49)
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The GMLP manages to follow the ground truth well and gives a good aleatoric
uncertainty estimate that captures the varying noise level. The GMLPE is also able
to capture the aleatoric uncertainty, but additionally produces a more reliable total
uncertainty estimate outside the training interval of x ∈ [−0.6, 2.4].
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(b) Gaussian MLP Ensemble

Figure 2.5: A GMLP and a GMLP ensemble evaluated on a toy regression task
with heteroscedastic noise. The uncertainty estimates are illustrated as two standard
deviations (µ ± 2σ). Note that the aleatoric and epistemic uncertainty estimates
for the GMLP ensemble are stacked so that the outer bound represents the total
uncertainty.

2.5.3 Bayes By Backprop
Bayesian Neural Networks (BNN) are an extension of standard MLPs that are ca-
pable of providing an uncertainty estimate to the output. This is done by using
Bayesian posterior inference [31], much like what is done in BLR.

Blundell et al. [19] propose a BNN method referred to as Bayes by backprop. This
approach uses a posterior network where each weight in the network is represented by
some probability distribution. At test time, weights are drawn from their respective
distribution and the inputs are propagated through the fixed weight network. The
output is then averaged over multiple such network samples to obtain a predictive
posterior distribution.

The true Bayesian posterior can be expressed using the Bayes rule,
p(W|D) ∝ p(D|W)p(W), (2.50)

where p(D|W) being the likelihood and p(W) the prior. Given the prior and like-
lihood, it is possible to measure how the posterior approximation differs from the
true posterior. A measure that does this is the Kullback-Leibler (KL) divergence
and is defined as

KL(p||q) =
∫ ∞
−∞

p(x) log
(
p(x)
q(x)

)
dx , (2.51)
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where p and q are probability distributions.

The authors of [19] suggest training the models by using a variational approximation
q(W|θ) of the Bayesian posterior on the weights. This approach leads to finding
the network parameters θ that minimise the KL divergence between the predictive
posterior distribution, being the BNN, and the true Bayesian posterior

θ∗ = argmin
θ

KL[q(W|θ)||p(W|D)]. (2.52)

Here θ∗ represents the optimal model parameters and p(W|D) is the sought true
Bayesian posterior. The posterior can be rewritten in terms of a known prior and a
likelihood in order to define a loss function minimizing the KL divergence

L(D,θ) = KL[q(W|θ)||p(W)]− Eq(W|θ)[log p(D|W)]. (2.53)

The second term acts as a regularizer and is needed to prevent the weight distribu-
tions from narrowing down too quickly during training.

This approach of BNNs uses backpropagation to update the model parameters.
However, normal gradients are not used due to the weights being represented by
probability distributions and thereby random variables. So called unbiased Monte
Carlo gradients can then be used instead. The derivatives are taken with respect to
the expectation of the random variable, which in this case may be expressed as the
expectation of a derivative. This enables an approximation of the loss function as

L(D,θ) ≈
T∑
t=1

log q(Wt|θ)− log p(Wt)− log p(D|Wt), (2.54)

where the loss is averaged over T that sampled weight configurations Wt.

As for BLR, the choice of prior and likelihood determines the posterior distribution
shape. For a Gaussian prior and likelihood the posterior will also be Gaussian, even
though an analytical solution is intractable. At test time, samples are then drawn
from the posterior network in order to get an approximate predictive posterior for
a certain input. The characteristics of the predictive posterior is then used as a
predictive mean with an associated uncertainty measure.

2.5.4 Monte Carlo Dropout
Dropout [27] is, as previously mentioned, a method commonly used to prevent over-
fitting the data in an ANN. During training, the activation of any neuron is set
to zero with a certain probability 1 − p. Note that also input neurons may be
set to zero, although with a lower probability. The authors of [27] suggest using
ph = 0.5 for hidden neurons and pi = 0.8 for input neurons. The procedure of
dropping out neurons can be done for every training sample or batch-wise for higher
computational efficiency. At test time, all neurons are used, but their outputs need
to be scaled by ph and pi to compensate for the higher number of neurons.

It is also possible to utilize dropout during test time. Then, the same data is passed
forward through the network multiple times, but with a new dropout configuration
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each time. Doing this results in different outputs and a predictive mean and variance
measure may be calculated.

The method of dropping out neurons at test time is called Monte Carlo Dropout
(MCD) and according to the authors, the technique approximates Bayesian in-
ference. They show, in their appendix paper [32], that MCD minimizes the KL-
divergence between the approximate distribution and the posterior p(W|y,X) of a
deep Gaussian process, with the minimization objective being

−
∫
q(W) log p(y|X,W) dW + KL(q(W)||p(W)). (2.55)

Here q(W) represents the approximate distribution obtained by MCD, p(y|X,W)
the deep Gaussian process likelihood and its prior p(W). The exact motivation
for MCD approximating the posterior of a deep Gaussian process is quite extensive
and as this method is not used in the thesis, we recommend reading Section 3 in
[32]. Weight decay as described in Section 2.2.3 is also utilized in the example
implementation of MCD.

Formalized, the predictive mean using MCD is obtained as:

Eq(y|x)[y] = 1
T

T∑
t=1

ŷ(x,Wt), (2.56)

where Wt are the sampled weight configuration for a forward pass t. This can be
recognized as model averaging for any probabilistic model. The uncertainty measure
then basically consists of the sample variance over the T forward passes plus the
inverse model precision as

Varq(y|x)[y] = τ−1ID + 1
T

T∑
t=1

ŷ(x,Wt)T ŷ(x,Wt)− Eq(y|x)[y]TEq(y|x)[y], (2.57)

where y is represented as a row vector and τ−1 denotes the inverse model precision.
τ−1 is dependent on the design choices for the model and is defined as

τ−1 = 2Nλ
pl2

, (2.58)

where N is the number of training samples, λ the weight decay rate, p the dropout
rate and l is the prior length scale used during training.

2.6 Uncertainty Calibration
Calibration is, in the field of uncertainty aware machine learning methods, a quality
measure of the predicted uncertainty. The underlying idea of this is that a well cali-
brated model should output uncertainty estimates that match the true uncertainty.
Multiple metrics exist for evaluating the calibration, some of which are presented
here. Note that the GMLP based models proved to be well-calibrated for the prob-
lem studied in in thesis, and that additional calibration was therefore not necessary.
A brief explanation of calibration methods is still included for reference.

23



2.6.1 Proper Scoring Rules
Scoring rules are used to quantify how well a model predicts its own uncertainty
and are usable when comparing models [14]. Scoring rules are defined to follow

S(pθ,q) =
∫
q(y,x)S(pθ,(y,x)) dy dx , (2.59)

where pθ(y|x) is the predictive distribution and q(y|x) the true distribution.

Scoring rules that fulfil S(pθ,q) ≥ S(q,q) are said to be proper scoring rules, with
equality only if the predictive distribution and the true distribution are the same.
This means that a proper scoring rule may be minimized as a loss function, which
actually is the case for the Gaussian MLP models used in this thesis.

There exist many proper scoring rules such as Negative Log Likelihood (NLL),
Brier score [33] and Expected Calibration Error (ECE) [34]. NLL is a common loss
function for ANN training, and is what is used to train the Gaussian MLPs. Brier
score is used to measure accuracy in a classification setting, where the model outputs
a per class probability.

