
Simple Kinect-based gesture tracker
Master’s Thesis in Complex Adaptive Systems

ANDERS RYNDEL

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017





Master’s thesis 2017:09

Simple Kinect-based gesture tracker

ANDERS RYNDEL

Department of Applied Mechanics
Chalmers University of Technology

Gothenburg, Sweden 2017



Simple Kinect-based gesture tracker
ANDERS RYNDEL

© ANDERS RYNDEL, 2017.

Supervisor:Mattias Wahde , Department of Applied Mechanics
Examiner: Mattias Wahde , Department of Applied Mechanics

Master’s Thesis 2017:09
ISSN 1652-8557
Department of Applied Mechanics
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv



Simple Kinect-based gesture tracker
ANDERS RYNDEL
Department of Applied Mechanics
Chalmers University of Technology

Abstract
This project has developed an alternative to standard touch-based control system
by creating a gesture based system built on the Microsoft Kinect for Xbox 360. This
system is required to be reliable, robust, and intuitive to use. The developed system
uses a method that models a region around the user and classifies anything that
extends from that region as a raised hand. It is a crude solution but proved very
reliable when used by an experienced user.
The intended purpose of this system is as a control device for a partner agent to
be use with seniors. But the system turned out to have weaknesses that makes it
less suitable than other possible solutions. Weaknesses includes that the system
can be put into an error mode that needs knowledge of the system to recover from,
something the intended semographic can’t be expected to have. This weakness
could be improved upon with a better system, but it still leaves the more important
weakness: that the ergonomical requirements of the primary target demographic,
which can’t be expected to find constantly raising arms to the level of the head to
be a comfortable work environment. It is likely that a parter agent user is better
served by a hands-on controller, such as a controller for Playstation or XBox.

Keywords: gesture reconition, XBox, Kinect.
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1
Introduction

1.1 Motivation
The future of elderly care is a problem that society faces in the coming decades as
a result of an ageing population. It is therefore of interest to make use of robotics
to alleviate pressure on the human resources in the elderly care services facing ever
growing work loads. While the current methods of elderly care involving human
social contact will not become obsolete and cannot be replaced by robotics, it is still
possible and meaningful as compliment. It is for this purpose the partner agent is
created. A partner agent is a device that functions as a robotic personal assistant,
it can help keep calendar and aid the user to keep socially active by providing the
means of communication.
One of the challenges involved in creating a partner agent that is practical and reli-
able is the problem of control input. Only in very recent years has voice recognition
become a practical method of control but it is still very sensitive to circumstances.
It is not only required that the user speaks the right language, but it might also not
function properly for some dialects or accents. Taking into account the elderly target
user base cannot be assumed to have good enough diction makes voice recognition
a bad choice for a partner agent control method.
The alternative that is explored in this project, is to create a system that uses the
Microsoft Kinect for recognise gesture based control input. The Microsoft Kinect
is designed to be a control device for Microsoft’s line of consoles, the XBox. The
Kinect’s designed purpose is therefore very closely related to the function needed for
the parter agent, it has all the performance necessary to track a user. The Kinect’s
strength is that it captures a lot of information in colour and depth images at a
reasonable pace. This allow software that uses the Kinect to use it as a high detail
controller that can interpret gestures and poses, even facial expressions of users.
This detail comes at a price of not being very reliable. In fact, one of the greatest
complaint about the latest XBox release, the XBox One, was that the bundled
Kinect wouldn’t work reliably.

1.2 Objectives
The aim of this project is create a system that uses the Kinect in the simplest form
possible fulfils the needs of a control device for a partner agent. This is done to limit
the reliability problems to the greatest possible extent and to make the partner agent
user friendly for the intended demographics. In order to full the needs of the partner
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1. Introduction

agent, the system needs to be able to accurately register when a user is present in
view of the Kinect, when this user raises and lowers his hands and know the position
of the hands when raised.

