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Abstract
In the development of therapeutics, analysis of differentially abundant proteins (DAPs)
using mass spectrometry (MS) is essential. However, MS-based data suffers from high
rates of missing values that severely complicate downstream analyses. Various imputation
methods have been proposed to deal with themissing data, but there is no standard protocol
for selecting a method. Here we have comprehensively evaluated common methods, to
develop a best practice for imputation to inform downstream statistical analyses of MS
proteomics data. We compared the performance of five imputation methods in their
application to values missing completely at random and missing not at random introduced
into data from the Cancer Cell Line Encyclopedia, and data simulated from a multivariate
mixed-effects model respectively. Performance was measured in true positive rate (TPR)
and false positive (FPR) of detected DAPs (%adj ≤ 0.05, est. log2 fold-change > 1, and an
accuracy metric [&] <103). The FPR was below 5% for all methods under all conditions
tested. If less than 10% of the data was missing, imputation did not increase the TPR
compared to removing missing values. For 30% missingness irrespective of data or
missingness type, the TPR was below 80%; and for 50% missingness the TPR was 25-
75% depending on imputation method. Since the FPR was controlled, no artefacts were
introduced by any methods under any circumstances. For large proportions of missingness
(50%), we recommend imputation with Principal Component Analysis imputation if the
sample size is large (= > 50). With small sample sizes (= = 10) or small proportions of
missingness (10%), imputation is advised against.

Keywords: imputation, missing data, mass spectrometry, multivariate mixed-effects
models, differential abundance, proteomics.
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Glossary

comparative statistical analysis analyses where two or more datasets are compared to
determine their (in)consistency with one another.

complete data a dataset with no missing values.

differentially abundant proteins proteins that are significantly different in their abun-
dance in two groups of samples.

ignorable missingness a property where inference based on approaches that ignore the
missingness mechanism do not introduce bias.

imputation the process of substituting missing values with (imputed) values inferred
from available information in the data.

incomplete data a dataset with some values missing.

mass spectrometry a technique used to quantitate proteins or other metabolites.
missing at random missingness mechanism that depends only on observed data.
missing completely at random missingness mechanism that does not depend on values

in the data.
missing not at random missingness mechanism that depends on unobserved values.
missingness the manner in which data are missing from a dataset.
missingness mechanism the underlying probability distribution of missing values.

protein abundance the quantity or amount of a protein in a given sample.
proteomics the scientific field of large-scale determination of gene and cellular function

directly at protein level.
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1
Introduction

Proteomics is the scientific field of large-scale determination of gene and cellular function
directly at protein level. It covers the exploration of protein composition, structure, and
activity by identification and quantitation of proteins. Mass spectrometry (MS) is a widely
used technique in quantitative proteomics, offering advantages such as high throughput
and coverage. Its ability to rapidly quantitate and determine the abundance of thousands
of proteins has made it one of the most important tools in proteomics [1].

MS data is commonly used for comparison of protein abundance profiles between treat-
ment groups. In such studies, comparative statistical analysis is carried out with the
aim to identify proteins that have significantly different relative abundance in the two
treatment groups, so called differentially abundant proteins (DAPs). In the development
of therapeutics that degrade specific target proteins, this type of MS-based studies plays
an essential role. In the early stages of the drug development pipeline, crucial steps are
validation of target engagement and profiling of any toxicity related to off-target effects
of the drug candidate. Misclassification at this stage may have large effects downstream
in the pipeline. In later stages of the drug development, it is important to determine that
therapeutics show specific degradation of the target protein and to quantify any-off target
effects in response to treatment [2].

One crucial problem associated with MS-based data is the high proportion of missing
values, where the abundances of some proteins in some samples are not detected. The
missing data may have a huge impact on the ability to detect DAPs, as simply ignoring or
removing variables withmissing values severely decrease the statistical power. In addition,
the missing values may bias the downstream analysis. In order to understand whether a
compound treatment has been successful, it is therefore important to identify and handle
any existing missingness in the data.

Currently there is no standard protocol for pre-processing of MS data in order to control
for the effects of missing values [3, 4]. Several imputation methods have been suggested,
where the missing values are substituted with values inferred from available data. A
number imputation methods have been evaluated in terms of imputation accuracy in MS
data [5, 6, 7], but to our knowledge there is no comprehensive evaluation on how these
methods affect the ability to detect DAPs.
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1. Introduction

1.1 Aim & objectives
The aim of this thesis is to evaluate the performance of common imputation methods in
terms of the ability to detect differentially abundant proteins in MS data. The evaluation
is intended to establish suggestions on how missing values should be tackled in future
comparative MS-based studies, considering the type of missingness, the sample size and
the proportion of missing data.

Specifically, the issues that are investigated are:

- How do the different types of missing values affect the subsequent analysis of MS-
based proteomics data?

- Do currently used imputation methods adequately address the effect of missing data
on subsequent data analysis?

- In what ways do sample size, type of missingness and amount of missing data affect
the performance of the imputation methods?

- Given these findings, can suggestions be established regarding under what circum-
stances and by which method imputation should be performed?

To answer these questions, comparative proteomics analyses were conducted, using pub-
licly available proteomics data as well as simulated data. Missing values were introduced
at different proportions by two different missingness mechanisms, allowing for compar-
ison of different types of missingness. The missing entries were then imputed using a
set of imputation strategies. Finally, comparative differential analyses were conducted for
complete, incomplete and imputed data and the performance for each distinct dataset was
evaluated.

1.2 Scope
In this thesis we have limited the evaluation on strategies for dealing with missing data to
imputation. Other existing strategies, such as using a zero-inflated distribution to model
the abundance data, have not been considered. We have selected five commonly used
imputation methods that have been shown to yield high imputation accuracy (i.e. low root
mean squared error between imputed values and unobserved value) and comprehensively
evaluate the effect these methods have on the ability to detect DAPs [5, 6, 7]. The selected
methods are; k-Nearest Neighbors (kNN) imputation, Random Forest (RF) imputation,
Multivariate Imputation by Chained Equations (MICE), Penalized Expectation Maximum
(PEM) imputation and Principal Component Analysis (PCA) imputation.
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2
Background

2.1 Mass spectrometry-based proteomics
Mass spectrometry-based proteomics experiments begin with protein extraction from tis-
sues or cells cultures. The extracted proteins are then digested into peptides by enzymatic-
or chemical reactions. Mixtures of peptides may then be separated by liquid chromatog-
raphy (LC) in order to ensure that only a small proportion of peptides in a sample are
introduced to the mass spectrometer at a given time. This allows for greater precision
in the detection of peptides [8]. By definition, the mass spectrometer consists of three
main parts; an ion source, a mass analyzer, and a detector (Figure 2.1). For each part
there are several existing methods using various techniques. In the first step, peptides are
ionized and evaporated by the ion source. The peptide-ions are then sorted and separated
according to their mass-to-charge (m/z) ratio by the mass analyzer. The detector registers
the ion-intensity at each m/z-ratio. The output of MS-experiments is reported as m/z-
spectra, with peaks at m/z-ratios corresponding to peptides or fragments in the sample
under analysis. From peptide intensities the relative protein abundances can be derived,
by pairing peptides to their origin protein. Finally, a dataset of relative protein abundances
for the sample(s) under analysis is obtained. Usually the number of proteins are several
thousand [1].

Figure 2.1: Illustration of the main steps of LC-MS experiments. Figure created with BioRen-
der.com.

To increase detection accuracy, mass analyzers are often coupled together in tandem
mass spectrometry (MS/MS). In such a system, the peptide-ions from one mass analyzer
are selected, fragmented and introduced to a second mass spectrometer. The second
mass analyzer in turn separates and sorts the ion-fragments, before they are detected. The

3



2. Background

additional fragmentation step increases the ability to distinguish ions that have very similar
m/z-ratios in stand-alone mass spectrometers [1].

The number of samples under analysis for each experimental run ofMSdepends onwhether
the experiment is label-free or labeled. In a label-free setup, each sample corresponding
to an individual or tissue is analyzed in a separate MS experiment. Several samples can
be combined into one dataset, but they are not analyzed simultaneously. For labeled
experiments on the other hand, it is possible to run multiple samples simultaneously in
a batch-processed manner. The labeling is carried out by attaching isobaric mass tags
to the peptides. The tags are molecules with equal mass, and each sample is supplied
with its own chemically distinct tag. Thereby samples can be distinguished from each
other, even when mixed together. With this technique, one experimental batch usually
includes 4-11 samples, which greatly improves throughput of the experiments. However,
batch-processing also results in considerable technical variations in the output data (i.e.
batch-effects) that should be accounted for in the analysis (Figure 2.2) [9].

Figure 2.2: Illustration of sample preparation for isobaric labeled and label-free MS experiments.
Figure created with BioRender.com.

