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Abstract

This study presents and evaluates the performance of various solutions to the filtering
and smoothing problems from an air surveillance radar perspective. In the theory part,
the Kalman Filter and the Rauch-Tung-Striebel smoother equations are derived for lin-
ear models. Thereafter, we derive the corresponding equations for nonlinear models
using the Unscented Transform. These solutions are then expanded to the Interactive
Multiple Model framework. The resulting algorithms are evaluated through Monte Carlo
simulation using six benchmark scenarios representing the classes; large aircraft, agile
commercial aircraft, medium bomber and fighter jet. Optimal process model parameters
are determined using an evolutionary optimization method. The resulting process model
parameters indicates that the use of multiple, and nonlinear models each contribute to a
more adaptive and accurate description of the process. The results from the evaluation
clearly show that the use of nonlinear process models and multiple models each improve
the process state estimates, in particular for smoothing.
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1
Introduction

T
he tracker is the software component in a radar system which associates the sen-
sor measurements with the observed objects and keeps track of those objects.
In addition, the tracker extracts information about the kinematic parameters
of the observed objects over time, typically in a probabilistic manner. In the

case where the sensor is a doppler radar, for example, measurements contain information
about radial distance to the object from the sensor, the angle of the object relative the
sensor, and possibly also the velocity of the object in the radial direction. We have no
direct information about the acceleration from such measurements, and neither do we
have any information about the velocity of the object in angular direction. On top of
that the measurements are typically noisy, which makes it even harder to extract knowl-
edge about kinematics.

Fortunately, we may add one piece to the puzzle, namely our knowledge about the laws
of physics, which we may use to construct a model for the underling process that we
are observing. In this case the process referres to the kinematics of an oberved airborne
object, which is assumed to be a continous markov process described by a dynamical
process model in state space. This dynamical process is not assumed to be deterministic,
but contains a stochastic term describing the process model uncertainty. We may also
have knowledge about the sensor that provides us with the measurements. We may thus
also specify a model describing the process in which the sensor maps the probabilistic
description of the process state, from state space to measurement space. We assume that
this mapping is not deterministic but includes an additional stochastic term to account
for measurement uncertainty.

We thus have two stochastic models to describe the process and the measurements.
To be able to use these stochastic models we need a Bayesian framework that yields op-
timal probability distributions in state space for the process state, given measurements,
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CHAPTER 1. INTRODUCTION

by using the process- and measurement models. The Bayesian framwork that works
recursively forward in time to calculate optimal statistical distributions for the process
is referred to as filtering. The Bayesian framework that works recursively backwards in
time to correct for the information gained through latter measurements is referred to
as smoothing. These probability distributions can then be optimized in some sense to
produce process state estimates, see figure 1.1 for a visual example.
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Figure 1.1: Example on filtering and smoothing position estimates for benchmark scenario
1. See section 8.1 for information on the benchmark scenarios.

For linear process and measurement models, and time-uncorrelated Gaussian process-
and measurement noise, there are optimal solutions for both the filtering and the smooth-
ing problems, namely the Kalman Filter (KF) [1] and the Rauch-Tung-Striebel (RTS) [2]
smoother, respectively. The application of Bayesian filtering and smoothing in this study
is restricted to the domain of air surveillance radar systems, which means that the sensor
is typically providing measurements in nonlinear coordinates. And the process, i.e. the
kinematics of the observed airborne object in this case, is typically best described by
nonlinear models. In addition to this, the airborne object is most certainly in different
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CHAPTER 1. INTRODUCTION

modes of dynamics during the flight, which might be best described by a collection of
process models rather than a single one. Luckily, there are modifications to the Kalman
Filter that solves these problems.

There are different methods to deal with nonlinear process- and measurement projec-
tions, but in this study we will focus on the Unscented Kalman Filter (UKF) proposed
by Julier et al [9]. The UKF uses a sampled version of the probability distribution at
hand to produce approximate solutions to the filtering problem. There are a number of
different proposed approximate solutions to the smoothing problem for nonlinear models,
among which we focus on the Unscented RTS smoothing solution proposed by Särkkä [3].

The problem of filtering with multiple models also has a number of approximate so-
lutions which can be grouped into the subclasses of hard decision- and soft descision
filters. Basically, hard decision means that one of the multiple filtered probability distri-
butions is chosen at each instant of time, while in soft decision filtering a weighted sum
of the filtered probability distributions constitutes the optimal probability distribution.
The weights being the filter probabilities at each instant of time. We will focus on the
Interactive Multiple Model (IMM), a soft decision filter derived from the assumption
that the process dynamics behaves as a switch markov system. We will also focus on
the proposed solution to the problem of multiple model filtering proposed by Nadarajah
et al [4], built upon the model of the IMM filter [7]. The figures 1.2(a)-1.2(b) show how
probabilities for three filters, each containing one distrinct process model, changes over
time, and how smoothing decreases the unscertainty during straight course.

1.1 Aim of study

The aim of this study is to determine the improvement in process state estimates using
nonlinear process models, multiple models and smoothing, separately and combined, for
the air surveillance radar application.

1.2 Thesis outline

The outline of the thesis is as follows. In Chapter 2, ”Problem statement”, we outlay
a formal description of the problem at hand, namely the estimation of the state of a
process, given a number of measurements. In Chapter 3, ”Conceptual solution”, we
present the Bayesian frameworks which are the general solutions to the filtering and the
smoothing problems, respectively.

We then derive the optimal solutions to the filtering and the smoothing problems for
linear process models in Chapter 4, ”Optimal solution for linear systems”. It is also in
this chapter that we will familiarize ourselves with the Kalman Filter and the Rauch-
Tung-Striebel smoother. In the following Chapter 5, ”Approximate solution for nonlinear
systems”, we discuss the Unscented Transform and how it is used for nonlinear model
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CHAPTER 1. INTRODUCTION
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(a) Filtered mode probabilities
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(b) Smoothed mode probabilities

Figure 1.2: Example on soft decision multiple model filtering, and smoothing. The figure
shows the mode probabilities for three filters over benchmark scenario 1. See section 8.1 for
information on the benchmark scenarios.

filtering and smoothing. We thus derive the equations for the Unscented Kalman Filter
and the Unscented Rauch-Tung-Striebel smoother proposed by Särkkä [3].

Thereafter, in Chapter 6, ”Solution for multiple models”, we develop a bayesian frame-
work for a switch markov system which allows us to use multiple filters. First we derive
the equations for the IMM filter and then we discuss the IMM smoother proposed by
Nadarajah et al. In the last theory Chapter 7, ”Process models”, we deal with how to
discretize differential equations which describe the dynamical process in state space, so
as to be applicable for filtering. After a whole lot of theory, we discuss the evaluation
procedure in Chapter 8, and present our findings in Chapter 9.
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2
Problem statement

W
e are observing a time continous process, x(t) over time by measuring the
system at times {ti}Ni=1 generating measurements ZN ,

ZN = z(t1), z(t2), ..., z(tk), ..., z(tN )

= z1, z2, ..., zk, ..., zN .
(2.1)

We assume that measurement zk only depends on the process state xk = x(tk), at the
same instant of time, i.e p(zk|xk,...) = p(zk|xk). This dependence p(zk|xk), which we
shall refer to as a measurement model, we describe with a relation zk = hk(xk) + wk.
The term wk represents the measurement noise at time tk, which we assume is Gaussian.
The statement that zk only depends on xk also implies that the measurement noise does
not have any time correlation. These assumption are summarized in equation (2.2).

zk = hk(xk) + wk

wk ∼ N (0,Rk)

E{wiw
T
j } = δijRi

(2.2)

We further assume that the process x is markov, i.e p(xk|xk−1,...) = p(xk|xk−1). The
probability density function p(xk|xk−1), which we shall call the measurement model, we
describe by a relation xk = fk−1(xk−1) + vk−1. The term vk−1 represents the maneu-
vering noise between times tk−1 and tk, and is assumed to be Gaussian. The markov
assumption also implies that the maneuvering noise does not have any time correlation.
These assumption are summarized in equation (2.3).

xk = fk−1(xk−1) + vk−1

vk−1 ∼ N (0,Qk−1)

E{vivTj } = δijQi

(2.3)
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CHAPTER 2. PROBLEM STATEMENT

See figure 2.1 for schematic explaination of the model assumptions. Given these model
assumptions, the problem at hand is to find the distribution p(xk), that best describes
our knowledge about the process state xk, at time tk. The solution to this problem
differs depending on which measurements we have access to at the moment. Without
loss of generality we may discuss the three cases:

Prediction Find the probability density function, p(xk|Zk−1), for the process state xk
at time tk, given that we know all measurements up until time tk−1.

Filtering Find the probability density function, p(xk|Zk), for the process state xk at
time tk, given that we know all measurements up until time tk.

Smoothing Find the probability density function, p(xk|ZN ), for the process state xk
at time tk, given that we know all measurements up until time tN (N > k).

To solve the problem at hand for each of these three cases, we first want to construct
a general solution, without considering specific classes of process- or measurement mod-
els. Secondly we wish to apply the general solution to linear-, and then to nonlinear
models, to construct recursive algortihms. Last, we wish to construct a solution for a
multiple model description of the system. This means that we have to restate the prob-
lem and find an augmented solution that takes into account a number of process- and
measurement models, rather than one.
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Figure 2.1: Visual schematic for the assumed model. The markov process x is being
measured at a discrete number of times. The measurement zk is assumed to be dependent
only on the process state xk at the same instant of time.
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3
Conceptual solution

I
n order to derive the solution to the filtering and smoothing problems, we may start
without making any assumptions about the process model or the measurement
model other than the ones made in the problem statement. In this section we use a
bayesian approach to form conceptual solutions to the filtering and the smoothing

problems.

