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An Extensible HTTP Client Library for Elixir
Verified with Property Based Random Testing
AXEL JOHNSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Use cases of the World Wide Web (the Web) constantly evolve. In order to support
present and future applications interacting with the Web, a new Hypertext Transfer
Protocol (HTTP) client library is proposed. The present report describes the process
of implementing an HTTP client library in the Elixir programming language. The
major difference between the current HTTP client library and competing projects in
the Elixir landscape is that state and process management are explicit to the user.
Property-based and random testing were used during correctness evaluation and
have been a success to use in the context of a functional language and an Internet
protocol. Four abstractions were built on top of the library where two of them are
possible because of the given control over state and process management. Early
results tell that the HTTP client library is comparable to existing solutions in terms
of robustness and performance.

Keywords: the Web, HTTP, Elixir, Erlang, property-based and random testing.
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1
Introduction

The purpose of this chapter is to put the current thesis into context and give ideas
of why the work is relevant and interesting. The chapter has been structured into
these sections: a short background around the studied area, problem statement,
related work and project limitations. The remaining report has been divided into
several chapters where: Chapter 2 presents a theoretical background on relevant
subjects, Chapter 3 answers how the work has been carried out, Chapter 4 describes
the project results, and finally Chapter 5 and 6 give a discussion and a conclusion
around the thesis.

1.1 Background

The present section gives a short background to following technologies: the Web,
the Elixir and the Erlang programming languages and, a tool called QuickCheck for
property-based and random testing.

1.1.1 The World Wide Web

Tim Berners-Lee began to work on the World Wide Web (the Web) while employed
at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland
in 1989 [3]. In the year of 2000 he wrote: “The vision I have for the Web is about
anything being potentially connected with anything.”. Today the Web is made up
of over 130 trillion individual pages according to Google1, with respect to their
statistic, Tim’s prediction turned out right.
The Web is built around three concepts: Universal Resource Identifiers (URIs), Hy-
pertext Transfer Protocol (HTTP) and Hypertext Markup Language (HTML). URIs
are used to identify resources on the Web where they serve as edges that intercon-
nect documents and other information. The architecture of the Web is a client-server
model where clients and servers communicate via the HTTP protocol. HTML is the
standard markup language used on the Web for creating web pages.
A good example of what is possible to do on the Web is Wikipedia2, a free online

1https://www.google.com/insidesearch/howsearchworks/thestory/
2https://en.wikipedia.org/
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Chapter 1. Introduction

encyclopedia. The website is among the ten most visited sites globally3 and accord-
ing to its founder Jimmy Wales, it consists of more than 40 million articles written
in over 250 different languages4.
While most people associate the Web with popular websites such as Wikipedia or
Google, it is also a place for machines to communicate with other machines. By
using a programmable web client, a program can interact with selected websites.
Researchers at Stanford University have used a programmable HTTP client to collect
tweets on Twitter for further analysis [8]. Another example is the Ensembl genome
database project that gives foreign software access to its database via the HTTP
protocol [20].

1.1.2 Elixir

Elixir5 is a functional, concurrent and general-purpose programming language that
first appeared in 2011. The language is developed as an open source project by a
number of volunteers on the Internet. To understand Elixir, one must understand the
language it builds upon. Erlang6 is similarly a functional, concurrent and general-
purpose programming language created by the Swedish telecommunication company
Ericsson in the 80s [1]. The purpose was to design a language and run-time system
that would allow the company to program concurrent, distributed, fault-tolerant,
scalable and soft real-time software. Elixir is tightly bound to Erlang, examples of
things that Elixir do differently are: improved support for collection processing, a
new language syntax and focus on developer tooling.

1.1.3 QuickCheck

QuviQ QuickCheck is a novel tool for automatic test case generation built on the
ideas of property-based and random testing [2]. It supports test case generation for
both functions without side effects and stateful interfaces. The process of randomly
generating test cases is controlled with a Domain-Specific Language (DSL) imple-
mented in Erlang. The tool supports testing for race conditions and mocking along
with a range of other features. The first version of QuickCheck, which was origi-
nally presented at the International Conference on Functional Programming (ICFP)
in 2000 by John Hughes and Koen Claessen [4], was implemented in the Haskell7
programming language. As a clarification, the Haskell version is often referred to as
just QuickCheck but in this report, QuickCheck means QuviQ QuickCheck.

3http://www.alexa.com/siteinfo/wikipedia.org
4http://www.cbsnews.com/news/wikipedia-jimmy-wales-morley-safer-60-minutes/
5https://elixir-lang.org/
6http://www.erlang.org/
7https://www.haskell.org/
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1.2 Problem Statement

The purpose of this thesis project is to support needs that existing HTTP client
libraries in the Elixir ecosystem have ignored. Current libraries handle state and
process management implicitly which reduce the set of possible ways client libraries
can be extended. Therefore, a new HTTP client library is proposed that can sup-
port a wide range of present and future Internet applications written in the Elixir
programming language.
Additionally, answers to the following questions are sought:

1. What are the downsides of giving users control over state and process man-
agement?

2. Can Quviq’s QuickCheck be used in the context of a functional HTTP client
with a satisfying result?

3. What is the best way to implement an HTTP message parser in Elixir? Is a
high-level approach using parsing combinators efficient enough, or is it better
to use a more low-level approach based on a finite-state machine?

4. How have existing HTTP clients written in a functional programming language
solved the problem of streaming requests and responses?

1.3 Related Work

There are several successful HTTP client libraries in the industry and in the open
source community. Two of these projects have been studied as part of the current
thesis work. The relevant projects are listed below:
httpc8 An HTTP client library included in the Erlang distribution which is both

configurable and simple to use.
hackney9 A third-party client written in Erlang developed as an open source project.

Due to its large feature set, the library are used directly by users and by other
HTTP libraries.

1.4 Limitations

The limitations for this thesis project are listed below:
• Any support for HTTP/2.0 or WebSockets is out of scope. The reason is time,

the duration of the project is rather short and therefore it was decided to focus
on HTTP/1.1 only.

8http://erlang.org/doc/man/httpc.html
9https://github.com/benoitc/hackney
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• Several features typically present in existing HTTP libraries have been omitted
since the goal was to implement a low-level interface which users can extend
upon.

4



2
Theory

The goal of the present section is to introduce theories used in the current thesis
project. Section 2.1 briefly describes formal languages and ways of parsing such
languages. Section 2.2 gives basic terminology related to random testing and a dis-
cussion on the subject. In Section 2.3, the Transport Layer Security (TLS) protocol
is presented.

2.1 Formal Language Theory

Formal language theory has its origin in the 1950s [11]. A formal language consists
of an alphabet and a set of rules which determines what words or strings that are
included in the language. A language’s alphabet is a set of symbols that can be
combined in order to produce strings of the language. The set of rules defining
the structure of a formal language is referred to as a formal grammar. A formal
grammar G is defined by a 4-tuple (N,Σ, P, S) where:

• N is a finite set of nonterminal symbols disjoint from Σ.
• Σ is a finite set of terminal symbols, called the alphabet, disjoint from N .
• P is a finite set of production rules where each rule is a combination of elements

from N and Σ specifying the syntax of the language.
• S is the start symbol S ∈ N .

The set P containing the production rules of a formal grammar can be restricted
in ways in order classify grammars according to their computational requirements.
Noam Chomsky’s hierarchy consists of the following four types: unrestricted gram-
mar, context-sensitive grammar, context-free grammar and regular grammar where
the first grammar is the most powerful meaning that it recognizes the most lan-
guages. Each grammar class has one or more computational models corresponding
to the class. The software component implementing a formal grammar is often re-
ferred to as a decoder or a parser. Various methods exist for describing formal gram-
mars and one of the more popular ones when working with context-free grammars is
the Backus-Naur Form (BNF). In the context of Internet protocols, the Augmented
Backus-Naur Form (ABNF)1 that extends BNF with practices and conveniences is
often used.

1https://tools.ietf.org/html/rfc5234
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2.1.1 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is the communication protocol of the
Web. It is developed by the World Wide Web Consortium (W3C) where the most
recent specification of the HTTP/1.1 protocol is defined in a number of Requests
for Comments (RFCs). The primary source when working with the protocol during
this project was RFC 72302 which defines the message syntax of the protocol.
An HTTP message can be either a request or a response where the former is always
sent by a client while the latter is only sent by servers. Both of these messages
contain: a start line, a number of headers and an optional body. The start line can
be either a request line or a status line depending on if the message is a request or
a response respectively. A header is simply a key-value pair. There are two types of
bodies: plain and chunked. A plain body is a string of bytes and can be sent when
the size of it is known. A chunked body is constructed from a number of chunks and
allows for streaming of HTTP messages. When sending a chunked body, a number
of trailers, which are identical to headers in terms of syntax, can be included at the
end of the message.
An example of an HTTP request is given in Listing 2.1 while an example response
is given in Listing 2.2. In the case of the response, lines 1-6 are referred to as the
head section throughout this report. Similarly, lines 7-8 are a chunk and line 10 is
called the tail.

Listing 2.1: An example of an HTTP request.

1 GET / HTTP/1.1
2 Host: www.example.com
3 Connection: close

Listing 2.2: An example of an HTTP response.

1 HTTP/1.1 200 OK
2 Connection: close
3 Content-Type: text/plain
4 Transfer-Encoding: chunked
5 Trailer: Cache-Control
6

7 3
8 ABC
9 0

10 Cache-Control: max-age=3600

2https://tools.ietf.org/html/rfc7230
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2.1.2 Parser Combinators

A method for implementing context-free grammars is called combinator parsing.
When utilizing combinator parsing, parsers are modelled as functions. Larger parsers
are built by combining smaller functions using higher order functions [14]. Parsers
using this approach often look like the Backus Normal Form (BNF). From here on,
the higher order functions used for gluing together parser functions will be referred
to as parser combinators.
To illustrate a parser function, its general type is given in Listing 2.3. Elixir’s
typespecs3 are used in this section when describing types. As can be seen, the input
type is a string of characters or symbols while the return type consists of a list of
tuples with a generic type a and another string of characters. The returned list can
contain: a single element, many elements or none where the latter case denotes an
error. The second element in the tuple is the suffix of the input string of characters
since sometimes no or just a subset of the input is consumed during parsing.

1 @type parser(a) :: (String.t -> [{a, String.t}])

Listing 2.3: Type definition of a parser function as defined in a paper on the subject
of combinator parsing [14].

An example of a combinator function is given in Listing 2.4. The function works like
the or operation in Boolean algebra since it succeeds as along as one of the given
parsers is successful. In the case when both parsers succeed, the returned list will
contain two tuples.

1 @spec alt(parser(a), parser(a)) :: parser(a)
2 def alt(f, g) do
3 fn input -> do
4 f.(input) ++ g.(input)
5 end
6 end

Listing 2.4: An example of a parser combinator in which the given function does
the or operation from Boolean algebra of two parser functions.

2.1.3 Finite Automaton

Finite-State Machines (FSMs) or Finite-State Automata (FSA) have seen a wide
range of practical applications such as: image processing, vending machines and
automatic test case generation [15, 17, 2]. The current section introduces finite-
state machines along with their formal definition and then ends with a motivation
for why the model can be used when parsing the HTTP protocol.

3https://elixir-lang.org/getting-started/typespecs-and-behaviours.html
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2.1.3.1 Definition

A finite-state machine reads input symbols and makes progress through a set of
states as the symbols are processed. A function, which is referred to as the tran-
sition function, tells how a machine moves from one state to another solely based
on the current state and the current input symbol. An example of a traffic light
implemented as a finite-state machine is given in Figure 2.1. The set of states, the
input alphabet and the transition function can be interpreted from the figure. There
are four states and each of them is drawn as a circle, the input alphabet contains
two symbols: stop and proceed while the transition function can be found by looking
at the edges.

red

yellowproceed

errorstop
stop

green

proceed
stop proceed

proceed, stop

Figure 2.1: An example of a traffic light implemented as a finite-state machine.

