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Forecasting Supplier Delivery Performance with Recurrent Neural Networks
JOHAN RAMNE

Department of Mathematical Sciences

Chalmers University of Technology

Abstract

Uncertainty about upstream suppliers’ ability to deliver ordered quantities on time
is one the reasons that manufacturers and retailers need to keep safety stock in
inventory. Through accurate prediction of suppliers’ delivery performance the un-
certainty can be quantified and used by material planners in their decision-making
process. Representing the deliver performance of an individual supplier as a time
series, the uncertainty can be predicted through probabilistic forecasting: estima-
tion of the future probability distribution given past observations. This thesis
presents two recurrent neural network models, using encoder-decoder architectures,
for multi-step ahead probabilistic forecasting of the delivery performance of suppli-
ers to Volvo Group Trucks Operations Service Market Logistics. The models are
evaluated on mean quantile loss for a number of quantiles over a 14 week forecast
range. One model, DeepAR, outperformed exponential smoothing models generated
by the forecast package in R on four out of five quantiles.

Keywords: delivery performance, RNN, probabilistic forecasting, supply chain
management, service market logistics, quantile recurrent neural network.
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Introduction

1.1 Background

How inventory management drives a company’s financial performance, ability to
react to market signals, and customer satisfaction is well documented in the Supply
Chain Management (SCM) literature (Timme, 2003; Jones and Riley, 1985; Gupta,
Maranas, and McDonald, 2000). With the emergence in the 90s and 2000s of ma-
chine learning methods such as Support Vector Machines (Cortes and Vapnik, 1995)
and Random Forests (Breiman, 2001) and the success of Convolutional Networks in
image recognition tasks (Simonyan and Zisserman, 2015), Artificial Intelligence (Al)
has become a topic of interest across academia and industry. Within SCM there
is a growing interest in applying Al techniques, alongside other advanced analytics
methods, to find better solutions to established problems in the field (Min, 2010;
Carbonneau, Laframboise, and Vahidov, 2008), including inventory management
(Bertsimas, Kallus, and Hussain, 2016).

Galbraith (1974) set the definition of uncertainty commonly used in SCM: “un-
certainty [is] the difference between the amount of information necessary to perform
a task and the information already possessed by the company”. There are two main
sources of uncertainty at any given point in a supply chain that affect inventory:
the supplier ability to deliver the right quantity at the right time, and the cus-
tomer demand downstream (Heydari, Kazemzadeh, and Chaharsooghi, 2009). This
thesis will focus entirely on supply side uncertainty. In an early classification of
supply chain uncertainty, T. Davis (1993) gave a number of reasons why suppliers
can fail to deliver: bad weather delaying shipment, machine breakdowns or supply
issues further up the chain. The list of possible issues grows exponentially with the
complexity of the manufacturing process and as the supply network grows (Siman-
gunsong, Hendry, and Stevenson, 2012).

The SCM literature on uncertainty management broadly falls into two cate-
gories: strategies for coping with uncertainty and strategies for reducing uncertainty
(Simangunsong, Hendry, and Stevenson, 2012). Companies use a combination of
these strategies to control uncertainty as cost-effectively as possible. Galbraith
(1974) set out four fundamental methods for dealing with uncertainty in an organi-
sation: creating slack resources, designing self-contained tasks, investing in vertical
information systems and creating lateral relations. All four methods feature heavily
in supply chain design and management. The most common manifestation of cre-
ating slack resources is to maintain a level of safety stock in inventory—additional
stock beyond the expected demand (Rushton, Croucher, and Baker, 2014). A com-
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1. Introduction

mon example of vertically sharing information is for a company to share demand
forecasts with their suppliers as guidance.

The two first methods decrease the need to process information in order to
succeed, while the last two increase the capacity to process information (Galbraith,
1974). All four methods come with their own respective costs. Finding the right bal-
ance for each individual company is important and quantifying the different sources
of uncertainty can help with making the right decision. T. Davis (1993) recom-
mends quantifying a supplier’s performance across several metrics, such as delivery
performance:

orders delivered on time with right quantity

delivery performance := , (1.1)

total number of orders

which is the measure the models in Chapter 4 are trained to predict, as well as
measure average tardiness and service rate and adjusting the safety stock as a coping
strategy. Beyond these simple measures there has been a great deal of research into
using advanced quantitative methods for modelling uncertainty in the supply chain
(Peidro et al., 2009) with the goal of aiding in supply chain planning. This thesis’
contribution to this field of research is the use of recurrent neural networks (RNNs)
to predict the delivery performance of suppliers to Volvo Group Truck Operations’
Service Market Logistics division with a forecast range of 14 weeks.

1.1.1 Company background

Volvo Group is a multinational company that manufactures and sells trucks under
several brands—Volvo, Renault and Mack Trucks being the most important—as
well as construction equipment and engines for marine and power-generation appli-
cations. Volvo Group Trucks Operations Service Market Logistics (SML) is respon-
sible for supplying customers around the world with items from the large catalogue
of spare parts necessary to keep Volvo Group’s installed base functioning.

At the center of the SML supply chain in Europe lies the Central Distribution
Center (CDC) in Gent, Belgium. All service parts ordered from suppliers are shipped
to the CDC, which then takes orders from and delivers to Regional Distribution
Centers (RDCs) and Support Distribution Centers (SDCs) around the continent.
The supply chain has two primary functions: a market mediation function and a
physical function (Fisher, 1997). The physical function of the supply chain covers
the process of converting raw materials and components into finished goods as well
as transportation and storage. The market mediation function matches supply to
demand in terms of volume, variety and product requirements in an uncertain and
dynamic environment (Herer, Tzur, and Yucesan, 2002).

These two functions are at the CDC roughly divided between three departments
in SML. The Demand and Inventory Planning (DIP) team is responsible for market
mediation together with the Continental Material Planning (CMP) department.
DIP makes demand forecasts which the CMP department translates into orders
from suppliers. With regards to the physical function the CDC is responsible for
storage while transport is outsourced to third-parties.
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In pursuit of reduced inventory costs, increased automation and improved cus-
tomer service, SML has taken an active approach to using advanced analytics and
AT in SCM. The Advanced Analytics (AdA) team within SML has been tasked with
exploring how Al can be leveraged by the different functions in SML to achieve these
three goals. They are also responsible for evaluating the business value of different
solutions and implementing solutions as applications in production. The process
projects in AdA follow, including to a large extent this thesis, is described in the
method section and differs greatly from the conventional workflow at Volvo Group.

1.1.2 Service Market Logistics

The goal of the SML division is to maintain optimal uptime of the installed base
with no unplanned stops and their responsibility is to supply dealers around the
world with the parts necessary for keeping the fleet of sold Volvo Trucks rolling and
Penta machines running. The standard sales agreement from Volvo binds them to
make all required spare parts available for a sold truck for 15 years.

Supplying spare parts is a high-margin business of strategic interest to Volvo.
The Volvo Truck brand is marketed toward the premium heavy-duty segment where
customers require high quality service. Part of Volvo’s value proposition to cus-
tomers is easy access to any necessary spare part, no matter where in the world the
truck is. A higher sale price compared to competitors can be justified if the total
cost of ownership is lower due to better uptime and a longer lifespan.

Maintaining a spare part supply chain is, in certain aspects, more challenging
than maintaining its production counterpart. The chief among these is that spare
parts exhibit intermittent and unpredictable demand by nature—while many parts
such as filters, brake-pads and bearings are replaced semi-regularly, most parts are
not expected to be changed over a trucks lifespan (Cohen, N. Agrawal, and V.
Agrawal, 2006). Supplying spare parts also differs from the production supply chain
in distribution of consumed volume. In production, the consumption of any specific
part will see a predictable decline to zero as the last model using that part is phased
out of production. In the aftermarket the consumption distribution for any specific
part generally has a long “fat tail”—low, intermittent demand often lasts for many
years after the peak is passed. Cumulatively, the demand distribution follows a
Pareto distribution, as demand rates vary significantly (Muckstadt, 2005).

1.1.3 Advanced Analytics

Advanced Analytics is a team within the SML organisation that is responsible for
generating valuable insights with the use of analytical methods and creating value
through their application. They explore possible improvements in all aspects of
Volvo Group’s service market apparatus with examples being automating repetitive
tasks, improving forecasting or making data more readily available to all parts of the
organisation. Most work is done in close collaboration with other teams and divisions
and following their Exploratory Development framework, which lays out the process
by which an idea becomes a finished product. The Exploratory Development is
heavily inspired by the Agile Software movement (Beck et al., 2001), especially
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Figure 1.1: The cumulative demand by highest turnover items.

Scrum (Schwaber and Sutherland, 2017). The Exploratory Development framework
is detailed in chapter 2 and the development of the supplier performance forecaster
will as closely as possible follow it.

1.2 Problem formulation and research questions

In 2019 the SML organisation had a target of 95% delivery performance (DP) for the
contracted suppliers, where DP is measured as the percentage of deliveries that are
made available for transport on the ordered week. However, according to Huang and
Bagheri (2019) the actual delivery performance was closer to 77%. These deviations
are problematic because they can lead to stockouts at the CDC, which in turn can
lead to backorders.

Backorders are costly in two aspects to the SML organisation and Volvo Group
as a whole. First, if the spare part is critical to getting a vehicle or machine back
in operation its unavailability will incur a running cost on the customer until it
is solved. This cost is often significant and thus potential customers will take the
availability and expediency of service into consideration when choosing between
Volvo Group’s brands and their competitors. SML will in many instances pay for
expensive air freight to get a vehicle back on the road as quickly as possible when
the needed spare part becomes available.

To guard against uncertainty, on both the supply and the demand side, a safety
stock is kept for most items at the CDC. The recommendation of T. Davis (1993)
to adjust safety stock of an item according to a set of performance metrics on its
supplier makes the implicit assumption that historical data on delivery performance
has predictive power. By making this assumption explicit, a forecasting model
can be designed that specifies a belief about the supplier’s delivery performance in
the future. In the framework of Galbraith (1974) building this forecasting model
increases the organisation’s information processing capacity and could thus allow
for adjustments of the slack resources—the safety stock.

The data available to build this forecast model is the delivery performance of all
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suppliers to SML, on a week-by-week basis, over a multi-year period. Each supplier’s
delivery performance is its own time series and the problem lies in forecasting all of
them separately and accurately. To be useful the forecast model’s horizon must be
longer than any given supplier’s delivery lead time for the SML division to be able
to be proactive. For simplicity the forecast horizon is set to 14 weeks for all time
series.

The use of artificial neural networks (ANNs) has shown great promise for fore-
casting problems involving large numbers of time series (Smyl, 2020; Hewamalage,
Bergmeir, and Bandara, 2019) and will be the foremost method investigated. With
this in mind, we set the following research questions are:

RQ 1: What forecasting model and method should be used to create multi-step ahead
forecasts of supplier’s delivery performance?

RQ 2: How can these forecasts be leveraged to create value?

RQ 3: How applicable is the AdA Ezxploration Development framework to developing
neural network models?

1.3 Scope and structure

This thesis is limited to examining the performance of the suppliers delivering spare
parts for Volvo Trucks and Volvo Penta. Further, the investigation is limited to
delivery performance towards the CDC in Ghent, Belgium, and does not look beyond
the first tier of suppliers.

