
Comparative Analysis of Blockchain
Technologies for Data Ownership
and Smart Contract Negotiation
Master’s Thesis in Computer Systems and Networks

VAIOS TAXIARCHIS
MALAMA KASANDA

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

Comparative Analysis of Blockchain
Technologies for Data Ownership
and Smart Contract Negotiation

VAIOS TAXIARCHIS
MALAMA KASANDA

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

“Comparative Analysis of Blockchain Technologies for Data Ownership and Smart
Contract Negotiation”

VAIOS TAXIARCHIS
MALAMA KASANDA

© VAIOS TAXIARCHIS, 2019.
© MALAMA KASANDA, 2019.

Supervisor: Gerardo Schneider, Computer Science and Engineering
Examiner: Carl-Johan Seger, Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Abstract
Blockchain technologies have gained significant popularity in the recent past. They
are distributed ledgers that record all the transactions on the network and allows
parties who do not trust each other to transact. The parties collaborate in its main-
tenance. The Blockchain’s distributed nature connotes multiple ethical and privacy
concerns, such as unauthorized access and control of decentralized applications. In
this thesis, we first survey the state of the art, focusing on a comparative analysis of
public and private implementations of distributed ledgers. Additionally, we present
a proof of concept (PoC) implementation on the access control to certain parts of
smart contracts as well as investigate the possibility of negotiating the terms of
a smart contract. We make use of the commercial real estate leasing operations
as a case study. We conduct a comprehensive evaluation of our PoC. This evalu-
ation demonstrates a trade-off in the choice of blockchain technology for building
distributed applications. Drawing from the process flow of paper based contract
negotiations, we design a library mechanism that can be used to negotiate contract
terms in a bilateral fashion.

Keywords: blockchain, smart contract, access control, commercial real estate, Ethereum,
Hyperledger Fabric

v

Acknowledgements
We would like to express our undying gratitude to our supervisor Professor Gerardo
Schneider under whose guidance this work came to fruition. Furthermore, we would
love to extend a vote of thanks to our examiner Professor Carl-Johan Seger whose
constructive feedback went a long way during the course of our work.

Vaios Taxiarchis and Malama Kasanda, Gothenburg, 2019

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Limitations . 4
1.4 Methodology . 4
1.5 Outline . 5

2 Theoretical Background 7
2.1 Digital Cryptography . 7

2.1.1 Cryptographic Hash Functions 8
2.1.2 Symmetric-key Cryptography 9
2.1.3 Public-key Cryptography . 10

2.2 Blockchain Technology . 11
2.2.1 Public Blockchain . 12

2.2.1.1 Bitcoin: A Peer-to-Peer Electronic Cash System . . . 13
2.2.2 Private Blockchain . 15
2.2.3 Smart Contracts . 16

2.3 Use Case: Commercial Real Estate 17
2.4 Role-Based Access Control . 18
2.5 Related Work . 19

3 Comparative Analysis 21
3.1 Ethereum . 21

3.1.1 Ethereum Virtual Machine . 21
3.1.2 Ether and Gas . 22
3.1.3 Accounts, Transactions and Messages 23

3.1.3.1 Accounts . 23
3.1.3.2 Transactions . 23
3.1.3.3 Messages . 23

3.1.4 Consensus Algorithm (Mining) 24
3.1.5 Smart Contracts Deployment 25

3.2 Hyperledger Fabric . 26
3.2.1 Transaction Processing . 27

ix

Contents

3.2.1.1 Endorsement Policies 28
3.2.1.2 Consensus Algorithm 28

3.2.2 Membership Services and Identity Management 29
3.3 Comparison . 29

3.3.1 Similarities . 29
3.3.2 Differences . 30

3.3.2.1 Network operation 30
3.3.2.2 Consensus algorithm 31
3.3.2.3 Smart contracts . 31
3.3.2.4 System currency . 32

3.3.3 Conclusion . 32

4 Implementation 33
4.1 Design and Specification . 33

4.1.1 System Description . 34
4.1.2 Design of the Smart Contract 35
4.1.3 Design of the Negotiation Mechanism 37
4.1.4 Role-based Access Control Model 38

4.2 Hyperledger Fabric Implementation 39
4.2.1 System Setup . 40
4.2.2 Transaction Processing . 41

4.2.2.1 Access Restriction 42
4.2.3 Negotiation Mechanism . 43

4.3 Ethereum Implementation . 43
4.3.1 System setup . 44

4.3.1.1 Ethereum Node . 44
4.3.1.2 Remix Web Browser IDE 44

4.3.2 Building the Smart Contract 45
4.3.2.1 State Variables . 45
4.3.2.2 Functions . 45
4.3.2.3 Events . 46
4.3.2.4 Access Restriction (Modifiers) 47
4.3.2.5 Helper Functions . 48

4.3.3 Negotiation Mechanism . 49
4.3.3.1 Libraries in Solidity 49
4.3.3.2 Library Implementation 49

4.3.4 Wallet Recovery . 50

5 Evaluation 53
5.1 Evaluation Criteria . 53
5.2 Descriptive Evaluation . 54

5.2.1 Leasing Operation . 54
5.2.2 RBAC Mechanism . 57
5.2.3 Negotiation Library . 60

5.2.3.1 Wallet Recovery . 61
5.3 Ethereum gas consumption . 62

x

Contents

6 Conclusion 65
6.1 Discussion . 65
6.2 Future Work . 66

Bibliography 69

A Appendix A I

B Appendix B IX

xi

Contents

xii

List of Figures

2.1 Symmetric-key cryptography (single secret key). 9
2.2 Public-key cryptography (private and public key). 10
2.3 Blockchain as a linked list data structure. 11
2.4 How digital assets are transferred on the Bitcoin blockchain. 13
2.5 How Bitcoin solves the double spending problem. 14
2.6 Bank system vs. public blockchain vs. private blockchain. 15
2.7 Creation and execution of a smart contract in steps. 16

3.1 Ethereum transaction and gas consumption. 24
3.2 Ethereum smart contracts deployment process. 25
3.3 Transaction processing in Hyperledger Fabric. 27

4.1 The deployment and the signing of the smart contract. 35
4.2 The payment process and the transfer of digital money. 35
4.3 The termination of the agreement by the landlord. 36
4.4 The smart contract negotiation process initiated by the tenant. 37
4.5 Simplified CRE business network model in Hyperledger. 40
4.6 Interaction between the smart contract and the library. 50
4.7 Tenant links a new wallet using the private recovery key. 51

5.1 Smart contract deployment on Ethereum blokchain. 55
5.2 Negotiation library deployment on Ethereum blokchain. 55
5.3 Deployment of the business network to Hyperledger Fabric. 56
5.4 Creation of two network participants on Hyperledger Fabric. 56
5.5 The potential tenant reads the terms and signs the contract. 58
5.6 A non-authorized user attempts to sign the smart contract. 58
5.7 Participant identities issued by the administrator. 59
5.8 Tenant attempts to access a contract assigned to another tenant. . . . 59
5.9 Terms negotiation between the landlord and potential tenant. 60
5.10 Terms negotiation transaction in Hyperledger Fabric. 61
5.11 Landlord links a new wallet to the smart contract. 62
5.12 Ethereum price in relation to USD and Bitcoin [47]. 63

xiii

List of Figures

xiv

List of Tables

3.1 Differences between Ethereum and Hyperledger Fabric. 30

4.1 Smart contract basic operations for landlord and tenant. 36
4.2 Smart contract functions used for negotiations of the terms. 37
4.3 Access control list for the smart contract basic operations. 38
4.4 Access control list for the terms negotiation functions. 39

5.1 Evaluation criteria for Ethereum and Hyperledger Fabric. 54
5.2 Evaluation of the RBAC mechanism for the leasing operation. 57
5.3 Ethereum performance evaluation in terms of gas consumption. . . . 63

xv

List of Tables

xvi

Listings

4.1 Sample transaction processor function to make payments. 41
4.2 Access Control List (ACL) rule to restrict access to the read terms

function. 42
4.3 Example modifier used to check a condition prior to executing the

function. 47

xvii

Listings

xviii

1
Introduction

1.1 Motivation

Blockchain technologies have in the recent past become popular, mainly due to the
success of Bitcoin [1]. A blockchain is simply a decentralized peer-to-peer network,
where each participant maintains a replica of a shared ledger of digitally signed
transactions. Blockchains store records in groups called “blocks” and each of them
is time-stamped and linked to the previous block using cryptographic functions [2].
It is a fault tolerant network that establishes trust using a distributed consensus
algorithm. In addition, the information recorded on the blockchain is append-only
using cryptographic means that guarantee the integrity of the recorded informa-
tion. This immutability property makes it possible to establish the provenance of
information.

First conceptualized in 2008 by Satoshi Nakamoto [1], as the technology to
fuel the creation of Bitcoin, the blockchain’s use has since evolved beyond crypto-
currencies to support Turing complete state machines [3]. For instance, Ethereum
[4] and Hyperledger Fabric [5] support self-executing functions that can be stored
on the blockchain network, known as smart contracts, and utilized to create de-
centralized applications (dApps). Interest from industry has given birth to a new
type of blockchain called private (or permissioned) where participants need to be
authenticated before joining the network as opposed to earlier blockchains where
participants are free to join and leave the network as they please, these blockchains
are called public (or permissionless). The provenance, immutability and finality
features (See Chapter 2 for more on these features) make the blockchain suitable for
several application use cases. Applications such as banking and insurance [12], digi-
tal identity and trade finance [13], supply chain business and commercial real estate
[14], audit and compliance [15] have since been proposed or are under development.

Amid the digitization of information, people all around the world are increas-
ingly becoming protective of their personal data. This protective nature of personal
data has been exacerbated by recent media reports of data breaches in the form
of the Cambridge Analytica [10] that entangled the worlds largest social media site
Facebook. Alongside the data privacy revolution, Satoshi Nakamoto [1] defined an
electronic cash system as a chain of digital signatures. Bitcoin’s transactions are

1

1. Introduction

tracked through the digital signatures that permanently reside in the blockchain.
As a result, it is possible to infer the identity of a peer from this chain. While
distributed ledgers provide cryptographic encryption to safeguard information, it
lacks the flexibility of traditional systems when it comes to granting and removing
access to data [16]. Consequently, business networks want to own their information
so that they can only grant access to trusted members. However, data privacy and
ownership are well-known concerns in the blockchain community. Thus, business
houses looking to adopt the blockchain technology are highly interested in address-
ing these privacy issues, because their users want to control and own their data,
such as transaction history [17].

Public blockchains operates with full transparency, allowing everyone to access
the data stored in the distributed ledger, thus it guarantees only a low level of privacy
to its users. On the other hand, private blockchains which use a central authority
(CA) to verify their users cannot provide any transparency at all. Hence, there is an
innate trade-off between transparency and privacy. A blockchain providing public
verifiability of its overall state without revealing any information about the state of
each participant [18], can guarantee privacy while the process of state transitions is
made in a transparent way. In the case of smart contracts [4, 5], the owner of the
contract needs to control a small amount of private, sensitive data like transaction
history. One way of doing this is to implement a role or attribute-based access
control to the smart contract [27, 28, 29]. Consequently, business networks that
operate in an environment with competitors can limit the execution of parts of the
smart contracts that reveal certain information deemed as either confidential or
personal. For example, in a commercial real estate business, a lessee might have an
exclusive agreement at a special rate with a lessor. The lessor might want to keep
this contract private, and anyone not purview to it should not execute the function
in the smart contract that reveals the amount involved.

In their current form, smart contracts are not sufficient to replace many of
today’s paper-based contracts, due to their lack of flexibility in terms of changing
the terms of the contract [26]. Smart contracts operating on the blockchain can
provide immutability, but once they are deployed, it is impossible to change any of
their terms. As a result, it is immensely costly to run smart contracts in a volatile
environment (where terms of an agreement may need to be re-adjusted as new factors
creep in). Hence, there is a need for a mechanism that allows parties to propose and
agree on new terms.

1.2 Goals and Research Questions

The aim of this thesis is twofold. Firstly, we will present a keyhole comparison
between Ethereum [4] (public) and Hyperledger Fabric [5] (private), focusing on the
architectural similarities and differences in relation to data ownership i.e specific
parties have access to specific contents of the smart contract.

2

1. Introduction

Secondly, we will design a mechanism for negotiating the terms of a smart
contract involving two parties. Based on the previous comparison we will study
the feasibility of implementing it in both kinds of blockchain networks. We further
exemplify this comparative analysis by designing and implementing a Role-Based
Access Control (RBAC) paradigm around a use case application to enhance data
ownership.

Blockchains track ownership of transactions in a shared ledger based on the
source and the destination ID of the transaction [1]. Our main research questions
are:

• What is the main difference between public and private blockchain
regarding the access restriction to the contents of the smart con-
tract? Private blockchains provide an access control mechanism to restrict
the access of the participants in a smart contract, while public blockchains are
built to operate publicly without any restrictions. We will perform a compara-
tive analysis of these two types of blockchains by investigating the operational
differences (network operation, consensus algorithm, etc.).

• Can we design a library to achieve negotiation of smart contract
terms and evaluate the library using a use case implementation? In
order to design the negotiation library, we will summarize the methodology
proposed by Scoca et al in [26]. The summary of this methodology will help
answer this question.

• Can we implement a role-based access control to smart contract
contents based on the source and destination ID of the transaction?
In order to implement our role-based access control to smart contract contents,
we will model and evaluate a proof of concept (PoC) implementation around
roles of the source and destination ID of transactions. In addition, an extensive
literature review will be done to compare how transactions and smart contracts
are handled in Ethereum and Hyperledger Fabric. The comparison will help
answer this question.

• If so, what are the implications on the scalability of such an imple-
mentation in Ethereum, a public blockchain? This research question
seeks to answer the scalability in terms of ether gas exhaustion by transac-
tions. We evaluate our implementation to make sure transactions complete
their tasks before the gas runs out as well as investigate what happens when
peers disappear and re-join the network.

Contract negotiation can be a lengthy and tedious process, but with the advent
of blockchain technology, this process can be shortened. Our present research is
therefore intended to make the following contribution:

• Ease the contract negotiation process using smart contracts by designing a li-
brary mechanism that can be used to negotiate the terms of the smart contract
which involves two parties in a specified use case implementation.

3

1. Introduction

1.3 Limitations

Other surveys of blockchain frameworks [3, 20] center around the performance of
blockchain technologies, which is a crucial part of the choice of blockchain technology
yet does not present the blockchain as a platform that enhances data ownership. Our
work is limited to the analysis of the methods for restricting the execution of smart
contract contents in terms of data ownership of user information. Furthermore, we
concern ourselves with enforcing access control at the programing language level
as opposed to applying it at the blockchain or application level. In particular, we
concentrate on implementing access control using the underlying smart contracts.

We chose to concentrate on the programming language level due to time con-
straints. The smart contract implementation languages of both Ethereum and Hy-
perledger Fabric are relatively easy to bootstrap. For example, Ethereum has sev-
eral different client implementations including C++, Go, Python, Java, and Haskell.
These tools provide flexibility with how a node interacts with the Ethereum network.
Additionally, the development of smart contracts within the Ethereum network is
straightforward, due to its matured ecosystem. The same can be said about the Hy-
perledger community that provides an interactive console that developers can build
and execute smart contracts in an efficient way.

1.4 Methodology

Hevner et al. [46] proposed a conceptual framework as a guideline for evaluating
Design Science and Information System research. In order to perform an evaluation
process they proposed that an implementation meets the following specific attributes;
“functionality, performance, completeness, consistency, accuracy, reliability, usabil-
ity”. Given the scope of the thesis and the novelty of the blockchain technology, we
decided to evaluate our PoC implementation according to the descriptive evaluation
method. This method is divided into two parts: informed argument and scenarios.
During the first part of the process, we use information from the knowledge base
(e.g. relevant research) to build a convincing argument for the artifact’s utility, while
in the second, we construct detailed scenarios around the artifact to demonstrate
its utility. In addition to that, we conducted a performance evaluation specifically
for the Ethereum implementation, to illustrate the gas consumption of the smart
contract deployment and use in real time scenarios.

4

1. Introduction

1.5 Outline

To complete this thesis, we organize our work as follows:

• Chapter 2: Theoretical Background. We present a thorough technical
background to lay the foundation for our work. In addition, we explain in
detail our use case and the need for Role-based Access Control (RBAC).

• Chapter 3: Comparative Analysis. We shade more light on Ethereum
and Hyperledger Fabric as two famous blockchain systems available today. We
further present the similarities and differences between these two blockchain
systems.

• Chapter 4: Implementation. We describe the methodology and the tools
we used to implement our Proof of Concept (PoC). Further, we propose a
library for smart contract terms negotiation.

• Chapter 5: Evaluation. We present the evaluation process of our imple-
mentation.

• Chapter 6: Conclusion. We conclude the thesis with our final thoughts
and suggest areas for further future work.

5

1. Introduction

6

2
Theoretical Background

In this chapter, we present the technical background to our work. We provide a
summary background regarding modern digital cryptography, in order to ease the
description of blockchain afterwards. We also explain the blockchain as a data struc-
ture and related concepts such as smart contracts, public and private blockchains.
In addition, we give a description of our use case as well as a summary of role-based
access control and the work done by others in relation to our thesis.

2.1 Digital Cryptography

Modern computer technology has revolutionized the ancient art of encoding mes-
sages to render them unreadable to anyone but the intended recipient. Conversely,
cryptography has had a profound effect on how we use our information systems
today. The process of secure communication between two or more parties in the
presence of third parties (adversaries) is called cryptography. Digital cryptogra-
phy plays a major role in many applications such as banking transaction cards,
computer passwords or e-commerce transactions [30]. At first, cryptography was
closely associated with the encryption, but during the past decade cryptography is
based on solving comple mathematical problems. Modern cryptography studies the
techniques that used to prevent adversaries from accessing private information in
various aspects of information security such as data confidentiality, data integrity,
authentication and non-repudiation [31].

Digital cryptography is most often associated with the process of converting any
type of information (plaintext) into impenetrable text (ciphertext). This process is
also known as encryption. The reverse process of converting the ciphertext into
plaintext is called decryption. The set of algorithms that creates the encryption and
decryption operations is called cipher, and is controlled by an algorithm and a “key”
[30]. The key is known only to the parties participating in the communication and
it is not revealed in any case to the rest of the parties. The key usually consists of a
string of characters (which is secret) and is used to decrypt a ciphertext. Typically,
a “cryptosystem” consists of three basic algorithms, one for generating the key, one
for the encryption process and one for the decryption process respectively.