The formal definition of a finite automaton can be defined by the 5-tuple (Q, Σ, δ,
q0, F ) where [19]:

• Q is a finite set of states.
• Σ is a finite set of input symbols called the alphabet.
• δ : Q× Σ 7→ Q is the transition function.
• q0 ∈ Q is the start state.
• F ⊆ Q is the set of accepting states.

The start state and the set of accepting states were left out in the introduction
above. These states denote where the machine starts and terminates respectively.
In Figure 2.1, the start state is pointed to by an arrow while there is no accepting
state.

2.1.3.2 Motivation

A major use case of finite-state automata is in implementing grammars for languages
referred to as regular languages. The class of languages that can be recognized by
a finite-state machine belong to the least powerful grammar type in Chomsky’s
hierarchy [11]. Even though HTTP is specified with ABNF and thus a context-
free grammar, the parts related to HTTP message responses in the protocol can
be parsed with a finite-state machine. When working with finite-state automata,
several operations can be made on an automaton which produce another finite-
state machine. If this is true for a certain operation, then finite-state automata
are said to be closed under that operation [19]. An example of operations that
finite-state machines are closed under are: union, concatenation and Kleene closure.
In Listing 2.5, the ABNF rule for a status line included in an HTTP response
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is given. Since finite automata are closed under concatenation, it can be proven
that there exists a finite-state machine representing the ABNF rule status-line if
finite-state automata exist for HTTP-version, SP, status-code, reason-phrase and
CRLF. Identical arguments can be made for each of the sub-rules and each of the
components in every sub-rule along with all the other rules relevant for an HTTP
response.

1 status-line = HTTP-version SP status-code SP reason-phrase CRLF

Listing 2.5: ABNF for an HTTP status line as defined by RFC 7230.

A limitation of finite-state machines is their inability to recognize infinite patterns
in a grammar due to their finite memory. An example of a language that can not be
recognized by a finite-state machine is the language of matching parentheses where
the number of opening and closing parenthesis have to be equal. Therefore, it is
important to validate the presence of any recursion in the HTTP grammar. Luckily,
there is no recursion in the relevant grammar for decoding HTTP messages and a
finite-state machine can be implemented for that purpose. In other words, HTTP
responses are regular.

2.2 Random Testing

Software testing is an approach for assessing the quality of a computer program.
Many techniques exist for doing the testing and depending on what properties are
of interest, one should choose methods accordingly. One branch of software testing
is functional testing where a program’s correctness is evaluated. The components
involved in functional testing are: input data, a Software under Test (SUT), output
data and a routine for determining the test outcome. This routine is often referred
to as an oracle. In random testing, input data is independently generated by using
a pseudorandom number generator (PRNG). It may seem naive to trust chance in
producing good test cases but it actually competes well in practice with systematic
methods [4].

2.2.1 Strengths

• As input data is chosen randomly, human intervention is replaced by chance
when doing random testing. Thus, bias towards certain areas in the software
is removed. For example, a developer may trust in the correctness of an
unknowingly faulty component which a PRNG would not.

• It is sometimes possible to predict the significance of a successful random test.
For example, one would could state “It is 90 % certain that some Software
under Test will fail no more than once in 1 000 runs” [10]. Unfortunately there
are several requirements for such as statement to be made: it is a system level
test, a valid operational profile is available, representative input data can be

9
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generated and an effective input oracle is available [10]. An operational profile
weight different input values depending on their probability of occurring during
operation [9].

• Since test cases are automatically generated by a computer, it is relatively
cheap to use random testing. This gives rise to some interesting possibilities
such as constructing and running test cases twenty-four hours a day, seven
days a week.

2.2.2 Weaknesses

• A requirement for random testing is the availability of an efficient oracle. Or-
acles must be efficient since a large number of test cases is typically generated.

• Another problem with random testing is the lack of presence of an operational
profile for the Software under Test. Without an operational profile, the ability
to predict the significance of a random test disappears [10].

2.3 Transport Layer Security

The Transport Layer Security (TLS) protocol is a mean for secure communication
over a computer network. The protocol can be layered on top of any existing reliable
transport protocol such as the Transmission Control Protocol (TCP). The TLS
protocol is designed to prevent: eavesdropping, tampering and message forgery.
The TLS protocol is application independent though commonly used on the Web.
In fact, around 40 % of the Web traffic was made with TLS in January 2017 [7].

2.3.1 Protocol Description

There are two layers of the TLS protocol: the TLS Handshake protocol and the TLS
Record protocol [5]. The combination of the two protocols allows for efficient and
private communication where data integrity and authentication are verified.

2.3.1.1 TLS Handshake Protocol

In the initial phase of a communication session via the TLS protocol, the TLS Hand-
shake protocol is used to negotiate security parameters and a shared secret. The
negotiation step is possible due to asymmetric cryptography (or public key cryptog-
raphy) [6, 18] since public key cryptography allows for encryption and authentication
without having to transmit any shared secrets beforehand. The shared secret is then
used while transmitting application data via the TLS Record protocol.
As part of the handshake, communicating peers exchange certificates containing
public keys and other information identifying their selves. In order to prevent mes-
sage forgery, also referred to as an Man-In-The-Middle Attack (MITM), the public
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key of a peer has to be verified. Otherwise, a user may be tricked into sending
private information to an unintended receiver. A server’s public key is verified with
a process based on public key cryptography where it is possible for a client to check
if the current server is trusted by an authority. It is up to the client to decide which
authorities to trust via the use of so called root certificates. Additionally, in the
context of TLS and the Web, a client must check the server’s domain or IP address
against the identity given in the certificate exchanged by the server according to
RFC 28184.

2.3.1.2 TLS Record Protocol

The TLS Record protocol prevents eavesdropping and tampering through the use of
symmetric cryptography and Keyed-Hashing for Message Authentication (HMAC).
When sending a message over the TLS Record protocol, the message is made pri-
vate by encrypting it using symmetric cryptography while the data integrity and
authentication can be verified using HMAC [16]. Both methods require the use of a
shared secret. The shared secret is negotiated in the early phase of a communication
session using the TLS Handshake protocol.

4https://tools.ietf.org/html/rfc2818
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3
Method

The current chapter aims to describe how the proposed Hypertext Transfer Protocol
(HTTP) client library was implemented along with criteria and methods for evalu-
ating the resulting software. It also introduces the landscape survey that was done
during the project, see Section 3.1. Section 3.2 presents the implementation while
Section 3.3 gives the evaluation.

3.1 Landscape Survey

As a way of gaining knowledge and ideas from HTTP client libraries implemented
in other functional programming languages, the following clients were studied: http-
client1 and clj-http2 written in Haskell and Clojure respectively. The former library
is developed as an open source project and provides a low-level interface along with
several extensions while the latter library has a more high-level feature set. The
reasons for choosing an HTTP client library written in Haskell are the language’s
way of lazily evaluating expressions and that it is a statically typed language. On
the other hand, the reason for studying an HTTP library built with Clojure is that
it is a new language running on a virtual machine originally intended for another
host language. The approach was to study the documentation and source code for
both of these libraries. Since different libraries support different feature sets, most
of the effort was spent on the basics such as how requests and responses are sent
and received.

3.2 Implementation

Since the main goal of the current thesis was to produce an extensible HTTP client
library, much time was spent working on the implementation. The library is called
Net.HTTP while the architecture of the implementation can be divided into the
following components: Encoder, Decoder, Connection and Public API. See Figure
3.1 for a dependency tree of the different components. Every component is described
in more detail in this section.

1https://github.com/snoyberg/http-client
2https://github.com/dakrone/clj-http
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Public API

Encoder Decoder Connection

Reference FSM Default

TCP

TLS

Figure 3.1: A dependency tree of the different components in Net.HTTP. A filled
arrow denotes a fixed dependency while a dotted arrow signals a configurable de-
pendency.

To get an understanding of the size of the implemented library and to put it into
relation with similar projects, see Table 3.1. There, the number of files, number of
blank lines, number of comments and number of source code lines are given for each
project. The numbers were collected with a tool called cloc3. Note that all of the
implemented decoders are included in the comparison as well as a number of files
used by httpc that is shared with a web server included in the Erlang distribution.
Furthermore, similar statistics are given for each of the decoders used in this project
in Table 3.2.

Table 3.1: Comparison of source code statistics between Net.HTTP and two similar
projects.

Project Files Blanks Comments Source Lines of Code
Net.HTTP 16 339 114 1 666
hackney 29 956 1 058 6 631
httpc 17 909 1 551 5 193

Table 3.2: Comparison of source code statistics between the implemented HTTP
decoders.

Decoder Files Blanks Comments Source Lines of Code
Reference 1 56 35 283
FSM 1 85 18 278
Default 1 39 2 185

3.2.1 Encoder

An encoder converts a piece of information from one format to another. In the
context of building an HTTP client library, an encoder has to be implemented

3https://github.com/AlDanial/cloc
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that converts an in-memory HTTP request into the in-transfer format defined in
the HTTP specification. The encoder produced during the project was designed
in two parts: a set of functions that encode certain HTTP values and a stateful
interface gluing these functions to form a complete encoder. Typespecs for the
encoder functions are given in Listing 3.1.

Listing 3.1: Typespecs for the encoder. The types Chunk.t, Message.trailer, Re-
spoonse.t and Request.t are given in Section A.1.

1 @doc "Encodes the start line and headers of an HTTP message."
2 @spec encode_head(Response.t | Request.t)
3 :: {:ok, binary} | {:error, any}
4

5 @doc "Encodes a chunk of an HTTP message."
6 @spec encode_chunk(Chunk.t | binary)
7 :: {:ok, binary} | {:error, any}
8

9 @doc """
10 Encodes the body of an HTTP message.
11

12 The second argument should match the length given in the
13 "Content-Length" header.
14 """
15 @spec encode_body(binary, integer)
16 :: {:ok, binary} | {:error, any}
17

18 @doc "Encodes trailers of an HTTP message."
19 @spec encode_tail([Message.trailer])
20 :: {:ok, binary} | {:error, any}

Each of these functions return a tuple with a status flag as the first element and a
value as the second element. Depending on the status flag, encoded data or an error
explanation is returned. The stateful interface guides the user through the process
of encoding a full message by deciding what encoder functions to use according the
message in process and it also deals with errors.
An IO list is an efficient data structure for producing sequences of binary data in
Erlang and Elixir [12]. An IO list can contain: bytes, binaries and other IO lists.
The typical use case of an IO list is when sending binary data over the wire. Instead
of combining and copying binaries when encoding an HTTP message, IO lists are
used to efficiently construct encoder outputs.

3.2.2 Decoder

A decoder does the opposite of an encoder and in the case of an HTTP library, the
purpose of a decoder is to convert an in-transfer HTTP message in to an in-memory
format. Similarly to as with the encoder built during the project, a set of decoder
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functions were implemented to do the actual decoding while a stateful interface
was provided to glue the decoding functions together. Typespecs for each of these
functions are given in Listing 3.2.

Listing 3.2: Typespecs for the implemented decoders. The types Chunk.t, Mes-
sage.trailer and Response.t are given in Section A.1.