Although the many advantages of mass spectrometry, MS-based data often suffers from a
large proportion of missing values. The missing values arise from many events, including
biochemical, analytical, and bioinformatical processes. For example, missing values
can be generated due to suboptimal sample preparation, possibly occurring both in the
protein extraction and in the LC-step. Other technical reasons for missing values are
miscleavage of peptides, incomplete ionization, ion competition and ion suppression.
Also misidentification of peptides and inaccurate detection of m/z-peaks cause missing
values. In addition, missingness occurs in an abundance-dependent manner, where the
mass spectrometer cannot detect abundances below certain thresholds. These missing
values is often referred to as being below the level of quantitation [5, 10]. In labeled
experiments there is also so-called batch-level abundance-dependent missingness, where
the abundance of a protein is often either completely observed or missing for all samples in
a batch [9]. Overall, missing values in MS data occur both in somewhat random patterns
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2. Background

in the overall data, but also in systematic patterns such as left-censoring of values below
the limit of quantitation or batch-level abundance-dependent missingness.

In label-free LC-MS/MS experiments, the frequency of missing values generally ranges
from 10% to 50% of the overall data, whereas the proportion of proteins that exhibit at least
one missing value can be as high as 70-90% [10]. In labeled experiments, the proportion
of missing data is usually low for a single batch of samples (∼2%), but as data generated
from multiple batches are combined the amount inflates. This is a consequence of the
batch-level missingness and the fact that different proteins may be missing in different
batches. For multi-batched experiments the amount of missing values is usually around
20% [11, 12].

The high amount of missing values and the many different events causing them severely
complicates any downstream analysis of MS data. In general, substantial amounts of
missing values in any dataset must be handled by statistical methods before valid and
accurate analysis can be carried out [13]. The tackling of missing data in MS-based
proteomics data is however not yet standardized and remains a challenge [5, 9, 10].

2.2 Concepts of missing data
Most statistical methods for data analysis rely on assumptions about the data and its
representativeness of the overall population. When data are incomplete, as it often is for
MS-based datasets, analysis results and interpretations may not be valid. In order to avoid
this problem, it is crucial to understand the mechanisms that have generated missing data.
Rubin (1976) formalized a framework for classifyingmechanisms that lead tomissingness,
where the effects of different mechanisms on downstream inference are considered. The
framework was refined by Little & Rubin (1987), establishing the foundations of analysis
with missing data [13, 14]. In this section, concepts of this framework that are relevant
for missing values in MS-based proteomics data are presented.

To establish some concepts of missing values, let Y = (H8 9 ) denote a complete = × ?
data matrix without any missing values, where = denotes the number of samples and ?
denotes the number of proteins. Let H8 = (H81, . . . , H8?) denote the abundance of proteins
.1, . . . , .? in the 8th sample. Introducing missing data, let M = (<8 9 ) be a matrix with
the same dimension as Y, such that <8 9 = 1 if the abundance of the 9 th protein in the
8th sample is missing, and <8 9 = 0 otherwise. Thereby M is acting as a missingness
indicator matrix for the abundance data Y. Further, let Yobs and Ymis denote the observed
and missing elements of the dataset respectively. The missingness mechanism is defined
as the conditional distribution of M given Y, 5 (M|Y, q), for some unknown parameters
q associated with the underlying mechanism of missingness. The distribution describes
the relationships between the data and the probability of missingness; information that is
important when analyzing any data set with missing values [13].
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2. Background

2.2.1 Types of missingness mechanisms
According to Rubin (1976), missingness mechanisms can be categorized into three differ-
ent types: missing completely at random (MCAR), missing at random (MAR) andmissing
not at random (MNAR) [14]. When the mechanism is MCAR, the probability of a value
being missing does not depend on any values of the data matrix Y, neither observed (Yobs)
nor missing (Ymis). Any observation of any variable is as likely to be missing as any other,
and the conditional distribution of M does not depend on Y. That is,

5 (M|Y, q) = 5 (M|q), (2.1)

holds for all possible datasets Y and missingness parameters q. In the case of MAR, the
missingness mechanism does depend on values of the data, though only on the observed
parts and not on the components that are missing. Formally,

5 (M|Y, q) = 5 (M|Yobs, q), (2.2)

holds for all missing values Ymis and missingness parameters q. When the missing-data
mechanism is MNAR, the conditional distribution

5 (M|Y, q), (2.3)

does not simplify, as it depends on both observed andmissing values of the data [13, 14, 15].
A summary of the three types of missingness is shown in Figure 2.3.

Understanding the type of missingness mechanism underlying the incompleteness of the
data is important for handling the remaining data correctly. If the missing values are
MCAR, the observed values are likely still representative of the population, seeing that
the observed values are then essentially a random subsample of all values. In contrast, if
the missingness is systematic, i.e. MAR or MNAR, inference and analysis may be biased
[13]. MS data exhibit both random and systematic missingness patterns.

Figure 2.3: A summary of three types of missingness.

2.2.2 Ignorable missingness
One important distinction between MCAR, MAR and MNAR is the conditions under
which the parameters of interest, \, have valid and unbiased estimates. For data with

6



2. Background

missing values, valid estimation of \ may or may not require knowing the parameters of
the missingness mechanism q. However, since the reason for missing values is rarely
fully known, it is often impossible to estimate q with any certainty. A context where q
is not needed for valid estimation of \ is therefore desirable [13, 16]. In this case, the
missingness mechanism is ignorable.

The sufficient conditions of ignorable missingness mechanisms for likelihood inference
(e.g. maximum likelihood estimation) are:

(i) the missing data are MAR; and
(ii) the parameters \ and q are distinct, in the sense that the joint parameter space of
(q, \) is the product of the parameter space of \ and q.

The first condition implies that the missing data must be at least MAR, and thus the
condition is fulfilled also when data is MCAR, i.e. given (2.1) holds, then by implication
(2.2) holds aswell. The second condition implies that knowing \ provides little information
about q and vice versa. Generally, the first condition is considered the most important,
since if the data is MAR but distinctness does not hold, inference based on ignorable
likelihood is still valid from the frequency perspective, but it is not fully efficient. For
data that are fulfilling these conditions, valid maximum likelihood estimates for \ can be
obtained based on a likelihood where the missingness mechanism is ignored ; (\ |Yobs),
rather than on the full likelihood ; (\, q|Yobs,M). This considerably simplifies the inference
(for derivation of these conditions, see Appendix A) [13]. Notably, ignorable missingness
only implies that inference on \ without knowing q is valid; it does not imply that that the
missing data itself can be disregarded without introducing bias [13, 14].

2.2.3 Simulating missingness in MS data
Motivated by the fact that missing values in mass spectrometry-based data may be gener-
ated by different underlyingmechanisms, we simulate data both by random and abundance-
dependent mechanisms. Similar to previous sections, let Y be a = × ? matrix of protein
abundances and let the matrix M indicate which elements of Y are missing. It is rea-
sonable to assume all samples of the mass spectrometry experiment are independent,
implying independent rows (H8, <8), 8 = 1, . . . , =. We may also assume that given the data
Y and corresponding covariate data C, the missingness of a protein is independent of the
missingness, abundance and covariates of other proteins. The missingness mechanism
can then be written as

%(M|Y,C) =
∏
8 9

%(<8 9 = 1|Y,C) =
∏
8 9

%(<8 9 = 1|H8 9 , c8 9 ),

where c8 9 is a vector of covariates associated with H8 9 , if there are any. It has been proposed
to model the missingness mechanisms %(<8 9 = 1|H8 9 , c8 9 ) seen in label-free MS data by a
bounded exponential function [17]:

6(H8 9 ; c8 9 , q1, q2, q3) =  min{exp(−q1 − q2H8 9 − q)3 c8 9 ), 1}, (2.4)

where the parameters q1, q2, q3 control the missingness mechanism and  is a constant
to ensure reasonable probabilities. Specifically, when q2 = 0, the probability function is
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independent of the abundance of the missing element and missing values are MAR [13].
For MS-based data, it is generally assumed all MAR values are also MCAR, such that
q3 = 0 and there are no covariates c8 9 considered that affect the missingness [8]. For
q2 > 0 the probability function monotonically decreases with the abundance value of
H8 9 , which is consistent with the abundance-dependent MNAR mechanism seen in mass
spectrometry data [17]. In this case, the missingness is non-ignorable.

To model the batch-level abundance-dependent missingness present in labeled MS exper-
iments (see Section 2.1), the mechanism should take into account that proteins tend to be
completely observed or missing in all samples of a batch. In this case, the probability of
missing values is dependent on the proteins’ average abundance in the batch, and it may
be appropriate to simulate missingness in a different manner [18]. In this thesis, the scope
is limited to missingness mechanisms associated with label-free experiments modeled by
(2.4).

2.3 Complete-case analysis
To demonstrate the effect that missing values may have on statistical analysis, consider
a normally distributed variable . with = observations. The variable could for example
represent the abundance measurements of a single protein in = samples. Now assume
some proportion of . is missing and we wish to make inference about the mean. Let
. = (.obs, .mis) denote observed and missing cases and let =obs < = denote the number
of samples where . is observed. In order proceed with inference, we must first decide on
how to tackle the missing data.