3.1 Filtering

The filtered probability distribution p(xk|Zk) can be described as (3.1), according to
Bayes’ formula.

p(xk|Zk) = p(xk|zk,Zk−1) =
p(zk,xk|Zk−1)

p(zk|Zk−1)
(3.1)

The joint distribution in the numerator of (3.1) may be rewritten as (3.3), using the
definition (3.2) for joint probability.

P (A ∩B) = P (A|B)P (B) (3.2)

p(zk,xk|Zk−1) = p(zk|xk,Zk−1)p(xk|Zk−1) (3.3)

To utilize the knowledge that we have about the markov process x, we marginalize
p(xk|Zk−1) over xk−1, see (3.4). The second equality is true due to the definition (3.2) for
joint probabilities. The factor p(xk−1|Zk−1) in the integrand is the posteriori distribution
from the prior timestep.

p(xk|Zk−1) =

∫
p(xk,xk−1|Zk−1)dxk−1 =

∫
p(xk|xk−1,Z

k−1)p(xk−1|Zk−1)dxk−1

(3.4)

7



CHAPTER 3. CONCEPTUAL SOLUTION

Since we assumed a first order markov system, the depence on Zk−1, in p(xk|xk−1,Z
k−1)

and p(zk|xk,Zk−1), can be ignored and can thus be written as (3.5). Since if we are fil-
tering forward and assume we know xk with absolute certainty there is no need for
measurements Zk−1. This is formally states in equation (3.5).

p(zk|xk,Zk−1) = p(zk|xk)
p(xk|xk−1,Z

k−1) = p(xk|xk−1)
(3.5)

p(zk|xk), in words, is the probability distribution for the measurement zk at time step
k, given one knows the process state xk at the same instant of time. This density is
referred to as the measurement model. p(xk|xk−1) is the probability distribution for the
process state xk at time step k, given that we know the process state xk−1 at the time
of the preceding measurement. This density is referred to as the process model.

3.2 Smoothing

The probability distribution of interest is p(xk|ZN ), i.e the smoothed probability dis-
tribution for the process at time step k given that we know all measurements up to
timestep N . We begin by marginalizing over xk+1.

p(xk|ZN ) =

∫
p(xk,xk+1|ZN )dxk+1 (3.6)

The joint distribution for xk and xk+1 can be divided into two factors through the
definition of conditional probability (3.2).

p(xk,xk+1|ZN ) = p(xk|xk+1,Z
N )p(xk+1|ZN ) (3.7)

We may ignore measurements {zi}Ni=k+1 in p(xk|xk+1,Z
N ), since they are redundant if

we know xk+1 for a markov system. This insight, plus Bayes’ formula leads to (3.8).

p(xk|xk+1,Z
N ) = p(xk|xk+1,Z

k) =
p(xk+1|xk,Zk)p(xk|Zk)

p(xk+1|Zk)
(3.8)

All this added up gives us the joint probability distribution (3.9).

p(xk,xk+1|ZN ) =
p(xk+1|xk,Zk)p(xk|Zk)

p(xk+1|Zk)
p(xk+1|ZN ) (3.9)

In the joint probability distribution (3.9), p(xk+1|xk,Zk) = p(xk+1|xk) is the predicted
distribution for the process state xk+1 at timestep k + 1 given that we know xk with
absolute certainty. p(xk+1|Zk) is the predicted distribution for the process at timestep
k + 1 given the filtered distribution for xk and p(xk|Zk) is the filtered distribution at
timestep k. p(xk+1|ZN ) is the smoothed distribution at timestep k + 1, which we know
at this point, from the previous backward smoothing step, thus giving us a recursive
framework for backward smoothing.

8



4
Optimal solution for linear

systems

T
he solution to the filtering problem for linear models is known as the Kalman
Filter. There also exists a solution for the smoothing problem for linear mod-
els, known as the Rauch-Tung-Striebel smoother. To derive the filtering and
smooting equations, we assume that the process and measurement models are

linear and written on the form (4.1). Other than that, we keep the assumptions that
the process noise aswell as the measurement noise is Gaussian and uncorrelated over
time, as expressed in (4.2). In words, the stochastic normal distributed term vk−1, with
covariance Qk−1, is the process noise in the interval in between measurement k − 1 and
k. The stochastic normal distributed term wk, with covariance Rk, is the measurement
noise for measurement k.

xk = Fk−1xk−1 + vk−1

zk = Hkxk + wk

(4.1)

vk−1 ∼ N (0,Qk−1), E{vivTj } = δijQi

wk ∼ N (0,Rk), E{wiw
T
j } = δijRi

(4.2)

The moments of the predicted process distribution p(xk|Zk−1) = N (xk; x̂k|k−1,Pk|k−1)
is calculated as (4.3), according to the model previously described.

x̂k|k−1 = Fk−1x̂k−1|k−1

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1

(4.3)

The moments of the predicted measurement distribution p(zk|Zk−1) = N (zk; ẑk|k−1,Sk|k−1)
is calculated as (4.4).

9



CHAPTER 4. OPTIMAL SOLUTION FOR LINEAR SYSTEMS

ẑk|k−1 = Hkx̂k|k−1

Sk|k−1 = HkPk|k−1H
T
k + Rk

(4.4)

With this said we are ready to derive the filtering and smoothing equations under the
assumptions of linear process- and measurement models.

4.1 The Kalman Filter

4.1.1 MLE derivation

To find the optimal filtered distribution p(xk|Zk) at time k we adopt an Maximum
likelihood estimate (MLE) approach. This means that we wish to find the estimate x̂k|k
for which the filtered distribution p(xk|Zk), derived as (3.1), is maximized. The MLE
approach lets us utilize the model assumption that the process distributions in state
space are Gaussian aswell as the process- and measurement noise. Since the maximum
point of a positive function is the same as for the logarithm of the said function we
may maximize L(xk, zk), the logarithm of (3.1), instead of maximizing the probability
distribution function (3.1).

L(xk, zk) = log

[
p(xk,zk|Zk−1)

p(zk|Zk−1)

]
= log

[
p(xk,zk|Zk−1)

]
− log

[
p(zk|Zk−1)

]
(4.5)

The numerator p(xk, zk|Zk−1) in (3.1) can be described by a product of two Gaussian
distributions (4.6) according to (3.3).

p(xk, zk|Zk−1) ∝ N (zk; Hxk,Rk)×N (xk; x̂k|k−1,Pk|k−1) (4.6)

Since the term log
[
p(zk|Zk−1)

]
in (4.5) does not contain xk, and therefore has a zero

partial derivative in relation to xk, we may write (4.7).

L(xk,zk) ∝ ||zk −Hkxk||2R−1
k + ||xk − x̂k|k−1||2P−1

k|k−1 (4.7)

We may then just differentiate (4.7) and set this expression to zero. This leaves us with
the vector equation (4.8).

∇xk
L = 2HkR

−1
k (Hkxk − zk) + 2P−1

k|k−1(xk − x̂k|k−1) = 0 (4.8)

Solving this equations gives us the explicit expression (4.9) for the MLE x̂k|k of xk given

Zk.

x̂k|k = (HT
kR−1

k Hk + P−1
k|k−1)(HT

kR−1
k zk + P−1

k|k−1x̂k|k−1) (4.9)

Using the matrix inversion lemma we may rewrite this as (4.10) where Kk is the kalman
gain expressed in (4.11).

10



CHAPTER 4. OPTIMAL SOLUTION FOR LINEAR SYSTEMS

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1) (4.10)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1 = Pk|k−1H
T
k S−1

k|k−1
(4.11)

We now wish to derive the state space covariance matrix for the filtered distribution
(3.1), defined by (4.12), which will describe the uncertainty of the process state estimate
x̂k|k.

Pk|k = cov(xk − x̂k|k) (4.12)

Using definitions (4.11) gives us (4.13).

Pk|k = cov(xk − (x̂k|k−1 + Kk(zk −Hkx̂k|k−1))) (4.13)

Using our measurement model from (4.1) we may write (4.13).

Pk|k = cov(xk − (x̂k|k−1 + Kk(Hkxk + vk −Hkx̂k|k−1)))

= cov((I−KkHk)(xk − x̂k|k−1)−Kkvk)

= (I−KkHk)cov(xk − x̂k|k−1)(I−KkHk)
T + Kkcov(vk)K

T
k

= (I−KkHk)Pk|k−1(I−KkHk)
T + KkRkK

T
k

(4.14)

Equation(4.14) is the definition for the posterior state space covariance matrix Pk|k.

4.1.2 MMSE derivation

Now we wish to show that the derived Kalman gain is also optimal in the Minimum
Mean Square Error (MMSE) sence. Insted of assuming Gaussian distribution for the
probability distributions in state space, we assume the derived updating equation (4.10).
To find the MMSE estimator, we which to choose x̂k|k such that the square of the Mean
Square Error (MSE), (4.15) is minimized.

MSE(x̂) =
∑
i

E{(xi − x̂i)
2} =

∑
i

Pii = Tr(P) (4.15)

We therefore wish to find Kk such that the trace of the posterior state space covariance
matrix Pk|k, defined as (4.14), equivalent to (4.16), is minimized.