The rest of the thesis is structured as follows. Chapter 2 will present the
Exploratory Development framework, developed by the AdA, and describe how its
individual ideas and concepts connect with the broader literature on Agile software
development. Chapter 3 gives a mathematical background on time series forecasting
with a focus on forecasting with neural networks. Chapter 4 contains the description
of two RNN forecasting models—MQRNN and DeepAR—along with their specific
approaches, architectures and training schemes. Chapter 5 presents an evaluation of
these models on supplier delivery performance data, a comparison with two baseline
methods, business implications and conclusions.
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Method

In order to answer R() 3 the thesis will, to the greatest extent possible, follow the
AdA way of working. This will be done by adhering to the Exploratory Development
framework and by participating in AdA’s PulseLab, as described in the next section.

2.1 Agile methods within Advanced Analytics

The work within AdA is in many ways closer related to the scientific research than
to software engineering, especially in the early stages of testing the viability of an
idea. The issues encountered are similar to those described by Sletholt et al. (2011)
in scientific computing development: the exploratory nature makes the elicitation
and specification of requirements difficult. When this is the case the traditional
waterfall-development model is generally unproductive.

Within the AdA team a way of working has been developed, based in large
part on Agile methodologies, called the Ezploratory Development framework. The
framework is intended to promote creativity early in the development cycle, let
unsuccessful ideas fail quickly, and scale out successful applications to the larger
organization. The concept is illustrated in Figure 2.1. Campanelli and Parreiras
(2015) aptly point out that software development methods are often defined under
the assumption that they will work in any environment, which has not been the
case in reality. Using out-of-the-box methodologies as described in a single book or
prescribed by experts is often unsuccessful—organisations have their own distinct
context that they are operating in and their own particular set of goals and chal-
lenges. Adoption is often piecemeal from the different flavors of Agile (e.g. Extreme
Programming (XP), Scrum, Kanban, Lean) depending on needs and current pro-
cesses (Kurapati, Manyam, and Petersen, 2012). The methods need to be chosen
and tailored to fit the organisation to be beneficial.

The core values of the Agile Manifesto (Beck et al., 2001) working software,
customer collaboration, and responding to change, and important principles such as
self-organizing teams and continuous improvement, all align with the values at the
heart of the AdA team. Working in the automotive industry the Toyota Production
System (Liker, 2004) and its Western derivative Lean Manufacturing have also had
an enormous influence on the design of processes and management at AdA and
within Volvo Group at large. An example is the global set of processes called the
Volvo Production System (VPS) designed to facilitate continuous improvement at
all levels in the organisation (Volvo Group, 2017).

With that in mind it is clear that some of the ideas and methods within the
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Figure 2.1: The AdA Exploration Development Framework.

Lean Software Development movement (M. Poppendieck and T. Poppendieck, 2003),
which apply the industrial concepts of lean manufacturing to agile software develop-
ment, have also influenced the Exploratory Development framework. Of particular
note is that the AdA team has experimented with Kanban techniques (Ikonen et al.,
2010) to visualize work.

The next section will introduce the Exploratory Development framework and
attempt to link methods and principles to their origins in the agile literature. It is
worth noting that, as the framework is built on the experience of the team members
together with institutional knowledge and previous processes, these links will to
certain extent be post-rationalizations as the original inspirations are unknown.
The framework will be followed by a description of the Pulselab format, which is
one way in which AdA practices agile development.

2.1.1 Exploratory Development

The Exploratory Development framework, illustrated in Figure 2.1 consists of three
distinct, gated, stages: the explore, pilot, and scale out stages and is designed to
drive ideas towards becoming products that generate business value for Volvo Group.

2.1.1.1 Explore stage

The explore stage is designed to be as conducive as possible to creative idea gen-
eration and problem solving. New ideas can come from within the AdA team or
from an outside stakeholder in a different team within the SML organisation. An
exploration is initiated by an exploration lead, based on an idea deemed worthy of
looking into. Worthiness has in the past been judged on case-by-case basis taking
into account priorities set higher up in the organisation together with the enthusiasm
and confidence the exploration lead has for the idea.

The exploration lead takes responsibility for identifying the required compe-
tencies and driving the exploration forward. Exploration teams are composed of a
cross-functional group of people, supply chain experts, data scientists, technology
managers, who are able to make most decisions regarding the exploration at this
stage without hierarchical bureaucracy. This follows the agile principle of empower-
ing teams and avoiding spending time writing specifications upfront (Deemer et al.,

8



2. Method

2010).

Each exploration has stated goals that are designed to be achievable within a
short time frame, generally within one to four weeks. If the exploration is done
as a part of a PulseLab, the time frame is set to four days. At this stage it is
not strictly necessary that the exploration is justified by some future business value
if it succeeds—examples of other stated goals include learning a new technology,
expanding the team’s knowledge base or mapping previously unexplored data gen-
erated somewhere in the organisation. That said, where possible the exploration
lead should attempt to quantify potential business value. Depending on if the ex-
ploration has reached its goals within the given time frame the exploration lead, in
conjunction with managers, product sponsor and developers, decides between iter-
ating on the idea by running a new exploration, moving forward to the pilot stage
with a potential product, or closing the exploration.

The explore stage has an iterative structure that follows the idea of timebozes
in agile development, championed prior to the Agile movement by Martin (1991) in
the book Rapid Application Development. Iteration is a part of many agile method-
ologies but the structure of the explore stage is most akin to early Scrum’s sprint
concept (Schwaber, 1995)—within Pulselabs the duration of an exploration is explic-
itly called a sprint—in that the explorations are by nature somewhat unpredictable.
Choosing to discontinue the development of ideas that do not show sufficient promise
early, to minimize sunk costs and maximize the teams overall performance, is in line
with the “Fail Fast” philosophy famously championed by Reiss (2011) in his book
The Lean Startup.

Through early and direct involvement of product sponsors and stakeholders,
the framework adheres to the agile values of “Customers collaboration over con-
tract negotiation“ and welcoming changes (Beck et al., 2001). Each exploration
is documented through write-ups available to the whole team to to facilitate con-
tinuous improvement and amplifying learning, following lean software development
principles (M. Poppendieck and T. Poppendieck, 2003).

2.1.1.2 Pilot and scale out stages

The pilot stage follows after one or more iterations of the explore stage. When
the exploration lead together with the product sponsor deem the exploration of
sufficient maturity and potential business value, it is labelled as a potential product
and warrants more resources and more formal governance. Although agile principles
still provide the foundation for the way of working, the governance is starting to
resemble the traditional waterfall model. This transition is necessary to make project
management compatible with the other parts of the organisation that are involved or
impacted. The project now flows through discrete steps without moving backwards,
see Figure 2.2.

The first step after the final exploration is to define a potential product. At this
point scope and reasoning behind the product should be fully fleshed out, together
with an estimate of the business value. To a certain extent the lean principle of
“Decide as Late as Possible” (M. Poppendieck and T. Poppendieck, 2003) is still
employed, but a majority of the design decisions will most likely have been made. If
the project has met all its stated goals and criteria, and the project sponsor is fully
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Figure 2.2: The steps of the pilot stage together with the different stakeholders
level of involvement.

onboard, it is moved forward as a proposed product, otherwise it is archived.

In the next step, the now proposed product’s features and requirements are
solidified, while the system dependencies, requirements, impact on current I'T and
stakeholders are mapped. This step brings in other parts of the organisation, gen-
erally including Volvo Group IT, thus requires even stricter governance, and is run
like a traditional IT project. When these things are in place, a decision is made to
go forward and develop and test the product in a pilot environment.

An example of a product and pilot environment could be a warehouse inventory
tool that is initially developed for the CDC in Ghent. The tool can be tested at this
single warehouse and if the pilot project is successful, the product can be deployed
into operational environments. Now, work transitions to applying or modifying
the product to function in other parts of the organisation in order to maximize to
business value and utility. In this example that would involve modifying the tool to
work with the systems that are in place in other warehouses around the world.

2.1.2 PulseLab

Every four weeks the AdA team organizes PulseLab, a four-day Scrum-based event.
At the initiation of the PulseLab anyone within Volvo Group Operations, not just
members of the AdA team, can present an idea and concept that they wish to
explore. When all prospective projects have been presented, participants choose
freely between them based entirely on what they find interesting. For the next four
days the teams meet for a Scrum-fashioned standup (Stray, Sjgberg, and Dyba,
2016) to report on progress and if necessary try and recruit new project members
if they’ve discovered a new required competence. On the final day, groups present
their results and conclusions as well as their thoughts on the next steps.

The PulseLab is intended to bring several benefits. Firstly, it is a tool for

10
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outreach from AdA to the rest of the organisation. Many are interested in how
machine learning and Al can be used in their particular field, or have ideas but
lack the competencies to execute upon them. PulseLab is a platform to bring in
novel ideas and simultaneously broadcast out how advanced analytics can be used.
Secondly, while participants are allowed to choose freely between explorations, they
are also encouraged to try new roles and tasks. Examples can be a line employee
learning Python under the guidance of a data scientist, or an intern practicing
project management. This amplifies learning and improves communication between
the different roles outside of the PulseLab. Finally, PulseLabs are a way of striking
while the iron is hot—a new idea will at most go five weeks from inception to
exploration. Outside of the time allocated to PulseLabs, people have schedules that
are full for months on end. In a traditional working scheme it may take months,
or even years, before an idea is tested which dampens the enthusiasm, decreases
innovation and leads to missed opportunities.

The PulseLab format has no easy to find analog in the Agile nomenclature,
although it undoubtedly embraces Agile principles and values (Beck et al., 2001).
To a certain extent it is similar to an in-house hackathon as described by Tucker
(2014) with the short deadline and final presentations, but generally a hackathon is
a competition with an overarching theme, problem or goal that the groups focus on.
The PulseLab also takes the agile principle of self-organizing teams (Hoda, Noble,
and Marshall, 2013), in which the team members manage their own workload, shift
tasks and make collective decisions, to the next step in the form of liquid teams,
where participants in the PulseLab can move between explorations based on need.
The idea of liquid teams is possibly based on the concept of the “Liquid Workforce”
touted by Accenture, a consultancy firm.

Recently, the overall success of PulseLabs has made AdA work to further in-
corporate agile ways of working in their week-to-week activities as well as bring in
lessons learned. Standouts are the introduction of a weekly standup meeting, mir-
roring the daily standups in the PulseLab, and biweekly demo-sessions, analogous to
the final presentation in the PulseLabs. The demo-sessions are especially interesting
sessions as they will act as a mechanism promoting working software, one of the core
values of the Agile movement (Beck et al., 2001).

2.1.3 Thesis work

The thesis project is explorative by design and there is a natural high risk of failure
for any given approach to the stated problem. The work follows the Exploratory
Development framework as closely as possible, with necessary adjustments to ensure
that the produced thesis adheres to Chalmers specifications for academic rigour.

11
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Mathematical background

3.1 Time series forecasting

Time series forecasting using statistical methods is actively researched field that has
been an academic discipline for nearly 100 years although forecasting as an activity
stretches far further back in history (Tsay, 2000; Yule, 1927). The following section
will briefly introduce important traditional parametric forecasting methods. This
will be followed by an introduction to forecasting competitions and their place in
the further development of the field. With this framework in place we will rephrase
forecasting as a machine learning problem and review how researchers are using
cutting edge machine learning methods to get state-of-the-art results.

