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Abstract

Compressive sensing is an emerging method for signal acquisition in which
the number of samples ensuring exact reconstruction of the signal to be
acquired is far less than the one in the conventional Nyquist sampling ap-
proach. In compressive sensing, the signal is acquired by means of few linear
non-adaptive measurements, and then reconstructed by finding the sparsest
solution via an ℓ1-minimization.

In the classic compressive sensing setup, each measurement outcome is
described by a real value. In practice, for further processing and storage
purposes, often the real-valued measurements need to be converted to finite-
precision numbers. 1-bit compressive sensing refers to the extreme case where
the quantizer is a simple sign comparator and each measurement is repres-
ented using one bit only, i.e., +1 or −1.

Several algorithms have been introduced in the literature for solving ef-
ficiently the reconstruction problem in the 1-bit compressive sensing set-
ting, e.g., renormalized fixed point iteration (RFPI) and binary iterative hard
thresholding (BIHT). However, these algorithms can not reconstruct the sig-
nal accurately when there is noise, i.e., bit flips, in the binary measurements.
Adaptive outlier pursuit (AOP) is an algorithm which reconstructs the sig-
nal robustly against bit flips in the binary measurements. AOP requires the
sparsity level of the signal to be reconstructed as an input. In many practical
cases, however, the sparsity level of the signal is unknown and time variant.

In this thesis, we address reconstruction problem in 1-bit compressive
sensing. We introduce a new algorithm for 1-bit compressive sensing which
reconstructs the signal robustly from the noisy binary measurements. This
new reconstruction algorithm does not require the sparsity level of the signal
as an input. Therefore, our algorithm can be applied in the most practical
scenarios in which the sparsity level of the signal is unknown.

Keywords: 1-bit quantization, compressive sensing, iterative algorithms,
ℓ1-minimization.

i



ii



Acknowledgments

I am heartily thankful to my supervisor, Giuseppe Durisi, whose encourage-
ment, guidance and support from the initial to the final level enabled me to
develop an understanding of the subject.
Moreover, I would like to show my gratitude to my dear friend, Ashkan Pa-
nahi, from whom I learned many valuable things during this work.

Amin Movahed

iii



iv



Contents

Abstract i

Acknowledgments iii

Contents v

List of figures vii

List of tables ix

Abbreviations, Acronyms and Notations xi

1 Introduction 1
1.1 Introduction to 1-bit compressive sensing . . . . . . . . . . . . 1
1.2 The key contribution of the thesis . . . . . . . . . . . . . . . . 2
1.3 The structure of the thesis . . . . . . . . . . . . . . . . . . . . 3

2 Compressive sensing 5
2.1 Recovery via ℓ1-minimization . . . . . . . . . . . . . . . . . . 5

2.1.1 Sparse Recovery . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Null space property and restricted isometry property . 6

2.2 Random matrices and RIP . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Gaussian random matrices . . . . . . . . . . . . . . . . 8
2.2.2 Sub-Gaussian random matrices . . . . . . . . . . . . . 8

2.3 Iterative hard thresholding . . . . . . . . . . . . . . . . . . . . 9

3 1-bit compressive sensing 13
3.1 1-bit compressive sensing problem . . . . . . . . . . . . . . . . 13
3.2 1-bit compressive sensing reconstruction . . . . . . . . . . . . 13

v



3.3 Iterative reconstruction algorithms for 1-bit compressive sensing 15
3.3.1 BIHT . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 BIHT-ℓ2 . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 RFPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 1-bit compressive sensing in the presence of noise 21
4.1 Noise modelling in 1-bit compressive sensing . . . . . . . . . . 21

4.1.1 Measurement noise . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Channel noise . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 A combined model for binary noise . . . . . . . . . . . 22

4.2 Iterative reconstruction algorithms for 1-bit compressive sens-
ing in the presence of noise . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Adaptive outlier pursuit . . . . . . . . . . . . . . . . . 23
4.2.2 Noise-adaptive renormalized fixed point iterative . . . . 27

5 Simulations and numerical results 31
5.1 Algorithms designed for noiseless 1-bit compressive sensing . . 32
5.2 Algorithms designed for noisy 1-bit compressive sensing . . . . 32

5.2.1 Signals with fixed sparsity level . . . . . . . . . . . . . 34
5.2.2 Signals with random sparsity level . . . . . . . . . . . . 34

6 Conclusion 39
6.1 Suggestion for future work . . . . . . . . . . . . . . . . . . . . 40

Appendices 41

A Proof of Theorems in Chapter 2 42
A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . 47
A.4 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . 53

B A model for the measurement noise in 1-bit compressive
sensing 59

References 61

vi



List of Figures

2.1 The intersection point between ℓ1-ball and Φx = y in 2-
dimensional space. . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The rate of successful signal reconstruction via IHT . . . . . . 11

3.1 1-bit compressive sensing and reconstruction block diagram . . 15

4.1 Binary symmetric channel model . . . . . . . . . . . . . . . . 22
4.2 1-bit compressive sensing in the presence of the noise . . . . . 23

5.1 The performance of BIHT, BIHT-ℓ2 and RFPI when Pf = 0 . 32
5.2 The performance of BIHT, BIHT-ℓ2 and RFPI when Pf = 1% 33
5.3 The performance of BIHT, BIHT-ℓ2 and RFPI when Pf = 3% 33
5.4 The performance of AOP-f, AOP-f-ℓ2 and NARFPI when Pf =

3% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 The PMF of truncated triangular distribution of s . . . . . . . 35
5.6 The performance of RFPI, AOP-f, AOP-f-ℓ2 and NARFPI

when P = 3% and s is random . . . . . . . . . . . . . . . . . . 36
5.7 The estimation error of NARFPI as a function of the number

of binary measurements M and of the sparsity level s of x . . 36
5.8 The estimation error of AOP-f as a function of the number of

binary measurements M and of the sparsity level s of x . . . . 37
5.9 The estimation error of AOP-f-ℓ2 as a function of the number

of binary measurements M and of the sparsity level s of x . . 37

vii





List of Tables

3.1 Three reconstruction algorithms for 1-bit compressive sensing
in the noiseless scenario. . . . . . . . . . . . . . . . . . . . . . 20

4.1 Five reconstruction algorithms for 1-bit compressive sensing
in the presence of the binary noise. . . . . . . . . . . . . . . . 30

ix





Abbreviations, Acronyms and

Notations

Abbreviations and Acronyms

AOP adaptive outlier pursuit

AOP-ℓ2 adaptive outlier pursuit using ℓ2-norm minimization

AOP-f adaptive outlier pursuit with sign flips

AOP-f-ℓ2 adaptive outlier pursuit with sign flips using ℓ2-norm
minimization

BIHT binary iterative hard thresholding

BIHT-ℓ2 binary iterative hard thresholding using ℓ2-norm minimization

BSC binary symmetric channel

IHT iterative hard thresholding

NARFPI noise adaptive renormalized fixed point iteration

RFPI renormalized fixed point iteration

RIP restricted isometry property

xi



Notations

‖·‖0 ℓ0-norm (Number of non-zero elements)

‖·‖1 ℓ1-norm

‖·‖2 ℓ2-norm (Euclidean norm)

‖·‖F Frobenius-norm

⊙ element-wise product

(·)− negative function

∅ empty set

|T | number of elements in set T

〈·, ·〉 inner product

\ set minus

� element-wise inequality

[·]i ith element of the argument

b binary measurements vector

b̃ noisy binary measurements vector

C set of complex numbers

diag(b) a diagonal matrix whose diagonal is vector b

E(·) expected value of the argument

exp(·) exponential function

Φ measurement matrix

Φ† conjugate transpose of Φ

ΦT transpose of Φ

Φ−1 pseudo-inverse of Φ

Φ[:,T ] a sub-matrix of Φ spanned to columns of Φ in set T

xii



Φ[V,:] a sub-matrix of Φ spanned to rows of Φ in set V

φi,: the ith row of Φ

φi,j the element of Φ in row i and column j

Hs(·) a non-linear operator that keeps the s largest elements of the
argument and set the other elements to zero

ker{Φ} null-space of matrix Φ

λmax(Φ) maximum eigenvalue of matrix Φ

λmin(Φ) minimum eigenvalue of matrix Φ

Λ a binary vector containing 0s and 1s

M dimension of the measurements vector

N dimension of the signal vector

[N ] set of numbers from 1 to N

N (µ, σ2) normal distribution with mean µ and variance σ2

Ω a binary vector containing −1s and 1s

O(·) order of the argument

Pf probability of sign flips

P(·) probability of the argument

R set of real numbers

s sparsity level of the signal

Supp(x) set of indices of non-zero elements in x

Sub(c2) sub-Gaussian distribution with constant c

SSub(c2) strictly Sub-Gaussian distribution with constant c

σmax(Φ) maximum singular value of matrix Φ

σmin(Φ) minimum singular value of matrix Φ

tr(Φ) trace of matrix Φ

xiii



T c complement of set T

x signal vector

x̂ estimation of signal vector

x[n] vector x in nth iteration

xT a vector containing elements of x spanned to the indices in set T

y measurements vector
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Chapter 1
Introduction

1.1 Introduction to 1-bit compressive sensing

The Nyquist sampling theorem specifies that to avoid information loss when
measuring a signal, one must sample it at least two times faster than the
signal bandwidth [1]. In many applications, like digital image and video
cameras, the Nyquist rate is so high that the samples need to be compressed
before storage or transmission. Furthermore, increasing the sampling rate is
very expensive and impractical in applications like medical image scanners,
radars and high-speed analog-to-digital converters.

Compressive sensing provides a completely new approach to data acquisi-
tion by suggesting that it is possible to improve the traditional Nyquist limits
of sampling theory [2]. Compressive sensing predicts that certain signals can
be recovered from low rate measurements which are not sufficient according
to Nyquist sampling theorem. Compressive sensing is based on the empirical
observation that many types of signals or images can be well-approximated
by a sparse expansion in terms of a suitable basis [3, 4]. For example, in
digital imaging systems, sparse signals can be obtained by applying wavelet
transformation over original captured images. In compressive sensing, each
measurement is obtained through an inner product between the vector of
the sparse signal and the vector containing measuring elements. Then, the
sparse signal can be reconstructed from few number of these measurements
via an ℓ1-minimization. In recent years, compressive sensing has attracted
considerable attention in many areas of applied mathematics, computer sci-
ence, and electrical engineering.

There are two main research topics in compressive sensing. The first
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topic is about establishing mathematically rigorous recovery guarantees re-
lating the signal dimension, the sparsity level of the signal and the number
of measurements. The task of the second topic is to find algorithms that
reconstruct the signals accurately from the measurements obtained by com-
pressive sensing. E. Candès and T. Tao [5] showed that sparse signals can
be reconstructed through an ℓ1-minimization when the measurement system
is satisfying restricted isometry property. There are various reconstruction
algorithms for compressive sensing. We single out the paper by J. A. Tropp
and S. J. Wright [6] in which various types of algorithms for sparse recon-
struction from compressive sensing are explained.

In practice, the measured signal should pass through a quantizer, which
is located between the measuring and the recovering layers, provides recog-
nizable data for further storage or transmission [7]. The quantizer affects
the signal reconstruction accuracy. Performance analysis of the effects of the
quantization and the noise of the measurement on various data reconstruc-
tion methods in compressive sensing is an emerging research topic. In this
work, we focus on the extreme class of quantizers that have only two quant-
ization levels, i.e., each quantized value is characterized by only one bit. 1-bit
compressive sensing is the combination of compressive sensing with a 1-bit
quantizer, which was first introduced by P. Boufounos and R. Baraniuk [8].

The main focus of this thesis is on the iterative reconstruction algorithms
in 1-bit compressive sensing. As reconstruction solutions for 1-bit com-
pressive sensing, two different iterative algorithms were introduced by P.
Boufounos and R. Baraniuk [8] and L. Jacques et al. [9] for signal recon-
struction in noiseless 1-bit compressive sensing. However, the reconstruction
process becomes more challenging when there is noise in the quantized meas-
urements. An iterative algorithm that is robust against noise in 1-bit com-
pressive sensing has been proposed by M. Yan et al. [10]. This algorithm
reconstructs the signal from the noisy binary measurements based on the
following a priori information: 1) the sparsity level of the signal and 2) the
amount of noise in the binary measurements.