1 @doc "Decodes the status line and headers of an HTTP response."
2 @spec decode_head(binary) :: {:ok, Response.t, binary}
3 | {:ok, :more, binary}
4 | {:error, any, binary}
5

6 @doc "Decodes a chunk of an HTTP response."
7 @spec decode_chunk(binary) :: {:ok, Chunk.t, binary}
8 | {:ok, :more, binary}
9 | {:error, any, binary}

10

11 @doc "Decodes the body of an HTTP response."
12 @spec decode_body(binary, integer) :: {:ok, Chunk.t, binary}
13 | {:ok, :more, binary}
14 | {:error, any, binary}
15

16 @doc "Decodes trailers of an HTTP response."
17 @spec decode_tail(binary) :: {:ok, [Message.trailer], binary}
18 | {:ok, :more, binary}
19 | {:error, any, binary}

Three different decoders were implemented during the project: Reference, FSM,
Default. A common layer was put in front of these decoders making it possible
to share the decode body function along with the stateful interface. Each of the
decoders are described in the remaining of this section.

3.2.2.1 Reference

The Reference decoder was built with many small parsers that were combined using
parser combinators based on the theory introduced in Section 2.1.2. Several libraries
exist for working with parser combinators in Elixir but instead of using one of
those, a custom library was built during the project. The reason was to get a
better understanding of the relevant theory and mechanics. In the context of the
implemented library for working with combinator parsing, a parser is just a function
that takes a state and a potential number of arguments which are then used to
compute a new state. The state contains a list of parsed results, the current status
and the remaining input. Also, several combinators were built in order to tag and
process results produced by prior parsers in the call chain.
The Reference decoder served as a reference implementation since the way the parser
was written is strikingly similar to the way the HTTP protocol is defined by RFC
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7230. Thus, the number of bugs introduced was expected to be small and motivates
the choice of implementing one of the decoders using parser combinators. As an
example of the similarities between the HTTP protocol definition and the corre-
sponding parser built using parser combinators, the Augmented Backus-Naur Form
(ABNF) definition of an HTTP message is given in Listing 3.3 while the parser can
be seen in Listing 3.4.

Listing 3.3: ABNF for an HTTP message as defined by RFC 7230.

1 message = start-line *( header-field CRLF ) CRLF [ message-body ]

Listing 3.4: A function for decoding an HTTP message using parser combinators.
This example matches the protocol specification in Listing 3.3.

1 def message() do
2 Combinators.sequence([
3 start_line(),
4 Combinators.many0(Combinators.sequence([
5 header_field(),
6 crlf(),
7 ])),
8 crlf(),
9 optional(message_body()),

10 ])
11 end

3.2.2.2 FSM

The FSM decoder was implemented as a Finite-State Machine (FSM). The theory
behind a finite-state machine is given in Section 2.1.3. The motivation for imple-
menting one of the decoders as a finite-state machine was the success seen in the
NGINX4 and Node.js5 projects. Two major benefits with the finite-state machine
approach are simplicity and efficiency.
The implementation depends highly on Elixir’s binary pattern matching6. An ex-
ample of this is given in Listing 3.5 where the first three symbols of an HTTP
response are parsed. As can be seen, the functions takes three arguments: input
data, a list of parsed values and the current state. Input data are matched against
values that start with either “H” or “T” in combination with the current state. The
return value is a 4-tuple containing the status, the next state, a list of parsed values
and the remaining input. The function given in Listing 3.6 controls the process of
decoding by making the decoder progress or return. Another example of how the
FSM decoder is implemented is given in 3.7 where a header name is parsed. This

4https://nginx.org/
5https://nodejs.org/
6https://elixir-lang.org/getting-started/binaries-strings-and-char-lists.html
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time a single function is used to match every possible octet value with the exception
of “:” which terminates the name according to the protocol specification.

Listing 3.5: Partial implementation of the FSM decoder showing how the first three
symbols in an HTTP response are parsed.

68 defp decode_status_line("H" <> rest, acc, :start) do
69 {:ok, :version_1, rest, acc}
70 end
71

72 defp decode_status_line("T" <> rest, acc, :version_1) do
73 {:ok, :version_2, rest, acc}
74 end
75

76 defp decode_status_line("T" <> rest, acc, :version_2) do
77 {:ok, :version_3, rest, acc}
78 end

Listing 3.6: The controlling function in the FSM decoder.

51 defp do_decode(data, acc, state, f) do
52 case f.(data, acc, state) do
53 {:ok, :done, rest, acc} ->
54 {:ok, acc, rest}
55 {:ok, state, rest, acc} ->
56 do_decode(rest, acc, state, f)
57 {:more, _state, _rest, _acc} ->
58 {:ok, :more, data}
59 {:error, state, _rest, _acc} ->
60 {:error, state, data}
61 end
62 end

Listing 3.7: Partial implementation of the FSM decoder showing how a header name
in an HTTP response is parsed.

159 defp decode_header(":" <> rest, acc, :name) do
160 {octets, acc} = Enum.split_with(acc, &is_binary/1)
161 name = octets |> Enum.reverse |> Enum.join
162

163 {:ok, :whitespace_left, rest, [{:name, name} | acc]}
164 end
165

166 defp decode_header(<<octet::bytes-size(1)>> <> rest, acc, :name) do
167 {:ok, :name, rest, [octet | acc]}
168 end
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3.2.2.3 Default

The main goal of the Default decoder was to reduce the amount of maintenance
required during the lifetime of the decoder component. This is interesting from
a more practical standpoint. The Erlang distribution provides a function called
decode packet/3 in the erlang module which is able to parse the start line and
headers of an HTTP message. The function was wrapped in order to fit the interface
expected by decoders in the implemented library. The decode packet/3 also works
with HTTP trailers since those are identical to headers in terms of syntax. Hence,
the only function that was built from scratch was the one for decoding HTTP chunks.
Since HTTP protocol uses newlines heavily, another Erlang function named split/2
located in the binary module was used to split incoming data based on newlines.
This allowed for a simple and efficient solution when parsing HTTP chunks. To
illustrate the use of binary:split/2, a routine for partitioning data into lines is given
in Listing 3.8.

Listing 3.8: An example of how the Erlang function split/2 was used when decoding
HTTP chunks in the Default decoder.

1 def decode_line(data) do
2 case :binary.split(data, ["\n", "\r\n"]) do
3 [_] ->
4 {:ok, :more}
5 [line, rest] ->
6 {:ok, line, rest}
7 end
8 end

3.2.3 Connection

In order to abstract the differences between the Transmission Control Protocol
(TCP) and the Transport Layer Security (TLS) protocol, a component was im-
plemented that layers the two protocols. The Erlang modules: gen tcp7 and ssl8

allow for working with TCP and TLS respectively.
The ssl module leaves the process of peer validation to its users. The concept is
introduced in Section 2.3.1.1 when describing the TLS Handshake Protocol. The
plan was to work out a solution based on the Certifi9 project which provides a
collection of root certificates. Unfortunately, this was harder than expected, thus
the implemented HTTP client library still lacks support for peer validation.

7http://erlang.org/doc/man/gen tcp.html
8http://erlang.org/doc/man/ssl.html
9https://certifiio.readthedocs.io/en/latest/
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3.2.4 Public API

Much effort was spent working on the public Application Programming Interface
(API) of the implemented HTTP client library. In case the library gets inducted
into the Elixir standard library10 and people start using the implementation, any
change is costly to make. Especially since it is aimed to be a low-level library that
other projects will depend on.
In increasing the reliability of the public API, Elixir typespecs11 was used which allow
functions to be annotated with types. This is useful since Elixir is a dynamically
typed language and by adding type annotations, static analysis can be applied.
Guard clauses12 were also used in order to increase reliability of the public API. In
Elixir, guard clauses allow for more complex pattern matching.
Typespecs for the functions included in the public API is given in Listing 3.9.

10https://hexdocs.pm/elixir
11https://elixir-lang.org/getting-started/typespecs-and-behaviours.html
12https://elixir-lang.org/getting-started/case-cond-and-if.html
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Listing 3.9: Typespecs for the public API. The types Chunk.t, Connection.t, Mes-
sage.header, Stream and value are given in Section A.1.

1 @doc "Opens a new connection."
2 @spec connect(String.t, integer, transport, keyword)
3 :: {:ok, Connection.t} | {:error, any}
4

5 @doc "Encodes and sends an HTTP request head."
6 @spec request(Connection.t, atom, String.t, [Message.header])
7 :: {:ok, Stream.t} | {:error, any}
8

9 @doc """
10 Encodes and sends HTTP request body data.
11

12 Data can be a plain body, a chunk or nil. In the latter case, an
13 HTTP last chunk is sent over a connection to end the current
14 request. The acceptance of a given value depends on how a stream was
15 configured when calling ‘request/4‘.
16 """
17 @spec request(Stream.t, binary | Chunk.t | nil)
18 :: {:ok, Stream.t} | {:error, any}
19

20 @doc """
21 Receives and decodes values via a stream.
22

23 The option ‘block: false‘ can be applied in order to only call for
24 data once.
25 """
26 @spec response(Stream.t, keyword)
27 :: {:ok, [value], Stream.t} | {:error, any, Stream.t}
28

29 @doc "Decodes potential values in ‘data‘."
30 @spec decode(Stream.t, binary)
31 :: {:ok, [value], Stream.t} | {:error, any, Stream.t}
32

33 @doc "Closes a connection."
34 @spec close(Connection.t) :: :ok | {:error, any}
35

36 @doc "Configures a connection’s socket for more data."
37 @spec next_packet(Connection.t) :: :ok | {:error, any}
38

39 @doc "Returns current encoder and decoder statuses."
40 @spec status(Stream.t) :: {atom, atom}
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3.2.4.1 Demonstration

The purpose of this section is to show how a simple request is made with: Net.HTTP,
hackney and httpc. See Listing 3.10 for how it works with Net.HTTP.

Listing 3.10: Example of doing a simple HTTP request with Net.HTTP.

1 host = "www.example.com"
2 port = 80
3 transport = :http
4 options = []
5

6 {:ok, connection} = Net.HTTP.connect(host, port, transport, options)
7

8 method = :get
9 path = "/some-path"

10 headers = []
11

12 {:ok, stream} = Net.HTTP.request(connection, method, path, headers)
13

14 options = []
15

16 {:ok, values, _stream} = Net.HTTP.response(stream, options)

Similarly, Listing 3.12 shows how it can be done with hackney. Note that the library
has also support for a more high-level interface to do simple requests. It was chosen
to do the low-level version to make it more comparable with Listing 3.10.

Listing 3.11: Example of doing a simple HTTP request with hackney.

1 Host = <<"www.example.com">>
2 Port = 80
3 Transport = hackney_tcp
4 Options = []
5

6 {ok, ConnRef} = hackney:connect(Transport, Host, Port, Options)
7

8 Method = get
9 Path = "/some-path"

10 Headers = []
11 Body = <<>>
12

13 {ok, _Status, _ResponseHeaders, ConnRef} =
14 hackney:send_request(ConnRef, {Method, Path, Headers, Body})
15

16 {ok, ResponseBody} = hackney:body(ConnRef)
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Listing 3.12 demonstrates how to do a simple request with httpc. Since connections
and requests cannot be separated when using httpc, the example looks differently
compared with the other two HTTP client libraries.

Listing 3.12: Example of doing a simple HTTP request with httpc.

1 Method = get
2 URL = ’http://www.example.com/’
3 Headers = []
4 HTTPOptions = []
5 Options = []
6

7 {ok, {_Status, _ResponseHeaders, Body}} =
8 httpc:request(Method, {URL, Headers}, HTTPOptions, Options)

3.3 Evaluation

In determining the success of the implementation, the following evaluation criteria
were used: correctness, extensibility, robustness and efficiency. The criteria are given
in decreasing order of importance.