Time series forecasting is one of the central prediction tasks within data an-
alytics with a wide range of applications (Brockwell and R. A. Davis, 2016). We
will rely on the definition of time series models given by Brockwell and R. A. Davis
(2016) and adapted by Lang and Petersson (2017):

Definition 3.1.1. A time series is real-valued sequence of observations (Z;,t € T)
with respect to some index set T C R. A time series model for the observed
data (z;,t € T) is a specification of the joint distributions of a sequence of random
variables (x;,t € T) of which (Z;,¢ € T) postulates to be the realization.

Throughout this thesis the realization of the random variable x; will be denoted z;
and estimates will be denoted Z;. Let W;,_; be the information set available at ¢;
generally W, ; is the o field generated by by past observations of x (Tsay, 2000). A
time series model can be written as

v = F(U,_1) + ¢ (3.1)

where F': U — R is a time series model and ¢, ~ WN(0, o) is a white noise process
with 0. < oco; the ¢ is the forecast error at t. A classic example of a forecasting
problem is predicting next month’s demand for a consumer product, like tennis
shoes or sports cars. But in many applications we are interested in forecasting over
a range of equidistant steps into the future at once:

(T4, Teg1y oo Tor) = F(Vi1) + €, (3.2)

where K is the forecasting horizon and €, = [e, ..., €4k is a vector of forecast
errors. In an industrial setting having a sizeable forecast horizon can be important
because of production lead time—adjusting to changes in demand takes time.

13



3. Mathematical background

Another frequently encountered situation in time series forecasting is the need to
predict a vector-valued process. This could be the (z,y, z)-coordinates of a satellite
in motion, or the amount of time a person will spend on a set of NV common activities
in a day (e.g. brush their teeth, cook lunch etc.). Let = (z; € RY ¢ € T) denote a
vector-valued time series and & = (&, € RN, ¢ € T) its realizations. The multivariate
forecasting problem concerns specifying the model F' : ¥ — RY where

@, = F(V,_1) + e (3.3)

with €; = [€:1,...,€6.n]. Problems (3.2) and (3.3) can be combined to produce a
multivariate multi-step ahead problem of estimating the model F' : & — RV*K:

(mt, mt+17 e ,wt+K) = F(\Ijt_l) + (Gt, €t+17 ey €t+K>, (34)

where x;,;, € RY and €, € RY for k € {0,..., K}. Using a previous example,
this could arise when trying to predict the amount of time a person spends on N
common activities for each of the K coming days. Both models introduced in 4 will
be of this type.

3.1.1 Multi-step ahead forecasting

Although much of the academic forecasting literature has focused on one-step ahead
forecasting in the form of (3.1) and (3.3) (Box and Jenkins, 1970; Brockwell and
R. A. Davis, 2016; Hyndman and Athanasopoulos, 2018) there is a rising inter-
est in forecasting multiple steps ahead (Sorjamaa et al., 2007; Taieb, Sorjamaa,
and Bontempi, 2010). This can be seen in the structure of benchmark forecasting
competitions that have been held in the past decades such as the NN3 competition
(Crone, Hibon, and Nikolopoulos, 2011) and the M Competitions (Makridakis, Spili-
otis, and Assimakopoulos, 2020) focusing on multi-step ahead forecasts. There are
two overarching approaches to multi-step forecasting, iterative and direct forecasts,
with respective strengths and drawbacks.

3.1.1.1 Iterated method

Creating multi-step ahead forecasts through iteration is the oldest technique devel-

oped in the forecasting literature (Sorjamaa et al., 2007). The idea is relatively

simple: iteratively use one-step ahead predictions as inputs into the same model, as

proxies for the true observations, to get K predictions. In the univariate case

Borp = F(¥, ) ) ) for k=0 (3.5)
FU 1,2, Bpago1) fork=1,....K

The iterated method is intuitive and easy to implement but has the downside of
being prone to bias (Marcellino, Stock, and Watson, 2006). Any misspecification in
in the one-step model will be exasperated over time which can lead to large errors.
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3.1.1.2 Direct method

In the direct method the time series model over the forecast range {0,..., K} is
specified by K separate functions

i‘t—i-k :Fk(‘llt_l) for k € {O,,K}

where each function is built or trained separately from the others to minimize the
error at its specified time-step (Taieb, Sorjamaa, and Bontempi, 2010).

The direct method avoids the issue of errors accumulating that exists in the
iterated method. The downside is that there is no temporal link between the fore-
casted values, they are necessarily assumed conditionally independent, which can
have consequences for the prediction accuracy. Model parameter estimation is less
efficient in the direct method than in the iterated method and thus generally requires
a large dataset to perform well (Marcellino, Stock, and Watson, 2006).

Multiple output method

One variant of the direct method, utilized by one of the models described in the 4,
is the multiple output method. It muddies the distinction between the forecasting
problem in (3.2) and the one in (3.3) by viewing x4 x := (24, Tyy1, ..., Tir k) S a
RE random vector to be forecast. In this method a model is trained to estimate this
vector directly, which avoid the error propagation dilemma that the iterated method
has but allows for a certain amount of interdependence between the forecasts. In
general this method is implemented by some machine learning algorithm and requires
a large training dataset to reduce the forecasting errors to a competitive level with
the iterated and standard direct method.

3.2 Parametric forecasting methods

The classical parametric forecasting models are constructed around the assumption
that the underlying time series is weakly stationary: the two first moments are
time-invariant under translation. That is, the expectation E[x;] = p for some real
constant p and all ¢; and the lag covariance function v, = Cov(x, 2444) is dependent
only on k. Under the assumption of weak stationarity the autocorrelation function of
a time series simply becomes py = i /70, which is particularly useful when modelling
linear times series (Tsay, 2000). All following time series models have the implicit
assumption that p = 0 for notational brevity—in practical applications where this
is not the case a constant term is simply added.

3.2.1 Autoregressive and moving average models

The most intuitive model for forecasting a weakly stationary time series is the au-
toregressive model AR(p) which uses a linear combination of the previous p actuals
to predict the value one step into the future

p
Ty =Y Gii_i + € (3.6)
i=1
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where ¢1,...,¢, € R are the model weights and ¢, ~ WN(0,o.). This was intro-
duced by Yule (1927) together with moving average models MA(q), which model
the future value as a function of the ¢ random shocks

q
Ty = € + Z ejftfj (37)
j=1
with 0y,...,0, € Rand €_,,...,& ~ WN(0,0.). Stationary stochastic processes
often contain both an autoregressive component and a moving average component
and are as such best modelled by combining the two into a mized autoregressive-
moving average model ARMA(p, q)

p q
Ty = € + Z ¢ixt,i -+ Z Hjet,j (38)
=1

=1

with ¢1,...,¢p,61,...,0, € Rand g, ..., ~ WN(0,0.).

3.2.2 ARIMA

Autoregressive integrated moving average (ARIMA) models were popularized for
modelling nonstationary stochastic processes by Box and Jenkins (1970) together
with the Box—Jenkins method, a systematic approach to times series identification,
estimation and verification (Gooijer and Hyndman, 2006). Let B be the backward
shift operator Bz; = ;1. An ARIMA(p, ¢, d) model can be written as

w, = (1 — B)%xy,
p

q
F(\Ijtfl) = Z Qiwi—; — Z ejetfj
i=1 Jj=1

where ¢1,...,¢,,01,...,0, € Rand, p, d, ¢ € N are the model parameters (Tsay,
2000).

3.2.3 Exponential Smoothing

Simple exponential smoothing is an old method for smoothing out the time series
with an exponential window. It was first suggested as a method for demand predic-
tion by Brown (1956) and gives estimates of z; as

i’t = Oé.i't,1 —+ (1 — Oé)i'tfl

where Z,_; is the previous observation of x; and a € R is the smoothing coefficient.
This is in fact an ARIMA(0, 1, 1) model (Brockwell and R. A. Davis, 2016). Ex-
ponential smoothing has been popular in business and industry since its inception
because of its simplicity and flexibility (Gooijer and Hyndman, 2006). The simple
exponential smoothing method was first extended by Holt (1957) and then Winters
(1960), to include trend, into what is today known as the Holt—Winters or Double
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Exponential model. It includes a second coefficient § that smooths the trend such
that the estimate of x; is given by

Zi’t = Oé.fft_l + (1 - a)(.f%t_l + bt—l)
bio1 = [B(Zr-1 — Zr—a) + (1 — B)br_2

with o, 5 € R.

3.3 Non-parametric forecasting methods

In the past decade a large share of academic research in forecasting has been dedi-
cated the use of non-parametric methods, especially neural networks (Parmezan and
Souza, 2019). The advances in natural language processing (NLP), image recogni-
tion and language translation together with the continued successes of open-source
development have given researchers a slew of new tools to develop forecasting mod-
els in such as Tensorflow (Abadi et al., 2015), PyTorch (Paszke et al., 2019) and
GluonTS (Alexandrov et al., 2019).

3.3.1 Global and local models

So far, the examples given have been focused on forecasting a single time series,
such as demand for tennis shoes or a persons daily activities. In many real-world
applications forecast needs to be made for a set of items with corresponding time
series: the individual demand for all items sold by a sporting goods outlet; the
default risk on a set of housing loans; or sale of individual titles by bookstores
across a region.

In the traditional way of forecasting each time series is dealt with individually
by creating a local model for each item (Sen, Yu, and Dhillon, 2019). This is powerful
because the model can be tailored to individual characteristics of the underlying data
using a standardized methodology, such as the popular Box—Jenkins method (Box
and Jenkins, 1970). A second advantage of this approach is that the complexity of
these models can generally be kept quite low. Manually building a model, through
the Box—Jenkins method or other popular frameworks, is a time-consuming activity
that does not scale well when the number of time series to forecast increases.

Modern tools for automatically generating, tuning and evaluating local mod-
els have vastly improved this process; two of the most popular such tools are the
forecast package in R (Hyndman and Khandakar, 2008) and Facebook Prophet
(S. J. Taylor and Letham, 2017). But with the growth in available data over the
past decades (Gantz and Reinsel, 2012) interest in methods for efficiently forecasting
millions of correlated time series is rising and at that scale even these automation
tools have issues.

A very different approach when dealing with a large number of similar time
series, that has gained popularity over past few years, is to train a single global
model for generating predictions (Sen, Yu, and Dhillon, 2019). This has a few major
advantages: first, a global model can learn dependencies between time series both
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as simple correlations (e.g. sales of tennis balls and tennis shoes may correlate) and
as lagged dependencies (e.g. high late-season sales of summer clothes could indicate
worse sales for the autumn collections). Second, global models often perform better
for time series with few observations, compared to creating a local model on little
data. This is has important application in domains such as sales forecasting where
it can be used to accurately forecast demand for newly introduced products.

3.3.2 Ensemble methods

Ensemble methods using decision trees have gained popularity in a wide range of
tasks in recent years (Marsland, 2015). Ensemble methods are built out of the
premise that by combining a set of individual weak predictors {fi, fa,..., fn} to
a strong predictor F' through some aggregation operator (Moraga, 2017). Using
ensemble methods for time series prediction has seen some success in forecasting
tasks (Galicia et al., 2019), including at Volvo Group.