ECE is a measure for finding how well calibrated model uncertainty estimates are,
and can be used for both classification and regression [35]. ECE is in the classifica-
tion case given by

ECEclass =
J∑
j=1

|Bj|
N

(|Acc(j)− Conf(j)|). (2.60)

This formula is perhaps best explained by an example.

In the case of classification, the output probabilities are binned into J equally sized
intervals. A resolution choice of 1 % results in a bin width of 1 %. For each binBj, the
difference between the average true accuracy, Acc(j), and the predicted confidence,
Conf(j), is calculated. View the confidence bin Bj = [79 %, 80 %) specifically. First,
all predictions with a confidence level in Bj are collected. Denote the fraction of
predictions in Bj being correct as Acc(j) and the confidence level, Conf(j) = 79.5 %,
as the mean of the bin boundaries. Then, the absolute difference between Acc(j)
and Conf(j) is calculated. For a well calibrated model, Acc(j) should be close to
Conf(j) = 79.5 %. Each confidence bin may contain different numbers of samples
|Bj|. Each interval is therefore also weighted by the number of samples in it, divided
by the total number of samples, N .

In the regression case there are no probabilities of a given output. Instead, confi-
dence intervals are binned up in the same manner as the previously mentioned class
probabilities. Now, Acc(j) denotes the fraction of targets being inside a confidence
interval Conf(j). All predicted points are used for every confidence interval. There-
fore, no weighting has to be done and the ECE is given by the average error of all
intervals as

ECEregr = 1
J

J∑
j=1

(|Acc(i)− Conf(i)|). (2.61)
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Figure 2.6: Example of a reliability plot. In this case model is underconfident for
the smaller confidence intervals and overconfident for the larger.

A natural extension to the ECE is reliability plots. These are used to see how well
calibrated the models are for the different class probabilities (classification) and
confidence intervals (regression). Here, the unweighted quantity Acc(j) is plotted as
a function of Conf(j). The desired look of the plot is a unit mapping between Acc(j)
and Conf(j) for all confidence levels. Higher accuracy than confidence means that
the model is underconfident whereas lower accuracy corresponds to an overconfident
model. This is illustrated in Fig. 2.6.

2.6.2 Calibration of Uncertainty
If the proper scoring rules indicate an uncalibrated model, it is possible to calibrate
the models to compensate for this. Many such methods can be applied after training
the models, allowing for calibration of already existing models. Methods for this in-
clude temperature scaling [13], which recalibrates the uncertainty estimates without
altering the accuracy of the model. Temperature scaling is commonly applied to the
softmax outputs of a classification model as

pc = exp(zc/T )∑C
c=1 exp(zc/T )

(2.62)

and adjusts the shape of the probability density function. During training the
temperature, T = 1 is used [36].

Much calibration work has been conducted towards classification, which is a seem-
ingly easier task than calibrating regression models. Classification has a fixed num-
ber of discrete classes while regression is continuous.

Some calibration methods for regression are inspired by classification, where the
regression outputs are binned into smaller discrete intervals. Keren et al. [36] propose
using a softmax output layer for regression value intervals. This turns the regression
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problem into a classification task that may be calibrated using temperature scaling
for example.

Calibration methods tailored for regression do however exist. Quantile calibration
[34] and distribution calibration [37] are examples of such methods. Quantile cali-
bration adds a calibration mapping function c(τ) to the regression outputs. Much
like ECE and the reliability plots, the calibration is computed for a given quantile τ
of the cumulative density function (CDF). The key idea is to use isotonic regression
for finding c(τ) such that the model fulfills

P(Y ≤ y|X = x) = τ (2.63)

for all quantiles τ ∈ [0,1]. Isotonic regression is a parameter free model that may
learn the true distribution given enough i.i.d data [34].

Song et al. [37] argue that quantile calibration is a global calibration method that
does not take the individual predictions into account. The model is calibrated
on average, but not in individual cases. Their method, distribution calibration,
resembles quantile calibration but instead uses a β-calibration map [38] to get a
local calibration. The β-calibration map has three parameters that are found using
Gaussian process regression.

2.7 Ensemble Distillation
Ensembles of standard or Gaussian MLPs are used to increase the predictive perfor-
mance by averaging over multiple models to yield a more robust prediction. While
the increased performance of an ensemble is desirable, it comes at the cost of an
increased computational complexity. For some applications this may be acceptable
and justified by the performance boost. However, some environments are very lim-
ited in terms of computational resources and using an ensemble model may not be
feasible. Being able to transfer the predictive properties of an ensemble down to a
single network would reduce the computational complexity and make the model suit-
able for a wider variety of applications. This process is called ensemble distillation,
and in this section two such methods are presented.

Buciluǎ et al. [39] propose to train a distillation model using the same inputs as the
ensemble, but to use the ensemble output as the training target. This should give the
distilled model similar predictive properties as the ensemble for the training data.
However, to further make the distilled model behave like the ensemble, additional
unlabeled training data should be used as well using the ensemble to annotate the
data. In cases where additional training data cannot be collected, synthetic data
can be used instead. Synthetic data may be generated in different ways, such as
distorting inputs or swapping input features of the existing training data. The
authors do however note that real data is preferable to synthetic data if available.

The presented distillation method [39] is capable of reducing the ensemble down
to a single network while keeping much of the ensemble performance.Lindqvist et
al. [40] extend this work, by presenting a framework for distilling Gaussian MLP
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ensembles that also retains the ensembles’ ability to estimate aleatoric and epistemic
uncertainty. The epistemic part is added to the model by outputting a higher order
probability distribution than the original ensemble members. The specific case of
Gaussian MLP ensemble is used as an example here, but the framework is general
and may be applied to other uncertainty aware ensemble models.

In essence, a one-dimensional GMLP outputs a Gaussian distribution parameterized
by a vector

z = [µ, σ2], (2.64)

with the predictive mean µ and aleatoric uncertainty σ2. While the elements of z
parameterize a probability distribution, they may also be seen as random variables.
Hence, it is possible to model µ and σ2 as Gaussian distributions themselves. This
can be achieved by setting the individual ensemble member outputs as targets for
the distilled model. In practice, the number of training samples is scaled by the
ensemble size.

The reason for doing so is that the mean, aleatoric and epistemic uncertainty may
then be predicted by a single network. This, such that µ and σ2 are set as regression
targets, resulting in an output vector of

zdistilled = (E[µ],Var[µ]), (E[σ2],Var[σ2]). (2.65)

Here, E[µ] and E[σ2] are the expected mean and aleatoric variance and are used as
such. Var[µ] now represents the spread of the ensemble, and is used as the epistemic
uncertainty estimate. The remaining element, Var[σ2] is the variance of the aleatoric
variance, and is not used here. This, since only the mean, aleatoric and epistemic
variances correspond to ensemble properties properties sought to adapt. A total
uncertainty estimate can be obtained by summing the aleatoric and epistemic parts.

27



28



3 Method

This chapter is divided into four parts. The first part focuses on the dataset with
its signals, data extraction and annotation process. The second part focuses on the
model implementation and training procedure. While the third part describes the
Threat Assessment system. Finally, the fourth part details the evaluation process
in terms of regression and threat assessment.

3.1 Data
The following section describes the dataset used in this thesis, starting with an
explanation of the sensor readings. The data extraction and annotation process is
then presented.