3.3.1 Correctness

Correctness of the implementation was tested with Quviq AB’s QuickCheck which
is a product for automatic test case generation. The tool is based on functional and
random testing as described in Section 2.2. In QuickCheck, input data is generated
by using a pseudorandom number generator (PRNG) controlled with a Domain-
Specific Language (DSL) while oracles are defined by properties provided by the user.
Both pure functions as well as stateful programs can be tested with QuickCheck. The
implemented encoder and decoders were tested with stateless QuickCheck properties
since the encode and decode functions operate without side effects. The method
was insufficient when evaluating the public API of the implemented HTTP client
library as the result of a function call depends on previous operations. Thus, the
QuickCheck features related to stateful testing was used instead.

3.3.1.1 Decoder Testing

When using QuickCheck, it must be defined how test data should be generated.
Since test data is produced randomly, the stochastic process has to be controlled.
A large number of generators for fundamental data types are provided by the
QuickCheck library, the common approach is to use these generators and then extend
them when necessary. In order to test each of the decoders with QuickCheck, a num-
ber of generator functions were implemented that can generate values as described
in the HTTP specification. The specification defines the syntax of the protocol using
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ABNF as shown in Listing 3.3 in Section 3.2.2.1. A slightly simplified QuickCheck
generator for HTTP messages can be seen in Listing 3.13.

Listing 3.13: A custom HTTP message generator. The helper functions: sequence,
many0, and optional are defined in the listing given in Section A.2.

1 def http_message_gen() do
2 sequence([
3 start_line_gen(),
4 many0(sequence([
5 header_field_gen(),
6 newline_gen(),
7 ])),
8 newline_gen(),
9 optional(message_body_gen()),

10 ])
11 end

QuickCheck also requires a property, or a test oracle as it is called in the context of
random testing, to be defined before test cases can be generated. During evaluation,
two types of properties were used: encode-decode-compare and stream. In the former
case, a section of an in-memory HTTP message was generated, then encoded and
decoded, and finally compared. By using this approach, both the encoder and a
decoder were tested simultaneously. With the exception of request lines in the
encoder since it is HTTP responses that are generated. In the full test suite, there
were one encode-deocde-compare property per decoder and message part where a part
was either: head, chunk or tail. An example of such a property is given in Listing
3.14, as can be seen, the FSM decoder is used to decode a randomly generated head
part of an HTTP message.

Listing 3.14: An example of a encode-decode-compare property.

35 property "FSMDecoder: Message head" do
36 forall head <- Random.Generators.head do
37 {:ok, encoded} = encode(:head, head)
38 {:ok, decoded, ""} = FSMDecoder.decode_head(encoded)
39

40 ensure decoded == head
41 end
42 end

The other type of property is stream which was used to test that the decoders can
handle streaming properly. This includes both insufficient input and the gluing
layers described in Section 3.2.1 and Section 3.2.2. The approach was to generate
a full in-memory HTTP response, encode it, split the encoded output, decode the
two parts and then compare the resulting response with the original response. The
position where a split occur was selected randomly. Hence, a stream property is
like an encode-decode-compare property but with a complete HTTP response and a
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split. One property per decoder was used during evaluation. The property that was
used for the FSM decoder is given in Listing 3.15.

Listing 3.15: An example of a stream property. The functions encode and decode are
locally defined in order to help the process of encoding and decoding respectively.

136 property "FSMDecoder: Stream parsing" do
137 decoder = Protocol.decoder(:fsm)
138

139 forall values <- Random.Generators.response do
140 {:ok, message} = encode(Net.HTTP.Protocol.encoder, values, "")
141

142 position = :rand.uniform(byte_size(message) + 1) - 1
143 <<left::bytes-size(position)>> <> right = message
144

145 {:ok, decoded_left, decoder} = decode(decoder, left)
146 {:ok, decoded_right, _decoder} = decode(decoder, right)
147

148 decoded = decoded_left ++ decoded_right
149

150 ensure decoded == values
151 end
152 end

3.3.1.2 Public API Testing

As stateless properties do not suffice when testing software with side effects in
QuickCheck, an extended paradigm is required. Instead of putting an oracle, which
is the component that determines the outcome of a test, in a property as shown
in Listing 3.14, a finite-state model is used. A stateful property then becomes a
matter of generating sequences of commands and determining the outcome of those
sequences. A QuickCheck model has to know the success or failure of every step
in a command sequence. Hence, the model serve as the real oracle when testing
programs with side effects.
When testing the public API of the implemented HTTP client library, a finite-state
model was designed that was used to test functions included in the API. With
QuickCheck generating sequences of API function calls, a myriad of different se-
quences were tested. To make the testing environment more realistic, a popular
HTTP server written in Erlang called cowboy13 was setup to handle incoming re-
quests. Connections are opened both with and without encryption when running
the generated test cases. Along with every request made when testing the public
API, a configuration structure was generated that described a certain set of features
or options. The options used were: request body type, response body type, request
method, persistent connections and a set of randomly generated headers. A body

13https://github.com/ninenines/cowboy
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type can be either plain or chunked. This allowed the interactions between features
to be tested easily. For example, one configuration could be: chunked request body,
plain response body, the PUT method and a keep-alive connection.

3.3.2 Extensibility

A qualitative approach was taken when evaluating the extensibility of the imple-
mented public API. Throughout the present report, the term extensibility refers to
the ability to support many applications. When seeking extensibility, convenience
is often sacrificed. This is an acceptable trade off since extensibility is preferred in
the case of the implemented library.
Multiple abstractions were built on top of Net.HTTP as a way of ensuring extensi-
bility which are all listed below:

• Processing HTTP messages using the Elixir Stream14 module which operates
on composable and lazy enumerables. This allows users to process HTTP
messages using typical functional functions such as: map, filter, zip and take.

• A GenStage15 producer. The GenStage library is an open source project that
allow distributed processes in Elixir programs to exchange events with back-
pressure. By providing a producer on top of Net.HTTP, GenStage consumers
can process incoming data in a distributed streaming fashion.

• Concurrent HTTP connections in a single Erlang process when using asyn-
chronous receive. The authors were not able to reproduce this abstraction on
top of either hackney or httpc.

• An extension of the library that allows for pipelining of HTTP requests. Even
though httpc supports HTTP pipelining, a custom solution cannot be imple-
mented on top of it. When trying to do the same thing on hackney, the
outcome was unsuccessful.

3.3.3 Robustness

The term robustness was used as a measure on interoperability between the imple-
mented HTTP client library and the Web. This is an important measure for the
long-term success of the library. The way robustness was evaluated, was through
interaction between Net.HTTP and a set of popular websites. More than that,
libcurl was used as a reference implementation so that the behavior of Net.HTTP
could be verified. When doing the robustness evaluation, the Default decoder was
in use.
Roughly 20 years ago, Daniel Stenberg16 started to work on the cURL project. The
project consists of curl and libcurl which is a command line interface and a software

14https://hexdocs.pm/elixir/Stream.html
15http://elixir-lang.org/blog/2016/07/14/announcing-genstage/
16http://bookcurl.haxx.se/
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library respectively for communicating over many different protocols via a computer
network. With companies using the cURL project such as: Apple, Google, IBM,
Intel, Spotify, Yahoo and VMware, it should be fair to say that libcurl can be used
as a reference implementation when evaluating the robustness of Net.HTTP.
Unfortunately, the combination of time and priority did not allow for a well config-
ured use of peer verification when communicating over TLS. Therefore, both of the
HTTP client libraries were run without peer validation.

3.3.3.1 Data Collection

The Moz Top 50017 is a list of the 500 most popular domains on the Web. Popularity
is measured by the number of linking root domains from an index of 19 billion
domains and 189 billion pages. Links were formed from these domains pointing
to the root path of each domain. Each link was given as input to Net.HTTP and
libcurl. The response of a request was stored in PostgreSQL where status code,
headers, body and a flag denoting completion were recorded. For each client library,
a driver had to be built. The purpose of such a driver was to control respective
clients and writing information to the database.

3.3.3.2 Data Analysis

Each response or response pair was analyzed using the following measures:
• The term completion of a request was used to denote whether the associated

response was received and decoded without any errors.
• In determining the success of a request, the returned status code was expected

to be 200 OK.
• Response headers associated with each link were validated by a case insensitive

comparison between the set of header names obtained with Net.HTTP and
libcurl respectively. Only header names were compared since a header values
may change between requests.

• When validating the response body for each link, the length of the bodies
given by the two clients were expected to be within a 10 % difference. As with
headers, there may be unique content in each response received for a single
URL.

3.3.4 Performance

When evaluating the performance of implemented HTTP client library, the following
two questions were asked:

• How do the different decoders perform? The relevant decoder implementations
are: Reference, FSM and Default. The first decoder was built using parser

17https://moz.com/top500/

27



Chapter 3. Method

combinators and has served as a reference implementation. The second de-
coder was implemented as a finite state machine. The third and final decoder
was based on functionality included in the Erlang distribution.

• What is the performance of the implemented client in comparison with other
HTTP clients running on the Erlang platform? The chosen clients to compare
with were: httpc and hackney. The former client is bundled with the Erlang
distribution while the later one is a popular open source project.

3.3.4.1 Data Collection

When evaluating the performance of the implemented decoders, generated responses
with different characteristics were used as inputs to the decoders. The idea was to
vary the header value size, the number of chunks and the total response size. The
number of headers and the header name size was chosen empirically from data
obtained when doing the robustness evaluation described in Section 3.3.3. There
was only one step required for each decoder and website:

• Decode given response with the current decoder 10 000 times.
In the case of evaluating performance of the HTTP clients, a local web server was
used to serve responses similarly to those used when evaluating the performance of
the decoders. The reason for having a local web server was to minimize the amount
of time spent outside of the running client. In order to make the comparison more
even, it was ensured that the clients sent identical sets of request headers. This time
the Default decoder was used when evaluating the performance of Net.HTTP. Each
client were evaluated as listed below:

• Start web server.
• Make 10 000 requests.
• Stop web server.

3.3.4.2 Data Analysis

Simple statistics was used to analyze collected data. The arithmetic mean was used
to average obtained samples as a measure of the central tendency in the current
distribution. As a measure of error, the standard deviation was utilized.
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4
Result

The purpose of the present chapter is to give results collected when evaluating
the implemented Hypertext Transfer Protocol (HTTP) client library during the
course of the current thesis project. Evaluation regarding: correctness, extensibility,
robustness and performance are given in Section 4.1, Section 4.2, Section 4.3 and
Section 4.4 respectively.

4.1 Correctness

When evaluating the correctness of the HTTP client library, the problem was divided
into two parts: testing of protocol encoding and decoding along with testing of the
public Application Programming Interface (API) of the library. As in Section 3.3.1,
the former is all about the syntax of the HTTP protocol while the latter handles
behavior and protocol semantics.
Test coverage of the implemented HTTP client library obtained while doing the
correctness evaluation is given in Table 4.1. The term relevant lines is used to denote
lines that were monitored during execution by the coverage tool ExCoveralls1.

Table 4.1: Test coverage of major components of Net.HTTP.

Component Coverage (%) Relevant Lines
Public API 60.8 51
Encoder 96.2 52
Decoder 96.3 27
Reference 98.5 65
FSM 89.9 109
Default 92.3 65
Connection 88.5 26
TCP 80.0 5
TLS 88.9 9

1https://github.com/parroty/excoveralls
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4.1.1 Decoder Testing

When evaluating the correctness of the encoder and the decoders, QuickCheck was
used to produce test cases by combining randomly generated input data and the
properties described in Section 3.3.1.1. For example, when testing the FSM de-
coder with HTTP heads, roughly 20 000 test cases were generated and tested in 60
seconds.
A sample of a generated HTTP head is given in Listing 4.1. In order to get a better
idea of what kind of input data that was generated, an extract with statistics is given
in Table 4.2. The selected statistics are: HTTP status codes, number of headers,
along with sizes in octets of header names and header values, and their hexadecimal
octet values.

Listing 4.1: A sample of an HTTP response head generated with QuickCheck. Non
ASCII-values were omitted in the generation for clarity sake.

