
Reducing Environmental Impact in
Automated Waste Collection through
Optimization and User Feedback
Scheduling the emptying process to reduce energy consump-
tion and changing user behavior

Master’s thesis in Computer Science - Algorithms, Languages and Logic

EMMA GUSTAFSSON

ELIN LJUNGGREN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Reducing Environmental Impact in
Automated Waste Collection through

Optimization and User Feedback

Scheduling the emptying process to reduce energy consumption and
changing user behavior

EMMA GUSTAFSSON
ELIN LJUNGGREN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Reducing Environmental Impact in Automated Waste Collection through Optimiza-
tion and User Feedback
Scheduling the emptying process to reduce energy consumption and changing user
behavior
EMMA GUSTAFSSON
ELIN LJUNGGREN

© EMMA GUSTAFSSON, 2017.
© ELIN LJUNGGREN, 2017.

Supervisor: Birgit Grohe, Computer Science and Engineering Department
Advisor: Alexander Ask, Sigma IT Consulting
Examiner: Peter Damaschke, Computer Science and Engineering Department

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Reducing Environmental Impact in Automated Waste Collection through Optimiza-
tion and User Feedback
Scheduling the emptying process to reduce energy consumption and changing user
behavior
EMMA GUSTAFSSON
ELIN LJUNGGREN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The automated vacuum waste collection system is an efficient way of handling waste
in modern cities which is more sustainable than conventional systems. However, the
environmental impact can be further reduced in the areas of system operation since
the system consumes a substantial amount of energy where most of it is needed for
the emptying process. One way of reducing the energy needed is to schedule the
emptying procedure in a more efficient manner. Another way would be to stimulate
reduction of waste production.

The system has a graph structure in the shape of a tree where waste enters through
the leaf nodes. During the emptying procedure, waste is transported to the root
node, that is the collection station, by air suction. To be able to decide when an
emptying sequence should be initiated and which type of waste and individual waste
inlets should be included, the tree needs to be traversed and evaluated. Our method
can be seen as a scheduling algorithm inspired by ideas from online optimization,
since the system is scanned continuously to see if an emptying process should be ini-
tiated. Once an emptying process is initiated, the emptying sequence is performed
according to dynamic programming principles. The algorithms have been simulated
and then compared to the statistics for the current procedure during January 2017.
The best result shows an approximate improvement of 37.6% less kWh than current
monthly use.

Another way to reduce the energy consumption is by lowering the amount of waste
in the system by helping users gain insight in their waste generation. Less waste
generated by users will lead to a lower demand on the system and fewer emptyings
will be required. The goal was to create a prototype that can be used for creating
incentive for reducing waste generation. Our solution to achieve this is a shell for a
web application easily scaled to mobile screens.

Keywords: automated vacuum waste collection and scheduling, computational sus-
tainability, data analysis, user feedback and behavioral change

v

Acknowledgements
We would first like to thank our supervisor in this work, Birgit Grohe, for your
guidance throughout the thesis. Secondly, we would like to thank Sigma ITC, and
our advisor Alexander Ask, for their commitment and collaboration in forming the
idea behind this thesis. A big thanks to Envac for letting us implement the idea
and providing us with information about the system. Also, we would like to thank
our friends and families for their support. Last but not least, we want to thank our
examiner, Peter Damaschke.

Emma Gustafsson and Elin Ljunggren, Gothenburg, May 2017

vii

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

1 Introduction 1
1.1 Background . 1
1.2 Purpose and Objectives . 2
1.3 Literature review . 3

1.3.1 A Vacuum Waste Collection System in Spain 3
1.3.2 Feedback and Behavioral Change 4

1.4 Delimitations . 4

2 Theory 7
2.1 Graph Models . 7
2.2 Linear Programming and Integer Linear Programming 7
2.3 Constraint Programming and Constraint Integer Programming 8
2.4 Scheduling Algorithms . 9

3 System Overview 11
3.1 System Description . 11
3.2 Emptying Procedure . 12
3.3 Data Sets . 15

4 System Optimization 19
4.1 Using Constraint Integer Programming 19
4.2 Using Integer Linear Programming 19
4.3 Scheduling Algorithms . 20

4.3.1 Scenario 1: Empty All Inlets 21
4.3.2 Scenario 2: Empty Triggered Inlet 24
4.3.3 Scenario 3: Empty All Inlets With at Least a Low Waste Level 25

4.3.3.1 An Extension of Algorithm 1 26
4.3.3.2 Building an Emptying Tree 27

4.3.4 Scenario 4: Empty Based on Statistics 29
4.3.5 Scenario 5: Empty Using Statistics, Minimum and Maximum

Level . 29

ix

Contents

4.3.6 Time Complexity . 32
4.3.7 Simulation . 32

5 User Feedback Prototype 33
5.1 User Feedback in the Envac System 33
5.2 Application Development . 34

5.2.1 Requirements and Design . 34
5.2.2 Implementation . 36

6 Results and Discussion 37
6.1 Simulation Outcome . 37

6.1.1 Simulator Setup . 38
6.1.2 Scenario 1: Empty All Inlets 39
6.1.3 Scenario 2: Empty Triggered Inlet 40
6.1.4 Scenario 3: Empty All Inlets With at Least a Low Waste Level 40
6.1.5 Scenario 4: Empty Based on Statistics 41
6.1.6 Scenario 5: Empty Using Statistics, Minimum and Maximum

Level . 42
6.1.7 Analysis . 43

6.2 Feedback Prototype . 44
6.3 Future Work . 45
6.4 Ethical Views . 46

6.4.1 The Rebound Effect and Negative Side-Effects 46
6.4.2 User Integrity . 47

7 Conclusion 49

A Map of Plant 1 I

B Tree Representation of Plant 1 III

x

List of Figures

2.1 An example of a tree. 7

3.1 A simple AVWC system. 11
3.2 Extended example of the system. 12
3.3 Emptying example, part 1. 12
3.4 Emptying example, part 2. Here, contents from IC1 has passed J1

and IC2_2 f2 is released into the network. 13
3.5 Emptying example, part 3. Here, IC2_1 has closed its discharge valve

and contents from IC2_2 has been released into the network. 13
3.6 Emptying example, part 4. Here, contents from IC2_1 has passed J1

and contents of IC2_2 has passed J2. 13
3.7 Emptying example, part 5. Here, contents from IC2_2 has passed J2. 13
3.8 Emptying example, part 6. Here, contents from IC3 has been released

into the network. 13
3.9 Inside of the terminal of Plant 1. The blue pipes carry air and the

green carry waste. 14
3.10 Distribution of a total number of 974902 disposals during the years

2013-2016. 17
3.11 Statistics for the amount of disposals made at each inlet in 2016. . . . 17

4.1 Example of a deeper system structure. 25
4.2 Example of function buildTree(). 27

5.1 Inlets in an Envac System [1]. The colors of the hatches represent
different fractions. 33

5.2 A sketch of the user feedback prototype. 36

6.1 Number of disposals per fraction in 2016 37
6.2 Start view of the prototype, with emerged side menu. 44

xi

List of Figures

xii

List of Tables

5.1 Table of Milestones . 34
5.2 Table of Requirements . 35

6.1 Table of system run time and energy use in January 2017, from Envac. 38
6.2 Comparative statistics for one month in Plant 1, from Envac. 38
6.3 Table of simulating an emptying of entire system of a fraction with

various correction factors. 39
6.4 Table of worst-case scenario modelled over various time intervals, for

all fractions. 40
6.5 Table of simulation over January 2017 with level constraints, for all

fractions. 41
6.6 Table of simulation over January 2017 with level constraints and

statistics for coming time interval. 42
6.7 Table of simulation of emptying entire system of minimum level when

triggered by an inlet at maximum level. 43

xiii

List of Tables

xiv

List of Algorithms

1 Empty all inlets in subtree Vi . 23
2 Empty a triggered inlet and all connecting inlets 24
3 Check if an AV has level by checking the level of the associated inlets . 26
4 Build a tree of all inlets with indicator 28
5 Find and save all inlets which should be emptied 31

xv

List of Algorithms

xvi

1
Introduction

Urban areas are growing rapidly in population and in the last decade a term for
describing a sustainable and living city, smart city, has been introduced [2]. There
does not exist a formal definition, but the common opinion is that a smart city is a
city where technology within Information and Communication Technology (ICT) is
combined with traditional city structures and communication.

The automated vacuum waste collection (AVWC) system is one example of when a
new technology has enabled modernization of a traditional city infrastructure. The
AVWC system is a closed network of underground pipes where air suction is used
to transport and collect waste in a city. A fully working waste collection system is
crucial in a city. Lack of correct waste management has throughout history proven
to be devastating for human health by spreading diseases through contaminated
drinking water [3]. The system eliminates the need of waste trucks in densely pop-
ulated areas and thereby contributes to less traffic and emissions. It also removes
other side effects from traditional waste collection, such as foul-smelling garbage
bins. These are positive effects, but there are possibilities of further improvement.
The system requires a lot of energy to operate, and the majority of this energy is
used to produce air suction.

1.1 Background
The amount of waste produced by humans has increased along with urbanization.
According to a report by the World Bank, both the world population and the amount
of waste they produce will increase in the coming years [4]. They conclude that as
we are moving towards an urban future, the amount of waste is growing even faster
than the rate of urbanization. Hence, to adapt to a more sustainable lifestyle, the
waste management needs to be more effective and the amount of waste generated
needs to be reduced.

The AVWC system was invented by Envac AB [1] in the process of installing a
central vacuum system at the hospital in the Swedish city Sollefteå in the late
1950’s. Just a few years later the vacuum waste collection system was installed in
a residential area [5]. Today, these systems are in use globally and each system is
designed to fit the client. Some systems require identification to be able to open the
lid to the inlets and in this way limiting waste disposal to the residents only. The
collection of this kind of data opens up to possibilities of tracking waste disposal

1

1. Introduction

patterns in certain areas at specific times. More information about inlets and how
the user interacts with them can be found in Section 5.1.

The data originating from disposal patterns can be used to increase efficiency in
waste management and create incentive for people to reduce their waste volume.
Giving users feedback on energy use has proven to be an effective way of changing
energy consumption behavior [6–8]. Giving similar feedback on waste generation
could possibly give the same effect, resulting in a reduced amount of waste. How-
ever, feedback directed to users must be convenient for them and the platform used
should be easily accessible to the target group, i.e. Envac’s users.

The AVWC system needs a substantial amount of energy to operate where the
major part is used for the emptying process. Thus, an optimization of the empty-
ing in the system have the greatest potential of improving energy efficiency. The
emptying procedure is done in sequences that describes in what order to empty the
inlets and may be planned in a time schedule or started by a trigger in the system,
for further details see section 3.1.

1.2 Purpose and Objectives
The purpose with the thesis is to use data from AVWC in ambition to further min-
imize the environmental impact of the system. There are two problems addressed
in this thesis. Firstly, the possible optimization of emptying sequences. Secondly,
how to create incentive for a change in individual waste generation behavior, by
presenting feedback to a user.

The first problem can be modelled as a scheduling problem, where the desired out-
come is a schedule for emptying the inlets in order to minimize the energy used to
operate the system. The energy use is directly proportional to the running time of
the fans producing air suction, which transport waste from an inlet to the waste
collection station. Our schedule should perform better than the worst case scenario,
which would be to run pre-scheduled emptying sequences that empties the entire
system each time, and the schedule currently in use at Envac, described in Sec-
tion 3.2.

It is a complicated problem to visualize data in such manner that it encourages
the user to improve their waste generation behavior. The choice of platform for pre-
senting the data is also decisive for the outcome of the feedback. Previous studies
done on user feedback on energy use will act as the foundation of how to present
information on the chosen platform.