One method to proceed is to conduct the same analysis for the incomplete data as intended
for the complete data, that is, to perform complete-case analysis. This would imply
estimating the mean of . by the sample mean of observed cases .obs, using only the
reduced sample size =obs. The standard error is then B/√=obs, where B is the sample
standard deviation of .obs.

If the missing data are MCAR, the set of observed values is a random subsample of all
values. Consequently, complete-case analysis would indeed be valid and unbiased for data
with MCAR missingness, though with reduced power as a consequence of the reduced
sample size [13]. In Figure 2.4, the sample distribution of the the complete data (Figure
2.4a) is very similar to the distribution of the dataset with MCAR values (Figure 2.4b),
even though 50% of data are actually missing in the second case. With complete-case
analysis, the mean estimates are approximately identical.

If the missing data are MNAR, the set of observed values is not generated from a random
process and analysis based on the observed data will generally be biased [13]. Consider
for example a left-censored dataset, where values are missing from the low-valued part
(left tail) of the data. Complete-case analysis in this context results in upward biased
estimates of the mean. However, the amount of biased largely depends on the censoring
point (Figure 2.4). With a censoring point that is removing only a minor proportion of the
data, the missing values have relatively small effects on the mean estimate bias (Figure
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2.4c). In contrast, a strict censoring point means that the difference between observed and
missing cases is large, leading to greater estimation bias (Figure 2.4d).

Complete-case analysis is fully valid only for MCAR data, whereas for MNAR or MAR
data it results in biased estimates. The approach may however be justified provided that the
bias is minimal. Factors that affect the degree of bias are the proportion of missing data,
themissingness pattern, the extent to which complete andmissing cases differ in value, and
the parameters of interest. On that account, it is difficult to determine when complete-case
analysis with systematic missingness is justified [13]. In MS-based proteomics data, all
three types of missingness are usually present. Consequently, complete-case analysis of
MS data is under most circumstances not recommended [5].

(a) No missing values.

(b) 50% MCAR values.

(c) Values below −4 censored (5% MNAR values).

(d) Values below 0 censored (50% MNAR values).

Figure 2.4: Demonstration of parameter estimation bias with different types of missing data.
Dataset simulated from N(0, 2.5), = = 3000.

2.4 Imputation of missing values
A way to avoid the bias and reduction in statistical power associated with complete-
case analysis of incomplete data is to impute the missing values [6]. Imputation is the
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act of substituting missing values with values inferred from available information in the
observed data. A synthetic complete dataset is created which can be analyzed using
standard methods (Figure 2.5) [15].

There are a variety of imputation methods available that can be grouped into four cat-
egories: (i) single-value approaches; (ii) local-similarity approaches; (iii) ensemble ap-
proaches; and (iv) global-structure approaches. The choice of which category and method
of imputation to use largely depends on the structure of the data but also the type of
subsequent analysis.

Several of the available imputation methods have been suggested for dealing with the
problem of missing values in MS-based proteomics data, but no formal framework has
been established. A number of evaluations have been done in terms of imputation accuracy
[5, 6, 7], but to our knowledge there has been no comprehensive comparison that focuses
on the performance of imputation methods in terms of the ability to detect differentially
abundant proteins (DAPs). We evaluated this aspect for five methods that generally have
high imputation accuracy: k-Nearest Neighbors (kNN) imputation, Random Forest (RF)
imputation, Multiple Imputation By Chained Equations (MICE), Penalized Expectation
Maximum (PEM) imputation and Principal Component Analysis (PCA) imputation.

Figure 2.5: Illustration of imputation. Figure created with Biorender.com.

2.4.1 Single-value approaches
Single-value approaches for imputation replace missing values of a variable with a fixed
value, such as the mean or median. Although simple in their methodology, these ap-
proaches will almost always underestimate the sample variance, yielding overestimated
confidence levels in parameter estimation [15]. No single-value approach has been eval-
uated in this thesis, as it has been shown they exhibit poor imputation accuracy in MS
contexts [5, 6].

2.4.2 Local-similarity approaches
Local-similarity approaches leverage information that is locally observed in clusters of the
data in order to build the imputation model. In omics studies, these imputation methods
are often applied to transposed data, i.e., a ? × = matrix where proteins are in rows and
samples in columns [6, 19]. By transposing the data, the local-similarity approaches
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identify small clusters of proteins with similar abundance profiles; rather than clusters
of similar samples. Under the assumption that such protein-clusters exist and are evenly
distributed, the use of local structures may increase imputation accuracy [20, 21]. Due
to the nature of MS data, we usually have datasets where ? � = holds; the number of
proteins ? are often many thousand, whereas the number of samples = are rarely more
than a hundred. By transposing the data we also avoid problems associated with high-
dimensionality for local-similarity approaches [22]. An example of a local-similarity
approach is k-Nearest Neighbors imputation.

2.4.2.1 k-Nearest Neighbors (kNN) imputation

k-Nearest Neighbors (kNN) imputation is a method originally developed for microarray
data. It leverages the correlation structure of the data by selecting a set of proteins with
abundance profiles that are similar to that of the protein of interest, in order to impute its
missing values. For each protein . 9 , 9 ∈ (1, . . . , ?) with a missing value, the algorithm
defines the neighborhood of . 9 as the : nearest proteins in Euclidean distance, confined
to the samples for which the protein . 9 is not missing. Missing values of . 9 are then
imputed by the average abundance of proteins within its neighborhood [19, 23]. For
optimal performance : should be tuned based on a training set of data, however it has been
suggested that the method is insensitive to the value of : within the range of 10-20 [19].

In a microarray setting, kNN imputation is very commonly used and the imputation ac-
curacy has been well established. The major advantage of this method is the ability to
successfully estimate missing values for genes (proteins) that are expressed in small clus-
ters. The clusters do not themselves contribute significantly to the overall data structure,
so other methods that rely on global parameters might not be as accurate in such cases
[19]. However, this is very much dependent on the structure of the data and it is unclear
if the same advantages apply to MS-based datasets.

2.4.3 Global-structure approaches
Global-structure approaches utilize the overall structure of the entire data to build the
imputation model. These approaches are less flexible than the local-similarity ones, but
can have the advantage of making more efficient use of the data and avoid over-fitting to
observed cases [22]. For example, there are methods that perform dimension reduction
in order to obtain a set of variables that capture a large amount of the variability in the
overall data, to use for reconstructingmissing values [6]. Penalized ExpectationMaximum
imputation and Principal Component Analysis imputation are examples of global-structure
techniques.

2.4.3.1 Penalized Expectation Maximum (PEM) imputation

Penalized Expectation Maximum (PEM) imputation is an maximum penalized likelihood
estimate (MPLE) approach to jointly estimate the mean abundances of proteins and the
protein covariancematrix. It works bymaximizing the joint likelihood of the observed data
and the missingness pattern, assuming the data follows a multivariate normal distribution.
It employs an Inverse-Wishart penalty on likelihood of the covariance matrix estimate
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to ensure non-singularity. This form of penalty also allows for computational efficiency
when calculating the MPLEs [17].

Expectation maximum algorithms have the advantage of producing unbiased estimates
of parameters for both MCAR and MAR missing data, whereas for many other methods
this may only be the case when missing values are MCAR [13]. The assumption of
multivariate normally distributed data has the benefit of estimating the correlation matrix
for the proteins. However, if those relationships are not linear, this could be a disadvantage.
Thus, setting the penalty parameters in PEM can be challenging, but the authors suggest
that the algorithm is robust to the choice of penalty parameters [24].

2.4.3.2 Principal Component Analysis (PCA) imputation

Principal Component Analysis (PCA) imputation works by the use of dimensionality
reduction with PCA. The goal of PCA is to find an orthogonal coordinate system of
principal components such that the variance of the data is maximized in each direction.
By projection onto the first @ < ? principal components, data can be reconstructed in a
lower-dimensional space while still maintaining a certain amount of variance explained.

When performing PCA on incomplete datasets, there is no explicit solution to the maxi-
mization problem and an iterative approach must be adopted. The steps of the algorithm
are: (1) initializing all missing values by e.g. mean values; (2) performing PCA on the
completed data set to estimate the reconstruction formula with @ principal components; (3)
imputing missing values with a regularized version of the reconstruction formula. Steps
(2) and (3) are repeated until the model convergences. The regularization step is used in
order to avoid overfitting the model. The number of principal components, @, is selected
by cross-validation [25].

2.4.4 Ensemble approaches
Similar to local-similarity approaches, the ensemble approaches utilize local structures
in the data; but instead of basing imputation on one model, these methods produce
and combine multiple models [6]. The combining of models can be done by bootstrap
aggregation, as in Random Forest imputation, or by multiple imputation, as often done
with Multivariate Imputation by Chained Equations.