3.3.3 Neural networks

Using artificial neural networks (ANNSs) for forecasting problems dates back to 1964
(M. J. C. Hu and Root, 1964) but really started to gain traction in the 1990’s
(Zhang, Patuwo, and M. Y. Hu, 1998). The mathematical foundation for training
neural networks, backpropagation, was formulated in the the 1980’s by Rumelhart,
Hinton, and Williams (1986) and Werbos (1988) with interest in ANNs in recent
years largely been driven by the increasing availability of high-performance comput-
ing environments (Dean et al., 2012; Raina, Madhavan, and Ng, 2009).

A neural network is a directed graph of nodes, usually organised in layers. Each
node maps an input vector & and a weight vector w to a scalar activation a, which
can then be used as part of the input to the next layer. The most popular maps are
the sigmoid function o or the hyperbolic tangent tanh

1

1+ efwT:cfb’
ewT:c+b o e—wTw—b

ewT:E—I—b + e—me—b

o(wz 1 b) = (3.9)

tanh(w’x + b) := (3.10)

where b is a variable bias.

Following the notation of Nielsen (2015) let wé  denote the weight for the con-
nection from the k-th node in the (I — 1)-th layer to the j-th node in the [-th layer.
Then the activation of node j in layer [ is given by

l l ! -1 !
a; = fj(ijkak + bj)
k

where fjl generally is the o or tanh function. Let n; be the number of nodes in layer

L f{(z) = (fi(z1),..., [l (zn))" for z € R™,
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Layer 1 Layer 2

Figure 3.1: An example of a feedforward network . The first two layers are sets of
sigmoid functions while the final layer has tanh as activation function.

Wl [wék]j k=1,..., nes
b= (by,...,b,)" and
al = (all, ..,aﬁu)T

where W' is called the weight matrix, b’ the bias vector and a' the activation vector
at layer [. The activation vector is then given by a' = f{(W'a!~! + b'). A part of
network showing this calculation is featured in Figure 3.1.

In a supervised setting, a neural network learns by processing an input and
comparing the networks output with the truth label. The comparison is done with
a loss function L. The gradient of the loss function with regard to each weight at
each node is then calculated through backpropagation and the weights are updated
according to their gradients and a line search method. One common example of a
loss function is the mean square error (MSE) loss

SN (E — &)

- (3.11)

EMSE =

when estimating target variables on the real line, where z; are the realizations—truth
labels—of the random variable x, &; are estimates generated by the model and N
is the number of samples. A common loss function when working with probabilities
and estimating distribution parameters 6 is negative log likelihood (¢)
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Lo:=— Zlog(P(w = 7i0;)), (3.12)

where the probability density function depends on HAZ», which is the output by the
network. To make this loss function more tangible, imagine a neural network training
to differ between a number of different animals in an image, i.e. if the animal pictured
is a cat, rooster, cow etc. The input to the network are the pixels of the image and
the output are the parameters 6 of a multinomial distribution: say 10% chance it’s
a cow, 60% chance it is a cat and 30% chance it is a rooster. This loss function then
rewards assigning a high probability to the right label.

Backpropagation

The goal of backpropagation is to adjust the weights at each node to minimize the
loss function £ using stochastic gradient descent (Rumelhart, Hinton, and Williams,
1986). To do this we need to calculate dLz/0wh; and 9Lz/0b, for all individual
weights and biases and for each training example Z (Nielsen, 2015). The loss is
required to be obtainable as an average of the individual samples and to be a de-
terministic function of the output of the neural network (Nielsen, 2015); we see
that both Lysg and L, satisfy these requirements. To simplify the notation let
zl .= W'a!~! + b! be the weighted input to layer [ so that a' = f(2'). Let

oL
%= o

J

(3.13)

be the loss of node j in layer [ and ' := (8¢, 45, ...)T. Then, the loss at the output
layer L is

oF =V.Lo (1) (2h), (3.14)

where V,L is the vector of partial derivatives L/ 8@5? , ® is the Hadamard prod-
uct (elementwise multiplication) and (fL)/(2) is a vector of the derivative of fI
evaluated at each Z]L . The loss at layer [ is computed recursively by

(5l — ((WlJrl)T(sHl) o (ﬂ)/(zl)_ (3'15>
With this the partial derivative of the loss with respect to any bias is
oL

and the partial derivative with regard to any weight wé.k is calculated by

oL

J

With these gradients in hand we can update the weights and biases in accordance

with the chosen line search method. Both models in 4 are trained using the stochastic
optimization algorithm Adam (Kingma and Ba, 2015).
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3.3.4 Recurrent neural networks

The network shown in Figure 3.1 is a feedforward network, where the activation of
each layer [ — 1 is fed forward into layer [. This works well when the data samples
are independent observations, but in a time series (x;,t € T) there is often a strong
correlation within the series which is not captured by the feedforward architecture.
A Recurrent Neural Network (RNN) is a type of network architecture designed to
have associative memory where important information from previous inputs of the
sample sequence is retained as each new input is fed into the network. RNNs have
been a natural choice for forecasting problems for decades (Gent and Sheppard,
1992; Hewamalage, Bergmeir, and Bandara, 2019). Let (x4, € T) be a times series
to be forecast with observations (#;,¢ € T). An RNN iteratively reads Zi, Zo, . ..
into a non-linear activation function f that outputs a vector h;

h, = f(hi-1,%) (3.18)

called the hidden state that encodes important information from previous observa-
tions (Cho et al., 2014). The length of h; is held constant and is called the context
length. The function f can be a simple tanh function in some instances, but gener-
ally a more complex structure is necessary.

RNNs have seen much use and development for tasks such as language transla-
tion and NLP both in academia and in the tech industry (Cho et al., 2014; Sutskever,
Vinyals, and Le, 2014). The most commonly used RNN architectures are the Long
Short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the Gated
Recurrent Unit (GRU) (Cho et al., 2014) networks. Recently, RNN-based models
have been achieving state-of-the-art results—Smyl (2020) won the M4 competition
with a hybrid exponential smoothing and RNN model. The M5 competition, which
is currently ongoing on Kaggle, looks likely to introduce further innovation of this
sort.

3.3.4.1 Long short-term memory

The long short-term memory (LSTM) cell is a complex structure and a powerful
choice for the function f in (3.18) first proposed by Hochreiter and Schmidhuber
(1997). A network of LSTM cells can be said to have two parallel tracks—one for
the cell state and one for the hidden state—along which information from previous
cells flows. A single LSTM cell is illustrated in Figure 3.2. The internal structure of
the LSTM cell is a series of gates that regulate how new information is incorporated
into the network’s “memory*. In Figure 3.2 circles denote a network layer with the
given activation function, squares denote a pointwise operation and at each fork
along the black paths the state is copied. Each network layer has its own set of
weights which are tuned when the model is trained.

First the new observation Z; is concatenated, denoted by the operator W, with
the hidden state

Tt

Uy ‘= ht—l (] .f’ﬁt = <h.t,_1>
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_____________________________________________

h: 1 [ |

Figure 3.2: The LSTM cell

from the previous cell; let d be the length of u;. Note that this operation works
both when the input is a scalar value and when it is a vector.

The first sigmoid layer o is called the forget gate, see Figure 3.3, and is used to
gradually reset the cell state (Gers, Schmidhuber, and Cummins, 1999). The (0, 1)¢
range of the sigmoid output is multiplied elementwise with ¢;_; to “forget“ (o values
close to zero) or keep (o values close to one) each value in the cell state ¢, 1 and in
this way remove out-of-date information. Let

C:ffl =cC—1 © U<qut + bf)

denote the adjusted ¢;_1; W7 is the first sigmoid layer’s trained weight matrix and
b; are the learned biases.

The second sigmoid layer ¢; and the tanh, layer together constitute the input
gate. The tanh, layer squashes the entries of u; into the (—1,1)? range to ensure
that the values of the cell state do not explode over time. The sigmoid layer decides
which information to introduce to the cell state through elementwise multiplication.
Denote the output of the input gate by w}; it is then given by

u; := o(Wyu, + b;) © tanh(W,u; + b,,)

where W, and b; are the weights and biases of the input gate sigmoid layer while
W, and b, are the weights and biases for the tanh layer. This is then added to ¢,_,
to generate ¢;

ct=¢C,_, +u. (3.19)

The final construction in the LSTM cell is the output gate, which calculates h;.
The cell state ¢; is passed through the tanh, layer to regulate the vector’s magnitude
and wu,; is passed to the third sigmoid layer o, to determine what to keep and what
to forget from the cell state. The full expression for h; is thus
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h’t = tanh(WCCt + bc) ® U(Wout + bo), (320)
where W,., W, b. and b, are the weights and biases of tanh, and o,, respectively.

Ci—1

Forget

Gate
%
Ty

Figure 3.3: The three gates that make up an LSTM cell.

hi-1

3.3.4.2 Gated recurrent units

The Gated Recurrent unit was introduced by Cho et al. (2014), together with the
encoder-decoder architecture, as a simpler alternative to the LSTM cell without a
cell state. See Figure 3.4 for a graphical depiction. The GRU consists of two gates:
a reset gate and an update gate.

Figure 3.4: The input and reset gate in the GRU cell.
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Just as with the LSTM cell a concatenation u; := (h;_y1,%;)7 is first fed into two
different sigmoid layers the output of which determines how much of h;_; is forgot-
ten. The first sigmoid layer o, is multiplied elementwise with h;_; and contatenated
with Z; such that

u, :=hy 1 © o, (W,u; +b,)

where W, is the learned weight matrix for the layer and b, is a vector of learned
biases. The vector u; is then fed through a tanh layer and multiplied elementwise
with the output from the second sigmoid layer o..

The output of the o, is also copied, inverted and multiplied elementwise with
h; 1 to generate

h;—l = h’t—l(]- — J(qut + bz>),

where W, and b, are the layer’s weights and biases. This is then combined with
to calculate h; by

h; = h,_, + (tanh(Wyu; + by) © 0, (W,u, + b.)), (3.21)
where W, and b, are the learned weights and biases of the tanh layer.
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Models

This chapter will lay out the design of and training scheme for two probabilistic
forecasting models: a simplified multi-horizon quantile recurrent neural network
(MQRNN) model, based on the original work by Wen et al. (2017), and an autore-
gressive recurrent neural network (DeepAR) model based on Salinas et al. (2019).
Both are built upon the encoder-decoder framework (Cho et al., 2014) using RNNs
to model the conditional distributions

P(Yt+1:t+K,j|Y:t,j; X:t+K,j) (4-1)

where Y1tk = {U+1,- - ek} and v = {vo,..., %} J € S are indices
for the individual time series; x.;; are covariates and K is the number of steps to
forecast. The covariates are assumed to be known not only to the current time ¢ but
all the way to t + K and can consist of such things as holidays, day-of-the-month or
other similar features. For brevity let z;; := {y..j, X+ 5 }-

The ultimate goal is to, for all £ € K := {1,..., K} and j € S, estimate the
7-th quantile Qy, ., .z, ,(T)

Qyt+k,j|zt,j (T) = lnf{y 6 R : Fyt+k,j|zt,j (y> Z T}? 0 <7< 1

for a set of chosen quantiles Q. F,, |, ; is the conditional cumulative distribution
function of y;1r ;. The two models have differing methods for obtaining the con-
ditional quantile estimates: the MQRNN model directly estimates them through
quantile regression, while the DeepAR model uses maximum likelihood to fit distri-
bution parameters and draws sample paths over the forecast range. They are both
implemented using the GluonTS framework (Alexandrov et al., 2019) and trained
using the training schemes that the original authors used.