2

1. Introduction

The objectives of this thesis can be stated as:
• First sub-goal:

– Model the system and implement one or more scheduling algorithm(s)
for emptying the inlets.

– Develop a program that simulates the possible solutions and compares
their result with the performance of the current system.

– Evaluate the solution. It should result in an energy consumption lower
than the worst case scenario, where each sequence is pre-scheduled and
empties the whole system.

• Second sub-goal:
– Gain insight in what way of presenting feedback is most effective and

suitable under prevailing conditions.
– Choose a platform for presenting feedback to the user.
– Develop a prototype on the chosen platform that follows the concepts

found most suitable.

1.3 Literature review
Although the system has been in use for quite some time, there has not been much
research done regarding its energy consumption. A series of papers were produced [9]
that attempts to formally define the system and to model the problem as a Con-
straint Integer Programming (CIP) problem [10].

1.3.1 A Vacuum Waste Collection System in Spain
The research group in Spain chose to use CIP because of its capacity of solving
hard computational problems, including real-world operation problems [10]. Their
objective is to optimize energy consumption when emptying the system by finding a
set of emptying sequences and air speed operations for an operative period of time
that minimizes energy cost.

The model is built on constraints, parameters and functions, decision variables and
auxiliary variables that contribute to the solution. Many of the constraints are di-
rectly or indirectly focused on air speed. The objective function of their CIP model
is:

min(Etr + Est + P)

where P denotes a penalty cost for leaving unloaded inlets above a threshold of their
maximum capacity, in other words, to avoid a solution where no inlets should be
emptied. The energy consumption is denoted by E and is divided in two phases,
transitory, Etr, and stationary, Est. The transitory phase is the energy consumed
when air speed is altered and the stationary phase is the energy needed for trans-
porting waste.

3

1. Introduction

Their study concluded that their encoding is able to find the optimal solution for all
possible levels of waste in two of the three examined plants within 5 minutes. For
the third plant they were unable find an optimal solution when the waste level was
above 20%. This aside, they conclude that the used approach manages to find an
optimal emptying sequence within a few minutes and is thereby a feasible solving
solution.

1.3.2 Feedback and Behavioral Change
Different types of feedback has proven to be able to influence behavioral change
with various techniques. In the field of energy consumption, several studies have
shown that providing households with feedback on their energy use leads to reduced
consumption [11, 12]. Frequent or instant feedback has been found to give a better
result than for example monthly feedback, e.g. via the electricity bill [8]. A study
by Vassileva et al. on users in both houses and apartments in Sweden indicated that
the environmental factor was more important than the price concerning energy sav-
ing, more so for the users living in apartments than the ones living in houses [13]. If
information is easily accessible and contains some competitive, social or committing
elements, it is more interesting to the user and encourages change [7, 14].

Siero et al. have been studying how comparative feedback can be used to change
organizational energy consumption behavior [7]. Their studies were performed on
two user units in a company, which were given different kinds of feedback on their
energy consumption. One group received feedback on both their own and the other
unit’s performance, while the other only received feedback on their own efforts. The
results clearly show that the first group saved more energy than the other group.
The first group also proclaimed that they felt a stronger group identity than before
and the effects on their energy consumption behavior lasted even long after the study.

Few studies have been made in the area of user feedback in waste generation, but
Dahlén et al. researched how a weight-based billing system affects the amount of
waste in household waste collection systems in Sweden [15]. The studies show that
the amount of waste is reduced when presenting feedback about the waste generated
and its economic consequences.

1.4 Delimitations
Stationary AVWC systems are in use in various areas, e.g. hospitals, airports and
residential areas. The systems are adapted for each purpose and are similar, but
not equivalent. The situation of residential areas is applicable on everyday life and
is considered more interesting than the other cases. Therefore, only the case of res-
idential areas will be considered in the thesis. Calculations and comparisons will be
based on one specific system, further described in Section 3. However, the solution
should be applicable on other systems as well.

4

1. Introduction

The user feedback application will be digitally developed and no physical prod-
uct will take form. Considering that the application is intended to be a prototype
and not a full product, no user studies or interviews will be carried out during the
development. Standards in user interfaces will be followed. This will, however,
lead to an uncertainty whether the intended user incitement has been fulfilled or
not. In general, incitement is a factor that is rather difficult to measure. Therefore
the previous research in user feedback will act as a foundation of how to create
incitement.

5

1. Introduction

6

2
Theory

In this chapter, the different concepts used in this thesis are described.

2.1 Graph Models
A graph is defined as G = (V,E), where u, v ∈ V are nodes, and e = (u, v) ∈ E are
edges. In a graph, the edges can be directed or undirected. In this thesis we only
consider graphs with undirected edges. A graph is a tree if it is connected and does
not contain a cycle. The topmost node in the tree is the root node, and the tree
consists of nodes linked to it, see Figure 2.1. In the figure the root node is linked to
two other nodes, 1 and 4. These are called the child nodes of the root and the root
is their parent node. The root node does not have a parent node. The nodes that
do not have any child nodes are called leaf nodes, see node 2, 3 and 4 in Figure 2.1.
Each edge in the tree can have a value attached that represents its cost. The depth
of a node in the tree is the number of edges from the node to the root node. The
tree in the figure is a binary tree, which is a tree where each node has at most two
children [16].

root

1

2 3

4

1 3

2 2

Figure 2.1: An example of a tree.

2.2 Linear Programming and Integer Linear Pro-
gramming

Linear Programming (LP) and Integer Linear Programming (ILP) [17] are often
used to describe various optimization problems. An LP consists of a linear objective
function, linear constraints and continuous variables, commonly stated as:

min cTx s.t.
Ax ≥ b,
x ≥ 0

7

2. Theory

where x is a vector of variables, c and b are vectors of dimensions n and m respec-
tively, and A is a matrix of dimension m∗n, where n is the number of variables and
m is the number of constraints. There are many possible formulations to express an
LP, but a common objective is to minimize the cost while considering a number of
constraints.

If x is required to be integer, the problem is an ILP. Both LPs and ILPs can be
solved with various methods. For example, the simplex method [18] or interior point
methods [19] can be used to solve LPs. Methods for solving ILPs often use an LP
solver as a subroutine in combination with a tree search, e.g. branch and bound.
ILPs belong to the class of NP-hard problems while LPs are polynomially solvable.

2.3 Constraint Programming and Constraint In-
teger Programming

Constraint Programming (CP) is a technique for solving Constraint Satisfaction
Problems (CSP) [20]. As the name indicates, CSP aims to find a solution that sat-
isfies a number of constraints. CSP can be described as:

A set of variables: X = {X1, ..., Xn},
A set of domains: D = {D1, ..., Dn},
A set of constraints: C = {C1, ..., Cn}

Each variable Xi has a non-empty domain Di. A constraint Cj has a subset xj ∈ X
for which the constraint applies and it indicates which combinations of the domain
that are allowed. The ambition is to find a selection of domain values to each vari-
able where all constraints are fulfilled, or determine that no such selection exists.
The constraints can be of arbitrary shape, e.g. for discrete variable domains they
can be expressed as truth tables for all combinations of variables and values.

When modelling a large range of constraints or using predefined global constraints,
CSPs allows many possibilities for the user. Note, that CSP does not use an objec-
tive function in the same way LP and ILP does.

When solving CSPs the procedure is branched into two parts. Firstly, the con-
straints are studied one at a time. Values that are not consistent with the domain
and the other values in the current variable’s domains are removed. This method is
called propagation. However, propagation on its own does not solve all problems,
hence a second type of method is added: tree search. In this second type, the solver
backtracks to a previous state when a dead end is reached in the propagation. A
common example of CSP is the map coloring problem [20].

Constraint Integer Programming [21] is a combination of both Mixed Integer Pro-
gramming (MIP) and CP. MIP is a combined variant of LP and ILP, where a subset

8

2. Theory

of the variables are restricted to be integers while the rest is continuous. CIP aims
to combine benefits of both methods, i.e. the freedom to express any constraints
with the slight limitation to only allow integer variables. The model also allows a
linear objective function.

2.4 Scheduling Algorithms
Scheduling algorithms aim to optimally schedule a number of tasks over a number
of resources [16]. That is, decide the order in which the tasks should be done within
a given time frame. In some cases, it has to be decided which tasks to include
or not. Some scheduling problems have precedence constraints, which means that
some tasks must be completed before another can begin. It can also be a desire to
minimize the total sum of time, or minimize the cost of each job.

Algorithms for scheduling problems can be greedy [22], i.e. they always choose
the best action in each stage of the algorithm. Another way of solving scheduling
problems is by the concept of Dynamic Programming, which breaks a problem down
to a series of subproblems [16]. Correct solutions are then built up to larger and
larger subproblems, and in the end the original problem will be solved.

In an offline algorithm, all information is given before the search for an optimal
solution is initiated. In contrast, an online algorithm make decisions based on data
as that is received along the way, with no knowledge of the future. A common way
to decide the effectiveness of an online algorithm is by its competitive ratio, which is
the relation between itself and its hypothetical offline counterpart [23]. An example
of online algorithm is in the elevator problem. An elevator receives a request to
travel between floor X and Y, and during its travel new requests are added. The
question is how the elevator should handle the new requests in order to receive the
best outcome.

9

2. Theory

10

3
System Overview

This chapter describes the construction of the system and the emptying procedure
step by step. The data required to meet the thesis’ objectives is described. Further-
more, the data acquired is specified and interpreted.

3.1 System Description
The system can be described as a tree where the waste collection station is the root
of the tree, see Figure 3.1. The nodes in the graph are depicted as circles in the
figure and represent inlet clusters or pipe junctions. An inlet cluster is where one
or more inlets are located. The edges in the network represent the pipes between
these nodes. In Figure 3.1, an inlet cluster is visualized by a node with one or
several rectangles attached, one rectangle per inlet. Each inlet handles waste from
a specific fraction, such as paper, plastic, organic or residual waste. At each inlet
cluster there can be several inlets for different fractions, but also multiple inlets for
the same fraction. For example, residual waste is very common and might need two
or three inlets at one node. The system can only empty one fraction at a time.
Depending on which fraction is being emptied, the pipe leading into the terminal
directs the incoming waste automatically to the correct container.

Figure 3.1: A simple AVWC system.

The network is segmented into sub-parts
by placing sector valves strategically
along the tree. Instead of emptying the
entire tree at the same time, the vac-
uum can be concentrated on a certain
branch of the tree. There are also air
valves at some inlets that are opened to
ensure that the air flow is strong enough
to transport the waste. Each node needs
a corresponding air valve that is opened
when inlets at that node are emptied.
Each system is unique in the choice of
fractions, location and number of inlets.

The system considered in this thesis will be referred to as Plant 1, and its ac-
tual whereabouts are censored for the sake of anonymity of the inhabitants in the
area. The plant is located in a rather newly built area (2012) in Sweden which is

11

3. System Overview

still expanding. A map of Plant 1 is available in Appendix A. The longest branch
in the tree network is 1,34 km and there are currently over 140 inlets connected
to the system at 38 inlet clusters. The system handles three fractions of waste:
paper, plastic and residual waste. A graph representation of the system can be seen
in Appendix B, where the cost on each edge represents the length of the pipes in
centimeters in scale 1:2000.

3.2 Emptying Procedure
When initiating an emptying process in the system, it has to be decided which inlets
to empty and in what order. This is referred to as an emptying sequence. Today,
the most common way to decide when to start an emptying sequence is to schedule
fixed hours based on simple statistics on system use. The order in which inlets are
emptied is decided beforehand. Either the sequence starts with the inlet closest
to the collection terminal, working its way out, or the other way around. Starting
with the inlet farthest away from the terminal is more energy efficient and the most
practiced way of modelling the sequence.