1.2 The key contribution of the thesis

In many practical applications, the sparsity level of the signal is not known
and, therefore, the algorithm proposed in [10] can not be fed by an exact
input of the signal sparsity level. As the main contribution of this thesis,
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we propose an algorithm which works robustly against noise in 1-bit com-
pressive sensing and does not need the sparsity level of the signal to be re-
constructed as an input. Hence, this new algorithm can be applied in many
practical scenarios in which the sparsity level of the signal is unknown and
time-variant. Another contribution of this thesis is to review and put the
theoretical results, relating reconstruction guarantees in compressive sensing
and 1-bit compressive sensing, in a single framework.

1.3 The structure of the thesis

• Chapter 2: We start the first part of this chapter by defining the
compressive sensing problem and the conditions in which linear meas-
urements system in compressive sensing can guarantee a perfect signal
reconstruction. In this thesis we mainly focus on iterative reconstruc-
tion algorithms, therefore, in the second part of this chapter, we intro-
duce an iterative reconstruction algorithm for compressive sensing.

• Chapter 3: We define the 1-bit compressive sensing problem. We also
explain the conditions guaranteeing reconstruction in 1-bit compress-
ive sensing. Due to time constraints, we do not provide details of the
proof of reconstruction guarantees in 1-bit compressive sensing. We
also introduce some iterative reconstruction algorithms for 1-bit com-
pressive sensing, e.g. BIHT, BIHT-ℓ2 and RFPI, designed to work in
the noiseless scenario.

• Chapter 4: In the first part, we model the binary noise in 1-bit
compressive sensing. In the second part, we discuss reconstruction
algorithms designed to perform robustly in the presence of the noise,
e.g. AOP, AOP-ℓ2, AOP-f and AOP-f-ℓ2. In the third part, we propose
our contribution which is a new reconstruction algorithm, NARFPI,
that is robust against noise and does not need any a priori knowledge
of the signal sparsity level.

• Chapter 5: We evaluate the algorithms through Matlab simulations.
In the first part, we compare the performance of the iterative algorithms
designed for noiseless case in the noiseless and the noisy scenarios. In
the second part, we compare the performance of our new algorithm
with the algorithms designed to work in the noisy scenario and in the
case that sparsity level of the signal is unknown.

3



• Chapter 6: We summarize the results obtained from previous chapters
and we discuss about possible future work to extend the proposed re-
construction algorithm.

• Appendix A: The theorems in Chapter 2 are proved in detail.

• Appendix B: We present a model for measurement noise to be used
in Chapter 4.
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Chapter 2
Compressive sensing

2.1 Recovery via ℓ1-minimization

In this chapter, we introduce the compressive sensing problem and then we
show the conditions in which the recovery for compressive sensing is guar-
anteed. In addition, we explain an iterative reconstruction algorithm for
compressive sensing.

2.1.1 Sparse Recovery

Signal vector x is called s-sparse if no more than s of its elements have
non-zero values, i.e., ‖x‖0 ≤ s. In compressive sensing, a s-sparse signal is
measured through few non-adaptive linear measurements. In other words, let
x ∈ CN be an N -dimensional vector that is s-sparse. y ∈ CM , which is called
measurements vector, is obtained by left multiplying x with the measurement
matrix Φ ∈ CM×N according to

Φx = y. (2.1)

We are interested in the case when the dimension of the measurements vector
is less than the dimension of the signal, that is, M ≪ N . Since Φ is a
fat matrix, by solving (2.1) for x we obtain infinitely many solutions. By
imposing the additional requirement that x is s-sparse, the problem changes
to searching for the sparsest solution of (2.1). Therefore, we need to solve
the ℓ0−minimization problem

x̂ = argmin
x

‖x‖0
subject to Φx = y (2.2)
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Φx = y

ℓ1-balls

sparse solution

Figure 2.1: The intersection point between ℓ1-ball and Φx = y in 2-dimensional

space.

where x̂ denotes estimation of x. Unfortunately, (2.2) is an NP-hard problem
[11] and is not easy to solve. One approach to solve (2.2) is to use convex
relaxation. The ℓ1-minimization problem

x̂ = argmin
x

‖x‖1
subject to Φx = y (2.3)

is a convex relaxation of (2.2) [12]. In Figure 2.1, the mechanism of solv-
ing (2.3) in 2-dimensional space is shown. In words, the intersection point
between the smallest possible ℓ1-ball and Φx = y is the sparsest solution
satisfying Φx = y. Note that the sparse x̂ in 2-dimensional space is a 2-
dimensional vector with a zero in one of its two elements. (we selected the
2-dimensional space for the sake of simplicity, however, this mechanism holds
for every N -dimensional space). Therefore, the problem of compressive sens-
ing converts to solving (2.3).

2.1.2 Null space property and restricted isometry prop-

erty

In order to make sure that through solving (2.3) we obtain a unique solution
coinciding with the solution of (2.2), the measurement matrix Φ should fulfil
some requirements. First, we define null space property and show that in the
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case this property holds, the solution of ℓ1-minimization is unique. Then,
we define another property called restricted isometry property (RIP) and we
show that RIP guarantees null space property.

Null space property

Definition 1. A matrix Φ ∈ C
M×N satisfies the null space property of order

s if for all S ⊂ [N ] , | S |= s we have that

‖vS‖1 < ‖vSc‖1 for all v ∈ ker{Φ} \ {0} (2.4)

where [N ] = {1, 2, . . . , N}, ker{Φ} = {x ∈ CN , Φx = 0},vS = (vj)j∈S and Sc =
[N ] \ S.

The next theorem shows the importance of null space property in com-
pressive sensing reconstruction via ℓ1-minimization.

Theorem 1 ([12, Theorem 2.3]). Let Φ ∈ CM×N . Every s-sparse vector
x ∈ CN is the unique solution of ℓ1-minimization problem (2.3) with Φx = y
if and only if Φ satisfies the null space property of order s.

Theorem 1 is proved in Appendix A.1.

Restricted isometry property

Definition 2. For each s = 1, 2, ... and for all s-sparse x ∈ CN , we define δs
to be the smallest scalar such that

(1− δs) ‖ x ‖22≤‖ Φx ‖22≤ (1 + δs) ‖ x ‖22 for all s-sparse x . (2.5)

Then, the matrix Φ is said to satisfy the restricted isometry property (RIP)
with restricted isometry constant δs.

The following theorem shows in which conditions on restricted isometry
constant, null space property holds.

Theorem 2 ([12, Theorem 2.3]). Let Φ ∈ CM×N has restricted isometry
constant δ2s < 1/3. Then Φ satisfies the null space property of order s.

Theorem 2 is proved in Appendix A.2.

2.2 Random matrices and RIP

Up to here, we showed how the signal recovery through ℓ1-minimization can
be guaranteed by RIP. In this section, we explain which matrices are obeying
this property and are suitable to be applied in compressive sensing.

7



2.2.1 Gaussian random matrices

Definition 3 ([13, Definition 2.1]). A standard real/complex Gaussian M ×
N matrixΦ has i.i.d. real/complex zero-mean Gaussian entries with identical
variance σ2 = 1/M . The probability density function of a complex Gaussian
matrix with i.i.d. zero-mean Gaussian entries with variance σ2 is

(
πσ2
)−MN

exp

[

−tr
(
ΦΦ†

)

σ2

]

. (2.6)

Theorem 3 ([14]). Let Φ ∈ CM×N be a random Gaussian matrix with zero-
mean and σ2 = 1/M . If

M ≥ 4

k2
s log (N/s) (2.7)

Φ satisfies RIP for δ2s < 1/3 with probability greater than

1− 2 exp
(
2s log (N/2s)−Mk2/2

)
(2.8)

for every 0 < k < 0.15−
√

2s/M.

Theorem 3 is proved in Appendix A.3. The main result of Theorem 3 is that
any random Gaussian matrix, whose number of rows is (2.7), satisfies null
space property with high probability and, therefore, x can be reconstructed
accurately through solving (2.3).

2.2.2 Sub-Gaussian random matrices

In the following, we introduce sub-Gaussian matrices and we show in which
conditions on this class of matrices RIP is satisfied.

Definition 4. A random variable X is called sub-Gaussian if there exists a
constant c > 0 such that

E (exp (Xt)) ≤ exp
(
c2t2/2

)
, (2.9)

where t ∈ R. We use the notation X ∼ Sub (c2) to denote that X satisfies
(2.9).

Lemma 1 ([15, Lemma 1.2]). If X ∼ Sub (c2) then E (X) = 0 and E (X2) ≤
c2.

This lemma shows that if X ∼ Sub (c2) then σ2 ≤ c2 where σ2 is the variance
of X . In the case that σ2 = c2, we define more specific class of distributions.
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Definition 5. If X ∼ Sub (σ2) where σ2 = E (X2) then X is called strictly
sub-Gaussian and we use the notation X ∼ SSub (σ2).

Theorem 4 ([16, Theorem 7.3]). Let Φ ∈ CM×N whose entries φij are i.i.d.
with φij ∼ SSub (1/M) and δs ∈ (0, 1). If

M ≥ αs log (N/s) , (2.10)

then Φ satisfies RIP of order s with probability greater than 1−2e−βM , where
α is arbitrary, β = δ2s/2µ− log (42e/δs) /α and µ = 2/(1− log(2)).

Theorem 4 is proved in Appendix A.4. Theorem 4 proves that any matrix
whose elements are strictly sub-Gaussian fulfils RIP with restricted isometry
constant δs when the number of rows is (2.10).

2.3 Iterative hard thresholding

In the previous sections, we discussed about the characteristic of the meas-
uring matrix which guarantees the reconstruction. In this section and next
chapters, we focus on the reconstruction algorithms. Throughout this work,
we assume that Φ is a real random Gaussian matrix. Gaussian random
matrices are practically easy to generate and, therefore, no prior storage is
needed. One natural variation of compressive sensing problem is to relax
constraint in (2.2) and allow some error tolerance ε ≥ 0 [6]. Therefore, we
obtain

x̂ = argmin
x

‖x‖0
subject to ‖y −Φx‖2 ≤ ε (2.11)

The measurement error can be defined in different ways. In (2.11), the pre-
dicted measurement error is measured by euclidean norm. In the case that
the sparsity level of x, s, is known as a priori knowledge, the problem in
(2.11) can be written as follows:

x̂ = argmin
x

‖y −Φx‖2
subject to ‖x‖0 ≤ s. (2.12)

The minimization (2.12) searches for the best approximation of x with the
given maximum sparsity level s. In [17], an iterative algorithm called iterat-
ive hard thresholding (IHT) is introduced which solves (2.12) iteratively. IHT
includes two steps. The first step consists of a gradient descent to reduce
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Algorithm 1 IHT

1. Inputs: measurements vector y, measurement matrix Φ, sparsity level
of the signal s, descent step size τ , number of iterations t

2. Initialization: Initial estimate x[0] = 0

3. Iteration: For n = 1, . . . , t

(a) Gradient descent: z[n] ← x[n−1] − τΦT
(
Φx[n−1] − y

)

(b) Projection onto “ℓ0-ball”: x[n] ←Hs(z
[n])

4. Output: x̂ = x[n]

‖x[n]‖
2

‖y −Φx‖2. The second step generates a sparse signal model by projecting
the output of the step one onto the ”ℓ0-ball” by selecting the s largest ele-
ments in x obtained from the previous step. Therefore, each iteration step
is as follows:

x[n+1] = Hs(x
[n] +ΦT (y −Φx[n])) (2.13)

where x[n] denotes x in nth iteration, x[0] = 0 and Hs(·) is a non-linear op-
erator that keeps the s largest elements of the argument and set the other
elements to zero. It is shown that when Φ satisfies RIP the solution of (2.13)
converges through iterations [18]. The steps of IHT are shown in detail in
Algorithm 1.