Pk|k = Pk|k−1 −KkHkPk|k−1 −Pk|k−1H
T
kKT

k + KkSkK
T
k (4.16)

Differentiating the trace of (4.16) yields (4.17).

∂Tr(Pk|k)

∂Kk
= −2(HkPk|k−1)T + 2KkSk (4.17)

11



CHAPTER 4. OPTIMAL SOLUTION FOR LINEAR SYSTEMS

This yields the optimal Kalman gain (4.18), which is the same as the MLE optimal gain
(4.11).

Kk = Pk|k−1H
T
k S−1

k (4.18)

For more details on the Kalman Filter, see [1, 2].

4.2 The Rauch-Tung-Striebel smoother

In order to solve the smoothing problem under the assumptions of linear models, we
again adopt an MLE approach. We wish to maximize the distribution p(xk|ZN ),which
we assume is Gaussian, with respect to xk. This is equivalent to the maximization of the
joint smoothed distribution p(xk,xk+1|ZN ) with respect to xk. For the full expression
of p(xk,xk+1|ZN ), see equation (3.9). This in turn is equivalent to maximizing the
logarithm (4.19) of the strictly positive function p(xk,xk+1|ZN ), for xk+1 = x̂k+1|N .

L(xk,xk+1) = log
[
p(xk,xk+1|ZN )

]
= log

[
p(xk+1|xk,Zk)

]
+ log

[
p(xk|Zk)

]
− log

[
p(xk+1|Zk)

]
+ log

[
p(xk+1|ZN )

]
(4.19)

Since we are differentiating with respect to xk, the terms log
[
p(xk+1|Zk)

]
and log

[
p(xk+1|ZN )

]
in (4.19) can be ignored. The joint distribution (3.9) can therefore be seen as proportial
to a product of two Gaussian distributions.

p(xk,xk+1|ZN ) ∝ N (xk+1; Fkxk,Qk)×N (xk; x̂k|k,Pk|k) (4.20)

This in turn means that the important aspects of L(xk,xk+1) can be summarized as
(4.21).

L(xk, x̂k+1|N ) ∝ ||x̂k+1|N − Fkxk||2Q−1
k + ||xk − x̂k|k||2P−1

k|k (4.21)

We may then just differentiate (4.21) with respect to xk and set the gradient (4.22) to
zero to find the MLE.

∇xk
L = 2FkQ

−1
k (Fkxk − x̂k+1|N ) + 2P−1

k|k(xk − x̂k|k) = 0 (4.22)

Rearranging (4.22) for explicit expression of the optimal posterior MLE estimate x̂k|N
of the state leads to (4.23).

x̂k|N = (FT
kQ−1

k Fk + P−1
k|k)(F

T
kQ−1

k x̂k+1|N + P−1
k|kx̂k|k) (4.23)

Using the matrix inversion lemma we arrive at the Rauch-Tung-Striebel smoothing equa-
tion (4.24), where matrix (4.25) is the smoothing gain.

x̂k|N = x̂k|k + Ak(x̂k+1|N − Fkx̂k|k) (4.24)

12
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Ak = Pk|kF
T
k (FkPk|kF

T
k + Qk)

−1 (4.25)

The smoothed process state covariance matrix Pk|N is then calculated according to
(4.26).

Pk|N = cov(xk − x̂k|N )

= cov(xk − (x̂k|k + Ak(x̂k+1|N − Fkx̂k|k)))

= Pk|k + Ak(Pk+1|N −Pk|k+1)AT
k

(4.26)

For more details on the Rauch-Tung-Striebel smoother, see [2].
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5
Approximate solution for

nonlinear systems

T
here are a vast number of situations in engineering where filtering and smooth-
ing are needed to extract information about an observed process. But for
many of these situations, the derived linear solutions just won’t do, since the
process or the sensor is best described by a nonlinear model. In these cases

the Kalman Filter and the Rauch-Tung-Striebel smoother are no longer applicable. The
main problem is that nonlinear transformations are applied to Gaussian distributions;
transformations from state space to measurement space, or through predictions in state
space, from one point in time to another. These transformations are being made without
difficulty for linear models, but for nonlinear models we must use approximations.

Since the beginning of the 60’s, back when the first attempts were made with non-
linear kalman filters, the approximation of choice has been the Extended Kalman Filter
(EKF). In the EKF, the nonlinear function is simply linearized around the estimate of
the distribution mean. And all the sudden, the standard Kalman equations are applica-
ble again. This seems convenient, but there is an issue with stability when it comes to
extended kalman filters and smoothers [3].

The Oxford mathematician Uhlmann claims that ”it is easier to approximate a prob-
ability distribution than it is to approximate an arbitrary nonlinear function”. Instead of
approximating the nonlinear map as in EKF we may approximate the distribution by a
number of discretized units called sigma points. The sigma points are each transformed
using the nonlinear map and then reassembled to approximate the first two moments
of the transformed distribution. This approach gives increased stability and is also ca-
pable of handling higher order moments. The Unscented transform could be used for
coordinate transformation as well as for process- or measurement model transformations.

14
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5.1 The Unscented Transform

This sampling scheme, called the the Unscented Transform, was proposed by Julier and
Uhlmann [9]. The first step in this scheme is to construct an extended Gaussian distri-
bution with mean x̃k−1 and covariance P̃k−1, by adding the process- and measurement
noises as in (5.1). For information on the reduced dimensionality noise covariance matrix
Σk−1, see section 7.3.

x̃k−1 =

 x̂k−1|k−1

0

0


P̃k−1 =

 Pk−1|k−1 0 0

0 Σk−1 0

0 0 Rk


(5.1)

The sigma points are then calculated according to (5.2), where (
√

(nx + κ)P̃k−1)i means

column i of the matrix L, for which LLT = (nx + κ)P̃k−1. nx is the dimensionality of
the extended distribution (5.1), and κ is a constant parameter which gives dimensional-
independent scaling for Gaussian distributions if set to κ = 3−nx. For more information
on κ, see [8].

χ
(i)
k−1 =


x̃k−1, i = 0

x̃k−1 +

(√
(nx + κ)P̃k−1

)
i

, i = 1,...,nx

x̃k−1 −
(√

(nx + κ)P̃k−1

)
i−nx

, i = (nx + 1),...,2nx

(5.2)

Each sigma point also has an importance weight, defined in (5.3), so that the reassembled
moments are defined as (5.4) and (5.5).

W (i) =



κ

nx + κ
i = 0

1

2(nx + κ)
i = 1,...,nx

1

2(nx + κ)
i = (nx + 1),...,2nx

(5.3)

x̄ =
∑
i

W (i)χ(i) (5.4)

P̃ =
∑
i

W (i)(χ(i) − x̄)(χ(i) − x̄)T (5.5)
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The sigma points χ
(i)
k−1 can be subdivided into parts. In our case one part representing the

process state, one representing the process noise and one representing the measurement
noise, see (5.6).

χ
(i)
k−1 =

 χ
(i),x
k−1

χ
(i),Σ
k−1

χ
(i),R
k−1

 (5.6)

There is no proof that the Unscented Transform is the optimal representation of a distri-
bution given the two first moments, but arguments can be made that it is a good choice.
For more details on the Unscented Transform see [8, 9].

5.2 The prediction step

We start by sampling the posteriori distribution p(xk−1|Zk−1), as described in section 5.1,

giving sigma point-/weight pairs {χ(i)
k−1,W

(i)
k−1}

N−1
i=0 . The prediction and transformation

into measurement space are then carried out according to (5.7) and (5.8). The matrix
B is projects the reduced dimensional noise term to state space, see secion 7.3.

χ
(i),x
k|k−1 = fk−1(χ

(i),x
k−1 ,B · χ

(i),Σ
k−1 ) (5.7)

Z(i)
k|k−1 = hk(χ

(i),x
k|k−1, χ

(i),R
k−1 ) (5.8)

The first two moments of the predicted distributions in state space is then calculated as
(5.9), and the predicted distribution in measurement space is calculated as (5.10).

x̂k|k−1 =
N−1∑
i=0

W
(i)
k−1χ

(i),x
k|k−1

Pk|k−1 =
N−1∑
i=0

W
(i)
k−1(χ

(i),x
k|k−1 − x̂k|k−1)(χ

(i),x
k|k−1 − x̂k|k−1)T

(5.9)

ẑk|k−1 =
N−1∑
i=0

W
(i)
k−1Z

(i)
k|k−1

Sk|k−1 =

N−1∑
i=0

W
(i)
k−1(Z(i)

k|k−1 − ẑk|k−1)(Z(i)
k|k−1 − ẑk|k−1)T

(5.10)

The cross correlation between predicted state and measurement, which we will find useful
later, is defined as (5.11).

Pxz =

N−1∑
i=0

W
(i)
k−1(χ

(i),x
k|k−1 − x̂k|k−1)(Z(i)

k|k−1 − ẑk|k−1)T (5.11)
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5.3 Unscented Kalman Gain

Since we already derived the form (4.10) for the updating equation in section 4.1, using
the method of Maximum Likelihood Estimation, we shall assume the updating form
(4.10) for kalman filtering. Without assuming Gaussian distributions we may then just
use the method of Minimum Mean Square Error estimation to find the kalman gain for
the unscented filter. The posterior covariance matrix, denoted Pk|k, is derived in (5.12)
using the updating equation (4.10).