7

2. Theoretical Background

Traditionally, there are two kinds of cryptosystems used in digital cryptogra-
phy: symmetric and asymmetric. In symmetric systems, the parties use the same
secret key to encrypt and decrypt the messages. However, in asymmetric systems,
the parties use a public key to encrypt the messages and a private key to decrypt
them [30]. The asymmetric cryptography scheme enhances the security of commu-
nication between the parties, but the data manipulation becomes very slow, since
they use keys of larger size, comparing to the ones generated in symmetric cryp-
tosystems [31]. DES (Data Encryption Standard) is one of the most commonly used
cryptosystems using symmetric cryptography, but it has been replaced by AES (Ad-
vanced Encryption Standard). On the other hand, RSA (Rivest-Shamir-Adleman)
and ECC (Elliptic Curve Cryptography) are the most typical examples of asymmet-
ric cryptosystems which are widely used for secure data transmission [32].

2.1.1 Cryptographic Hash Functions

Hash functions are mathematical algorithms that map data of arbitrary size to data
of a fixed size. The output of a hash function is called message digest, and a hash
function with identical inputs always produces the same output. Cryptographic hash
functions belong to a special class of hash functions that are used in cryptography.
Cryptographic hash functions have all of the properties of the hash functions, but
they are designed in a such a way that is infeasible to invert (one-way functions).
Specifically, it is computationally very hard for an adversary to find two different
messages (brute-force attempt) that produce the same message digest (hash of the
message). Thus, it is not impossible to break such a system, but it is infeasible to
do so by any known practical means or it takes a substantial amount of time for an
adversary to break it.

MD5 [33], an upgrade of the prior variant called MD4, is one of the most
widely used hash functions, but it is proved to be broken in practice. MD5 produces
a 128-bit hash value and its only use is as a checksum to verify data integrity
because it suffers from extensive vulnerabilities [34]. The United States National
Security Agency designed SHA-1 [35] (Secure Hash Algorithm 1), a cryptographic
hash function that produces a 160-bit (equivalent to 20-byte) hash value for a given
input. SHA-1 established as a U.S. Federal Information Processing Standard many
widely used security applications and protocols, such as TLS and SSL, PGP, SSH,
S/MIME, and IPsec rely on that. However, since 2005 it has not been considered
completely secure and Microsoft [36], Google [37], Apple [38] and Mozilla [39] have all
announced that their respective browsers will stop accepting SHA-1 SSL certificates
by 2017. Because SHA-1 collision attacks have finally become practical by Stevens
et al. [41] which forge two PDF documents with the same SHA-1 hash in roughly
263.1 SHA-1 evaluations, two upgrades to SHA-1 have been proposed over the past
decade namely SHA-2 and SHA-3 [40] respectively.

8

2. Theoretical Background

2.1.2 Symmetric-key Cryptography

Symmetric-key cryptography covers the encryption methods which use a single pri-
vate key for both encryption and decryption. In order to describe how symmetric-key
cryptography works, we will give an example of a secret-key cryptosystem as a cryp-
tographic solution to the privacy problem arising from the communication between
sender and receiver. Formally, a secret-key cryptosystem can be defined as a tuple
(M, C,K, E ,D) with the following properties [30, 31]:

1. M is a set called the message space (the elements are called messages).

2. C is a set called the ciphertext space (the elements are called ciphertexts).

3. K is a set called the key space (the elements are called keys).

4. E = {Ek : k ∈ K} is a set of functions Ek : M → C (each of them called
encryption function).

5. D = {Dk : k ∈ K} is a set of functions Dk : C → M (each of them called
decryption function).

6. For each e ∈ K, there is a d ∈ K such that Dd(Ee(m)) = m, for all m ∈M.

Figure 2.1: Symmetric-key cryptography (single secret key).

Figure 2.1 illustrates the communication between Alice and Bob over an insecure
channel (in the presence of adversaries) using a symmetric-key cryptosystem. Before
the initiation of any communication, Alice and Bob have to agree upon an encryption
scheme: a message space M, a ciphertext space C, a key space K and two set of
functions E and D for encryption and decryption respectively. The two parties have
to agree upon a common secret key k ∈ K such that Dk(Ek(m)) = m. In this
particular scenario, Bob wants to send a message to Alice. In order to do so, he
encrypts his message m ∈M using the encryption function E such that c = Ek(m)
and then sends it to Alice. Alice then decrypts the ciphertext c using the decryption
function D and reads the message m = Dk(c).

9

2. Theoretical Background

Symmetric-key cryptography has an evident problem since both of the parties
have to obtain the secret key (shared). The key distribution requires communication
over a secure channel, that in most cases is impractical. Whitfield Diffie and Martin
Hellman have proposed a solution to the key distribution problem in 1976 [42] in
which two different keys (public and private) are used.

2.1.3 Public-key Cryptography

In contrast to symmetric-key cryptography, public-key cryptography uses two differ-
ent keys, the public key that is freely shared among the parties and the private key
of each party that must remain secret (each party knows its own key). In public-
key cryptosystems, the public (shared) key is used for encryption, while the private
(secret) key is used for decryption. Formally, a public-key encryption (PKE) scheme
can be defined as a triple of algorithms (Gen, E ,D) with the following properties
[43]:

1. The key generation algorithm Gen(1k) generates a triple of (pk, sk,Mk) where
pk is the public-key, sk is the secret key, andMk) is the message space asso-
ciated with the pk, sk pair.

2. The encryption algorithm E takes as an input a message m ∈Mk and outputs
a ciphertext c = Epk

(m).

3. The decryption algorithm D takes as an input a ciphertext c and outputs a
message m′ = Dsk

(c).

4. For every message m ∈Mk, m′ = m and Dsk
(Epk

(m)) = m.

Figure 2.2: Public-key cryptography (private and public key).

Figure 2.2 illustrates the communication between Alice and Bob over an in-
secure channel using a public-key encryption scheme. Before the initiation of any
communication, Alice and Bob have to agree upon an encryption transformation
and each of them generate their keys pkA, skA and pkB, skB respectively, such that

10

2. Theoretical Background

Dsk(Epk(m)) = m, for all m ∈ Mk. The public keys are made public to both par-
ties while the private keys remain secret. In this particular scenario Bob wants to
send a message to Alice, thus he encrypts his message using Alice’s public key pkA

and the encryption algorithm E such that c = EpkA
(m) and then sends it to Alice.

Alice then decrypts the ciphertext c using her private key skA and the decryption
function D to read the message m = DskA

(c). The first public-key cryptosystem
was proposed by Rivest, Shamir, and Adleman in 1978 [44] also known as the RSA
algorithm. RSA is widely used for secure data transmission, and it is based on the
practical difficulty of the factorization of the product of two large prime numbers
(factoring problem).

2.2 Blockchain Technology

Blockchain technology is a mechanism that untrusted participants can share infor-
mation by using a single digital history log (distributed ledger). A common digital
history is important because digital assets and transactions are, in theory, easily
faked or duplicated [1]. Blockchain technology solves this problem without using a
trusted intermediary. At the heart of the blockchain are blocks linked together to
form a chain. Figure 2.3 shows how these multiple blocks are connected to each
other to form a chain (the blockchain).

Figure 2.3: Blockchain as a linked list data structure.

Each block contains its own block header, the hash of the previous block and a
collection of time-stamped valid transactions. The hash of the previous block links
the blocks together, hence the blockchain can be thought of as a linked list data
structure. Furthermore, the hash of the previous block cryptographically prevents
the blocks from being altered or a block to be inserted between two existing blocks.
As such, each subsequent block strengthens the verification of the previous block
and hence the entire blockchain. Furthermore, a transaction can be any transfer
of value between network participants (e.g. from one Bitcoin address to another).
All of the previous transactions are hashed and paired, creating a single final hash
value, called the Merkle root (from the Merkle tree).

11

2. Theoretical Background

Today, traditional methods of recording business transactions allow participants
to maintain their own ledgers of transactions. This traditional method can be ex-
pensive, in some measure because third parties may charge fees for this service (e.g.
renting cloud computing infrastructure for databases services). Clearly, this method
is inefficient due to the duplication of efforts to maintain a number of ledgers for the
same transactions. Furthermore, it may prove as a single point of failure if a central
entity (for example a bank) is compromised, due to fraud or a cyber attack. On the
other hand, the blockchain introduces efficiency into business networks by eliminat-
ing duplication efforts of recording transactions on numerous ledgers. Furthermore,
transactions are secure and authenticated. As already noted, the blockchain tech-
nology has the following characteristics and advantages over traditional methods of
recording transactions:

1. Provenance: network participants are able to determine the origin of the
asset and how its ownership has changed over time. This feature provides
increased trust and no authority “owns” provenance of assets. In other words,
blockchains can be described as systems of proof [5].

2. Consensus: a mechanism to guarantee that the information added to the
distributed ledger is valid (majority of the network nodes are in agreement).
This feature prevents the double spending or other invalid data from being
appended to the blockchain by ensuring that the next block being added rep-
resents the most current transactions on the network.

3. Immutability: participants are not allowed to modify or delete a transaction
once it has been committed to the ledger. To correct an erroneous transaction,
a new one must be issued and both transactions will be visible on the ledger.
This feature helps to lower the cost of audit and compliance.

4. Finality: the single shared ledger becomes the only go-to place to verify the
existence of an asset or completion of a transaction as opposed to checking
various ledgers for the existence of transactions.

The blockchain technology provides business networks an opportunity to conduct
their transactions in a secured, shared ledger that reduces the inefficiencies associ-
ated with traditional record systems, such as time and costs of maintaining separate
ledgers while improving trust among participants and keeping all transactions visi-
ble.

2.2.1 Public Blockchain

Public blockchain networks are entirely open, and anyone can join and participate
in the system. Strictly speaking, blockchain networks can be public in two ways:

• Anyone can write data to the blockchain.

12

2. Theoretical Background

• Anyone can read data from the blockchain.

The network usually has incentives to encourage more participants to join and
to discourage network participants from cheating. Mining is the mechanism that en-
ables decentralized security on the blockchain [15]. Miners validate new transactions
and record them on the global ledger by solving intricate mathematical problems
based on a cryptographic hash algorithm. Miners receive a reward whenever they
“solve” a block (transactions contained in the block are considered confirmed). Bit-
coin [1] is the typical example of a public blockchain network today. The openness
and transparency of public blockchain come with a cost, which implies no privacy
for the transactions.

The main advantage of public blockchains is that they have plenty of use cases
due to their “openness”. However, one of the disadvantages of public blockchains is
that they require a substantial amount of computational power to maintain a very
large distributed ledger. In other words, every node in the network has to solve a
resource-intensive cryptographic problem to reach consensus.

2.2.1.1 Bitcoin: A Peer-to-Peer Electronic Cash System

Figure 2.4: How digital assets are transferred on the Bitcoin blockchain.

As earlier stated, Satoshi Nakamoto introduced Bitcoin as an electronic payment
system combining the concepts of cryptography and distributed systems. The main
goal of Bitcoin is to allow the transfer of digital assets without the need for a trusted
third party such as a bank. The Bitcoin network is a public blockchain that consists
of nodes that verify and group transactions by solving cryptographic problems. Bit-
coin users digitally sign their transactions using the hash of the previous transaction
and the public key of the recipient. In other words, to send Bitcoins, the public key

13

2. Theoretical Background

of the recipient must be known beforehand. In a sense, the public key allows users
to be pseudonymous.

Bitcoin users can come and go on the network and can create as many accounts
as they wish. However, they need to accept the proof-of-work chain as evidence of
the activities that happened in their absence. The transaction is broadcast across the
network and is propagated to all peers in order for the recipient to verify the chain of
ownership of the coin. Figure 2.4 illustrates how digital assets can be transferred on
the Bitcoin blockchain [1]. Ideally, network participants bundle their transactions
into a block, which is later broadcast across the network to all participants. Using
a consensus algorithm called Proof of Work (PoW), the transaction is validated and
verified by the network peers. Thereafter, the block is appended to the chain and
the transaction is completed successfully.

Bitcoins are sent from a personal wallet - which is a client application used
to generate transactions. To avoid the double-spending problem; a scenario where
a payee sends the same coin value to different recipients, the system implements
the longest acceptable chain available for that particular coin. The longest chain
is a universal confirmation mechanism on the blockchain and is determined by the
earlier accepted signatures of a coin. Figure 2.5 shows a Buyer that signs and sends
a coin value to Merchant A, in the hope of tricking the system, the Buyer signs and
sends the same coin value to Merchant B on a different address. Both transactions
end up in the unconfirmed pool of transactions. However, only the first transaction
was verified by the miners and added to the next block while the second transaction
got fewer confirmations and hence was deemed invalid and pulled from the network
rendering the transaction to be declined.

Figure 2.5: How Bitcoin solves the double spending problem.

The economics of Bitcoin allow the ecosystem to flourish. The generation of the
genesis block introduces the first coin into the system. Subsequent block generation
incentives allow a constant supply of Bitcoins into circulation that are owned to the
block creators. At the time of writing this thesis, there was more than 130 billion
USD worth of Bitcoins in existence, but Bitcoins will stop being created when the
total number of coins reaches 21 billion in the year 2040 [7]. However, incentives
can be realized from transaction fees as well. The difference between the output and

14

2. Theoretical Background

input value of a coin is the transaction fee which is added to the block containing
the transaction. The block creator is paid this transaction fee as an incentive.

2.2.2 Private Blockchain

Conversely, in a private blockchain, network members are known and trusted to
participate in the network. Strictly speaking, blockchains can be private in two
ways:

• write permissions are restricted to authenticated members

• read permissions are either restricted or public

These permission-based networks restrict the members allowed to participate
in the network, and as a consequence, the validation of transactions is delegated to
special peers through a consensus algorithm. The participant receives an invitation
to gain access to the network and contribute to the maintenance of the blockchain.
Classic examples of this blockchain are Hyperledger Fabric [5] and Ripple [6].

Figure 2.6: Bank system vs. public blockchain vs. private blockchain.

Figure 2.6 illustrates the key difference between the current bank system and
the public and private blockchain. Generally speaking, private blockchains are usu-
ally administered by an organization or a trusted consortium that controls access
permissions to the blockchain such as rights to read and modify the blockchain state.
For the most part, these blockchains have received a lot of attention from financial
institutions as they move to adopt the blockchain technology. This attention is at-
tributed to the significant advantages private blockchains posses in comparison to
their public counterparts. These advantages include the following:

• The organization whose jurisdiction the blockchain falls under can manage
the rules of participation if the need arises. Furthermore, if read access
is restricted, private blockchains can offer increased levels of privacy to the
blockchain contents.

• As opposed to public blockchains, where transaction validation is done by a

15

2. Theoretical Background

number of nodes, in private blockchains transaction validators, are known,
hence transactions are cheaper and block creation time is minimized. This
advantage also prevents validators from colluding among themselves.

2.2.3 Smart Contracts

Nick Szabo [11] first defined a smart contract in 1994 as a “set of promises specified
in digital form, including protocols that the parties perform to honor the promises”.
Figure 2.7 shows how smart contracts are created and executed on the blockchain.
Szabo defined four design objectives for contracts which include:

Figure 2.7: Creation and execution of a smart contract in steps.

• Observability: the means for participating parties to observe each others’
performance in regard to the contract or to prove their performance to each
other. Ideally, the accounts department would see to it that the contracts an
organization is involved with becoming more observable.

• Verifiability: this is the ability for a party to prove to a body officially
appointed to settle a dispute that the contract was honored or otherwise a
dispute occurred.

• Privity: this is the ability to distribute the knowledge or contents of the
contract to parties that are only purview to it. In common law, third parties
other than designated arbitrators or intermediaries should not have access to
a contract.

• Enforceability: these are means of enforcing the contract. One way is to
institute self-enforcing schemes where the contract is executed upon a pre-set
condition.

It can be noticed that the design objectives form two sets of observations; priv-
ity exerts restrictions over the contract contents, minimizing the exposure of the
contract to third parties. On the other hand, observability, verifiability, and en-
forceability entail access to contractual information by third parties. Consequently,
a trade-off must be met where controlled access to the contract is met while it is

16

2. Theoretical Background

possible to verify, enforce and observe the contract by third parties. These design
properties enable both parties to observe the performance of the other party and
verify if and when a contract has been performed, guarantee that only the details
necessary for completion of the contract are revealed to both parties and be self-
enforcing to eliminate the time spent observing the contract.

In the context of the blockchain, a smart contract is an agreement that governs
business rules and provides business logic. It is executed automatically as part of the
transaction and is stored on the blockchain. The state of the blockchain is changed
by execution of the smart contract. Often, smart contracts allow the exchange of
money, property, shares, or any asset in a transparent and conflict-free way. In most
blockchain implementations, smart contracts have their own address or in some cases
contain crypto-balance (e.g. Ethereum) and can be set up in three phases:

• Smart contract construction with agreed upon terms using a supported pro-
gramming language.

• Deployment of the smart contract to the peers of the blockchain.

• Self-execution upon the occurrence of the pre-set condition. If however, the
condition is external to the blockchain, a third party entity is needed to enter
the information required for the smart contract to run.

The execution of the smart contract through the blockchain renders it reli-
able. The reliability is guaranteed using the consensus algorithm of the underlying
blockchain. The blockchain network is able to verify whether the smart contract has
been executed properly and resolve any dispute that may arise.

2.3 Use Case: Commercial Real Estate

Commercial Real Estate (CRE) denotes any property owned solely for the purpose of
generating an income. CRE traditionally keeps several of its operations secret, such
as comparable lease rentals, property prices, and valuations to create a competitive
advantage. However, the inherent advantages of blockchains such as a distributed
ledger, tamper-proof, censorship resistance, and smart contracts have the potential
to transform CRE operations such as property purchase, financing, leasing, and
management. To be specific, leasing, purchase, and sale transaction processes can
benefit from blockchain adoption as it can take advantage of the benefits of the
technology. The following illustrates how blockchain can promote CRE leasing,
purchase and sales operations:

1. Property Searching: The lessor and the lessee or their respective brokers
list their requirements on a listing service. A transparent listing service system
enables all parties to view the available listings based on their requirements.
The property searching can be powered by a blockchain enabled listing service.

17

2. Theoretical Background

2. Pre-lease Due Diligence: The lessor conducts a background check on the
lessee, and the lessee checks the prior transactions and legal claims on the
property.

3. Lease Agreement: The key terms of the agreement are recorded on the
blockchain and executed using a smart contract. The smart contract initi-
ates payment of security deposit/advance rent either through cryptocurrency
wallets or bank accounts using a payment interface.

4. Automated payments and cash flow management: Based on the terms
of the agreement, the smart contract initiates the regular lease payments from
the lessee to the lessor, after paying the outstanding maintenance expenses
to the contractors. The smart contract initiates the transfer of the security
deposit to the lessor using the preferred mode of payment on completion of
the lease term.