4.1 Multi-Horizon Quantile Recurrent Forecaster

4.1.1 Quantile regression

When looking at predicting supplier’s delivery performance for the coming weeks,
it can be argued the predicted percentage is of less importance compared to how
confident we are in that prediction. Quantile regression, a type of regression analysis
that has less strict assumptions than linear regression, is a technique for estimating
the conditional median (or any other chosen quantile) of a target variable introduced
by Koenker and Basset (1978). It differs from traditional linear regression in that
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priu)

-1 /
T

Figure 4.1: Tilted absolute value function

linear regression estimates the conditional mean of the target variable, and also in
the underlying minimization problem.

Quantile regression is based on the observation that the unconditional 7-th
sample quantile can be expressed as the solution to the minimization problem

min Z |G — &| + Z (1—7’)|gjt—§|:rgneiﬂgZpT(yft—f), (4.2)

SR e tmzey teftge<}

where (g;, t = 1,...,T) are random samples on the random variable y and p,(+)
is the tilted absolute value function (4.3) seen in Figure 4.1 (Koenker and Hallock,
2001) given by

pr(u) == 7max(u,0) + (1 — 7) max(—u,0). (4.3)

The quantile regression minimization problem is analogous to minimizing 3=, (7; — u)*
over £ € R to obtain an estimate of F(y) (Koenker and Basset, 1978).

The classical way of estimating the quantile function of a random variable y
conditional on a random vector of covariates &, QQy-(7), has been to replace £ in
equation (4.2) by a linear parametric function &(&;, 3)

min 3 pr (5 — &(@, ) (4.4)

P
BERP

where 3 € R and &, are realizations of & with the resulting minimization problem
being solved through linear programming (Koenker and Hallock, 2001).

4.1.2 Quantile regression with neural networks

Techniques for nonlinear quantile regression were developed during the 1990’s with
Koenker and Park (1996) applying the interior point method to (4.4) with nonlinear
&(x¢, £). White (1992) laid the mathematical foundation for using neural networks
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for quantile regression by proving the consistency of the conditional quantile estima-
tor given by a feedforward network with (4.3) as loss function. The neural network
formulation of the quantile regression problem for a quantile 7 is

min Zt: pr(ye = f(xe, W), (4.5)

where f is a neural network with weights w and the minimization is done through
backpropagation. The first full implementation of quantile regression using neural
networks was by J. W. Taylor (2000) on stock market data using a single feedforward
network; the model was later built into a package for R by Cannon (2011).

The MQRNN model (Wen et al., 2017) takes inspiration in the success that
RNNs have had in point forecasting problems (Hewamalage, Bergmeir, and Bandara,
2019) and applies the structure to quantile regression. It extends the loss function
of (4.5) to sum over the set of chosen quantiles to the forecast horizon to make
the model minimize total loss. As before we let K := {1,2,..., K} be the forecast
range and Q be the set of quantiles we are interested in estimating. The MQRNN
model’s output is a |K| x |Q| matrix Y, = []]g)k]ke;cﬁeg and it is optimized by the
loss function L;

L;= Z Z Z Pr(Yey i — ?%(-?k)j (4.6)

teT 7€Q kek

for j € §, where T is the set of starting points for forecasts in the training phase,
called the forecast creation times (FCTs).

4.1.3 Model architecture

The MQRNN model has two different modules: the encoder function m and the
decoder function A. The encoder learns to transform variable length sequences, in
our application time series of delivery performance for different manufacturers, to
a fixed-length vector representation hy, for an FCT ¢, called the hidden state; the
fixed length |hg| is called the context length. This is done by iteratively feeding the
input sequence into the encoder

ht = m(ht—la Ye—1, W(€)>7
ho = 0.

The encoder itself is a network of GRU cells with weights w(®). The decoder module,
with model weights w(?), takes as input the hidden state and outputs a matrix
Y, € RIXIxICQl

Yo = [0 ke reo = Alhy, w'?)

that forecasts each quantile of interest at each time-step in the forecast range. A
partially unrolled illustration of the model is given in Figure 4.2.

In the original MQRNN architecture the decoder consisted of two feedforward
network branches. The first is a global feedforward network that synthesises h; with
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Decoder [ A(bg.y, w®) J

A

hryy

hr_» hr h,;
—" m(hr_z, yr_2, w®) m(br_y, yers, w®) J—{ m(hy,yr, w'?) J

Encoder

Figure 4.2: The MQRNN model in the prediction phase. The time series is fed
into encoder iteratively up to the most recent observation yy. The hidden state
hr; is input into the decoder, which outputs the forecast matrix Y.

known future information, such as upcoming product promotions or holidays. It
then feeds its output into local feedforward networks, for each step in the forecast
horizon, which output the vector (Qg)k)TEQ, the quantile estimates at their time-
step k.

Due to an implementation issue in GluonTS the encoder built into the pack-
age for the MQRNN model can only take a one-dimensional sequence, making it
impossible to include covariates of the target variable in the model. This does not
change the encoder architecture, but the lack of covariates does warrant decreasing
the complexity of the decoder. In our simplified MQRNN model the decoder consists
of a single feedforward network containing three layers with the number of nodes in
each matching the context length.

4.1.4 Training scheme

The training scheme designed by Wen et al. (2017) is one of the most interesting
aspects of the model. Previously, the standard method for training a forecasting
model has been to choose a set of FCTs 7T, either randomly or following some logical
rules, and for each FCT let the preceding observations be the input sequence and
the K following observations be the target vector. With the inclusion of covariates,
both static and time-dependent, creating the training dataset requires considerable
data augmentation.

The MQRNN model avoids this data augmentation by instead augmenting
the model during the training phase in what they call a forking-sequences train-
ing scheme. Conceptually, in the training phase the decoder is duplicated into T'— 1
copies with identical weights, where T' is the length of the time series. The output
of the encoder for each iteration hy, is forked with one copy of the vector being the
input into the next iteration while the other is fed into the decoder. This is illus-
trated in Figure 4.3. The output from each of these decoders is a forecast Y, of the
future time series K steps forward relative to ¢;. In this way each point in the time
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Figure 4.3: The MQRNN model in the training phase. The time series is iteratively
input into the encoder. At each step the hidden state hy, is forked, feeding into both
the encoder and into a decoder to produce a forecast matrix at each time step.

series becomes an FCT without data augmentation. The forecasts are compared
to their corresponding target in the loss function (4.6) and summed up before the
errors are propagated backwards through the network.

4.2 DeepAR

The DeepAR model (Salinas et al., 2019), in contrast to the MQRNN model, does
not directly estimate the conditional quantiles. Instead it follows closer to the orig-

inal design of the seq2seq model (Graves, 2013) and models (4.1) as the product of
K likelihood factors

foo(yesvernilze;) = T foWernglzes) = 11 pWernl0(ir;, w'D)) (4.7)
ke ke

parametrized by the hidden state h, ;

ht,j = m(ht—l,ja Yt—1,5, Xt,55 W(e)) (4-8)

which is the output of the encoder network m. It consists of LSTM cells parametrized
by the model encoder weights w'®). The likelihood p(yss.;0(hsyr.;, WD) is a fixed
distribution, the “noise model“ in the words of Salinas et al. (2019), chosen by the
modeller to fit the characteristics of the data. The parameters of the likelihood
function are given by the decoder network 6(h; ;, w®) with w(? being the decoder
network’s weights.
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Figure 4.4: The DeepAR model in its training phase. The hidden state hy, is cal-
culated iteratively through equation (4.8). From ty to to+ K the hidden state hy,x
is forked with one copy going to the decoder network and the other being the re-
current input to the encoder. The decoder network outputs distribution parameters
for the likelihood function, which is calculated as a term in the loss function.

In the training phase the likelihoods p(y; .4 j|0(hssr;, W), j € S, k € K are
computed from the outputs 6(heyy ;, w(®) of the complete encoder-decoder network.
The loss function £ is the total negative log-likelihood

L= —logp(ye+k;0(higiny)), (4.9)

JES kek

where t; is the FCT. Gradients with respect to w© and w(? are calculated and the
weights are updated through backpropagation. The model in the training phase is
illustrated in Figure 4.4.

In the prediction phase, the encoding up to the FCT ¢4 is done in the same
way as during the training phase, but instead of calculating the likelihood a random
sample §; ~ p(-|0(hy, w?)) is drawn to replace y; ; in equation (4.8) such that

. ) .
h ;= m(by_1, Gi-1,, %0, w')

with ﬁtofl,j = hy,—1; and §yy—1 := Yg—1; for all 7 € S. By running this process
multiple times sample paths can be generated. The empirical distribution of these
sample paths can then be used to estimate the conditional quantiles of y;, 45 ; over
the forecast range.
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Decoder Network

Encoder Network

Figure 4.5: The DeepAR model in the prediction phase. The decoder network out-
puts distribution parameters and a random sample over this distribution is drawn.
The random sample is fed into the encoder to output the next hidden state.

4.2.1 Training scheme

The training scheme used by Salinas et al. (2019) is more rudimentary than the one
designed by Wen et al. (2017) for the MQRNN model. FCTs are chosen randomly
in such a way that the expected number of FCTs per time series is uniform over
all time series, so as to not over-represent the longer ones. Within a time series of
length T the probability of a time point being an FCT is uniform for t € [1,T — H]
and zero for t > T — H.

4.3 Data

The target time series are weekly measures of supplier delivery performance (DP).
DP is defined as the percentage of order lines correctly filled by the supplier that
week. An order line is counted as incorrectly filled (KO’d) if it does not arrive in
the correct week or if the quantity is incorrect. To visualize this think of a single
supplier of oil filters that has accepted orders for ten separate products in a given
week. For each product there is an ordered quantity and if the delivered quantity
does not match this or if it does not arrive, it counts as incorrectly delivered. If
eight out of ten orders are correctly filled the supplier gets a DP score of 0.8 for
that week. The measure does not take into account how “wrong® a delivery is, i.e.
a shipment of 49 units when 50 were ordered is counted in the same way as a fully
missed shipment.

The dataset contains 2436 time series with 408 929 observations in total, some
examples of which are shown in Figure 4.6. For weeks when a supplier does not
have any deliveries to fill, the latest DP value is carried forward.
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Figure 4.6: Examples of the delivery precision metric for a few different suppliers.

Static covariates, such as average lead time and the mean demand for the sup-
pliers items, are included in the DeepAR model. Further, “age” of an observation—
distance from first observation—together with the week of the year is included as
time-dependent covariates.
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Results

Three RNN models—MQRNN, DeepAR-feats and DeepAR-pure—have been trained
to predict the future delivery performance of 2436 different suppliers to SML. In this
chapter the predictions are evaluated against standard automatic forecasting tools
and their business value is discussed.