1.3 Limitations
It is conceivable that a it would be useful for a parter agent to make use of the actual
shape of the hand. This would allow the user to interact with the partner agent by
means of sign language, either standard sign language or in simplified custom form.
This is outside the scope of this project due to the scale of this problem.
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2
Background

2.1 Kinect
The Kinect is a device created by Rare, a subsidiary of Microsoft, as a controller-less
control method for their game console, the XBox. The purpose of the device was to
enable games based on motions and gestures on the console. The technology that
has made this device possible is the low-cost, relatively robust, and high resolution
depth sensor that is integrated into it. This technology was originally developed by
PrimeSense.
The depth sensor technology operates based on an IR camera and projector. The
projector projects a finely grained grid of dots, created by a diffraction grating. The
IR-camera is used to capture the dots on the scene. The distance to each point
can be calculated by measuring the distance between the points in a neighbourhood
because the angle between the dots are known. The Kinect used in the project is
shown in image 2.1 and comes from the XBox 360. The camera has an angular
field of view of 57◦ horizontally and 43◦ vertically and the depth data retrieved from
the device has resolution 640 × 480 pixels at 30 frames per second with a depth
resolution of 1 centimetre. The accuracy of the depth sensor is about 1% and works
best for smooth matte surfaces.
It is possible for the depth sensor to fail to register objects and particularly edges
of objects that are smaller than 1 cm across, or has jagged or glossy surfaces. This
is especially true if the surface has a high angle to the camera. In these cases, the
sensor simply returns not-a-number. Because the IR-projector and camera are not
located in the exact same place, there are usually regions visible to the camera that
are not illuminated by the projector and because of this. This results in that the
depth information in the areas shaded from the projector is unavailable.

2.2 Application
The properties of the Kinect makes it highly interesting for applications outside con-
sole gaming. These applications of the Kinect commonly involves human-computer
interaction (HCI) as a means for a computer to detect the actions of a human user
and can be broadly put into two categories.
The first category is where the user takes a passive part in the interaction. In other
words, the user is not directly interacting with the Kinect sensor but is simply mon-
itored by it. Important sub-categories of this are surveillance for security purposes
[1, 2, 3] and uses for medical observation[4], diagnosis [5] and rehabilitation [6].
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2. Background

Figure 2.1: The image shows the stand alone Kinect for XBox 360. The apertures
on the front from left to right are the IR grid projector, the IR camera, and the
RGB camera.

The second category is where the user is an active participant in the interaction.
Here, the user is most often using the Kinect for control input for some other de-
vice. One significant field is the operation of robots, especially in the form of direct
tele-operation of robotic limbs [7, 8, 9, 10, 11].
The other, similar but separate, field is the use of the Kinect as a control method to
replace or complement keyboard, mouse, touchscreen and similar. In common for
all applications that uses the Kinect for control input is the emphasis on seamless
user friendliness. This user friendliness is critical when the intended user is not
accustomed to traditional input devices, for example when the users are seniors[12]
or children [13]. Furthermore, the seamlessness is important when using information
technology to augment an activity that is traditionally a strictly human to human
interaction, for example the use of the Kinect to create an immersive experience in a
virtual classroom [14]. The uses of the Kinect as a interaction tool for media devices
ranges from simple tiled grid navigation[15], to gesture based text input [16] on to
fully a functional mouse cursor[17].
Of special interest for this project are methods to identify and track hand palms and
finger tips. Identification of the hand is made using either depth imagery combined
with colour imagery [18] or depth imagery alone by identifying the shape of the
hand[19, 20, 21, 22]. All of the methods provided in the mentioned articles that
do the identification based on shapes requires the user to present an open hand
with the fingers spread for the identification to work. Two of these methods makes
extensive use of functions found in the computer vision library OpenCV [20, 18],
used for example to find contours and centre of pixel mass of hand surfaces.

2.3 Gesture recognition

Computer vision in general consists of at least three steps, segmentation, feature
extraction, and interpretation [23]. This includes the specific field of using a depth
image to identify hand gestures [24] in addition to the separate fields of using depth
imagery for some other purpose and performing gesture recognition using some other
source information.
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2. Background

2.3.1 Segmentation
Segmentation is the part of the gesture recognition process the determines what part
of the image data is relevant. This can be made relatively simple with the use of
depth imagery to filter out the parts of the image that do not belong to the hand
[24]. This information is used to create an outline of the hand. The simplest method
of obtaining this outline requires the user to ensure that the only thing in front of
the camera in a given depth interval is the hand (as done by [25, 26, 27]).
A further refinement of the outline is to introduce a virtual skeleton overlay onto
the outline with joints placed at places matching that of the hand and indeed the
entire body. This method reduces the demands on the user since he is not required
to ensure that only the hand is in view because the entire body can be tracked. The
joints corresponding to the hand are then simply selected as interesting at a later
stage of analysis. Skeletal tracking is the default method most commonly used by
authors [28, 29, 30, 31].