In figure 3.2 a more extended example of the system is presented. Air valves are
represented by triangles, and their denotation, AVi, correlate to the one of inlet
clusters, ICi, e.g. AV1 is the air valve needed to empty IC1. Every inlet cluster
is connected to an air valve. One air valve can be associated with multiple inlet
clusters. All inlets connected to the same air valve are not always located at the
same node, as with inlet clusters IC2_1 and IC2_2. Fractions are denoted by fi.
Figures 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 show a step by step emptying of fraction 2 in
the system. In Figure 3.3 the content of IC1, f2, is released into the system and
moved towards the waste collection station. Only one inlet of the same fraction can
be emptied at a time and the next inlet cluster, IC2_2, can be emptied as soon as
the waste from IC1 has passed the junction where their paths connect, as can be
seen in 3.4. However, this does not apply when emptying several inlets associated
with the same air valve. In this case it is possible to empty an inlet immediately
after the discharge valve of the one before is closed, but only if they are emptied in
the opposite order, i.e. starting with the inlet with shortest length to the root.

Figure 3.2: Extended example of
the system.

Figure 3.3: Emptying example,
part 1.

12

3. System Overview

Figure 3.4: Emptying example,
part 2. Here, contents from IC1
has passed J1 and IC2_2 f2 is re-
leased into the network.

Figure 3.5: Emptying example,
part 3. Here, IC2_1 has closed its
discharge valve and contents from
IC2_2 has been released into the
network.

Figure 3.6: Emptying example,
part 4. Here, contents from IC2_1
has passed J1 and contents of
IC2_2 has passed J2.

Figure 3.7: Emptying example,
part 5. Here, contents from IC2_2
has passed J2.

Figure 3.8: Emptying example,
part 6. Here, contents from IC3
has been released into the net-
work.

13

3. System Overview

Most systems measure one or two levels by sensors in each inlet to anticipate the
amount of waste, low level and high level. In Plant 1, the most common procedure
is to measure only one level that is placed approximately at 50-75% capacity. In
Plant 1, there are two kinds of emptying procedures. The first is to empty the entire
system of a fraction in one sequence. In the second procedure, the system decides
which inlets should be emptied by checking their level. If an inlet has not reached
any level yet it does not need to be emptied. All inlets that have reached at least
level low will be emptied. If the level is high in an inlet the system is triggered to
start the emptying sequence immediately.

An inlet is emptied by starting fans at the terminal that creates vacuum in the
pipes and the waste is then transported by air from the inlet to the waste collection
station. In Plant 1, the system has four available fans, each with a capacity of 90kW
and at most two are used simultaneously. It is possible to set frequency for the
fans for a desired air speed. Air speed is the most important parameter and it is
calculated to be as low as possible but still be able to transport the heaviest type
of waste of a certain fraction. The air speed is constant for each fraction. Around
70 to 90% of all energy used by the system during an emptying sequence is for cre-
ating and maintaining air flow. This means that the difference in energy used when
transporting waste through the pipes compared to only transporting the air is not
significant.

An example of a terminal can be seen in Figure 3.9. At the terminal, the waste
is separated from the air stream and placed into containers, where it is compacted.
In Plant 1, if a container is full, it is replaced automatically with a new container.
However, in Envac’s most common systems the switch of containers is done manu-
ally. The system handles about one to two tons of waste a day.

Figure 3.9: Inside of the terminal of Plant 1. The blue pipes carry air and the green
carry waste.

14

3. System Overview

In Plant 1, all disposals are registered by the id of the disposer. At some inlets
there are scales that can weigh the waste for each disposal. However, Plant 1 only
has scales at about 6% of all inlets and therefore it is not possible to calculate the
weight of the waste for each household in the system. Furthermore, since the level of
waste in the inlets is not measured in detail it is difficult to decide if they should be
emptied or not. Some inlets fill up very fast during some periods while others may
not. For the same reason it is not possible to bill households based on their waste.
Instead, the housing association is billed by the number of apartments connected to
the system.

The total running time of the system, i.e. for how long the fans are on, is the
main parameter to be considered in order to lower the energy consumption. The
data described in 3.3 is intended to be used to find a substantial improvement com-
pared to the system currently in use at Envac.

When calculating the time used in an emptying sequence, Envac considers the fol-
lowing steps:

1. The air valve (AV) is opened.
2. The time it takes for the pressure in the pipes to go from atmospheric pressure

to stabilized vacuum.
3. The discharge valve (DV) of an inlet is opened.
4. The time it takes for all waste to be emptied from the inlet.
5. The discharge valve is closed.
6. The time required to transport the waste from the inlet to the collection ter-

minal.
7. Repeat all steps for each new air valve. If the next inlet to be emptied use the

same air valve, then only repeat steps 3-6.

The time for step 1, 3, 4 and 5 are constant and equal for each inlet, usually a few
seconds only, while the time for step 2 and 6 is bounded by the length from the root
to the current inlet.

3.3 Data Sets
The data required to approach this thesis’ objectives can be divided into two parts.
Firstly, data regarding which user has disposed waste at what time is needed to
be able to give the users feedback on their waste habits. Secondly, data regarding
emptying sequences of the system is needed for evaluation purposes, meaning which
inlets are being emptied, in what order they are being emptied, and at what waste
level an emptying process is initiated.

15

3. System Overview

The first part of the data originates from logs of each disposal for a given time. A
disposal is logged each time the lid or hatch to an inlet is opened and does not de-
pend on the amount of waste disposed. A disposal has parameters such as id for the
logged disposal, id of the used inlet, time stamp of when the disposal occurred, id of
the customer, information of which tag that was used, weight of the disposed waste
bag (if a weight is registered), address of the inlet and also some parameters that
indicates whether the disposal succeeded without errors or not. Each household,
represented by the customer id, owns a number of specific tags.

The second part of the received data is not as exhaustive as desired. It consists
of statistics over a month regarding emptying procedure of Plant 1, meaning the
average number of inlets emptied per minute, how long all emptying sequences took
in total and how the details of the emptying sequence look like. For example, there
can be emptying sequences including all inlets, but also sequences including only the
inlets that has a certain level. More details about emptying sequences is accounted
for in Section 3.2. Even though the data set acquired is not what was anticipated,
it is possible to estimate the rate in which the system fills up by using the first part
of the data in combination with approximations regarding waste bag sizes and inlet
capacity. An inlet has an average capacity of 188,5 liter and a waste bag has an
approximate volume of 8 liters. This makes an inlet able to handle 23 waste bags
before being full.

Figure 3.10 shows statistics of the total number of disposals over time in the given
area. The figure shows how disposals differentiate over months and weekdays. Fig-
ure 3.11 shows the number of disposals per unique inlet in 2016. This data can be
used as statistics for the probability of an inlet to fill up in a time span. As Fig-
ure 3.10 shows, there is a slightly larger probability of disposals to occur on weekends
then on a weekday. Some inlets are more frequently reoccurring than others, which
might mean that they are used by commercial users such as restaurants, etc.

The disposal data contains some anomalies that will be considered inaccurate. For
instance, one user tag has been registered to open an inlet hatch more than twenty
times during two minutes. It is not likely that it is twenty separate bags, therefore
an average is calculated. If more than one disposal is registered within four seconds
at the same inlet, only one disposal will be counted.

16

3. System Overview

Figure 3.10: Distribution of a total number of 974902 disposals during the years
2013-2016.

Figure 3.11: Statistics for the amount of disposals made at each inlet in 2016.

17

3. System Overview

18

4
System Optimization

Several methods have been tested when searching for a suitable model for the
scheduling problem. In this chapter the methods, formulations and decisions re-
garding choice of method are described. All algorithms are described in detail.
These descriptions act as an aid for the reader to grasp the algorithms, step by step.

4.1 Using Constraint Integer Programming
Fernàndez et al. [10] suggest an approach using CIP to solve the scheduling prob-
lem. When comparing their problem to the one presented in this thesis, the main
difference is the inclusion of sectors and air speed in their model. In the system
studied in this work, the air speed is a constant, based on the fraction that is to be
transported, and does not need to be included in any constraints. Sectors do not
have a significant impact on normal functionality in the system and do not need
to be included in the model. Another difference is that Fernàndez et al. calculate
the transitory and stationary energy when describing the total energy consumption.
We, on the other hand, only consider the system run-time as the important factor
for calculating the energy consumed.

Without the parameters described, the CIP approach appeared to be unnecessarily
complex for solving this scheduling problem. Thus, the method was discarded and
other possibilities were explored.

4.2 Using Integer Linear Programming
ILP is a common approach when modelling scheduling problems and it could be
suitable for modelling our problem. First variables needs to be stated:

• F is the set of all fractions in the system.
• I is the set of all inlets in the system.
• A is the set of air valves in the system.
• J is the set of junctions in the system.
• xf

i ∈ {0, 1}, f = 1, ..., |F |, i = 1, ..., |I|, indicates whether an inlet should be
emptied in this sequence or not. If xf

i is 0, the inlet should not be emptied.
• yk ∈ {0, 1}, k = 1, ..., |A|, indicates whether an air valve should be opened in

this sequence or not. If yk is 0, the air valve should not be opened.

19

4. System Optimization

• zi ∈ {0, 1}, i = 1, ..., |J |, indicates whether a junction should be passed in this
sequence or not. If zi is 0, the junction should not be passed.

• λik ∈ {0, 1}, i = 1, ..., |I|, k = 1, ..., |A|, indicates if inlet i belongs to air valve
k. If λik is 0, they do not belong together.

Constraints needs to be added to these variables to represent the system. Let Ik be
the index set of all inlets that belong to AVk. Then

∀i ∈ Ik ∀k, xi ≤ yk (4.1)

or the following cumulative constraint could be used:

∀k,
∑
i∈Ik

xi ≤Myk (4.2)

where M is the maximum number of inlets that can be connected to an air valve.
The objective function could be modelled as

min
∑

k

ckyk (4.3)

where ck denotes the cost associated with opening the air valve k.

The current model is very general and does not contain any details of in which
order the air valves are opened and at what point in time. To describe a whole
sequence, one would have to introduce a new set of variables for each point in time
and also define connecting constraints between variables for e.g. the same inlet but
for time t and t− 1. The number of variables and constraints will increase substan-
tially and it is unsure if anything reasonable will come out of such a model. Thus,
it was decided not to investigate this model further.

4.3 Scheduling Algorithms
We consider different scenarios for how an emptying sequence can be executed. The
first scenario is the simple case of the worst-case scenario, where all inlets are emp-
tied, and then more advanced emptying sequences are considered. The different
scenarios are:

1. Empty all inlets (worst-case scenario).
2. Empty triggered inlet.
3. Empty all inlets with at least a low waste level.
4. Empty based on statistics.
5. Empty using statistics, minimum and maximum level.

20

4. System Optimization

By developing separate scheduling algorithms for the different scenarios it is pos-
sible to simulate the system in a good way and compare the different outcomes.
More detailed descriptions of the different scenarios will be given in their respective
subsection in this chapter.

The system is modelled as a graph G = (V,E), where E is the set of edges and
V the set of nodes. Each edge represents a pipe between two nodes and has a cost
in terms of its length in meters. A node is either a junction Ji in the set J of all
junctions or an inlet cluster ICi in the set IC of all inlet clusters, thus V = J ∪ IC.
Each node has a number of parameters, depending on if it is an inlet cluster or a
junction. However, all nodes have three parameters in common: id, Li and li. The
id of the node is denoted by id, Li is the total length in meters from the node to
the root node and li is the length in meters from the node to its parent node. A
junction is associated with four additional parameters:

Ji = (id, Li, li, child
l, childr, dl

i, d
r
i)

where childl and childr are the left and right child of the node and dl
i and dr

i denote
the depth, in terms of length in meters, of the left and right subtree. An inlet cluster
is associated with two additional parameters:

ICi = (id, Li, li, avi, inletsi)
where avi is the air valve to which the inlet cluster belongs and inletsi is a list of
all inlets belonging to this cluster. Each air valve is denoted AVi in the set of all
air valves AV and each inlet is denoted Ii in the set of all inlets I. Air valves and
inlets are associated with the following parameters:

AVi = (id, Li, clustersi),
Ii = (id, fractioni)

Both id and Li are interpreted the same way in the context of AVi and Ii as for the
nodes, clusters is a list of all inlet clusters belonging to that AV and fractioni is the
fraction of waste in that inlet. All presented parameter lists will later be extended
in the process to fit the current scenario.