3.1.1 Signal Configuration
The dataset used in this thesis is proprietary and managed by Zenuity. It contains
time series data of in-car sensor readings, sampled at fs = 1/Ts = 40 Hz. The data
was collected by different vehicles in multiple countries under various weather con-
ditions. The dataset mainly represents the state of the car as well as the properties
of the road approximately 100 m ahead. The dataset consists of multiple signals,
among which:

• lane-marker polynomials p�t relative to the ego vehicle estimated from a forward
facing camera,

• range of view r�t for which the polynomials are valid,

• longitudinal velocity vt,

• yaw rate ωt,

• front wheel angle δt,

• the longitudinal acceleration at.

An illustration of the system and variables is provided in Fig. 3.1.

The left and right approximate lane-marker polynomial plt and prt , respectively, at
time instance t are defined as follows:

p�t (xt) = a�0,t + a�1,txt + a�2,tx
2
t + a�3,tx

3
t , (3.1)

where xt is the longitudinal distance and � can be replaced to obtain the polynomial
for the respective side. Using this definition, the distance to either lane marker at
the current time instance t is given by d�t = p�t (0) = a�0,t.
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Figure 3.1: Illustration of the system and variables. The dashed black lines are
the lane markers, while the red dashed lines are the estimated lane markers using a
forward facing camera system. The car trajectory is represented by the solid blue
lines.

3.1.2 Data Extraction
The dataset itself is large and collision free, and was pre-processed to only contain
data from highway and country road driving. To achieve this only data satisfying
the following criteria was extracted:

• Velocity must be higher than 60 km/h.

• The road must have a curve radius that is higher than 250 m.

• The lane width must not surpass 4 m.

• Sensor readings must exist for both lane markers.

The extracted data was then split into a negative set N and a positive set P. The
negative set N contains only normal driving sequences with no lane departures. The
positive set P contains driving sequences ending in an unintended lane departure.
The length of the driving sequences in P varies as a function of the prediction horizon
H, where each sequence contains h = Hfs samples. Thus, a driving sequence in P
corresponds to the last H seconds before a lane departure event.

In order to ensure that P is free from intended lane departures any departure events
accompanied by a turn signal were discarded. Moreover, the vehicle should return
to its original lane within 4 s, indicating an accidental lane departure. An example
of a normal and a departure driving sequence is shown in Fig. 3.2.

In order to train the models and evaluate their positive performance an event set
C was defined. A driving sequence c ∈ C was constructed starting from a driving
sequence in P and extending it chronologically with the samples preceding it in N.
By varying the length of c, the relative abundance of normal and departure driving
which the models are trained and evaluated on can be adjusted. By selecting an
appropriate length of c the models can learn both driving scenarios. Setting |c| = 4h,
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Figure 3.2: An example of normal (left) and a departure (right) driving sequence.
The solid lines show the distance to the respective lane marker while the dashed red
lines indicate the edge of the car.

that is 3h samples from N in addition to h samples from P empirically produced
good results.

In addition to evaluating the models’ positive performance, negative performance
was evaluated by defining a non-event set B consisting of only normal driving. Thus
an element b ∈ B is a driving sequence with no lane departures taken only from the
negative set N. Since the set B only contains normal driving there is no need to
balance the data in the same fashion as for C. The length of b ∈ B can therefore
be chosen freely, and in this work |b| = 10 s was chosen. An illustration of the data
extraction process is shown in Fig. 3.3.

The event set C contains 14703 unique driving sequences equivalent to roughly 16 h
to 33 h depending on the chosen prediction horizon H. While the non-event set B
contains 3000 driving sequences totaling approximately 8 h. Moreover, there is no
overlap between the two datasets. That is B ∩ C = ∅.

In order to train and evaluate the models implemented in this work the event set C
was split into a training, validation and test set. The event set was split as follows:
|Ctrn| = 12645, |Cval| = 1029 and |Ctst| = 1029.

3.1.3 Data Annotation
Since the data is comprised of time series, annotation for regression is straight
forward. For any time instance t the model should predict the distance d�t+h to both
lane markers at some prediction horizon H. The target y�t for a prediction horizon
H is simply given by looking h = fsH steps forward.

y�t = p�t+h(0) = a�0,t+h . (3.2)
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Figure 3.3: A schematic representation of the data extraction and selection process.
The Extracted dataset consists of highway or country road driving sequences ex-
tracted from the full real-world dataset, using the criteria described in Section 3.1.2.
The subsets N and P contain normal driving sequences and driving sequences end-
ing in a lane departure, respectively. A member c ∈ C is constructed by taking,
in chronological order, the first part from N and the last part from P. A member
b ∈ B consist of a time series fully from N. Here h represents the prediction horizon
in time steps, while fs is the sampling frequency.

3.2 Threat Assessment

The following chapter describes the implementation details of the tested models.
It includes the standard ML model as well as the uncertainty aware ML model, in
addition to the kinematic baseline model.

3.2.1 Time Series Windowing
Time series regression using MLPs requires feeding an input vector with historical
data to the model. Including such historical data consist of retrieving samples at
previous time steps. In this thesis, a time series windowing inspired by [8] was used.

By using a fixed number of previous consecutive samples as input, trends in the
data can be captured. However, the dataset used was collected at fs = 40 Hz, mean-
ing that the ego vehicle travels less than a meter between the samples at highway
speeds. The state of the vehicle and the road therefore stay relatively constant
between consecutive samples. Using a fixed number of consecutive previous sam-
ples may therefore add to the computational complexity without giving much new
information.

Consequently, it may be beneficial to selectively assemble a subset of the previous
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samples to constitute the model input vector. This can be done by applying a filter

Γ = {γ0, γ1, . . . ,γn}, (3.3)

where γi ∈ N and γi is unique, that retrieves the desired samples. For every time
step t in a driving sequence, an input vector X(Γ)

t is given by

X(Γ)
t = {xt−γ0 ,xt−γ1 , . . . ,xt−γn}, (3.4)

where xt is the vehicle and road state at time step t. A single training example was
then defined as {X(Γ)

t , y�t }.

3.2.2 Training
All models in this thesis were trained on driving sequences from the event set Ctrn
with various filters applied. In [8], the authors tackle a similar TA task on the
same data as in this work, but with a linear vector auto-regressive model approach
lacking uncertainty estimates. They show that a filter depth of 1 s e.g. considering
only information from the last second, gives sufficient historic data for capturing a
trend in the driving sequence, so to make accurate predictions. With this in mind
filters with depth 0.5 s and 1 s were implemented. Specifically, four different filters
shown in Table 3.1 were used.

Table 3.1: Filters of depth 0.5 s and 1 s used for time series windowing.

Filter Lags

Γ1 {0, 5, 19}
Γ2 {0, 5, 39}
Γ3 {0, 6, 13, 19}
Γ4 {0, 7, 15, 23, 31, 39}

The models were designed to predict the lateral distance to the lane markers for a
specific time horizon H. A perfect prediction would then return the exact position
of the ego vehicle at a time H seconds into the future. Naturally it is harder to get
accurate predictions for a longer prediction horizons. To investigate this matter the
models were trained for different time horizons H = {1, 1.25, 1.5, 1.75, 2} seconds.

Small models with three hidden layers of 10 neurons each were implemented. In
our setting this results in a number of model parameters between 300 and 1800.
The reason for using small models is that a linear auto-regressive model [8], with
a similar number of model parameters, has proven to perform well on this specific
regression task.