1 HTTP/1.1 505 HTTP Version Not Supported\r\n
2 _: IS\t \tX]\r\n
3 r: \r\n\t\t ˜+K \t&\r\n
4 L6D: \r\n\t\tS\tVx\r\n
5 nD˜8: F 5W\t U!: x-\r\n
6 5|#L: \r\n\t N\r\n
7 \r\n

Table 4.2: A sample obtained when using QuickCheck to randomly generate 1 000
HTTP message heads. Proportions, which are given as percentages, and actual
values are given for each class. Note that only the top 15 entries are listed and that
N. and V. are used to denote header name and header value respectively.

Status Headers N. Size N. Char V. Size V. Char
2.68 307 16.77 0 11.22 1 3.36 39 9.96 0 35.96 20
2.67 403 14.59 1 10.73 2 3.36 30 3.87 1 35.93 9
2.56 410 12.04 2 10.06 3 3.35 36 1.86 11 3.52 D
2.55 300 9.88 3 9.48 4 3.35 34 1.83 8 3.52 A
2.54 503 8.06 4 8.60 5 3.34 37 1.82 6 0.12 5F
2.54 409 6.96 5 8.10 6 3.33 32 1.81 5 0.12 72
2.54 303 6.06 6 7.31 7 3.32 35 1.80 7 0.12 32
2.52 501 5.09 7 6.67 8 3.32 38 1.79 9 0.12 3E
2.52 204 4.51 8 5.98 9 3.30 33 1.78 10 0.12 2D
2.50 505 3.85 9 5.28 10 3.28 31 1.75 12 0.12 31
2.50 408 3.31 10 4.55 11 2.26 2A 1.74 13 0.12 63
2.49 504 2.48 11 3.75 12 2.25 2D 1.72 4 0.11 56
2.49 402 2.14 12 3.08 13 2.25 21 1.66 15 0.11 3B
2.49 414 1.56 13 2.36 14 2.23 7C 1.65 16 0.11 52
2.48 502 1.28 14 1.61 15 2.23 24 1.64 14 0.11 22

Similarly, a sample of an HTTP chunk is given in Listing 4.2 with statistics in Table
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4.3. This time the statistics are: chunk data size in octets, number of extensions
along with extension name and value sizes also in octets and as well as their octet
values.

Listing 4.2: A sample of an HTTP response chunk generated with QuickCheck.

1 3;M|g;z4;0hE|W="\§";py="";hs4K9+=_1|;˜4j\r\n
2 tCf\r\n

Table 4.3: A sample obtained when using QuickCheck to randomly generate 1 000
HTTP message chunks. Proportions, which are given as percentages, and actual
values are given for each class. Note that only the top 15 entries are listed and that
N. and V. are used to denote extension name and extension value respectively.

Data Size Extensions N. Size N. Char V. Size V. Char
50.12 0 16.91 0 11.27 1 3.34 38 50.06 0 16.96 5C
10.73 1 14.80 1 10.79 2 3.34 36 5.17 2 12.14 22
7.52 2 11.70 2 10.11 3 3.34 34 4.16 4 7.07 9
5.71 3 9.82 3 9.37 4 3.33 39 3.76 3 7.06 20
4.77 4 8.13 4 8.68 5 3.33 30 3.68 5 3.66 21
3.91 5 7.23 5 8.13 6 3.33 37 3.58 6 1.35 31
3.29 6 5.89 6 7.39 7 3.33 31 3.27 7 1.35 39
2.74 7 5.14 7 6.58 8 3.33 35 3.12 8 1.34 32
2.45 8 4.33 8 5.87 9 3.32 32 2.76 9 1.34 35
2.08 9 3.80 9 5.21 10 3.31 33 2.76 1 1.33 34
1.71 10 3.14 10 4.52 11 2.24 26 2.56 10 1.33 38
1.48 11 2.66 11 3.80 12 2.24 25 2.31 11 1.32 37
1.06 12 2.13 12 3.07 13 2.24 7E 2.10 12 1.32 36
1.01 13 1.66 13 2.35 14 2.23 7C 1.80 13 1.32 30
0.69 14 1.23 14 1.69 15 2.23 5E 1.58 14 1.32 33

4.1.2 Client Testing

In the case of the public API of the implemented HTTP client library, sequences
of commands were generated with QuickCheck and instead of having properties
serving as oracles, a state model was used. See Table 4.4 for a set of statistics
collected when running QuickCheck for 60 seconds. The statistics are: the length of
a command sequence, command signatures and features. The last term is used in
QuickCheck when testing stateful programs when one wants to record a certain state.
For example, one of the entries in Table 4.4 and under Feature is called “Connect
(TCP) - OK” which represents a successful call to the connect function with the
intent of operating over TCP. On the other hand, the features ending with “Error”
denote bad calls meaning that both positive and negative testing were done.
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Table 4.4: A sample obtained when using QuickCheck to randomly generate 1 000
sequences of public API calls. Proportions, which are given as percentages, and
actual values are given for each class. Note that only the top 15 entries are listed
and that S. is used to denote command sequence.

S. Length Command Feature
6.60 3 21.82 Request Chunk 13.52 Request Body - Error
6.40 2 20.75 Connect 13.51 Request Chunk - OK
5.20 7 20.28 Request Body 12.62 Request Head - OK
5.10 5 12.62 Request Head 10.60 Connect (TCP) - OK
4.70 1 10.98 Response 8.32 Request Chunk - Error
4.50 6 10.89 Request Last Chunk 8.27 Request Last Chunk - Error
4.50 4 2.65 Close 8.26 Connect (TLS) - OK
4.50 0 6.77 Request Body - OK
4.20 8 6.04 Response - OK
3.60 9 4.95 Response - Error
3.40 14 2.65 Close - OK
3.30 13 2.62 Request Last Chunk - OK
3.10 11 1.89 Connect - Error
3.00 10
2.80 16

4.2 Extensibility

As described in Section 3.3.2, a qualitative approach was taken when evaluating
the extensibility of the public API of the implemented HTTP client library. The
resulting example abstractions built on top of the API are shown in this section.
The examples given are the following: Stream, GenStage, Concurrent Client and
Pipelining Client with full implementations listed in: Section A.3.1, Section A.3.2,
Section A.3.3 and Section A.3.4 respectively.

4.2.1 Stream

In the first example, Net.HTTP is combined with the Elixir Stream module. This
can be achieved by using the function resource/3, which is included in the Stream
module, in order to create a usable stream. The function takes three higher-order
functions where the first one is for setting up a new stream, the second function
is expected to generate elements while the third function does potential tear down
of obtained resources. The implementations of these three functions are given in
Listing 4.3. The first function makes a connection to the URL represented by the
given URI2 structure and then sends a request over the connection. The second
function calls the implemented HTTP library in a way that makes the program
synchronously wait for data and then emits received values as soon as there are any

2https://hexdocs.pm/elixir/URI.html
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available. When a complete response has been received or in the case of an error,
the stream is halted. The third and final function closes the connection. Since the
first function expects no arguments, a so called closure is applied as a method for
handling parameters. This technique is also used in the remaining functions for
consistency.

Listing 4.3: Implemented functions for use with Elixir’s Stream module.

20 defp start_fun(url) when is_map(url) do
21 host = url.host
22 port = url.port
23 transport = String.to_atom(url.scheme)
24

25 path = url.path
26

27 fn ->
28 with {:ok, conn} <- Net.HTTP.connect(host, port, transport),
29 {:ok, stream} <- Net.HTTP.request(conn, :get, path) do
30 stream
31 else
32 {:error, reason} ->
33 raise StreamError, reason: reason
34 end
35 end
36 end
37

38 defp next_fun() do
39 fn stream ->
40 case Net.HTTP.response(stream, block: false) do
41 {:ok, values, stream} when is_list(values) ->
42 {values, stream}
43 _otherwise ->
44 {:halt, stream}
45 end
46 end
47 end
48

49 defp after_fun() do
50 fn stream ->
51 Net.HTTP.close(stream.connection)
52 end
53 end
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4.2.2 GenStage

In the second example, a library called GenStage is used which allow Elixir processes
to exchange events with back-pressure which prevents any process from being over-
loaded. This is useful when processing large amount of data at a high throughput.
The purpose of the present example is to show how the implemented HTTP library
can be combined with GenStage to process incoming tweets from Twitter. In Gen-
Stage there are these concepts of producers and consumers where the former actor
provide data or events and consumers connect to a producer and then processes
received events. Producers and consumers run in their own Elixir process and thus
they can run concurrently on a single machine but also distributed over multiple
machines.
Since data may arrive from Twitter at any point during an indefinite time period, the
implemented HTTP client library was configured in asynchronous mode meaning
that socket data is delivered as Elixir messages. Handling of socket messages is
shown in Listing 4.4 where both TCP and TLS data are matched. When data is
available, the function on data/2, which is shown in Listing 4.5, is called. There, the
received data is decoded and sent to the dispatch/3 function. As can be seen in the
definition of the on data/2 function, next packet/1 from the implemented library is
called. The purpose is to tell the socket that the user is ready for more data, this
is another measure to prevent overloading. When received data is dispatched, it is
delivered to a downstream consumer.
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Listing 4.4: Shows how incoming socket data is matched in order for the current
consumer to process and dispatch it to downstream consumers.

19 def handle_info({:tcp, _socket, data}, state) do
20 on_data(data, state)
21 end
22

23 def handle_info({:ssl, _socket, data}, state) do
24 on_data(data, state)
25 end

Listing 4.5: Exemplifies how the implemented HTTP library can be used in asyn-
chronous mode where data is already available before calling any of the response
functions in the Net.HTTP module.

27 defp on_data(data, state = {stream, demand, buffer}) do
28 case Net.HTTP.decode(stream, data) do
29 {:ok, values, stream} ->
30 Net.HTTP.next_packet(stream.connection)
31 dispatch(stream, demand, buffer ++ values)
32 {:error, reason, _stream} ->
33 {:stop, reason, state}
34 end
35 end
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4.2.3 Concurrent Client

The purpose of the Concurrent Client abstraction is to give a working example on
how the implemented library can be used to concurrently handle multiple responses
asynchronously in a single Elixir process. The heart of the Concurrent Client is its
loop function which waits for incoming messages. See Listing 4.6 for the function
definition. All but the first message are related to TCP or TLS communication.
When data comes in on an open socket, it is sent as an Elixir message to the current
instance of the Concurrent Client. For simplicity sake, error or socket closed events
lead to termination of the client process. To make an HTTP request with the
Concurrent Client, a message has to be sent with a signature that matches the first
clause listed in the receive block of the loop function.
The function on process/3, which is called when a process event is sent to a Concur-
rent Client, does a simple HTTP request to the given URL and modifies the state
to include the newly acquired stream structure. When on process/3 is called, a re-
quest is sent the same way as it is done in the Stream example as seen in Listing 4.3
and therefore that functionality is omitted here. The function on data/3 is given in
Listing 4.7 which decodes received response data. On line 52, the matching socket
is retrieved from the client state. Another interesting line is number 60 where the
socket is made prepared for a new round of data.
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Listing 4.6: The main loop of the Concurrent Client handling incoming messages
such as user requests and socket data.

21 def loop(state) do
22 receive do
23 {:process, url, sender} ->
24 loop(on_process(state, url, sender))
25 {:tcp, socket, data} ->
26 loop(on_data(state, socket, data))
27 {:tcp_closed, _socket} ->
28 {:error, :closed}
29 {:tcp_error, _socket, reason} ->
30 {:error, reason}
31 {:ssl, socket, data} ->
32 loop(on_data(state, socket, data))
33 {:ssl_closed, _socket} ->
34 {:error, :closed}
35 {:ssl_error, _socket, reason} ->
36 {:error, reason}
37 end
38 end

Listing 4.7: The function processing incoming response data in the Concurrent
Client similarly to the one given in Listing 4.5.