4.3.1 Scenario 1: Empty All Inlets
The sets of parameters for ICi, Ji, AVi and Ii described above are sufficient when
developing an algorithm for the worst-case scenario of an emptying sequence, where
all inlets in the system are emptied. Algorithm 1 describes the process of emptying
a whole subtree and could be used to represent the worst case scenario by giving
the root node as argument to processSubtree().

In Algorithm 1 the goal is to create an emptying sequence, emptySeq, that could be
executed by the system. The variable emptySeq is a global list where information is
stored about which AVs and DVs that are opened in the sequence and for how long.

21

4. System Optimization

Also the variable emptiedAV s is a global list containing all AVs that have been
added to emptySeq. Given a node Vi, processSubtree() empties all inlet clusters
belonging to the tree with root Vi. When the argument node is a junction, the two
children are compared and then the function is called recursively. The first call is
made for the child with the deepest subtree. The return values from each call are
saved. Null will be returned in the case where no air valves have been opened in a
subtree. Otherwise, the air valve opened last will stay open until the next AV to be
emptied is reached. When the recursion is done, all the transported waste is in the
root node and the sequence is finished.

For every inlet cluster that is reached, the function emptyAV () is called with the
AV that should be emptied and the fraction it belongs to as arguments. It adds
all inlets of the correct fraction which belongs to that AV to the emptying se-
quence. Also the time for stabilizing air speed, and opening and closing the AVs is
added, these are constants denoted by STABILIZE_TIME, OPEN_TIME and
CLOSE_TIME respectively. These constants are typically a few seconds, more
details can be found in Chapter 6.

With Figure 3.2 as an example for the outcome of running Algorithm 1, the pro-
cedure of emptying all inlets with fraction 2 is to begin with the air valve furthest
away from the root and then continue with inlet clusters in subtrees in the path
to the root node. This results in the following emptying sequence: AV 1:{IC1},
AV2 : {IC2_2, IC2_1}, AV 3 : {IC3}, where fraction notation has been omitted.

22

4. System Optimization

Algorithm 1: Empty all inlets in subtree Vi

1 ICi = (id, Li, li, avi, inlets);
2 Ji = (id, Li, li, childl, childr, dl

i, dr
i);

3 Ai = (id, Li, clustersi);
4 Ii = (id, fraction);
5 List emptySeq;
6 List emptiedAV s;
7 Function processSubtree(Vi, fraction)
8 if Vi is ICi then
9 if avi is not in emptiedAV s then

10 emptyAV (avi, fraction);
11 return avi;
12 else
13 return null ; // No new AV is opened

14 else
// Vi is a Junction

15 compare Vi.d
l
i and Vi.d

r
i ; // Assume Vi.d

r
i is larger than Vi.d

l
i

16 av1 = processSubtree(childr, fraction);
17 av2 = processSubtree(childl, fraction);
18 if av1 == null and av2 == null then
19 return null;
20 else if Vi.Li != 0 then
21 av = av2;
22 if av2 == null then
23 av = av1;
24 add av and Vi.li time to emptySeq;
25 return av;
26 else

// Root reached
27 add emptySeq.lastAV and CLOSE_TIME time to emptySeq;
28 return av ; // Sequence is finished

29 Function emptyAV(av, fraction)
30 if emptySeq is not empty then
31 add emptySeq.lastAV and CLOSE_TIME time to emptySeq;
32 add av and OPEN_TIME time to emptySeq;
33 add av and STABILIZE_TIME time to emptySeq;
34 foreach IC ic in av.inletClusters do
35 foreach I i in ic.inlets do
36 if i.fraction == fraction then
37 add i.id and emptyT ime time to emptySeq;
38 set lvl of inlet i to 0;

39 add av and av.inletClusters.lastCluster.l time to emptySeq;
40 add av to emptiedAV s;

23

4. System Optimization

4.3.2 Scenario 2: Empty Triggered Inlet
Algorithm 2 describes the case where one inlet fills up and triggers the system. Not
all inlets in Plant 1 have a sensor for high level that can trigger the system. Instead,
the data set in combination with approximations regarding volume of waste bags
and inlet capacity, as described in Section 3.3, is used to calculate the level in an
inlet. Thereby, an approximate high level can be used. The parameter list has to be
extended by adding another parameter, lvli, to Ii, to enable a level check. The new
parameter indicates the level of waste, in percent, in the inlet. This can be checked
to decide when an inlet is triggered. Also, the list is extended to let the AVs have a
list, Listi, containing all nodes on the path from the AV to the root node. In this
case we want to empty the AV containing the triggered inlet first and then add all
AVs with an inlet cluster connected to the path. An inlet cluster IC is connected to
the path if there is only one edge between it and a node in Listi, i.e. Listi contains
the parent of IC.

In contrast to Algorithm 1, Algorithm 2 does not have a recursive function. In-
stead it has a function, emptyTriggered(), which given the triggered inlet cluster
loops over the path from the inlet cluster to the root node. First the AV containing
the triggered inlet is emptied, using the subroutine emptyAV () from Algorithm 1,
and then it checks for leaf nodes (inlet clusters) connected to the path. All AVs with
connected clusters are emptied and the system is turned off when the root node is
reached.

Algorithm 2: Empty a triggered inlet and all connecting inlets
1 ICi = (id, Li, li, parent, avi, inlets);
2 Ji = (id, Li, li, parent, childl, childr, dl

i, dr
i);

3 Ai = (id, Li, clustersi, Listi);
4 Ii = (id, fraction);
5 List emptySeq;
6 List emptiedAV s;
7 Function emptyTriggered (ICi)
8 add avi and li time to emptySeq;
9 av = avi;

10 last = Ii;
11 foreach v in Listi do
12 if other child than last is leaf and child.av is not in emptiedAV s then
13 emptyAV (child.av);
14 av = child.av;
15 add av and v.l time to emptySeq;
16 last = v;
17 turn off;

24

4. System Optimization

As an example of the procedure in Algorithm 2, assume the system depicted in
Figure 3.2. If the triggered inlet was in the inlet cluster IC2_1, Algorithm 2 would
create the following emptying sequence: AV2 : {IC2_1, IC2_2}, AV1 : {IC1}. This
example is very small, but in a slightly larger system such as in Figure 4.1, if IC2_1
would trigger on fraction 2 the emptying sequence would be: AV2 : {IC2_1, IC2_2},
AV1 : {IC1}. However, if IC4 would trigger afterwards, then it would include the
same inlets on the shared path that was just recently emptied. Its emptying sequence
would be: AV4 : {IC4}, AV2 : {IC2_1, IC2_2}, AV1 : {IC1}. This would be both
unnecessary and inefficient.

Figure 4.1: Example of a deeper system structure.

This function could be used when the system trigger on a high level in an inlet in
the system. However, it can not be considered an adequate solution by itself for
emptying the entire system. As described in the example, this kind of emptying
sequences would be of very low efficiency. In many cases it would also generate long
start up and transport times compared to the number of inlets emptied. However,
the new parameter lvli can be of use in several other scenarios for how the emptying
sequence can be executed.

4.3.3 Scenario 3: Empty All Inlets With at Least a Low
Waste Level

Adding a level check on all inlets would enable emptying sequences which empty
only those inlets that needs to be emptied. There are several ways in which the
algorithms can be developed to empty those inlets with at least low level, some
more efficient than others. Two attempts are described in this section.

25

4. System Optimization

4.3.3.1 An Extension of Algorithm 1

For this scenario, a simple extension of Algorithm 1 could be sufficient. In this case,
on Line 9 in Algorithm 1 the if-statement should be updated to include the new
level constraint. The new line would look as follows:

if avi is not in emptiedAVs and hasInd(avi, fraction) then,

where the first check, for controlling if the AV has been emptied before, is followed by
a second check for controlling if there is indication that the AV should be emptied for
the given fraction, i.e. a low level has been reached in one of the inlets belonging to
the AV. The hasInd() function is presented in Algorithm 3, where MAX_LEV EL
is a constant for the maximum level an inlet can have before it needs emptying. For
the scenario of emptying all inlets with at least low level, the MAX_LEV EL is set
to low level, i.e. somewhere between 50-75 %. The map AV Indicator maps every
AV, that has already been checked, to an indication (true or false) if they should be
emptied or not. The purpose of this map is to avoid looping over all inlets for the
same AV more than one time.

Algorithm 3: Check if an AV has level by checking the level of the associated inlets
1 ICi = (id, Li, li, parenti, avi, inletsi);
2 Ji = (id, Li, li, parenti, childl

i, childr
i , dl

i, dr
i);

3 Ai = (id, Li, clustersi, Listi);
4 Ii = (id, fractioni, lvli);
5 Map AV Indicator;
6 Function hasInd (AVi, fraction)
7 if AV Indicator contains AVi then
8 return AV Indicator.getV alueFor(AVi);
9 foreach ic in clustersi do

10 foreach i in ic.inlets do
11 if i.fraction == fraction and i.lvl > MAX_LEV EL then
12 add true to AVi in AV Indicator;
13 return true;

14 add false to AVi in AV Indicator;
15 return false;

The change does not work as intended. The algorithm will not always empty the
inlets furthest away first and thereby not choose the order which is most energy
efficient. As an example, assume a tree with two subtrees where the left subtree is
deeper than the right. One shallow inlet in the left subtree has level that should
be emptied, but the right subtree may have several inlets with level. The algorithm
would still be forced to start in the deeper of the two subtrees, even if all inlets in it
do not need to be emptied. This could be avoided by always running Algorithm 1
on a tree where all inlets should be emptied. Therefore, we introduce an algorithm
for building a new tree.

26

4. System Optimization

4.3.3.2 Building an Emptying Tree

When the emptying of the system is supposed to be restricted to only include the
inlets that needs to be emptied, the procedure of choosing inlets and emptying
them are separated. Therefore, a function buildTree() is implemented. Similar to
processSubtree() in Algorithm 1, buildTree() is called with the original root node
and a fraction as arguments, to recursively decide which inlets to include in the new
tree. The new tree is a modified version of the original tree, including only desired
inlets.

Modifications of the original tree is done by removing junctions when one of its
two child nodes does not need to be emptied. As an example, in a scenario where
fraction 1 is emptied in Figure 3.2, IC2_2 is not needed, and therefore, junction J2
is removed and IC2_1 is made the right child of J1. The original length in the path
from J2 to IC2_1 is retained in the new edge between these nodes.

Figure 4.2: Example of function buildTree().

In Algorithm 4 the recursive function buildTree() is described. For every inlet clus-
ter that reached, hasInd() from Algorithm 3 is called to check if the cluster should
be included in the new tree, in which case it is returned. Otherwise, null is returned
to indicate that the node should not be included. For every junction Vi, the function
is called for both child nodes and the returned values are saved in v1 and v2, which
represents the new child nodes of Vi. If the values of both child nodes are null,
neither them nor the current junction should be included in the tree, hence null
is returned. If only one of the child nodes should be included the junction is not
needed and its parent and child should be re-assigned as described in the example
above. However, the depths, dl

i and dr
i , first have to be updated to match the new

subtree of the junction. This is done through the function updateJunctionDepth(),
that takes the start junction to update as a first argument and a node to recurse
over as a second. This function is also described in Algorithm 4.