Pk|k = E{(xk − x̂k|k)
2}

= E{(xk − (x̂k|k−1 + Kk(zk − ẑk|k−1)))2}
= E{((xk − x̂k|k−1)−Kk(zk − ẑk|k−1))2}
= E{(xk − x̂k|k−1)2 − 2Kk(xk − x̂k|k−1)(zk − ẑk|k−1) + K2

k(zk − ẑk|k−1)2}
= E{(xk − x̂k|k−1)2} − 2KkE{(xk − x̂k|k−1)(zk − ẑk|k−1)}+ K2

kE{(zk − ẑk|k−1)2}
= Pk|k−1 − 2KkPxz + K2

kSk|k−1

(5.12)

As in section 4.1.2 we minimize the trace of the posterior covariance matrix to find the
optimal gain.

∂Tr(Pk|k)

∂Kk
= −2Pxz + 2KkSk|k−1 = 0

(5.13)

The optimal Unscented Kalman Gain is thus (5.14).

Kk = PxzS
−1
k|k−1

(5.14)

5.4 Unscented Smoothing Gain

The conceptual solution (3.9) to the smoothing problem can be written as (5.15).

p(xk,xk+1|ZN ) = p(xk|xk+1,Z
N )p(xk+1|ZN ) =

p(xk,xk+1|Zk)
p(xk+1|Zk)

p(xk+1|ZN ) (5.15)

We start by describing the joint probability distribution p(xk,xk+1|Zk).

p(xk,xk+1|Zk) = N

((
xk

xk+1

)
;

(
x̂k|k

x̂k+1|k

)
,

(
Pk|k Ck+1

CT
k+1 Pk+1|k

))
(5.16)

Ck+1 in equation (5.16) is the cross correlation as described in (5.17).
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Ck+1 = E{(xk−x̂k|k)(xk−x̂k+1|k)
T } =

N−1∑
i=0

W
(i)
k (χ

(i),x
k −x̂k|k)(χ

(i),x
k+1|k−x̂k+1|k)

T (5.17)

To compute p(xk|xk+1,Z
N ), we divide (5.16) by p(xk+1|Zk), according to (5.15), which

yields (5.18).

p(xk|xk+1,Z
N ) = N

(
xk; m

′
k+1,P

′
k+1

)
Ak = Ck+1P

−1
k+1|k

m
′
k+1 = x̂k|k + Ak(xk+1 − x̂k+1|k)

P
′
k+1 = Pk|k −AkPk+1|kA

T
k

(5.18)

The joint distribution p(xk,xk+1|ZN ) can then be expressed as (5.19).

p(xk,xk+1|ZN ) = N

((
xk

xk+1

)
; m

′′
k+1,P

′′
k+1

)

m
′′
k+1 =

(
x̂k|k + Ak(xk+1 − x̂k+1|k)

x̂k+1|N

)

P
′′
k+1 =

(
AkPk+1|NAT

k + P
′
k+1 AkPk+1|N

Pk+1|NAT
k Pk+1|N

) (5.19)

Marginalizing over xk+1 then gives the unscented smoothing equations (5.20). Note that
these are equivalent to the Rauch-Tung-Striebel smoothing equations (4.24) and (4.26),
but the smoothing gain Ak is defined according to (5.18).

p(xk|ZN ) = N
(
xk; x̂k|N ,Pk|N

)
x̂k|N = x̂k|k + Ak(x̂x+1|N − x̂k+1|k)

Pk|N = Pk|k + Ak(Pk+1|N −Pk+1|k)A
T
k

(5.20)

For more details on the Uncsented Rauch-Tung-Striebel smoother, see [3].
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6
Solution for multiple models

I
n some situations one filter is not sufficient to describe the process or measurements
with good enough accuracy. One might want to apply one process model for a
maneuvering aircraft and another when it is on straight course, for example. There
might also be scenarios when one would like to apply different measurement models.

One solution to this problem is the hybrid solution (6.1), visualized in figure 6.1. We
simply make the assumption that in each interval tk−1 < t ≤ tk the process is in a
discrete mode mk. Each mode represents one way to describe the process we observe
and also the measurements we make. For each mode we thus have one process model
and one measurement model, so that we can construct one filter and one smoother for
each mode.

xk = fk−1(xk−1,mk) + vk(mk)

zk = hk(xk,mk) + wk(mk)
(6.1)

For transition between modes, we assume a first order markov system (6.2).

P{mj
k|m

i
k−1} = πji (6.2)

This system will become a decision tree with Mk terminal nodes for M modes over k
measurement intervals. We define path ` through this tree as M`

k. The probability for
each such path can be derived as (6.3).

P{M`
k|Zk} ∝ P{zk|M`

k,Z
k−1}P{M`

k|Zk−1}
= P{zk|M`

k,Z
k−1}P{mj

k|M
`
k−1,Z

k−1}P{M`
k−1|Zk−1}

(6.3)

Under the markovian assumption, (6.2), we may rewrite the second factor in (6.3) as
(6.4).
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P{mj
k|M

`
k−1,Z

k−1} = P{mj
k|m

i
k−1,Z

k−1} = P{mj
k|m

i
k−1} = πji (6.4)

This model is refered to as a Jump Markov System (JMS). The problem with this model
is that the decision tree has exponentially growing number of terminal nodes. To handle
this exponential complexity, we may want to use a suboptimal solution to this problem.
One obvious solution is to prune the tree, which means removing paths with low likeli-
hood. Another way to go is to merge the terminal nodes. The latter is the foundation
for the Interacting Multiple Model (IMM). In Section 6.1 we will discuss filtering with
an IMM and in Section 6.2 we will discuss how we can use the same framework for
smoothing.

-
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mk−1 -

&%
'$
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'$
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Figure 6.1: Visual schematic for the assumed model, if we disregard the possibility of
multiple measurement models. The state x is a markov process described by the process
mode m. The switching between modes is a discrete markov process. The measurement zk
is assumed to be dependent only on the process state xk at the same instant of time.

6.1 IMM Filtering

6.1.1 Conceptual solution

In the IMM filter the posterior pdf is described by the mode probabilites, P{mj
k|Z

k},
and a Gaussian pdf, p(xk|mj

k,Z
k) associated with each mode at each instant of time.

This Gaussian mixture is described in equation (6.5).

p(xk|Zk) =
∑
j

p(xk|mj
k,Z

k)P{mj
k|Z

k} (6.5)
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As in the conceptual solution, Section 3.1, the mode-conditioned posterior density can
be divided into a prediction step and an updating step, using Bayes’ formula, see (6.6).

p(xk|mj
k,Z

k) =
p(zk|xk,mj

k,Z
k−1)p(xk|mj

k,Z
k−1)

p(zk|mj
k,Z

k−1)
(6.6)

The predicted pdf at time k for model mj
k is a marginalization over the process variable

xk−1, (6.7).

p(xk|mj
k,Z

k−1) =

∫
p(xk|xk−1,m

j
k,Z

k−1)p(xk−1|mj
k,Z

k−1)dxk−1 (6.7)

We know the pdf p(xk−1|mi
k−1,Z

k−1), but to calculate p(xk−1|mj
k,Z

k−1) in (6.7) we
must mix posterior densities from the prior time step, as shown in (6.8).

p(xk−1|mj
k,Z

k−1) =
∑
i

p(xk−1|mi
k−1,m

j
k,Z

k−1)P{mi
k−1|m

j
k,Z

k−1} (6.8)

The mixing probability P{mi
k−1|m

j
k,Z

k−1} can be derived using Bayes’ rule and the
markovian assumption (6.9).

P{mi
k−1|m

j
k,Z

k−1} =
P{mj

k|m
i
k−1,Z

k−1}P{mi
k−1|Zk−1}

P{mj
k|Zk−1}

(6.9)

Where the predicted mode probabilities P{mj
k|Z

k−1} can be decribed as the sum (6.10).

P{mj
k|Z

k−1} =
∑
i

P{mj
k|m

i
k−1,Z

k−1}P{mi
k−1|Zk−1} (6.10)

The posterior mode probabilities are derived using Bayes’ rule (6.11).

P{mj
k|Z

k} = P{mj
k|zk,Z

k−1} ∝ p(zk|mj
k,Z

k−1)P{mj
k|Z

k−1} (6.11)

The factor p(zk|mj
k,Z

k−1) is simply the likelihood of measurement zk given mode mj
k

which is derived by equation (6.12).

p(zk|mj
k,Z

k−1) =

∫
p(zk|xk,mj

k,Z
k−1)p(xk|mj

k,Z
k−1)dxk (6.12)

6.1.2 Algorithm

The implementation of the algorithm goes as follows: The two moments of the gaussian
mixture defined in (6.5) is calculated by (6.13) and (6.14). wik|k is the posterior mode

probability for mode i at time k, defined in (6.11).

x̂k|k =
M∑
j=1

wjk|kx̂
j
k|k (6.13)

21



CHAPTER 6. SOLUTION FOR MULTIPLE MODELS

Pk|k =
M∑
j=1

wjk|k

[
Pj
k|k + (x̂k|k − x̂jk|k)(x̂k|k − x̂jk|k)

T
]

(6.14)

The mixing probabilities µ
i|j
k−1 defined in (6.9) is calculated by (6.15), where wjk|k−1 is

the predicted mode probabilities defined in (6.10).