This use case provides us with an opportunity to note that data ownership is
paramount in situations that comprise competitors. Once an agreement has been
reached, participants should have the possibility to retain access control to their
information. We will make use of the CRE operations to conclude our comparative
study.

2.4 Role-Based Access Control

Role-Based Access Control (RBAC) is a common approach to manage users’ access
to resources or operations. RBAC enables the creation of hierarchies of roles and
permissions [27, 28]. Permissions specify exactly which resources and actions can be
accessed by whom. In our implementation, they can be realized in two ways [22]:

1. Using the inbuilt blockchain crypto-conditions,

2. Enforcing the access control through a third party-system like a cloud platform
and build an asset transfer application on the blockchain.

In the first option, we can use property owners as partial owners of the property;
primarily we can retain the ownership to the underlying blockchain in the data
model and assign roles as lessee and lessor. As a result, a crypto-condition such
as a threshold condition (1 of n) can be used to transfer assets. Basically, in a
threshold condition, the application is modeled around assets, inputs, and outputs
as a mechanism by which control of an asset is transferred. The amounts of an
asset are encoded in the outputs of a transaction, and each output may be spent
separately. To spend an output, the output’s condition must be met by an input
that provides a corresponding fulfillment. The second option is somewhat easier; we
can model the applications access rights and allow a third party application to host
them. However, there remain some challenges with these methods, which have been

18

2. Theoretical Background

addressed in previous research [22]. The first option does not scale easily because
whenever partial players in the leasing business are added or removed, a new transfer
trail of assets is created. The second option drifts away from the decentralized nature
of the blockchain and creates a single point of failure in the third party application
to host the access rights.

2.5 Related Work

This section discusses a number of implementations related to our thesis. It also
describes how our thesis work differs from the proposed systems in the related work.

Public key infrastructures (PKI) facilitate the secure electronic transfer of in-
formation across various network applications (e.g. e-commerce, internet banking,
confidential email). Well-known PKI-based systems, such as the most widely used
email encryption standard, OpenPGP [23], and its implementation GnuPG [24], are
complex systems with a very high cost of maintenance. Additionally, those systems
rely on a Certificate Authority (CA), a trusted third party, which is responsible for
the distribution and management of the digital certificates. The CA centralization
creates a single point of failure, making both systems target for multiple attacks. A
typical example is the DigiNotar [25] attack, where an attacker penetrated the Dutch
CA DigiNotar and gained complete access to all eight of the company’s certificate-
issuing servers. In our implementation, we aim to investigate how to restrict access
to smart contracts in a new efficient and decentralized way without the use of an
additional central entity responsible for that.

Scoca et al. [26] presented a methodology for the autonomous negotiation of
smart contracts in cloud services, by introducing a formal language to describe
the interactions between offers and requests. They also analyzed the cost and the
modifications required to reach consensus, by providing a full evaluation process.
In our thesis work, we propose an implementation that allows dynamic inclusion of
new terms within a smart contract. Flexible smart contracts that allow alteration in
their contents by preserving privacy at the same time can be very useful in business-
to-business networks. Particularly, we propose a library that can be used by any
smart contract in order to handle negotiations between the involved parties in our
use case scenario (landlord and tenant).

Ouaddah et al. [27] proposed a novel framework for access control in IoT-
based on the blockchain technology. They proposed FairAccess, a fully decentralized
pseudonymous and privacy-preserving authorization management framework that
enables users to own and control their data. They also provide a reference model for
the proposed framework within the objectives, models, architecture and mechanism
specification in IoT. Likewise, Zhang et al. [28] proposed a smart contract-based
framework, which consists of multiple access control contracts (ACCs), one judge
contract (JC) and one register contract (RC), to achieve distributed and trustworthy
access control for IoT systems. Each ACC provides one access control method for

19

2. Theoretical Background

a subject-object pair and implements both static access right validation based on
predefined policies and dynamic access right validation by checking the behavior
of the subject. In addition, the JC implements a misbehavior-judging method to
facilitate the dynamic validation of the ACCs by receiving misbehavior reports from
the ACCs, judging the misbehavior and returning the corresponding penalty. Both
implementations focus on IoT security allowing their users to control their own data,
while our implementation describes the design and implementation of a role-based
mechanism in smart contracts for the purpose of real estate leasing operations.

Cruz et al. [29] proposed a blockchain-based RBAC system using the Bitcoin
network as an infrastructure, aiming to provide an irrefutable proof of the role of a
user (issued by an organization) by verifying the connection of the user to the or-
ganization through the Bitcoin blockchain. Specifically, whenever an unknown user
claims to have a role from a particular organization, the system will create a Bitcoin
transaction, then a service-providing organization will verify the Bitcoin transaction
containing the addresses of the organization and the user. This implementation is
inspired by the mechanism of Hyperledger Fabric, used for issuing and verifying user
transactions from the rest of the users. Our thesis work aims to investigate how an
RBAC scheme can be implemented in Ethereum blockchain, in order to create smart
contracts that have the ability to restrict access to certain users. Hypeledger Fabric
has a built-in mechanism to support access control in smart contracts, due to its
permissioned type of operation.

20

3
Comparative Analysis

Since the inception of Bitcoin, there has been a surge in the development of industry
grade blockchains. Although Ethereum and Hyperledger Fabric are some of the
matured blockchain ecosystems on the market, their implementation styles differ
significantly. In this chapter, we shade more light on the architecture of Ethereum
and Hyperledger Fabric. Furthermore, we present a keyhole comparison between
Ethereum and Hyperledger Fabric by analyzing their key similarities and differences.

3.1 Ethereum

Ethereum [4] was proposed towards the end of 2013 by Vitalik Buterin and offi-
cially launched in July of 2015. At the time of writing, Ethereum had a market
capitalization of 60 billion USD, not counting its attraction as a platform of choice
for a lot of decentralized applications as well as for the creation and launch of ICOs
(Initial Coin Offerings). Ethereum is an open source platform, operating on a public
blockchain network, providing easy, fast and reliable payments similarly to Bitcoin.
But in addition to that, it enables developers to build and deploy decentralized
applications, called smart contracts.

Ethereum smart contracts define rules and penalties for an agreement between
members by enforcing those obligations [4]. Therefore, smart contracts are stored in
the Ethereum blockchain as decentralized applications (dApps) and can used by the
Ethereum users in the future. Ethereum allows developers to create smart contracts
consisting of an unlimited number of operations, without restricting them in a set
of limited operations [29].

3.1.1 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) can be viewed as a distributed global com-
puter where all smart contracts are executed [4]. In order to restrict the resources
used by the smart contracts running in the EVM, every computation is paid in ether
(ETH), the built-in currency of the Ethereum blockchain. Thus, smart contract op-

21

3. Comparative Analysis

erations that is executed in the EVM, are broadcast to every node in the network. It
is evident that the Ethereum project was built with the prospect of introducing such
a sandboxed environment to simplify the smart contract development in the future.
The EVM can be considered to be a “learning environment”, which gives developers
a testing platform in order to ease the development process of applications on the
blockchain. The EVM is a good testing bed because it is completely isolated from
the rest of the main network. Additionally, the EVM has been implemented in C++,
Python, Ruby, and a few other programming languages, while every Ethereum node
in the network runs their own EVM implementation and is capable of executing the
same instructions.

3.1.2 Ether and Gas

The native value token of Ethereum blockchain is called ether [4] and it is the main
element for operating the distributed applications in Ethereum platform. Essen-
tially, ether is the fuel of the Ethereum network, a form of payment made by the
clients of the platform to the machines executing the requested operations. Thus,
developers are motivated to write quality code to keep the network healthy, since
the deployment of wasteful code leads to additional cost. Whenever a contract is
executed as a result of being triggered by a message or transaction, every instruc-
tion is executed on every node of the network. Every operation executed on the
blockchain comes with a cost, measured in gas units. Gas price is the amount of
ether the sender is willing to spend on every unit of gas, and is measured in gwei.
‘Wei’ is the smallest unit of ether, where 118 wei represents 1 ether. One gwei is
1,000,000,000 wei. With every transaction, a sender sets a gas limit and gas price.
The product of gas price and gas limit represents the maximum amount of wei (or
‘TX fee’) that the sender is willing to pay for executing a transaction. Sending
tokens will typically cost about 50000 gwei to 100000 gwei, so the total TX fee is
about 0.001 to 0.002 of ether. This restriction provides an efficient way to reach
consensus on the system without the need of trusted third parties, or intermediates.

Each smart contract execution is redundantly replicated across many nodes
making the execution expensive. Therefore, Ethereum platform encourages only the
execution of the necessary operations on the blockchain and all of the unnecessary
operations can be executed offline (without using the blockchain itself). The miners
can purchase gas for ether after they have executed the code of a smart contract. Due
to the price fluctuation of ether as a result of the open market, the price of gas varies
accordingly. Basically, the price of gas is decided by the miners, who can refuse to
process a transaction with a lower gas price than their minimum limit. There is an
automated process that purchases gas for ether in each Ethereum client according
to the limit specified for the transaction. Moreover, Ethereum’s execution fees apply
for every computational step within a smart contract, preventing intentional attacks
or abuse on the Ethereum network.

22

3. Comparative Analysis

3.1.3 Accounts, Transactions and Messages

3.1.3.1 Accounts

Transactions in Ethereum smart contracts can simply be considered as a transfer
of ether from one Ethereum account to another. Generally, there are two types of
accounts: Contract Accounts (CA) and Externally Owned Accounts (EOA). Con-
tract accounts have an ether balance, an associated code and their code execution is
triggered by transactions or messages (function call) received from other contracts.
On the other hand, Externally Owned Accounts (EOAs) have an ether balance and
they can send transactions by either simply transferring ether or trigger the code of
a contract. An EOA is completely controlled by a private key and has no associated
code.

3.1.3.2 Transactions

Transactions in Ethereum formally refer to the signed data package that stores a
message that has to be sent from an Externally Owned Account (EOA) to another
account on the blockchain. The transaction contains the Ethereum address of the
recipient, a signature that identifies the sender, the amount of ether being transferred
(VALUE), two extra values STARTGAS and GASPRICE, and an optional data field. The
signature is used to identify the sender and verify their intention to send the message
to the recipient using the Ethereum network. The VALUE field stores the amount of
wei to transfer from the sender to the recipient, the STARTGAS field which represents
the maximum number of computational steps the transaction execution is allowed to
take, and the GASPRICE field represents the fee the sender is willing to pay for gas; one
unit of gas corresponds to the execution of one atomic instruction (computational
step).

3.1.3.3 Messages

Ethereum smart contracts can also send “messages” to other smart contracts. These
messages are virtual objects that exist only in the Ethereum execution environment
and can be used as function calls. Similarly, each message contains the identity of
the sender and the recipient, the amount of ether being transferred (VALUE), an extra
value STARTGAS and an optional data field. STARTGAS value restricts the amount of
gas that can be consumed by the code execution triggering. Ethereum messages act
like transactions and can only be produced by contracts, not from external accounts.

23

3. Comparative Analysis

3.1.4 Consensus Algorithm (Mining)

Figure 3.1 illustrates the execution of an Ethereum transaction showing the gas
consumption of every instruction in the transaction. Ethereum, like all blockchain
technologies, uses a consensus algorithm which is based on choosing the block with
the highest total difficulty [4]. In Ethereum, the difficulty is an integer that indicates
how difficult it is for the miners to mine a new block by finding a hash below a given
target, while total difficulty holds for the difficulty of the whole chain until this
block. During this process, miners produce blocks which then other miners have to
check for their validity. In particular, Ethereum uses a Proof-of-Work (PoW) system
where all miners use a special software to solve mathematical problems.

Figure 3.1: Ethereum transaction and gas consumption.

Generally, Ethereum blockchain is very similar to the Bitcoin blockchain, al-
though Ethereum proposes a more enhanced consensus mechanism. The blocks of
both blockchain implementations contain a copy of the transaction list and the most
recent state, which is technically the root hash of the Merkle tree. In addition to
that, each Ethereum block contains the number of the block and its difficulty. These
two additional values give an extra level of security and the validation of the blocks
becomes even harder. The PoW algorithm used in Ethereum platform is called
Ethash, which is a modified version of the Dagger-Hashimoto algorithm [4]. This
algorithm suggests that miners have to scan and test for a nonce to find a solution
that is below a certain difficulty threshold. Specifically, the protocol indicates that
the difficulty can be adjusted dynamically in such a way that on average one block
is produced by the entire network every 15 seconds. Thus, any node participating
in the Ethereum network can become a miner and their expected total reward from
mining will be directly proportional to their mining power, or hashrate.

Moreover, Ethash is a memory intensive computational problem, making it
application-specific integrated circuit (ASIC) resistant, thus, it allows a more equally
distributed (decentralized) notion of security. In order to modify a block, someone
has to redo the work spent on this block, including the work spent on the blocks
that have been chained to it. Thus, the majority of the total computation power
of the miners participating in the Ethereum network are controlled only by honest
miners, enhancing the levels of security throughout the blockchain.

24

3. Comparative Analysis

3.1.5 Smart Contracts Deployment

Ethereum offers a very large distribution of software tools for smart contract devel-
opment. Figure 3.2 illustrates the steps of deploying a smart contract in Ethereum
platform. Developers interested in the development of Ethereum smart contracts
use the following steps to successively construct and deploy a smart contract to the
blockchain system:

1. Write the source code of the smart contract in a file (or a group of files) with
the extension *.sol, using the programming language Solidity.

2. Compile the file (or files) containing the source code of the smart contract
using the Solidity compiler (solc). Developers can call the Solidity compiler,
which runs inside the Ethereum node that they have already started, using
the JavaScript API called web3.js. The correctness of the smart contracts
can be verified in a private Ethereum network using a local testnet, without
consuming any gas.

Figure 3.2: Ethereum smart contracts deployment process.

25

3. Comparative Analysis

3. The binary file generated from the source file (or files) written in Solidity,
is sent back to the dApp in the front-end JavaScript environment. In the
Ethereum community, dApps provide a practical UI to interact with the smart
contracts.

4. The dApp publishes the smart contract (the binary file of the smart contract)
to the main network, using the web3.js JavaScript API.

5. The smart contract is signed using the Ethereum node default wallet address
(or another Ethereum address). The step of deploying the smart contract to
the network costs ether.

6. The Ethereum node sends back the blockchain address of the smart contract
and the ABI (a JSON file containing all the variables, events and methods of
the compiled smart contract).

7. Whenever the dApp calls a method of the published smart contract, it uses
the blockchain address and ABI of the smart contract, along with the nonce
value. Nonces start with a value equal to zero when the smart contract is
published on the blockchain and they are used to prevent pushing duplicated
transactions, while at the same time they increase the lifetime of the key.

3.2 Hyperledger Fabric

Hyperledger Fabric is a project housed under the Linux Foundation to provide in-
dustry grade private blockchain technology that renders immediate finality. At the
time of writing this thesis, v1.1.0 was the current version in production. Hyper-
ledger Fabric’s smart contracts are called chaincode and written in either Java or
Go programming languages and deployed to peers. Hyperledger Fabric is divided
into two sets of peers: validating and non-validating peers. A validating peer is one
that participates in the maintenance of the ledger, runs the consensus algorithm and
validates transactions. On the contrary, non-validating peers only issue transactions
to validating peers on behalf of clients. The validating peers execute transactions
in the form of three transaction types to interact with the blockchain:

• Deploy transaction: This transaction installs the smart contracts to the peers.

• Invoke transaction: A particular chaincode that has been installed using the
deploy transaction can be invoked with arguments specific to the type of trans-
action. The chaincode either writes or reads entries in its state and indicates
whether it has failed or succeeded.

• Query transaction: This transaction reads and returns the state of the peers’
permanent storage.

26

3. Comparative Analysis

3.2.1 Transaction Processing

Unlike other blockchain technologies, Hyperledger Fabric takes a different approach
to executing transactions. The system is designed to separate the execution of
the smart contract and updating the distributed ledger [8]. A transaction between
two clients with corresponding peers on the blockchain network makes use of the
three transaction types listed above. Figure 3.3 shows the flow of the transaction
to complete the asset exchange between two clients. The flow typically follows the
steps listed below:

Figure 3.3: Transaction processing in Hyperledger Fabric.

1. Client transaction initialization: The client intending to partake in the trans-
action (e.g rent a house from a landlord) sends a request. This transaction
request targets the corresponding peers on the blockchain network. Depending
on the endorsement policy (See Section 3.2.1.1 for more) of that network, the
transaction is directed to the right peers to sign the request. The transac-
tion request is bundled into a transaction proposal by the Standard Develop-
ment Kit (SDK) responsible for the smart contract. The transaction proposal
marks the request to execute a smart contract function that reads/writes data
to/from the ledger.

2. Transaction endorsement: This process takes care of the housekeeping duties
before a transaction is committed to the ledger. In particular, the endorsing
peers verify that the transaction is correctly issued and that it has not been
submitted before. Furthermore, the endorsing peers make sure that the sig-
nature from step 1 is valid and that the peer submitting the transaction has
the necessary rights to do so. If the request passes all these checks, the smart
contract is executed to generate a response that is sent back to the applica-
tion. This response often contains the read and write sets. At this point, the
transaction is not yet committed to the ledger unless a write transaction is
executed.

3. Inspection of proposal responses and assembly of endorsements: The response

27

3. Comparative Analysis

from the endorsing peers is inspected by the respective client application. If
the transaction involved querying the ledger, the application displays the in-
formation. However, if the transaction involved writing, the client application
inspects the endorsement policy before sending it to the ordering service to
update the ledger. The client application then broadcasts the transaction pro-
posal and response to the ordering service by including it in a transaction
message. The ordering service then creates a block of transaction per channel.

4. Transaction validation: The blocks of transactions are then delivered to all
the peers. As noted before, the transactions in the blocks are considered to be
validated.

5. Ledger Update: Each peer applies the write sets of the transactions in the
block thereby updating the ledger of each channel.

3.2.1.1 Endorsement Policies

An endorsement policy in Hyperledger Fabric refers to the peers that must agree on
the results of a transaction before it can be added to the ledger. Hyperledger Fabric
uses a small-domain language called CLI to define endorsement policies. Examples
of endorsement policies include:

• All of the peers of each organization must endorse the transaction of type T ,
thus the endorsement policy T = (peer I) ∧ (peer II) ∧ ... (peer N).

• One or more peers of each organization can endorse the transaction of type Y ,
thus the endorsement policy Y = (peer I) ∨ (peer II) ∨ ... (peer N).

Endorsement policies are validation checks enshrined in the architecture of how
the blockchain system handles transactions. The main advantage of this approach
is that it allows developers to increase the privacy of data access stored on the
blockchain.