27

4. System Optimization

Algorithm 4: Build a tree of all inlets with indicator
1 ICi = (id, Li, li, parenti, avi, inletsi);
2 Ji = (id, Li, li, parenti, childl

i, childr
i , dl

i, dr
i);

3 Ai = (id, Li, clustersi, Listi);
4 Ii = (id, fractioni, lvli);
5 Function buildTree (Vi, fraction)
6 if Vi is Ii then
7 if hasInd(avi, fraction) then
8 return Vi;
9 else

10 return null;
11 else
12 v1 = buildTree(childr

i , fraction);
13 v2 = buildTree(childl

i, fraction);
14 if v1 and v2 is null then
15 return null;
16 else if v2 is null then
17 if Vi is root then
18 set childl

i = null;
19 return Vi;
20 parenti.child

Vi = childr
i ;

21 childr
i .li+ = li;

22 return childr
i ;

23 else if v1 is null then
24 if Vi is root then
25 set childr

i = null;
26 return Vi;
27 parenti.child

Vi = childl
i;

28 childl
i.li+ = li;

29 return childl
i;

30 else
31 updateJunctionDepth(Vi, Vi);
32 return Vi;

33 Function updateJunctionDepths(start, Vi)
34 if Vi is Ii then
35 return li;
36 else
37 dLeft = updateJunctionDepths(childl);
38 dRight = updateJunctionDepths(childr);
39 deepest;
40 if dRight ≥ dLeft then
41 deepest = dRight;
42 else
43 deepest = dLeft;
44 if Vi is start then

// Finished - Set new depths
45 dl

i = dLeft;
46 dr

i = dRight;
47 return deepest;
48 else
49 return li + deepest;

28

4. System Optimization

4.3.4 Scenario 4: Empty Based on Statistics
By using the same data set, originating from disposal logs, as for the lvli param-
eter in Ii, a probable level of waste for an inlet within a certain time span can be
estimated. The statistics can be used to decide which inlets should be added to the
emptying sequence. If an inlet is probable to fill up in the coming time span, it
could be a better choice to add it to the sequence now, even if its current level is
not greater than MAX_LEV EL. This scenario is easily added by making small
changes in already stated algorithms. In Algorithm 3 at Line 11, a check on probable
level could be added if statistics are available. The new line looks as follows:

if i.fraction == fraction and (i.lvl > MAX_LEV EL or i.probableLvl >
MAX_LEV EL) then,

where probableLvl is calculated by fetching the average number of disposals for an
inlet in a given time interval. Since the distribution of disposals differs not only by
time of day, but also by day of week, the probable level should be based on statistics
for the day of week. The distribution also differs by month. However, since the
system has been growing a lot, with more inlets connecting each month, the data
used should be from no more than one or two years back to give a realistic result.
Thus, there is not enough data from separate months to take that into consideration
when calculating an average.

4.3.5 Scenario 5: Empty Using Statistics, Minimum and
Maximum Level

The statistics described are a good foundation for choosing which inlets should be
included in an emptying sequence. By also having more than one level which can
induce different ways of choosing inlets, it is possible to make the sequence more
effective and possibly minimize the risk of inlets getting filled up. The constant
MAX_LEV EL has already been introduced and now a new constant is intro-
duced, MIN_EMPTY_LEV EL. The new constant can be used to determine
which other inlets should be emptied than the triggered one(s), e.g. if one inlet
of fraction 1 has a greater level than MAX_LEV EL, then all inlets of fraction 1
which have reached MIN_EMPTY_LEV EL will also be emptied.

Two functions are described in Algorithm 5, one to calculate the level in each in-
let and one to select which inlets to empty. The first function, updateLevels(), is
called with the argument disposalsPerInlet, which is a map containing lists of all
disposals made in a time interval mapped to their respective inlet. The function
loops over all inlets where disposals have been made, and for each inlet calculates
the new level. The level added is computed through the number of disposals made
times the volume of a waste bag, which is then divided by the capacity of the inlet.
If an inlet has exceeded maximum level it is added to inletsWithMaxLevel and if
the inlet is overfull, it is added to inletsOverLimit. If inletsOverLimit contains
any elements, the emptying has failed and the solution is not feasible.

29

4. System Optimization

The second function, setInletsToEmpty(), computes which inlets and fractions that
should be emptied. The function is called with the argument inletsWithMaxLevel,
which is the list returned from updateLevels() containing inlets that have reached
maximum level in this time interval. It loops over all inlets in the system and checks
their current level and probable level. All inlets that have a level or a probable level
that indicates it might need emptying are considered for the emptying sequence.
If they also belong to a fraction that is set to be emptied, they are added to the
list inletsToEmpty. If they do not belong to a fraction that is already set to be
emptied, there are two cases available. Either they have a probable level above
maximum level, or they only have reached the minimum empty level. In the first
case this is an inlet with a risk of filling up before the next emptying sequence and
in that case the inlet is added to inletsToEmpty. Furthermore, the new fraction
needs to be added to fractionsToEmpty and change fractionAdded to true for the
fraction to declare that it has been added. In the second case the inlet is added
to the list overMinF i.fraction, where all inlets that have reached minimum level are
stored in case the fraction will be added to the emptying sequence.

After looping through and sorting all inlets, we loop over all fractions, to add those
inlets with minimum level to inletsToEmpty in the case where their fraction has
been added.

30

4. System Optimization

Algorithm 5: Find and save all inlets which should be emptied
1 ICi = (id, Li, li, parenti, avi, inletsi);
2 Ji = (id, Li, li, parenti, childl

i, childr
i , dl

i, dr
i);

3 Ai = (id, Li, clustersi, Listi);
4 Ii = (id, fractioni, lvli);
5 List inletsToEmpty;
6 List inletsOverLimit;
7 Function updateLevels(disposalsPerInlet
8 addedV olume, newLevel, oldLevel;
9 fraction;

10 List inletsWithMaxLevel;
11 foreach i in disposalsPerInlet do
12 oldLevel = i.lvl;
13 addedLevel = (i.nbrOfDisposals * BAG_V OLUME) /

MAX_V OLUME; newLevel = addedLevel + oldLevel;
14 if newLevel > MAX_LEV EL then
15 if newLevel ≥ 1 then
16 add i to inletsOverLimit;
17 add i to inletsWithMaxLevel;
18 i.lvl = newLevel;
19 return inletsWithMaxLevel;
20 Function setInletsToEmpty(inletsWithMaxLevel)
21 List fractionsToEmpty;
22 List overMinF 1, overMinF 2, overMinF 3;
23 Boolean[] fractionAdded = {false, false, false};
24 add all fractions of inlets in inletsWithMaxLevel to fractionsToEmpty;
25 foreach i in I do
26 if i.lvl ≥ MIN_EMPTY_LEV EL or probableLevel > MAX_LEV EL

then
27 if fractionsToEmpty contains i.fraction then
28 add i to inletsToEmpty;
29 else if probableLevel > MAX_LEV EL then
30 add i to inletsToEmpty;
31 add i.fraction to fractionsToEmpty;
32 fractionAdded[i.fraction] = true;
33 else

// The inlet level is over minimum, but the probable level is not
over maximum

34 add i to overMinF i.fraction

35 foreach fraction in F do
36 if fractionAdded[fraction] then

// If the fraction should be emptied, add all inlets with level ≥
MIN_EMPTY_LEVEL to inletsToEmpty

37 add all elements from overMinF fraction to inletsToEmpty;

38 return fractionsToEmpty;

31

4. System Optimization

The function hasInd() in Algorithm 3 also needs to be adjusted to this change and
the final version of the if-statement on Line 11 will look the following way:

if i.fraction == fraction and inletsToEmpty contains i) then,

where the level check is now replaced by a control for if the inlet is in the list of all
inlets that should be emptied.

The procedure in scenario 5 can be explained in a number of steps. First, the
system checks its levels at given times by calling the method updateLevels(). Then,
if any inlets have been found with a high level, the function setInletsToEmpty()
will be called with these as an argument and assign which fraction(s) and the list
of the inlets that should be a part of the sequence. For each fraction, a new tree
with this list will be built with the function buildTree(). Lastly, processSubtree()
will be called with the new tree as an argument, and an emptying sequence will be
built.

4.3.6 Time Complexity
Since the structure of the system is a tree where all nodes are visited, the time
complexity of visiting all nodes and all edges in the tree is O(n1 + n2), where n1
is the number of nodes in the tree and n2 is the number of inlets in the system.
This complexity holds for the worst-case scenario, function processSubtree(), which
iterates over the entire tree and empties it. The complexity is the same for all the
other algorithms.

4.3.7 Simulation
The scenarios are simulated in a Java program on a model of Plant 1. A map in scale
1:2000 over the area where Plant 1 is situated has been used to measure the distance
from the root node to each cluster of inlets. The accuracy of the calculated lengths
are therefore not exact but should give close enough values for the simulator. The
exact times for each step in the procedure are not available, but the average time
needed has been consulted with Envac to make the simulations as close to reality
as possible. A discharge valve needs 4 seconds for opening and closing, it is opened
for 10 seconds to make sure all waste is released from the inlet. An air valve also
needs 4 seconds for opening and closing. The speed for transporting residual and
plastic waste is 10m/s, and 8m/s for paper. Paper is more prone to get stuck in the
pipes and is therefore emptied at a slower speed. When running the algorithms, an
emptying sequence prints which inlets are emptied, total time for the process and
how much time was needed for each step.

32

5
User Feedback Prototype

A digital prototype has been developed to act as a tool to communicate feedback
to the users of the AVWC system. In the modern society, digital communication
is easily accessible. Therefore, the feedback is intended to be communicated via
software in a manner that fits the entire spectra of users. This chapter describes
how user feedback is communicated in the Envac system and how the prototype was
implemented and which frameworks were used.

5.1 User Feedback in the Envac System
In a traditional waste collection system, there are garbage cans for each fraction
available, where the user opens the lid or hatch to dispose of their waste in that
container. The interaction between users and the Envac system in residential areas
is very similar to the ordinary waste collection system, as can be seen in Figure 5.1.
The garbage cans in the traditional system and the inlets in Envac’s system are each
others counterparts. In areas where each household manages its own garbage can(s),
like many house owners do in Sweden, the feedback is straightforward. They receive
visual feedback while filling the garbage can and the service cost of their waste
collection is based on the weight of the waste upon emptying [15]. In contrast,
areas with shared waste collection, for instance apartment blocks in the city, there
is limited feedback on the individual waste generation. Waste is collected without
any involvement of the households and the service fee is included in the rent rather
than charged based on individual use.

Figure 5.1: Inlets in an Envac System [1]. The colors of the hatches represent
different fractions.

33

5. User Feedback Prototype

5.2 Application Development
According to Statistics Sweden 73% of the Swedish population have access to a
smartphone [24]. Developing an app for smartphones is deemed to be effective to
reach a broad user group. However, to avoid the need to develop for both Android
and iOS, the choice of platform is a web application since it is easily adapted to
mobile devices. Furthermore, a web application makes it possible for users who do
not own a smartphone to use the application on a computer.

5.2.1 Requirements and Design
As a first step, a list of milestones was established for the work process for the
application. These milestones were given a time span and a deadline for completion.
All milestones are listed in table 5.1.

Milestone Description
1 Requirements should be specified
2 A mock-up of the application UI should be done
3 The data should be processed and added to a database
4a The backend should be implemented (supporting at least minimum requirements)
4b The frontend should be implemented (supporting at least minimum requirements)
5 The prototype should be finished

Table 5.1: Table of Milestones

A list of requirement was specified and then prioritized after what usage was con-
sidered to be of most importance. The main functionality was decided to be the
visual representation of the users interaction with the system, i.e. what fraction of
waste they have disposed and when. These requirements are viewed as minimum
for the prototype to be finished. When the time devoted for the prototype was over,
any unfulfilled requirement that was not considered minimum was discharged. All
requirements are listed in table 5.2.