The standard ML as well as uncertainty aware ML models were then trained using
the MSE and NLL loss function, respectively. Minimizing the loss was done using
the Adam [25] optimizer with an initial learning rate of 0.001. The models were
trained for 30 epochs and over-fitting was avoided by utilizing early stopping.

33



All model implementations were written in Python 3 using Tensorflow [41] as deep
learning framework. Packages such as Numpy [42], Scipy [43], Scikit-Learn [44] and
Pandas [45] were also frequently used in this work.

3.2.3 Gaussian Ensembles
The Gaussian ensemble models were trained as randomly initialized individual Gaus-
sian MLPs using the training scheme above. This work leverages an ensemble of
size 10 optimized by the negative log likelihood of the Gaussian probability density
function (2.44). Note that the ensemble members stay independent until test time.

As to see whether training all ensemble members on the same data influenced the
uncertainty estimate models were also trained on smaller subsets of the data. In this
case, the ensemble members were trained on a random 2 % fraction of the training
set.

3.2.4 Ensemble Distillation
Ensemble distillation was performed on the best performing Gaussian ensemble mod-
els, and was optimized using the NLL loss function 3.17. The same architecture of 3
hidden layers of 10 neurons each was used. As for the Gaussian ensembles, the entire
training set was used. In practice this results in ten times the training samples, as
the output from each ensemble member is used as a training target.

3.2.5 Kinematic Model
In Section 2.3 the CVM was described using the relative heading to each of the lane
markers. However, this heading is not explicitly included in the dataset. Instead, it
was computed using the instantaneous rate of change in p�t evaluated at xt = 0.

Moreover, the CVM was previously shown computing the estimated TLC as the
threat metric. Since the ML models used in this thesis were trained for time series
regression of the lateral distance to the lane marker, it was more suitable to use
a distance based threat metric. Therefore, the estimated distance to lane marker
derived using a CVM was used as the underlying threat metric for the baseline
kinematic model.

Starting from the road polynomial p�t , as defined in Section 3.1.1, the instantaneous
rate of change in the distance to the lane marker given by

ψ♦
t = dp♦t

dxt

∣∣∣∣∣
xt=0

= a�1,t, (3.5)

can be used to find the heading α�t from

α�t = arctan
(
a�1,t

)
. (3.6)

Given that a�1,t is small, which is the case for the used data, the lateral velocity can
be found as

u♦t = vt sinψ♦
t , (3.7)
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where vt is the longitudinal velocity at time step t. Assuming the lateral velocity to
be constant over the prediction horizon H, the future distance to either lane marker
is given by

d̂�t+h = p♦t (0) + u♦tH. (3.8)

3.3 Decision Making
In this section, two intervention criteria for converting model predictions into a de-
cision of whether an autonomous intervention is necessary, are introduced. Namely,
an uncertainty aware criterion suitable for a GMLP based TA model, as well as a
deterministic criterion using only the predicted future lateral position of the ego
vehicle.

3.3.1 Deterministic Decision Making Method

A deterministic DM method uses the model’s predicted lateral distance d̂�t+h to
the respective lane marker at time step t + h to compute the associated overlap
ô�t+h = d̂�t+h− w

2 where w is the width of the car. An intervention criterion can then
be defined as

IDeterministic(ô�t+h) =

1, ô�t+h ≤ τ

0, otherwise ,
(3.9)

where τ is a tunable parameter to determine the required overlap of the car and
lane marker in order to trigger an autonomous intervention. The introduction of a
tunable parameter τ is useful to adjust the properties of the DM process. Setting
τ = 0 would trigger an intervention as soon as the model predicts a future lane
departure by a lane marker crossing. This intervention criterion is a natural choice
for prediction models which only predict the future lateral position of the ego vehicle,
such as the CVM and MLP based models. In the following discussion we refer to
this intervention criterion as the Deterministic intervention criterion.

In the case of a GMLP the same intervention criterion can be utilized by using the
expected value of the predicted distribution. That is

d̂�t+h = E[N (d̂�t+h; µ̂�t+h, (σ̂�t+h)2)] = µ̂�t+h , (3.10)

with ô�t+h = µ̂�t+h − w/2. An example using the deterministic intervention criterion
with a GMLPE model is shown in Fig. 3.4.

3.3.2 Uncertainty Aware Decision Making Method
One way to utilize the uncertainty estimates of the model predictions is to calculate
the probability of a lane departure according to the model. The probability of
departure can then be used as a threat level metric used in the decision making
process of whether an autonomous intervention is necessary. In this section the
probability of departure is derived from the uncertainty aware ML model prediction
and an uncertainty aware intervention criterion is defined.
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Figure 3.4: Model prediction for the left ( ) and right( ) lane markers with
ground truth ( ) with a prediction horizon of 1.5 s. Along with the predicted lane
markers a two sigma confidence band derived from the total uncertainty is shown.
While the aleatoric and epistemic components of the uncertainty is shown in their
respective plot. The edge of the car is marked by the dashed red lines while the red
region indicates that an intervention was triggered by the model.

At each time instance t the ensemble prediction consists of a normal distribution

d̂�t+h ∼ N (µ̂�t+h, (σ̂�t+h)2) (3.11)

over the predicted lateral position of the lane marker at the time t+ h. For ease of
notation in the following discussion the subscript t+ h as well as the hat associated
with model predictions are dropped.

The probability q�t+h of a lane departure can then be found by integrating

qlt+h =
∫ w

2

−∞

1
σl
√

2π
e
− 1

2

(
y−µl

σl

)2

dy (3.12)

and

qrt+h =
∫ ∞
w
2

1
σr
√

2π
e
− 1

2

(
y−µr
σr

)2

dy , (3.13)

for the left and right side, respectively. Here w is the width of the car. Solving these
integrals is equivalent to finding the predicted probability that the edge of the car
crossed the lane marker, which is illustrated in Fig. 3.5.
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Figure 3.5: An example situation where the PD method shows a high probability
of a lane departure to the right at t+h. The dashed red lines mark the edges of the
car and the normal distributions shown in and are the predicted left and
right lane marker distributions respectively.

Using the predicted probability of departure q�t+h as a basis for decision making is
straight forward and the intervention criterion is defined as

IPD(q�t+h)

1, q�t+h ≥ ρ

0, otherwise
, (3.14)

where ρ ∈ [0, 1] is probability threshold for when an intervention should be triggered.
Note that although the full range of ρ is an acceptable parameter choice, restrictions
are useful. Specifically, ρ ∈ [0.5, 1) in order to produce sensible and achievable trigger
criterion. Moreover, by setting ρ = 1

2 this method reduces to the deterministic DM
method discussed in Section 3.3.1. In the following discussion this method will be
referred to as the Probability of Departure (PD) method.

The main benefit of using the PD method is its simplicity, requiring only a single
parameter ρ to capture both the mean prediction as well as the associated predictive
uncertainty into a single intervention criterion. Specifically, by using this criterion
predicted small lane departures with high certainty will cause an autonomous inter-
vention. Likewise, a high uncertainty prediction can trigger an intervention if the
predicted lane departure is large enough.

In a similar fashion as for the deterministic intervention criterion described in Sec-
tion 3.3.1, it is possible to introduce a tuneable parameter τ , in addition to ρ. Ana-
logue to τ in the deterministic DM method, the properties of the PD method can
be adjusted by changing the effective width of the car in Eq. (3.12) and Eq. (3.13)
as follows

qlt+h(τ) =
∫ w

2 +τ

−∞

1
σl
√

2π
e
− 1

2

(
y−µl

σl

)2

dy , (3.15)

and similarly for the right side.