The euclidean distance between the signal and its estimation, i.e., ‖x− x̂‖2
is a measure of reconstruction quality. In Figure 2.2, the rate of successful
signal reconstruction (i.e., ‖x− x̂‖2 < 10−5) via IHT among 4000 realiza-
tions is shown for different number of measurements M , where N = 1000,
s = 10, t = 200 and Φ is a Gaussian random matrix. As it is expected,
when M tends to N (M/N → 1), the rate of successful signal reconstruction
converges to 100%. That is, when M = N the linear equation system is not
undetermined and definitely has a unique solution.
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Chapter 3
1-bit compressive sensing

3.1 1-bit compressive sensing problem

In Chapter 2, we introduced the classic compressive sensing problem. This
problem is based on the fact that measurements vector y has infinite bit
precision. However, in practice measurements should be quantized for further
storage and transmission. In the case the quantizer has only one bit, it is
called 1-bit compressive sensing. That is, by sensing the signal through
measuring matrix we obtain measurements vector and its 1-bit quantized
version is called binary measurements vector. This binary vector is denoted
by b and we have

b = sign (Φx) . (3.1)

1-bit quantizer is a comparator to zero which is very fast and inexpensive
hardware device. Therefore, it has many advantages in comparison to other
types of quantizers in hardware implementation. As Boufounos et al. men-
tions [8], “1-bit quantizers do not suffer from dynamic range issues. If the
analog side of the measurement system is properly implemented then the
sign of the measurement remains valid even if the quantizer saturates”.

3.2 1-bit compressive sensing reconstruction

Inspired by (2.3), the problem of 1-bit compressive sensing reconstruction
can be written as

x̂ = argmin
x

‖x‖1
subject to sign(Φx) = b. (3.2)

13



That is, by replacing the constraint Φx = y in (2.3) with sign(Φx) = b,
we obtain (3.2). However, the optimization problem in (3.2) is not convex
and, therefore, is not easy to solve. In [19], it is suggested that by applying
‖Φx‖1 = M as an extra constraint over (3.2), following convex optimization
can be obtained

x̂ = argmin
x

‖x‖1
subject to sign(Φx) = b.

and ‖Φx‖1 = M. (3.3)

In fact, sign(Φx) = b and ‖Φx‖1 = M can be combined and represented as
one linear equation

‖Φx‖1 =
M∑

i=1

|〈φi,:,x〉| =
M∑

i=1

[b]i 〈φi,:,x〉 = M (3.4)

where [·]i denotes the ith element of the argument and φi,: denotes the ith
row of Φ. Therefore, (3.3) is indeed a convex minimization program [19]. In
addition, for the sake of simplicity and without loss of generality, both the
original and the reconstructed signals are imposed to be on “ℓ2-ball” with
unite radius (energy normalization). Hence, constraint ‖x‖2 = 1 is added to
(3.3) and we have

x̂ = argmin
x

‖x‖1
subject to sign(Φx) = b

and ‖Φx‖1 = M, ‖x‖2 = 1. (3.5)

Theorem 5 ([19, Corollary 1.2]). Let Φ be an M × N random Gaussian
matrix. Set

δ = C
( s

M
log(2N/s) log(2N/M + 2M/N)

)1/5

. (3.6)

Then for all s-sparse signals x ∈ RN , with probability at least 1−C exp(−cδM),
the solution x̂ of the convex minmization program (3.5) satisfies

‖x̂− x‖2 ≤ δ. (3.7)

Here, C and c denote positive absolute constants and term ‖x̂− x‖2 is a
measure of the reconstruction quality. A useful conclusion of Theorem 5 can

14
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Figure 3.1: 1-bit compressive sensing and reconstruction block diagram

be stated as follows:
An arbitrary accurate estimation of every s-sparse vector x can be achieved
from M one-bit random measurements with order of s log2(N/s). To be more
precise M ∼ δ−5s log2(N/s) [19].

Due to time constraints, we do not prove Theorem 5 in this work. The-
orem 5 has been proved in [19].

3.3 Iterative reconstruction algorithms for 1-

bit compressive sensing

In this section, several iterative reconstruction algorithms for 1-bit compress-
ive sensing are introduced. In Figure 3.1, the block diagrams of 1-bit com-
pressive sensing and reconstruction part are shown. In this setup it is as-
sumed that the binary measurements vector b is noiseless. We will investigate
the noisy scenario in the next chapter.

3.3.1 BIHT

Binary iterative hard thresholding (BIHT) is a reconstruction algorithm first
introduced in [9] and further investigated in [7]. BIHT is derived from IHT
and tries to minimize ‖b− sign (Φx)‖2 over x where b and Φ are given.
Therefore, BIHT solves the following problem

x̂ = argmin
x

‖b− sign(Φx)‖2
subject to ‖x‖0 ≤ s, ‖x‖2 = 1. (3.8)

It has been proved that minimization (3.8) is similar to [9, Lemma 5]

x̂ = argmin
x

∥
∥(b⊙Φx)−

∥
∥
1

subject to ‖x‖0 ≤ s, ‖x‖2 = 1, (3.9)

where ⊙ denotes the element-wise vector multiplication, i.e., [u⊙ v]i = uivi

and (·)−denotes the negative function, i.e.
[
(v)−

]

i
=

{

−vi vi ≤ 0

0 vi > 0
.

15



Algorithm 2 BIHT

1. Inputs: binary measurements vector b ∈ {±1}M , measurement matrix
Φ, sparsity level of the signal s, descent step size τ , number of iterations
t

2. Initialization: Initial estimate x[0] = 0

3. Iteration: For n = 1, . . . , t

(a) Gradient descent: z[n] ← x[n−1] − τΦT
(
sign

(
Φx[n−1]

)
− b

)

(b) Projection onto “ℓ0-ball”: x[n] ←Hs(z
[n])

4. Output: x̂ = x[n]

‖x[n]‖
2

In other words, when the signal is approximated perfectly we have b =
sign(Φx) and [b⊙Φx]i > 0 for all i. BIHT tries to minimize the summation
of the absolute values of the negative elements in b ⊙ Φx iteratively. The
iterative step of BIHT is

x[n+1] = Hs(x
[n] −ΦT (sign(Φx[n])− b)). (3.10)

In Algorithm 2, the steps of BIHT are shown in detail.
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3.3.2 BIHT-ℓ2

If ℓ2-norm is applied in BIHT instead of ℓ1-norm, we obtain BIHT-ℓ2 which
has been discussed in [7, 9, 20]. BIHT-ℓ2 algorithm can be thought of as
trying to solve:

x̂ = argmin
x

∥
∥(b⊙Φx)−

∥
∥
2

subject to ‖x‖0 ≤ s, ‖x‖2 = 1. (3.11)

In fact, BIHT-ℓ2 tries to minimize

∑

i∈V

([b⊙Φx]i)
2 , (3.12)

where x is s-sparse and V is a set of indices in which b⊙Φx is negative. In
[9], it is shown that the solution of (3.11) can be obtained by simply iterating
the following step:

x[n+1] = Hs(x
[n] − (diag(b)Φ)T (b⊙Φx[n])−), (3.13)

where diag(b) denotes a square diagonal matrix whose diagonal is vector b.
The steps of (3.11) are depicted in Algorithm 3.

Algorithm 3 BIHT-ℓ2

1. Inputs: binary measurements vector b ∈ {±1}M , measurement matrix
Φ, sparsity level of the signal s, descent step size τ , number of iterations
t

2. Initialization: Initial estimate x[0] = 0

3. Iteration: For n = 1, . . . , t

(a) Gradient descent:

z[n] ← x[n−1] − τ (diag(b)Φ)T
(
diag(b)Φx[n−1]

)−

(b) Projection onto “ℓ0-ball”: x[n] ←Hs(z
[n])

4. Output: x̂ = x[n]

‖x[n]‖
2
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3.3.3 RFPI

Another approach to signal reconstruction for 1-bit compressive sensing is
introduced in [8]. In this method, the recovered signal is obtained by solving
minimization program:

x̂ = argmin
x

‖x‖1
subject to b⊙Φx � 0

and ‖x‖2 = 1, (3.14)

where � denotes element-wise inequality. To solve (3.14) efficiently, a barrier
cost function is introduced in [8], which, together with Lagrange multiplier
method [21], yields the following approximation of (3.14)

x̂ = argmin
x

‖x‖1 + λ
∑

i

f ([b⊙Φx]i)

subject to ‖x‖2 = 1, (3.15)

where

f (x) =

{

x2/2, if x < 0

0, otherwise
(3.16)

is the barrier cost function. Note that when λ is sufficiently large, the solu-
tion of (3.14) coincides with the solution of (3.15). Since (3.16) is convex
and smooth, the gradient descent can be applied to solve the minimization
problem (3.15). Renormalized fixed point iteration (RFPI) is the algorithm
introduced in [8] and solves (3.15). In Algorithm 4 the steps of RFPI are

shown. In this algorithm, x[0] is initialized by Φ−1b̃/
∥
∥
∥Φ−1b̃

∥
∥
∥
2
. The calcula-

tion of pseudo-inverse considerably increases the complexity of the algorithm.
However, it is shown that random initialization of RFPI converges with high
probability [8].

To summarize, we introduced three 1-bit reconstruction algorithms in this
chapter. In Table 3.1 an overview of the reconstruction algorithms are shown.
As it is obvious in this table, in order to estimate the signal accurately, BIHT
and BIHT-ℓ2 need one more input than RFPI does, which is the sparsity level
of the signal, s. We use this characteristic of RFPI as an advantage in the
next chapter to design a new reconstruction algorithm that does not require
s as an input. In addition, the task of the next chapter is to analyze some
other reconstruction algorithms which are robust against the noise in the
binary measurements vector.
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Algorithm 4 RFPI

1. Inputs: vector of 1-bit measurements b ∈ {±1}M , measuring matrix
Φ, number of outer iterations t1, number of inner iterations t2

2. Initialization: descent step-size δ, x[0] = Φ−1b̃/
∥
∥
∥Φ−1b̃

∥
∥
∥
2
, initial coef-

ficient λ[1] = M

3. Outer iteration: For k = 1, . . . , t1

(a) Inner iteration: For n = 1, . . . , t2

i. One-sided quadratic gradient:
s← (diag(b)Φ)T

(
b⊙ Φx[n−1]

)−

ii. Gradient projection on sphere surface:
g←

〈
s,x[n−1]

〉
x[n−1] − s

iii. One-sided quadratic gradient descent:
h← x[n−1] − δg

iv. Shrinkage (ℓ1 gradient descent):

[u]i ← sign ([h]i)max
{

|[h]i| − δ
λ[k]

, 0
}

, for all i

v. Normalization: x[n] ← u
‖u‖2

(b) Initialize next inner iteration:
x[0] ← x[n], λ[k+1] ← cλ[k], where c is a fixed constant.

4. Output: x̂ = x[n]
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Mehod Formula Inputs

BIHT
argmin

x

∥
∥(b⊙Φx)−

∥
∥
1

subject to ‖x‖ ≤ s, ‖x‖2 = 1
Φ, b, s

BIHT-ℓ2
argmin

x

∥
∥(b⊙Φx)−

∥
∥
2

subject to ‖x‖ ≤ s, ‖x‖2 = 1
Φ, b, s

RFPI
argmin

x

‖x‖1
subject to b⊙Φx � 0, ‖x‖2 = 1

Φ, b

Table 3.1: Three reconstruction algorithms for 1-bit compressive sensing in the

noiseless scenario.
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Chapter 4
1-bit compressive sensing in the

presence of noise

In the previous chapter, we discussed about 1-bit compressive sensing and
the reconstruction algorithms. However, in the case that the binary meas-
urements are contaminated with the noise, the reconstruction algorithms fail
to estimate the signal perfectly. We start this chapter by modelling the noise
in 1-bit compressive sensing and we introduce two different sources of the
noise. Then, we explain some reconstruction algorithms designed to perform
robustly against the noise in the binary measurements.

4.1 Noise modelling in 1-bit compressive sens-

ing

4.1.1 Measurement noise

In the case that there is noise in the compressive sensing measurements, we
have

ỹ = Φx+ n (4.1)

where ỹ is the noisy measurements vector and n denotes white Gaussian ad-
ditive noise vector, i.e., [n]i ∼ N (0, σ2

n). After 1-bit quantization of (4.1) we
obtain the binary measurements vector contaminated with the measurement
noise and the noisy binary measurements vector is denoted by b̃m. Hence,

b̃m = sign(ỹ) = sign(Φx+ n) (4.2)

In fact the noise in the measurements vector causes sign flips in the binary
measurements vector. As the variance of the noise increases it is more likely
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Figure 4.1: Binary symmetric channel model

to occur bit flips in b̃m. The probability of bit flip in each bit of b̃m is denoted
by Pfm and is calculated in Appendix B.

4.1.2 Channel noise

In practice, especially in communications applications, the binary measure-
ments vector b̃m is transmitted through a channel. The noise of this trans-
mission channel causes extra sign flips on the binary measurements. We
model the channel by a binary symmetric channel (BSC). The probability of
sign flips in the BSC is

Pfc = P([b̃m]i = +1|[b̃c]i = −1) = P([b̃m]i = −1|[b̃c]i = +1) (4.3)

where b̃c denotes binary measurements vector contaminated with the channel
noise.