µ
i|j
k−1 =

πjiw
i
k−1|k−1

wjk|k−1

(6.15)

wjk|k−1 =
M∑
`=1

πj`w
`
k−1|k−1 (6.16)

The two moments of the matched gaussian (6.8) is calculated by expressions (6.17) and
(6.18). This is the data that then goes into filter j as the posterior data from time k−1,
to predict according to (6.7).

x̂
(j)
k−1|k−1 =

M∑
i=1

µ
i|j
k−1x̂

i
k−1|k−1 (6.17)

P
(j)
k−1|k−1 =

M∑
i=1

µ
i|j
k−1

[
Pi
k−1|k−1 + (x̂ik−1|k−1 − x̂

(j)
k−1|k−1)(x̂ik−1|k−1 − x̂

(j)
k−1|k−1)T

]
(6.18)

The posterior mode probabilities defined in (6.11) is calculated according to (6.19),
where Λjk is the likelihood for measurement k according to prediction made by filter j,
calculated by expression 6.20.

wjk|k =
Λjkw

j
k|k−1∑M

i=1 Λikw
i
k|k−1

(6.19)

Λjk = p(zk|mj
k,Z

k−1) (6.20)

For more details on IMM filtering see [4, 7].

6.2 IMM Smoothing

6.2.1 Conceptual solution

We wish to find p(xk|ZN ), the probability distribution of xk predicated on measurements
ZN . We naturally begin with describing p(xk|ZN ) as a Gaussian mixture (6.21).

p(xk|ZN ) =
∑
j

p(xk|mj
k,Z

N )P{mj
k|Z

N} (6.21)
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The factor p(xk|mj
k,Z

N ) is unknown, but we may marginalize over xk+1 according to
(6.22).

p(xk|mj
k,Z

N ) =

∫
p(xk,xk+1|mj

k,Z
N )dxk+1 (6.22)

The joint smoothed distribution in (6.22) can be expressed as (6.23).

p(xk,xk+1|mj
k,Z

N ) = p(xk|xk+1,m
j
k,Z

N )p(xk+1|mj
k,Z

N ) (6.23)

Measurements {zi}Ni=k+1 in P{xk|xk+1,m
i
k+1,Z

N} are redundant since we assume that
we know the full state {xk+1,m

i
k+1} at time k+1. This insight plus Bayes’ formula gives

us (6.24).

p(xk|xk+1,m
j
k,Z

N ) = p(xk|xk+1,m
j
k,Z

k) =
p(xk+1|xk,mj

k,Z
k)p(xk|mj

k,Z
k)

p(xk+1|mj
k,Z

k)
(6.24)

Using (6.23) and (6.24) we may write out the joint smoothed distribution as (6.25).

p(xk,xk+1|mj
k,Z

N ) =
p(xk+1|xk,mj

k,Z
k)p(xk|mj

k,Z
k)

p(xk+1|mj
k,Z

k)
p(xk+1|mj

k,Z
N ) (6.25)

This is essentially the same equation as (3.9). One big difference though is that in the
smoothed distribution at time k + 1, p(xk+1|mj

k,Z
N ), xk+1 is also conditioned on mj

k.
This leads us to the backward moment matching described in (6.26).

p(xk+1|mj
k,Z

N ) =
∑
i

p(xk+1|mi
k+1,m

j
k,Z

N )P{mi
k+1|m

j
k,Z

N} (6.26)

P{mi
k+1|m

j
k,Z

N} is not known, and is therefore manipulated using Bayes’ formula, ac-
cording to (6.27).

P{mi
k+1|m

j
k,Z

N} =
P{mj

k|m
i
k+1,Z

N}P{mi
k+1|ZN}

P{mj
k|ZN}

(6.27)

Measurements {zi}Ni=k+1 in P{mj
k|m

i
k+1,Z

N} are redundant since we assume that we
know mi

k+1. This insight plus Bayes’ formula leads to the expression (6.28).

P{mj
k|m

i
k+1,Z

N} = P{mj
k|m

i
k+1,Z

k} =
P{mi

k+1|m
j
k,Z

k}P{mj
k|Z

k}
P{mi

k+1|Zk}
(6.28)

To derive an expression for the smoothed mode probability P{mj
k|Z

N} we may represent
the knowledge gained by measurements {zi}Ni=k+1 by the smoothed Gaussian mixture

Mk+1|N , consisting of the mode conditioned distributions p(xk+1|mi
k+1,Z

N ), and the
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mode probabilites p(mi
k+1|ZN ). Due to this approximation and Bayes’ formula we get

(6.29).

P{mj
k|Z

N} , P{mj
k|Mk+1|N ,Z

k} =
P{Mk+1|N |m

j
k,Z

k}P{mj
k|Z

k}
P{Mk+1|N |Zk}

(6.29)

P{mi
k+1|m

j
k,Z

k} = P{mi
k+1|m

j
k} according to the first order markov model. We may

also note that the Gaussian mixture Mk is reduced to the, single mode conditioned
Gaussian Mj

k, if we know the model mj
k at time k. This leads to equation (6.30).

P{Mk+1|N |m
j
k,Z

k} =
∑
i

P{Mk+1|N |mi
k+1,m

j
k,Z

k}P{mi
k+1|m

j
k,Z

k}

,
∑
i

P{Mk+1|N |mi
k+1,m

j
k,Mk|k}P{mi

k+1|m
j
k}

=
∑
i

P{Mi
k+1|N |M

j
k|k}P{m

i
k+1|m

j
k}

(6.30)

6.2.2 Algorithm

The implementation of the algorithm goes as follows: Calculate bji = P{mj
k|m

i
k+1,Z

N}
according to (6.31) as described in (6.28).

bji =
πijµ

j
k|k∑

` πi`µ
`
k|k

(6.31)

Then calculate the mixing probabilites µ
i|j
k+1|N = P{mi

k+1|m
j
k,Z

N} according to (6.32),

following (6.27).

µ
i|j
k+1|N =

bjiw
i
k+1|N∑

` bj`w
`
k+1|N

(6.32)

The matched distribution p(xk+1|mj
k,Z

N ) for timestep k + 1 is calculated according to
(6.26), and is thus described by its two moments (6.33).

x̂
(j)
k+1|N =

∑
i

µ
i|j
k+1|N x̂ik+1|N

P
(j)
k+1|N =

∑
i

µ
i|j
k+1|N

[
Pi
k+1|N +

(
x̂ik+1|N − x̂

(j)
k+1|N

)(
x̂ik+1|N − x̂

(j)
k+1|N

)T] (6.33)

With the matched distribution we may then perform the smoothing step 6.34 for all
smoothers to arrive at distributions p(xk|mj

k,Z
N ) 1.

1See section 4.2 for a derivation
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x̂jk|N = x̂jk|k + Aj
k

(
x̂

(j)
k+1|N − x̂jk+1|k

)
Pj
k|N = Pj

k|k + Aj
k

(
P

(j)
k+1|N −Pj

k+1|k

)
Aj
k

T
(6.34)

The smoothed mode probabilites wjk|N = p(mj
k|Z

N ) are calculated according to (6.29),

following (6.35).

wjk|N =
Λjk|Nw

j
t|t∑

` Λ`k|Nw
`
t|t

(6.35)

The likelihood Λjk|N for model mj
k in (6.35) is calculated as (6.36) which is the same as

(6.30).

Λjk|N =
∑
i

πjiN
(
x̂ik+1|N ; x̂jk+1|k,P

j
k+1|k

)
(6.36)

Finally the smoothed distribution (6.21) is described by its two moments (6.37).

x̂k|N =
∑
j

wjk|N x̂jk|N

Pk|N =
∑
i

wjk|N

[
Pj
k|N +

(
x̂jk|N − x̂k|N

)(
x̂jk|N − x̂k|N

)T] (6.37)

For more details on IMM smoothing, see [4].

25



7
Process models

P
rocess models are easiest formulated as differential equations with a stochastic
component vd(t). The general form is described in (7.1), and the linear model
equivalent is (7.2). In both cases, the process noise is uncorrelated over time,
and is Gaussian distributed around zero with process noise covariance Qd(t) as

described in (7.3).

ẋ(t) = f(x(t)) + vd(t) (7.1)

ẋ(t) = Ax(t) + Bu(t) + vd(t) (7.2)

vd(t) ∼ N (0,Qd(t)) (7.3)

But in the filter equations that we have encountered in previous sections, the process is
described as a difference equation predicting the process state vector at time tk+1 = tk+T
given the process state vector at time tk. In the following section 7.1 we will reformulate
the linear process differential equation (7.2) to a difference equation such that it is
applicable for the filter equations in chapter 4. In the subsequent section 7.2 we then
do the same for the general case, so that the result is even applicable for the nonlinear
filtering equations in chapter 5.

7.1 Discretization of linear differential equations

Since we assume that we know x at time tk, then x(tk) is our initial condition and we
wish to solve equation (7.2) for time variable tk + τ over the interval τ ∈ [0, T ] to arrive
at an explicit expression for xk+1 = x(tk + T ).

ẋ(tk + τ) = Ax(tk + τ) + Bu(tk + τ) + vd(tk + τ) (7.4)
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We then multiply e−Aτ into (7.4) which, as we will see, will make things easier.

e−Aτ ẋ(tk + τ) = e−AτAx(tk + τ) + e−AτBu(tk + τ) + e−Aτvd(tk + τ) (7.5)

We then subtract e−AτAx(tk + τ) from (7.5) and use the fact that:

d

dτ

(
e−Aτx(tk + τ)

)
= e−Aτ ẋ(tk + τ)− e−AτAx(tk + τ)

, and we get (7.6).

d

dτ
(e−Aτx(tk + τ)) = e−AτBu(tk + τ) + e−Aτvd(tk + τ) (7.6)

To get x(tk + T ) we then integrate over the interval τ ∈ [0, T ].