Changing the effective width of the car is equivalent to introducing new virtual lane
markers by shifting the predicted location of the actual lane markers, which can
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easily be seen through the variable substitution y′ = y− τ in the previous integrals.
By varying τ the trig time of an autonomous intervention can be controlled by
changing the effective size of the car. A desired trig time can then be achieved by
tuning τ on a calibration dataset. This process will be discussed more in depth in
Section 4.5. Moreover, note that by using this modified PD method an intervention
is triggered if the distance to the lane marker is τ or closer with a probability of at
least ρ.

The tunable parameter τ introduced in the PD method is equivalent to the pre-
viously introduced thresholds for the kinematic CVM and the deterministic DM
method introduced in Section 3.3.1. Larger values of τ corresponds to stricter in-
tervention criterion which will result in a later effective trig time. Smaller values of
τ instead results in earlier trig times.

3.4 Performance Evaluation
Trained models may be evaluated using different metrics. This section presents
methods for evaluating the models in terms of statistical performance as well as
performance within a TA system.

3.4.1 Statistical Performance
The statistical performance was evaluated primarily in terms of MSE

MSE = 1
N

N∑
i=1

(yi − ŷi)2, (3.16)

which is a common way to evaluate regression models. In this thesis, since the models
predict the lateral distance to both lane markers, the reported MSE performance was
the average of the MSE of the two outputs. Moreover, note that a low MSE does not
always guarantee good performance in a TA system. This since the MSE represents
the average quality of predictions, which may deviate in critical situations.

Moreover, the statistical performance for uncertainty aware GMLP models may also
be evaluated using the Gaussian NLL function

NLL = 1
N

N∑
i=1

(1
2log σ2(xi) + 1

2σ2(xi)
(yi − µ(xi))2 + 1

2log (2π)). (3.17)

Also here the final loss is presented as the average error with respect to both
lane markers. The last term in the sum is the numerical value of the constant
in Eq. (2.44). This metric is natural to ensembles and single models of Gaussian
MLPs as it was used as their training criterion. Standard MLP ensembles may also
be evaluated with respect to this metric using their sample variance.

3.4.2 Threat Assessment Performance Evaluation
The performance of a TA system can be evaluated in terms of a confusion matrix.
Specifically, the True-Positive-Rate (TPR) and False-Positve-Rate (FPR) was used
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Figure 3.6: Schematic of departure evaluation. The last 2h samples of the driving
sequence are considered as the accepted trigger window for an autonomous inter-
vention.

to evaluate the model performance on both normal driving sequences as well as lane
departure sequences. The models were evaluated on a test dataset B consisting of
3000 normal driving sequences each 10 s long and 1029 lane departure sequences in
Ctst.

Evaluation on a normal driving sequence b ∈ B is straight forward. One True Neg-
ative (TN) is determined if no interventions are triggered while one False Positive
(FP) is determined if any intervention is triggered. Only the first intervention in any
driving sequence is considered for evaluation purposes. This, since in a real life sce-
nario, an autonomous steering intervention would be triggered, taking control away
from the driver and disabling the TA system. Thus, the rest of driving sequence b
following an intervention would not be realized in a real-world scenario, since the
car is no longer actuated by the driver. Therefore, considering additional interven-
tions shortly after the first, for evaluation purposes, would lead to an unrealistic
performance evaluation. Moreover, it is non-trivial to determine exactly when the
TA system should be activated again in an evaluation setting, and it is therefore
simpler to disregard the rest of the current driving sequence.

Lane departure sequences’ evaluation is a bit more complex due to the addition of a
timing aspect of a successful intervention. Therefore an accepted trigger window of
2H s before the departure event was defined. Thus lane departure sequences consists
of two parts. Namely, the first 2h samples which are considered normal driving and
are evaluated as previously described, and the last 2h samples associated with the
associated trigger window which is evaluated in a different manner. In the accepted
trigger window, where an intervention for the correct side counts as one True Positive
(TP). If the TA system triggers an intervention in the accepted trigger window for
the incorrect side it is instead counted as a False Negative (FN) and a FP, since the
true lane departure was not detected and an erroneous intervention was triggered.
Once again, only the first intervention was considered for evaluation purposes, and
as a result a FP in the first half of the driving sequence will also count as a FN since
the true departure event was not caught. Evaluation on a departure sequence c ∈ C
is shown schematically in Fig. 3.6.
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4 Results

The results presented in this chapter are divided into two parts. The first part
handles regression metrics as well as uncertainty estimates and calibration. The
second part, starting in Section 3.3, treats the TA performance in terms of tuning the
trig time, and evaluating and comparing TA performance. Finally the performance
of a distilled model is presented.

4.1 Statistical Performance
Single models, ensembles of Gaussian models and standard MLPs were evaluated
primarily in terms of MSE for the regression performance. The results are visualised
in Tables 4.1 and 4.2 with the best result for each prediction horizon written in bold.

The standard MLPs were optimized using MSE as the loss function while the GMLPs
used the NLL in (2.44). This does not seem to considerably affect the predictive error
for this task, indicating uncertainty estimating capabilities may be added without
sacrificing much predictive performance.

The difference between ensembles and single members is also small in this case,
almost only visible for longer prediction horizons. Predicting on longer horizons is
naturally a harder task, where the averaging properties of an ensemble come out
ahead of the single models.

Table 4.1: Mean Squared Error of single GMLPs as well as GMLP ensembles.

Filter
H = 1 H = 1.25 H = 1.5 H = 1.75 H = 2

GMLP GMLPE GMLP GMLPE GMLP GMLPE GMLP GMLPE GMLP GMLPE

Γ1 0.004 0.004 0.007 0.007 0.011 0.011 0.017 0.017 0.025 0.025
Γ2 0.004 0.004 0.007 0.006 0.011 0.011 0.017 0.017 0.025 0.024
Γ3 0.004 0.004 0.007 0.007 0.011 0.011 0.019 0.017 0.026 0.025
Γ4 0.004 0.004 0.006 0.006 0.011 0.010 0.017 0.016 0.025 0.024

The Gaussian NLL evaluates the models’ ability to make good predictions while also
estimating an appropriate level of uncertainty. This is illustrated in Table 4.3 for
single models as well as ensembles of Gaussian MLPs. Filter Γ4 performs slightly
better than the other configurations in this metric.

Out of curiosity, a similar test was conducted towards standard MLP ensembles using
sample variance as uncertainty estimate. This resulted in very bad NLL values of
around 30. A comparison like this is obviously unfair but shows that sample variance
does not estimate well the actual predictive uncertainty.
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Table 4.2: Mean Squared Error of single MLPs as well as MLP ensembles.

Filter
H = 1 H = 1.25 H = 1.5 H = 1.75 H = 2

MLP MLPE MLP MLPE MLP MLPE MLP MLPE MLP MLPE

Γ1 0.004 0.004 0.006 0.006 0.011 0.011 0.017 0.017 0.026 0.024
Γ2 0.004 0.004 0.007 0.006 0.011 0.010 0.017 0.016 0.024 0.024
Γ3 0.004 0.004 0.006 0.006 0.011 0.011 0.018 0.017 0.026 0.024
Γ4 0.004 0.003 0.006 0.006 0.011 0.010 0.016 0.016 0.024 0.023

Table 4.3: Gaussian Negative Log Likelihood of single Gaussian MLPs as well as
Gaussian MLP ensembles. Lower values are better.