4.1.3 A combined model for binary noise

As mentioned in the previous section, there are two different sources of the
binary noise: the measurement noise and the channel noise. Having the sign
flip probability, Pfm, caused by measurement noise, we can show the effect
of measurement noise by a BSC. Then, we put the physical transmission
channel after this model. Therefore, we have two BSC channels connected
in serial. As Figure 4.1 depicts, the noiseless binary measurements b passes
through first BSC with sign flip probability Pfm then its output is put to
the second BSC which is the physical channel with sign flip probability Pfc.
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Figure 4.2: 1-bit compressive sensing in the presence of the noise

b̃ denotes the final noisy binary data after the measurement noise and the
channel noise.

We replace these two BSCs by a simple equivalent BSC with sign flip
probability Pf . The value of Pf given Pfm and Pfc can be obtained from

(
1− Pf Pf

Pf 1− Pf

)

=

(
1− Pfm Pfm

Pfm 1− Pfm

)(
1− Pfc Pfc

Pfc 1− Pfc

)

(4.4)

and
Pf = Pfc(1− Pfm) + Pfm(1− Pfc). (4.5)

The approximate number of the total sign flips between b and b̃ which is
denoted by L can be obtain from

L ≈MPf . (4.6)

In fact, L is a measure of the noise level in 1-bit compressive sensing. Note
that as M tends to infinity, L converges to MPf .

4.2 Iterative reconstruction algorithms for 1-

bit compressive sensing in the presence of

noise

The block diagram of 1-bit compressive sensing in the presence of noise is
shown in Figure 4.2. The task of reconstruction algorithms in the presence
of noise is to reconstruct the signal form the noisy binary measurements b̃.
In the first part of this section, we explain an algorithm which reconstructs
the signal in the presence of noise. Then, we introduce our reconstruction
algorithm that works robustly against the binary noise and does not require
sparsity level of the signal as an input.

4.2.1 Adaptive outlier pursuit

AOP and AOP-ℓ2

In [10], a reconstruction algorithm called adaptive outlier pursuit (AOP) has
been proposed. In this algorithm, a binary vector Λ is defined in which the
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position of 0’s shows the position of the sign flips and the position of 1’s shows
the position of the unchanged bits in b̃, i.e., [Λ]i ∈ {0, 1}M . Therefore, the

number of sign flips in b̃ can be obtained from

L =
∑

i

(1− [Λ]i). (4.7)

Given the number of sign flips, L, and the sparsity level of the signal, s, AOP
tries to solve the following optimization problem

(x̂, Λ̂) = argmin
x,Λ

∥
∥
∥
∥

(

Λ⊙ b̃⊙Φx
)−
∥
∥
∥
∥
1

subject to
∑

i

(1− [Λ]i) ≤ L

‖x‖0 ≤ s

‖x‖2 = 1 (4.8)

where x̂ denotes the estimated signal and Λ̂ denotes the estimated binary
vector. Note that in the noiseless case [Λ]i = 1 for all i and the problem in
(4.8) converts to BIHT. AOP solves (4.8) by iterating between two following
steps:
Step 1: given Λ̂ find

x̂ = argmin
x

∥
∥
∥
∥

(

Λ̂⊙ b̃⊙Φx
)−
∥
∥
∥
∥
1

subject to ‖x‖0 ≤ s

‖x‖2 = 1 (4.9)

Step 2: given x̂ find

Λ̂ = argmin
Λ

∥
∥
∥
∥

(

Λ⊙ b̃⊙Φx̂
)−
∥
∥
∥
∥
1

subject to
∑

i

(1− [Λ]i) ≤ L (4.10)

First x̂ is determined by solving (4.9), based on the current estimation of Λ̂.
In other words, AOP tries to minimize

∑

i∈V

[(b̃⊙Φx)−]i, (4.11)

where x is s-sparse, V = Supp(Λ̂) and Supp(·) gives the indices of the non-
zero elements in the argument. In the second step, Λ̂ is updated by solving
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Algorithm 5 AOP

1. Inputs: Measurement signs b̃ ∈ {±1}M , Measurement matrix Φ, Sig-
nal sparsity s, Constant τ

2. Initialization: Initial estimate x[0] = ΦT b̃/
∥
∥
∥ΦT b̃

∥
∥
∥
2

3. Iteration: For n = 1, . . . , t

(a) Update support: V ← Supp(Λ)

(b) Gradient descent:

z[n] ← x[n−1] − τ
(
Φ[V,:]

)T
(

sign
(
Φ[V,:]x

[n−1]
)
− b̃V

)

(c) Projection onto “ℓ0-ball”: x[n] ←Hs(z
[n])

(d) Update Λ: Update Λ from (4.12)

4. Output: x̂ = x[n]

‖x[n]‖
2

(4.10), based on the new estimation of x̂. In [10], it is shown that (4.10) can
be solved analytically and its solution is given by

[

Λ̂
]

i
=







0, if

[(

b̃⊙ Φx̂
)−
]

i

≥ β

1, otherwise.

(4.12)

Here, β is the Lth largest entry of the vector
(

b̃⊙Φx̂
)−

. In Algorithm 5,

the steps of AOP is illustrated. This algorithm is initialized with x[0] =

ΦT b̃/
∥
∥
∥ΦT b̃

∥
∥
∥
2
and Φ[V,:] denotes a sub-matrix of Φ which is restricted to the

rows of Φ in set V .

Another version of AOP is AOP-ℓ2 which minimizes

∥
∥
∥
∥

(

Λ⊙ b̃⊙Φx
)−
∥
∥
∥
∥
2

instead of

∥
∥
∥
∥

(

Λ⊙ b̃⊙Φx
)−
∥
∥
∥
∥
1

. Therefore, AOP-ℓ2 is basically derived from

BIHT-ℓ2 and the steps are the same as in Algorithm 5 while the step (b) is
replaced by

z[n] = x[n−1] −
(

diag(b̃)[V,:]Φ[V,:]

)T (

diag(b̃)[V,:]Φ[V,:]x
[n−1]

)−

. (4.13)
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AOP and AOP-ℓ2 with sign flips

Another version of AOP is called adaptive outlier pursuit with sign flips
(AOP-f) [10] which applies binary vector Ω ∈ {±1}M where b̃⊙b = Ω. That
is, the position of −1’s shows the position of flipped bits and the position of
1’s specifies the position of unchanged bits in b̃. Therefore,

[Ω]i = 2 [Λ]i − 1 (4.14)

In fact, if Ω is estimated perfectly, we have

b = Ω⊙ b̃. (4.15)

and

L =
1

2

∑

i

(1− [Ω]i). (4.16)

AOP-f is obtained by replacing b with Ω⊙ b̃ (which is the flipped version of
b̃) in BIHT. Both x and Ω are estimated in each iteration. The minimization
problem that AOP-f solves is as follows:

(x̂, Ω̂) = argmin
x,Ω

∥
∥
∥
∥

(

Ω⊙ b̃⊙Φx
)−
∥
∥
∥
∥
1

subject to
1

2

∑

i

(1− [Ω]i) ≤ L

‖x‖0 ≤ s

‖x‖2 = 1 (4.17)

The steps of solving (4.17) are the same as the steps in (4.8). That is, first
by fixing Ω̂, AOP-f estimates x̂. Hence,

x̂ = argmin
x

∥
∥
∥
∥

(

Ω̂⊙ b̃⊙Φx
)−
∥
∥
∥
∥
1

subject to ‖x‖0 ≤ s

‖x‖2 = 1 (4.18)

Then, AOP-f updates Ω̂ given x̂ obtained from previous step. Therefore,

Ω̂ = argmin
Ω

∥
∥
∥
∥

(

Ω⊙ b̃⊙Φx̂
)−
∥
∥
∥
∥
1

subject to
1

2

∑

i

(1− [Ω]i) ≤ L. (4.19)
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Algorithm 6 AOP-f

1. Inputs: Measurement signs b̃ ∈ {±1}M , Measurement matrix Φ, Sig-
nal sparsity s, Constant τ

2. Initialization: Initial estimate x[0] = ΦT b̃/
∥
∥
∥ΦT b̃

∥
∥
∥
2

3. Iteration: For n = 1, . . . , t

(a) Gradient Descent: z[n] ← x[n−1] − τΦT
(

sign
(
Φx[n−1]

)
− b̃

)

(b) Projection onto “ℓ0-ball”: x[n] ←Hs(z
[n])

(c) Update Ω: Update Ω from (4.20)

(d) Update b̃: b̃← Ω⊙ b̃

4. Output: x̂ = x[n]

‖x[n]‖
2

The estimation of Ω̂ in the second step is given by

[

Ω̂
]

i
=







−1, if

[(

b̃⊙ Φx̂
)−
]

i

≥ β

1, otherwise

(4.20)

where β has the same value as in (4.12). Like in AOP, we can replace
ℓ2-norm by ℓ1-norm which yields AOP-ℓ2-f. Note that since elements in
(

Ω⊙ b̃⊙Φx̂
)−

are non-negative values, the estimation of Ω̂ in AOP-f-ℓ2

is also given by (4.20). If the binary measurements vector is noiseless then
[Ω]i = 1 for all i and AOP-f (AOP-ℓ2-f) converts to BIHT (BIHT-ℓ2). Al-
gorithm 6 shows the steps in AOP-f. To convert AOP-f to AOP-ℓ2-f, we just
need to replace step (a) by

z[n] = x[n−1] −
(

diag(b̃)Φ
)T (

diag(b̃)Φx[n−1]
)−

. (4.21)

4.2.2 Noise-adaptive renormalized fixed point iterat-
ive

In this section, we introduce noise-adaptive renormalized fixed point iterative
(NARFPI) which is a reconstruction algorithm mostly derived from RFPI.
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By applying (4.15) we modify (3.14) to account for bit flips as follows:

(x̂, Ω̂) = argmin
x,Ω

‖x‖1

subject to Ω⊙ b̃⊙ Φx � 0

1

2

∑

i

(1− [Ω]i) ≤ L

‖x‖2 = 1. (4.22)

To solve (4.22) efficiently, we can apply the same relaxation step as in (3.15)
and approximate (4.22) by

(x̂, Ω̂) = argmin
x,Ω

‖x‖1 + λ
∑

i

f([Ω⊙ b̃⊙Φx]i)

subject to
1

2

∑

i

(1− [Ω]i) ≤ L

‖x‖2 = 1. (4.23)

The optimization problem in (4.23) is still non-convex and consists of a com-
bination of discrete and continuous variables. Similarly to the approach in
[8] to solve (3.15), we use two steps algorithm to find Ω̂ and x̂ in (4.23). In
the first step, Ω̂ is fixed and the algorithm finds the optimum x̂ as follows:

x̂ = argmin
x

‖x‖1 + λ
∑

i

f([Ω̂⊙ b̃⊙Φx]i)

subject to ‖x‖2 = 1. (4.24)

Note that the only difference between (3.15) and (4.24) is that b is replaced
by b̃ ⊙ Ω̂. Hence, we can use RFPI to solve (4.24). In the second step, we
use x̂ obtained from (4.24), to find Ω̂ as follows:

Ω̂ = argmin
Ω

∑

i

f([Ω⊙ b̃⊙Φx̂]i)

subject to
1

2

∑

i

(1− [Ω]i) ≤ L. (4.25)

We can rewrite (4.25) as

Ω̂ = argmin
Ω

∥
∥
∥
∥

(

Ω⊙ b̃⊙Φx̂
)−
∥
∥
∥
∥
2

subject to
1

2

∑

i

(1− [Ω]i) ≤ L. (4.26)
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The minimization in (4.26) is identical to the second step of AOP-ℓ2-f (when
ℓ1-norm is replaced by ℓ2-norm in (4.19)). Therefore, the solution of (4.26)
is (4.20). The details of NARFPI is shown in Algorithm 7. In Table 4.1,
the algorithms designed for 1-bit compressive sensing in the presence of the
binary noise are described briefly. The main advantage of NARFPI in com-
parison to the other algorithms is that it does not require a priori knowledge
of s as an input.