∫ T

0

d

dτ
(e−Aτx(tk + τ))dτ =

∫ T

0
e−AτBu(tk + τ)dτ +

∫ T

0
e−Aτvd(tk + τ)dτ (7.7)

e−ATx(tk + T )− x(tk) =

∫ T

0
e−AτBu(tk + τ)dτ +

∫ T

0
e−Aτvd(tk + τ)dτ (7.8)

We now have an explicit expression (7.9) for x(tk + T ), albeit with some rather compli-
cated terms still.

x(tk + T ) = eATx(tk) +

∫ T

0
eA(T−τ)Bu(tk + τ)dτ +

∫ T

0
eA(T−τ)vd(tk + τ)dτ (7.9)

We make the approximation that the control input u(tk) and the noise term v(tk) are
constant over the interval. We may do this if the interval is short enough and if they
are fairly constant over the time interval. For convenience, we also make the change of
variables ν = T − τ , after which may write (7.10)

x(tk + T ) ≈ eATx(tk) +

∫ T

0
eAνdνBu(tk) +

∫ T

0
eAνdνv(tk) (7.10)

We then simply use the definition for the exponential function and the assumption that
the matrix A is nilpotent, which means that Aq = 0 for some positive integer q. We
may then write (7.11) and thus arrive at the solution (7.12).

eAT =

q−1∑
i=0

Ai

i!
T i (7.11)

x(tk + T ) = F(T )x(tk) + G(T )Bu(tk) + v(tk,T ) (7.12)
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F(T ) =
∑q−1

i=0
Ai

(i+1)!T
i+1

G(T ) =
∑q−1

i=0
Ai

i! T
i

(7.13)

As can be seen in equation (7.12), the discrete process noise term v(tk,T ) has a depen-
dence on both t and T , as described in (7.14).

v(tk,T ) ∼ N (0,Q(tk,T )) (7.14)

The discrete process noise covariance matrix Q(tk,T ) is derived in (7.15).

Q(tk,T ) = E{[x(tk + T )− x̂(tk + T )] [x(tk + T )− x̂(tk + T )]T }

= E{
[∫ T

0
eAνdνvd(tk)

] [∫ T

0
eAνdνvd(tk)

]T
}

=

∫ T

0
eAνdνE{vd(tk)vd(tk)T }

∫ T

0
eA

T νdν

(7.15)

Thus Q(tk,T ) is calculated according to (7.16), where Qd(tk) is defined in (7.3).

Q(tk,T ) = G(T )Qd(tk)G(T )T (7.16)

7.2 Discretized linearization

To make use of the derivations in section 7.1 we want to rewrite (7.1) so that it looks
something like (7.2). What we do is to use the second order taylor expansion for f(x) at
x̂(tk) and rearranging the terms.

ẋ ≈ f(x̂(t)) +∇f(x̂(t))(x(t)− x̂(t)) + vd(t)

= ∇f(x̂(t))x(t) + (f(x̂(t))−∇f(x̂(t))x̂(t)) + vd(t)
(7.17)

According to the derivation in 7.1, we may express the estimate x̂(tk + T ) as (7.18).

x̂(tk + T ) ≈ F(x̂(tk), T )x̂(tk) + G (x̂(tk), T )(f(x̂(tk))−∇f(x̂(tk)) x̂(tk)) (7.18)

F(x̂(tk), T ) = e∇f(x̂(tk))T (7.19)

G(x̂(tk), T ) =

∫ T

0
e∇f(x̂(tk))νdν (7.20)

G(x̂(tk), T ) may then be expressed as (7.21).
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G(x̂(tk), T ) = e∇f(x̂(t))ν∇f(x̂(t))−1

∣∣∣∣T
0

= e∇f(x̂(t))T∇f(x̂(t))−1 −∇f(x̂(t))−1 (7.21)

Using some algebra in (7.22) we then arrive at the simpler expression (7.23).

x̂(tk + T ) ≈ e∇f(x̂(tk))T x̂(tk)− e∇f(x̂(tk))T x̂(tk) + x̂(tk)+

+
(
e∇f(x̂(tk))T∇f(x̂(tk))

−1 −∇f(x̂(tk))
−1
)

f(x̂(t))

= x̂(tk) +
(
e∇f(x̂(tk))T∇f(x̂(tk))

−1 −∇f(x̂(tk))
−1
)

f(x̂(tk))

(7.22)

x̂(tk + T ) ≈ x̂(t) +

∫ T

0
e∇f(x̂(t))Tdνf(x̂(t)) (7.23)

We then drop the approximation notation and state (7.24) where G(x̂(tk), T ) is described
as the sum (7.25), if the jacobian ∇f(x̂(tk)) is nilpotent.

x(tk + T ) = x(t) + G(x̂(tk), T )f(x̂(tk)) + v(tk) (7.24)

G(x̂(tk), T ) =

q−1∑
i=0

(∇f(x̂(tk)))
i T i+1

(i+ 1)!
(7.25)

The predicted mean value at time tk+1 = tk + T can thus be expressed as (7.26).

x̂(tk + T ) = x̂(tk) +

(
q−1∑
i=0

(∇f(x̂(tk)))
i T i+1

(i+ 1)!

)
f(x̂(tk)) (7.26)

The noise term is basically no different from (7.14), except that we have to add the
dependence on x̂(tk) due to possible nonlinearity.

v(x̂(tk), tk, T ) ∼ N (0,Q(x̂(tk), tk,T )) (7.27)

Q(x̂(tk), tk, T ) = G(x̂(tk), T )Qd(tk)G(x̂(tk), T )T (7.28)

See [5] for more details on state space model discretization.

7.3 Degrees of freedom for process noise

Usually, the noise term vd(tk) is only non-zero for the highest order variables in the
process state. Thus, we can describe the noise with the lowerdimensional stochastic
variable sd(tk) described by (7.29).

sd(tk) ∼ N (0,Σ(tk)) (7.29)
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To project the lowerdimensional noise into the state space, we simply use a projection
matrix B, and get the relations (7.30) and (7.31).

vd(tk) = B · sd(tk) (7.30)

Qd(tk) = BΣ(tk)B
T (7.31)
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8
Evaluation

T
he aim of this study is to be able to estimate the state of the process that we
measure with as good accuracy as possible. Since tracking for air surveillence
radar is the application of this study, we will use aircraft trajectories as eval-
uation data. More precisely, we use six benchmark scenarios among which the

classes large commercial aircraft, small agile commercial aircraft, medium bomber and
fighter jet are represented. Measurements are then simlulated by Monte Carlo sampling
from a given measurement model, which is also used in all the filters and smoothers.
The assumption being that we know the statistical properties of the sensor noise. To
eliminate dependence on the direction of the aircraft, and radial its distance in relation
to the radar sensor, which is an issue for radial measurements, we simply use a carte-
sian measurement model with gaussian distributed noise. More about the benchmark
scenarios and the measurement model is given in section 8.1.

We define the absolute error, e
(i)
k at time step k for monte carlo simulation i, out of

N simulations, as (8.1). The variable xk in this case meaning either position, velocity or
acceleration in cartesian coordinates for the aircraft at the time for measurement k, and

x̂
(i)
t being the tracker estimate at the same instant of time.

e
(i)
k = |x̂(i)

k − xk| (8.1)

The measure that we will focus on in the evaluation part is the Root Mean Square Error
(RMSE), at the time for measurement k, defined as (8.2).

RMSE(x̂k) =

√√√√ 1

N

N∑
i=1

(e
(i)
k )2 (8.2)
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8.1 Evaluation data

The data set used for evaluation is synthetic and was propsed by Blair and Watson
[10]. The data constitutes the six benchmark scenarios 8.1(a)-8.1(f) emulating aircraft
maneuvers, each scenario representing a specific kind of aircraft. Scenario one represents
the class large commercial aircraft, scenario two represents agile commercial aircraft,
scenario three and four represents medium bomber and scenario five and six fighter jet.
The acceleration in tangential and normal directions for all six scenarios are graphically
represented in figures 8.2(a)-8.2(f). The benchmark scenarios are sampled with sampling
interval:

T = tk − tk−1 = 1.0(s)

which generates the discrete process states:

XN = x1,x2, ...,xk, ...,xN

The measurements
ZN = z1, z2, ..., zk, ..., zN

are then generated by monte carlo simulation using a cartesian measurement model with

H =

(
1 0 0 0 0 0

0 1 0 0 0 0

)
,

and gaussian noise with covariance

R =

(
σ2
x 0

0 σ2
y

)
,

where σx = σy = 100(m). The trackers are evaluated over 100 monte carlo simulations
for each benchmark scenario.

8.2 Process model selection

The mathematical deitals for the evaluated process models are presented in Appendix
A. In words, the process models are summarized:

CA Linear model, assuming constant acceleration and gaussian distributed noise in
[Jx, Jy]

T = [
...
x ,

...
y ]T . Advantagous for tracking of accelerating aircraft.

CV Linear model, assuming constant velocity and gaussian distributed noise in [ẍ, ÿ]T .
Advantagous for tracking of aircraft on straight course.