Filter
H = 1 H = 1.25 H = 1.5 H = 1.75 H = 2

GMLP GMLPE GMLP GMLPE GMLP GMLPE GMLP GMLPE GMLP GMLPE

Γ1 -2.406 -2.418 -2.112 -2.132 -1.879 -1.882 -1.605 -1.641 -1.421 -1.442
Γ2 -2.405 -2.418 -2.103 -2.157 -1.855 -1.893 -1.625 -1.654 -1.431 -1.459
Γ3 -2.412 -2.424 -2.126 -2.146 -1.877 -1.881 -1.615 -1.650 -1.370 -1.444
Γ4 -2.448 -2.473 -2.175 -2.187 -1.878 -1.910 -1.654 -1.677 -1.435 -1.460

4.2 Aleatoric Uncertainty
The dataset has variations in noise among the different driving sequences. This could
be due to different driving conditions affecting the data collecting sensors. Where
worn lane markings, downpour or fog are specific examples of such conditions.

Uncertainty aware models should supposedly be able to distinguish between low and
high noise data. Therefore models should, on average be more uncertain and output
a higher aleatoric uncertainty for high noise data. Examples of high and low noise
sequences are illustrated in Fig. 4.1.

A zero-phase digital second order low pass filter with 40 Hz sampling frequency and
a cutoff frequency of 5 Hz was used to identify the noise level of the data. Filtering
was done on a per driving sequence basis, assuming a fairly constant noise level
within a driving sequence. The noise level for a driving sequence was calculated as
the mean square distance between the filtered signal and the original signal. The
driving sequences were then ranked and split by the noise median into high and
low noise sets. The filter was only applied to the lateral position signals. Since
these signals are most influential for regression as well as being straight forward to
filter, the lateral position was used solely in identifying the noise level. Note that
the models were trained on mixed noise data and that these sets were only used for
evaluation.

Figures 4.2 and 4.3 illustrate how the uncertainty estimates in terms of standard
deviation vary between the low high noise driving sequences. Uncertainty estimates
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Figure 4.1: Examples of driving sequences where the input signals are corrupted
with high and low noise. Note that the inputs consist of multiple signals, although
noise distinguishing was made solely on the lateral position signals as these are most
important for regression.

for the full, undivided, set Ctst is also included for comparison.

According to Figs. 4.2 and 4.3 there is a difference between the different noise lev-
els, indicating that models are able to detect noisy inputs and output a higher
uncertainty estimate. The differences in uncertainty are relatively small for short
prediction horizons. Noise is naturally more influential on longer prediction hori-
zons as the error then propagates further. This explains why the models estimate a
higher uncertainty level for a longer prediction horizon.

4.3 Epistemic Uncertainty
Theoretically, an ensemble of models trained on subsets of all training data should
exhibit a higher epistemic uncertainty compared to an ensemble trained on the full
dataset. This, since a subset of the data doesn’t necessarily explore the sample space
as the full training set does. Ensemble members trained mainly on different data
should also learn different things. If so, there will be a spread among the ensemble
members resulting in a higher epistemic uncertainty compared to models trained on
the same data .

Figure 4.4 illustrates a comparison of uncertainties between a full set trained ensem-
ble and a subset trained ensemble evaluated on Ctst using filter Γ4. As expected, the
subset ensemble feature a higher epistemic uncertainty than the full set ensemble.
Also note an increase in aleatoric uncertainty, even if the relative difference to the
full set aleatoric uncertainty is quite small. The epistemic uncertainty then consti-
tutes a larger fraction of the total uncertainty for the subset model. This indicates
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Figure 4.2: Total uncertainty estimates for low, high and all noise data for a
Gaussian MLP ensemble using filter Γ4. The all noise data is the undivided Ctst
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Figure 4.3: Aleatoric and epistemic uncertainty estimates for low, high and all
noise data for a Gaussian MLP ensemble using filter Γ4. The all noise data is the
undivided Ctst.

that the epistemic uncertainty estimates indeed estimate model uncertainty from
the absence of sufficient training examples.

4.4 Model Uncertainty Calibration
While NLL is indeed a proper scoring rule, it does not show for which confidence
intervals the models are calibrated. Uncertainty estimates may for example be
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Figure 4.4: Uncertainty estimates for full dataset trained models and subset
trained models. The epistemic uncertainty is higher for the subset models and
makes up greater part of the total uncertainty compared to the full set models.

overconfident for a 50 % confidence interval, while being well calibrated for others.
By calculating the fraction of predictions being inside a confidence interval of a given
percentage as in Section 2.6.1, a reliability plot may be created. This tool makes it
easy to check if the models are calibrated or not.

In Fig. 4.5 a reliability plot is shown for a GMLP ensemble as well as a single
GMLP for comparison. They were evaluated on H = 2 seconds using filter Γ4. The
ensemble seems to be almost perfectly calibrated, while the single model is slightly
overconfident. A standard MLP ensemble using sample variance was also evaluated
for the same configuration. This results in overconfident predictions as shown in
Fig. 4.6. It is unfair to compare GMLPs to MLPs in this matter, but it is clear that
the sample variance alone is not a calibrated uncertainty estimate.

4.5 Trig Time Tuning
In order to make a fair comparison when evaluating different TA systems, all systems
should have the same average trig time t̄h. Ensuring that any model does not gain
an unfair advantage in performance as a result of a later trig time. As a result of
the problem becoming inherently easier closer to the lane departure. Although a
TA system is designed for a specific prediction horizon H, there is no guarantee that
the mean trig time t̄h matches the one specified by the design prediction horizon.
The trig time of a TA system can be tuned by adjusting the parameter τ , such that
the average trig time on a calibration dataset matches the desired trig time.

The appropriate threshold τ∗ for the desired trig time H was found by systematically
testing different values of τ and record t̄h. This process is repeated until the set of
t̄h on the calibration data encompasses the desired trig time. The optimal threshold
τ∗ such that t̄h = h was then found by linear interpolation. This process is described
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(a) Gaussian MLP Ensemble
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Figure 4.5: Reliability plot for a single GMLP and a GMLP Ensemble at H =
2 using filter Γ4. For this configuration the GMLP ensemble proves to be well
calibrated, while the single GMLP is slightly overconfident overall.
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Figure 4.6: Reliability plot for an MLP ensemble at H = 2 using filter Γ4, showing
overconfident predictions.

in Algorithm 1.

The trig time of all evaluated TA systems were tuned using Algorithm 1 on the
validation dataset Cval using a threshold step size of ∆τ = 0.01. An example of the
trig times evaluated on the test set Ctst before and after tuning is shown in Fig. 4.7.