2.4.4.1 Random Forest (RF) imputation

Random Forest (RF) imputation is based upon the ensemble machine learning algorithm
with the same name. For each protein . 9 with a missing value, the algorithm builds a
random forest with. 9 as the output variable and all other proteins as input. Samples where
. 9 is observed are used as the training set, and missing values are imputed by predictions
from the model. The random forest is built by creating an ensemble of decision trees
using bootstrap sampling. The decision trees are de-correlated by a random sampling
procedure and the final prediction model is the aggregation of all bootstrap trees. The RF
algorithm predicts values with both low variance and low bias [22, 26]. An additional
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advantage is that the imputation algorithm is non-parametric and makes no assumptions
on the distributional aspects of the data [26].

2.4.4.2 Multivariate Imputation by Chained Equations (MICE)

Multivariate Imputation by Chained Equations (MICE) imputes missing values through an
iterative series of regression models. The algorithm is initialized with a simple imputation
method, e.g. mean value imputation. Then for one protein . 9 with missing elements at
a time, . 9 is regressed upon all or some of the other proteins. Missing values of protein
. 9 are imputed by predictions from the regression. The same procedure is repeated for
all proteins with missing values. When a protein is acting as independent variable in
any regression model, both observed and imputed values are used. In each iteration, the
algorithm subsequently updates the imputed values, until a stopping criteria is reached
[27]. In many applications, the stopping criteria is simply a fixed number of iterations.

The regression model used in MICE can be selected based on assumptions in the data,
with examples being predictive mean matching, random forest or linear regression. In this
thesis, we have used an algorithm that has been internally developed by Steven Novick,
received through personal communication. The algorithm fits a Tobit linear regression
model with left- and right-censoring in order to account for the values below the limit of
quantitation seen in MS-data.

2.5 Datasets

2.5.1 Real quantitative MS dataset
By using a real dataset in the performance evaluation of the imputationmethods, we ensure
that the true complexity of MS-based data is considered. MS data is generally noisy
and contains high levels of both biological and technical variations, as well as complex
correlations from protein pathways and co-expression networks. For an imputationmethod
to be used for MS data, is essential that it adequately considers these aspects.

For this reason, we conducted performance evaluations using the publicly available Cancer
Cell Line Encyclopedia (CCLE) for quantitative protein expression profiling [28]. The
CCLE dataset consists of protein abundances of samples corresponding to 375 cancer cell
lines extracted from 22 lineages, with over 12,000 proteins identified over all samples.
The experiments were batch-processed with 10-plex tandem mass tag (TMT), such that
each batch included one reference channel and nine biological samples. The data has
been normalized and batch-effects have been corrected for by the creators of the data [28].
For the analysis and evaluation of imputation methods, two cell lineages were selected to
represent treatment groups: cell lines from skin- and lung tissue. These groups consisted
of 33 and 77 samples respectively. In this original set, 12,743 proteins were identified with
approximately 28% of values missing overall. To have a complete dataset for evaluation,
all proteins with at least one missing value were removed, leaving 5270 proteins observed
in all 110 samples.
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2.5.2 Simulating MS data from a multivariate mixed-effects model
In addition to the evaluations with the real CCLE data, we conducted evaluations with
simulated data. In order to simulatemass spectrometry-based data, we adopt amultivariate
linear mixed-effects model [9]. In this case, the set of true DAPs is known from the model
that generated the data. Further, the use of simulated data benefits from more control and
knowledge about the data.

2.5.2.1 Background on multivariate linear mixed-effects models

The multivariate linear mixed-effects model (LMM) is a regression model that is partic-
ularly useful when the data has more than one source of random variability. The model
structure is commonly used for clustered data, hierarchical data, repeated measurements or
longitudinal data. The outcome variables in the LMM are described as a sum of unknown
fixed effects, unknown random effects and noise. That is,

y: = X:"︸︷︷︸
fixed effects

+ Z:b︸︷︷︸
random effects

+ e:︸︷︷︸
noise

where y: is a =: -dimensional vector of outcomes for : = 1, . . . , # and # is the number
of subjects. The matrices X: and Z: are a design matrices relating elements of y: to
the fixed effect " and the random effects b: , respectively. The random effects, b: , are
assumed to be independent and follow a multivariate normal distribution with mean vector
zero and general covariance matrix D. The noise (or error) term captures the variations
not explained by the model. Usually it is assumed that all e: are independent and follow
a multivariate normal distribution with mean vector zero and covariance matrix �: [29].

In many aspects, the main advantage of the LMM is the possibility to combine both fixed
and random effects. Fixed effects often correspond to the effect of interest in a comparative
study. The assumption for fixed effects is that the seen effect sizes are all estimates of
a single true effect. Any variance between effect sizes is assumed attributable to noise
only. For random effects, it is assumed that the seen effect sizes are estimates of their own
true effect, which are distributed around an average. The variance is assumed attributable
to both noise and actual across-subject variance. In other words, random effects are
realizations of a random variable of which we model the distribution [29]. In MS data, the
treatment group-associated differences can be represented by fixed effects, since the true
difference is expected to be the same for all samples. For bach-processed experiments, we
should include also batch-effects to our model. Taking into account that these effects are
not generally expected to be the same for all batches, we model them as random effects.

Another advantage of the multivariate LMM is the use of multivariate outcome variables,
corresponding to the ? proteins under analysis. In contrast to a univariate model, a
multivariate one allows for jointly modeling multiple proteins with some correlation
structure taken into account. Hence, with the multivariate LMM co-expressed proteins
(i.e. proteins within the same expression network or biological pathway) can be simulated
[9].
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2.5.2.2 Simulation model for MS data

Assume we are to simulate data from labeled (batch-processed) MS experiments, for
some number of experimental batches each with some number of biological samples. Let
: = 1, 2, . . . , # denote the experimental batches and let =: denote the number of biological
samples in the :th batch. For each batch : , we simulate a dataset of log2-transformed
abundances with =: samples in rows and ? proteins in columns. Denote this =: × ? matrix
by Y: and denote its vectorization by y: , i.e.,

y: = vec(Y: ) = [.)1: , . . . , .
)
?: ]

) ,

where . 9 : , 9 ∈ (1, . . . , ?) is the vector of abundances measured for the 9 th protein in the
=: samples of the :th batch. With this notation, the complete dataset can be simulated
using a multivariate mixed-effects model for ?-variate outcomes.

y: = X:" + Z:b: + e: , (2.5)

where X: is a known =: ? × @ design matrix, " is a vector of fixed effects, Z: is a known
=: ? × ℎ covariate matrix and b: is a vector of random effects for which b: ∼Nℎ (0,Dℎ×ℎ)
is assumed. The random error vector e: is assumed to follow a multivariate normal
distribution, e: ∼N=: ? (0,� ⊗ Sk), where ⊗ denotes the Kronecker product. The matrix
S: = diag(f2, . . .) is an =: × =: matrix where the diagonal elements f2 are the sample
variances, which are assumed equal for all samples. The ? × ? matrix � captures the
unexplained covariance among the ? response variables.1: , . . . , .?: , that is, the covariance
among proteins [9].

The model in (2.5) can be used to simulate protein-specific effects for the ? outcome
variables, by letting the @ × 1 vector " contain a fixed intercept and the treatment group-
associated effect for each of the ? proteins, such that @ = 2?. Then X: will be a =: ? × 2?
design matrix containing the treatment group indicators and the indicators of proteins.
That is, X: = I? ⊗ X∗

:
, where I? is the identity matrix and X∗

:
is the =: × 2 sample

treatment group indicator matrix shared among the ? proteins. Denote the fixed intercept
and the treatment group associated fixed effect related to the 9 th protein by U0( 9) and U1( 9)
respectively. With this notation, U0( 9) corresponds to the expected baseline abundance of
the 9 th protein and U1( 9) is the expected log-fold change. Proteins simulated with non-zero
U1( 9) are then differentially abundant.

The multivariate nature of the model in (2.5) moreover allows for simulation of co-
expressed proteins by the use of a non-diagonal error covariance matrix �. In this setup,
a non-zero pairwise error covariance Σ 9 9 ′ indicates correlation between the two proteins
9 ≠ 9 ′. Assuming all protein correlations are accounted for by the covariance of error
terms, the random effects in b: are independent among the ? response variables. Thus b: is
one dimensional, containing only the batch effect of the :th batch, such that 1: ∼N(0, �)
and Z: is a vector of 1’s.

Finally, simulated log2-abundances for each of # experiments (batches) can be combined
into one overall = × ? data matrix, where = =

∑#
:=1 =: is the total number of samples

in all experiments. Denote this overall complete data matrix as Y=×? = (H8 9 ), where
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H8 9 represents the log2-abundance of the 9 th protein in the 8th sample of all experiments
combined.