5.1 Model evaluation

Judging the accuracy of a probabilistic forecast is slightly more difficult and less
intuitive than evaluating a point forecast. Generally, when evaluating a point fore-
cast, a measure of the distance between the forecast and the observed value such as
absolute deviation |j; — §;| or mean square error (j; — 9;)? is used, where a smaller
distance indicates a better forecast. Evaluating a forecast of the distribution of the
target variable is less clear because there is only one sample from that particular
distribution to judge it by. If the observed value is above the forecast 0.9-quantile for
example, it can either mean the forecast is inaccurate, or that the 10% probability
event happened.

One way to evaluate the accuracy of a number of probabilistic forecasts is by
using the tilted absolute value function given in equation (4.3). It weighs the distance
between the observed value and the quantile estimate differently depending on which
quantile is estimated and if the observed value is greater or smaller. Let p, be the
tilted absolute value function given in equation (4.3) and denote p,(y; — gjtT)) as the
T-quantile loss of gjy) on the random variable g,. The sample mean 7-quantile loss
L, is then given by

L= SIS S 0 (Gioskg — G- (5.1)
jES kek

The basis for this measure is that E(p,(y; — g)t(T))) is minimized when 9" equals

the 7-quantile of y, (Koenker and Hallock, 2001). Further, the median estimate,
pos (U — g)§°'5’) = 0.5|g; — Q§0'5)], is half the absolute deviation.

All the forecasting models are evaluated over 7 € @ = {0.1,0.25,0.5,0.75,0.9};
S = {1,...,2436} is the index set for the delivery performance time series and
K :={0,...,13} is the forecast range. The MQRNN model gives upfront estimates
of [gﬁk]kemeg for each j € S while the DeepAR model outputs n sample paths
and as such, to obtain gji_?k, the sample observations for each ¢y + k are sorted and
the empirical 7-quantile is taken as the estimate.
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Figure 5.1: The 7-risk and mean quantile loss at 7 = 0.5 for a toy time series and
a constant mean estimate.

A secondary measure, a variant of 7-risk introduced by Seeger, Salinas, and
Flunkert (2016) (originally denoted p-risk), will additionally be used to evaluate the
models. The sample 7-risk R, is given by

R =28 Y pr(Z; - Z)7), (5.2)
jES
where Z; = Y pck Uto+k,j- For the MQRNN model we set ZJ(T) = D kek ;g}_?k,j for all
j € S. For the DeepAR model we first sum the individual sample paths and take
the empirical 7-th quantile of them as the estimate.

The 7-risk is the measure preferred by Salinas et al. (2019) because it lends
itself well to evaluating a model constructed around multiple sample paths. But
evaluating over the summations Z;, j € S, does not punish a sequence of estimates
for missing peaks and nadirs to the same extent that mean quantile loss does. Fig-
ure 5.1 shows this for a toy time series that oscillates between zero and one at each
step. A constant estimate g; = 0.5 for all ¢ completely misses this periodicity but has
Rys = 0; the mean quantile loss Lg s = 0.25 more accurately reflects the estimate’s
accuracy. For this reason focus lies on mean quantile loss and 7-risk is only include
as a secondary measure.

The DeepAR model has been tested using just lagged observations of the target
variable (DeepAR-pure) and using the two static covariates, mean forecast demand
and mean lead time, together with the temporal covariates week-of-month, week-of-
year, “age” of the observation and if a holiday falls into that week (DeepAR-feats).
The models are compared to two automatic forecasting packages: Facebook Prophet
(S. J. Taylor and Letham, 2017), and simple exponential smoothing (ETS) with the
forecast package in R (Hyndman and Khandakar, 2008). All model’s forecast
accuracy is measured over the same 14 observations at the tail of each time series.

Overall the delivery performance shows high variability, with a mean intra-time
series standard deviation ¢ = 0.2753. To put this into perspective, the standard
deviation of a uniform random variable with the same range as the delivery precision,
[0, 1], is 0.2887. For some of the time series, such as those shown in Figure 5.2 both
models make similar predictions, while in others they make very different forecasts,
as in Figure 5.3.

In table 5.1 the mean quantile loss and 7-risk at each quantile is shown for all five
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’ Mean Quantile Loss

L0.1 LO.25 LO.S L0.75 L0.9
MQRNN 0.0924  0.0980  0.0938  0.0818  0.0659
DeepAR-pure  0.0827  0.08380  0.0817 0.0667 0.0541
DeepAR-feats  0.0806  0.0865 0.0837  0.0672  0.0538

ETS 0.0657 0.0993 0.0828 0.0925 0.0602
Prophet 0.2101  0.2532 0.2675 0.2414 0.1980
T-risk

Roa Ry.25 Ry Ry Ry
MQRNN 1.7798 2.1463 2.0525 1.7479 1.2405

DeepAR-pure 2.1158  2.3287 2.4910 2.4690 2.4464
DeepAR-feats 2.1121  2.3383  2.5134  2.5293  2.5050
ETS 1.4147 2.1113 1.8732 2.2120 1.5089
Prophet 3.6020  4.5440  4.5292 44266  3.4673

Table 5.1: Accuracy metrics for the DeepAR-pure, DeepAR-feats, MQRNN as well
as for two reference methods.

models—in both measures, lower scores indicate better forecast accuracy. At 7 = 0.1
the automatically fit ETS models performed far better than any other model on the
mean quantile loss measure. At all other quantiles, the collection of ET'S models was
outperformed by at least one RNN model, with DeepAR-feats performing best Lo.o5
and DeepAR-pure on L5 and Lg.75. DeepAR-pure scoring better than DeepAR-feats
in two quantiles suggests that the included static covariates had limited predictive
power. The collection of Facebook Prophet models performed the worst across the
board. On the 7-risk measure the MQRNN model outperformed both DeepAR
models in all quantiles, but overall the collection of ETS models had the lowest
score in three out of five categories. Its comparatively high performance in the
T-risk measure may be due to the effect shown in Figure 5.1.

In Figure 5.4 we see that the MQRNN has learned a non-linear growth in
uncertainty over the forecast range from the data, which the DeepAR model does
no exhibit at all. This is due to imperfect hyperparameter tuning, as in the original
paper (Salinas et al., 2019) growth in uncertainty over time is shown.

5.2 Business implications

The models developed in this thesis project showcases two concepts that can be of
use to Volvo Group SML. The power of these concepts lays in their ability to be
applied to a large domain of problems, and not just forecasting delivery precision.
The main concept in this thesis is the use of a neural network model to forecast
a large number of time series. Using a global model that can learn interdependencies
between time series could simplify a number of forecasting tasks done in the SML
organisation today. One especially important strength of this approach is that a
model that has learned these interdependencies can be used to create forecasts for
new time series, where no previous observations exist. This is a domain in which

35



ot

. Results

MQRNN DeepAR-feats
= Delvery performance | Forecast creation time = Deivery performance ~ Forecast creation time
10 { R Median prediction | 10 | EEE Median prediction
2575 quantile 1 2575 quantile
10--90 quantile ! 10--30 quantile
08 I 08
1
1
06 : 06
i
|
04 | 04
|
|
0z 0z
00 00
01811 201901 201903 201905 201907 201909 201911 202001 202003 01811 201901 201903 201905 201907 201909 201911 202001 202003
MQRNN DeepAR-feats
BN Delivery performance i Forecast creation time W Delivery performance i Forecast creation time
1g { MR Median prediction | 10 | mmm median pregiction
. 2575 quantile ! . 2575 quantile
10-90 quantile 10-90 quantile
08 08
06 06
i
1
[ 04 H
'
1
1
02 i 02 |
1 1
1 1
00 ! 00 !
01811 201901 201903 201905 201907 201909 201911 202001 202003 01811 201901 201903 201905 201907 201909 201911 202001 202003

Figure
feats.

MORNN

DecpARfeats

5.2: Side-by-side comparison of the forecasts from MQRNN and DeepAR-

H

 Forecas creaton time
H

\ Forecas creston tme

mbn mibo we  wos

W50 w5 an ana wmo

2En ano | mme  wsos

wher wbes  aBal mmor 220

Figure 5.3: A time series where the MQRNN and the DeepAR-feats model’s fore-

casts are dissimilar.

[ MORNN
= DeepAR

Figure 5.4: Mean uncertainty over the forecast range.

N>

36

.(0.1)

s€8 Yto+k —

~(0.5
yt(o-i-z:;

upper by |S|7'Y

. (0.9)

s€8 Yto+k — Yto+k

.(0.5)

for each k € K.

Lower limit given by



5. Results

’ Mean Quantile Loss

LO.l LO.25 LO.5 L0.75 L0.9
MQRNN 0.0603 0.0852 0.0895 0.0704 0.0453
DeepAR-feats  0.0782  0.0859 0.0832 0.0692 0.0562

Table 5.2: Model performance when training and testing models solely on pre-2020
data.

traditional forecasting methods struggle. The use of neural networks for forecasting
in the automotive industry is not new—both the MQRNN model and the DeepAR
model have been tested on public data on demand for automotive spare parts (Wen
et al., 2017; Salinas et al., 2019); within Volvo Group SML some experimentation
with feedforward networks has been done previously. These models in particular
have useful applications within SML because they are built to handle intermittency,
which is a typical feature in, for example, spare part demand.

The second outstanding concept in this thesis is the use of probabilistic fore-
casting. By modelling the full distribution of the target variable at each forecast
step, a more complete set of information can be conveyed. This is useful both when
this information is being used by a human analyst or when it is used by an AI sys-
tem to make decisions. Thinking in terms of uncertainty instead of point forecasts
is particularly advantageous when it comes to risk mitigation and is something we
do naturally in our everyday lives. One of the most common probabilistic forecasts
that we encounter is the weather forecast: “70% chance of rain“ implies carrying
an umbrella is a good idea as it is a relatively innocuous way of mitigating that
risk. Probabilistic forecasting of the delivery performance of each supplier can give
material planners a similar overview—a high chance of low delivery performance
implies that adding buffer time or contacting the supplier may be good actions to
take.

The external validity of these forecasting models may be significantly impacted
by the Covid-19 pandemic. Covid-19 has had a devastating short-term effect on sup-
ply chains around the world (Choi, Rogers, and Vakil, 2020), the full extent of which
is a fast-growing area of research—several leading operations and logistics journals
have put out calls for papers on the impact of the virus (Journal of Operations
Management, 2020; Production and Operations Management, 2020; International
Journal of Production Research, 2020). The long-term ramifications of Covid-19
on supply chain design in terms of cost and resiliency are likely to be considerable
(Kilpatrick and Barter, 2020; Schatteman, Woodhouse, and Terino, 2020), though
uncertainty is high at this early stage.

The models are trained exclusively on historical data from before the pandemic,
but as the test data is the last 14 weeks of available observations for each time series,
a large portion of the predictions are over the period February—April 2020 in which
it is likely that Covid-19 had an effect on delivery performance. Excluding data from
2020, retraining the models and testing them on the last 14 weeks of observations

in each time series gives better mean quantile losses across the board, as shown in
Table 5.2.
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5.3 Exploratory Development for building Al

The Exploratory Development framework is designed to facilitate exploration with
high uncertainty and allows for iteration through ideas before moving forward with
the best one. In this way it worked quite well. This thesis pivoted through several
iterations before landing in the use neural networks to predict delivery performance.
Each pivot worked to clarify the scope and adjust the project to inputs from the
AdA team and other stakeholders.