From Fig. 4.7 it is obvious that the distribution of trig times is skewed and that
the mean trig time t̄h does not match the mode of the distribution. To account
for this in the trig time tuning it would be possible to tune using the mode of the
distribution instead of the mean. However, the mode is dependent on the bin size
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Algorithm 1: Tune trig time of TA-system.
Result: Tuned threshold τ∗
τ ← 0
t← MeanTrigTime(τ)
τ ← τ , t← t // save to list
if h ≤ t then

while h ≤ max(t) do
τ ← τ −∆τ
t← MeanTrigTime(τ)
τ ← τ , t← t // save to list

end
else

while h ≥ min(t) do
τ ← τ + ∆τ
t← MeanTrigTime(τ)
τ ← τ , t← t // save to list;

end
end
τ∗ ← Interp1D (t, τ , h)
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Figure 4.7: Histogram of trig times for a model with a desired prediction horizon
( ) of 1 s with actual mean trig horizon ( ) before and after tuning.

used and it is not obvious how one could automatically select an appropriate bin size.
Moreover, the discrepancy between mode and mean will not impact the relative TA
performance evaluation between models since they are all tuned in the same way.
Thus, trig time calibration using the mean remains suitable.
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4.6 Threat Assessment Performance
In this section the properties of the implemented TA methods are investigated and
their performance evaluated. In order to facilitate fair TA performance comparisons
the trig time of all evaluated models were tuned using the process described in
Section 4.5. Moreover, the proprieties of the proposed uncertainty aware TA model
is investigated and compared to a deterministic TA model. The best performing ML
based TA models are then compared against each other and a baseline kinematic
CVM.

4.6.1 Deterministic Threat Assessment Method Performance
To better facilitate TA performance comparisons between different models it is useful
to reduce the number of models to compare, by only comparing the best candidates.
In order to determine the best candidate for the respective model using the deter-
ministic intervention criterion one can compare the TA performance for the different
filters. This is shown in Figs. 4.8 and 4.9 for MLPEs and GMLPEs, respectively.
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Figure 4.8: TA performance comparisons for MLPE models using the deterministic
intervention criterion method for different filters.

According to Figs. 4.8 and 4.9, Γ4 show the best TA performance, both in terms of
TPR and FPR. However, in the case of the GMLPE, Γ4 were late in its mean trig
time on Ctst for a prediction horizon of 2 s, which might make for an unfair perfor-
mance gain. Therefore, in the case of deterministic GMLPE, Γ2 was used for future
performance comparisons while for a MLPE using the deterministic intervention
criterion Γ4 was the reference.

Among the tested filters there is no significant difference in TA performance using
the deterministic TA method for filters of the same depth. Indicating that the
number of samples in a filter does not impact performance. There is however, a
possible difference in performance for filters of different depth. Lending support to
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Figure 4.9: TA performance comparisons for GMLPE models using the determin-
istic intervention criterion for different filters.

that filters that take into account information further back in time may perform
better.

4.6.2 Properties of Uncertainty Aware Threat Assessment
Method

The introduction of the probability threshold ρ in the PD method mandates addi-
tional tuning in addition to the trig time tuning of τ , as described in Section 4.5.
To investigate the effects of ρ on TA performance, multiple values of ρ were sampled
and the models positive and negative performance was evaluated on the test set Ctst.
Specifically, the TA performance was evaluated for ρ = {0.6, 0.7, 0.8, 0.9}, and the
results are shown in Tables 4.4 and 4.5.

Table 4.4: Positive model performance using the trig time tuned PD method for
the best probability threshold ρ value for respective filter and prediction horizon.
The best TPR is emphasized in bold for each prediction horizon. Additionally, ρ
values which optimized both positive and negative performance for the given filter
and prediction horizon are highlighted.

Filter
H = 1 H = 1.25 H = 1.5 H = 1.75 H = 2

TPR ρ TPR ρ TPR ρ TPR ρ TPR ρ

Γ1 0.911 0.7 0.869 0.6 0.830 0.6 0.767 0.6 0.718 0.7
Γ2 0.916 0.6 0.879 0.7 0.834 0.7 0.784 0.6 0.713 0.6
Γ3 0.914 0.7 0.872 0.6 0.829 0.7 0.765 0.6 0.715 0.6
Γ4 0.920 0.7 0.885 0.7 0.838 0.7 0.791 0.6 0.716 0.6

From the TPR performance of the PD model shown in Table 4.4, Γ4 performs best
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on most prediction horizons. Although the differences between using different filters
are relatively small. In terms of FPR performance, Table 4.5, Γ4 shows the best
performance on all prediction horizons.

Table 4.5: Negative model performance using the tuned trig time PD method for
the best probability threshold ρ value for respective filter and prediction horizon.
The best FPR is emphasized in bold for each prediction horizon. Additionally, ρ
values which optimized both negative and positive performance for the given filter
and prediction horizon are highlighted.

Filter
H = 1 H = 1.25 H = 1.5 H = 1.75 H = 2

FPR ρ FPR ρ FPR ρ FPR ρ FPR ρ

Γ1 0.066 0.8 0.0936 0.8 0.133 0.6 0.176 0.7 0.216 0.7
Γ2 0.062 0.6 0.0886 0.7 0.125 0.6 0.165 0.6 0.211 0.6
Γ3 0.062 0.9 0.0956 0.8 0.133 0.7 0.177 0.7 0.214 0.6
Γ4 0.056 0.9 0.0817 0.8 0.123 0.6 0.160 0.6 0.210 0.6

Although, the model shows agreement on the optimal value of ρ for H = {1.75, 2} in
the terms of TPR and FPR performance, there is a discrepancy for other prediction
horizons. A disagreement in value of ρ indicates that the choice of ρ represents a
trade-off between positive and negative performance. To better assess this trade-off
for Γ4, the TPR and FPR can be plotted against the mean trig time t̄h for the
different values of ρ, which is shown in Fig. 4.10.
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Figure 4.10: TA performance of GMLPE using Γ4 filter for different values of the
probability threshold ρ

From Fig. 4.10 the absolute value of ρ does not seem to significantly impact TA
performance in the case of Γ4. However, for ρ = 0.9 there is a performance decrease
in terms of TPR and FPR for longer prediction horizons. For the longer prediction
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horizons a smaller value of ρ seems preferable, in this case ρ = 0.6. While for
the shorter prediction horizons, H ≤ 1.5, ρ = 0.7 performs better. As previously
shown in Fig. 4.2, the average total uncertainty is prediction horizon dependent,
where longer prediction horizons show higher predictive uncertainty. The different
values of ρ and the corresponding decision boundaries shown in Fig. 4.11 may be
more suited for different average predictive uncertainties. This might explain the
difference in the optimal value of ρ for different prediction horizons. These values
of ρ will be used in future TA performance comparisons against other methods.

To better understand how the PD TA method works and how it differs from the
deterministic TA method it is useful to plot the probability of departure against the
predicted overlap and the predictive uncertainty. This is shown in Fig. 4.11.
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Figure 4.11: Probability of departure at time t+h for a trig time tuned TA system
with τ = −0.05 based on the predicted overlap and estimated uncertainty. With
intervention decision boundaries for different values of the probability threshold ρ.
An intervention is triggered in the region to the right of the respective decision
boundaries.

From Fig. 4.11 the decision boundaries for a triggered autonomous intervention
form what appears to be straight lines. Where an intervention is triggered to the
right of their respective line. Moreover, by adjusting the value of ρ the slope of
the decision boundary can be altered. Specifically, by increasing ρ the decision
boundary rotates clock-wise, and vice versa for decreasing values of ρ. With a
slanted decision boundary, even small overlaps with the lane marker will result in a
triggered intervention provided that the uncertainty is sufficiently low. Likewise, a
large overlap can trigger an intervention even if the uncertainty is higher. Finally,
by adjusting τ the decision boundaries can be shifted left or right, where a smaller
value of τ will move the boundaries to the left and vice versa.