2.3.2 Feature extraction
Feature extraction is the process of finding and tracking points of interest and to
place a representation of the hand in a practical variable space (for example the
set describing all angles of the joints in the hand). Methods for feature extraction
can be categorized based on whether it captures static or moving gestures. The
former is the simpler case chosen for practical purposes where the application does
not require more complexity [29, 26]. The latter allows for a much wider range of
gestures to be captured and the range of practical applications becomes much wider
[32, 33].
Of special interest is to make the variable space invariant such that gestures that
appear similar to a human has similar representations in the variable space. In
the case of methods used for static gesture detection, this extends only to spatial
invariance [34] while methods for moving gestures also include temporal invariance
by not only describe the hand state but also trajectories [35, 33, 36, 37, 27].

2.3.3 Gesture interpretation
This third step consists of translating the gesture described by the previously ob-
tained features into useful signals. This is fundamentally a classification problem and
there is a plethora of methods to solve such problems. Examples of such methods
used are naive Bayes nearest neighbor (NBNN)[28, 38, 39], artificial neural networks
(ANN) [26], and bag of visual words SVM [25, 33, 40, 41].
Of these methods, NBNN is perhaps the simplest [42]. The algorithm starts with a
set of identifiable classes. Every class C of these classes has a set of corresponding
features {dC

j }. A proximity function NNC is defined that maps a feature d onto the
closest feature in the class set

NNC(d) = arg min
dC

j

||d− dC
j ||. (2.1)

5



2. Background

The classification is then simply made by finding the smallest mean square error
between obtained features and the nearby features in the possible classes

C̃ = arg min
C

∑
j

||dj −NNC(dj)||2 (2.2)

An artificial neural network is a classifier that simplistically mimics the function of
the biological brain [43]. It is a network made up by nodes called McCulloch-Pitts
neurons in a feedforward system that is divided into input, hidden, and output layers.
The neurons usually take normalized values between 0 and 1 or -1 and 1. The input
value of each neuron in the input layer is taken from the extracted features and the
input values of neurons in following layers are calculated solely by the immediately
preceding layer by weighting and normalization. Given a layer k with neurons ξk

i

the the output layer of the k layer and values becomes

ξk+1
i = g(

∑
j

ωk
ijξ

k
j ). (2.3)

The normalization function can for example be taken as g(x) = tanh(x) when the
interval -1 to 1 is used. The classification is then made by having each of the neurons
in the output layer correspond to one class and selecting the class with the neuron
of the highest value. The key to artificial neural networks is that they are created
through training. This training is performed by changing the values of the neurons
so that the results from using a set of inputs conforms to the intended output. This
has the advantage that the person designing the classifier does not need to know
what features are important or not, the disadvantage is that a large training set is
required where as many as possible of each variation of each class is included.
A linear support vector machine (SVM) classifier is a binary classifier that consists
of a hyperplane in a vector space. The classifier is constructed by finding the hyper
plane that best separates two classes of points in a vector space. The classification
of a of is made simply by determining what side of this plane it is located. The
weakness of this method is that it isn’t necessarily possible to find a simple hyper
plane.
Bag-of-Visual-Words uses a variation of a Bag-of-Words that matches the extracted
features to occurrences in a pre-created dictionary of shapes [44]. A “word” in this
sense can be a small image fragment and the vector representation of an analysed
image counts the number of times of each fragment appears in the image, but the
position of the fragments are discarded. Because the resulting vector is sparse,
due to the high dimension of available words, a linear SVM can be used to make
the classification without hindrance and allows for each class to be attached to a
hyperplane in this vector space [45].
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3
Method and implementation