3.2.1.2 Consensus Algorithm

Hyperledger Fabric employs a “pluggable” consensus algorithm; which means that
the target use case application determines the algorithm to be used [8]. However, due
to the inherent problems of distributed message passing such as nodes crashing and
node collusion, validating peers in v1.0 run a hybrid of the Practical Byzantine Fault
Tolerance (PBFT) as the consensus algorithm to verify transactions [5]. Ideally,
transactions are validated through the replicated execution of the smart contracts
and the underlying assumption of Byzantine faults. It is assumed that among n
peers, f < n/3 are faulty and may act arbitrarily to give false values but the rest
execute the smart contract correctly [5]. The main advantage PBFT has over other
distributed consensus algorithms such as PoW is that they have minimal latency and

28

3. Comparative Analysis

can process numerous transactions per second, however, they do not scale easily in
terms of nodes [8].

As any other blockchain system, the notion of consensus in Hyperledger Fabric
refers to the agreement of the order of verified transactions written to the block. But
most importantly, consensus also implies that a transaction has met all the checks
that are imposed on it as the transaction completes the life cycle. As already stated,
these checks include the check against endorsement policies set in the blockchain
system and the check to prevent the double spending problem that might pose a
threat to data integrity.

3.2.2 Membership Services and Identity Management

Hyperledger Fabric uses identities to manage network participants in the blockchain
ecosystem, because of its private mode of operation. Ideally, these network par-
ticipants include peers, client applications, and transaction orderers. Hyperledger
Fabric supports a Membership Service Provider (MSP) that contains the security
infrastructure for authentication and authorization of network participants.

Strictly speaking, identity management is achieved through the use of digital
certificates. In particular, enrollment and transaction authorization is performed
using Public Key Infrastructure (PKI) while confidentiality for smart contracts is
achieved through homomorphic encryption. When connecting to the network, a peer
obtains an enrollment certificate from the enrollment certificate authority. This cer-
tificate is used to authenticate the peer by the MSP. Upon authentication, a peer
obtains a transaction certificate to enable it to issue transactions. The transaction
certificate can be issued several times to the same peer allowing it to be pseudony-
mous. In addition, channels use symmetric encryption to provide confidentiality of
the smart contracts and blockchain state.

3.3 Comparison

This section describes the key similarities and differences between the public block-
chain implementation of Ethereum and the permissioned distributed ledger of Hy-
perledger project, called Fabric.

3.3.1 Similarities

Both Ethereum and Hyperledger Fabric share the same advantages that all of the
blockchain solutions provide. Recording transactions through blockchain virtually
eliminate errors caused by humans while at the same time protects the data from

29

3. Comparative Analysis

prospective tampering. However, the fundamental value of a blockchain is that it
enables a database to be directly shared without a central administrator. Both
platforms use a consensus mechanism to ensure the nodes participating in each net-
work stay synchronized. Therefore, neither Ethereum nor Hyperledger Fabric uses
a central entity to verify the transaction taking place on their platforms. In addi-
tion, both systems support the full development and deployment of smart contracts.
Thus, there is no need for third-party mediators or intermediaries for both platforms.
Besides the time reduction in transactions, they both offer a reliable fault-tolerant
network which is able to withstand malicious attacks, due to their decentralized
nature.

3.3.2 Differences

The operational differences between Ethereum and Hyperledger Fabric stem from
the target uses of the two flavors of blockchain systems [9]. Hyperledger Fabric
was typically developed to be a modular blockchain that extends various use case
applications. On the other hand, Ethereum seeks to provide a generic platform for
all sorts of applications and modularity is not a key objective. Table 3.1 presents a
summary of the key differences between Ethereum and Hyperledger Fabric.

Characteristics Ethereum Hyperledger Fabric
Description Generic blockchain Modular Distributed

platform Ledger Technology (DLT)
Network operation Public (permissionless) Private (permissioned)
Type of transactions Transparent Confidential
Consensus algorithm Mining based on PoW Various Algorithms

(Proof-of-Work) (Depending on
target application)

Smart contracts Solidity (C++, Go, Python) Chaincode (Go, Java)
System currency Ether None
Mining reward Yes None

Table 3.1: Differences between Ethereum and Hyperledger Fabric.

3.3.2.1 Network operation

This is perhaps the most notable difference as it dictates the target use cases of the
two blockchain systems. As already noted in Chapters 1 and 2, Hyperledger Fabric
is a private or permissioned blockchain while Ethereum is a public or permissionless
blockchain. This difference borders on how network participants are treated in the
respective blockchain systems. Consequently, this difference plays a major role in
how consensus is reached in these two blockchain implementations [9].

30

3. Comparative Analysis

3.3.2.2 Consensus algorithm

In Ethereum, mining based on proof-of-work is used by all the peers to agree on
the order in which transactions appear in the blockchain. As already noted, the
main idea behind PoW as a distributed consensus algorithm is to limit the rate at
which blocks are created by solving cryptographic puzzles. PoW suits the public
nature of Ethereum due to the fact that any peer can participate in the mining
process. If an adversary controls less than half of the total computing power present
in the network, PoW prevents the adversary from creating new blocks faster than
honest participants, thus inherently addressing the Sybil attack that is famous in
anonymous networks [8]. However, PoW suffers from the performance of transaction
processing when compared to other distributed consensus algorithms such as Byzan-
tine Fault Tolerance (BFT) algorithms. This performance degradation arises from
the need for all network participants to agree upon a common ledger and because
the computational effort of PoW is both time and energy consuming [9]. In addi-
tion, ledger records are accessible by all network participants in Ethereum, which is
problematic for use case applications that have strong privacy requirements.

In contrast, Hyperledger Fabric follows a novel approach to agree on the order
in which transactions must appear on the blockchain. Typically, Hyperledger Fabric
uses execute-order-validate scheme, which allows transactions to execute before the
blockchain can reach an agreement on the order of the transactions. As already
noted, Hyperledger Fabric uses a “pluggable” consensus algorithm but the most
common is the hybrid Practial Byzantine Fault Tolerance (PBFT) algorithm. As
opposed to Ethereum, nodes in the Hyperledger Fabric system assume different roles
such as orderers and endorsement peers to help reach consensus. By separating
the roles of nodes in this manner, Hyperledger Fabric is flexible enough to add an
extra layer of permission by leveraging the blockchains identity management system
thereby increasing the privacy of recorded data.

3.3.2.3 Smart contracts

Another key difference between Ethereum and Hyperledger Fabric is the use of
smart contracts [4]. Ethereum smart contracts are written in a high-level contract-
oriented language called Solidity. Smart contracts written in Solidity are compiled
to bytecode that is executable on the EVM. Solidity allows developers to write dis-
tributed applications (dApps) that implement self-enforcing business logic inside
smart contracts. Moreover, Solidity is statically typed, supports inheritance, li-
braries and complex user-defined types among other features. Ethereum supports
also a Python-like language called Serpent, and a Lisp-like Language called LLL
respectively.

Conversely, Hyperledger Fabric introduces another type of smart contracts,
called “chaincode”, which typically handles business logic agreed upon by members
of the network, so it may be considered as a smart contract [5]. Every peer in the

31

3. Comparative Analysis

Hyperledger Fabric network executes the chaincode, access the data stored in the
distributed ledger and endorses new transactions. Hyperledger Fabric also offers
an SDK for Node.js, Java and Go, mainly aiming in large integration projects.
Chaincodes are written in Go, Javascript and Java and it is considered to be more
flexible than a closed smart contract programming language, such as Solidity.

3.3.2.4 System currency

Section 3.1.2 describes how Ethereum uses ether as the built-in crypto-currency.
It is used to pay nodes that take part in the consensus process as well as pay
transaction fees whenever a smart contract is executed. Consequently, distributed
applications that require monetary transactions can be built by taking advantage
of this crypto-currency. On the other hand, Hyperledger Fabric does not require
a built-in cryptocurrency as consensus is not achieved using the mining process.
However, because chaincode is Turing complete, it is possible to create a native
crypto-currency to operate in the Hyperledger Fabric ecosystem [9].

3.3.3 Conclusion

Ethereum and Hyperledger Fabric seek to solve the same problem i.e to provide
a truly distributed way of recording transactions that enables trust in a trustless
environment without the need for an intermediary. However, the two blockchain
systems sit at different ends of the spectrum. Ethereum’s public mode of operation
allows it to be a strong candidate for transparent transactions but it sacrifices per-
formance, scalability, and privacy. It is impossible to track or restrict the access to
the blockchain, since the participants in public blockchains (such as Ethereum) are
anonymous and they can join and leave the network whenever they want. Ethereum
smart contracts make Ethereum blockchain extremely competent to the the business-
to-consumer (B2C) market. On the other hand, Hyperledger Fabric uses its private
mode of operation and modular architecture to solve privacy issues in the network
system. Hence, it can provide solutions to sectors that require knowledge of who
the members of the network are and who is accessing specific data. Furthermore,
this modular architecture allows Hyperledger Fabric to have pluggable components
such as the consensus algorithm to suit the requirements of the target application.
Specifically, the commonly used BFT algorithm scales better than other consensus
algorithms used in public blockchain and it allows the developer to increase the
privacy of the application.

32

4
Implementation

In this chapter, we describe a Proof of Concept (PoC) implementation, consisting
of a smart contract and distributed application (dApp), that allows a landlord and
a tenant to make an agreement on a residential property. First, we define the basic
rules and operations of the smart contract, according to the paper leasing contract.
Thereafter, we describe the implementation of the smart contract and the dApp that
handles the smart contract operations, using two different blockchain infrastructures,
Ethereum and Hyperledger Fabric respectively.

4.1 Design and Specification

A paper contract is a legally binding arrangement between two or more parties that
is enforceable by law as a binding legal agreement. Every contract must contain a
detailed description (the terms of the contract) which specifies the obligations that
parties have to each other. In order for the parties to agree on the terms of the
contract, they have to sign it by giving their consent. Moreover, apart from the
basic properties, a contract can have clauses, which can be either specific provisions
or distinct articles within a contract. The role of contract clauses is to address a
specific aspect related to the overall subject matter of the agreement. Contract
clauses simply define the duties, rights, and privileges that each party has under the
contract terms. Any contract concerning the law must go through several middlemen
and third parties, thus paper contracts can take significant time and cost to become
legally enforceable.

In order to implement a smart contract that corresponds to a paper contract, the
terms of the contracts should be defined. The smart contract holds all the necessary
information of the residential lease agreement and supports multiple operations that
can be used by the two parties: landlord and tenant. In this PoC implementation, we
assume that the person that deploys the smart contract becomes the landlord of the
contract. However, we provide more fine-grained implementation details in Sections
4.2 and 4.3 respectively. Once the contract is deployed on the blockchain, its state
is set to “Created”. In addition, the terms of the contract are clearly specified and
proposed by the property owner.

33

4. Implementation

4.1.1 System Description

The PoC implementation defines a contract between a landlord and a tenant. The
contract stipulates that upon agreement, a tenant will have to pay an agreed amount
on a monthly basis to the landlord as rent. Payments that are remunerated later
than the agreed date attract a penalty fee as a percentage of the rent amount.

Our PoC implementation has two participants in the CRE business network,
Tenant and Landlord, while Houses are the assets of this business network. Land-
lords own the houses that tenants seek to rent. We assume that tenants have
searched for a house and the contract agreement marks the first entry transaction
in the process flow. In addition, tenants and landlords are assumed to be authenti-
cated as real players in the business network in the case of Hyperledger Fabric. The
following are the functional requirements of the PoC implementation:

1. The landlord should create a contract that a tenant should review until an
agreement is reached.

2. A tenant should be able to read the terms of the contract. Once agreed
upon, only the parties purview to this agreement must retain access to the
information generated as a result of the contract execution.

3. The tenant must remunerate the agreed rent amount. This transaction is
modeled as a transfer of ether in Ethereum or transfer of an assumed account
balance in Hyperledger Fabric.

4. The contract penalty should be adhered to once a late payment is received.
The penalty fee is 5% of the principal rent amount unless otherwise negotiated.
Furthermore, an event must be created notifying the landlord when a payment
is missed by the tenant. Ethereum applies also extra fees (gas) for the smart
contract execution, regardless of the extra fee for the penalty.

5. The tenant should be able to open negotiations on the terms of the contract
during the validity of the contract and any new changes agreed to must be
enforced on the blockchain.

6. Tenants must not be purview to contracts that do not concern them.

These requirements also encompass the terms of the contract. However, blockchain
target requirements and assumptions will be exemplified in Section 4.2 and Sec-
tion 4.3 respectively.

34

4. Implementation

4.1.2 Design of the Smart Contract

Figure 4.1 illustrates the deployment of a smart contract by the landlord and the
signing of the contract by the tenant. The smart contract can be in one of the
four different states: Created, Initiated, Terminated, or underReview. After the
creation of the smart contract, the state is initialized to the Created state and the
tenant is able to read the contract terms.

Figure 4.1: The deployment and the signing of the smart contract.

However, the tenant can propose new terms as a way of negotiating. The
negotiating process moves the contract into the underReview state. This state puts
the contract on hold until an agreement is reached between the negotiating parties.
Similarly, after the agreement, the contract changes to the Initiated state and the
lease operation is initiated. Consequently, the smart contract is now active and the
parties involved are expected to follow the terms of the contract.

Figure 4.2: The payment process and the transfer of digital money.

Figure 4.2 illustrates the payment process initiated by the smart contract as the
collection of the rent amount and transfer of the money from the tenant’s account to
the landlord’s account. During this process, the two parties can use their blockchain
addresses in order to transfer the money. In Ethereum, the built-in currency is used
as a medium of exchange. On the other hand, participants in Hyperledger Fabric
are modeled with an assumed account balance to achieve this functionality.

35

4. Implementation

Figure 4.3: The termination of the agreement by the landlord.

Figure 4.3 illustrates the termination of the smart contract by the landlord.
When the two parties have decided to end the agreement, or the tenant violated
one of the terms, the landlord sets the smart contract status to Terminated and the
contract is no longer active. The tenant is no longer able to interact with the smart
contract or make any payments at all. After the smart contract is terminated it will
continue to exist on the blockchain, but payments can not be made anymore, and
the state will remain the same.

Role Function Description

Landlord
readTerms() Read the description of the house

and the terms of the contract
terminate() Terminate the lease of the contract

Tenant

readTerms() Read the description of the house
and the terms of the contract

signContract() Sign the contract and be
obliged to the terms

payRent(month,year) Pay the rent corresponding to
a specific month into the year

Table 4.1: Smart contract basic operations for landlord and tenant.

Table 4.1 lists the four basic leasing operations implemented in the smart con-
tract. After the smart contract deployment, the implemented functions become
available on the blockchain. In order to read the description of the house and the
terms of the contract, someone can call the function readTerms(). Signing the
contract is achieved by calling the signContract() function. The smart contract
then is linked with his/her blockchain address and they are the only ones that can
pay the rent using the function payRent(). The landlord can also terminate the
smart contract using the function terminate(), and the tenant is no longer able to
interact with the smart contract. For the purpose of this thesis we left out the case
of the contract termination by the tenant, but it can added in the future work.

36

4. Implementation

4.1.3 Design of the Negotiation Mechanism

Figure 4.4 illustrates the negotiation of the contract terms between the landlord and
the tenant. The state of the smart contract should be underReview, in order for
someone to propose any changes to the terms. First, one of the two participants
makes a proposal and then the other one reads the proposed terms and either accepts
or declines the changes. In this case, there are two potential scenarios: the tenant
makes a proposal after reading the initial terms and then the landlord reviews the
proposed terms or the opposite.

Figure 4.4: The smart contract negotiation process initiated by the
tenant.

In order to distinguish these two scenarios, the smart contract also tracks the
state of the negotiation process using two states: tenantProposed and landlordProposed.
Once someone has accepted the new terms, the smart contract automatically adapts
to the new terms and lease of the contract initiates. Thus, the state of the smart
contract changes to Initiated. The negotiation library can be considered as a piece
of code that can be called by other contracts, without the need to deploy it again.

Role Function Description

Landlord

proposeNewTerms() Propose one or a few changes
in the terms of the contract

/Tenant
readNewTerms() Read the terms that

have been proposed
declineNewTerms() Decline the proposed terms
acceptNewTerms() Accept the proposed terms

Table 4.2: Smart contract functions used for negotiations of the terms.

Table 4.2 lists the four functions implemented in the smart contract which are
used for the negotiation process. Each of these function calls the appropriate func-
tion implemented in the negotiations library, thus any modifications the library does
will be saved in the main smart contract’s own storage. After the tenant has read the

37

4. Implementation

initial terms, it is possible to make a proposal for one or more changes in the terms
of the contract using the function proposeNewTerms(). The landlord then, can
review the terms proposed, by the tenant by calling the function readNewTerms()
and either accepts or declines the changes using the function acceptNewTerms() or
declineNewTerms() respectively. If the landlord accepts the new terms the state
of the contract changes to Initiated, while if they decline the proposed terms, the
state changes to Terminated. The negotiation process can also be executed from
the landlord’s side, where they makes the proposal and the tenant can accept or
decline the new terms.

4.1.4 Role-based Access Control Model

The related work of this thesis (section 2.5) includes two implementations for access
control [27, 28] which are IoT-based systems operating on the blockchain technology.
Additionally, Cruz et al. [29] proposed an RBAC system based on the Bitcoin
network to provide an irrefutable proof of the role of the users. In order to implement
a smart contact that restricts access to specific participants in the contract, we need
to define an RBAC model that indicates the level of access each member has been
given.

State: Created
Role readTerms() signContract() payRent() terminate()
Landlord X 7 7 X
Tenant X 7 7 7

Rest X 7 7 7

State: Initiated
Role readTerms() signContract() payRent() terminate()
Landlord X 7 7 X
Tenant X 7 X 7

State: Terminated
Role readTerms() signContract() payRent() terminate()
Landlord X 7 7 7

Tenant X 7 7 7

State: underReview
Role readTerms() signContract() payRent() terminate()
Landlord X 7 7 X
Tenant X X 7 7

Table 4.3: Access control list for the smart contract basic operations.

Table 4.3 shows the authorization of each party to execute the basic operations
of the smart contract, while also includes the rest of the nodes on the network (state
= Created) only for the case of the Ethereum blockchain (public). Each member has
specific authorization to the functions implemented in the smart contract, according

38

4. Implementation

to their role. The landlord and the tenant are able to read the terms at any time,
but once the smart contract is initiated no other party is able to do so. To initiate
the lease of the contract someone except the landlord has to sign the contract. The
tenant, which is the party that has signed the contract, is the only one that is allowed
to execute the payment of the rent.