For simplicity, in the conducted simulations we have further assumed that samples are
not batch-processed but rather generated from a label-free experimental setup, thereby
the random effects term can be removed from the model (1: = 0). This simulation
setup could also represent a scenario where all batch effects are properly corrected for
in the data pre-processing. Simulating samples that are not batch-processed implies
=: = 1 for all : = 1, . . . , # , so that = = # . Taking into account the above assumptions
and simplifications, we can rewrite the resulting simulation model for label-free MS
experiments with ? proteins in = samples as:

y = X" + e, (2.6)

where y is the vector of abundances andX: is a known designmatrix for the fixed treatment
effects ". The noise is assumed to follow a normal distribution e∼N=? (0,� ⊗ S), with
the diagonal = × = matrix S = diag(f2, . . .) of sample variances and the non-diagonal
? × ? matrix � of protein covariances.

2.6 Statistical analysis

2.6.1 Welch’s t-test for differential abundance
Welch’s t-test is a two-sample location test for equal sample means. It assumes that both
populations are normally distributed, while allowing unequal sample variances [30]. In the
context of MS data, the test is applied for each protein individually to identify statistically
significant group-differences in abundance means, that is, to identify DAPs. The null and
alternative hypotheses, denoted �0 and �� respectively, for each protein 9 = 1, . . . , ? are:

�0 : `(0) 9 = `(1) 9 ,
�� : `(0) 9 ≠ `(1) 9 ,

where `(0) 9 and `(1) 9 denotes the mean log2 abundance of protein 9 in the control and
treatment population respectively. That is, the null hypothesis of the 9 th test is that the 9 th
protein is a DAP, with the alternative hypothesis that it is not. The test statistic for the 9 th
protein is defined as

C =
.̄(0) 9 − .̄(1) 9√

B2
(0) 9/=(0) 9 + B

2
(1) 9/=(1) 9

,

where .̄(0) 9 , .̄(1) 9 are the sample mean log2 abundances, B(0) 9 , B(0) 9 are the sample standard
deviations and =(0) 9 , =(0) 9 are the sample size, for control and treatment group, respectively.
The test statistic approximately follows a t-distribution under the null hypothesis, under
the given assumptions. The degrees of freedom associated with the variance estimate is
approximated by

a =

(
B2
(0) 9
=(0) 9
+
B2
(1) 9
=(1) 9

)2

(
B2
(0) 9/=(0) 9

)2

=(0) 9−1 +
(
B2
(1) 9/=(1) 9

)2

=(1) 9−1
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[30]. Associated with each performed statistical test is a %-value, which indicates the
probability of obtaining a test statistic at least as extreme as the one observed. In other
words, the %-value indicates the amount of evidence there is against the null hypothesis.
If the %-value is below or equal to the significance level U, there is sufficient evidence
to reject the null hypothesis and the test is considered significant. The significance level
corresponds to the probability of rejecting the null hypothesis even though it is true. The
probability that the null hypothesis is rejected when it is false is called the statistical power
of the test [31].

The rejection rules of a statistical can test can also be determined from the confidence
interval (CI) associated with the test. The two sided (1-U)100% CI for Welch’s t-test is
derived from

.̄(0) 9 − .̄(1) 9 ± CU/2,a

√√
B2
(0) 9
=(0) 9

+
B2
(1) 9
=(1) 9

,

where CU/2,a is the critical t-value for significance level U and a degrees of freedom. The
CI gives a range of values within which we are reasonably confident that the population
parameter lies. It is a random interval that in (1-U)100% of cases will contain the true
estimate of the effect size. CIs together with point estimates give information about
the uncertainty of estimates. Rejecting the null hypothesis based on a %-value ≤ U is
equivalent to that the CI does not contain the null hypothesis value [31].

The motivation for using a simple Welch’s t-test, rather than more sophisticated methods
such as the R package Limma [32], is the direct interpretability of the result. Limma is an
Empirical Bayes procedure, with the effective functionality of shrinking protein variances
used to compute the test statistic. However, missing or imputed values present in the data
is also a possible source for alterations to the estimated standard error. Therefore, in order
to distinguish the actual consequences of having missing or imputed data, we employ
Welch’s t-test instead.

2.6.2 Correcting for multiple testing
For a single hypothesis test, the significance level U controls the probability of the test
to generate a false positive (FP). However, as one test per protein will be performed
simultaneously, there will on average be U × ? FPs among all tests, where ? is the number
proteins. Generally, the number of proteins is large, hence the problem of multiple testing
must be corrected for in order to avoid inflation in the number of FPs. There are a number
of methods available for correcting the effect of multiple testing, where we have chosen
the Benjamini-Hochberg procedure for false discovery rate (FDR) correction. With this
method, the %-values for each test are adjusted (%adj) in order to control the FDR. This
method is generally considered less strict compared to competing methods (e.g. the
Bonferroni procedure) [22, 31]. Details on the Benjamini-Hochberg procedure are found
in Appendix A.
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2.7 Measures of performance
Each hypothesis test performed for a protein can be regarded as a binary classification
problem, by classifying the decision made based on the test as either positive or negative.
The decision is considered positive if �0 is rejected and negative if we fail to reject �0.
Further, a ground truth can be established: cases where �0 is in fact false are considered
real positives; and cases where �0 is in fact true are considered real negatives. Hence,
there are four possible combinations of test-based decisions and ground truths (Figure
2.6), namely: true positive (TP); false positive (FP); true negative (TN); and false negative
(FN) [22].

Figure 2.6: Possible outcomes of a statistical test; true positive (TP), false positive (FP), true
negative (TN) and false negative (FN).

When Welch’s t-test has been performed for each protein of a dataset, the outcome of
tests are summarized in a confusion matrix, containing the number of TPs, FPs, TNs and
FNs. Given the ground truth is known, the performance in terms of the ability to detect
significantly abundant proteins can be derived. Different metrics can be used to this end,
where we have considered the true positive rate (TPR) and the false positive rate (FPR).
The TPR is the proportion of real positives (P) that were correctly identified as positives.
The TPR is the proportion of real negatives (N) that were falsely identified as positives.
Formally,

TPR =
TP
P
=

TP
TP + FN

,

FPR =
FP
N
=

FP
FP + TN

,

[22]. Framing the performance metrics in the MS context, the TPR is the proportion of
true DAPs that were indeed identified, and the FPR is the proportion of non-DAPs that
were falsely identified. This way, the TPR and FPR indicate the ability to detect DAPs,
given the data at hand. Finally, the TPR and FPR derived from datasets where missing
values have been imputed by different methods can be compared in order to evaluate the
performance of the imputation methods. The ground truth indicates whether or not the
protein under testing is truly a DAP; a fact that cannot actually be known about a real MS
dataset. For this reason, we defined the ground truth as the DAPs detected in the complete
data. When using simulated data, the ground truth set of DAPs is given by the simulation
model.

18



2. Background

2.7.1 Clinical relevance
Statistical significance does not necessarily imply practical importance. In drug develop-
ment, a successful study demonstrates not only a significant result but also a clinically
relevant effect size [33]. For this reason, we apply a second condition in the binary classi-
fication of positive or negative hypothesis tests, in addition to the condition on statistical
significance. The second condition is; for a test-outcome to be considered positive, the
estimated log2 fold-change must be clinically relevant. That is, |.̄(0) 9 −.̄(1) 9 | > ' for some
number ' determined by target effect size. Statistical significance and clinical relevance
can be interpreted in terms of confidence intervals (Figure 2.7).

Figure 2.7: Representation of statistical significance and clinical relevance in terms of CIs for a
null hypothesis of zero fold-change given a level of confidence. The CI of a statistically significant
test does not cover 0. The CI of a clinically relevant test has its center above the determined clinical
relevance threshold '. Figure created with BioRender.com.

2.7.2 Level of uncertainty
When evaluating the performance of different strategies for dealing with missing data
in MS experiments, there is interest in determining whether statistically significant and
clinically relevant DAPs can be detected, as well as in determining with what amount
of certainty the detection can be made. This information can be obtained from the
corresponding CIs [31].

The CI of a test indicates the range within which we are (1 − U)100% confident that the
true estimate lies. The width of the CI conveys the associated uncertainty, and is defined
by the critical value of the test statistic CU/2,a, the sample standard deviations B(0) 9 , B(1) 9 and
the sample sizes =(0) 9 , =(1) 9 . With complete-case analysis of incomplete data, the sample
sizes will decrease with the amount of missing values, generally leaving wider confidence
intervals. For imputed datasets, the sample sizes will correspond to those of the complete
data, but depending on the predictions made by the imputation method the sample standard
deviations may be skewed. This could in turn affect the width of confidence intervals. In
some cases, the increase in width will leave non-significant test. It is however possible
that two tests on different samples from the same population differ greatly in certainty,
even though they are both statistically significant (Figure 2.8).