Algorithm 7 NARFPI

1. Inputs: vector of 1-bit measurements b̃ ∈ {±1}M , measuring matrix
Φ, number of bit flips L, number of outer iterations t1, number of inner
iterations t2

2. Initialization: descent step-size δ, initial estimate [Ω]i = 1 for all i,

x[0] = Φ−1b̃/
∥
∥
∥Φ−1b̃

∥
∥
∥
2
, initial coefficient λ[1] = M

3. Outer iteration: For k = 1, . . . , t1

(a) Inner iteration: For n = 1, . . . , t2

i. One-sided quadratic gradient:

s←
(

diag(b̃)Φ
)T (

b̃⊙ Φx[n−1]
)−

ii. Gradient projection on sphere surface:
g←

〈
s,x[n−1]

〉
x[n−1] − s

iii. One-sided quadratic gradient descent:
h← x[n−1] − δg

iv. Shrinkage (ℓ1 gradient descent):

[u]i ← sign ([h]i)max
{

|[h]i| − δ
λ[k]

, 0
}

, for all i

v. Normalization: x[n] ← u
‖u‖2

(b) Find the location of noisy bits and flip them:
Update Ω from (4.20). b̃← Ω⊙ b̃.

(c) Initialize next inner iteration:
x[0] ← x[n], λ[k+1] ← cλ[k], where c is a fixed constant.

4. Output: x̂ = x[n]
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Mehod Formula Inputs

AOP

argmin
x,Λ

∥
∥
∥
∥

(

Λ⊙ b̃⊙Φx
)−
∥
∥
∥
∥
1

subject to
∑

i

(1− [Λ]i) ≤ L

‖x‖0 ≤ s

‖x‖2 = 1

Φ, b̃, s, L

AOP-ℓ2

argmin
x,Λ

∥
∥
∥
∥

(

Λ⊙ b̃⊙Φx
)−
∥
∥
∥
∥
2

subject to
∑

i

(1− [Λ]i) ≤ L

‖x‖0 ≤ s

‖x‖2 = 1

Φ, b̃, s, L

AOP-f

argmin
x,Ω

∥
∥
∥
∥

(

Ω⊙ b̃⊙Φx
)−
∥
∥
∥
∥
1

subject to
1

2

∑

i

(1− [Ω]i) ≤ L

‖x‖0 ≤ s

‖x‖2 = 1

Φ, b̃, s, L

AOP-f-ℓ2

argmin
x,Ω

∥
∥
∥
∥

(

Ω⊙ b̃⊙Φx
)−
∥
∥
∥
∥
2

subject to
1

2

∑

i

(1− [Ω]i) ≤ L

‖x‖0 ≤ s

‖x‖2 = 1

Φ, b̃, s, L

NARFPI

argmin
x,Ω

‖x‖1
subject to Ω⊙ b̃⊙Φx � 0

1

2

∑

i

(1− [Ω]i) ≤ L

‖x‖2 = 1

Φ, b̃, L

Table 4.1: Five reconstruction algorithms for 1-bit compressive sensing in the

presence of the binary noise.
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Chapter 5
Simulations and numerical results

In this chapter, we simulate the 1-bit compressive sensing reconstruction
algorithms and analyze their performances in the noiseless and the noisy
scenarios. The quality of reconstruction is measured in terms of the received
signal to noise ratio (RSNR) defined as:

RSNR =
E
(
‖x‖22

)

E
(
‖x̂− x‖22

) . (5.1)

Throughout this chapter the deimension of x is N = 1000. The position
of non-zero elements in x is chosen uniformly at random and the amp-
litude of non-zero elements is generated according to zero-mean Gaussian
variable with unite variance. The M ×N measuring matrix Φ has independ-
ent entries following a zero-mean Gaussian distribution with variance 1/M ,
i.e., φi,j ∼ N (0, 1/M). We choose the number of binary measurements from
multiples of 100 between 100 to 2000. This setting is beyond the classical
compressive sensing goal of few measurements, i.e., M ≪ N . Note that,
we can afford more measurements for a same bit budget compared to more
sophisticated quantized compressive sensing approaches. In other words, in
1-bit compressive sensing each measurement is shown by one bit while in
other quantized compressive sensing each measurement is shown by two or
more bit. Therefore, 1-bit compressive sensing gives the most number of
measurements in comparison to others given a fixed number of bits. In the
case that the algorithms need the value of L as an input, we feed them by
MPf which is the estimated value of L (see (4.6)). Moreover, we set the
number of iterations t = 1000, t1 = 20 and t2 = 200.
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Figure 5.1: The performance of BIHT, BIHT-ℓ2 and RFPI when Pf = 0

5.1 Algorithms designed for noiseless 1-bit

compressive sensing

In this section, we simulate BIHT, BIHT-ℓ2 and RFPI in three different
binary noise levels. The sparsity level of x is set to s = 10. We set the
probability of bit flips to 0, 1% and 3%. The performance of the three
algorithms is averaged over 100 realizations for each M/N . In Figures 5.1,
5.2 and 5.3, the RSNR(dB) of the three algorithms is shown respectively for
Pf = 0, Pf = 1% and Pf = 3%. Generally, as Pf increases, the overall
reconstruction performance of these three algorithms decreases significantly.
When Pf = 0, the performance of BIHT is considerably higher than BIHT-
ℓ2 and RFPI. However, as the probability of sign flips increases BIHT-ℓ2
outperforms BIHT and RFPI. This superior performance of BIHT-ℓ2 in the
presence of the noise claims that for scenarios with high level of binary noise,
BIHT-ℓ2 has the best reconstruction quality among the 1-bit reconstruction
algorithms designed for the noiseless case.

5.2 Algorithms designed for noisy 1-bit com-

pressive sensing

In [10], it is shown that the performance of AOP (AOP-ℓ2) is almost identical
to the performance of AOP-f (AOP-f-ℓ2). Therefore, for the sake of simpli-
city, we just evaluate the performance of AOP-f (AOP-f-ℓ2) through out this
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Figure 5.2: The performance of BIHT, BIHT-ℓ2 and RFPI when Pf = 1%
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Figure 5.3: The performance of BIHT, BIHT-ℓ2 and RFPI when Pf = 3%
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Figure 5.4: The performance of AOP-f, AOP-f-ℓ2 and NARFPI when Pf = 3%

chapter.

5.2.1 Signals with fixed sparsity level

Similarly to the previous section, the sparsity level of x is set to s = 10. We
simulate AOP-f, AOP-f-ℓ2 and NARFPI in the scenario that Pf = 3%. In
Figure 5.4, the performance of the three algorithms are shown by RSNR(dB).
AOP-f outperforms NARFPI and AOP-f-ℓ2. In addition, the performance of
AOP-f-ℓ2 is almost identical to the performance of NARFPI since both of
these algorithms try to minimize an ℓ2-norm.

5.2.2 Signals with random sparsity level

In practice, the exact sparsity level of the signal is not known. As we men-
tioned before AOP-f and AOP-f-ℓ2 need a priori knowledge of sparsity level
of the signal to be reconstructed as an input. In this section, we simulate the
case in which sparsity level of the signal varies randomly based on discrete
truncated triangular distribution with mean 10 and s ∈ [1, 19]. The probab-
ility mass function (PMF) of the random s for three different σ2

s is shown in
Figure 5.5.

We simulate RFPI, AOP-f, AOP-f-ℓ2 and NARFPI when M/N = 2 and s
is random based on the triangular distribution. The probability of sign flips
is set to Pf = 3%. Since the mean of s is 10, we put 10 as an estimated s
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Figure 5.5: The PMF of truncated triangular distribution of s for three different

variances

into AOP-f and AOP-f-ℓ2. In Figure 5.6 the average performance of the four
algorithms over 100 realizations for each σ2

s is shown. As it is illustrated, the
performance of NARFPI is constant and independent of σ2

s . RFPI exhibits
also a constant RSNR as σ2

s varies, but its performance is poor because of
the presence of bit flips. In contrast, the reconstruction quality of AOP-f and
AOP-f-ℓ2 decreases as deviation of s from its mean increases. When σ2

s > 10,
NARFPI outperforms all the other algorithms.

To investigate whether NARFPI apparent superior performance occurs
also for other M values, we consider another scenario in which s is fixed to a
value between 1 to 19 (but AOP-f and AOP-f-ℓ2 is still given 10 as estimate)
and consider different values of M . The other parameters in this numerical
experiment are the same as in the previous simulations. We plot 1/(RSNR)
(i.e., the reconstruction error) in linear scale as a function of s for NARFPI
(Figure 5.7), AOP-f (Figure 5.8) and AOP-f-ℓ2 (Figure 5.9).

As expected, the reconstruction error of AOP-f and AOP-f-ℓ2 is almost
constant for s ≤ 10 but appears to grow faster than linearly in s when s
exceeds 10. The error growth rate for 10 ≤ s in AOP-f is considerably
faster than the error growth rate in AOP-f-ℓ2. This behaviour seems natural
given that AOP-f (AOP-f-ℓ2) minimizes the ℓ1-norm (ℓ2-norm) of x under
the constraint that ‖x‖0 ≤ s and that we give s = 10 to AOP-f (AOP-f-ℓ2)
as estimate of the signal sparsity level. By comparing Figures 5.7, 5.8 and
5.9, we see that in the regime where the number of measurements is large
compared to the signal dimension (e.g., M/N = 2), NARFPI outperforms
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binary measurements M and of the sparsity level s of x
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binary measurements M and of the sparsity level s of x
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AOP-f and AOP-f-ℓ2. However, in the regime where the number of measure-
ments is small compared to the signal dimension (e.g., M/N = 0.5), AOP-f
outperforms NARFPI for s > 10.

38



Chapter 6
Conclusion

In this thesis, we discussed the general compressive sensing problem and the
conditions on measuring matrix Φ which ensures the uniqueness of the recon-
structed signal through compressive sensing reconstruction algorithms. We
showed that RIP holds for a random matrix Φ when: 1)the entries of Φ are
strictly sub-Gaussian and 2) the number of rows in Φ is greater than a par-
ticular value (related to the sparsity level and the dimension of the signal).
Therefore, Φ can be applied in compressive sensing and signals measured
through this class of matrices can be reconstructed perfectly.

Furthermore, we focused on a quantized version of compressive sensing
problems, which is 1-bit compressive sensing. We investigated several 1-bit
compressive sensing reconstruction algorithms (BIHT, BIHT-ℓ2 and RFPI)
for noiseless scenario. We modelled the measurement and the channel noise
in 1-bit compressive sensing and discussed four reconstruction algorithms
(AOP, AOP-ℓ2, AOP-f, AOP-f-ℓ2) which are designed to work robustly in
the presence of the noise. After that, we introduced our contribution, which
is NARFPI, an algorithm obtained by merging RFPI and AOP-f. The main
advantage of NARFPI over the previously introduced 1-bit compressive al-
gorithms is that NARFPI does not require a priori knowledge of the sparsity
level of the signal as an input to reconstruct the signals robustly in the pres-
ence of the noise.

The performance of all the 1-bit compressive algorithms in both the noise-
less and the noisy scenarios were evaluated numerically in Chapter 5. From
the simulations we found that:

• When the binary measurements vector b is noiseless, BIHT has less
reconstruction error than BIHT-ℓ2. However, as the level of the noise
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increases BIHT-ℓ2 outperforms BIHT. The reason of this behaviour lies
in the difference between ℓ1-norm and ℓ2-norm minimization applied in
these two algorithms. The ℓ1-norm minimization gives more accur-
ate signal estimation than the ℓ2-norm minimization when there is no
noise in the binary measurements. In contrast, ℓ2-norm minimization
outperforms ℓ1-norm minimization when there is noise in the binary
measurements.

• In the scenario that the sparsity level of the signal is perfectly known,
the performance of NARFPI is similar to the performance of AOP-
f-ℓ2 in different noisy scenarios. The ℓ2-norm minimization in both
NARFPI and AOP-f-ℓ2 causes this similarity. In contrast, AOP-f out-
performs NARFPI and AOP-f-ℓ2 because of the ℓ1-norm applied in
AOP-f. Generally, we can conclude that in the noisy case and when
the sparsity level of the signal is perfectly known, the reconstruction
algorithms based on the ℓ1-norm minimization have better performance
than the reconstruction algorithms based on the ℓ2-norm minimization.

• When the sparsity level of the signal deviates from its estimated value,
NARFPI outperforms both AOP-f and AOP-f-ℓ2 because NARFPI does
not require a priori knowledge of the signal sparsity level. In other
words, NARFPI is appealing in practical scenarios in which there is no
perfect knowledge about the sparsity level. For instance, the sparsity
level of the transformed images through wavelet transformation is not
a deterministic value but has a calculable distribution with particular
mean and variance. Therefore, in this scenario NARFPI outperforms
AOP-f and AOP-f-ℓ2.