Negotiation: landlordProposed
Role proposeNewTerms() readNewTerms() accept() decline()
Landlord 7 X 7 7

Tenant X X X X
Negotiation: tenantProposed

Role proposeNewTerms() readNewTerms() accept() decline()
Landlord X X X X
Tenant 7 X 7 7

Table 4.4: Access control list for the terms negotiation functions.

Table 4.4 describes the authorization of each party to execute the functions
of the smart contract terms negotiation. After the deployment of the contract by
the landlord the state of the negotiation process is initialized to landlordProposed
and allows the tenant to make a request of one or more changes to the contract
terms, which the landlord can accept or decline. Thus, both parties can initiate
negotiations (two-way) but there is a restriction of who can accept or decline the
proposal. Although, they both can read the new terms at any time.

4.2 Hyperledger Fabric Implementation

The implementation of the PoC makes use of Hyperledger Composer (from here on
referred to as Composer), which is a rapid collaborative framework for developing
applications that make use of Hyperledger Fabric. Composer is an open source
project consisted of a modeling language called Composer Modelling Language, a
user interface to quickly configure and test the business network called Composer
Playground and Command Line Interface (CLI) tools to integrate Composer with
an existing Hyperledger Fabric blockchain. The chaincode or Smart contracts are
developed using JavaScript to house the transaction logic of the business network.
Furthermore, the access control definition is written in a simplistic language. All
these tools are bound together into a Business Network Definition (BND) archive
and deployed on the Hyperledger Fabric blockchain.

39

4. Implementation

4.2.1 System Setup

Figure 4.5 shows a simplified business model and the various resources of the CRE
business network. The network is made up of assets and participants. In business
terms, an asset is anything that is deemed to have value and can be exchanged in a
business network. In the Hyperledger Fabric PoC implementation, the assets include
the houses, contracts and contract terms that tenants and landlords have access to.
The contract asset is the center of the business relation between the participating
parties. It also relates the landlord, tenant, and contract to the terms that govern
the relationship. A participant is a legitimate member of a business network. In the
CRE network, participants include tenants that look to rent houses and landlords
that own the property.

Figure 4.5: Simplified CRE business network model in Hyperledger.

The CRE network was modeled and tested using Composer Playground run-
ning in browser-only mode with no validating blockchain. The mock blockchain
resides in the browser’s history and allows the developer to test the transaction
logic and access control list rules. Playground runs in a docker container and can
either be fired from the loop-back address or from the IBM Bluemix server (simi-
lar to the Remix Solidity IDE). The modeled business network was later deployed
to a validating blockchain on a development environment consisting of two peers
that handle transactions arising from the two sets of participants. The endorse-
ment policy is set in such a way that both peers sign transactions before they are
executed and subsequently written to the peers’ permanent storage. Similarly, the
Composer CLI tools install the chaincode and a supporting SDK (in this case, the
NPM JavaScript runtime environment) in order to issue and execute transactions.

40

4. Implementation

4.2.2 Transaction Processing

Transactions allow participants to interact with the assets. Chaincode consisting
of logic from the various operations of the CRE application are first modeled us-
ing the Composer Modeling Language and later implemented as functions using
JavaScript. The modeled transactions are implemented with the help of transac-
tion processor functions. The transaction processor function declaration contains
metadata and a qualified JavaScript function name used to call the function. The
metadata contains a parameter declaration used to call the function and the names-
pace resource of the transaction in the model file. Finally, the declaration contains
a @transaction tag that identifies the subsequent code as a transaction processor
file. Listing 4.1 describes how a function to handle the functionality of paying the
rent is defined in a chaincode file.

/**
* transaction to pay rent by the tenant
* @param {estate.payRent} cont
* @transaction
*/
async function payRent(cont) {

const amount = cont.amount;
const cont_rent = cont.cont_terms.rent;
const ten_balance = cont.tenant.balance;

if(amount < cont_rent || amount < ten_balance){
console.log("Insuficient balance")

}else{
//apply the rent
cont.landlord.balance += cont.amount;
cont.tenant.balance -= cont.amount;

//Update the tenants balance
const tenant = await await
getParticipantRegistry('estate.Tenant');
await tenant.update(cont.tenant);

//update the landlords balance
const landlord = await await
getParticipantRegistry('estate.Landlord');
await landlord.update(cont.landlord);

console.log("Rent of: "+amount+" has been paid");
}

}

Listing 4.1: Sample transaction processor function to make payments.

41

4. Implementation

4.2.2.1 Access Restriction

Hyperledger Fabric offers a fined grained security mechanism to protect the resources
of the business network. There are two levels of security in this implementation:

• Hyperledger Fabric administrator: This is the administrator of the blockchain
and was defined when installing the Hyperledger Fabric on the development
computer. The blockchain administrator oversees the entire network and can
add/delete peers as well as issue/revoke security credentials of participating
organizations. The blockchain network has a peer node for each organiza-
tion named peer0.org.tenant.com and peer1.org1.landlord.com. Fur-
thermore, the network consists of a single certification authority (CA) running
at port 7054 and a single ordering service running at port 7050. Finally, there
is one channel created in the blockchain system and both peers joined it.

• Business network administrator: This administrator is created when the busi-
ness network administrator is deployed to the blockchain, which is responsible
for authentication of participants of the network.

As already alluded to, identity management in Hyperledger Fabric is very cardinal.
In this implementation, ID cards are issued to all the participants by the business
network administrator. An ID is a collection of all the necessary authentication
information that allows a participant to connect to a business network. As an
example tenant1@estate-network is a card issued for participant Tenant1.

rule R1b_ReadTerms {
description: "Tenant can read terms only if the ID is
equivalent to participant"
participant(t): "estate.Tenant"
operation: ALL
resource(c): "estate.readTerms"
condition: (c.owner.getIdentifier() == t.getIdentifier())
action: ALLOW

}

Listing 4.2: Access Control List (ACL) rule to restrict access to the read
terms function.

Following the role-based rules defined in Section 4.1.4, necessary rules have been
included in the BND file. Listing 4.2 shows one of the access control list rules used
in the implementation. In this listing, the participant clause relates to the Tenant
participant and operation clause suggests that if the rule is met, then all the CRUD
(Create, Read, Update, Delete) operations are allowed. Furthermore, the resource
being restricted in this case being the readTerms function is specified under the
resource clause on the condition that the ID contained in the contract is equivalent
to the ID attempting to execute the readTerms function. There are four rules in

42

4. Implementation

total and the reader is invited to refer to the Appendix for more details about the
source code.

4.2.3 Negotiation Mechanism

In our PoC implementation, we implemented four additional functions in the smart
contract, one for each of the operations of the negotiation mechanism, and two
extra functions in the Ethereum library implementation that can be called by the
smart contract. Unlike the library implementation in Ethereum, Hyperledger Fabric
implements the negotiation scheme as transactions modeled and implemented in the
smart contract, thus only the basic four functions are implemented. This scheme is
more secure as extra access controls can be applied to the modeled transactions and
fulfills the bilateral negotiation between the tenant and landlord. A more detailed
description of the negotiation logic flow can be found in Section 4.3.3.2, but in the
case of Hyperledger Fabric the flow is made up of four transactions that move the
contract between the Initiated or Terminated states. The negotiation scheme is
achieved using the following functions:

• readTerms(): The function retains the terms of the house set by the landlord.
The tenant and/or landlord can call this function once a contract has been
created and is in the underReview state. The access control rule only allows
the assigned landlord and tenant to call this function. Consequently, the tenant
or landlord can choose to either accept, decline or propose new terms.

• proposeNewTerms(): This function allows both the tenant and landlord that
are assigned to a contract to propose new terms. The contract state is changed
to the underReview state. Similarly, the appropriate control rule allows only
the assigned parties to invoke this function. Furthermore, once terms are
proposed, an event is created to notify the other party.

• acceptNewTerms(): The function is invoked when the proposed terms of the
contract are acceptable to either parties. The state of the contract is moved
to the Initiated state.

• declineNewTerms(): The function is invoked when the proposed terms of
the contract are not acceptable to either parties. The state of the contract is
moved to the Terminated state.

4.3 Ethereum Implementation

In this section, we describe the implementation of our PoC for residential prop-
erty agreements in Ethereum platform. First, we present the developing tools and
thereafter we continue with the description of the implementation in Solidity.

43

4. Implementation

4.3.1 System setup

In order to develop and deploy smart contracts in the Ethereum blockchain, an
appropriate setup is required to allow the interaction between the developer’s com-
puter machine and the rest of the devices connected to the blockchain network. The
first step is to set up an Ethereum node and connect it to the Ethereum network.

4.3.1.1 Ethereum Node

An Ethereum node, in its simplest form, can be viewed as any device that is running
the Ethereum protocol [4]. Ethereum nodes are typically running on any type of
computers, such as desktops or laptops. Any computer that is running the Ethereum
protocol, is actually connected to the Ethereum blockchain network and is running
a node. Ethereum nodes are also connected to other nodes in the network, and they
have direct access to the blockchain, and can contribute to the mining process, send
transactions, and deploy smart contracts.

4.3.1.2 Remix Web Browser IDE

Remix is a browser-based compiler and IDE that enables developers to write Ethereum
smart contracts with Solidity language and to debug transactions. Typically it is
used for medium to small sized smart contracts and provides plenty of useful features
to the developers, such as:

• Step by step integrated debugger for monitoring the instructions, variables,
and calls to data or the stack.

• Generating warnings for unsafe code, gas cost, whether functions could be
constant, and more.

• Integrated testing and deployment environment.

• Static analysis, syntax, and error automatic highlighting.

• Support for injected Web3 objects (local or remote Ethereum node).

Remix is an all-in-one web-based solution for developing and deploying Ethereum
smart contracts. Remix provides all the necessary infrastructure to write, debug and
test the smart contract making the development process effortless. Thus, developers
can test their source code without setting up Ethereum nodes or wallets to initiate
the sample transactions.

44

4. Implementation

4.3.2 Building the Smart Contract

The Solidity code is statically typed, supports inheritance, libraries and complex
user-defined types among other features. Solidity is a contract-oriented, high-level
language that is designed to target the Ethereum Virtual Machine (EVM). At the
time of writing this thesis, the latest Solidity version was 0.4.21. Solidity source
files are annotated with a so-called version pragma to reject being compiled with
future compiler versions that might introduce incompatible changes.

4.3.2.1 State Variables

Before implementing any functions in the smart contract, we defined the state vari-
ables which are permanently stored in contract storage, once the contract is de-
ployed. Our PoC implementation consists of two participants, the landlord and
the tenant, so we keep their blockchain addresses in two address variables, namely
landlord and tenant. Each smart contract handles one house, so we also defined
several string variables to keep the house details and unsigned integer variables
for the leasing terms respectively. The house details include the address, the zip
code and the city of the house, while the leasing terms consist of the contract de-
ployment date, the amount of rent, the duration, the last day of the month that the
tenant can pay the rent and the penalty fee for the delayed payments. Moreover,
the states of the contract and the negotiation process are also defined as enum types
which is a user-defined type. In order to keep track of the payments we defined a
data structure RentPaid with the following attributes: paymentID, paymentDate,
rent, month and year. In addition, we defined a list of this struct to keep a history
log of all payments.

4.3.2.2 Functions

The landlord deploys the smart contract using the contractor of the smart contract,
which is a public function called HouseLeasing(). This function has the same name
as the smart contract and it is called along with the house details and the leasing
terms as input arguments. Public functions can be accessed by all nodes, while
private functions are only accessible by the contract itself. The state variables are
modified accordingly and the two types of states are initialized to the default values
(state = Created and negotiation = lanlordProposed). The leasing operation
supports four operations, thus we implemented four public functions accordingly:

• readTerms(): Returns the house details and the initial terms that the landlord
has set. This function is accessible by everyone once the contract is created, but
if a potential tenant makes a call to the function, the smart contract set on hold
(state = underReview) until they finish their procedure (read/negotiate/sign).
After that, the rest of the parties are excluded from the smart contract and

45

4. Implementation

only the landlord and the potential tenant can use the function. In order to
restrict the access in this function, we implemented appropriate modifiers that
check whether the blockchain address of the party that makes the call is the
landlord or the tenant.

• signContract(): Sets the agreement between the landlord and the tenant and
binds the tenant to the terms. Once the potential tenant has read the terms
of the smart contract using the function readTerms(), his/her blockchain
address has been stored in the smart contract and they are the only one that
have access to the function signContract(). No other blockchain address can
call this function (using modifiers), and once it is called, it initiates the lease
of the contract (state = Initiated). After this point it is no longer accessible,
preventing the overwriting of the tenant’s blockchain address.

• payRent(month,year): Takes as input the month and the year of the payment
initiated by the tenant and transfers the amount of digital money (ether)
from the tenant’s blockchain address to the landlord’s one. Besides the input
arguments, the definition of the function contains also the keyword payable,
which is a modifier allowing the function to receive ether. Once the contract
is initiated, the function allows only the tenant to use it in order to make
payments. Moreover, an extra modifier checks whether the amount of money
that is about to be transferred corresponds to the amount of rent that is agreed
by the two parties. The date of the payment is also checked by the function
and if the due day was earlier it checks if the amount transferred includes also
the penalty fee for delayed payments. The amount of ether that is transferred
(in wei) is actually the value of the message.

• terminate(): Terminates the lease of the contract and sets the state of the
contract to Terminated. The landlord can use this function if the tenant
violated any of the rules, otherwise, it is called automatically after the period
of time the two parties have agreed upon. If there is an unpaid rent, this
function will be called once the tenant completes the transfer of money.

4.3.2.3 Events

Solidity also supports events, allowing usage of the Ethereum Virtual Machine log-
ging facilities. Specifically, they can call JavaScript callbacks in the user interface
of a dApp, which listens to these events. When they are called, they cause the
arguments to be stored in the transaction’s log (a special data structure in the
blockchain), thus they are inheritable members of contracts. Events are emitted
using the keyword emit followed by the name of the event and the arguments. Any
such invocation can be detected from the JavaScript API by filtering for Deposit.
In our implementation, we defined four events, one for each function, as follows:
termsRead(), contractSigned(), rentPaid(), and contractTerminated().

46

4. Implementation

4.3.2.4 Access Restriction (Modifiers)

Restricting access is a common pattern for smart contracts, but it is impossible
to restrict any human or computer from reading the content of the smart contract
transactions. Although, it is possible to restrict who can make modifications to the
state of the smart contract or make calls to its functions. In particular, modifiers
can be used by functions to allow only certain participants to execute the function,
thus this is a way of checking a condition prior to executing the function. Listing
4.3 shows how function modifiers are defined and used in the Solidity programming
language.

/* Smart contract constructor */
function Example() {

/* State variables initialization */
creator = msg.sender;

}

/* Modifier definition */
modifier onlyCreator() {

/* If the condition is not met then throw an exception */
if (msg.sender != creator) throw;
/* or else just continue executing the function */
_;

}

/* Adding modifier to the function */
function kill() onlyCreator {

selfdestruct(creator);
}

Listing 4.3: Example modifier used to check a condition prior to executing
the function.

In our PoC implementation, we implemented five function modifiers that they
are used by our basic functions, in order to restrict access to them:

• _require(bool condition): A modified version of the pre-defined ‘guard’
function require(condition,‘error’), which takes as an input one Boolean
condition, and returns an error if the condition does not hold. The require()
pre-defined function takes two inputs, the condition and the error message,
while our modified function uses only the condition as an input and returns
the same result as the pre-defined function.

• onlyLandlord(): Checks if the Ethereum address that tries to call the func-
tion, corresponds to the registered landlord’s Ethereum address. If not it
returns an error message.

47

4. Implementation

• onlyTenant(): Checks if the Ethereum address that tries to call the function,
corresponds to the registered tenant’s Ethereum address. If not it returns an
error message.

• isState(State state): Compares the current state of the smart contract
with a given input of the contract state (Created, Initiated, Terminated,
or underReview). If the contract is not in the same state as the given input,
it returns an error.

• isNegotiationState(NegotiationState negotiationState): Compares the
current state of the smart contract negotiation process with a given input of
the negotiations state (landlordProposed or tenantProposed). If the nego-
tiations are not in the same state as the given input, it returns an error.

4.3.2.5 Helper Functions

In order to clarify and evaluate the leasing operations of our smart contract, it
is essential to use appropriate functions that return basic values. Therefore, we
implemented several helper functions to read the values from the blockchain at any
time, in a similar way setter and getter methods are implemented in Java:

• getHouseDetails(): Returns the details of the house property, such as the
address, the zip code and and the city.

• getLandlord(): Returns the landlord’s Ethereum address.

• getTenant(): Returns the tenant’s Ethereum address.

• getContractAddress(): Returns the smart contract’s Ethereum address as a
string.

• getContractCreated(): Returns the timestamp of the smart contract’s cre-
ation, or more specifically the timestamp of the smart contract’s first block.

• getState(): Returns the state of the smart contract.

• getNegotiationState(): Returns the state of the negotiation process.

• getBalance(): Returns the available balance (in wei) of the Ethereum address
that makes the call to the function.

• getRentPaid(): Returns the history log of the rent payments made by the
tenant.

48

4. Implementation

4.3.3 Negotiation Mechanism

In this section, we describe the implementation of the mechanism for negotiation of
the smart contract terms. The negotiation process is bilateral, thus both sides can
propose and review the terms of the contract.

4.3.3.1 Libraries in Solidity

In Solidity, libraries have no storage and do not hold any assets (ether). A Solidity
library can be considered as a piece of code that can be called from any smart
contract written in Solidity, without the need to deploy it again. This concept
allows developers to save substantial amounts of gas while the blockchain is not
contaminated with repetitive code. The fact that different smart contracts can rely
on the same library that has been already deployed, creates a more clean and secure
environment across the Ethereum blockchain. Solidity libraries can contain logic and
are used to extract code away from the smart contracts for maintainability and reuse
purposes. Nonetheless, libraries are separate storage contracts, thus, an extra call
to the storage contract is necessary besides the one from the action contract through
the interface. Moreover, the developers should always check a public library before
using it in their smart contract, in order to ensure that does not pose any security
risks.

4.3.3.2 Library Implementation

Libraries are defined using the keyword library, instead of contract that is used
in the smart contract. Thereafter, the library is imported in the smart contract and
the smart contract can call the functions implemented in the library. In our PoC
implementation, we implemented four additional functions in the smart contract,
one for each of the operations of the negotiation mechanism, and two functions in
the library that can be called by the smart contract:

• proposeTerms(rent,duration,day): Takes as input the proposed rent, du-
ration and last day to pay and initiates a proposal using the library’s function
makeProposal(rent,duration,day). This function can only be used if the
smart contract state is underReview, while the initial terms of the contract
are not altered, and the proposed terms are kept in a different structure within
the library. Similarly to the four basic functions, we used modifiers to check
whether the blockchain address of the party that makes the call is the landlord
or the tenant.