When testing for DAPs in imputed or incomplete data we expect an increase in the
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2. Background

Figure 2.8: Illustration of CIs, given the same (1−U)100% confidence level and est. fold-changes.
The widths of the CIs convey the uncertainty associated with the tests. For the first CI (burgundy),
the large amount of uncertainty results in a non-significant test. Both the next two CIs (blue and
yellow) are significant, but the amount of uncertainty differs substantially. Here, performance
evaluations that also account for uncertainty may be of value. Figure created with BioRender.com.

width of CIs to some extent, compared to when using the complete data. However, in
order to establish a best practice for imputation, we want to evaluate how this increase in
uncertainty differs; both between different imputationmethods and in relation to complete-
case analysis of incomplete data. Considering that a wider CI implies a larger %-value
(given a hypothesis test) [31], this comparison may be made on the %-values rather than
on the CIs.

We implement a third and a final condition for positive test-outcomes. A hypothesis test
that is both significant and relevant is considered positive only if the obtained %-value
is at most & times larger than the %-value obtained with complete data. That is, given
a test performed using the complete data and the corresponding test for an alternative
(incomplete or imputed) data, it must hold that:

%-value | alternative data
%-value | complete data

< &,

where& defines some threshold. Note that it is assumed that the observed elements in the
alternative data are identical to corresponding elements in the complete data. The value of
the threshold & can be set differently depending on the comparisons that are to be made.
Given a complete and an alternative dataset, a small & implies that only those tests that
generated a small increase in uncertainty will be considered positives for the alternative
data. Using a larger & implies that larger increases in uncertainty are accepted. What
ranges of & that are regarded as small or large highly depends on the data, and on the
%-values obtained for tests in complete data.

20



3
Methods

Simulations and analyses were in R 3.6.0 on a high-performance computing cluster with
Slurm Workload Manager (v.19.05.7). The packages used for imputation are given in
Table 3.1, as a complement to the employed Conda (v.4.5.12) environment.

3.1 Generating real complete data
For analysis with real MS data, the normalized proteomics data from the Cancer Cell Line
Encyclopedia (CCLE) was used. As described in Section 2.5.1, cell lines from skin- and
lung tissue were selected to represent treatment groups. All proteins with a missing value
were removed, leaving 5270 proteins observed in all 110 samples. In order to ensure
reasonable computation time, a subset of 1000 proteins was randomly selected in each
simulation to form the complete dataset.

3.2 Simulating complete data
In each simulation, a complete dataset was simulated from the model in (2.6) with ? =
1000 proteins. The number of samples = was set either to 10, 50 or 100, always with
equal number of samples in treatment and control groups. The mean abundance of each
protein was set to U0 = 20 for datasets where MCAR values were to be introduced.
For datasets where abundance-dependent MNAR missingness were to be introduced, the
mean abundance of each protein was generated from Unif(17, 23), in order to increase the
variation of abundances in the data.

The sample variance, f2, of every simulation was fixed to 4. The protein covariance
matrix, �, was fixed and constructed by making one random selection of 1000 proteins
from the CCLE dataset and estimating the covariance matrix for those. The random
selection was made from complete cases of the lung and skin tissue samples, in order to
mimic the analysis performed with real data.

In each simulation, 10% of all proteins were selected at random to be simulated as
differentially abundant, where the expected fold change was set large enough to allow for
statistical power to detect the effect in complete data, given the number of samples. The
values were set as U1 = 3.5 for = = 10, U1 = 2.5 for = = 50, and U1 = 2 for = = 100. The
remaining 90% of proteins were simulated with zero expected fold-change.
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3.3 Analysis
Next, missing values were introduced with either MCAR or MNAR mechanisms. To
simulate MCAR values, elements from the complete overall data matrix were selected at
random to be removed until a given proportion of the entire data was missing. To introduce
MNAR values the mechanism (2.4) described in Section 2.2.1 was used with  = 150,
q1 = q3 = 0 and q2 = 0.3. The parameter values were selected based on the produced
probability distribution of missing values, ensuring a contrast between lower and higher
abundances. Using the probabilities of missingness derived for each element in the data,
a random sample of elements to set as missing was drawn so that a given proportion of
the data were removed. For each of the mechanisms, missing values were introduced at
10%, 30% and 50% of the overall data. Finally, the missing values of each generated
incomplete dataset were imputed, using each of the evaluated imputation methods (kNN,
RF, MICE, PEMM and PCA) using the packages specified in Table 3.1. Most parameters
of the imputation algorithms were implemented with default values, with some exceptions
given in the table. The evaluated imputation methods are all available as open-source
packages in R, but for imputation with MICE an internal and not yet published version
developed by Steven Novick, was used.

Table 3.1: Reviewed imputation methods, package used for implementation in R and non-default
parameters. For implementation of MICE, an internal (closed-source) version developed by Steven
Novick was used.

Method R package Non-default R parameters
kNN [19] impute v.1.60.0 [34] colmax=1, rowmax=1
RF [26] missForest v.1.4 [35] parallelize="forests" used w. 8 cores
MICE [27] internal
PEM [17] PEMM v1.0 [24] phi=0
PCA [25] missMDA v.1.17 [36] ncp tuned by k-fold CV [37]

3.4 Evaluation of performance
For each generated complete, incomplete and imputed dataset, DAPs were tested for using
Welch’s t-test, where the estimated log2 fold-change and corresponding FDR-adjusted
%-value were derived for each protein in the data. A positive outcome was counted when
three conditions were met: (1) adjusted %-value (%adj) below 0.05; (2) the estimated log2
fold-change was greater than '; and (3) the obtained %adj was at most & times larger
than the %adj obtained for complete data. The threshold for clinical relevance was set to
' = 1 since in MS-based analyses we are rarely interested in smaller target effect sizes.
The value of & was set differently depending on the data: using real data & = 103; and
using simulated data & = 1018. The difference in value is motivated by the differences in
complexity and noise between real and simulated data.

Comparing the test-outcomes to the ground truth, the TPR and FPR associated with each
dataset were derived. With real data, the true set of expected log fold-changes is not
known. Therefore, the DAPs detected for the complete datasets were used as ground
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truth in order to derive performance metrics for incomplete and imputed datasets. For
simulated data, the real DAPs is determined by the simulation model; proteins simulated
with a non-zero fold-change correspond to the ground truth. In this case, performance
metrics for the complete data can be derived as well.

For every dataset and every combination of parameters, 1000 iterations were performed.
Using the real data, this resulted in 1,000 complete, 6,000 incomplete datasets (for three
missingness proportions per complete dataset) and 30,000 imputed datasets (for five
imputation methods per incomplete dataset) (Figure 3.1a). Using simulated data, this
generated 3,000 complete datasets (for three different samples sizes), 18,000 incomplete
datasets and 90,000 imputed datasets (Figure 3.1b).

(a)

(b)

Figure 3.1: Scheme of data generation and associated parameters, starting with (a) real data (b)
simulated data. Figures created with BioRender.com.
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4
Results

The conducted simulations and analyses were aimed to answer the question on whether
missing values affect the ability to detect differentially abundant proteins (DAPs) in MS-
based data. A further aim was to evaluate the performance of commonly used imputation
methods (kNN, RF, MICE, PEM and PCA) in terms of the ability to detect DAPs. Per-
formance was measured in TPR and FPR from univariate analyses with Welch’s t-test,
where MCAR and MNAR values had been introduced into data from the Cancer Cell
Line Encyclopedia, and data simulated from a multivariate-mixed effects model respec-
tively. A test was classified as positive if it was both statistically significant and clinically
relevant, while also yielding a uncertainty level similar to that obtained with complete
data (%adj ≤ 0.05, est. log2 fold-change >1, and %-value ratio criteria &). For detailed
description of methods see Section 3. Based on the results, we can establish suggestions
on how to deal with missing values, considering proportion of missing values, type of
missingness and sample size.

4.1 Establishment of performance criteria
The performance criterion & was used to restrict the allowed increase in uncertainty,
comparing an alternative data (incomplete or imputed) to complete data, in order to count
tests as positives (see Section 2.7.2). By using this criterion, not only did the evaluations
determine if DAPs could be detected, but also considered the level of certainty with which
they were detected. The threshold was determined by evaluating the distributions of %adj-
values over estimated log2 fold-change. In Figure 4.1 this distribution is shown for one
instance of the real dataset; either as complete data or incomplete data with 50% MCAR
values. When no data were missing, the spread of %adj values was down to approximately
10−12.5. For 50% data missing, the smallest %adj was around 10−5. Based on this difference
in %adj distributions, the value & = 103 was selected as the threshold for how many times
larger a %adj-value for alternative data may be compared to the %adj-value for the complete
data, in order to count the test as positive. Similarly, in Figure 4.2 the distribution of
%adj-values over estimated log2 fold-change for one iteration of simulated data is shown.
In this case, the smallest %adj was around 10−60 for the complete dataset and 10−30 for the
incomplete dataset with 50%MCAR. Based on the difference, we selected& = 1018 when
using simulated data. Supplementary figures for 10%MCAR values and for PCA-imputed
data can be found in Appendix B.
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(a) Complete data (b) 50% MCAR

Figure 4.1: FDR-adjusted %-value on negative log10 scale against estimated log2 fold-change for
one iteration of analysis with real data (? = 1000). Points colored according to: (yellow) significant
and relevant; (green) significant but non-relevant; (purple) non-significant and non-relevant; and
(blue) relevant but non-significant. Significance level U = 0.05 and clinical relevance level log2
fold-change > 1.