6.1 Suggestion for future work

In this work, we proposed NARFPI which is an iterative algorithm mainly
derived from RFPI. The cost function inside RFPI works based on the ℓ2-
norm. Therefore, NARFPI is generally an ℓ2-norm based algorithm. This
ℓ2-norm in NARFPI is the reason of the similarity between performance of
NARFPI and AOP-f-ℓ2. As mentioned in the previous section, in the low-
noise regime ℓ1-norm based algorithms, e.g., AOP-f reconstruct the signal
more accurately than the ones based on ℓ2-norm. As a future work, one
may apply a new cost function in NARFPI that is based on ℓ1-norm. It is
expected that the performance of the new resulting algorithm is identical to
the performance of AOP-f when the sparsity level of the signal is known.
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Appendix A
Proof of Theorems in Chapter 2

A.1 Proof of Theorem 1

Proof. First, by assuming that Φ satisfies the null space property, we prove
the uniqueness of the solution. Let z ∈ CN be such that Φz = Φx, z 6= x.
Then we have to show that ‖x‖1 < ‖z‖1, in other words, x is the sparsest
possible solution. By assumption v = x− z ∈ ker {Φ} \ {0}. Let T =
supp (x), vT is the vector v spanned to entries with indices in T and T c =
[N ] \ T where [N ] = {1, . . .N}. Then we have

‖x‖1 = ‖x− zT + zT‖1
≤ ‖x− zT‖1 + ‖zT‖1 = ‖vT‖1 + ‖zT‖1
< ‖vT c‖1 + ‖zT‖1 = ‖−zT c‖1 + ‖zT‖1 = ‖z‖1 . (A.1)

Therefore, x is the unique solution of (2.3).
In order to prove the converse of above, we take v = x− z ∈ ker {Φ}\{0} and
T ⊂ [N ] , |T | = s. By assumption, vT is the unique solution of argmin

z

‖z‖1
and Φz = ΦvT , i.e.,

ΦvT = Φz and ‖vT‖1 < ‖z‖1 . (A.2)

Also, we have
ΦvT = −ΦvT c , (vT 6= vT c) . (A.3)

Hence, (A.2) and (A.3) give

‖vT‖1 < ‖vT c‖1 . (A.4)

Therefore, Φ satisfies the null space property.
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A.2 Proof of Theorem 2

In the first part of this section, we introduce some theorems and lemmas
helping us to prove Theorem 2.

Proposition 1. For every matrix Φ ∈ CM×N , restricted isometry constants
are increasingly ordered, i.e.,

δ1 ≤ δ2 ≤ · · · ≤ δs ≤ · · · . (A.5)

Proof. It is obvious that an s-sparse vector x can also be considered as a
s+ 1-sparse vector. Therefore, we have

(1− δs+1) ‖ x ‖22≤ (1− δs) ‖ x ‖22≤‖ Φx ‖22≤ (1 + δs) ‖ x ‖22≤ (1 + δs+1) ‖ x ‖22
(A.6)

and, consequently,

δs ≤ δs+1. (A.7)

Theorem 6 (Rayleigh-Ritz, [22, Theorem 4.2.2]). Let Φ ∈ CN×N be Her-
mitian, and let the eigenvalues of Φ be ordered as

λmin = λ1 ≤ λ2 ≤ · · · ≤ λN−1 ≤ λN = λmax . (A.8)

Then

λ1x
†x≤ x†Φx ≤ λNx

†x for all x ∈ C
N (A.9)

λmax = λN = max
x 6=0

x†Φx

x†x
= max

x†x=1
x†Φx (A.10)

λmin = λ1 = min
x 6=0

x†Φx

x†x
= min

x†x=1
x†Φx . (A.11)

Lemma 2. For every hermitian matrix Φ ∈ CN×N we have

max
‖x‖2=1

‖Φx‖2 = max
‖x‖2=1

|〈Φx,x〉| . (A.12)
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Proof. By applying Theorem 6 we obtain

max
‖x‖2=1

‖Φx‖2 = max

√

‖Φx‖22
‖x‖22

= max

√

x†Φ†Φx

x†x
=
√

λmax

(
Φ†Φ

)
= σmax (Φ) ,

(A.13)
where σmax(Φ) is the maximum singular value of Φ. In addition, |λ (Φ)| =
σ (Φ) since Φ is hermitian. Therefore,

σmax (Φ) = |λmax (Φ)| = max

∣
∣
∣
∣

x†Φx

x†x

∣
∣
∣
∣
= max

‖x‖2=1
|〈Φx,x〉| . (A.14)

Proposition 2 ([12, Proposition 2.5.c]). Let Φ ∈ CM×N with restricted
isometry constant δs and u,v ⊂ CN with disjoint support, i.e., supp(u) ∩
supp(v) = ∅ and s =| supp (u) | + | supp (v) |. Then

|〈Φu,Φv〉| ≤ δs ‖u‖2 ‖v‖2 . (A.15)

Proof. We can write (2.5) as

∣
∣‖Φx‖22 − ‖x‖

2
2

∣
∣ ≤ δs ‖x‖22 (A.16)

|〈Φx,Φx〉 − 〈x,x〉|
〈x,x〉 =

∣
∣x†Φ†Φx− x†x

∣
∣

x†x
=

∣
∣
〈
Φ†Φx,x

〉
− 〈x,x〉

∣
∣

〈x,x〉

=

∣
∣
〈(
Φ†Φ− I

)
x,x

〉∣
∣

〈x,x〉 ≤ δs. (A.17)

Therefore, from Lemma 2,

max
‖x‖2=1

∣
∣
〈(
Φ†Φ− I

)
x,x

〉∣
∣ = max

‖x‖2=1

∥
∥
(
Φ†Φ− I

)
x
∥
∥
2
≤ δs. (A.18)

By definition supp (v) = V and supp (u) = U where |V | + |U | = s and
V ∩ U = ∅. Let 0U and 0V be zero vectors with lengths |U | and |V |, and
[

0†
V ,u

†
U

]†

is a vector obtained by merging vectors 0V and uU . In addition,

Φ[:,S] denotes a sub-matrix of Φ spanned to columns in S where S is the
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combination of indices in V and U in order. Then, we can write

〈Φu,Φv〉 = v†
VΦ

†
[:,V ]Φ[:,U ]uU =

[

v†
V , 0

†
U

]

Φ†
[:,S]Φ[:,S]

[

0†
V ,u

†
U

]†

=
[

v†
V , 0

†
U

]

Φ†
[:,S]Φ[:,S]

[

0†
V ,u

†
U

]†

−
[

v†
V , 0

†
U

] [

0†
V ,u

†
U

]†

︸ ︷︷ ︸

=0

=
[

v†
V , 0

†
U

]

︸ ︷︷ ︸

p†

(

Φ†
[:,S]Φ[:,S] − I

)

︸ ︷︷ ︸

∆

[

0†
V ,u

†
U

]†

︸ ︷︷ ︸

q

. (A.19)

From Cauchy-Schwartz inequality we have

∣
∣p†∆q

∣
∣ = |〈∆q,p〉| ≤ ‖∆q‖2 ‖p‖2 . (A.20)

Moreover, from (A.18) we know that

‖∆q‖2
‖q‖2

≤ max
‖∆q‖2
‖q‖2

≤ δs. (A.21)

Hence,

∣
∣p†∆q

∣
∣ ≤ δs ‖q‖2 ‖p‖2 ⇒ |〈Φu,Φv〉| ≤ δs ‖u‖2 ‖v‖2 (A.22)

Now we are ready to prove Theorem 2 by applying Propositions 1 and 2.

Proof. Take v ∈ ker {Φ}, let T0 be the set of s largest modulus entries of v
and vT0 is a vector spanned to entries of v with indeces in T0. Then T c

0 =
T1∪T2∪ ... where T i , for every i > 0, is the set containing s largest modulus

entries of vQ, Q = [N ] \
i−1⋃

j=0

Tj . Therefore, Φ(vT0) = −Φ (vT1 + vT2 + ...)

and by using (2.5) and Proposition 1 we obtain

1− δ2s ≤ 1− δs and (1− δ2s) ‖vT0‖22 ≤ ‖Φ(vT0)‖22 . (A.23)

Now we can write

‖ΦvT0‖22 = 〈ΦvT0 ,ΦvT0〉 = 〈ΦvT0 ,−Φ (vT1 + vT2 + ...)〉

=

〈

ΦvT0 ,
∑

k≥1

−ΦvTk

〉

=
∑

k≥1

〈ΦvT0 ,−ΦvTk
〉 . (A.24)
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Substituting (A.23) in (A.24) gives

‖vT0‖22 ≤
1

1− δ2s

∑

k≥1

〈ΦvT0 ,−ΦvTk
〉 (A.25)

and Proposition 2 yields

〈ΦvT0 ,−ΦvTk
〉 ≤ δ2s ‖vT0‖2 ‖vTk

‖2 . (A.26)

By substituting (A.26) in (A.25) we get

‖vT0‖22 ≤
δ2s

1− δ2s

∑

k≥1

‖vT0‖2 ‖vTk
‖2

‖vT0‖2 ≤
δ2s

1− δ2s

∑

k≥1

‖vTk
‖2 . (A.27)

The s entries of vTk
do not exceed the s entries of vTk−1

so

∀ j ∈ Tk |vj| ≤
1

s

∑

l∈Tk−1

|vl| =
1

s

∥
∥vTk−1

∥
∥
1

‖vTk
‖2 =

(
∑

j=Tk

|vj| 2
)1/2

≤
(

s ·
(
1

s

∥
∥vTk−1

∥
∥
1

)2
)1/2

=
1√
s

∥
∥vTk−1

∥
∥
1
. (A.28)

Assume that s0 is a N -dimensional vector and

s0 =

{

sj = 1 j ∈ T0

sj = 0 j /∈ T0

. (A.29)

By using Cauchy-Schwartz inequality we have

‖vT0‖1 = |〈vT0 , s0〉| ≤ ‖vT0‖2 ‖s0‖2 =
√
s ‖vT0‖2 . (A.30)

Applying (A.27) and (A.28) in (A.30) gives

‖vT0‖1 ≤
√
s ‖vT0‖2 ≤

δ2s
1− δ2s

∑

k≥1

√
s ‖vTk

‖2 ≤
δ2s

1− δ2s

∑

k≥1

∥
∥vTk−1

∥
∥
1

=
δ2s

1− δ2s

(

‖vT0‖1 +
∑

k≥1

‖vTk
‖1

)

≤ δ2s
1− δ2s

(‖vT0‖1 +
∥
∥vT c

0

∥
∥
1
) (A.31)
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Now if δ2s < 1/3 or δ2s
1−δ2s

< 1/2 , then

‖vT0‖1 ≤
δ2s

1− δ2s
(‖vT0‖1 +

∥
∥vT c

0

∥
∥
1
) <

1

2
(‖vT0‖1 +

∥
∥vT c

0

∥
∥
1
) . (A.32)

Therefore, we have that

‖vT0‖1 <
∥
∥vT c

0

∥
∥
1

(A.33)

so the null space property follows.

A.3 Proof of Theorem 3

First we introduce some intermediate theorems and definitions which help us
to prove Theorem 3.

Proposition 3. If Φ ∈ CM×Nsatisfies RIP with Restricted Isometry Con-
stant δs then for all T ⊂ [N ] and | T |≤ s we have

1− δs ≤ λmin

(

Φ†
[:,T ]Φ[:,T ]

)

≤ λmax

(

Φ†
[:,T ]Φ[:,T ]

)

≤ 1 + δs (A.34)

and
√

1− δs ≤ σmin

(
Φ[:,T ]

)
≤ σmax

(
Φ[:,T ]

)
≤
√

1 + δs. (A.35)

Proof. We know that

(1− δs) ‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs) ‖x‖22 for every s-sparse x .