51 def on_data(state, socket, data) do
52 stream = state[socket]
53

54 case Net.HTTP.decode(stream, data) do
55 {:ok, _values, stream} ->
56 case Net.HTTP.status(stream) do
57 {_encoder_status, :done} ->
58 clear_stream(state, stream)
59 _otherwise ->
60 :ok = Net.HTTP.next_packet(stream.connection)
61 store_stream(state, stream)
62 end
63 {:error, _reason, _stream} ->
64 state
65 end
66 end
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4.2.4 Pipelining Client

In the Pipelining Client example, it is shown that the implemented HTTP library
can be extended in order to support pipelining of requests. The idea is to drive the
client library from a separate process via Elixir message passing. When a request
message comes into the process, an HTTP request is sent to the current HTTP
server. The main loop of the Pipelining Client is given in Listing 4.8 where two
types of messages are handled: request and response. The user is expected to send
a series of request messages in order to pipeline a set of HTTP requests. The latter
message type response should be sent to the Pipelining Client as soon as the user
has no more requests to send and is ready to receive the associated responses.
The logic responsible for receiving is given in Listing 4.9. As can be seen, each
stream structure, which controls a HTTP request-response pair, is processed one by
one. The reason for why it is possible to pipeline requests without much effort using
the implemented client library lies in the separation between a connection and a
stream.
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Listing 4.8: The main loop of the Pipelining Client handling user calls.

33 def loop({conn, queue}) do
34 receive do
35 {:request, path, sender} ->
36 case Net.HTTP.request(conn, :get, path, []) do
37 {:ok, stream} ->
38 send(sender, {:ok, self()})
39 loop({conn, [stream | queue]})
40 {:error, reason} ->
41 send(sender, {:error, reason, self()})
42 end
43 {:response, sender} ->
44 case on_response(Enum.reverse(queue), []) do
45 {:ok, responses} ->
46 send(sender, {:ok, responses, self()})
47 loop({conn, []})
48 {:error, reason} ->
49 send(sender, {:error, reason, self()})
50 end
51 end
52 end

Listing 4.9: Function responsible for receiving HTTP responses in the correct order
and in a synchronous fashion as part of the Pipelining Client.

64 defp on_response([], responses) do
65 {:ok, Enum.reverse(responses)}
66 end
67

68 defp on_response([stream | streams], responses) do
69 case Net.HTTP.response(stream) do
70 {:ok, values, _stream} ->
71 on_response(streams, [values | responses])
72 {:error, reason, _stream} ->
73 {:error, reason}
74 end
75 end
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4.3 Robustness

In the process of evaluating the robustness of the implemented HTTP client library,
data was collected from running the library as well as libcurl against 500 different
URLs on the the Web. Four different measures were used when interpreting the data
as described in Section 3.3.3. Results from the first two could be computed directly
from a single request while in the other group, request-pairs were compared. One
request from Net.HTTP and one request from libcurl to the same URL is said to
form a request-pair. A request-pair was only considered if both responses returned
status code 200.
In the first group, data was obtained on the basis of a single request. A request is
referred to as completed in case the calling procedure terminated without any errors
while a request is said to be successful if the HTTP status code 200 is returned.
The fraction of completed and successful requests per client library is given in Figure
4.1a.
In the second group, the metrics: headers and body were computed by comparing
responses received from a request-pair. Since HTTP header field names are case-
insensitive and because header field values may differ from response to response,
lowercase versions of the two header name sets from each request-pair were com-
pared. Hence, whenever the set of lowercase header field names from one response is
identical with those from another response for the same URL, the header section is
assumed to be successful. When comparing response bodies, the lengths of received
bodies were compared and expected to be within a 10 % difference. See Figure 4.1b
for the results from the headers and body comparisons.
From the set of URLs that were processed unsuccessfully, only two of them were
due to problems with the protocol syntax when using the implemented HTTP
client library with the Default decoder. The first problematic response was missing
the newline terminating the head section while the other response had an invalid
chunk.
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(a) Comparison between 500 requests per HTTP client library.

(b) Comparison between 461 successful request-pairs.

Figure 4.1: Comparison between libcurl and Net.HTTP from sending simple requests
to 500 different URLs from the Moz Top 500 index.
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4.4 Performance

As part of evaluating the performance of the implemented HTTP client, two different
benchmarks were made with focus on HTTP decoding and doing simple requests
against a local web server respectively.

4.4.1 Decoder Benchmark

The performance of the implemented decoders was evaluated by feeding the decoders
with several generated responses. The characteristics for each response that were
used are outlined in Table 4.5. The header value size, number of chunks and total
size were varied while the status line, number of headers, header name size and a
header for signaling chunked encoding were kept constant. The number of headers
was 15 and the header name size was 10 bytes for each response. Each website was
decoded 10 000 times per decoder and configuration during the benchmark.

Table 4.5: Defining characteristics for each configuration used during decoder bench-
mark. Size is measured in bytes where a byte is equal to an octet.

Configuration Header Value Size Chunks Chunk Size Total Size
A 30 4 125 000 500 743
B 30 4 250 000 1 000 743
C 30 8 62 500 500 771
D 30 8 125 000 1 000 779
E 60 4 125 000 501 193
F 60 4 250 000 1 001 193
G 60 8 62 500 501 221
H 60 8 125 000 1 001 229

Average latency and average throughput obtained from the benchmark are given in
Figure 4.2a and Figure 4.2b respectively.

4.4.2 Client Benchmark

Three clients that run on the Erlang virtual machine were evaluated with respect
to performance in the second benchmark. The relevant clients are: Net.HTTP,
hackney, httpc where the first client is the implemented during the project, the
second client a popular open source client and the third client is included in the
Erlang distribution. As with the decoder benchmark, the configurations given in
Table 4.5 were used. For each configuration and decoder, 10 000 requests were
sent.
Average latency and average throughput obtained from the benchmark are given in
Figure 4.3a and Figure 4.3b respectively.

42



Chapter 4. Result

(a) Latency

(b) Throughput

Figure 4.2: Performance benchmark of the different decoders when processing vari-
ous responses. Defining characteristics for each configuration is listed in Table 4.5.
The statistics were obtained from 10 000 samples while the standard deviation was
used as an error measure.
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(a) Latency

(b) Throughput

Figure 4.3: Performance benchmark of three HTTP clients running on the Erlang
virtual machine. The implemented client used the default decoder during this bench-
mark. The statistics were obtained from 10 000 samples while the standard deviation
was used as an error measure.
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5
Discussion

The current chapter discusses the results presented in Chapter 4 and tries to con-
nect those results and lessons learned during the project with the questions given
in the problem statement but first off is a discussion on the conducted landscape
survey.

5.1 Landscape Survey

The purpose of the present section is to discuss the survey that was done during the
project regarding the http-client and clj-http Hypertext Transfer Protocol (HTTP)
client libraries. More specifically, to answer Question 4 given in Section 1.2.

5.1.1 Haskell

In order to understand how http-client can be used when sending and receiving
an HTTP message body, a key prerequisite is an understanding of Haskell’s lazy
evaluation. The evaluation strategy means that no expression is computed more
than necessary. Lazy evaluation in a functional setting allows for greater modularity
and the concept of lazy IO [13]. The first example on what can be done with http-
client is about lazy IO. Imagine a file that needs to be uploaded to an HTTP server
but is too large to fit in memory, in Haskell it is possible to implement the required
functionality as if the whole file contents is to be read at once while in reality, it is
streamed. Note, that for this method to work seamlessly, the size of the file must be
known beforehand since otherwise Haskell would need to read the whole file right
away. Doing something like this is not possible in Elixir since the language is strictly
evaluated. When using Net.HTTP, the expected approach is to read the file piece
by piece and send them one at a time. Even though both of these libraries are meant
to be low-level, Haskell’s lazy evaluation brings high-level composition.
A similarity between http-client and Net.HTTP is how both of their respective lan-
guages support multiple behaviors with a single function identifier. For example,
when sending a request body with http-client, the library adapts to what kind of
request body is given. In the case of Elixir, the request function behaves differently
depending on the number of arguments and their values. With this approach com-
pact interfaces can be constructed. Though we find it even more interesting in the

45



Chapter 5. Discussion

Haskell case due its static types.
Another similarity is how the two libraries handle response bodies. Both of their
public Application Programming Interfaces (API) provide functions for reading and
decoding data synchronously. It is possible to read one chunk at a time or the whole
response body at once. In the case of Net.HTTP, a response structure containing
status code, protocol version and headers is given as the first value in a list of items
when calling for data, the remainder of the list may be chunks and trailers. The
way it is done in http-client is compelling since there, a response data structure con-
tains everything including one of the fields that represents the body. Since Haskell
supports parameterized data types, this field can be either data in transit or a com-
plete body. It might be possible to imitate this approach in Elixir with the help of
pattern matching though we assume it will be more complex without a static type
system.

5.1.2 Clojure

It seems that clj-http is much more high-level than Net.HTTP when looking at the
features provided. Even though the feature sets differ between the HTTP client
libraries, both of these projects support multiple methods of dealing with requests
and responses. The Clojure library achieves this through polymorphism via the
use of multimethods1. The way a request body or a response body is streamed
is by passing an instance of the InputStream or OutputStream classes respectively.
Note that the classes come from Java and is an example of how Clojure developers
can reuse much from the Java world which we think is comparable to what can
be done in Elixir with Erlang functionality. If it is more relevant to use another
method for sending or receiving an HTTP message body with clj-http, it can be
easily configured.
As we have seen, all three HTTP client libraries try to reduce required API surface
by using either function overloading or a algebraic data type when it comes to
sending or receiving requests and responses respectively. This is a compelling choice
since it makes each API more compact.

5.2 Correctness

The purpose of this section is to carry out a discussion on the correctness evaluation
that was done as part of the project. The discussion starts with the syntax aspect
and then ends with protocol behavior and the public API. The answer to Question
2 in Section 1.2 is yes, we believe the work that has been carried out during this
project testifies about the suitability of QuviQ QuickCheck in the context of building
a client library for a popular Internet protocol.

1https://clojure.org/reference/multimethods
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5.2.1 Decoder Evaluation

The present section discusses positive and negative testing related to the encoder
and decoder components as part of the implemented HTTP client library.

5.2.1.1 Positive Testing

When thinking about building an HTTP decoder, one can see that the set of valid
HTTP messages is a large multidimensional space. A common approach when test-
ing computer programs is to split the input space into partitions where each value in
a partition is assumed to be equally treated by the software under test. When writ-
ing test cases manually, it is hard to cover each partition even once. Instead, with
well implemented QuickCheck generators, the tool can automatically cover much of
the input space. Fortunately, the present project can exemplify this, as can be seen
in Table 4.1, almost all lines in the encoder and decoders are covered when testing
with QuickCheck. The lines that miss coverage are due to the absence of negative
testing.
With the Reference decoder, it would probably suffice with traditional unit tests
since it was easily implemented with a custom Domain-Specific Language (DSL).
It is another matter when it comes to the FSM and Default decoders since they
are more complex. In our opinion, QuickCheck has been an invaluable tool in the
context of testing a functional HTTP client library.
We should also give credit to the problem at hand. The properties that were used
when testing the syntax, all boils down to the following steps: encode, decode and
compare. This is sometimes said to be a strong property. We think it is true, even
though it only verifies that the an encoder and a decoder work well together and not
that they follow the actual specification. We experienced this while working on the
syntax components where the test suite reported OK and a bug appeared during
live testing. A solution could be to have two different programmers implementing
the QuickCheck generators and another working on the software under test.
As can be seen in Table 4.2, the distributions of status codes and header name
values are fairly uniform while the distributions for the number of headers and
header name size are skewed towards small values. The reason for keeping the latter
two distributions low is due to efficiency. Still, more and larger headers are generated
during testing. The reason for why header value sizes are not uniform is the more
complex grammar behind header values. An example of the complexity of header
values can be seen in the final column where generated octet values are listed. An
HTTP header value can be folded into separate lines which makes the decoders more
complex and as can be seen in the distribution, such values are generated.
Similarly, in Table 4.3, column 1, 2, 3 and 5 have skewed distributions towards
small values and the distribution for chunk names is uniform. Decoding HTTP
chunk extension values can be tricky since there are two mechanisms for escaping
special symbols. Multiple characters can be escaped with quotes while a single
character can be escaped with backslash. As can be seen in the table, both quotes
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and backslash are the most commonly seen octets when generating chunk extension
values which tells that quoting has actually been tested.