• readNewTerms(): When either the landlord or the tenant has proposed new
terms, the other party can use this function to read the proposed terms, using
the library’s function readProposal(). If one or more terms have been pro-
posed, the library function returns the proposed terms and the smart contract

49

4. Implementation

function shows them to the user respectively.

• acceptNewTerms(): If one or more terms have been proposed, the party that
did not make the proposal can accept the requested terms. The state of the
smart contract is set to Initiated, and the negotiation process is terminated.

• declineNewTerms(): If one or more terms have been proposed, the party that
did not make the proposal can decline the requested terms. The state of the
smart contract is set to Terminated, and both the smart contract and the
negotiation process are terminated.

Figure 4.6: Interaction between the smart contract and the library.

Figure 4.6 shows the communication between the smart contract and the ne-
gotiation library by listing the methods defined. The library uses a data structure
to keep track of the proposals, by storing the rent, duration, last day to pay and
the date that the proposal had been made. Moreover, we defined two functions to
handle the proposals:

• makeProposal(proposals,rent,duration,day): Takes as input the proposed
rent, duration and the last day to pay, and stores the information along with
the timestamp of the proposal in the proposal data structure. It categorizes the
proposals by different smart contracts, ensuring that proposal from different
smart contracts and parties are not mixed together.

• readProposal(proposals): Returns the contents of the proposed terms that
are stored in the proposals. Similar to the previous function, participants
from other smart contracts cannot read the proposals of each other negotiation
process.

4.3.4 Wallet Recovery

Ethereum’s public mode of operation allows parties to freely join and leave from
the blockchain, lacking a verification mechanism to its users. Thus, participants can

50

4. Implementation

come and go whenever they want without the need of subscription. Therefore, if a
participant in a smart contract leaves the blockchain, and wants to regain full access
again using a new identity, the blockchain is not aware if the person trying to join
is the same person or another. In our PoC implementation, the smart contract is
always linked with two Ethereum addresses, the tenant’s and the landlord’s. If one
of those two loses access to their Ethereum address, they instantly lose access to
the smart contract as well. Losing access to the Ethereum address simply means
that the participant lost access to the wallet that handles the specific Ethereum
address or the Ethereum address of the wallet has changed. Thus, we designed and
implemented an additional mechanism to identify if a person trying to restore access
is the same person who left the blockchain network before.

Figure 4.7: Tenant links a new wallet using the private recovery key.

Figure 4.7 illustrates an example of linking a new wallet (Ethereum address)
to the smart contract by the tenant. In our implementation, we assumed that one
Ethereum wallet handles one Ethereum address, and not multiple addresses. Some
wallets are able to generate different Ethereum addresses for every transaction for
security reasons, but this does not apply to our case. A recovery key is automatically
generated and sent to the landlord after the smart contract becomes available on the
blockchain (state = Created). In particular, the computation of the key (256-bit
number) is the Ethereum-SHA-3 (Keccak-256) hash of the current block (the block
of the smart contract deployment). The recovery key for the tenant is generated and
becomes available only to this party, once the terms have been read and the contract
state is set to Initiated or underReview. The two parties store their recovery keys
in a safe place (e.g. paper - not digital storage), and they can use them at anytime
to revoke their access to the smart contract. The wallet recovery mechanism has
two functions one for each of the participants:

• recoverLandlord(key): Takes as an input the landlord’s recovery key and
modifies the landlord’s Ethereum address associated with the smart contract.

• recoverTenant(key): Takes as an input the tenant’s recovery key and mod-
ifies the tenant’s Ethereum address associated with the smart contract.

51

4. Implementation

52

5
Evaluation

In this chapter, we describe the evaluation process of the Proof of Concept (PoC)
proposed in chapter 4, which includes a Role-based Access Control (RBAC) mech-
anism and a novel library implementation for negotiation of the smart contract
terms. First, we describe the fulfilment of our evaluation methodology and second
we present the findings according to this criteria. Further, we perform a performance
evaluation on Ethereum implementation investigating the gas consumption in our
PoC implementation.

5.1 Evaluation Criteria

In this section we describe the evaluation criteria according to the methodology
defined in Chapter 1. Table 5.1 lists the evaluation criteria for Ethereum and Hy-
perledger Fabric. They are divided into three categories according to the target
being evaluated. Firstly, we evaluate the leasing operation of both implementations
by running multiple scenarios for all of the leasing functions. These scenarios in-
clude also the evaluation of the successful deployment of the smart contracts in the
two different target blockchain networks. Secondly, we evaluate the functionality
of the RBAC mechanism with dedicated scenarios that exploit the access to the
smart contract contents. In such scenarios, we expect to find how the two PoC
implementations handle participants that have no authorization to access the con-
tents. Lastly, we evaluate the negotiation library by executing different scenarios
from both sides (landlord and tenant), where requests are sent bilateral.

Explicitly in Ethereum, we also evaluate the functionality of the wallet recov-
ery mechanism for participants that lost their access to the wallet that is linked
to the smart contract. No such mechanism is necessary in the Hyperledger Fab-
ric implementation, because the business network administrator handles all of the
subscriptions of the participants in the network.

53

5. Evaluation

Blockchain Target Scenario Description

Ethereum and
Hyperledger Fabric Leasing operation

Evaluate the functionality of
the leasing utility. Check the
basic functions for reading the
terms, signing and terminate
the contract, and paying the rent.

Ethereum and
Hyperledger Fabric RBAC mechanism

Evaluate the access restriction
to certain parties. Check if non-
authorized participants are denied
access to the smart contract
functions and contents.

Ethereum and
Hyperledger Fabric

Negotiation
library

Evaluate the functionality of
the automated process for terms
negotiation. Check if the nego-
tiation library can handle the
proposals of both parties.

Ethereum Wallet recovery

Evaluate whether a participant
can gain access to the smart
contract using a new Ethereum
wallet.

Table 5.1: Evaluation criteria for Ethereum and Hyperledger Fabric.

5.2 Descriptive Evaluation

Our main evaluation objective is the descriptive evaluation of our PoC implementa-
tion, performed using the functional criteria. We evaluate the two PoC applications
implemented in two different blockchain systems and then we present our findings.
For more details on the source code, the reader is directed to the appendices, where
the source code of both implementations (Ethereum and Hyperledger Fabric) is
available.

5.2.1 Leasing Operation

The evaluation of the smart contract leasing operation was held using scenarios
of two participants, the landlord and the tenant. The most fundamental action
is the deployment of the smart contract, performed by the landlord. Once it has
been deployed, the potential tenant can read, negotiate, sign and pay the rent of the
contract. We conducted multiple scenarios where one participant (landlord) initiates
the contract lease and then the two participants try to call all of the functions
available by the contract.

54

5. Evaluation

Figure 5.1 shows the smart contract deployment on Ethereum blockchain us-
ing the Remix IDE. In this particular scenario the landlord owns an apartment
located in Gibraltargatan 36, Gothenburg 41258, and uses the Ethereum address
0xca35b7d915458ef540ade6068dfe2f44e8fa733c.

Figure 5.1: Smart contract deployment on Ethereum blokchain.

The smart contract is linked with the negotiation library, so therefore the library
is automatically deployed after the smart contract creation. Figure 5.2 shows the ne-
gotiation library deployment on Ethereum blockchain using the Remix IDE. Remix
IDE offers multiple Ethereum addresses to test transactions on the blockchain. In
our case, we set the gas limit to 30 Mwei (=30000000 wei) and then we initiated
the transaction. The transaction was verified by the network (miners) and the
smart contract has been deployed successfully on the blockchain with a permanent
Ethereum address.

Figure 5.2: Negotiation library deployment on Ethereum blokchain.

In contrast, the deployment of the contract and creation of the participants (ten-
ants and landlords) in Hyperledger Fabric is the sole responsibility of the business
network administrator as already alluded to in Section 4.3.1. Figure 5.3 illustrates
the administrator deploying the business network to an existing Hyperledger Fabric

55

5. Evaluation

blockchain using Composer. The business network bundles the model and smart
contract files into a business definition archive.

Figure 5.3: Deployment of the business network to Hyperledger Fabric.

Using the Composer Playground (similar to the Remix IDE for Ethereum), the
business network administrator is able to call the createTenant and createLandlord
functions to instantiate the necessary participants. Equally, Figure 5.4 shows the
creation of two network participants on the business network along with their iden-
tifications, names, and balances.

Figure 5.4: Creation of two network participants on Hyperledger Fabric.

56

5. Evaluation

5.2.2 RBAC Mechanism

The evaluation of the RBAC mechanism was done by executing illegal transactions
where non-authorized participants try to execute functions in the smart contract. In
this case, appropriate function modifiers have been used to block any illegal trans-
action. Besides the restriction to non-authorized participants in the smart contract,
the function modifiers protect also the active members of the smart contract. They
are allowed to execute only certain functions, thus their roles are immutable during
the lease. Table 5.2 lists the basic functions of the smart contract leasing operation
and the corresponding function modifier (Ethereum) or rule (Hyperledger Fabric)
used for access restriction.

Function Blockchain Motivation

readTerms()

Ethereum

The function modifier
_require(condition) restricts
the access to this function.
The condition allows only
the landlord and the tenant.

Hyperledger
Fabric

The rule R1b_ReadTerms{}
restricts the access to this
function (only landlord and
tenant).

signContract()

Ethereum

The function modifier
onlyTenant() restricts
the access to this function.
It allows only the tenant.

Hyperledger
Fabric

The rule R2b_SignContract{}
restricts the access to this
function (only allowing the
interested tenant).

payRent(month,year)

Ethereum

The function modifier
onlyTenant() restricts
the access to this function.
It allows only the tenant.

Hyperledger
Fabric

The rule R3b_PayRent{}
restricts the access to this
function (only tenant).

terminate()

Ethereum

The function modifier
onlyLandlord() restricts
the access to this function.
It allows only the landlord.

Hyperledger
Fabric

The rule R4b_Terminate{}
restricts the access to this
function (only landlord).

Table 5.2: Evaluation of the RBAC mechanism for the leasing operation.

57

5. Evaluation

An Ethereum case scenario in Section 5.2.1.1 shows the deployment of the smart
contract (and the library) by the landlord (0xca3...a733c). A potential tenant
(0x147...c160c) tries to read the terms and then sign the contract. Figure 5.5
shows the two transactions initiated by the potential tenant. The potential tenant’s
Ethereum address is stored safely in the smart contract once they open the terms.

Figure 5.5: The potential tenant reads the terms and signs the contract.

If another potential tenant using a different Ethereum address tries to sign the
contract without first reading the terms (or if someone else has already opened the
terms), the first will not be able to deploy the transaction on the blockchain. Figure
5.6 shows an illegal transaction from a potential tenant (0x4b0...4d2bd) that has no
authorization to sign the contract.

Figure 5.6: A non-authorized user attempts to sign the smart contract.

58

5. Evaluation

The same policy for access restriction applies to all of the functions mentioned
in Table 5.2. Our PoC implementation in Ethereum fulfills all of the requirements
that have been proposed for both leasing operation and the RBAC mechanism.
Conversely, the RBAC in Hyperledger Fabric works with the issuance of partici-
pant identities by the network administrator. Figure 5.7 illustrates the participant
identities that have been issued by the administrator.

Figure 5.7: Participant identities issued by the administrator.

Initially, a potential tenant is assigned a contract once it has been created.
Ideally, another tenant should not have access to that contract as stipulated by Table
5.2 and the access rule R3b_PayRent{} allows participants who are have designated
access to a contract to pay a monthly rent. Figure 5.8 illustrates what happens when
TENANT1 attempts to access a contract assigned to TENANT2 and issue the PayRent()
function.

Figure 5.8: Tenant attempts to access a contract assigned to another
tenant.

Similarly, all the access control policies operate in the same manner. Hyper-
ledger Fabric literally checks the identity of the participant that has issued an opera-
tion to the blockchain and acts according to the access control list rules implemented
in the business network.

59

5. Evaluation

5.2.3 Negotiation Library

Our main contribution in this thesis was the design of a library that handles ne-
gotiations between the two parties in the smart contract automatically. Thus, the
evaluation of the library was also our priority. We conducted tests where the two
parties initiate the negotiation process by proposing new terms, reviewing the terms
that have been proposed and the accept of decline the final offer. Figure 5.9 shows
the terms negotiation between two participants using Ethereum blockchain.

Figure 5.9: Terms negotiation between the landlord and potential tenant.

Following the previous scenario, where the landlord (0xca3...a733c) deployed
the smart contract and a potential tenant (0x147...c160c) opened the terms, in this
example the second tries to propose new terms. Thereafter, the landlord opened the
proposal made by the other participant and decided to accept the proposed terms.

60

5. Evaluation

During the negotiation process, the two participants communicate only through the
smart contract, and the smart contract uses the library to handle the proposals.
This feature allows developers to create libraries that can handle a specific workload
of multiple smart contracts. Thus, generic libraries can be deployed once on the
blockchain and then can be executed numerous times as reusable code, providing
also anonymity throughout the smart contracts.

Similarly, the negotiation mechanism in Hyperledger Fabric follows the bilateral
negotiation of the terms of contained in a smart contract. Figure 5.10 shows a
tenant querying the blockchain to view the terms contained in the contract. At this
point, the tenant can either accept or otherwise propose new terms and update the
contract. The landlord receives an event notification of the tenant’s action and can
subsequently accept these new terms or counter-propose other terms.

Figure 5.10: Terms negotiation transaction in Hyperledger Fabric.

5.2.3.1 Wallet Recovery

Ethereum platform supports the notion of wallets connected to the participants of
the network, to keep and transfer the digital asset, ether. Therefore, the wallet
recovery mechanism is only necessary for the PoC implementation in Ethereum
blockchain. Figure 5.10 shows the wallet recovery process for the landlord’s wallet.

61

5. Evaluation

The smart contract supports also the wallet recovery for the tenant’s account.

Figure 5.11: Landlord links a new wallet to the smart contract.

The first transaction is an automated transaction initiated by the smart con-
tract, once it is deployed on the blockchain, and produces a unique recovery code
for the landlord. The landlord keeps safely this number and can use it at anytime
to link another wallet to the smart contract. The second transaction is made by the
landlord using another Ethereum wallet address and the recovery code obtained after
the creation of the contract. This method provides some level of security towards
exploits and attacks. Guessing the unique recovery code is a very hard process,
because of Ethereum’s built-in currency and the notion of gas.

5.3 Ethereum gas consumption

Although we mentioned we will not evaluate the system in terms of performance,
we conducted a performance evaluation for Ethereum in terms of gas consumption.
We performed multiple executions of the smart contract and the functions and we
measured the gas consumption of each one individually. Table 5.3 lists the smart
contract functions used for leasing and negotiation process respectively, along with
the gas consumption.

62

5. Evaluation

Function Transaction Cost Execution Cost
HouseLeasing() 2,211,891 wei 1,682,031 wei
NegotiationLibrary() 125,344 wei 54,552 wei
readTerms() 92,109 wei 70,837 wei
signContract() 28,686 wei 7,414 wei
payRent() 152,642 wei 130,922 wei
terminate() 29,491 wei 8,219 wei
proposeTerms() 111,968 wei 89,992 wei
readNewTerms() 26,248 wei 4,976 wei
acceptNewTerms() 29,633 wei 8,361 wei
declineNewTerms() 29,578 wei 8,306 wei

Table 5.3: Ethereum performance evaluation in terms of gas consumption.

In the table, the transaction cost is based on the cost of sending data to the
blockchain and depends on four parameters: the base cost of a transaction, the
cost of a contract deployment, the cost for every zero byte of data or code for a
transaction, and the cost of every non-zero byte of data or code for a transaction.
However, the execution cost is based on the cost of computational operations which
are executed as a result of the transaction. Figure 5.11 shows Ethereum price over
the past two years which can be related to the gas consumption measured in wei.
Ethereum price hit a record high of $1,427.05 in 13th of January 2018 [47].

Figure 5.12: Ethereum price in relation to USD and Bitcoin [47].

In relation, to our PoC implementation in Ethereum and our gas consumption
evaluation, we also calculated the total cost of maintaining the smart contract and
the library for a year. The cost of deploying the smart contract (and the library),
signing the agreement and receive 12 consecutive payments within a year will cost
about 4,3 billion wei or 4.3 ∗ 10−12 ether. Therefore, for a company that owns
1,000,000 properties and uses our PoC implementation in Ethereum as their leasing
tool, will cost about 0.00000429 ether or $0.0061 for all transactions.

63

5. Evaluation

64

6
Conclusion

In this chapter, we conclude the thesis by first discussing the results of the evaluation
process and secondly by proposing elements of interest for future work.

6.1 Discussion

In this thesis, a comparative analysis was conducted between private and public
blockchain technologies to understand the architectural differences and similarities.
Specifically, we looked at the manner in which the two blockchain technologies handle
data privacy. From our PoC implementation, we can note that the blockchain has
inbuilt capabilities to guarantee data ownership by way of limiting access control to
smart contract contents, however, careful consideration and due diligence must be
conducted on the choice of blockchain technology before any target application is
built. This is basically a way of maximizing the benefits that come with the use of
blockchain technology.

Our other objective in this thesis was to design a mechanism for negotiation
of the terms of a smart contract. Although smart contracts offer many advantages
such as security, transparency, and efficiency they lack the flexibility that comes with
paper-based contracts in relation to term negotiation. We evaluated our mechanism
and found it to meet all the requirements of the evaluation process. From the
evaluation of the negotiation mechanism, we can note that, although the negotiation
process is somewhat tedious and long, it can be eased using the benefits of the
blockchain technology. In addition, our negotiation scheme (generic library) can
find use in many different applications aside from the commercial real estate.

We also looked at the performance, Ethereum smart contract’s deployment
and operation seem very inexpensive process, thus it can be viewed as a potential
candidate for developing other types of agreement as well. Although Ethereum
blockchain seems an affordable panacea for all kind of applications, it introduces
multiple vulnerabilities into the system due to its permissionless type of operation.
For that reason, we also designed a wallet recovery mechanism where the users
registered to the smart contract can securely restore their account if they lost access
to it.

65

6. Conclusion

The research questions posed in this thesis have all been answered by the theory
presented in our work and further exemplified by the design and subsequent imple-
mentation of our PoC. The reader can find a summary of our research questions
below:

• Question 1: What is the main difference between public and private
blockchain regarding the access restriction to the contents of the
smart contract?

• Question 2: Can we design a library to achieve negotiation of smart
contract terms and evaluate the library using a use case implemen-
tation?

• Question 3: Can we implement a role-based access control to smart
contract contents based on the source and destination ID of the
transaction?

• Question 4: If so, what are the implications on the scalability of
such an implementation in Ethereum, a public blockchain?