CAL Nonlinear model, assuming constant acceleration and gaussian distributed noise
in [Jt, Jn]T = [ȧt, ȧn]T . Advantagous for tracking of aircraft that is accelerating in
tangential and/or normal direction.
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CT Nonlinear model, assuming constant tangential velocity, constant angular velocity

and gaussian distributed noise in
[
at, Ω̇

]T
=
[
v̇, φ̈
]T

. Advantagous for tracking of

aircraft during constant turn.

To evaluate the advantage of combining process models using the IMM, we have
selected three model combinations for evaluation:

CV+CV+CA One CV model, with small noise covariance, describes the motion during
straight course. Another CV model, with larger noise covariance, describes the
motion during moderate turns. The CA model describes the motion during swift
turns and accelerations.

CV+CV+CAL One CV model, with small noise covariance, describes the motion
during straight course. Another CV model, with larger noise covariance, describes
the motion during moderate turns. The CAL model describes the motion during
swift turns and tangential acceleration.

CV+CT+CAL The CV model describes the motion during straight course. The CT
model describes the motion during moderate turns. The CA model describes the
motion during swift turns and tangential accelerations.

8.3 Process parameter estimation

One problem that we face while comparing the different process models is parameter
setting. All the trackers each have one or a set of process models, and possibly even
a markov switching model. Depending on the kind of tracker, there are a number of
parameters to be set, typically process noise and markov switching probabilities. The
problem is thus to compare one tracker with another in an objective manner without
exploring the entire parameter space. The solution used here is to optimize the paramter
setting for each tracker with respect to the mean of the root mean square error in accel-
eration for the smoothed estimates over all six benchmark scenarios. In order to search
the parameter space for an optimal setting, we use evolutionary optimization with a
binary gene representation, mutations, crossover, tournament selection and elitism. The
fitness being the invers of the acceleration mean of the root mean square error for the
smoothed acceleration estimates.
For more information on evolutionary optimization, see [11].

8.4 Evaluated trackers

Each tracker have one, or a set of filters. The filters are either of the type KF, if the
filter process model is linear, or UKF, if the filter process model is nonlinear. The
corresponding smoothers are of the type RTS for linear process models and URTS for
nonlinear models. All the filters contain the same measurement model, the same one
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which was used for monte carlo simulation, see Section 8.1. The evaluated trackers are
described below. See appendix A for information on the evaluated process models.

CV KF/RTS - constant velocity process model.

σ̄ẍ = σ̄ÿ = 9.985(m/s2)

CA KF/RTS - constant acceleration process model.

σ̄Jx = σ̄Jy = 4.15(m/s3)

CAL UKF/URTS - constant acceleration local coordinates process model.

σ̄Jt = 2.83(m/s3)

σ̄Jn = 5.16(m/s3)

CV+CV+CA IMM filter/smoother:

1. KF/RTS - constant velocity process model.

σ̄ẍ = σ̄ÿ = 0.873(m/s2)

2. KF/RTS - constant velocity process model.

σ̄ẍ = σ̄ÿ = 5.37(m/s2)

3. KF/RTS - constant acceleration process model.

σ̄Jx = σ̄Jy = 13.39(m/s3)

Mode switching probabilities:

π =

 0.94850 0.07515 0.00010

0.01124 0.89514 0.00205

0.04026 0.02971 0.99785


CV+CV+CAL IMM filter/smoother:

1. KF/RTS - constant velocity process model.

σ̄ẍ = σ̄ÿ = 0.718(m/s2)

2. KF/RTS - constant velocity process model.

σ̄ẍ = σ̄ÿ = 4.975(m/s2)
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3. UKF/URTS - constant acceleration local coordinates process model.

σ̄Jt = 7.000(m/s3)

σ̄Jn = 9.981(m/s3)

Mode switching probabilities:

π =

 0.98690 0.00186 0.00108

0.01153 0.97430 0.00059

0.00157 0.02385 0.99833


CV+CT+CAL IMM filter/smoother:

1. KF/RTS - constant velocity process model.

σ̄ẍ = σ̄ÿ = 2.143(m/s2)

2. UKF/URTS - coordinated turn process model.

σ̄at = 6.35016(m/s2)

σ̄Ω̇ = 0.059(rad/s2)

3. UKF/URTS - constant acceleration local coordinates process model.

σ̄Jt = 5.619(m/s3)

σ̄Jn = 8.906(m/s3)

Mode switching probabilities:

π =

 0.91713 0.00224 0.04357

0.00568 0.98129 0.02163

0.07717 0.01654 0.93477


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(a) Benchmark scenario 1: Large aircraft
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mercial aircraft
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(c) Benchmark scenario 3: Medium
bomber
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(d) Benchmark scenario 4: Medium
bomber
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(e) Benchmark scenario 5: Fighter jet
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(f) Benchmark scenario 6: Fighter jet

Figure 8.1: Benchmark scenarios
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(a) Benchmark scenario 1: Large aircraft
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(b) Benchmark scenario 2: Agile commercial air-
craft
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(c) Benchmark scenario 3: Medium bomber
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(d) Benchmark scenario 4: Medium bomber
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(e) Benchmark scenario 5: Fighter jet
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(f) Benchmark scenario 6: Fighter jet

Figure 8.2: Acceleration for benchmark scenarios
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9
Results

T
he presented results constitutes of three tables 9.1, 9.2 and 9.3, and figure 9.1,
as well as the figures in appendix B. Tables 9.1, 9.2 and 9.3 contain the mean
and standard deviation for the position, velocity and acceleration root mean
square error for all the evaluated filters and smoothers over each benchmark

scenario separately and aggregated. Figure 9.1 contains relative computational time
for the evaluated algorithms. Appendix B contains root mean square error cumulative
frequency distributions for various combinations of filters and smoothers. Before con-
structing the frequency distributions, all measurement times tk for the six benchmark
scenarios are divided into the three sets:

Straight course t` ∈ {tk : an(tk) < 0.2g}

Turn t` ∈ {tk : an(tk) > 0.2g}

Sharp turn t` ∈ {tk : an(tk) > 5g}

The RMSE(x̂`) cumulative frequency distribution for the filters and smoothers can thus
be studied separately for those three cases.
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Figure 9.1: Computational time for multiple model filtering and smoothing for linear
models (KF/RTS) and nonlinear models (UKF/URTS). Note: The time axis is logarithmic,
and computational time for coordinate transformations in the nonlinear case is included.
The computational time for a single UKF is a factor ≈ 10 longer than for KF.
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10
Conclusion

I
n section 10.2, ”Performance and parameter settings”, we will discuss the parameter
setting that resulted from the evolutionary optimization and also the results from
evaluation. Relevant data being the figures in Appendix B and the tables in Chapter
9. The focus will be to determine how the use of different process models, linear and

nonlinear, separate and combined, affect the process state estimation error. In section
10.3, ”Future work”, we will discuss what additional work that may be done. First,
though, we examine figure 9.1 and discuss the computational cost for the evaluated
algorithms.

10.1 Computational complexity

From figure 9.1 we can conclude that the computational time for URTS and RTS are
almost equivalent. Since they are essentially the same algorithm, once the smoothing
gain has been calculated, this result is expected. In the uscented filter we construct,
in this case, 21 sigma points. We then perform a coordinate transformation on these
sigma points before filtering, and then transform the result back to linear coordinates.
The additional factor ≈ 10 in computational time, compared to a linear filter, therefor
seems reasoneble. The computational time for multiple filters is obviously linear if we
disregard the IMM calculations, which supposedly is dominated by a component that
has a quadratic complexity. This also corresponds to the results that we can observe.
What we also may notice is that this component is more dominant in the smoothing step,
which for fewer multiple models takes less time than the filtering step, but increases its
computational time relative the filtering step as the number of multiple models grow
larger.
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CHAPTER 10. CONCLUSION

10.2 Performance and parameter settings

Comparing the separate CV and CA filters/smoothers there is not one right answer to
the question whether the process is best described by the assumption of constant veloc-
ity or constant acceleration. It seems that the CA process model is superior to CV in
the case of position estimation, with a lower RMSE mean and standard deviation for
all benchmark scenarios ,for both filtered and smoothed position estimates, see table 9.1
and figures B.1(a)-B.1(c). In the case of filtered velocity estimates, CV generally has a
lower RMSE mean but a higher standard deviation. As the figures show, this is due to
the fact that CV is clearly better designed for straight course, but cannot handle turns
very well. For smoothed estimates, though, it seems as CA again has a lower RMSE
mean and standard deviation than CV , see table 9.1 and figures B.2(a)-B.2(c). For
the filtered acceleration estimates, CV again yields a lower RMSE mean but a slightly
higher standard deviation than CA. For filtered acceleration estimates the RMSE mean
and standard deviations for the two process models are almost equal, see table 9.3 and
figures B.3(a)-B.3(c). In conclusion, we may state that the CA process model benefits
from smoothing in a greater extent than does CV .

Looking at the separate CA and CAL filters/smoothers we can see the following:√
σ̄2
Jt

+ σ̄2
Jn

= 5.8823,
√
σ̄2
Jx

+ σ̄2
Jy

= 5.8648

The optimal total acceleration variance is essentially the same for the two process mod-
els, but the nonlinear model, since it has separate variances for the tangential and normal
directions may adapt itself better. This is confirmed by tables 9.1, 9.2 and 9.3 where the
mean RMSE is lower for CAL than it is for CA on all the benchmark scenarios for both
filtering and smoothing. In figures B.4(a)-B.6(c) it seems that the two process models
yield roughly equally good results for straight course, but for turns the CAL model is
slightly but consistently better for both filtering and smoothing.