One of those iterations was done as a part of a PulseLab. The most valuable
result of this was that the Fluid Teams dynamic, which opened the exploration to
everyone that felt they could contribute, brought in constructive criticism of the
approach and helped with the project’s structure. One drawback however with the
short format and split focus, where participants can be on several explorations, was
that it felt difficult to collaborate on writing code because of the substantial upfront
effort it takes.

An aspect of the framework that facilitated speed and decision-making in this
thesis project was the availability of write-ups from previous explorations. Having
this material to learn from helped with generating ideas in the early stage, discov-
ering what data are available and guidance in the use of specific technologies. A
pleasant side-effect of building a common and open knowledge base is that onboard-
ing into the team becomes easier.

The explore phase works well with modern tools for developing neural network
models such as GluonTS or Pytorch, as the modular design of these tools is ideal
for quick prototyping. By abstracting away finicky implementation details and stan-
dardizing data structures they allow for quick testing of ideas. By embracing the use
of cloud computing the AdA team has made sure that the necessary infrastructure
is in place to efficiently train models.

One of the difficulties with developing Al applications at Volvo Group SML with
the Exploratory Development framework lies in collaborating with other teams. By
the Volvo Group definition of Al it needs to make decisions in the real world, and
thus goes beyond being an analytics tool or recommendation engine. This makes the
need for integrating existing stakeholders and current owners of the given decision
even more prevalent.

A final sidenote is that the framework has held up as a methodology in the
face of vastly changing circumstances. Working in a way that welcomes change has
made it easier to adapt the thesis project to the changes that have been instituted
by Volvo Group during the projects runtime.

5.4 Conclusion

Both neural network models performed roughly on par with the much simpler local
ETS models for predicting delivery precision, but far better than the Prophet model.
The DeepAR model shows the most promise for forecasting delivery performance
based on the the mean quantile loss measure, although the MQRNN model dis-
plays more realistic growth in the uncertainty over time. The approach of training
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global models for probabilistic forecasting has a lot of promise in other applications
within SML, with examples being demand forecasting and backorder prediction.
The DeepAR model shows promise for forecasting intermittent time series, which is
a prominent feature in many forecasting situations that are encountered at SML.

Further research should be done on using the the MQRNN model with covari-
ates, both static and temporal. The model is actively being developed by researchers
at AWS, which maintains the GluonTS platform, and will in the future allow for
easy inclusion of covariates to the target variable. The next step for forecasting
delivery precision with the DeepAR models is to include more temporal covariates
such as holidays specific to each supplier’s country of operation, number of differ-
ent products they serve Volvo Group with on a regular basis, and the value of the
products purchased each week.
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Appendix

A.1 Data augmentation

nnn

data_augmentation.py

nnn

import pandas as pd

import numpy as np

import pickle

from gluonts.dataset.field_names import FieldName

import holidays
from datetime import date

# Auxiliary functions
def str_strip(series: pd.Series) -> pd.Series:
return series.astype(str).str.strip()

def yearweek_to_date(series: pd.Series) -> pd.Series:
"""Casts a column of yyyyww entries to dates using the monday
of each week"""
return pd.to_datetime(series.astype(str) + ’1°, format=’%G%Viju’

)

# Read the data

def parse_dp(base_path: str) -> pd.DataFrame:
nnn
Parses the excel spreadsheets at ’base_path’ into a useable
dataframe containing time series of delivery performance for
all suppliers.

nonn

append "_MM_last.xlsx"
df _1st = []
df _lst.append(
pd.read_excel (base_path + "2016" + append,
sheet_name="database",
usecols=np.arange (7))

for yr in [’2017°, °2018°, ’2019°’, ’2020°]:
df _1lst.append(
pd.read_excel (base_path + yr + append,
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40 sheet_name="database",
41 skiprows=1,

42 usecols=np.arange (7))
43 )

45 df = (pd.concat(df_lst, axis=0)

46 .dropna())

47

48 # strip blank spaces and cast to str

49 df .loc[:, ’Parma’] = str_strip(df[’Parma’])

50 df .loc[:, ’Supplier Name’] = str_strip(df[’Supplier Name’])
51 df .loc[:, ’Brand’] str_strip(df [’Brand’])

52 df .loc[:, ’Parma’] = df[’Parma’].str.replace(".0", "", regex=
False)

53

54 # cast to datetime entries W-Mon

55 df [’WEEK’] = yearweek_to_date (df [’WEEK’].astype(int))

57 df = df.sort_values(by=[’Parma’, ’WEEK’])

59 # group across Penta and VT and calculate overall DP

60 df = (df.groupby([’WEEK’, ’Parma’])

61 [[’0Order Lines Nb’, *K0’]]

62 .sum ()

63 .reset_index ())

64 df [’DP’] = 1 - (df[’K0’] / df[’0Order Lines Nb’])
65

66 return df

6o def parse_lt_fc(path_to_file: str) -> pd.DataFrame:
71 Parses spreadsheet of average leadtime and forecast demand
72 per supplier.

75 df = pd.read_excel(path_to_file, sheet_name=’Database’)

76 # strip blank spaces and cast to str

77 for col in df.dtypes[df.dtypes == ’object’].index:

78 df [col]l = str_strip(df[coll)

79

80 # fix a ’.’ and ’,’ issue

81 df [’FC Total (per month)’] = (df[’FC Total (per month)’]

82 .str.replace(’,’, ’.’, regex=
False)

83 .astype(’float64’))

84

85 return (df.groupby(’Main Supplier No’)

86 [["LT (Working days)", "FC Total (per month)"]]

87 .mean ())

90 def holidays_belgium() -> pd.DataFrame:
91 nnn
92 Create a time series counting the number of holiday days

93 in Belgium in a given week.

IT
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nmnn

belg_holidays = holidays.Belgium()
holiday_dates (]
for year in range (2013, 2021):
holiday_dates += belg_holidays[date(year, 1, 1):date(year
+1, 1, 1)]

idx = pd.date_range(start=’2013-01-01’, end=’2020-12-31’, freq=
’D?)

data = {’holidays_during_week’: 0, ’holidays_during_next_week’:
0}

ts_holidays = pd.DataFrame(index=idx, data=data)

ts_holidays.loc[holiday_dates, ’holidays_during_week’] = 1.0
ts_holidays = ts_holidays.resample(’W-Mon’, convention=’end’).
sum ()

ts_holidays[’holidays_during_next_week’] = ts_holidays[’
holidays_during_week’].shift (-1)

ts_holidays = ts_holidays.iloc[:-1]

return ts_holidays

> def create_data_folder (path_to_folder) -> None:

nn

Creates or fills a folder at ’path_to_folder’ with .parquet
files
of the augmented data.

nmn

import os

path_to_dp = "V:\\DP"
path_to_1t_fc = "V:\\Average_ LT_per_supplier.xlsx"
try:

os.makedirs (path_to_folder, exist_ok=True)
except OSError:

print ("Creation of the directory %s failed" 9
path_to_folder)

return
else:

print ("Successfully created the directory %s" %
path_to_folder)

parse_dp(path_to_dp).to_parquet(path_to_folder + ’\\dp.parquet’
)

parse_lt_fc(path_to_1lt_fc).to_parquet(path_to_folder + °’\\1lt_fc
.parquet’)

holidays_belgium().to_parquet (path_to_folder + ’\\
holidays_belgium.parquet’)

5 def gluonts_data_format (

path_to_data_folder: str = None,
num_test_obs: int = 14
) -> None:

ITT
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139 nmnn

140 Creates training and test datasets that can be input into

141 gluonts models and pickles them in ’path_to_data_folder’.
142 nnn

143 FREQ = "W-Mon"

144 if path_to_data_folder is None:

145 path_to_data_folder = ’masters_thesis_data’

146 create_data_folder (path_to_data_folder)

147

148 dp = pd.read_parquet(path_to_data_folder + ’\\dp.parquet’)

149 lt_fc = pd.read_parquet(path_to_data_folder + ’\\1lt_fc.parquet’
)

150 holidays_ts = pd.read_parquet(path_to_data_folder + ’\\
holidays_belgium.parquet’)

152 1t _fc.index.name = ’Parma’
153 MEAN_LT, MEAN_FC 1t_fc.mean()

155 datasets = {

156 >deepar_train’: [],

157 >deepar_test’ : [],

158 ’mgran_train’ : [],

159 ’mgqrnn_test’ : []

160 }

161

162 for key in dp[’Parma’].unique():

163 try:

164 mean_1lt, mean_fc = 1t_fc.locl[key]

165 except:

166 mean_lt, mean_fc = MEAN_LT, MEAN_FC

167 subframe = dp[dp[’Parma’] == key]

168 ts = (subframe[[’WEEK’, ’DP’]].set_index (’WEEK?’)
169 .resample (FREQ)
170 111 (O)

171 )

172 if len(ts) >= num_test_obs:

173 train_entry = {

174 FieldName.TARGET: (ts.values

175 .flatten )

176 [:-num_test_obs]
177 ),

178 FieldName.START: ts.index[0],

179 FieldName.ITEM_ID: key,

180 FieldName .FEAT_STATIC_REAL: [mean_1t, mean_fc],
181 FieldName.FEAT_DYNAMIC_REAL:

182 (holidays_ts.loc[ts.index.values]
183 .values

184 .transpose ()

185 [:, :-num_test_obs]
186 )

187 T

188 test_entry = {

189 FieldName.TARGET: (ts.values

190 .flatten ()

191 ) B}
192 FieldName.START: ts.index[0],

IV
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193 FieldName.ITEM_ID: key,
194 FieldName .FEAT_STATIC_REAL: [mean_lt, mean_fc],
195 FieldName.FEAT_DYNAMIC_REAL:

196 (holidays_ts.loc[ts.index.values]
197 .values

198 .transpose ()

199 )

200 T

201

202 # mgrnn model cannot currently handle covariates
203 mgrnn_train_entry = train_entry.copy ()

204 mgrnn_train_entry.pop(FieldName.FEAT_STATIC_REAL)
205 mgrnn_train_entry.pop(FieldName.FEAT_DYNAMIC_REAL)
206 mgrnn_test_entry = test_entry.copy ()

207 mqrnn_test_entry.pop(FieldName.FEAT_STATIC_REAL)
208 mgqrnn_test_entry.pop(FieldName.FEAT_DYNAMIC_REAL)

210 datasets[’deepar_train’].append(train_entry)

211 datasets [’deepar_test’].append(test_entry)

212 datasets[’mqrnn_train’].append(mgrnn_train_entry)
213 datasets[’mqrnn_test’].append(mgqrnn_test_entry)

215 for name, lst in datasets.items ():

216 with open(path_to_data_folder + ’\\’ + name + ’.pickle’, ’
wb’) as h:

217 pickle.dump(lst, h, protocol=pickle.HIGHEST_PROTOCOL)

219 if __name == ’_ main__"’:

220 gluonts_data_format(’testing_data_function’)
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A.2 Model training

nnn

model_training.py

nnnn

import mxnet as mx

from mxnet import gluon

from gluonts.model.deepar import DeepAREstimator
from gluonts.model.seq2seq import MQRNNEstimator

from gluonts.trainer import Trainer

from gluonts.dataset.field_names import FieldName

from gluonts.transform import (

AddAgeFeature,

AddObservedValuesIndicator,

AddTimeFeatures,
AsNumpyArray,
Chain,

ExpectedNumInstanceSampler,

InstanceSplitter
RemoveFields,
SetField,
Transformation,
VstackFeatures,

import pickle
from pathlib import
import os

path_to_data_folder
NUM_TEST_0BS = 14
FREQ = "W-Mon"