5.2.1.2 Negative Testing

One thing that might have come to mind is the lack of negative testing when eval-
uating the correctness of the implemented decoders. The reason is that we think
it reduces robustness when any slightly invalid HTTP message is rejected. Hence,
between the two, we choose robustness. Note that it is not black and white, from
the ways the decoders are implemented, a message with major flaws will be dis-
carded. Also, we see two methods for doing negative testing on the decoders with
QuickCheck, which are described below, but unfortunately, both of them have their
drawbacks. In both cases, a valid HTTP message is assumed to be generated and
then a single byte is modified at a random position in the message.

• Feed the generated input message to each of the implemented decoders and
then fail in case any of the FSM or Default decoders do not match with the
result of the Reference decoder.

• Make the choice of a replacement byte intelligent and select only a value from
a set that is disjoint with the set of allowed values found at the chosen position
in the given message.

The problem with the first method is that it is expected to be time consuming
during testing since there is a great chance of modifying the selected byte in a valid
way. On the other hand, the second approach should be time consuming when
implementing.

5.2.2 Client Evaluation

It is well known that the number of tests required for a piece of software grows
exponentially with the number of features provided. QuickCheck solves this in
terms of developer time with its ability to generate both input data and commands
randomly. For example, when adding a function to the public interface, one can
just extend the QuickCheck model with support for the newly added function and
it will be included in command sequences randomly generated in the future. Hence,
if QuickCheck is run long enough, the new function will be combined with existing
functions in the public API. Another example is the many different behaviors a
request-response pair can take. With traditional unit tests, a test case involving:
plain request body, chunked response body, closed connection and method has to be
manually specified. Then, if an extra variable is added to signal compression, several
additional test cases must be written. With QuickCheck, it is instead a matter of
extending the model with support for the new variable. Thus, the exponential time
required by a programmer may be reduced to something that is linear.
When working with QuickCheck state machine models, a model must know exactly
everything that is going on. This limitation appeared when deciding to use the
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cowboy HTTP server. We believe it is too fragile if not impossible to know and
control how the server sends data over a socket. By not having control over data
transmission from cowboy, we were not able to test asynchronous receive or streaming
synchronous receive with QuickCheck. This explains why the test coverage shown
in Table 4.1 is fairly low.
Table 4.4 shows distributions for command sequence lengths, commands and fea-
tures. As with most sequences in QuickCheck, command sequences tend to skew
against short lengths. The commands distribution can easily be adjusted in QuickCheck
and as can be seen in the table, the most frequent commands are about establishing
connections or sending requests. In the final column, features distribution is shown.
Features is a concept in QuickCheck which allow users to signal interesting calls or
command sequences. Furthermore, it is a useful way to do both positive and nega-
tive testing in the same model. It is desirable to have the feature “Request Chunk
- OK” high since then multiple chunks are more probable to be sent in the same
request.

5.3 Extensibility

Ideally, every possible use case of the implemented HTTP client library should have
been evaluated but this approach is not really feasible due to time and the unknown
of potential applications of the library. Instead four examples were selected that
we think covers many use cases. It might seem counter intuitive to go the distance
of building a new HTTP client library with the goal of giving full control over
state and process management for a run-time system where cheap concurrency is a
main selling point. We argue that the produced library has its place in the Elixir
ecosystem because of our obliviousness around what users want to do with the HTTP
protocol.
Two of the abstractions given during extensibility evaluation cannot be implemented
with hackney. Implementing Concurrent Client is impossible with the HTTP client
library since it uses an implicit process when working with asynchronous receive.
Also, we have not been able to pipeline requests with hackney due to it using the
same reference ID for a connection and its current request. The httpc library does
support pipelining but it does not give control over process creation and therefore
prevents direct pipelining by a user.
An obvious drawback with the chosen approach is the lack of convenience but we
still think it is the right choice when aiming to build a low-level library. An example
of this drawback can be noticed in Listing 4.6 where much redundancy because of
the messages sent by the gen tcp and ssl modules. By allowing implicit process
creation, a proxy process could serve as a proxy and only send a single message per
type. Another drawback is the ability to control the semantics aspect of the protocol
since so much space is left over to the users of the library. From the same function
in Listing 4.6 as before, the user must figure out if a closing of the connection
by the server is expected or not depending on headers exchanged when operating
asynchronously. The discussion of these drawbacks serve as an answer to Question
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1 in Section 1.2.

5.4 Robustness

The current section discusses the method and results from the robustness evaluation
that was made during the project. The implemented HTTP client library shows
promising results when running against websites on the Internet, though it should
be further emphasized that this is with certificate validation disabled.

5.4.1 Decoder Evaluation

Unfortunately, it is not enough to strictly adhere the protocol specification. From
our experiences when running the implemented decoders against popular websites
on the Web, it has become apparent that a 100 % success rate during correctness
evaluation is not always sufficient. For example, a response from a popular website
could not be parsed with the Reference decoder since it is too strict.
Regarding the cases given in Section 4.3, one received HTTP response was incom-
plete while the other had unexpected white space in a chunk. The fact that these
two websites seem to work in a web browser, makes it possible for the website admin-
istrators to continue with their invalid HTTP responses. Therefore, it is not obvious
what a new HTTP decoder should do, one alternative is to reject any HTTP re-
sponse that is even slightly invalid with respect to the protocol specification while
the other way is to be more forgiving. The first alternative is the most tempting
for us who are developing the decoder and because choosing the second alternative
strengthens the incentives for not communicating with valid HTTP syntax.
All in all, we are happy with the results from the robustness evaluation in terms of
protocol syntax and we are glad to see that the Default decoder works on the real
Internet.

5.4.2 Client Evaluation

Since URLs constructed from domains listed in The Moz Top 500 index were used,
HTTP redirects were crucial in finding the root page of a website. Because the
implemented HTTP client library does not support redirects naively, it was extended
with support for the feature. From our experience, it seems relatively complicated
to get the logic to work in every corner case. Still, as can be seen in Figure 4.1,
almost all of the completed responses returned the status code 200. The completed
but not successful requests may depend on non-existing resource at the server-side
or on the redirection routine.
We have also experienced variance meaning that things change at the requested
websites. The more time that was spent on doing the robustness evaluation, the
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more variance seemed to affect the results. For example, the presence of response
header names tend to vary more than expected.
It is a sorrow that we were not able to properly configure TLS certificate verification
in the implemented HTTP client library meaning that the robustness evaluation
could not be executed with certificate verification enabled for either of the HTTP
client libraries.

5.5 Performance

The purpose of the present section is to interpret and discussed the observed results
when doing the performance evaluation of the implemented HTTP client library. To
answer Question 3 in Section 1.2, we can look at the results presented in Chapter
4 and conclude that the FSM is many times faster than the Reference decoder for
various workloads. When weighting in other aspects such as maintainability and
robustness, it is no longer crystal clear, even though we name the FSM decoder the
best choice.

5.5.1 Decoder Evaluation

It is clear from Figure 4.2 that the Reference decoder lags behind the other imple-
mented decoders. Even in case A where the total response size was the least, the
average latency of the Reference decoder was almost 110 % higher than the average
latency measured when evaluating the FSM decoder. In the case of the Default
decoder, the difference is roughly 152 % in terms of average latency. Hence, from a
performance perspective, the FSM and Default decoders win.
The difference in performance between the FSM and Default decoders is not as
significant. Again in case A, the Default decoder is close to 72 % faster than the
FSM decoder in terms of average latency. Even though state machines are known
to be efficient, the Default decoder is even more efficient because the two major
functions that the decoder relies on: erlang:decode packet/3 and binary:split/2 are
implemented in the C programming language. As of today, the FSM makes two
function calls in the Erlang virtual machine (BEAM) per octet when parsing an
HTTP response. By sacrificing readability, the number of calls may be reduced to
one per octet. Even then, we see that the Default decoder will be faster than the
FSM decoder.
From the performance observed, we can learn that bigger header values do not make
much of a difference when using the FSM and Default decoders while this is not
true when using the Reference decoder. Minor differences can be found between
the number of chunks when using the former two mentioned decoders. Since every
other configuration have the double total response size, it was expected to see those
bars high when looking at the observed response time. This also true for all of the
implemented decoders.
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5.5.2 Client Evaluation

The purpose of the clients benchmark was to put the performance of the implemented
HTTP client library in comparison with hackney and httpc. The former library
is developed as an open source project while the latter is included in the Erlang
distribution.
From the different configurations listed in Table 4.5 and results observed during the
decoder benchmark, the larger HTTP responses were expected to require more time
during transmission and decoding. As seen in Figure 4.2, the bars follow a saw
shape were odd ones have better performance than even ones due to total response
size.
Another assumption was that a greater number of chunks while keeping the total
response size constant would lead to more processing time since there is more decoder
work to do. This turned out to be wrong, apparently B and F are the slowest
configurations and those have four chunks each. After consideration, we believe
this is due to the way Net.HTTP and hackeny receive data. Both of these libraries
receive data synchronously directly from a socket interface and they process data
as soon as there is something available meaning that their decoders may get called
wastefully. On the other hand, httpc seems unaffected by the number of chunks. We
believe the reason is that it uses a different strategy when reading socket data. Even
though httpc seems to be more efficient in the cases of B and F, the variability of the
observed results are almost always greater than for Net.HTTP and hackney.
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6
Conclusion

This section summarizes the project at hand and gives conclusions made from our
experience around the implemented Hypertext Transfer Protocol (HTTP) client
library and chosen evaluation criteria. In the end, we try to describe the most
probable future for the resulting implementation.

6.1 Implementation

The act of implementing an HTTP client library in the Elixir programming language
has been rewarding. Features such as pattern matching, immutability and higher
order functions have been both convenient and practical. All in all, we are satisfied
with the internal design of the library meaning how logic has been structured and
divided into components or modules as they are called in Elixir. It has been great
to gain experience with the Mix1 tool which provides tasks for building, testing and
managing dependencies of Elixir projects. The experience is similar with ExDoc2

which is a tool for generating Elixir source code documentation.

6.2 Evaluation

QuickCheck has been a blast working with during the present project. It has worked
really well in the settings of protocol syntax and semantics. The combination of
strong oracles and the DSL provided by QuickCheck for writing test data gener-
ators has allowed for a successful use of random testing. We are confident that
QuickCheck suits the task of evaluating correctness of an HTTP client library writ-
ten in a functional programming language.
With the set out focus on extensiblity, a major decision from the Elixir’s core team
was to make state and process management explicit and by doing so we had to sac-
rifice one of the Elixir run-time system’s key abstractions which is cheap processes.
Nonetheless, we think that the proposed design is better suited for other people
to build upon. Despite numerous other challenges and obstacles, we are confident
that the goal of building an extensible HTTP client library has been achieved with

1https://hexdocs.pm/mix/Mix.html
2https://github.com/elixir-lang/ex doc

53



Chapter 6. Conclusion

respect to the various examples given.
We recall one time when we were playing with the client library against a popular site
on the Web when it was configured to use the Reference decoder and found out that
the decoder failed as its compliance with the HTTP specification was too strong.
Yet again, we have been reminded how hard it is to build software at widespread
use. Furthermore, by testing the client systematically against a large set of websites
has been a good way of evaluating robustness. We judge it as a realistic way of
gaining experience from the real Web.
Another aspect of the Reference decoder is its performance, it was found when do-
ing the performance evaluation that the decoder is way slower than the FSM and
Default decoders even in the case where the difference was the smallest. Hence, we
can conclude with respect to the robustness and performance properties that the
Reference decoder is suboptimal even though it is the most convenient to implement.
The difference between the latter decoders is not as significant, thus other proper-
ties such as maintainability have a greater impact when deciding what decoder to
use.