34

5. User Feedback Prototype

Prio Requirement
1 A user should be able to view:

- previous disposals
- the total amount of waste and for a specific time span
- the number of disposals of different fractions

2 A user should be able to view graphical statistics over their disposals and choose between
layouts and visualizations of their liking

A user should get positive feedback when improving
3 A user should be able to see their position in contrast to anonymous neighbours

A user should get encouragement to improve (without tons of notifications)

A user should be able to receive information about the system that they are a part of
e.g. the fractions available, a map and so on

A user should be able to change their settings

A user should be able to contact the company
- regarding the application
- regarding their waste

4 A user should be able to get information about recycling and its benefits

A user should be able to add a plan for reducing their amount of waste/start recycling
more

A user should be able to see their environmental impact
5 A user should be able to calculate their invoice

A user should be able to see if an inlet is closed for emptying

A user should be able to get information of which inlet in their neighbourhood is most
optimal (if an inlet is scheduled to soon be emptied or is more full than another) for
disposal at a given time

Table 5.2: Table of Requirements

Regarding design of the application, it was chosen to implement according to mobile
application convention to give a sense of familiarity for the user. The first view
displays the statistics of the users monthly waste generation and contains some
trivia on benefits of recycling or similarly encouraging information. An early paper
prototype can be seen in figure 5.2. The navigation is done in a left side drawer which
emerges when the user presses a button with three bars. The overall information that
is presented to the user in the application is their previous history, their personal
account, a top list for adding competitive feedback and information about the area
and what inlets that are close by. The top list is intended to vary its information
depending on the user’s habits. If the user is, in fact, amongst the top performing
household’s in the area, the information will encourage to perform even better. If
the user is in the lower half in performance on the other hand, the encouragement
will be in comparison of the user’s history, e.g. “You recycled 5% better this month
than the last. Good job!”.

35

5. User Feedback Prototype

Figure 5.2: A sketch of the user feedback prototype.

5.2.2 Implementation
The framework used to develop the frontend of the web application is Angular 2, the
backend is written in JavaScript using Node.js and the database is built in MySQL.
The database contains data of all users connected to Plant 1 and all disposals done
during 2016. The backend handles simple requests to the database from the frontend
such as listing all disposals made by a certain household for a given time span.

36

6
Results and Discussion

The first goal of this thesis has been to explore the possibility of optimizing the
emptying process in the Envac AVWC system, and thereby reduce the total energy
use in the system. The second goal has been to investigate the possibility of creating
incentive for individual users to change their waste generation behavior. In this
chapter, the optimization results of the simulation program and the results of the
feedback study are presented and discussed.

6.1 Simulation Outcome
All simulations presented in this chapter are conducted over the total number of
disposals in Plant 1 during January 2017. For the simulations, each fraction has
been assigned a number. Residual waste is denoted by 1, plastic by 2 and paper
by 3. The desired outcome of the simulations is a lower total run time than the
current in Plant 1. The results are compared both to the current run time and that
of the worst-case scenario, which is to empty the entire system in pre-scheduled
sequences in a given time interval. Figure 6.1 shows all disposals made during 2016
per fraction. The figure suggests that residual waste is more than twice as frequent
as plastic, and more than five times as frequent as paper. However, as paper is
more prone to get stuck in the pipes, it needs to be emptied more often. Therefore,
the worst case scenario will be modelled to empty residual waste twice as often as
plastic and paper.

Residual Plastic Paper
0

0.5

1

1.5

2

2.5
·105

N
um

be
r
of

di
sp
os
al
s

Figure 6.1: Number of disposals per fraction in 2016

37

6. Results and Discussion

Table 6.1 presents actual data of Plant 1 run time in January 2017. “DV emptyings
per minute” implies how many discharge valves in inlets have been opened on average
per minute. It is a measurement of efficiency, a higher value means more inlets have
been emptied per minute. However, if the amount of waste in an inlet is low, it is
not necessarily more efficient to include it in a sequence; but it will result in a higher
value on DV Emptyings per minute.

Fraction: Residual (1) Plastic (2) Paper (3) Total
Time (%) 59.8 18.1 22.1 100
Accumulated Time (s) 262509 79369 97130 439008
Accumulated Time (h) 72,92 22,05 26,98 121,95
Energy (%) 63.2 16.8 20 100
Accumulated Energy (kWh) 3760 1003 1191 5954
DV Emptyings 3305 749 738 4792
DV Emptyings per minute 0.755 0.566 0.456 0.654

Table 6.1: Table of system run time and energy use in January 2017, from Envac.

6.1.1 Simulator Setup
Table 6.2 presents statistics for the emptyings of each fraction in Plant 1 during
January 2017. No sequence to empty all inlets of fraction 2 has been executed,
only sequences where inlets with at least low level are emptied are executed on this
fraction. Figure 6.1 indicates, residual waste are by far the greatest contributor
of volume in the system, hence most emptying processes transport residual waste.
Notable is that the number of inlets may have increased during the month, thus the
total number of inlets emptied is not divisible by the number of inlets in Table 6.3.

Scenario Fraction #Inlets Time (s) Inlets/min
Empty all 1 1453 100221 0.870

2 0 0 0
3 77 5390 0.857

Table 6.2: Comparative statistics for one month in Plant 1, from Envac.

There are some factors in Plant 1 that affect the total emptying time. These factors
are not consistent, nor are they all known to us. For example, there are different
types of inlets and discharge valves in the system and they are of various sizes and
do not require the same time for emptying. There are also some emptying sequences
where an extra fan needs to be started or the emptying might be paused for some
reason, which adds more time to the sequence. To compensate for the different
factors and be able to compare with the data in Table 6.1, extra time needs to be
added in the simulation for each inlet that is emptied. The extra time added is called
correction factor and several different time values have been tested. The result is
presented in Table 6.3. Notable is that while Table 6.2 is over an entire month,
Table 6.3 is of a single run only. The scenario of emptying the entire system is

38

6. Results and Discussion

comparable to the procedure currently in use at Envac, therefore obtaining a similar
value to theirs regarding inlets/min, is considered desirable. Residual waste is by
far the most common fraction in the system and the approximations are mainly
based on it, therefore the value for residual waste will be used as benchmark. As
Table 6.3 suggests, a correction factor of 19 seconds yields a value of 0.876 inlets/min
for fraction 1, compared to 0.870 inlets/min, as seen in Table 6.2. This is regarded
satisfactorily similar. All simulations henceforward will use a correction factor of 19
seconds.

Scenario Fraction Correction
Factor (s) #Inlets Time (s) Inlets/min

Empty all 1 10 62 3222 1.154
1 15 62 3792 0.981
1 19 62 4248 0.876
1 20 62 4362 0.853
2 10 47 2802 1.006
2 15 47 3297 0.855
2 19 47 3693 0.764
2 20 47 3792 0.744
3 10 39 2678 0.874
3 15 39 3133 0.747
3 19 39 3497 0.669
3 20 39 3588 0.652

Table 6.3: Table of simulating an emptying of entire system of a fraction with various
correction factors.

When simulating the scenarios from Section 4.3, the system is scanned in specified
time intervals. In most scenarios, various time intervals are used between scans to
generate comparable outcome. All disposals since the previous scan are converted
into volume. Depending on the current scenario, the simulator makes decisions
based on the scenario specific constraints on levels and statistics.

6.1.2 Scenario 1: Empty All Inlets
In Table 6.4 the results of various time intervals attempted for scenario 1 are pre-
sented. This is also considered to be the worst-case scenario for the system. The
column “Comparison (%)” shows the difference in percentage between this running
time and the total time presented in Table 6.1.

In this scenario the residual waste is emptied in every time interval and the other
two fractions alternately in every other interval. It is likely that an emptying se-
quence requires a long run time when all inlets are emptied. In the shorter intervals,
an emptying sequence might need longer time than the actual time interval. If an
emptying sequence has been initiated in an interval, the next emptying sequence can

39

6. Results and Discussion

not run until the sequence before has finished, even if it is longer than the time in-
terval between emptyings. In these cases, the simulator postpones the next interval
to when the previous sequence has finished.

Scenario Interval (min) #Inlets Time (s) Comparison (%) Inlets/min #Overfull Inlets
Worst case 120 35801 2633649 599.91 0.816 0

180 25620 1884558 429.28 0.816 5
400 11550 735964 167.64 0.816 53
520 8921 656407 149.52 0.815 96

Table 6.4: Table of worst-case scenario modelled over various time intervals, for all
fractions.

The worst-case scenario can result in a never-ending emptying sequence, as for the
interval of 120 minutes where the total run-time over a month is 30.5 days. The first
entries in the data set are from 12:30, 1 January 2017, meaning that the shortest
intervals in Table 6.4 would in fact be running constantly. Since 120 minutes is the
approximate time for emptying all inlets of fraction 1 and fraction 3, which happens
in every other time interval, an interval of 120 minutes is the same as running a
new emptying sequence as soon as the previous one is over. Thus, the outcome is
expected.

6.1.3 Scenario 2: Empty Triggered Inlet
Scenario 2 was not fully simulated as it was deemed to be of low efficiency, as
described in Subsection 4.3.2. The concepts of the scenario are however integrated
in the following scenarios.

6.1.4 Scenario 3: Empty All Inlets With at Least a Low
Waste Level

The simulations of scenario 3 were implemented with several time intervals for dif-
ferent values to act as low level. The results are presented in Table 6.5. If any inlet
has a level according to the scenario, an emptying sequence will be initiated. For
example, if the levels are checked in 30 minutes intervals, with a triggering level of
50%, a total number of 3861 inlets will have been emptied. In this particular exam-
ple, 0 inlets have become overfull between two level scans. In the same manner as in
the worst-case scenarios, an emptying sequence will postpone the next system check
if it is longer than the current interval. However, in the simulations in Table 6.5,
encountered postponements are no longer than a few minutes.

The results in Table 6.5 shows that when the total run time is lower than En-
vac’s, 439008s, there are multiple occurrences of overfull inlets. There are only two
scenarios where no inlets are overfull and the run time is lower than Envac’s. The
first is in the scenario when the level is 50% and the time interval is 60 minutes,
where the total run time is 35min lower than Envac’s. The second case is when
the level is 60% and the time interval is 30 min, where the total run time is 39min.

40

6. Results and Discussion

Both of the cases results is an approximate improvement of 0.5% in total kWh per
month, which is a very small gain that might be due to margin of error.

Scenario Interval (min) #Inlets Time (s) Comparison (%) Inlets/min #Overfull inlets
Empty if level ≥50% 10 3942 619087 141.02 0.382 0

30 3861 528659 120.42 0.438 0
60 3694 436924 99.53 0.507 0
90 3538 384980 87.69 0.551 3
120 3430 354040 80.65 0.581 6

Empty if level ≥60% 10 3150 506733 115.43 0.373 0
30 3064 436627 99.46 0.421 0
60 2986 377903 86.08 0.474 2
90 2905 334157 76.12 0.522 10
120 2823 305822 69.66 0.554 21

Empty if level ≥70% 10 2757 449368 102.36 0.368 0
30 2709 396172 90.24 0.410 4
60 2622 340644 77.59 0.462 7
90 2572 307626 70.07 0.502 22
120 2482 278567 63.45 0.535 38

Empty if level ≥80% 10 2452 400371 91.2 0.367 2
30 2414 353677 80.56 0.410 5
60 2359 311463 70.95 0.454 19
90 2306 277558 63.22 0.498 53
120 2259 259772 59.17 0.522 77

Table 6.5: Table of simulation over January 2017 with level constraints, for all
fractions.