(a) Complete data (b) 50% MCAR

Figure 4.2: FDR-adjusted %-value on negative log10 scale against estimated log2 fold-change
for one iteration of analysis with real data (? = 1000, = = 100). Points colored according to:
(yellow) significant and relevant; (green) significant but non-relevant; (purple) non-significant and
non-relevant; and (blue) relevant but non-significant. Significance level U = 0.05 and clinical
relevance level log2 fold-change > 1.
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4.2 False positive rates
For each performed analysis with complete, incomplete or imputed data, the FPR was
calculated. Figures 4.3 and 4.4 show the FPR distributions with MCAR values, for real
and simulated data respectively. Corresponding figures for MNAR values are found in
Appendix C. As seen in these figures, the FPR was below 0.05 for all methods under
all conditions tested. Since 0.05 is the expected rate of false positives given the FDR
adjustment and the significance level of 5%, the results indicate that the FPRwas controlled
below the significance level. This means that no artificial DAPs was introduced by any
imputation methods under any of the tested conditions.

Figure 4.3: False positive rate for real data with three proportions of MCAR missingness and
different strategies of tackling missing values. A test was considered positive if three conditions
were met: (1) adj. %-value ≤0.05; (2) est. log2 fold-change greater than 1; and (3) adj. %-value
not more than 103 times larger than adj. %-value for complete data. Test-outcomes were compared
to the ground truth of DAPs detected when using the complete data.
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Figure 4.4: False positive rate for simulated data with three sample sizes, three proportions of
MCAR missingness and different strategies of tackling missing values. A test was considered
positive if three conditions were met: (1) adj. %-value ≤0.05; (2) est. log2 fold-change greater
than 1; and (3) adj. %-value not more than 1018 times larger than adj. %-value for complete data.
Test-outcomes were compared to simulated ground truth DAPs.

4.3 True positive rates
For each performed analysis, the proportion of true DAPs that were detected (TPR) was
calculated. The obtained TPR distributions for datasets with MCAR values are shown in
Figures 4.5 and 4.6, for real and simulated data respectively. The corresponding results
for MNAR values were close to identical to the MCAR case (Appendix D).

Figure 4.5 depicts a trend of decreased TPR with increased proportion of missing values.
When 10% of the data weremissing, all methods had amedian TPR above 0.75, suggesting
that imputation does not increase the TPR compared to removing missing values. For
30% missingness irrespective of data or missingness type, the median TPR was less than
0.8. In this case, there was a slight increase in median TPR from no imputation (0.73)
to imputation by PCA or MICE (0.8 and 0.77 respectively). For 50% missingness the
TPR was 0.25-0.75 depending on imputation method. Here, the median TPR obtained
with PCA and MICE (0.64 and 0.69 respectively) is evidently higher than that obtained
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without imputation (0.33). Accordingly, we would not recommend imputation if only a
small amount of data is missing (≤30%). For large proportions of missingness (>30%)
we recommend imputation with PCA or possibly MICE.

Figure 4.5: True positive rate for real data with three proportions of MCAR missingness and
different strategies of tackling missing values. A test was considered positive if three conditions
were met: (1) adj. %-value ≤0.05; (2) est. log2 fold-change greater than 1; and (3) adj. %-value
not more than 103 times larger than adj. %-value for complete data. Test-outcomes were compared
to the ground truth of DAPs detected when using the complete data.

For simulated data, we performed the evaluations using different sample sizes (= =
10, 50, 100) and varying proportions of missingness (MCAR in Figure 4.6). For com-
plete data, the TPR was centered at 1 with close to no dispersion. This was also the case
with 10-30% of data missing in large sample sizes (==50, 100), irrespective of method.

With 50% missingness and = = 100, the TPR for non-imputed data was notably low
(median at 0.48), but when imputation was performed the TPR remained close to 1.
Therein, we would recommend imputation by any of the evaluated methods for large =
and high percentage of missing data (considering only the results from simulated data).

The results with = = 10 indicated poor performance for all methods at 50% missing
values. Guided by these results, statistical inference without imputing missing values is
recommended for small = and large proportions of missingness. Notably, PCA did not give
any results at all at 30% or 50% missing values, hence these cases are not seen in Figure
4.6. PCA-imputation is initialized with mean imputation, and since the PCA transform
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cannot deal with zero column-variance, the algorithm fails unless at least two values are
observed per column. For small sample sizes, it is probable that at at least one protein will
have fewer observed cases than that; hence the algorithm is likely to fail in this case.

Figure 4.6: True positive rate for simulated data with three sample sizes, three proportions of
MCAR missingness and different strategies of tackling missing values. A test was considered
positive if three conditions were met: (1) adj. %-value ≤0.05; (2) est. log2 fold-change greater
than 1; and (3) adj. %-value not more than 1018 times larger than adj. %-value for complete data.
Test-outcomes were compared to simulated ground truth DAPs.

4.4 Computation time
In the evaluation of performance of different strategies for dealing with missing data,
the required computation time of the algorithms is also of interest. We derived the
average run time of the analysis procedure including imputation of missing values, for
each evaluated method and different proportions of missingness in real data. Times were
averaged over 100 iterations on a high-performance computing (HPC) cluster using a
single core. For information on respective R packages see methods in Section 3.1. Note
that in these comparisons, no method was run with parallelization, in order to allow for
proper comparison on run time.
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Comparing the required run time for different proportions of MCAR values (Table 4.1),
the amount of missingness seemed to have little effect in general. However, there were
differences between imputation methods. Imputation with MICE and RF had the longest
average run time, around one hour for both. In contrast, analysis with imputation by
kNN was on average as fast as without imputing (< 1 minute). Using PCA and PEM
both had average run times of 3 to 7 minutes at different proportions of missing values.
Corresponding times for MNAR missingness were very similar (Table 4.2). Considering
the run times only, we would use other imputation algorithms instead of RF and MICE.

Table 4.1: Average run time in minutes for analysis using different missing data strategies in
real data (with 110 samples and 1000 proteins) at different proportions of MCAR missing values.
Computations run in R 3.6.0 on a HPC cluster with a single core. See Table 3.1 for information on
used imputation packages.

Average run time (min)
10% MCAR 30% MCAR 50% MCAR

No imputation 0.7 0.6 0.7
kNN 0.7 0.7 0.7
RF 53.7 58.6 61.6
MICE 76.8 66.5 62.0
PEM 9.7 7.3 3.6
PCA 3.2 4.7 6.5

Table 4.2: Average run time in minutes for analysis using different missing data strategies in
real data (with 110 samples and 1000 proteins) at different proportions of MNAR missing values.
Computations run in R 3.6.0 on a HPC cluster with a single core. See Table 3.1 for information on
used imputation packages.

Average run time (min)
10% MNAR 30% MNAR 50% MNAR

No imputation 0.7 0.7 0.8
kNN 0.7 0.7 0.8
RF 54.6 56.6 54.6
MICE 72.2 69.0 76.7
PEM 7.8 7.0 2.6
PCA 3.5 5.0 7.4
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Since the FPR was controlled in all analyses, no artefacts would be introduced by any
imputationmethod under any of the tested circumstances. For large proportion proportions
of missing data (50%) irrespective of missingness type: for small sample sizes (= ≤ 10)
imputation is advised against; and for large sample sizes (= ≥ 50) imputation with PCA
is recommended. For smaller proportions of missing data (10-30%) imputation did not
increase the TPR compared to removing missing values and is therefore not explicitly
recommended; but PCA-imputation can be performed without reduction in performance,
if a complete dataset is necessary for subsequent analysis.

In a published review [6], the same conclusions have been made regarding FPR. However,
the results differ in the evaluation of TPR,where they have suggested PEMclosely followed
by RF and PCA as the highest performing methods in this aspect when ==75. Notably, the
previous review [6] did not considered the level of uncertainty associated with tests, but
rather only used the significance level for the binary classification. Although insightful,
such evaluations merely indicate the rate of true DAPs detected, but do not account for
differences in effect size uncertainty between the methods. Note also that the specific
version of the MICE algorithm used in this thesis is internally developed and not yet
open-source, hence it has not been included in any previous review.

Further, our results indicated that the analyses were not affected by missingness type.
This conclusion is not in line with previous studies, which suggest that methods that
assume MCAR, such as kNN and RF, are generally not as accurate in their imputation
of left-censored MNAR values [5]. Indeed, the MNAR values are non-ignorable for
likelihood-based inference. Hence the majority of the evaluated methods of dealing with
missing data, particularly the complete-case analysis, could be expected to yield larger
estimation bias when themissingness isMNAR [13, 15]. However, the extent of estimation
bias associated with the non-ignorable (MNAR) missing values largely depends on the
structure of both the missingness mechanism and the data. It could be the case that
the function used to simulate MNAR data, in reality does not introduce considerable
estimation bias, given the data in this evaluation.