Then we can write
∣
∣‖Φx‖22 − ‖x‖22

∣
∣ ≤ δs ‖x‖22 . (A.36)

By applying ‖x‖22 = 〈x,x〉 = x†x we can write the left-hand side of (A.36)
as

∣
∣‖Φx‖22 − ‖x‖22

∣
∣ = |〈Φx,Φx〉 − 〈x,x〉| =

∣
∣x†Φ†Φx− 〈x,x〉

∣
∣

=
∣
∣
〈
Φ†Φx,x

〉
− 〈x,x〉

∣
∣ =

∣
∣
〈
Φ†Φx− x,x

〉∣
∣

=
∣
∣
〈(
Φ†Φ− I

)
x,x

〉∣
∣ =

∣
∣x†
(
Φ†Φ− I

)
x
∣
∣ . (A.37)

Substituting (A.37) in (A.36) yields

∣
∣x†
(
Φ†Φ− I

)
x
∣
∣ ≤ δsx

†x .
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Since x is s-sparse we obtain

x†
TxT = x†x. (A.38)

Therefore,

x†
T

(

Φ†
[:,T ]Φ[:,T ] − I

)

xT = x†
(
Φ†Φ− I

)
x , (A.39)

where T = supp (x). From (A.38), (A.39) and Theorem 6 we have (for all
s-sparse x with support T )

λmin

(

Φ†
[:,T ]Φ[:,T ] − I

)

x†x ≤ x†
(
Φ†Φ− I

)
x ≤ λmax

(

Φ†
[:,T ]Φ[:,T ] − I

)

x†x

∣
∣x†
(
Φ†Φ− I

)
x
∣
∣ ≤ max

{

λmax

(

Φ
†
[:,T ]

Φ[:,T ]−I

)

x†x,−λmin

(

Φ
†
[:,T ]

Φ[:,T ]−I

)

x†x
}

.
(A.40)

In other words, (A.40) implies that if 0 < λmin

(

Φ†
[:,T ]Φ[:,T ] − I

)

x†x then

∣
∣x†
(
Φ†Φ− I

)
x
∣
∣ ≤ λmax

(

Φ†
[:,T ]Φ[:,T ] − I

)

x†x, (A.41)

but in the case that 0 > λmin

(

Φ†
[:,T ]Φ[:,T ] − I

)

x†x then simply
∣
∣x†
(
Φ†Φ− I

)
x
∣
∣ ≤

max
{∣
∣
∣λmax

(

Φ†
[:,T ]Φ[:,T ] − I

)

x†x
∣
∣
∣ ,
∣
∣
∣λmin

(

Φ†
[:,T ]Φ[:,T ] − I

)

x†x
∣
∣
∣

}

.Comparing

(2.5) and (A.40) gives

δs = max
{

λmax

(

Φ†
[:,T ]Φ[:,T ] − I

)

, −λmin

(

Φ†
[:,T ]Φ[:,T ] − I

)}

δs = max
{

λmax

(

Φ†
[:,T ]Φ[:,T ]

)

− 1 , 1− λmin

(

Φ†
[:,T ]Φ[:,T ]

)}

or

1− δs ≤ λmin

(

Φ†
[:,T ]Φ[:,T ]

)

≤ λmax

(

Φ†
[:,T ]Φ[:,T ]

)

≤ 1 + δs . (A.42)

Definition 6 (Lipschitz condition, [23, page 46]). Let f(x) be defined on an
interval I and suppose we can find a positive constant α such that

|f(x1)− f(x2)| ≤ α ‖x1 − x2‖2 (A.43)

for all x1, x2 ∈ I . Then f is said to satisfy a Lipschitz condition with
Lipschitz constant α.
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Example 1. The maximum and minimum singular values of any Φ ∈ CM×N

are Lipschitz functions with Lipschitz constant 1.

Proof. From Theorem 6

max
x†Φ†Φx

x†x
= max

‖Φx‖22
‖x‖22

= λmax

(
Φ†Φ

)
= σ2

max (Φ) (A.44)

min
x†Φ†Φx

x†x
= min

‖Φx‖22
‖x‖22

= λmin

(
Φ†Φ

)
= σ2

min (Φ) . (A.45)

By definition we have

‖Φ‖F =
√

tr
(
Φ†Φ

)
=

√
∑

i

σ2
i (Φ) (A.46)

where σi (Φ) is i-th singular value of Φ and ‖·‖F denotes Frobenius-norm.
Therefore

σmin (Φ) ≤ σmax (Φ) ≤ ‖Φ‖F . (A.47)

We know from Triangular inequality that

for anyΦ,Ξ ∈ C
M×N ‖Φx‖2 ≤ ‖Ξx‖2 + ‖(Φ− Ξ)x‖2 . (A.48)

From (A.48) we obtain

max ‖Φx‖2 ≤ max ‖Ξx‖2 +max ‖(Φ− Ξ)x‖2 (A.49)

and
min ‖Φx‖2 ≤ min ‖Ξx‖2 +min ‖(Φ− Ξ)x‖2 . (A.50)

Therefore, by substituting (A.44) and (A.45) in (A.49) and (A.50) we obtain

σmax (Φ) ≤ σmax (Ξ) + σmax (Φ−Ξ) (A.51)

σmin (Φ) ≤ σmin (Ξ) + σmin (Φ− Ξ) . (A.52)

In addition, from (A.47) we have

σmax (Φ)− σmax (Ξ) ≤ σmax (Φ−Ξ) ≤ ‖Φ−Ξ‖F (A.53)

σmin (Φ)− σmin (Ξ) ≤ σmin (Φ− Ξ) ≤ ‖Φ− Ξ‖F . (A.54)
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Since we can interchange Φ and Ξ, we get

|σmax (Φ)− σmax (Ξ)| ≤ ‖Φ−Ξ‖F

|σmin (Φ)− σmin (Ξ)| ≤ ‖Φ− Ξ‖F . (A.55)

Therefore, σmax (·) and σmin (·) satisfy Lipschitz condition with constant α =
1.

Theorem 7 ([24, Lemma 2.2]). Let x be a N-dimensional vector of unit vari-
ance, independent Gaussian variables, if f : RN → R is Lipschitz function
with Lipschitz constant α then for all t > 0

P (f(x)− E(f(x)) > t) ≤ e−t2/2α2

. (A.56)

Theorem 8 (Gordon’s theorem, [25, Theorem 5.32]). Let Φ be an M by N
array of i.i.d N (0, 1) then

E (σmin(Φ)) ≥
√
M −

√
N and E (σmax(Φ)) ≤

√
M +

√
N. (A.57)

Proposition 4. For any matrix Φ ∈ CM×Nwith i.i.d N (0, 1)modulus entries,

P

(

σmin(Φ) <
√
M −

√
N − t

)

≤ e−t2/2

P

(

σmax(Φ) >
√
M +

√
N + t

)

≤ e−t2/2. (A.58)

Proof. From Example 1 we know that σmin(Φ) and σmax(Φ) are Lipschitz
with constant 1. Therefore, applying Theorem 7 gives

P (E (σmin(Φ))− σmin(Φ) > t) ≤ e−t2/2

P (σmax(Φ)− E (σmax(Φ)) > t) ≤ e−t2/2. (A.59)

From Theorem 8
√
M −

√
N ≤ E(σmin(Φ)) and

√
M +

√
N ≥ E(σmax(Φ)). (A.60)
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Therefore,

P

(

σmin(Φ) <
√
M −

√
N − t

)

≤ P (σmin(Φ) < E (σmin(Φ))− t) ≤ e−t2/2

P

(

σmax(Φ) >
√
M +

√
N + t

)

≤ P (σmax(Φ) > E (σmax(Φ)) + t) ≤ e−t2/2.

(A.61)

Now by applying Propositions 3 and 4 we prove Theorem 3.

Proof. Let T ⊂ [N ] and |T | ≤ 2s. We are interested to find the case that
Proposition 3 holds forΦ with high probability. In other words, Φ will satisfy
RIP with high probability when

P

(

σmin(Φ[:,T ]) <
√

1− δ2s

)

(A.62)

and
P

(

σmax(Φ[:,T ]) >
√

1 + δ2s

)

(A.63)

are small enough.
By using Proposition 4 and dividing left side statement by

√
M , for every

T we get

P

(

σmin(Φ[:,T ]) < 1−
√

|T | /M − k
)

≤ e−Mk2/2 (A.64)

P

(

σmax(Φ[:,T ]) > 1 +
√

|T | /M + k
)

≤ e−Mk2/2 (A.65)

where k = t/
√
M . Since σmax(Φ[:,T ]) and σmin(Φ[:,T ]) increase by decreasing

| T |, we have

P
T :|T |≤2s

(

σmax

(
Φ[:,T ]

)
>
√

1 + δ2s

)

= P
T :|T |=2s

(

σmax

(
Φ[:,T ]

)
>
√

1 + δ2s

)

(A.66)
and applying (A.65) over all T s satisfying |T | = 2s gives

P
T :|T |=2s

(

σmax

(
Φ[:,T ]

)
> 1 +

√

2s/M + k
)

≤ # {T : |T | = 2s} .e−Mk2/2

≤
(
N

2s

)

.e−Mk2/2. (A.67)

We use following approximation

(
N

2s

)

≈
(
N

2s

)2s

= e2s log(N/2s). (A.68)
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Substituting above approximation in (A.67) gives

P
T :|T |≤2s

(

σmax

(
Φ[:,T ]

)
> 1 +

√

2s/M + k
)

< e2s log(N/2s).e−Mk2/2. (A.69)

Therefore we have

P
T :|T |≤2s

(

σmax

(
Φ[:,T ]

)
< 1 +

√

2s/M + k
)

≥ 1− e2s log(N/2s).e−Mk2/2. (A.70)

Null space property holds when the conditions below are fulfilled. Firstly,

1 +
√

2s/M + k <
√

1 + δ2s, (A.71)

where δ2s < 1/3. In addition,

2s(log (N/2s))−Mk2/2 ≤ 0, (A.72)

which implies that the probability is always between zero and one. From
(A.71) we have

0 < k < 0.15−
√

2s/M (A.73)

On the other hand, from (A.72) we have

4s(log (N/s)− log(2))

k2
=

4s(log (N/s)− 2.77s)

k2
≤M. (A.74)

Therefore, by choosing 4s log (N/s) /k2 ≤M , (A.74) holds. For σmin (Φ) the
proof is the same as above. In the case that (A.73) and (A.74) hold we have

P
T :|T |≤2s

(

σmax

(
Φ[:,T ]

)
<
√

1 + δ2s

)

≥ 1− e2s log(N/2s).e−Mk2/2 (A.75)

Similarly, for σmin(Φ) we have

P
T :|T |≤2s

(

σmin

(
Φ[:,T ]

)
>
√

1− δ2s

)

≥ 1− e2s log(N/2s).e−Mk2/2 (A.76)

Now if we name (A.75) P(A) and (A.76) P(B) then we are interested to find
P(A ∩ B) and from basic probability theory we know

P(A ∩ B) ≥ P(A) + P(B)− 1. (A.77)

Therefore, from (A.75), (A.76) and (A.77) we obtain

P
T :|T |≤2s

(√

1− δ2s < σmin

(
Φ[:,T ]

)
< σmin

(
Φ[:,T ]

)
<
√

1 + δ2s

)

≥ 1− 2e2s log(N/2s).e−Mk2/2 (A.78)
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A.4 Proof of Theorem 4

We need to prove some intermediate theorems and lemmas which help us to
prove Theorem 4. The main part of this section is derived from [16].

Lemma 3 ([16, Theorem 7.2]). Assume that x = [X1, X2, . . . , XN ] where
eachXi ∼ Sub (c2) is independent. Then for any a ∈ RN , 〈x, a〉 ∼ Sub

(
c2 ‖a‖22

)
.

Similarly, if eachXi ∼ SSub (σ2), then for any a ∈ RN , 〈x, a〉 ∼ SSub
(
σ2 ‖a‖22

)
.

Proof. Since Xi are i.i.d, factorization gives

E

(

exp

(

t
N∑

i=1

aiXi

))

= E

(
N∏

i=1

exp (taiXi)

)

=

N∏

i=1

E (exp (taiXi))

≤
N∏

i=1

exp
(
c2 (tai) /2

)

= exp

((
N∑

i=1

a2i

)

c2t2/2

)

. (A.79)

If the Xi are strictly sub-Gaussian, then setting c2 = σ2 gives E
(
〈x, a〉2

)
=

σ2 ‖a‖22 .

Lemma 4 (Markov’s Inequality). For any random variable X > 0 and t > 0,

P (X ≥ t) ≤ E (X)

t
. (A.80)

Proof. By noting that f (x) is the p.d.f. for X

E (X) =

∫ ∞

0

xf (x) dx ≥
∫ ∞

t

xf (x) dx ≥
∫ ∞

t

tf (x) dx = tP (X ≥ t) .