From this figure it is also evident that the PD method is equivalent to the determin-
istic TA method for ρ = 0.5. Since in this scenario the decision boundary becomes
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vertical and therefore does not consider the predictive uncertainty for a potential
autonomous intervention.

4.6.3 Threat Assessment Performance Comparison
In Fig. 4.12 the performance of the best TA methods are compared to each other
and the baseline CVM. In this performance comparison the ML based TA models
outperform the baseline CVM in both TPR and FPR for all evaluated prediction
horizon. Moreover, the ML based models show similar TPR and FPR performance
regardless of TA method for every prediction horizon. A more detailed TA perfor-
mance comparison between the ML based models are shown in Table 4.6.

As previously shown, the predictive uncertainty, although well-calibrated, is mostly
aleatoric which means that it does not provide much actionable information. Instead
most of the predictive uncertainty is a result of irreducible noise. Additionally, due to
the symmetric nature of the Gaussian distribution over the predicted lane markers,
the predicted mean will always be the most probable location of the real lane marker.
Thus the predictive performance of the uncertainty aware TA model will be limited
by its MSE performance. Which might explain the similarity in TA performance for
uncertainty aware and standard ML models.
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Figure 4.12: TA system performance comparison of the best ML TA models com-
pared to the baseline CVM, where D indicates that the deterministic intervention
criterion was used.

According to Table 4.6 the GMLPE-PD and MLPE-Deterministic showed the high-
est performance in general. With the best performing model varying with the tested
prediction horizon. While the GMLPE-Deterministic model, which does not use an
uncertainty aware intervention criterion although capable of producing predictive
uncertainty estimates, showed worse performance.

In Fig. 4.13 two scatter plots of the predicted overlap and the prediction error,
along with the total uncertainty are shown. The points shown in the scatter plots
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Table 4.6: Comparison of TA performance of the best ML models, where D indi-
cates that the deterministic intervention criterion was used. The best performance
is highlighted in bold for each prediction horizon.

Method
H = 1 H = 1.25 H = 1.5 H = 1.75 H = 2

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

GMLPE-PD 0.920 0.057 0.884 0.083 0.838 0.123 0.791 0.160 0.716 0.210
GMLPE-D 0.915 0.063 0.879 0.089 0.832 0.125 0.778 0.165 0.712 0.210
MLPE-D 0.922 0.058 0.888 0.081 0.832 0.127 0.784 0.164 0.724 0.206

are classified by TP or FP interventions from the GMLPE-Deterministic model with
a prediction horizon of 1.5 s. According to the figure, TP and FP cases seem to share
similar clustering characteristics. Indicating that the two cases can not be simply
separated using the predictive uncertainty.
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Figure 4.13: Scatter plot of TP/FP lane departure detections from the GMLPE-
Deterministic model. The sign of the prediction error and overlap indicates for
which side the prediction was made, where positive values are for the left side and
negative for the right side.

4.7 Distilled Models
Ensemble distillation was made to investigate if it is possible to keep the ensemble
performance using a single model. Being more efficient is desirable in an environment
with limited computational power, as is the case for any vehicle today.

The distilled models was evaluated in terms of statistical performance (MSE), cal-
ibration and TA performance. For these evaluation metrics, the overall best per-
forming filter configuration Γ4 was used.
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Table 4.7 shows the statistical performance of the distilled model, its ensemble
correspondence and a single Gaussian MLP. The difference of these was expected to
be small, as the single Gaussian MLPs and Gaussian MLP ensembles showed similar
performance in Table 4.1. As expected, the differences between the three models
were small, and the distilled model performed in line with the single model in this
matter.

Table 4.7: Mean squared error for a distilled GMLP, its corresponding GMLP
ensemble and a single GMLP using filter Γ4.

Model H = 1 H = 1.25 H = 1.5 H = 1.75 H = 2

GMLPD 0.004 0.006 0.011 0.017 0.025
GMLP 0.004 0.006 0.011 0.017 0.025
GMLPE 0.004 0.006 0.010 0.016 0.024

Figure 4.14 shows a reliability plot for the distilled model in the same setting (filter
Γ4 on H = 2 seconds) as the GMLP and GMLP ensemble in Fig. 4.5. The distilled
model proved to be well calibrated as well.
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Figure 4.14: Reliability plot for a distilled Gaussian MLP at H = 2 seconds using
filter Γ4. The distillation process keeps the new model well calibrated.

Finally, the TA performance was evaluated in terms of positive and negative per-
formance and is illustrated in Fig. 4.15. In general, the ensemble models seems to
give slightly better performance in both TPR and FPR. This is most evident in the
cases where the trig time tuning results in about the same trig time.

In conclusion, the distillation process [40] worked to successfully reduce a Gaussian
MLP ensemble down to one single distilled Gaussian MLP that retains the uncer-
tainty estimates. The distilled model proved to be well calibrated and give good
statistical performance, even though a small performance loss can be seen for longer
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Figure 4.15: TA performance comparisons for distilled GMLP models and their
GMLPE correspondences for Γ4.

prediction horizons in terms of MSE. This is the case for TA performance as well,
where the ensembles in general perform slightly better than the the distilled model.
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5 Conclusions

The main contribution of this thesis is the implementation and evaluation of a
GMLP and a GMLPE, in the context of predicting unintended lane departures. The
predictive performance was benchmarked against a regular MLP and a kinematic
prediction model, both in terms of statistical and application performance.

5.1 Statistical Performance
The statistical performance was evaluated using MSE, which corresponds to the ex-
pectation of the squared prediction errors. The results showed that a Gaussian MLP
ensembles performed in line with standard MLPs ensembles. This, despite GMLPs
being optimized using NLL loss function while the MLPs were optimized using the
MSE loss function. GMLPEs also proved to give well-calibrated uncertainty esti-
mates and were able to distinguish between epistemic and aleatoric uncertainty.

Using GMLPEs has advantages in statistical performance and uncertainty estima-
tion, but may be computationally infeasible due to propagating through multiple
networks. Ensemble distillation was performed to reduce the ensemble into one net-
work capable of estimating both aleatoric and epistemic uncertainty. This proved
to give well calibrated uncertainty estimates and performed in line with GMLPs in
terms of MSE.

5.2 Threat Assessment Performance
In the application of a lane keeping assist system, the evaluated data-driven TA
methods outperform a baseline kinematic CVM in terms of TPR and FPR per-
formance. Moreover, the uncertainty aware GMLPE model using the PD criterion
performed in line with a standard MLPE model. Consequently, this indicates that
for the evaluated dataset, the predictive uncertainty estimate does not accurately
separate TP and FP detections. This is likely caused by the fact that the uncer-
tainty is mostly aleatoric and does not provide sufficient information for the decision
making process. Instead, the system performance seems to be limited by its MSE
performance.

5.3 Future Work
This work was limited to GMLPs as an uncertainty aware ML model. Other promis-
ing uncertainty aware ML models exist, some of which were highlighted in the re-
lated work section. Implementing some of these could perhaps provide new insights
in using uncertainty estimates for TA.

Moreover, this thesis represents a proof of concept and more work would be required
for real-world applications. Such considerations would be part of an industrialization
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process. For example, the limitations imposed on the operational domain caused by
the extraction process of the training data from the full dataset. As such, there is a
possibility that some real world scenarios are not captured in the training data.
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