6.1.5 Scenario 4: Empty Based on Statistics
Table 6.6 shows the results of simulating the scenario where an inlet is emptied if
its level or probable level is greater than or equal to maximum level. The probable
level is based on statistics over disposals made in 2016 on a specific weekday and
hour. This means the probable level is the probability of a specific inlet, on the
current weekday in the coming hour, to gain a volume over the maximum level. A
year of data is considered to be enough to calculate the probable level and 2016 is
the most similar to 2017 in number of inlets and connected households.

The results in Table 6.6 show some scenarios where no overfull inlets occur and
the total time is lower than Envacs run time 439008s. The case with best run time
is when the inlet level is set to 70% and time interval to 30 minutes. This results
in 15.3h less running time than Envac’s current procedure, which is an approximate
improvement of 12,6% in total kWh per month. This is significantly better than in
Subsection 6.1.4, and is considered to be an improvement of the current procedure.
However, it is possibly affected by margin of error and might not be a large enough
improvement in total to be considered a satisfactory solution.

41

6. Results and Discussion

Scenario Interval (min) #Inlets Time (s) Comparison (%) Inlets/min #Overfull inlets
Empty if level ≥50% 10 3958 617220 140.59 0.385 0
or if probable 30 3934 520489 118.56 0.453 0
level is ≥50% 60 3938 458375 104.41 0.515 0

90 3962 409490 93.28 0.581 1
120 4128 422677 96.28 0.586 1

Empty if level ≥60% 10 3199 453788 103.37 0.423 0
or if probable 30 3214 407009 92.71 0.474 1
level is ≥60% 60 3213 363042 82.70 0.531 1

90 3258 337770 76.94 0.579 4
120 3303 328338 74.79 0.604 7

Empty if level ≥70% 10 2761 442794 100.86 0.374 0
or if probable 30 2778 383749 87.41 0.434 0
level is ≥70% 60 2771 332193 75.67 0.500 2

90 2797 303033 69.03 0.554 9
120 2838 288413 65.70 0.590 14

Empty if level ≥80% 10 2450 403975 92.02 0.364 2
or if probable 30 2439 353915 80.62 0.413 8
level is ≥80% 60 2457 304151 69.28 0.485 11

90 2440 277501 63.21 0.528 14
120 2484 260569 59.35 0.572 32

Table 6.6: Table of simulation over January 2017 with level constraints and statistics
for coming time interval.

6.1.6 Scenario 5: Empty Using Statistics, Minimum and
Maximum Level

Table 6.7 presents the results of scanning the system every minute and initiating
an emptying sequence when triggered by one or several inlets with maximum level.
The sequence includes all inlets of the same fraction as the ones triggered, which
have at least minimum level or have a probability of reaching maximum level within
an hour. If an inlet of another fraction has a probability of reaching maximum level
within an hour, it will also be included in the emptying sequence. Also all inlets of
that fraction which have at least minimum level will be included. In this scenario,
the simulator checks inlet levels every minute and bases its further decisions on that
data.

The outcome of Scenario 5 shows a lower total time than Envac’s 439008s for all
cases. The best time of 273736s with no overfull inlets is achieved when maximum
level is 80% and minimum level is 50%. This is 45.91h less than Envac’s, and results
in an approximate improvement of 37.6% kWh per month. This outcome is, even
with margin of error, considered as a rather beneficial improvement.

42

6. Results and Discussion

Scenario Max Level Min Level #Inlets Time (s) Comparison (%) Inlets/min #Overfull inlets
Empty all with min level 80 40 3445 278523 63.44 0.742 0
if triggered by max level 80 50 3131 273736 62.35 0.686 0

80 60 2769 280280 63.84 0.593 0
80 70 2616 307800 70.11 0.510 0
70 40 3669 313293 71.36 0.703 0
70 50 3324 307331 70.01 0.649 0
70 60 2963 343195 78.18 0.518 0
60 40 3909 348943 79.48 0.672 0
60 50 3575 360769 82.18 0.595 0

Table 6.7: Table of simulation of emptying entire system of minimum level when
triggered by an inlet at maximum level.

This case has also been tested on several months of data from 2016 with a very
similar to the results in Table 6.7. However, no comparisons to Envacs are possible
since there is no data available on the actual running times for the system in those
months. Hence, no conclusions can be drawn from these tests except that it is
promising that the occurrences of overfull inlets were almost non-existing. Overfull
inlets are unlikely to happen when the system is scanned every minute and these
cases might occur due to anomalies in the data. One other reason that could lead
to overfull inlets is a lower minimum level. The emptying sequence will then include
more inlets and thereby need longer time to finish. It is therefore possible for inlets
to fill up while the sequence is running.

6.1.7 Analysis
There are many circumstances that might affect the accuracy of the outcome de-
scribed in the sections above. The values used in the simulations are in many cases
approximated, averages or based on the lengths from the map of the area. The last
being, even if meticulously, measured by hand could result in an error of 2 meters
in reality even if the mistake in measurement only is off by 1 millimeter. The time
correction factor used is not exact and only the emptying data for residual waste was
used as benchmark. Thus, the value might not be accurate for the other fractions.
Since the value of inlets/min for paper was lower than the benchmark and plastic
was not known at all, the correction factor is likely to have resulted in longer running
times for these fractions. Despite that, the results are in many cases faster than the
current run time. Also, the data used to calculate levels in the system is based on
the disposals during a month, and not actual levels in the inlets. It is possible that
there are logged disposals that did not increase the waste level, or that the volume
of the disposed waste is lower or higher than the calculations of an approximated
waste bag. There is no data available that can confirm these calculations. Exact
data has been the most limiting factor during this work.

Despite the possible sources of error, the result found in Scenario 5 is a large enough
improvement to be considered successful, compared to the current procedure. By
scanning the system frequently more insight in the actual waste levels are gained.
Compared to the current procedure, using pre-scheduled emptying sequences, the on-

43

6. Results and Discussion

line programming approach used in this solution enables the emptying to be adapted
to current need. The simulation indicates that a dynamic procedure results in the
system being emptied only when needed, and thereby generating shorter emptying
sequences which include less inlets with no or low level.

Scanning every minute almost simulates an online scheduling algorithm. However,
it is not an online algorithm in the strong sense, since once an emptying sequence
is initiated, the details of the sequence are based on the information at the start of
the sequence and no changes are made during the execution of the sequence.

Each emptying sequence is done in a Dynamic Programming fashion, that is, the
sequence of the entire tree builds on sequences for its subtrees.

In terms of time complexity, the emptying sequences for an entire tree runs in
O(n1 +n2) where n1 is the number of nodes in the subtrees and n2 is the number of
inlets. Thus the algorithms can be considered optimal in terms of time complexity
since obviously, every node and every inlet has to be visited.

6.2 Feedback Prototype
The prototype resulted in a web application with a simple user interface that focuses
on presenting information to the user. The result may be described as a shell
rather than a fully working product. The stated minimum requirements are however
fulfilled. The minimum requirements were:

• A user is able to view:
– previous disposals
– the total amount of waste and for a specific time span
– the number of disposals of different fractions

The resulting interface can be viewed in Figure 6.2. The first view is a visual
representation of the users waste generation of the previous month. The various
colors in the chart represent different fractions. In the menu on the left-hand side,
the user can navigate through the application.

Figure 6.2: Start view of the prototype, with emerged side menu.

44

6. Results and Discussion

The feedback given should be displayed differently depending on the user’s possible
receptivity to the information. A user that already performs in the higher percentage
is likely to feel a need to improve even more, while users that performs in the lower
percentage is likely to feel like their efforts are pointless if they do not improve [7].
For example, a high performing user could receive competitive phrases such as: You
recycle better than 75% of your neighborhood. Users that perform worse would get
encouraging feedback based on their previous performance, such as: You recycled
5% better this month than the last. Good job!

For the results of the prototype to be evaluated, it would need user testing to prove
whether the design is beneficial or not. This was deemed to be outside of the scope,
hence no such testing has been done. The applications ability to fulfill its purpose
is therefore not determinable at this state.

6.3 Future Work
The identified possible improvements are depending on a more detailed indication
of level in each inlet. The possibility of exact level measurement could increase the
effectiveness even more. With detailed level data available the next step would be
to test the methods presented in this thesis on the actual system.

The statistics used in this thesis could be used to interpret the system further.
Especially in a few years, when Plant 1 is completed, the statistical data will be
more reliable and it will be possible to apply machine learning techniques on the
data to optimize the efficiency even more.

The emptying sequences that are described in Section 6.1 are all pre-defined at
start. That is, they are not online solutions where inlets can be added during run-
time. An emptying sequence can be about one hour long, during which time inlets
not included in the sequence can fill up. Therefore, the online paradigm could be
beneficial to investigate for scheduling the sequences for more dynamic emptyings
and an even more efficient system.

One more thing that could be taken into consideration when deciding at what time
the emptyings should be executed is the time of day. At certain hours the energy
consumption in the whole community is very high and at some points very low,
e.g. in the night [25]. When the consumption is low it is more likely that the
energy comes from renewable resources and when it is high it is more likely that
non-renewable resources have to be used to meet the demand. Furthermore, the
price can be regulated depending on when the demand is high as well. Thus, it
would be more economical and sustainable to empty at times when the overall en-
ergy consumption is low.

The prototype could be further implemented with all requirements. Furthermore,
such an application would require user testing before launch. The purpose of the user
feedback application was to encourage users to be more thoughtful in their waste

45

6. Results and Discussion

generation behavior. An application giving feedback of their own performance is
one way of creating incitement for improvement, but there might be surrounding
factors that can help influence a behavior that is beneficial for the system. A more
even distribution of waste among the inlets in a cluster is one example of how the
system could be emptied more efficiently based on how the users have interacted
with it. Inlets could give visual feedback to users such as colored lights indicating
which inlet to preferably dispose of their waste in to balance the levels. An even
distribution would result in more waste emptied per emptying sequence and a lower
risk of having one specific inlet frequently reaching a critical level.

The possibility of handling your waste cost by weighing your disposals is a great
chance for households to manage their expenses. However, this would need reliable
equipment that cannot be interfered with. Given that the measurements is done
automatically, the reliability must be high such that there are no inaccuracies.

6.4 Ethical Views
This section will discuss possible rebound effects and the ethical dilemmas regarding
user integrity when collecting data on users.

6.4.1 The Rebound Effect and Negative Side-Effects
Developing for a reduced environmental impact can be complex. The discussion of
rebound effects [26] is common when dealing with environmental issues, changes and
its effects. The rebound effect needs to be taken into consideration to know if the
goal is actually achieved. If the system is optimized to use less energy by scheduling
the emptying sequence there might be some other part of the system that is affected
and starts to consume more energy. Another scenario is that the system might be
used more if it is more effective and the outcome of saved energy will be zero.

The rebound effect could also be applied to the effect of the user feedback, es-
pecially if the feedback involves economic drawbacks for the individual. If people
have to pay for the garbage they dispose of or start to see it as a competition against
their neighbours, they might choose to dispose of their garbage elsewhere instead of
reducing the amount of waste they produce. If the waste from households is placed
in the municipal waste containers around town, out in the streets or in nature there
are several negative effects which need to be tended to. An increase in waste in the
municipal waste containers and in the streets would lead to more work and trans-
ports. Even though these rebound effects are serious they are only hypothetical.
The model of weighing and charging for the amount of garbage produced is already
implemented for house owners and does not show that this is an issue [15], but there
is one more ethical factor which can be discussed. The amount of waste produced
by an individual could be a question of social class if payment is required. While
high income households can throw away as much as they like without affecting their
economy significantly, a low income household might not be able to do the same.
This could possibly lead to the rebound effects discussed before.