6.3 Future Work

The project idea originates from the people working with the Elixir programming
language. A possible future for Net.HTTP is consequently in the language’s stan-
dard library but in order to get there, we have to further adapt the implementation
to match standards and expectations after the end of the present project. More work
is required, the program needs time with developers and it needs time operating on
the Web. We see especially that more work can be done with the extensibility and
robustness properties of the library. We think the best way to continue the job
would be to release the software out in the wild as a standalone project for the time
being.
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A
Code

A.1 Typespecs

1 # From Net.HTTP.Protocol.Message
2 @type header :: {String.t, binary}
3 @type trailer :: header
4

5 # From Net.HTTP.Protocol.Request
6 @type t :: %__MODULE__{
7 headers: nil | [Message.header],
8 method: nil | atom,
9 target: nil | binary,

10 version: nil | {integer, integer},
11 }
12

13 # From Net.HTTP.Protocol.Response
14 @type t :: %__MODULE__{
15 headers: nil | [Message.header],
16 status: nil | integer,
17 version: nil | {integer, integer},
18 }
19

20 # From Net.HTTP.Protocol.Chunk
21 @type t :: %__MODULE__{
22 data: nil | binary,
23 extensions: nil | [{String.t, nil | binary}],
24 }

A.2 Generator Combinators

1 defmodule Random.Generators.Combinators do
2 use EQC.ExUnit
3
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4 def many0(generator) do
5 sequence(list(generator))
6 end
7

8 def many1(generator) do
9 sequence(non_empty(list(generator)))

10 end
11

12 def times(generator, n) do
13 Enum.map(1..n, fn _ -> generator end)
14 end
15

16 def multiple(generator, 0, max) do
17 optional(multiple(generator, 1, max))
18 end
19

20 def multiple(generator, min, max) do
21 oneof(Enum.map(min..max, fn n ->
22 times(generator, n)
23 end))
24 end
25

26 def optional(generator) do
27 oneof([generator, ""])
28 end
29

30 def sequence(generator) do
31 let value <- generator do
32 Enum.join(value, "")
33 end
34 end
35

36 def range(from, to) do
37 as_binary(choose(from, to))
38 end
39

40 def as_binary(generator) do
41 let value <- generator do
42 <<value>>
43 end
44 end
45 end
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A.3 Extensibility Examples

All of the extensibility examples are given in this section.

A.3.1 Stream

1 defmodule Support.Extensibility.StreamError do
2 defexception [:reason]
3

4 def message(error) do
5 to_string(error.reason)
6 end
7 end
8

9 defmodule Support.Extensibility.Stream do
10 alias Support.Extensibility.StreamError
11

12 def new!(url) do
13 Stream.resource(start_fun(url), next_fun(), after_fun())
14 end
15

16 defp start_fun(url) when is_binary(url) do
17 start_fun(URI.parse(url))
18 end
19

20 defp start_fun(url) when is_map(url) do
21 host = url.host
22 port = url.port
23 transport = String.to_atom(url.scheme)
24

25 path = url.path
26

27 fn ->
28 with {:ok, conn} <- Net.HTTP.connect(host, port, transport),
29 {:ok, stream} <- Net.HTTP.request(conn, :get, path) do
30 stream
31 else
32 {:error, reason} ->
33 raise StreamError, reason: reason
34 end
35 end
36 end
37

38 defp next_fun() do
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39 fn stream ->
40 case Net.HTTP.response(stream, block: false) do
41 {:ok, values, stream} when is_list(values) ->
42 {values, stream}
43 _otherwise ->
44 {:halt, stream}
45 end
46 end
47 end
48

49 defp after_fun() do
50 fn stream ->
51 Net.HTTP.close(stream.connection)
52 end
53 end
54 end

A.3.2 GenStage

In the present section, a full and working example of how the implemented HTTP
client library can be combined with the GenStage project and Twitter’s streaming
API. In order to communicate with Twitter, every request has to be authorized by
passing a certain request header. This is what the Twitter module is for and was
built during this thesis project.

1 defmodule Support.Extensibility.GenProducer do
2 use GenStage
3

4 alias Support.Extensibility.Twitter
5

6 def init(params) do
7 case request(params) do
8 {:ok, stream} ->
9 {:producer, {stream, 0, []}}

10 {:error, reason} ->
11 {:error, reason}
12 end
13 end
14

15 def handle_demand(new_demand, {stream, demand, buffer}) do
16 dispatch(stream, new_demand + demand, buffer)
17 end
18

19 def handle_info({:tcp, _socket, data}, state) do
20 on_data(data, state)
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21 end
22

23 def handle_info({:ssl, _socket, data}, state) do
24 on_data(data, state)
25 end
26

27 defp on_data(data, state = {stream, demand, buffer}) do
28 case Net.HTTP.decode(stream, data) do
29 {:ok, values, stream} ->
30 Net.HTTP.next_packet(stream.connection)
31 dispatch(stream, demand, buffer ++ values)
32 {:error, reason, _stream} ->
33 {:stop, reason, state}
34 end
35 end
36

37 defp dispatch(stream, 0, buffer) do
38 {:noreply, [], {stream, 0, buffer}}
39 end
40

41 defp dispatch(stream, demand, buffer) do
42 {to_dispatch, remaining} = Enum.split(buffer, demand)
43 {:noreply, to_dispatch, {stream, demand - length(to_dispatch), remaining}}
44 end
45

46 defp request(params) do
47 url = URI.parse(Twitter.base_url)
48

49 host = url.host
50 port = url.port
51 transport = String.to_atom(url.scheme)
52

53 method = :get
54 path = url.path <> "?" <> URI.encode_query(params)
55 authorization = params |> Map.to_list |> Twitter.authorization
56 headers = [{"Authorization", authorization}]
57

58 with {:ok, conn} <- Net.HTTP.connect(host, port, transport),
59 :ok <- Net.HTTP.next_packet(conn),
60 {:ok, stream} <- Net.HTTP.request(conn, method, path, headers) do
61 {:ok, stream}
62 else
63 {:error, reason} ->
64 {:error, reason}
65 end
66 end
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67 end

A.3.3 Concurrent Client

1 defmodule Support.Extensibility.ConcurrentClient do
2 def start() do
3 spawn(fn -> loop(%{}) end)
4 end
5

6 def stop(pid) do
7 Process.exit(pid, :normal)
8 end
9

10 def process(pid, url) do
11 send(pid, {:process, url, self()})
12

13 receive do
14 {:ok, ˆpid} ->
15 :ok
16 {:error, reason, ˆpid} ->
17 {:error, reason}
18 end
19 end
20

21 def loop(state) do
22 receive do
23 {:process, url, sender} ->
24 loop(on_process(state, url, sender))
25 {:tcp, socket, data} ->
26 loop(on_data(state, socket, data))
27 {:tcp_closed, _socket} ->
28 {:error, :closed}
29 {:tcp_error, _socket, reason} ->
30 {:error, reason}
31 {:ssl, socket, data} ->
32 loop(on_data(state, socket, data))
33 {:ssl_closed, _socket} ->
34 {:error, :closed}
35 {:ssl_error, _socket, reason} ->
36 {:error, reason}
37 end
38 end
39

40 def on_process(state, url, sender) do
41 case get(url) do
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42 {:ok, stream} ->
43 send(sender, {:ok, self()})
44 store_stream(state, stream)
45 {:error, reason} ->
46 send(sender, {:error, reason, self()})
47 state
48 end
49 end
50

51 def on_data(state, socket, data) do
52 stream = state[socket]
53

54 case Net.HTTP.decode(stream, data) do
55 {:ok, _values, stream} ->
56 case Net.HTTP.status(stream) do
57 {_encoder_status, :done} ->
58 clear_stream(state, stream)
59 _otherwise ->
60 :ok = Net.HTTP.next_packet(stream.connection)
61 store_stream(state, stream)
62 end
63 {:error, _reason, _stream} ->
64 state
65 end
66 end
67

68 def get(url) when is_binary(url) do
69 get(URI.parse(url))
70 end
71

72 def get(url) when is_map(url) do
73 host = url.host
74 port = url.port
75 transport = String.to_atom(url.scheme)
76

77 path = URI.parse(url).path
78

79 with {:ok, conn} <- Net.HTTP.connect(host, port, transport),
80 :ok <- Net.HTTP.next_packet(conn),
81 {:ok, stream} <- Net.HTTP.request(conn, :get, path) do
82 {:ok, stream}
83 else
84 {:error, reason} ->
85 {:error, reason}
86 end
87 end
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88

89 defp store_stream(state, stream) do
90 Map.put(state, stream.connection.socket, stream)
91 end
92

93 defp clear_stream(state, stream) do
94 Net.HTTP.close(stream.connection)
95 Map.delete(state, stream.connection.socket)
96 end
97 end

A.3.4 Pipelining Client

1 defmodule Support.Extensibility.PipeliningClient do
2 def start(host, port, transport) do
3 case Net.HTTP.connect(host, port, transport) do
4 {:ok, conn} ->
5 spawn(fn -> loop({conn, []}) end)
6 {:error, reason} ->
7 {:error, reason}
8 end
9 end

10

11 def request(pid, path) do
12 send(pid, {:request, path, self()})
13

14 receive do
15 {:ok, ˆpid} ->
16 :ok
17 {:error, reason, ˆpid} ->
18 {:error, reason}
19 end
20 end
21

22 def response(pid) do
23 send(pid, {:response, self()})
24

25 receive do
26 {:ok, responses, ˆpid} ->
27 {:ok, responses}
28 {:error, reason, ˆpid} ->
29 {:error, reason}
30 end
31 end
32
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33 def loop({conn, queue}) do
34 receive do
35 {:request, path, sender} ->
36 case Net.HTTP.request(conn, :get, path, []) do
37 {:ok, stream} ->
38 send(sender, {:ok, self()})
39 loop({conn, [stream | queue]})
40 {:error, reason} ->
41 send(sender, {:error, reason, self()})
42 end
43 {:response, sender} ->
44 case on_response(Enum.reverse(queue), []) do
45 {:ok, responses} ->
46 send(sender, {:ok, responses, self()})
47 loop({conn, []})
48 {:error, reason} ->
49 send(sender, {:error, reason, self()})
50 end
51 end
52 end
53

54 defp on_request(conn, queue, path, sender) do
55 case Net.HTTP.request(conn, :get, path) do
56 {:ok, stream} ->
57 send(sender, {:ok, self()})
58 loop({conn, [stream | queue]})
59 {:error, reason} ->
60 send(sender, {:error, reason, self()})
61 end
62 end
63

64 defp on_response([], responses) do
65 {:ok, Enum.reverse(responses)}
66 end
67

68 defp on_response([stream | streams], responses) do
69 case Net.HTTP.response(stream) do
70 {:ok, values, _stream} ->
71 on_response(streams, [values | responses])
72 {:error, reason, _stream} ->
73 {:error, reason}
74 end
75 end
76 end
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