3.1 Design goals

The purpose of this project is to create a system for identifying and interpreting
hand gestures using the depth data available from the Microsoft Kinect. The system
must be able to indicate if either right or left hand is raised or lowered and it should
also be able to track either hand when raised, including both at the same time.
The system is indented to be used as an input device for a computer and it is
therefore important that it should have sufficient update rate and lack of latency
to be of responsive and practical in a real-time environment. Furthermore, because
the intended primary user demographic consists of seniors, and therefore cannot be
assumed to be accustomed with the use of computers, special care must be taken to
make all interactions as intuitive as possible.
The possible lack of user experience makes robustness especially important for a
solution to be useful. Because of this, considerations must be made to minimize the
environmental constrains. Setting up the system for use should not require intricate
knowledge of the function of the system but should at most require a simple set of
instructions to be carried out and a few conditions to be met with regards to lighting
and objects in the room. Robustness not only demands that a system should not be
prone to failure but also that it should handle failure gracefully. From this follows
that there should be a mechanism for detecting and correcting any errors that may
arise and that this mechanism is preferably automatic.

3.1.1 Specification

The system is considered to work nominally if the system is able to register when
a user who sits in front of the Kinect raises and lowers hands without giving give
false readings by registering other objects as hands. It is necessary that the system
has a sufficient update rate in order to feel fluid. This update rate should never go
below 20 frames per second, meaning the time between updates should never exceed
50 ms. The latency, the time between the user performing an action and the action
is registered should not exceed 200 ms for the system to feel responsive. In order
for the system to be considered intuitive to use, a user completely unfamiliar with
the system must be able to successfully make use of its nominal function with only
a short written or spoken instruction as guide.
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3. Method and implementation

3.2 Solution selection

There are a number of methods available to track a user with a Kinect discussed in
Sections 2.2 and 2.3. Of these, the most common type of method involves creating
a virtual skeleton for segmentation. Such a method was not used to build this
system because the reviewed methods required prior knowledge of whether the user
is standing or sitting in order to work reliably. It would have been possible to develop
these methods such that this would not have been a problem, but since the standing
or sitting posture of the user does not actually have an impact for the application,
a simpler method was chosen instead.
The application only requires the system to be able to detect raising, lowering and
moving of hands. It is therefore feasible to use a method built on refined depth fil-
tering for segmentation. The detection and tracking of the hands are based whether
they appear in a certain region of space in front of the user and not the actual pose
of the user, something that might have been the case had a skeleton-based segmen-
tation been used. The selected method segments out the desired hand points and
skips the rest of the body. This method models the user to be inside a block and
classifies anything that extends from that block as a raised hand.

3.3 Solution overview

The system that implements this method is constructed by carefully selecting of
the planes defining the surfaces of the user block and the 3D regions in which
detection is allowed. The user block is constructed by detecting and tracking a
point that corresponds with the user’s head. The detection builds on the concept
of detecting a maximum point that corresponds to the point that is positioned the
largest distance above a plane in that 3D space. The plane used to detect the head is
mostly horizontal but with the normal pointing upwards and slightly forward. This
results in that the point taken as the head point is located upwards and forwards in
the depth image, where the user’s head is expected to be.
This method, in its most basic form, makes no considerations of the shape of the
objects it is intended to track, something that makes the system vulnerable to error.
The system cannot determine if the object it represents is a hand or some other
object from a single point alone. It is therefore necessary to use a separate process
to verify that the tracked points do in fact represent the intended objects. The head
verification determines if an object assumed to be a head is shaped like a head and
the hand verification determines if it is possible to trace a path between the hand
and head point that does not need to cross over background.
The strength of this arrangement is that the point tracking method is very fast
and it is reliable in giving correct readings if recent readings has been correct. It
therefore benefits performance to let the point tracker run and let the verification
process tag along behind it.

8
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3.4 Components

3.4.1 Coordinate system
Vectors will be used in the following sections to denote the geometry of the solution.
These vectors work in units taken directly from the depth data that comes from the
Kinect itself. The precision of depth values returned from the Kinect is measured
in millimetres, even though the accuracy varies with the object’s distance to the
camera. The natural unit used for distances along the x- and y-axes are pixels. The
depth image of the Kinect has the resolution of 640 × 480 pixels at a horizontal
field of view of 58◦ and a vertical field of view of 45◦. The Kinect is best used in
the range 0.8 − 1.5 m which means that the distance per pixel is about 1.5 mm at
1 m distance from the camera. The internal coordinate system is defined relative
to a user facing towards the Kinect such that positive x-axis is in the direction of
the user’s right, the y-axis in the direction of the users up, and the z-axis in the
direction of the user’s forward.