46

6. Results and Discussion

6.4.2 User Integrity
For the prototype to serve as an incentive for less generation of waste, the ambition
is to gather data of individual waste disposal. This would connect each disposed
garbage bag to a specific person or household and present the user with a summary
of the waste they have generated, in total and for each fraction. The information
could serve as a basis for waste collection fees, chart trends in waste and perhaps con-
tribute to encourage reflection on the packaging of everyday products. A household’s
waste generation could be in competition with neighbors for competitive feedback.
If all Envac’s systems world wide gathered this information, a fairly large amount of
data would be available. Collecting information about users is however not without
touching the matter of big data. The subject is especially present in the field of
computer science but comes with a wide range of ethical considerations regarding
integrity. Should people’s every action be surveyed?

Integrity is an important issue, and one could argue that the data collection could
still be useful even with certain restrictions and limitations. The information regard-
ing the amount of waste in each inlet should not be connected to any one individual
and therefore might be considered as a negligible violation of integrity. The data
used in the prototype could possibly be made private for the individual user, whilst
an anonymous rating is provided for the competitive aspect. A user knows the po-
sition they have, but not the identity of other competitors. In the end, it is about
the individual’s trust for the company behind the system.

47

6. Results and Discussion

48

7
Conclusion

Our method can be seen as a scheduling algorithm inspired by ideas from online op-
timization, since the system is scanned every minute to see if an emptying process
should be initiated. Once an emptying process is initiated, the emptying sequence
is performed according to dynamic programming principles. The results presented
in Chapter 6 show that there is a great possibility of improvement of kWh con-
sumed per month in Plant 1. The best result shows that the monthly kWh usage
potentially can be reduced by 37.6%. The solution presented is based on simula-
tions where waste levels are calculated from the number of disposals during January
2017. Therefore, the accuracy of levels is not exact and a margin of error must be
considered.

The solution found in this thesis could be tested on the system. However, it is
not certain whether the use of disposal data is enough to estimate the inlet levels.
Thus, this improvement might rely on more detailed level measurement in each inlet.
This may need an exchange of current level sensors, which could be costly. However,
the savings from lowered energy use might compensate for such a cost.

For the second objective of this thesis, a simple prototype has been implemented.
The prototype is a web application developed in Angular2, JavaScript, Node.js and
MySQL. The minimum requirements have been implemented, thus the objectives
are considered fulfilled.

The application is intended to alter its feedback content depending on the user’s
previous behavior. If a user is already well-performing, they are more likely to im-
prove even further when subjected to comparative feedback in relation to others.
Users that do not perform very well might on the other hand stop bothering with
the same type of feedback. Therefore, the application must vary its feedback content
based on the users previous behavior.

Both parts of this thesis are considered important when aiming to lower the to-
tal environmental impact in the AVWC system. An improved scheduling of the
emptying procedure in the system can affect the efficiency immediately, and the
solutions identified in this thesis are one step closer to an optimized system. When
giving user feedback, on the other hand, it might take some time before any effect
or behavioral change is noticeable and a lot more work needs to be put into this.
The work carried out in this thesis regarding user feedback can act as a foundation
for future development.

49

7. Conclusion

50

Bibliography

[1] (2017, Jan.) Envac - sustainable vacuum waste collection systems. [Online].
Available: http://www.envacgroup.com/

[2] H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K. Nahon,
T. A. Pardo, and H. J. Scholl, “Understanding smart cities: An integrative
framework,” in 2012 45th Hawaii International Conference on System Sciences,
Jan 2012, pp. 2289–2297.

[3] L. Giusti, “A review of waste management practices and their impact on human
health,” Waste Management, vol. 29, no. 8, pp. 2227 – 2239, 2009.

[4] D. Hoornweg and P. Bhada-Tata, “What a waste : A global review of solid
waste management,” in Urban development series; knowledge papers no. 15.
World Bank, march 2012.

[5] Envac, Vakuumsystemets historia, Accessed 2017-01-25. [Online].
Available: http://www.envac.se/om-envac/om-vakuumtekniken/sopsug_
vakuumsystemets_historia

[6] C. J. Midden, J. F. Meter, M. H. Weenig, and H. J. Zieverink, “Using feedback,
reinforcement and information to reduce energy consumption in households: A
field-experiment,” Journal of Economic Psychology, vol. 3, no. 1, pp. 65 – 86,
1983.

[7] F. W. Siero, A. B. Bakker, G. B. Dekker, and M. T. V. D. Burg, “Changing
organizational energy consumption behaviour through comparative feedback,”
Journal of Environmental Psychology, vol. 16, no. 3, pp. 235 – 246, 1996.

[8] C. Fischer, “Feedback on household electricity consumption: a tool for saving
energy?” Energy Efficiency, vol. 1, no. 1, pp. 79–104, 2008.

[9] R. Béjar, C. Fernàndez, C. Mateu, F. Manyà, F. Sole-Mauri, and D. Vidal, “The
automated vacuum waste collection optimization problem,” in Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence, ser. AAAI’12.
AAAI Press, 2012, pp. 264–266.

[10] C. Fernàndez, F. Manyà, C. Mateu, and F. Sole-Mauri, “Modelling energy
consumption in automated vacuum waste collection systems,” Environmental
Modelling & Software 56, pp. 63–73, 2014, dOI: 10.1016/j.envsoft.2013.11.013.

[11] A. Faruqui, S. Sergici, and A. Sharif, “The impact of informational feedback on
energy consumption—a survey of the experimental evidence,” Energy, vol. 35,
no. 4, pp. 1598 – 1608, 2010, demand Response Resources: the {US} and Inter-
national ExperienceDemand Response Resources: the {US} and International
Experience.

51

http://www.envacgroup.com/
http://www.envac.se/om-envac/om-vakuumtekniken/sopsug_vakuumsystemets_historia
http://www.envac.se/om-envac/om-vakuumtekniken/sopsug_vakuumsystemets_historia

Bibliography

[12] L. McCalley and C. J. Midden, “Energy conservation through product-
integrated feedback: The roles of goal-setting and social orientation,” Journal
of Economic Psychology, vol. 23, no. 5, pp. 589 – 603, 2002.

[13] I. Vassileva, F. Wallin, and E. Dahlquist, “Understanding energy consumption
behavior for future demand response strategy development,” Energy, vol. 46,
no. 1, pp. 94 – 100, 2012, energy and Exergy Modelling of Advance Energy
Systems.

[14] J. Froehlich, L. Findlater, and J. Landay, “The design of eco-feedback technol-
ogy,” in Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp. 1999–2008.

[15] L. Dahlén and A. Lagerkvist, “Pay as you throw: Strengths and weaknesses of
weight-based billing in household waste collection systems in sweden,” Waste
Management, vol. 30, no. 1, pp. 23 – 31, 2010.

[16] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2005.

[17] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization.
New York, NY, USA: Wiley-Interscience, 1988.

[18] G. B. Dantzig, “Origins of the simplex method,” in A History of Scientific
Computing, S. G. Nash, Ed. New York, NY, USA: ACM, 1990, pp. 141–151.
[Online]. Available: http://doi.acm.org/10.1145/87252.88081

[19] F. A. Potra and S. J. Wright, “Interior-point methods,” Journal of
Computational and Applied Mathematics, vol. 124, no. 1–2, pp. 281 –
302, 2000, numerical Analysis 2000. Vol. IV: Optimization and Nonlinear
Equations. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0377042700004337

[20] R. Dechter, Constraint Processing, ser. The Morgan Kaufmann Series in Arti-
ficial Intelligence. San Francisco: Morgan Kaufmann, 2003.

[21] T. Achterberg, T. Berthold, T. Koch, and K. Wolter, Constraint Integer Pro-
gramming: A New Approach to Integrate CP and MIP. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 6–20.

[22] J. Leung, L. Kelly, and J. H. Anderson, Handbook of Scheduling: Algorithms,
Models, and Performance Analysis. Boca Raton, FL, USA: CRC Press, Inc.,
2004.

[23] R. M. Karp, “On-line algorithms versus off-line algorithms: How much is
it worth to know the future?” in Proceedings of the IFIP 12th World
Computer Congress on Algorithms, Software, Architecture - Information
Processing ’92, Volume 1 - Volume I. Amsterdam, The Netherlands, The
Netherlands: North-Holland Publishing Co., 1992, pp. 416–429. [Online].
Available: http://dl.acm.org/citation.cfm?id=645569.659725

[24] Statistics Sweden, “Privatpersoners användning av datorer och internet 2016,”
2016.

[25] (2017, May) Nord pool - elspot prices. [Online]. Avail-
able: http://www.nordpoolspot.com/Market-data1/Elspot/Area-Prices/
ALL1/Hourly/?view=table

[26] C. Sanne, “Rekyleffekten och effektivitetsfällan – att jaga sin egen svans i
miljöpolitiken,” 2008.

52

http://doi.acm.org/10.1145/87252.88081
http://www.sciencedirect.com/science/article/pii/S0377042700004337
http://www.sciencedirect.com/science/article/pii/S0377042700004337
http://dl.acm.org/citation.cfm?id=645569.659725
http://www.nordpoolspot.com/Market-data1/Elspot/Area-Prices/ALL1/Hourly/?view=table
http://www.nordpoolspot.com/Market-data1/Elspot/Area-Prices/ALL1/Hourly/?view=table

A
Map of Plant 1

I

A. Map of Plant 1

II

B
Tree Representation of Plant 1

root

J2

1 3

J5

5 J6

J7

J8

7 J9

J10

8 9

J11

10 11

J12

J13

13 J15

J16

15 J17

16 J18

J19

18 19

17

J22

J28

27 J34

31 J35

J39

38 J40

J43

J44

J46

50 52

52

J49

43 J51

J52

J53

47 48

46

45

40

J37

35 36

J23

J24

J25

24 25

23

22

12

6

23.8 25.8

1.3 4.5 1.5 1.4

0.5 0.2

0

3.7 5.1

2

0.7 1, 3

0.8 3 1.5 0.3

1.32.2

3.5 5.7

0.80.5

1.6 1.1

1.8 0.2

2.4 0.7

1.0 0.9

6.2 1.3

0.31.7

2.6 0.2

0.1 1.6

2.4 3.3

0.8 1.0

1.52.8

0.4 4.31.2 0.3

2.3 1.8

2.3 5.3

2.60.6

0.4 2.9

0.6 0.3

0.5 0

1.5 3.1

1.5 1.0

III

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	Purpose and Objectives
	Literature review
	A Vacuum Waste Collection System in Spain
	Feedback and Behavioral Change

	Delimitations

	Theory
	Graph Models
	Linear Programming and Integer Linear Programming
	Constraint Programming and Constraint Integer Programming
	Scheduling Algorithms

	System Overview
	System Description
	Emptying Procedure
	Data Sets

	System Optimization
	Using Constraint Integer Programming
	Using Integer Linear Programming
	Scheduling Algorithms
	Scenario 1: Empty All Inlets
	Scenario 2: Empty Triggered Inlet
	Scenario 3: Empty All Inlets With at Least a Low Waste Level
	An Extension of Algorithm 1
	Building an Emptying Tree

	Scenario 4: Empty Based on Statistics
	Scenario 5: Empty Using Statistics, Minimum and Maximum Level
	Time Complexity
	Simulation

	User Feedback Prototype
	User Feedback in the Envac System
	Application Development
	Requirements and Design
	Implementation

	Results and Discussion
	Simulation Outcome
	Simulator Setup
	Scenario 1: Empty All Inlets
	Scenario 2: Empty Triggered Inlet
	Scenario 3: Empty All Inlets With at Least a Low Waste Level
	Scenario 4: Empty Based on Statistics
	Scenario 5: Empty Using Statistics, Minimum and Maximum Level
	Analysis

	Feedback Prototype
	Future Work
	Ethical Views
	The Rebound Effect and Negative Side-Effects
	User Integrity

	Conclusion
	Map of Plant 1
	Tree Representation of Plant 1