Comparing the separate CV and CA process models with the markov system process
model CV + CV + CA, one may first note that the optimal process parameters differ.
In the markov system process model, the CV process noise standard deviation is lower,
and thus handles straight course better. The CA process noise standard deviation is
higher and thus handles turns better than does the separate CA model. As expected
each model is allowed to be optmized for its respective purpose when they are combined
in a markov system. Looking at the results in Tables 9.1, 9.2 and 9.3, we also see that
this adaptability almost consistently yields lower RMSE mean for both filtering and
smoothing. The only exception being filtered acceleration estimates where separate CV
process model still yields the lowest RMSE mean. For filtered estimates, the separate
CAL process model still consistently yields the lowest RMSE standard deviation. For
smoothed estimates, though, the markov system process model is superior to the sepa-
rate process models in close to every aspect, see figures B.13(a)-B.18(c).
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Comparing the optimal parameters for the combined process models CV + CV + CAL
and CV + CV + CA, we see that the use of the CAL process model lower the pro-
cess noise optimal standard deviation for the CV process models. The adaptability of
the CAL model allows the CV models to improve straight course performance further
without affecting performance during turns. Trading one of the CV process models for
a CT model as in the CV + CT + CAL markov system process model, the single CV
model left will have to play an intermediate role compared to the dual CV models in
the CV + CV + CAL model. This results in higher RMSE on straight course, but the
additional CT model seems to lower the RMSE during maneuvers, especially for filtered
position- and velocity estimates, and may thus be seen as a complement to the CAL
model, see figures B.13(a)- B.15(c). The results 9.1, 9.2 and 9.3 consistently show that
CV +CV +CAL yields the lowest RMSE mean while CV +CT +CAL yields the lowest
RMSE standard deviation, except for smoothed acceleration estimates.

In conclusion we may state that the use of multiple process models yields good results,
especially in the case of smoothing. Also the use of nonlinear models generally have
a positive effect on state estimation accuracy, if the models are choosen wisely. One
additional conclusion we may draw from these results is that smoothing is necessary
for acceptable accuracy in state estimation for purposes such as object classification on
kinematic basis, at least for maneuvering aircrafts under the studied circumstances.

The comparison between filtering and smoothing for multiple models is not easy to
make, since it turns out that the optimal process model parameter settings may differ
for the two cases. In this report the we wanted to compare performance for filtering and
smoothing for identical parameter settings in the two cases, and the choice to optimize
on smoothed estimates was made in the belief that this would give a better process
identification. It turns out that optmization on filtered estimates would most likely not
have resulted in any different results for the parameters of the individual models in a
multiple model filter/smoother. But the optimized transition probabilities seem to put
a heavier emphesis on models with a higher process state vector dimensionality, such as
CA and CAL, when optimized on smoothed estimates. These process models seem to
give more room for improvement while smoothing but decreases straight course stability
while filtering. There is thus room for improving the filtering performance in the case of
multiple models.

10.3 Future work

Further work may involve studies on the effects of measurement uncertainty and sam-
pling frequency on the accuracy of the state estimates. An extension of the process
models into three spatial dimensions, and the impact this will have on the results is
also an interesting extension. Also the effect of nonlinear measurement models involving
radial velocity, due to doppler measurements, may be studied. Futher work within the
area of markov system process models may be to evaluate the results of additional pro-
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cess models, such as the combination CV + CV + CT + CAL. Does additional process
models come with a cost additional to heavier computations?

A proposed smoothing extension to the Switch-Time Conditioned IMM (STC-IMM)
filter proposed by D. Svensson and L. Svensson [7] has been partially evaluated, but
without promising results so far. This is an especially interesting topic for future work.
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A
Application specific process

models

A.1 Constant Acceleration (CA)

x =
(
x y ẋ ẏ ẍ ÿ

)T
(A.1)

P =


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xẍ σ2

xÿ
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ẍy σ2
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
(A.2)

f(x) =
(
ẋ ẏ ẍ ÿ 0 0

)T
(A.3)

F =



1 0 T 0 T 2

2 0

0 1 0 T 0 T 2
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0 0 0 1 0 T

0 0 0 0 1 0
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(A.4)

49



APPENDIX A. APPLICATION SPECIFIC PROCESS MODELS

G =


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(A.5)
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Q =



σ̄2
Jx
T 6

36 0
σ̄2
Jx
T 5

12 0
σ̄2
Jx
T 4

6 0

0
σ̄2
Jy
T 6

36 0
σ̄2
Jy
T 5

12 0
σ̄2
Jy
T 4

6
σ̄2
Jx
T 5

12 0
σ̄2
Jx
T 4

4 0
σ̄2
Jx
T 3

2 0

0
σ̄2
Jy
T 5

12 0
σ̄2
Jy
T 4

4 0
σ̄2
Jy
T 3

2
σ̄2
Jx
T 4

6 0
σ̄2
Jx
T 3

2 0 σ̄2
Jx
T 2 0

0
σ̄2
Jy
T 4

6 0
σ̄2
Jy
T 3

2 0 σ̄2
Jy
T 2


(A.8)

A.2 Constant Velocity (CV)

x =
(
x y ẋ ẏ 0 0

)T
(A.9)

P =


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(A.10)
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f(x) =
(
ẋ ẏ 0 0 0 0

)T
(A.11)

F =
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Σ =
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(A.14)
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Q =
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ẍT

3

2 0 σ̄2
ẍT
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A.3 Contant Acceleration Local Coordinates (CAL)

x =
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atan2(ẏ, ẋ)
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(A.18)

f(x) =
(
v cos(φ) v sin(φ) at

an
v 0 0

)T
(A.19)
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Σ =
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(A.22)
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B =
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The noise covariance matrix Q was too large to fit on one paper, so I leave the
computation of Q as an exercise. Have fun!

A.4 Coordinated Turn (CT)
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f(x) =
(
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)T
(A.26)
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Figure B.1: Position estimation RMSE cumulative frequency distributions for CV and CA
filters and smoothers
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Figure B.2: Velocity estimation RMSE cumulative frequency distributions for CV and CA
filters and smoothers
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Figure B.3: Acceleration estimation RMSE cumulative frequency distributions for CV and
CA filters and smoothers
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Figure B.4: Position estimation RMSE cumulative frequency distributions for CA and
CAL filters and smoothers

60



APPENDIX B. FIGURES

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE Velocity (m/s)

Cu
m

ula
tiv

e 
Fr

eq
ue

nc
y

 

 

CA filter

CA smoother

CAL filter

CAL smoother

(a) an < 0.2g

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE Velocity (m/s)

Cu
m

ula
tiv

e 
Fr

eq
ue

nc
y

 

 

CA filter

CA smoother

CAL filter

CAL smoother

(b) an > 0.2g

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE Velocity (m/s)

Cu
m

ula
tiv

e 
Fr

eq
ue

nc
y

 

 

CA filter

CA smoother

CAL filter

CAL smoother

(c) an > 5g

Figure B.5: Velocity estimation RMSE cumulative frequency distributions for CA and
CAL filters and smoothers
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Figure B.6: Acceleration estimation RMSE cumulative frequency distributions for CA and
CAL filters and smoothers

62



APPENDIX B. FIGURES

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE Position (m)

Cu
m

ula
tiv

e 
Fr

eq
ue

nc
y

 

 

CV filter

CA filter

CV+CV+CA filter

(a) an < 0.2g

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE Position (m)

Cu
m

ula
tiv

e 
Fr

eq
ue

nc
y

 

 

CV filter

CA filter

CV+CV+CA filter

(b) an > 0.2g

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE Position (m)

Cu
m

ula
tiv

e 
Fr

eq
ue

nc
y

 

 

CV filter

CA filter

CV+CV+CA filter

(c) an > 5g

Figure B.7: Position estimation RMSE cumulative frequency distributions for CV, CA
and CV+CV+CA filters
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Figure B.8: Position estimation RMSE cumulative frequency distributions for CV, CA
and CV+CV+CA smoothers
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Figure B.9: Velocity estimation RMSE cumulative frequency distributions for CV, CA
and CV+CV+CA filters
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Figure B.10: Velocity estimation RMSE cumulative frequency distributions for CV, CA
and CV+CV+CA smoothers
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Figure B.11: Acceleration estimation RMSE cumulative frequency distributions for CV,
CA and CV+CV+CA filters
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Figure B.12: Acceleration estimation RMSE cumulative frequency distributions for CV,
CAL and CV+CV+CA smoothers
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Figure B.13: Position estimation RMSE cumulative frequency distributions
forCV+CV+CA, CV+CV+CAL and CV+CT+CAL filters
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Figure B.14: Position estimation RMSE cumulative frequency distributions
forCV+CV+CA, CV+CV+CAL and CV+CT+CAL smoothers
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Figure B.15: Velocity estimation RMSE cumulative frequency distributions
forCV+CV+CA, CV+CV+CAL and CV+CT+CAL filters
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Figure B.16: Velocity estimation RMSE cumulative frequency distributions
forCV+CV+CA, CV+CV+CAL and CV+CT+CAL smoothers
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Figure B.17: Acceleration estimation RMSE cumulative frequency distributions for
CV+CV+CA, CV+CV+CAL and CV+CT+CAL filters
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Figure B.18: Acceleration estimation RMSE cumulative frequency distributions for
CV+CV+CA, CV+CV+CAL and CV+CT+CAL smoothers
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