3.4.2 Planar separator
The planar separator a component that separates space into two parts. Several of
these planes can be combined together to form regions with complex boundaries.
It is the basic tool to construct the detection regions where points are allowed to
be detected. It is defined internally by a unit normal vector ~ν and a scalar λ. A
vector ~x is determined to be above the plane, relative to the origin, by checking the
criterion:

~x · ~ν > λ (3.1)

It is appropriate to define the planes in terms of a normal, a reference point, and an
offset according to figure 3.1 because these planes are used to to define the detection
regions. In order to obtain the internal representation, the normal is taken as-is,
only normalized, and the scalar is calculated from the offset k and reference point
~x0 by the following:

λ = ~ν · ~x0 + k (3.2)

3.4.3 Local maximum finder
The local maximum finder determines the highest point relative to a plane in a box
region of the depth image. Given the normal vector ~ν of the plane and the points
{~x} in a region, the point returned is

~xmax = argmax
~x

(~x · ~ν). (3.3)

The box region is defined by a center point, a width, a height, and a depth. The
algorithm is an exhaustive search of all points in the rectangle defined by the width,
height, and center point. A point is excluded if it is not inside the box as defined
by the depth parameter. This arrangement gives two advantages. First, it gives
increased performance for a smaller size of the searched region. Second, it makes

9
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Figure 3.1: The figure shows the arrangement of the reference point, the offset,
and the normal vector.

the algorithm find a local maximum around the center point. This assures that the
point sticks to its current object instead of skipping around.

3.5 Services

3.5.1 Head point tracker
Central to the method is the ability to detect a point that corresponds to the position
of the user’s head. This point is used as reference for the definition of the left and
right hand regions and is detected using the local maximum finder in two modes.
Both modes use the same plane to measure relative height, the plane with a normal
vector pointing forward and up relative to the user’s orientation and it is in the
internal coordinate system defined as ~ν = {0, 2, 1}. This normal vector was found
to be suitable for this particular purpose because it places the head point at the top
of objects in the foreground. The arrangement of the plane relative to the user can
be seen in Fig. 3.2. The first mode is used for the case where no previous point
is known. This mode limits the search in a box centred in the centre of the depth
image and with width and height of half the width and height of the depth image
and with infinite depth. Once a point is detected, the system will turn to the second
mode intended to track the point. This mode searches in a box centred around the
previous point with width and height of 20 pixels and depth of 100mm.
The system will use the last known valid point if there is no valid point in the box
for the current update. The system will use the last known valid point until a valid
point is found or until one second has passed since the last point was found. The
point is considered lost if this time expires and the system will then revert to the
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3. Method and implementation

Figure 3.2: The plane used to detect the head and how it intersects with the user.

first mode, attempting to detect the head again.

3.5.2 Head verification
The head verification determines if the head point corresponds to the user’s head.
This is the system’s only method of knowing if the user is in view of the Kinect at
all. The head point tracker will reliably detect the users head assuming the user
sits or stands upright in front of the Kinect with both arms lowered. The system
without the verification will take up a spurious reading for the head point if the user
is not in this position and this will result in error in the system. This is a problem
if the user for whatever reason decides to leaves and comes back later.
In order to amend this, the verification checks that the part of the image the head
point is attached to is indeed shaped like a head. Specifically, the verification algo-
rithm checks how well the profile of the top of the object the head point is attached
matches an irregular semi-ellipse.
The algorithm uses a depth threshold of 5cm. If the depth step from one pixel to
the next exceeds this threshold, then that pixel is counted as a cut. Pixels like these
are only expected to occur at the edge of the users head, thus forming the heads
profile. The algorithm starts from the supposed head point and traces upwards until
a cut is reached. This point defines the head top point pt. It then, again from the
head point, traces downwards 50 pixels. This point defines the head centre point
pc. Verification fails if a cut occurs before this point can be reached because the
investigated object can not be a head. The distance of 50 pixels is taken because it
is an approximate distance between the common position of the head point relative
to the head and the centre of the head.
Left and right head side points (pl and pr) are reached by tracing left and right
respectively from the head centre point until cuts are reached. At this stage, the
distances pl, pr and pc, pt are compared to ensure that the supposed head has the
right size and proportion before proceeding to the next step. Using the obtained
points, two masks, M (r)

ij and M (l)
ij , describing the left and right side of the irregular
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semi-ellipse are defined as follows:

M
(l)
ij =

1 if
(

i
||pc−pl||

)2
+
(

j
||pc−pt||

)2
< 1

−1 else
(3.4)

and

M
(r)
ij =

1 if
(

i
||pc−pr||

)2
+
(

j
||pc−pt||

)2
< 1

−1 else
(3.5)

The left mask is defined for when i is less than the x component of pc and the right
mask is defined when i is greater. Together, they form Mij which is defined in the
entire box where pl and pr forms the lower corners, and pt forms the upper edge.
In the same box, binary depth data Dij is formed by the granular depth data dij

from the the depth image, the depth of the head point dh, and another threshold
T = 10cm

Dij =

1 if |dij − dh| < T

−1 else
(3.6)

In other words, the binary depth data registers positive for points that exists in the
same segment as the head point. A normalized verification factor H is formed from
these by summing all values of ij inside the box formed by pl, pr, and pt

H = 1
||pr − pl|| · ||pt − pc||

∑
ij

MijDij (3.7)

This factor will take value between 0 and 1, where 1 indicates that the object the
head point is attached to matches the shape of a head very well.

3.5.3 Hand point tracker
There are two separate hand point trackers in the system, one for each hand. The
two hand point trackers are mirrored in the forward-vertical plane that includes the
reference point provided in by the head point tracker. In other words, both trackers
are defined identically except for the x-axis that is inverted. The hand point trackers
works similarly to the head tracker in that they operate in two modes, one for full
image search when no previous point is known and one for tracking a point by
searching a limited area around the last detected point.
The hand detection process uses the same tilted plane as the head tracker to deter-
mine the maximum point, the plane with normal ~ν = {0, 2, 1}. The same plane is
used for the hand detection as for the head tracker because raised hands also appears
as objects in the foreground, of which their top point is of interest. The significant
difference to the head tracker is the region for valid points is limited. This region is
defined by a set of planar separators.
The first separator is intended to exclude points attached to the user’s body when
the user is a default position with no hands raised. The normal vector of this plane
that defines this separator is pointed upward, forward, and to the side of the user,
i.e. normal vector for the plane of the tracker for the right hand points to the right.
In the internal coordinates this direction is ~ν = {1, 1, 2} for the right tracker and
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~ν = {−1, 1, 2} for the left. The separator plane is off-setted from the head reference
point, realistically placed somewhere on the user’s forehead, by about 10cm in the
direction of the normal vector to properly clear the body. This separator is what
essentially defines a raised hand in the system, it admits any object that is sufficiently
high up, far to the side or far forward to be considered a raised hand.
Additional planar separators are used to limit the occurrence of spurious objects
being registered. This includes a background separator that excludes everything
that is behind the user. This separator uses the plane that includes the head refer-
ence point and has the normal vector ~ν = {0, 0, 1}. Another separator specifically
intended to filter out the ceiling is also used. The normal vector of this plane points
down and forward, in direction of ~ν = {0,−2, 1}, off-setted from the head point by
-30cm, placing the plane above the user.
The last separator is the forward-vertical plane with normal vector ~ν = {−1, 0, 0}
for the left tracker and ~ν = {−1, 0, 0} for the right intended to separate the left and
right hands.

3.5.4 Hand verification
The hand verification is a process where the system checks that a point registered
as a hand actually represents the users hand. Points that does represents a hand is
deemed to legitimate and the verification fails if the point is not legitimate. When
the verification fails and a point is determined to not be connected to the body, an
event is raised and the detection system is reset.
The verification is a process that runs outside the usual flow of image updates and
lags slightly behind it, skipping some frames when there is not enough time for
computation. It is assumed for the sake of performance that a detected point is a
legitimate reading until the verification fails after the fact, as long as there exists a
legitimate reading before it. A reading will be ignored if no legitimate reading has
occurred immediately before it.
The system is the most sensitive to accidentally registering objects that appears
above and in front of the user and the primary purpose of the hand verification is
to determine if the point registered as a and is connected with the rest of the user
The method for accomplishing this is based on calculating a path from the hand
point to the head point that does not pass any of the steep edges that contrasts the
user towards the background. The algorithm used to create this path is A* and the
heuristic used is the distance in three dimension between the current point and the
destination but with a penalty added if the current point is too far behind the user.