Research Question 1 is answered in Section 3.3 of Chapter 3 that presented the
similarities as well as the differences laid down in Table 3.1. Partially this research
question has also been answered in Chapter 2. Research Question 2 has been an-
swered in Chapters 4 and 5, which presents the implementation and evaluation of
the negotiation mechanism respectively. Similarly, Research Question 3 has been
answered in Chapters 4 and 5. Finally, Research Question 4 has been answered in
Chapter 5 that presents the performance in terms of ether exhaustion.

The blockchain is a promising technology that will revolutionize how business
houses transact. The comparative analysis in this thesis has shown the applicability
of the blockchain technology in today’s ever changing business world. However, it
should be noted that a clear understanding of the business requirements is needed
before embarking on the journey to adopt the blockchain. Furthermore, we have
demonstrated that it is possible to facilitate a bi-directional negotiating scheme
of the many contract terms that govern a business transaction. The blockchain
has in-built capabilities to guarantee data ownership with the private blockchain
having a matured ecosystem in this regard. Lastly, designing scalable solutions on
the Etherieum blockchain is imperative, due to the fact that every computation
consumes an amount of ether that must be recovered by the miners.

6.2 Future Work

Blockchain technology is at the moment one of the hot topics and currently undergo-
ing constant evolution. Concentrated interest from both industry and academia only
leaves room for further research. It is our understanding that the novelty nature of

66

6. Conclusion

the blockchain technology calls for more technological development. There is a need
for a fine-grained understanding of the technology and the problem domain that it
attempts to solve. In the context of our thesis, there are elements of interest that
can be further enhanced. For instance, a mechanism to further verify that the terms
of the contract have indeed been met so that the parties of the contract are satisfied,
is necessary. In addition, our current version of the negotiation scheme only allows
a two-party negotiating scheme. In the future, it is imperative that a multi-party
negotiation scheme is developed to allow more players to negotiate. Furthermore,
there is also a huge potential for research on the need to verify the code contained in
the contract using formal methods. Lastly, we believe there is a need for evaluation
using testing. This kind of evaluation, can include functional testing and structural
testing.

67

6. Conclusion

68

Bibliography

[1] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”, 2008.
Available at: https://bitcoin.org/bitcoin.pdf

[2] Jerry Brito and Andrea Castillo, “Bitcoin: A Primer for Policymak-
ers”, 2013. Available at: https://www.mercatus.org/system/files/Brito_
BitcoinPrimer.pdf

[3] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, “Untangling Blockchain: A Data
Processing View of Blockchain Systems”, in Proceedings of the IEEE Transac-
tions on Knowledge and Data Engineering, 2017.

[4] Vitalik Buterin, “A Next-Generation Smart Contract and Decentralized Appli-
cation Platform”, 2013. Available at: https://github.com/ethereum/wiki/
wiki/White-Paper

[5] Christian Cachin, IBM Research, Zurich, “Architecture of the Hyperledger
Blockchain Fabric”, 2016. Available at: https://www.zurich.ibm.com/dccl/
papers/cachin_dccl.pdf

[6] David Schwartz, Noah Youngs, Arthur Britto, Ripple Labs Inc, “The Rip-
ple Protocol Consensus Algorithm”, 2014. Available at: https://ripple.com/
files/ripple_consensus_whitepaper.pdf

[7] Coin Central, “Coin Central”, 2018. Available at: https:https://
coincentral.com/how-many-bitcoins-are-left/

[8] Marko Vukolic, “The Quest for Scalable Blockchain Fabric: Proof-of-Work vs.
BFT Replication”, in Problems in Network Security, Proc. IFIP WG 11.4 Work-
shop, 2015.

[9] Martin Valenta and Philipp Sandner, “Comparison of Ethereum, Hyperledger
Fabric and Corda”, in FSBC Working Paper, Frankfurt School: Blockchain
Center, 2017.

[10] David Remnick, “Cambridge Analytica and a Moral Reckoning in Silicon Val-
ley”, 2018. Available at: https://www.newyorker.com/magazine/2018/04/
02/cambridge-analytica-and-a-moral-reckoning-in-silicon-valley

69

https://bitcoin.org/bitcoin.pdf
https://www.mercatus.org/system/files/Brito_BitcoinPrimer.pdf
https://www.mercatus.org/system/files/Brito_BitcoinPrimer.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https:https://coincentral.com/how-many-bitcoins-are-left/
https:https://coincentral.com/how-many-bitcoins-are-left/
https://www.newyorker.com/magazine/2018/04/02/cambridge-analytica-and-a-moral-reckoning-in-silicon-valley
https://www.newyorker.com/magazine/2018/04/02/cambridge-analytica-and-a-moral-reckoning-in-silicon-valley

Bibliography

[11] Nick Szabo, “Smart Contracts: Building Blocks for Digital Mar-
kets”, 1996. Available at: http://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.
best.vwh.net/smart_contracts_2.html

[12] Goldman Sachs Group, “Blockchain: putting theory into practice”, 2016. Avail-
able at: https://www.unlock-bc.com/sites/default/files/attachments/
Goldman-Sachs-report-Blockchain-Putting-Theory-into-Practice.pdf

[13] Smart Contracts Alliance and Nick Szabo “Smart Contracts: 12 Use Cases for
Business and Beyond”, 2016. Available at: https://www.bloq.com/assets/
smart-contracts-white-paper.pdf

[14] Deloitte Centre for Financial Services, “Blockchain in commercial real estate the
future is here”, 2017. Available at: https://www2.deloitte.com/content/
dam/Deloitte/us/Documents/financial-services/us-dcfs-blockchain-
in-cre-the-future-is-here.pdf

[15] Damien Cosset, “Blockchain: What is Mining?”, 2018. Available at: https:
//dev.to/damcosset/blockchain-what-is-mining-2eod/

[16] Victoria McIntosh, Information & Privacy Professional, “Blockchain and Pri-
vacy: the New Frontier”, 2017. Available at: https://victoriamcintosh.
com/privacy-vs-blockchain/

[17] Gregory Rocco, “Blockchain Technology and Data: Identity, Storage, Ex-
change”, 2018. Available at: https://www.ccn.com/blockchain-technology
-and-data-identity-storage-exchange/

[18] Karl Wüst and Arthur Gervais , “Do You Need a Blockchain?”, ePrint Archive,
Report 375, 2017. Available at: https://eprint.iacr.org/2017/375/

[19] Chad Decker, “Ethereum vs. Hyperledger”, 2017. Available at: https://
blockchaintrainingalliance.com/blogs/news/ethereum-vs-hyperledger

[20] S. Pongnumkul, C. Siripanpornchana and S. Thajchayapong, “Performance
Analysis of Private Blockchain Platforms in Varying Workloads”, in Proceed-
ings of the 26th International Conference on Computer Communication and
Networks (ICCCN), 2017.

[21] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci, “Blockchain Based
Access Control”, in Proceedings of IFIP International Conference on Dis-
tributed Applications and Interoperable Systems, Neuchatel, Switzerland, 2017.

[22] S. Thomas, IETF Draft “Crypto-Conditions”, 2017. Available at: https://
tools.ietf.org/html/draft-thomas-crypto-conditions-03

70

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
 https://www.unlock-bc.com/sites/default/files/attachments/Goldman-Sachs-report-Blockchain-Putting-Theory-into-Practice.pdf
 https://www.unlock-bc.com/sites/default/files/attachments/Goldman-Sachs-report-Blockchain-Putting-Theory-into-Practice.pdf
https://www.bloq.com/assets/smart-contracts-white-paper.pdf
https://www.bloq.com/assets/smart-contracts-white-paper.pdf
https://www2.deloitte.com/content/
dam/Deloitte/us/Documents/financial-services/us-dcfs-blockchain-
in-cre-the-future-is-here.pdf
https://dev.to/damcosset/blockchain-what-is-mining-2eod/
https://dev.to/damcosset/blockchain-what-is-mining-2eod/
https://victoriamcintosh.com/privacy-vs-blockchain/
https://victoriamcintosh.com/privacy-vs-blockchain/
https://www.ccn.com/blockchain-technology
-and-data-identity-storage-exchange/
https://eprint.iacr.org/2017/375/
https://blockchaintrainingalliance.com/blogs/news/ethereum-vs-hyperledger
https://blockchaintrainingalliance.com/blogs/news/ethereum-vs-hyperledger
https://tools.ietf.org/html/draft-thomas-crypto-conditions-03
https://tools.ietf.org/html/draft-thomas-crypto-conditions-03

Bibliography

[23] OpenPGP. Available at: https://www.openpgp.org/

[24] Neal H. Walfield, “An Advanced Introduction to GnuPG”, 2017. Available at:
https://gnupg.org/ftp/people/neal/an-advanced-introduction-to-
gnupg/openpgp/openpgp.pdf

[25] R. Charette, “DigiNotar certificate authority breach crashes e-government in
The Netherlands”, IEEE Spectr., 2011. Available at: https://spectrum.ieee.
org/riskfactor/telecom/security/diginotar-certificate-authority-
breach-crashes-egovernment-in-the-netherlands

[26] Vincenzo Scoca, Rafael Brundo Uriarte, Rocco De Nicola, “Smart Contract Ne-
gotiation in Cloud Computing”, in Proceedings of the IEEE 10th International
Conference on Cloud Computing (CLOUD), 2017.

[27] Aafaf Ouaddah, Anas Abou Elkalam, Abdellah Ait Ouahman, “FairAccess: a
new Blockchain-based access control framework for the Internet of Things”,
in Proceedings of Security and Communication Networks, vol. 9, no. 18, pp.
5943–5964, 2017.

[28] Yuanyu Zhang, Shoji Kasahara, Yulong Shen, Xiaohong Jiang, Jianxiong Wan,
“Smart Contract-Based Access Control for the Internet of Things”, 2018. Avail-
able at: https://arxiv.org/pdf/1802.04410.pdf

[29] J. P. Cruz and Y. Kaji, “The bitcoin network as platform for trans- organiza-
tional attribute authentication”, in IPSJ Trans. Math. Model. Appl., vol. 9, no.
2, pp. 41–48, 2016.

[30] Ronald L. Rivest, “Cryptography”, In J. Van Leeuwen, Handbook of Theoret-
ical Computer Science, 1, Elsevier, 1990.

[31] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, “Introduction to
Modern Cryptography”. p. 10, 2005.

[32] Mehrdad S. Sharbaf, “Quantum cryptography: An emerging technology in net-
work security”, in Proceedings of the 2011 IEEE International Conference on
Technologies for Homeland Security (HST): 13–19, 2011.

[33] R. L. Rivest, “The MD5 message-digest algorithm”, Internet Requests for Com-
ments, RFC Editor, RFC 1321, 1992. Available at: http://www.rfc-editor.
org/rfc/rfc1321.txt

[34] Xiaoyun Wang, Hongbo Yu, “How to Break MD5 and Other Hash Functions”,
Advances in Cryptology – Lecture Notes in Computer Science, pp. 19–35, 2005.

[35] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA1)”, Internet
Requests for Comments, RFC Editor, RFC 3174, 2001. Available at: http:
//www.rfc-editor.org/rfc/rfc3174.txt

71

https://www.openpgp.org/
https://gnupg.org/ftp/people/neal/an-advanced-introduction-to-
gnupg/openpgp/openpgp.pdf
https://spectrum.ieee.
org/riskfactor/telecom/security/diginotar-certificate-authority-
breach-crashes-egovernment-in-the-netherlands
https://arxiv.org/pdf/1802.04410.pdf
http: //www.rfc-editor.org/rfc/rfc1321.txt
http: //www.rfc-editor.org/rfc/rfc1321.txt
http://www.rfc-editor.org/rfc/rfc3174.txt
http://www.rfc-editor.org/rfc/rfc3174.txt

Bibliography

[36] Microsoft, “Windows Enforcement of Authenticode Code Signing and Times-
tamping”, 2015.

[37] Google, “Intent to Deprecate: SHA-1 certificates”, 2014.

[38] Apple Inc., “Safari and WebKit ending support for SHA-1 certificates – Apple
Support”, 2017.

[39] Mozilla, “CA:Problematic Practices – MozillaWiki”, 2014.

[40] B. Preneel, “The first 30 years of cryptographic hash functions and the
NIST SHA-3 competition”, in Cryptographers’ Track at the RSA Conference,
Springer, pp. 1–14, 2010.

[41] CWI Amsterdam and Google Reseach, Marc Stevens, Elie Bursztein, Pierre
Karpman, Ange Albertini, Yarik Markov, “The first collision for full SHA-1”,
2017.

[42] W. Diffie and M. Hellman, “New directions in cryptography”, in Proceedings of
IEEE transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[43] J. Nechvatal, “Public-key cryptography”, DTIC Document, Tech.
Rep., 1991. Available: https://pdfs.semanticscholar.org/720f/
1f0cf8699d94ab775d0da44ebef74450de7f.pdf

[44] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems”, in CACM, 21(2), 120–126, 1978.

[45] M. Ali, J. Nelson, R. Shea and M. J. Freedman, “Blockstack: A Global Nam-
ing and Storage System Secured by Blockchains”, in Proceedings of the 2016
USENIX Annual Technical Conference, Denver, CO, 2016.

[46] A. Hevner, S. March, J. Park, S. Ram, “Design Science in Information Systems
Research”, MIS Quarterly 28, 75–105, 2004.

[47] CoinMarketCap: Cryptocurrency Market Capitalizations, 2018.
Available at: https://coinmarketcap.com/

72

https://pdfs.semanticscholar.org/720f/1f0cf8699d94ab775d0da44ebef74450de7f.pdf
https://pdfs.semanticscholar.org/720f/1f0cf8699d94ab775d0da44ebef74450de7f.pdf
https://coinmarketcap.com/

A
Appendix A

Ethereum implementation consists of two source files placed in the same directory:

• HouseLeasing.sol

• NegotiationLibrary.sol

The source code of HouseLeasing.sol is listed below:

1 pragma solidity ^0.4.21;
2

3 /* Import library for negotiations process */
4 import {NegotiationLibrary} from "./NegotiationLibrary.sol";
5

6 contract HouseLeasing {
7

8 /* Use library for negotiations process */
9 using NegotiationLibrary for NegotiationLibrary.Proposal;

10 NegotiationLibrary.Proposal proposal;
11

12 /* Declaration of type which holds the rents paid */
13 struct RentPaid {
14 uint paymentID; /* The payment id */
15 uint paymentDate; /* The date of the payment */
16 uint rent; /* The amount of rent that is paid */
17 uint month;
18 uint year;
19 }
20

21 /* List of the rents that have been paid */
22 RentPaid[] private rentspaid;
23

24 /* Participants */
25 address private landlord;
26 address private tenant;
27

I

A. Appendix A

28 /* Address of the smart contract */
29 address thisAddress = this;
30

31 /* House details */
32 string private houseAddress;
33 string private houseZipCode;
34 string private houseCity;
35 string private termsText = "[House details] => [1. Address, 2. Zip code,
36 3. City, 4. Landlord's Ethereum address] , [Leasing terms] => [5. Rent
37 (in wei), 6. Leasing duration (in months), 7. Last calendar day to pay,
38 8. Contract created (timestamp)]";
39

40 /* Leasing terms */
41 uint private contractCreated;
42 uint private rent;
43 uint private duration;
44 uint private lastDay;
45

46 /* Recovery keys */
47 uint private recoveryKeyTenant = 0;
48 uint private recoveryKeyLandlord = 0;
49

50 /* State of the contract */
51 enum State {Created, Initiated, Terminated, underReview}
52 State private state;
53

54 /* State of the negotiation process */
55 enum NegotiationState {landlordProposed, tenantProposed}
56 NegotiationState private negotiationState;
57

58 /* Initiation of the contract by the landlord */
59 function HouseLeasing(string Address, string ZipCode, string City, uint
60 Rent, uint Duration, uint LastDayToPay) public {
61 houseAddress = Address;
62 houseZipCode = ZipCode;
63 houseCity = City;
64 rent = Rent;
65 duration = Duration;
66 lastDay = LastDayToPay;
67 landlord = msg.sender;
68 contractCreated = block.timestamp;
69 negotiationState = NegotiationState.landlordProposed;
70 recoveryKeyLandlord = uint(keccak256(block.difficulty, now));
71 }
72

73

II

A. Appendix A

74 /* Function modifiers for restricting access */
75 modifier _require(bool _condition) {
76 if (!_condition) revert();
77 _;
78 }
79 modifier onlyLandlord() {
80 if (msg.sender != landlord) revert();
81 _;
82 }
83 modifier onlyTenant() {
84 if (msg.sender != tenant) revert();
85 _;
86 }
87 modifier isState(State _state) {
88 if (state != _state) revert();
89 _;
90 }
91 modifier isNegotiationState(NegotiationState _negotiationState) {
92 if (negotiationState != _negotiationState) revert();
93 _;
94 }
95

96 /* Helper functions to read the values from the blockchain at any time */
97 function getRentPaid(uint id) public view returns (uint, uint, uint, uint,
98 uint) {
99 return (rentspaid[id].paymentID, rentspaid[id].paymentDate,

100 rentspaid[id].rent, rentspaid[id].month, rentspaid[id].year);
101 }
102 function getHouseDetails() public view returns (string, string, string) {
103 return (houseAddress, houseZipCode, houseCity);
104 }
105 function getLandlord() public view returns (address) {
106 return landlord;
107 }
108 function getTenant() public view returns (address) {
109 return tenant;
110 }
111 function getContractCreated() public view returns (uint) {
112 return contractCreated;
113 }
114 function getContractAddress() public view returns (address) {
115 return thisAddress;
116 }
117 function getRecoveryKeyTenant() public view returns (uint) {
118 return recoveryKeyTenant;
119 }

III

A. Appendix A

120 function getRecoveryKeyLandlord() public view returns (uint) {
121 return recoveryKeyLandlord;
122 }
123 function getState() public view returns (string) {
124 if (state == State.Created){
125 return "Created";
126 }
127 if (state == State.Initiated){
128 return "Initiated";
129 }
130 if (state == State.Terminated){
131 return "Terminated";
132 }
133 if (state == State.underReview){
134 return "underReview";
135 }
136 }
137 function getNegotiationState() public view returns (string) {
138 if (negotiationState == NegotiationState.landlordProposed){
139 return "landlordProposed";
140 }
141 if (negotiationState == NegotiationState.tenantProposed){
142 return "tenantProposed";
143 }
144 }
145 function getBalance() public view returns(uint) {
146 return msg.sender.balance;
147 }
148

149 /* Events for the dApp */
150 event termsRead();
151 event contractSigned();
152 event rentPaid();
153 event contractTerminated();
154