(A.81)

Lemma 5 ([16, Lemma 7.4]). Let X ∼ Sub (c2) . Then

E
(
exp

(
λX2/2c2

))
≤ 1√

1− λ
for any λ ∈ [0, 1). (A.82)
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Proof. If λ = 0, then the lemma simply holds. Now suppose that λ ∈ (0, 1).
Since X is sub-Gaussian, we have

∫ ∞

−∞

exp (tx) f (x) dx ≤ exp
(
c2t2/2

)
for any t ∈ R. (A.83)

By multiplying both sides by exp (−c2t2/2λ) we get
∫ ∞

−∞

exp
(
tx− c2t2/2λ

)
f (x) dx ≤ exp

(
c2t2(λ− 1)/2

)
. (A.84)

Now integrating both sides with respect to t gives
∫ ∞

−∞

(∫ ∞

−∞

exp
(
tx− c2t2/2λ

)
dt

)

f (x) dx ≤
∫ ∞

−∞

exp
(
c2t2(λ− 1)/2

)
dt

1

c

√
2πλ

∫ ∞

−∞

exp
(
λx2/2c2

)
f (x) dx ≤ 1

c

√

2πλ

1− λ
. (A.85)

Theorem 9 ([16, Theorem 7.2]). Suppose that x = [X1, X2, . . . , XN ], where
each Xi is i.i.d. with Xi ∼ Sub (c2) and E (X2

i ) = σ2. Then

E
(
‖x‖22

)
= Mσ2. (A.86)

In addition, for any α ∈ (0, 1) and for any β ∈ [c2/σ2, βmax] , there exists a
constant µ ≥ 4 depending only on βmax and the ratio σ2/c2 such that

P
(
‖x‖22 ≤ αMσ2

)
≤ exp

(
−M (1− α)2 /µ

)
(A.87)

and
P
(
‖x‖22 ≥ βMσ2

)
≤ exp

(
−M (β − 1)2 /µ

)
. (A.88)

Proof. Since Xi are independent,

E
(
‖x‖22

)
=

M∑

i=1

E
(
X2

i

)
=

M∑

i=1

σ2 = Mσ2, (A.89)

therefore, (A.86) holds. From Lemma 4 we have

P
(
‖x‖22 ≥ βMσ2

)
= P

(
exp

(
λ ‖x‖22

)
≥ exp

(
λβMσ2

))

≤ E
(
exp

(
λ ‖x‖22

))

exp (λβMσ2)
=

∏M
i=1 E (exp (λX2

i ))

exp (λβMσ2)
.(A.90)
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From Lemma 5 we have

E
(
exp

(
λX2

i

))
= E

(
exp

(
2c2λX2

i /2c
2
))
≤ 1√

1− 2c2λ
. (A.91)

Therefore,
M∏

i=1

E
(
exp

(
λX2

i

))
≤
(

1

1− 2c2λ

)M/2

(A.92)

and hence

P
(
‖x‖22 ≥ βMσ2

)
≤
(
exp (−2λβσ2)

1− 2c2λ

)M/2

. (A.93)

The optimal λ, which can be found by setting the derivative to zero and
solving for λ, is

λ =
βσ2 − c2

2c2σ2 (1 + β)
. (A.94)

Substituting the optimal λ in (A.93) gives

P
(
‖x‖22 ≥ βMσ2

)
≤
(

β
σ2

c2
exp

(

1− β
σ2

c2

))M/2

. (A.95)

Similarly for α we have

P
(
‖x‖22 ≥ αMσ2

)
≤
(

α
σ2

c2
exp

(

1− α
σ2

c2

))M/2

. (A.96)

If we define

µ = max

(

4, 2
(βmaxσ

2/c− 1)
2

(βmaxσ2/c− 1)− log (βmaxσ2/c)

)

(A.97)

then we have that for any γ ∈ [0, βmaxσ
2/c] we have the bound

log (γ) ≤ (γ − 1)− 2 (γ − 1)2

µ
, (A.98)

and therefore

γ ≤ exp

(

(γ − 1)− 2 (γ − 1)2

µ

)

. (A.99)

By setting γ = ασ2/c2, we can obtain (A.87). In the same way, setting
γ = βσ2/c2 gives (A.88).
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Corollary 1 ([16, Corollary 7.1]). Suppose that x = [X1, X2, . . . , XN ], where
each Xi is i.i.d. with Xi ∼ SSub (σ2). Then

E
(
‖x‖22

)
= Mσ2 (A.100)

and for any ǫ > 0,

P
(
| ‖x‖22 −Mσ2 |≥ ǫMσ2

)
≤ 2 exp

(

−Mǫ2

µ

)

(A.101)

with µ = 2/ (1− log (2)) ≈ 6.52.

Proof. Since Xi ∼ SSub (σ2), we have that Xi ∼ Sub (σ2) and E (X2
i ) = σ2

and by setting α = 1 − ǫ and β = 1 + ǫ in Theorem 9 we obtain (A.101)
with βmax = 2. By substituting c2 = σ2 and βmax = 2 in (A.97) we obtain
µ = 2/ (1− log (2)).

Corollary 2 ([16, Corollary 7.2]). Suppose that Φ ∈ RM×N whose modulus
entries φij are i.i.d. with φij ∼ SSub (1/M) . Let y = Φx for any x ∈ RN .
Then for any ǫ > 0,

E
(
‖y‖22

)
= ‖x‖22 (A.102)

and

P
(∣
∣‖y‖22 − ‖x‖22

∣
∣ ≥ ǫ ‖x‖22

)
≤ 2 exp

(

−Mǫ2

µ

)

(A.103)

with µ = 2/ (1− log (2)) ≈ 6.52.

Proof. Let φi,: be the i-th row of Φ. Then i-th entry of y can be written
as [y]i = 〈φi,:,x〉, and by applying Lemma 3 we have Yi ∼ SSub

(
‖x‖22 /M

)
.

The result follows by using Corollary 1 for y = [Y1, Y2, . . . , YN ].

Lemma 6 ([16, Lemma 7.5]). Let ǫ ∈ (0, 1). There exists a set of points Q
such that |Q| ≤ (3/ǫ)K and for any x ∈ RK with ‖x‖2 ≤ 1 there is a point
q ∈ Q which satisfies ‖x− q‖2 ≤ ǫ.

Proof. We start adding arbitrary qi ∈ R
K to Q such that i = 1, 2, . . . , l

,‖qi‖2 ≤ 1 and ‖qi − qj‖2 > ǫ for all i > j until we can add no more points
(qi>l) to Q, where l = |Q|. Therefore, for any x ∈ RK with ‖x‖2 ≤ 1 there
is a q ∈ Q that satisfies ‖x− q‖2 ≤ ǫ. By centering balls of radius ǫ/2 at
each qi the balls are disjoint and within a ball of radius 1 + ǫ/2. If BK (r)
denotes a ball of radius r in RK , then

|Q|Vol
(
BK (ǫ/2)

)
≤ Vol

(
BK (1 + ǫ/2)

)
(A.104)
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and therefore

|Q| ≤ Vol
(
BK (1 + ǫ/2)

)

Vol (BK (ǫ/2))
=

(1 + ǫ/2)K

(ǫ/2)K
≤ (3/ǫ)K . (A.105)

Now, we are ready to prove Theorem 4.

Proof. Without loosing generality it is enough to prove (2.5) in the case
‖x‖2 = 1. We define XT as s-dimensional subspace of Φ[:,T ], T ⊂ [N ] and
|T | = s. We choose finite set of points QT such that QT ⊆ XT , ‖q‖2 ≤ 1 for
all q ∈ QT , and for all x ∈ QT with ‖x‖2 ≤ 1 we have

min
q∈QT

‖x− q‖2 ≤ δs/14. (A.106)

Here, we have chosen particular value δs/14 which makes the proof easier,
however, it can be replaced by any smaller arbitrary value. From Lemma 6,
we know that |QT | ≤ (42/δs)

s. By collecting all points QT with possible sets
of T together we obtain:

Q =
⋃

T :|T |=s

QT . (A.107)

There are
(
N
s

)
possible index sets T . From stirling’s approximation we have

s! ≈
√
2πs

(
s
e

)s
, and we have
(
N

s

)

≤ N s

s!
≈ 1√

2πs

(
eN

s

)s

<

(
eN

s

)s

. (A.108)

Therefore,
|Q| ≤ (42eN/δss)

s . (A.109)

From Corollary 1 we have (A.101). Hence

P
(∣
∣‖ Φq ‖22 − ‖ q ‖22

∣
∣ ≥ ǫ ‖ q ‖22

)
≤ 2 exp

(

−Mǫ2

µ

)

, for allq ∈ QT .

(A.110)
By applying (A.109) we obtain

P
(∣
∣‖ Φq ‖22 − ‖ q ‖22

∣
∣ ≥ ǫ ‖ q ‖22

)
≤ 2

(
42eN

δss

)s

exp

(

−Mǫ2

µ

)

, for all q ∈ Q

(A.111)

P
(∣
∣‖ Φq ‖22 − ‖ q ‖22

∣
∣ ≤ ǫ ‖ q ‖22

)
> 1−2

(
42eN

δss

)s

exp

(

−Mǫ2

µ

)

, for all q ∈ Q.

(A.112)
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Setting ǫ = δs/
√
2 in (A.112) gives

(

1− δs/
√
2
)

‖q‖22 ≤ ‖Φq‖22 ≤
(

1 + δs/
√
2
)

‖q‖22 , for allq ∈ Q (A.113)

with probability greater than

1− 2 (42eN/δss)
s e−Mδ2s/2µ. (A.114)

We observe that if M satisfies (2.10) then

log

(
42eN

δss

)s

≤ s log

(
N

s

)

log

(
42e

δs

)

≤ M log (42e/δs)

α
(A.115)

and (A.114) will change to 1− 2e−βM as desired.
Now we define θ as the smallest number such that

‖Φx‖2 ≤
√
1 + θ ‖x‖2 for all x ∈ XT , ‖x‖2 ≤ 1. (A.116)

If we show that θ ≤ δs then the proof is completed. We pick q ∈ QT ⊂ XT

and for any x ∈ XT we have ‖x− q‖2 ≤ δs/14. From (A.113) and (A.116)
we have that

‖Φx‖2 ≤ ‖Φq‖2 + ‖Φ(x− q)‖2 ≤
√

1 + δs/
√
2 + δs/14

√
1 + θ. (A.117)

By definition θ is the smallest number for which (A.116) holds, therefore,

√
1 + θ ≤

√

1 + δs/
√
2 + δs/14

√
1 + θ (A.118)

and

√
1 + θ ≤

√

1 + δs/
√
2

1− δs/14
≤
√

1 + δs. (A.119)

We have proved the upper inequality in (2.5). Similarly, for lower bound we
have

‖Φx‖2 ≥ ‖Φq‖2 − ‖Φ(q− x)‖2 ≥
√

1− δs/
√
2− δs/14

√
1− θ ≥

√

1− δs,
(A.120)

which completes the proof.

58



Appendix B
A model for the measurement noise in

1-bit compressive sensing

In the case that there is measurement noise we have

sign (Φx + n) = b̃m, (B.1)

where n ∈ RM is the measurement noise and [n]i ∼ N (0, σ2
n) for all i. First,

we find the distribution of [Φx]i. Each element of Φx is the summation of s
multiplication pairs of φi,j ∼ N

(
0, σ2

φ

)
and [x]j ∼ N (0, σ2

x). In [26, section
6.A], the distribution of multiplication of two independent s dimension Gaus-
sian vectors has been calculated. Recall that s is the sparsity of x, σ2

x = 1
and σ2

φ = 1/M where M is the number of rows in Φ. We are looking for

the probability of the bit flip in each bit of b̃m which is denoted by Pfm.
Therefore,

Pfm = P (sign ([Φx + n]i) 6= sign ([Φx]i)) . (B.2)

We assume that [n]i = n, [Φx]i = θ and θ > 0 then we have

Pfm = 2

∫ ∞

0

pN (n < −θ) pΘ (θ) dθ

= 2

∫ ∞

0

(

1−Q

(
θ

σ2
n

))

pΘ (θ) dθ, (B.3)

where pΘ (θ) is shown in [26, section 6.A]. Intuitively, when σ2
n = 0, Pfm = 0

and as σ2
n tends to infinity Pfm converges to 1

2
.
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