The results obtained in real data (Figure 4.5) indicated that the TPR obtained without
imputing decreased with the proportion of missing data. As expected, reduced effective
sample sizes resulted in reduced power to detectDAPs. In contrast, analyseswith simulated
data of similar sample size as the real dataset (= = 100), indicated that performance was
not affected by missingness until 50% of the data were missing (Figure 4.6). This could
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indicate that the resulting signal-to-noise ratio in the simulated data were lower than in the
real CCLE dataset. This is also supported by the distribution of adjusted %-values for the
simulated data, where DAPs were associated with very small adjusted %-values (ranging
from 10−60 to 10−10) in the complete dataset. Hence it is possible that only large amounts
of missing data will result in insufficient power to detect DAPs.

5.1 Limitations
The results for real- and simulated data differed, which could indicate that the model from
which data were simulated did not fully capture the complex data structure of real data (e.g.
CCLE data). It is however possible that it represented otherMS-based datasets better, such
as the Clinical Proteomic Tumor Analysis Consortium (CPTAC) as the original authors
suggested [9]. This aspect could have been investigated by further varying the parameters
of the simulation model, or by using additional real world MS dataset to compare with.

It should also be noted the generated probabilities in the MNAR-function are highly
dependent on data and selected parameters, hence the estimation bias caused by the non-
ignorability is aswell. The comparison on howdifferentmethods performwithMCARdata
in contrast with MNAR data should therefore be further evaluated. Given discrepancies
between this study and the literature, there is a need for further studies to come to a
consensus. Different parameter values could be tested, or, a different methodology for
simulating left-censored values could be used [5].

Different thresholds for the ratio between adjusted %-values obtained for incomplete- or
imputed data compared to that obtained for complete data (&), should be evaluated since
the value of & may influence of the obtained TPR distributions. Alternatively, other
methods could have been used to capture the level of uncertainty in the evaluation of
performance. Possible alternatives could be to use Receiver Operation Characteristics
curves [38], or to compare percentage increase in CI widths.
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6
Conclusion

This study showed that large proportions of missing values (≥30%) affect the ability
to identify DAPs in MS-based data. By evaluation of five commonly used imputation
methods (kNN, RF, MICE, PEM and PCA), we found that the FPR was controlled below
5% in all analyses, indicating that no artefacts were introduced by any method under any
of the conditions tested. The evaluations showed that for large sample sizes (= ≥ 50)
and large proportions of missing values (50%) imputation by PCA is likely to improve
the true positive rate. For smaller proportions of missing data (10-30%), imputation
did not increase the TPR; but PCA-imputation can be performed without reduction in
performance. However, if the sample size is small (=≤ 10) imputation is advised against,
due to poor performance of all evaluated imputation methods.
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A
Additional background

A.1 Derivation of conditions for ignorable missingness in
likelihood inference

The distribution of the actual observed data, i.e. of the variables (Yobs,M), is obtained by
integrating Ymis out of the joint density of Y = (Yobs,Ymis) and M. That is,

5 (Yobs,M|\, q) = 5 (M|Yobs, q) ×
∫

5 (Yobs,Ymis |\)3Ymis. (A.1)

If themissingnessmechanisms is at leastmissing at random (MAR), such that 5 (M|Y, q) =
5 (M|Yobs, q) holds, the joint distribution in (A.1) can be simplified:

5 (Yobs,M|\, q) = 5 (M|Yobs, q) ×
∫
5 (Yobs,Ymis |\)3Ymis

= 5 (M|Yobs, q) × 5 (Yobs |\)
∝ 5 (Yobs |\).

(A.2)

Inference about \ can be obtained from maximizing the joint likelihood of (\, q). The
full likelihood of the unknown parameters \ and q is any function of (\, q) proportional
to 5 (Yobs,M|\, q):

Lfull(\, q|Yobs,M) ∝ 5 (Yobs,M|\, q), (\, q) ∈ Ω\,q. (A.3)

If we ignore the missingness mechanism, i.e. ignore the parameter q, we may instead base
inference on the likelihood of \ alone. The likelihood of \ based on the observed data,
ignoring the missingness mechanism, is any function of \ proportional to 5 (Yobs |\):

Lign(\ |Yobs) ∝ 5 (Yobs |\), \ ∈ Ω\ . (A.4)

Consequently, if the missingness mechanisms is at least MAR and Ω\,q = Ω\ × Ωq, we
have

Lign ∝ Lfull ∝ 5 (Yobs |\). (A.5)
Under these conditions, the simpler likelihoodLign that ignores themissingnessmechanism
can be used instead of Lfull for likelihood based inference about \ [13].

If only the first condition of ignorable missingness is met, there is possibly still information
about \ in the factor 5 (M|Yobs, q) in equation A.2 that is being ignored. However, it does
not affect the sampling distribution of any of the statistics which is conditioned on the fixed
but unknown parameters (\, q). Therefore, inference based on the simpler likelihood is
valid, but not fully efficient, also if only the first condition is met [13].
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A. Additional background

A.2 Benjamini-Hochberg procedure for FDR control
The expected proportion of false positives (FPs) among all positive outcomes is called the
false discovery rate (FDR):

FDR = Exp
[

FPs
FPs + TPs

]
.

The Benjamini-Hochberg procedure is a method to control the FDR at the significance
level U. The procedure begins with ordering the ? hypothesis by ascending p-values,
denoting ? ( 9) the p-value at the 9 th position. Then by finding

! = argmax
9∈(1,...,?)

? ( 9) <
U 9

?
,

we reject all hypotheses for which ? ( 9) < ? (!) . Assuming independent tests, the method
ensures estimated FDR ≤ U and the number of FPs is expected to be controlled at the
significance level [22].
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B
Supplementary results: establishment

of performance criteria

Distributions of %039 -values over estimated log2 fold-change for real data (Figure B.1)
and simulated data (Figure B.2). With both real and simulated data: 10% missingness
did not noticeably affect the %adj-values; with 50% missingness %adj-values were severely
increases; and by imputation low %adj-values were restored.

(a) Complete data (b) 10% MCAR

(c) 50% MCAR (d) PCA imputation, 50% MCAR

Figure B.1: FDR-adjusted %-value on negative log10 scale against estimated log2 fold-change for
one iteration of analysis with real data (? = 1000). Points colored according to: (yellow) significant
and relevant; (green) significant but non-relevant; (purple) non-significant and non-relevant; and
(blue) relevant but non-significant.
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B. Supplementary results: establishment of performance criteria

(a) Complete data (b) 10% MCAR

(c) 50% MCAR (d) PCA imputation, 50% MCAR

Figure B.2: FDR-adjusted %-value on negative log10 scale against estimated log2 fold-change for
one iteration of analysis with real data (? = 1000). Points colored according to: (yellow) significant
and relevant; (green) significant but non-relevant; and (purple) non-significant and non-relevant.
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C
Supplementary results: false positive

rate

Figures C.1 and C.2 shows the distribution FPR when MNAR values were introduced, for
real and simulated data respectively.

Figure C.1: False positive rate for real data with three proportions of MNAR missingness and
different strategies of tackling missing values. A test was considered positive if three conditions
were met: (1) adj. %-value ≤0.05; (2) estimated log2 fold-change greater than 1; and (3) %-value
not more than 103 times larger than the %-value for complete data. Test-outcomes were compared
to the ground truth of DAPs detected when using the complete data.
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C. Supplementary results: false positive rate

Figure C.2: False positive rate for simulated data with three sample sizes, three proportions of
MNAR missingness and different strategies of tackling missing values. A test was considered
positive if three conditions were met: (1) adj. %-value ≤0.05; (2) estimated log2 fold-change
greater than 1; and (3) adj. %-value not more than 1018 times larger than the adj. %-value for
complete data. Test-outcomes were compared to the ground truth of simulated DAPs.
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D
Supplementary results: true positive

rate

Figures D.1 and D.2 shows the distribution TPR when MNAR values were introduced, for
real and simulated data respectively.

Figure D.1: False positive rate for real data with three proportions of MNAR missingness and
different strategies of tackling missing values. A test was considered positive if three conditions
were met: (1) adj. %-value ≤0.05; (2) estimated log2 fold-change greater than 1; and (3) %-value
not more than 103 times larger than the %-value for complete data. Test-outcomes were compared
to the ground truth of DAPs detected when using the complete data.

VII



D. Supplementary results: true positive rate

Figure D.2: False positive rate for simulated data with three sample sizes, three proportions of
MNAR missingness and different strategies of tackling missing values. A test was considered
positive if three conditions were met: (1) adj. %-value ≤0.05; (2) estimated log2 fold-change
greater than 1; and (3) adj. %-value not more than 1018 times larger than the adj. %-value for
complete data. Test-outcomes were compared to the ground truth of simulated DAPs.
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