155 /* Read the terms of the contract - no input required */
156 function readTerms() public
157 _require(state == State.Created || ((state == State.underReview ||
158 state == State.Initiated) && (msg.sender == landlord || msg.sender ==
159 tenant)))
160 returns (string, string, string, string, address, uint, uint, uint, uint)
161 {
162 emit termsRead();
163 tenant = msg.sender;
164 state = State.underReview;
165 recoveryKeyTenant = uint(keccak256(block.difficulty, now));

IV

A. Appendix A

166 return (termsText, houseAddress, houseZipCode, houseCity, landlord,
167 rent, duration, lastDay, contractCreated);
168 }
169

170 /* Sign the contract as tenant - no input required */
171 function signContract() public
172 onlyTenant
173 isState(State.underReview)
174 _require(msg.sender != landlord)
175 {
176 emit contractSigned();
177 state = State.Initiated;
178 }
179

180 /* Pay the rent as tenant - takes as input two integers (month, year)
181 - and as a value the amount of the rent */
182 function payRent(uint month, uint year) public payable
183 onlyTenant
184 isState(State.Initiated)
185 _require(msg.value == rent)
186 {
187 emit rentPaid();
188 landlord.transfer(msg.value);
189 rentspaid.push(RentPaid({paymentID:(year*100)+month,
190 paymentDate:block.timestamp, rent:msg.value, month:month, year:year}));
191 }
192

193 /* Terminate the contract so the tenant can’t pay rent anymore */
194 function terminate() public
195 onlyLandlord
196 {
197 emit contractTerminated();
198 /* If there is any value on the contract send it to the landlord */
199 landlord.transfer(thisAddress.balance);
200 state = State.Terminated;
201 }
202

203 /* Events for the DApps*/
204 event termsRequested();
205 event newTermsRead();
206 event termsAccepted();
207 event termsDeclined();
208

209 /* Propose new terms - takes as input three integers (rent, duration,
210 last day to pay) */
211 function proposeTerms(uint newRent, uint newDuration, uint newLastDay) public

V

A. Appendix A

212 isState(State.underReview)
213 _require(msg.sender == tenant || msg.sender == landlord)
214 {
215 emit termsRequested();
216 if(msg.sender == tenant && negotiationState ==
217 NegotiationState.landlordProposed){
218 negotiationState = NegotiationState.tenantProposed;
219 proposal.makeProposal(newRent, newDuration, newLastDay);
220 }
221 if(msg.sender == landlord && negotiationState ==
222 NegotiationState.tenantProposed){
223 negotiationState = NegotiationState.landlordProposed;
224 proposal.makeProposal(newRent, newDuration, newLastDay);
225 }
226 }
227

228 /* Read the terms of the contract that have been proposed - no input
229 required */
230 function readNewTerms() public
231 isState(State.underReview)
232 _require(msg.sender == tenant || msg.sender == landlord)
233 returns (uint, uint, uint, uint)
234 {
235 emit newTermsRead();
236 return proposal.readProposal();
237 }
238

239 /* Accept the terms of the contract that have been proposed - no input
240 required */
241 function acceptNewTerms() public
242 isState(State.underReview)
243 _require(msg.sender == tenant || msg.sender == landlord)
244 {
245 emit termsAccepted();
246 if(msg.sender == tenant && negotiationState ==
247 NegotiationState.landlordProposed){
248 state = State.Initiated;
249 }
250 if(msg.sender == landlord && negotiationState ==
251 NegotiationState.tenantProposed){
252 state = State.Initiated;
253 }
254 }
255

256

257

VI

A. Appendix A

258 /* Decline the terms of the contract that have been proposed - no input
259 required */
260 function declineNewTerms() public
261 isState(State.underReview)
262 _require(msg.sender == tenant || msg.sender == landlord)
263 {
264 emit termsDeclined();
265 if(msg.sender == tenant && negotiationState ==
266 NegotiationState.landlordProposed){
267 state = State.Terminated;
268 }
269 if(msg.sender == landlord && negotiationState ==
270 NegotiationState.tenantProposed){
271 state = State.Terminated;
272 }
273 }
274

275 /* Events for the DApps*/
276 event landlordWalletLinked();
277 event tenantWalletLinked();
278

279 /* Link a new wallet to the smart contract (only for landlord) - takes as
280 input the recovery key */
281 function recoverLandlord(uint key) public
282 _require(state == State.Created || state == State.Initiated ||
283 state == State.underReview)
284 {
285 emit landlordWalletLinked();
286 if(key == recoveryKeyLandlord){
287 landlord = msg.sender;
288 }
289 }
290

291 /* Link a new wallet to the smart contract (only for tenant) - takes as
292 input the recovery key */
293 function recoverTenant(uint key) public
294 _require(state == State.Initiated || state == State.underReview)
295 {
296 emit tenantWalletLinked();
297 if(key == recoveryKeyTenant){
298 tenant = msg.sender;
299 }
300 }
301 }

VII

A. Appendix A

The source code of NegotiationLibrary.sol is listed below:

1 pragma solidity ^0.4.21;
2

3 library NegotiationLibrary {
4

5 /* Declaration of type which holds the proposals */
6 struct Proposal {
7 uint rentProposed;
8 uint durationProposed;
9 uint lastDayProposed;

10 uint dateProposed;
11 }
12

13 /* Propose new terms (rent, duration, last calendar day to pay) */
14 function makeProposal(Proposal storage proposals, uint newRent,
15 uint newDuration, uint newLastDay) public {
16 proposals.rentProposed = newRent;
17 proposals.durationProposed = newDuration;
18 proposals.lastDayProposed = newLastDay;
19 proposals.dateProposed = block.timestamp;
20 }
21

22 /* Read the proposed terms */
23 function readProposal(Proposal storage proposals) public view
24 returns (uint, uint, uint, uint) {
25 return (proposals.rentProposed, proposals.durationProposed,
26 proposals.lastDayProposed, proposals.dateProposed);
27 }
28 }

VIII

B
Appendix B

Hyperledger Fabric implementation consists of two source files placed in the same
directory:

• estate.cto

• logic.js

• permissions.acl

Hyperledger Composer includes an object-oriented modeling language that is used
to define the domain model for a business network definition. The Hyperledger
Composer CTO file is composed of the following elements:

• A single namespace where all resource declarations within the file are implicitly
in this namespace.

• A set of resource definitions, encompassing assets, transactions, participants,
and events.

• Optional import declarations that import resources from other namespaces.

The source code of estate.cto is listed below:

1 namespace estate
2

3 enum ContractState {
4 o CREATED
5 o INITIATED
6 o TERMINATED
7 o UNDER_REVIEW
8 }
9

10 asset House identified by houseID {
11 o String houseID
12 --> Landlord landlord
13 o String information

IX

B. Appendix B

14 o Boolean forRent optional
15 }
16

17 asset Contract identified by contractID{
18 o String contractID
19 --> Landlord landlord
20 --> Tenant tenant
21 --> House house
22 o ContractState status
23 }
24

25 asset ContractTerms identified by contractTermID{
26 o String contractTermID
27 o Double rent
28 o Double penalty
29 o Double security_deposit
30 o Double lease_termination_amount
31 --> Contract contract
32 }
33

34 participant Landlord identified by landlordID {
35 o String landlordID
36 o String name
37 o Double balance
38

39 }
40

41 participant Tenant identified by tenantID {
42 o String tenantID
43 o String name
44 o Double balance
45 }
46

47 transaction payRent {
48 --> Landlord landlord
49 --> Tenant tenant
50 --> ContractTerms cont_terms
51 o String landlordID
52 o Double amount
53 }
54

55 transaction createHouse{
56 o String houseID
57 o String information
58 --> Landlord landlord
59 }

X

B. Appendix B

60

61 transaction createLandlord{
62 o String landlordID
63 o String name
64 o Double balance
65 }
66

67 transaction createTenant{
68 o String tenantID
69 o String name
70 o Double balance
71 o Boolean forRent
72 }
73

74 transaction createContract{
75 o String contractID
76 --> Landlord landlord
77 --> Tenant tenant
78 --> House house
79 o ContractState status
80 }
81

82 transaction createTerms{
83 o String contractTermID
84 o Double rent
85 o Double penalty
86 o Double security_deposit
87 o Double lease_termination_amount
88 --> Contract contract
89 }
90

91 transaction negotiateTerms{
92 o String contractTermID
93 --> ContractTerms contid
94 }

XI

B. Appendix B

The main application in Hyperledger Fabric is written in JavaScript and runs within
the Node.js platform, allowing users to create, read, update and delete assets and
participants, while also to submit transactions across the business network.

The source code of logic.js is listed below:

1 'use strict';
2

3 /**
4 * Transaction to create contract
5 * @param {estate.createContract} cont
6 * @transaction
7 */
8 async function createContract(cont) {
9 const factory = getFactory();

10 const NS = 'estate';
11 const contractID = cont.contractID;
12 const tenantID = cont.tenant.tenantID;
13 const landlordID = cont.landlord.landlordID;
14 const houseID = cont.house.houseID;
15

16 // Create a contract between a tenant and a landlord
17 const contractRegistry = await getAssetRegistry(NS + '.Contract');
18 const contract = factory.newResource(NS, 'Contract', contractID);
19 // Set the properties of the contract
20 contract.contractID = cont.contractID;
21 contract.landlord = factory.newRelationship(NS, 'Landlord', landlordID);
22 contract.tenant = factory.newRelationship(NS, 'Tenant', tenantID);
23 contract.house = factory.newRelationship(NS, 'House', houseID);
24 contract.status = 'CREATED';
25 await contractRegistry.add(contract);
26 }
27

28 /**
29 * Transaction to create the house
30 * @param {estate.createHouse} cont
31 * @transaction
32 */
33 async function createHouse(cont) {
34 const factory = getFactory();
35 const NS = 'estate';
36 const houseID = cont.houseID;
37 const landlordID = cont.landlord.landlordID;
38

39 // Create the house
40 const houseRegistry = await getAssetRegistry(NS + '.House');

XII

B. Appendix B

41 const house = factory.newResource(NS, 'House', houseID);
42 // Set the house properties
43 house.houseID = cont.houseID;
44 house.information = cont.information;
45 house.landlord = factory.newRelationship(NS, 'Landlord', landlordID);
46 await houseRegistry.add(house);
47 }
48

49 /**
50 * Transaction to create the tenant
51 * @param {estate.createTenant} cont - the house asset
52 * @transaction
53 */
54 async function createTenant(cont) {
55 const factory = getFactory();
56 const NS = 'estate';
57 const tenantID = cont.tenantID;
58

59 // Create the tenant
60 const tenantRegistry = await getParticipantRegistry(NS + '.Tenant');
61 const tenant = factory.newResource(NS, 'Tenant', tenantID);
62 // Set the tenant's properties
63 tenant.tenantID = cont.tenantID;
64 tenant.name = cont.name;
65 tenant.balance = cont.balance;
66 await tenantRegistry.add(tenant);
67 }
68

69 /**
70 * Transaction to create the landlord
71 * @param {estate.createLandlord} cont - the house asset
72 * @transaction
73 */
74 async function createLandlord(cont) {
75 const factory = getFactory();
76 const NS = 'estate';
77 const landlordID = cont.landlordID;
78

79 // Create the landlord
80 const landlordRegistry = await getParticipantRegistry(NS + '.Landlord');
81 const landlord = factory.newResource(NS, 'Landlord', landlordID);
82 // Set the landlord's properties
83 landlord.landlordID = cont.landlordID;
84 landlord.name = cont.name;
85 landlord.balance = cont.balance;
86 await landlordRegistry.add(landlord);

XIII

B. Appendix B

87 }
88

89 /**
90 * Transaction to pay rent by the tenant
91 * @param {estate.payRent} cont
92 * @transaction
93 */
94 async function payRent(cont) {
95 const amount = cont.amount;
96 const cont_rent = cont.cont_terms.rent;
97 const ten_balance = cont.tenant.balance;
98

99 if(amount < cont_rent || amount < ten_balance){
100 console.log("Insuficient balance")
101 }
102 else{
103 // Apply the rent
104 cont.landlord.balance += cont.amount;
105 cont.tenant.balance -= cont.amount;
106

107 // Update the tenants balance
108 const tenant = await await getParticipantRegistry('estate.Tenant');
109 await tenant.update(cont.tenant);
110

111 // Update the landlords balance
112 const landlord = await await getParticipantRegistry('estate.Landlord');
113 await landlord.update(cont.landlord);
114

115 console.log("Rent of: "+amount+" has been paid");
116 }
117 }
118

119 /**
120 * Transaction to create the contract terms
121 * @param {estate.createTerms} cont
122 * @transaction
123 */
124 async function createTerms(cont) {
125 const factory = getFactory();
126 const NS = 'estate';
127 const contractTermID = cont.contractTermID;
128 const contractID = cont.contract.contractID;
129

130 // Create the terms of the contract
131 const contractTermRegistry = await getAssetRegistry(NS + '.ContractTerms');
132 const contractTerm = factory.newResource(NS, 'ContractTerms', contractTermID);

XIV

B. Appendix B

133 // Set the properties of the contract
134 contractTerm.contractTermID = cont.contractTermID;
135 contractTerm.rent = cont.rent;
136 contractTerm.penalty = cont.penalty;
137 contractTerm.security_deposit = cont.security_deposit;
138 contractTerm.lease_termination_amount = cont.lease_termination_amount;
139 contractTerm.contract = factory.newRelationship(NS, 'Contract', contractID);
140 await contractTermRegistry.add(contractTerm);
141 }
142

143 /**
144 * Transaction to create the negotiation mechanism
145 * @param {estate.negotiateTerms} cont
146 * @transaction
147 */
148 async function negotiateTerms(cont) {
149 const assetRegistry = await getAssetRegistry('estate.ContractTerms');
150 const results = await query('selectContract');
151 //const contid = cont.contid.contractTermID;
152

153 // Since all registry requests have to be serialized anyway, there
154 // is no benefit to calling Promise.all on an array of promises
155 results.forEach(async ContractTerms => {
156 const removeNotification = getFactory().newEvent('org.example.trading',
157 'RemoveNotification');
158 removeNotification.commodity = trade;
159 emit(removeNotification);
160 await assetRegistry.get(ContractTerms);
161 });
162 }

XV

B. Appendix B

ACL rules are defined into permissions.acl file, which is located in the root of the
business network. If this file is missing from the business network then all access is
permitted.

The source code of permissions.acl is listed below:

1 /*
2 * Licensed under the Apache License, Version 2.0 (the "License");
3 * you may not use this file except in compliance with the License.
4 * You may obtain a copy of the License at
5 *
6 * http://www.apache.org/licenses/LICENSE-2.0
7 *
8 * Unless required by applicable law or agreed to in writing, software
9 * distributed under the License is distributed on an "AS IS" BASIS,

10 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11 * See the License for the specific language governing permissions and
12 * limitations under the License.
13 */
14

15 rule SystemACL {
16 description: "System ACL to permit all access"
17 participant: "org.hyperledger.composer.system.Participant"
18 operation: ALL
19 resource: "org.hyperledger.composer.system.**"
20 action: ALLOW
21 }
22

23 rule NetworkAdminUser {
24 description: "Grant business network administrators full access to user
25 resources"
26 participant: "org.hyperledger.composer.system.NetworkAdmin"
27 operation: ALL
28 resource: "**"
29 action: ALLOW
30 }
31

32 rule NetworkAdminSystem {
33 description: "Grant business network administrators full access to system
34 resources"
35 participant: "org.hyperledger.composer.system.NetworkAdmin"
36 operation: ALL
37 resource: "org.hyperledger.composer.system.**"
38 action: ALLOW
39 }
40

XVI

B. Appendix B

41 rule R1b_ReadTerms {
42 description: "Tenant can read terms only if the ID is equivalent to
43 participant"
44 participant(t): "estate.Tenant"
45 operation: ALL
46 resource(c): "estate.readTerms"
47 condition: (c.owner.getIdentifier() == t.getIdentifier())
48 action: ALLOW
49 }
50

51 rule R2b_SignContract {
52 description: "Tenant can only sign a contract previously assigned to them
53 using an ID"
54 participant(t): "estate.Tenant"
55 operation: READ, UPDATE
56 resource(v): "estate.SignContract"
57 condition: (v.getIdentifier() == t.getIdentifier())
58 action: ALLOW
59 }
60

61 rule R3b_PayRent {
62 description: "Tenant can only call the PayRent function only if they have
63 their ID assigned"
64 participant(t): "estate.Tenant"
65 operation: ALL
66 resource(c): "estate.PayRent"
67 condition: (c.owner.getIdentifier() == t.getIdentifier())
68 action: ALLOW
69 }
70

71 rule R4b_Terminate{
72 description: "Landlord can only call the terminate function only if the
73 contract is assigned to them"
74 participant(t): "estate.Landlord"
75 operation: ALL
76 resource(c): "estate.Terminate"
77 condition: (c.owner.getIdentifier() == t.getIdentifier())
78 action: ALLOW
79 }

XVII

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals and Research Questions
	Limitations
	Methodology
	Outline

	Theoretical Background
	Digital Cryptography
	Cryptographic Hash Functions
	Symmetric-key Cryptography
	Public-key Cryptography

	Blockchain Technology
	Public Blockchain
	Bitcoin: A Peer-to-Peer Electronic Cash System

	Private Blockchain
	Smart Contracts

	Use Case: Commercial Real Estate
	Role-Based Access Control
	Related Work

	Comparative Analysis
	Ethereum
	Ethereum Virtual Machine
	Ether and Gas
	Accounts, Transactions and Messages
	Accounts
	Transactions
	Messages

	Consensus Algorithm (Mining)
	Smart Contracts Deployment

	Hyperledger Fabric
	Transaction Processing
	Endorsement Policies
	Consensus Algorithm

	Membership Services and Identity Management

	Comparison
	Similarities
	Differences
	Network operation
	Consensus algorithm
	Smart contracts
	System currency

	Conclusion

	Implementation
	Design and Specification
	System Description
	Design of the Smart Contract
	Design of the Negotiation Mechanism
	Role-based Access Control Model

	Hyperledger Fabric Implementation
	System Setup
	Transaction Processing
	Access Restriction

	Negotiation Mechanism

	Ethereum Implementation
	System setup
	Ethereum Node
	Remix Web Browser IDE

	Building the Smart Contract
	State Variables
	Functions
	Events
	Access Restriction (Modifiers)
	Helper Functions

	Negotiation Mechanism
	Libraries in Solidity
	Library Implementation

	Wallet Recovery

	Evaluation
	Evaluation Criteria
	Descriptive Evaluation
	Leasing Operation
	RBAC Mechanism
	Negotiation Library
	Wallet Recovery

	Ethereum gas consumption

	Conclusion
	Discussion
	Future Work

	Bibliography
	Appendix A
	Appendix B