# read the data

with open(path_to_data_folder + ’\\deepar_train.pickle’, ’rb’) as h

B

Path

’testing_data_function’

deepar_train = pickle.load(h)

with open(path_to_data_folder +

mgrnn_train = pickle.load (h)

# DeepAR model

class ModifiedEstimator (DeepAREstimator):

def __init__(
self,

prediction_length,

freq, scaling,

use_feat_static_real,
use_feat_dynamic_real,

trainer

super (). __init__(

prediction_length=prediction_length,

VI

’\\mgrnn_train.pickle’, ’rb’) as h:
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freq=freq,

scaling=scaling,
use_feat_static_real=use_feat_static_real,
use_feat_dynamic_real=use_feat_dynamic_real,
trainer=trainer)

def create_transformation(self):
remove_field_names = [FieldName.FEAT_DYNAMIC_CAT]
if not self.use_feat_static_real:
remove_field_names.append(FieldName.FEAT_STATIC_REAL)
if not self.use_feat_dynamic_real:
remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)

return Chain (
[RemoveFields (field_names=remove_field_names)]

+ (

value=[0.0])]

value=[0.0]

dimension

event_shape),

[SetField (output_field=FieldName.FEAT_STATIC_CAT,

if not self.use_feat_static_cat

else

]

(]

SetField(
output_field=FieldName.FEAT_STATIC_REAL,

if not self.use_feat_static_real

else

(]

AsNumpyArray (

),

field=FieldName.FEAT_STATIC_CAT,
expected_ndim=1,
dtype=self.dtype,

AsNumpyArray (

),

field=FieldName.FEAT_STATIC_REAL,
expected_ndim=1,
dtype=self.dtype,

AsNumpyArray (

),

field=FieldName .TARGET,
# in the following line, we add 1 for the time

expected_ndim=1 + len(self.distr_output.

dtype=self .dtype,

AddObservedValuesIndicator (

target_field=FieldName.TARGET,
output_field=FieldName.OBSERVED_VALUES,
dummy_value=self.distr_output.value_in_support,
dtype=self .dtype,

VII
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AddTimeFeatures(
start_field=FieldName.START,
target_field=FieldName.TARGET,
output_field=FieldName.FEAT_TIME,
time_features=self.time_features,
pred_length=self.prediction_length,

),

AddAgeFeature (
target_field=FieldName.TARGET,
output_field=FieldName.FEAT_AGE,
pred_length=self .prediction_length,
log_scale=True,
dtype=self .dtype,

),

VstackFeatures (
output_field=FieldName.FEAT_TIME,
input_fields=[FieldName.FEAT_TIME, FieldName.

FEAT_AGE]

+ (
[FieldName.FEAT_DYNAMIC_REAL]
if self.use_feat_dynamic_real
else []

),

),

InstanceSplitter(
target_field=FieldName.TARGET,
is_pad_field=FieldName.IS_PAD,
start_field=FieldName.START,
forecast_start_field=FieldName.FORECAST_START,
train_sampler=ExpectedNumInstanceSampler (

num_instances=10) ,

past_length=self .history_length,
future_length=self.prediction_length,
time_series_fields=[

FieldName .FEAT_TIME,

FieldName .OBSERVED_VALUES,
1,

dummy_value=self.distr_output.value_in_support,

5 # the three estimators

mqrnn_estimator = MQRNNEstimator (

prediction_length=NUM_TEST_O0BS,

freq=FREQ,

quantiles=[0.1, 0.25, 0.5, 0.75, 0.9],

mlp_hidden_dimension_seq=[14, 14],

trainer=Trainer (ctx="cpu",
epochs=300,
learning_rate=1e-3,
num_batches_per_epoch=1000
)

deeparfeats_estimator = ModifiedEstimator (
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prediction_length=NUM_TEST_O0BS,

freq="W’,

scaling=False,

use_feat_static_real=True,

use_feat_dynamic_real=True,

trainer=Trainer (ctx="cpu",
epochs=300,
learning_rate=1e-3,
num_batches_per_epoch=1000)

)

deeparpure_estimator = ModifiedEstimator (

prediction_length=NUM_TEST_OBS,

freq="W’,

scaling=False,

use_feat_static_real=False,

use_feat_dynamic_real=False,

trainer=Trainer (ctx="cpu",
epochs=300,
learning_rate=1e-3,
num_batches_per_epoch=1000)

2 # train the models

mgqrnn_predictor = mqrnn_estimator.train(mqrnn_train)
deeparpure_predictor = deeparpure_estimator.train(deepar_train)

5 deeparfeats_predictor = deeparfeats_estimator.train(deepar_train)

7 # serialize the models
ss os.makedirs (path_to_data_folder + ’\\deeparpure’, exist_ok=True)

deeparpure_predictor.serialize(Path(path_to_data_folder + ’\\
deeparpure\\’))

os.makedirs (path_to_data_folder + ’\\deeparfeats’, exist_ok=True)
deeparfeats_predictor.serialize(Path(path_to_data_folder + ’\\
deeparfeats\\’))

os.makedirs (path_to_data_folder + ’\\mqrnn’, exist_ok=True)
mgqrnn_predictor.serialize (Path(path_to_data_folder + ’\\mqrnn\\’))
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A.3 Model evaluation

nnn

> model_evaluation.py

nnn

from pathlib import Path
import pickle

; import numpy as np
import pandas as pd

import mxnet as mx

from mxnet import gluon

from gluonts.evaluation.backtest import make_evaluation_predictions
from gluonts.model.forecast import SampleForecast, QuantileForecast
from gluonts.model.predictor import Predictor

path_to_data_folder = ’testing_data_function’
# Metrics

s def quantile_loss(quantile_forecast, target, tau):
return np.sum(

np.abs(

(quantile_forecast - target)

* ((target <= quantile_forecast) - tau)
)

def tau_risk(fc_1lst, ts_1lst, tau):
Follows exactly the approach of Seeger, Salinas and Flunkert
(2016)
ql = 0
for ts, fc in zip(ts_1lst, fc_1lst):
# Extract the target values
pred_target = np.atleast_1d(
np.squeeze (ts.loc[fc.index])) .transpose ()
pred_target = np.array(pred_target)
pred_target = np.ma.masked_invalid(pred_target)

Z = pred_target.sum()

if type(fc) == QuantileForecast:
# MQRNN
# get sum of estimated quantiles
Z_hat = fc.quantile(tau).sum()

elif type(fc) == SampleForecast:
# DeepAR
sorted_sample = np.sort(fc.samples.sum(axis=1))
sample_idx = int(np.round(len(sorted_sample)-1)*tau)

Z_hat = sorted_sample[sample_idx]

ql += 2xquantile_loss(Z, Z_hat, tau)
return ql / len(ts_1st)
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def

mgrnn_=fc
mgrnn_ts

mean_quantile_loss(fc_1lst, ts_1lst, tau):
ql = 0
for ts, fc in zip(ts_1lst, fc_1lst):
# Extract the target values
pred_target = np.atleast_1d(
np.squeeze (ts.loc[fc.index])).transpose ()
pred_target np.array(pred_target)
pred_target np.ma.masked_invalid(pred_target)

quantile_fc = fc.quantile(tau)

gl += (quantile_loss(pred_target, quantile_fc,
pred_target))
return ql / len(ts_1st)

dataset=deepar_test,
predictor=deeparfeats_predictor,
num_samples=100)

list (mqrnn_£fc)
list (mqrnn_ts)

deeparpure_fc = list(deeparpure_fc)

deeparpure_ts

deeparfeats_fc
deeparfeats_ts

list (deeparpure_ts)

list (deeparfeats_fc)
list (deeparfeats_ts)

# Evaluation

tau) / len(

# Data

with open(path_to_data_folder + ’\\deepar_test.pickle’, ’rb’) as h:
deepar_test = pickle.load(h)

with open(path_to_data_folder + ’\\mqrnn_test.pickle’, ’rb’) as h:
mgrnn_test = pickle.load(h)

# Models

deeparpure_predictor = Predictor.deserialize (Path(
path_to_data_folder + ’\\deeparpurel\’))

deeparfeats_predictor = Predictor.deserialize (Path(
path_to_data_folder + ’\\deeparfeats\\’))

mgqrnn_predictor = Predictor.deserialize(Path(path_to_data_folder +
’\\mgrnn\\’))

# Forecasts

mgraon_fc, mqrnn_ts = make_evaluation_predictions(
dataset=mqrnn_test,
predictor=mqrnn_predictor,
num_samples=None)

; deeparpure_fc, deeparpure_ts = make_evaluation_predictions(

dataset=deepar_test,
predictor=deeparpure_predictor,
num_samples=100)

deeparfeats_fc, deeparfeats_ts = make_evaluation_predictions(
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quantiles [0.1, 0.25, 0.5,

idx [’MQRNN’, ’DeepAR-pure’,

pd.DataFrame (index=idx,

risk_results ql_results.copy ()

for q in quantiles:
ql_results.loc[’MQRNN’, q]

= 0.75, 0.9]

gql_results.loc[’DeepAR-pure’, q]
deeparpure_fc,

deeparpure_ts,

gl _results.loc[’DeepAR-feats’, ql =
deeparfeats_fc,
deeparfeats_ts,
risk_results.loc[’MQRNN’, q] = tau_

risk_results.loc[’DeepAR-pure’, ql

risk_results.loc[’DeepAR-feats’, q]

print (ql_results)

2 print (risk_results)

# parquet cannot deal with integer column
5 col_names

[str(i) for i in quantiles]
ql_results.columns col _names

col_names

ql_results.to_parquet (path_to_data_folder +

parquet’)

risk_results.to_parquet(path_to_data_folder +

XII

’DeepAR -

feats’]

columns=quantiles)

mean_quantile_loss (mqrnn_fc,

mqrnn_ts,
q)

mean_quantile_loss(

q)

mean_quantile_loss(

q)

risk(mqrnn_f£fc,
mgrnn_ts,
q)
tau_risk (deeparpure_fc,
deeparpure_ts,
q)
tau_risk(deeparfeats_fc,
deeparfeats_ts,

q)

names

’\\mean_quantile_loss.

’\\tau-risk.parquet’)



	Introduction
	Background
	Company background
	Service Market Logistics
	Advanced Analytics

	Problem formulation and research questions
	Scope and structure

	Method
	Agile methods within Advanced Analytics
	Exploratory Development
	PulseLab
	Thesis work


	Mathematical background
	Time series forecasting
	Multi-step ahead forecasting

	Parametric forecasting methods
	Autoregressive and moving average models
	ARIMA
	Exponential Smoothing

	Non-parametric forecasting methods
	Global and local models
	Ensemble methods
	Neural networks
	Recurrent neural networks


	Models
	Multi-Horizon Quantile Recurrent Forecaster
	Quantile regression
	Quantile regression with neural networks
	Model architecture
	Training scheme

	DeepAR
	Training scheme

	Data

	Results
	Model evaluation
	Business implications
	Exploratory Development for building AI
	Conclusion

	Bibliography
	Appendix
	Data augmentation
	Model training
	Model evaluation