3.5.5 Hand movement classifier
The hand movement classifier registers the movement of the user’s raised hand. The
ability to track hand movements rests on the ability to distinguish deliberate move-
ments from non-deliberate movements so that the system only receives commands
intended by the user. A hand movement is considered deliberate if the hand moves
sufficiently far over long enough time.
The minimum time limitation is necessary in order to avoid avoid registering noise
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in the hand point reading. It is for example possible for the hand point to jump
between the fingers of a raised hand even though the hand itself is not moving. On
the other hand, the minimum time limitation is also problematic because it hinders
the system’s responsiveness. In order to balance the resilience against noise and
the system’s responsiveness, a softer limit is used that accepts a slower movement
over a longer stretch of time or a very fast movement over a period shorter than a
characteristic time.
This is done by using the most recent hand point ~pr, obtained directly from the
hand tracker, and a historical centre point ~ph that represents the position where the
hand has recently been. The historical centre point is updated at each iteration by

~pnew
h = a~pold

h + (1− a)~pr (3.8)
(3.9)

A movement is registered when the distance between ~pr and ~ph becomes larger than
a distance D. The minimum movement speed and the characteristic time under
which only very fast movements will be registered are selected by adjusting the
parameters a and D appropriately.
Assume a hand is starting from resting and is travelling along the x-axis at a speed
v and the hand is registered by the system at time intervals δ. The positions of the
hand points are then

ph = δnv. (3.10)
Inserted in expression 3.8, this becomes:

x(n) = ax(n−1) + (1− a)δnv (3.11)

The distance d(n) at frame n between the hand point hand the historical centre point
is

d(n) = x(n) − δnv (3.12)
The equation for this distance is

d(n) = x(n) − δnv (3.13)
= a(x(n−1) − δnv) (3.14)
= a(d(n−1) + δv). (3.15)

(3.16)

Assuming small δ, this equation is made continuous:

d(n) = a(d(n−1) − δs) (3.17)
(1− a)d(n) + a(d(n) − d(n−1)) = aδv (3.18)

1− a
δa

d(n) + d(n) − d(n−1)

δ
= v (3.19)

{t = δn} → (3.20)
1− a
δa

d(t) + d′(t) = v (3.21)
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The solution for this equation given the original distance 0 is

d(t) = δas

1− a

(
1− exp

(
a− 1
δa

t
))

(3.22)

and the criteria for a registered movement becomes

D = δas

1− a

(
1− exp

(
a− 1
δa

t
))

. (3.23)

This equation is written to be dependant on minimum speed Vmin and characteristic
time tc

Vmin =1− a
δa

D (3.24)

tc = δa

1− a (3.25)

transforming equation 3.23 into

Vmin = s
(

1− exp
(
− t

tc

))
. (3.26)

The parameters a and D are functions of Vmin and tc are therefore

D =Vmintc (3.27)

a = tc
δ + tc

(3.28)

The parameters are selected such that Vmin = 100 pixels/s and tc = 0.5s.
When a hand movement is registered, the system determines the direction of the
movement. The system is able to register movements in the up, down, left, right,
in, and out directions. The direction is determined by taking the dominant axis of
movement. This gives the user 6 available movement commands at any moment.
This number is not limited by the system but rather the user. It is surprisingly
difficult for a user to move a hand raised in the air in a specific direction relative
to the Kinect because the user tends to do motions in depth even when these are
not indented. As a result, the 6 axis directions are about the accuracy the user can
manage.

3.6 System architecture
The system is separated into three parts shown in Fig. 3.3The parts consists of
the Kinect manager, the Service manager, and the event engine. The Kinect man-
ager is the only object that operates directly with the Kinect. It sets up and shuts
down connection on start-up and shutdown. It also runs a thread to capture and
temporarily store the depth images from the Kinect. The Service manager is the
structure to which all the services that creates the functionality of the system are
attached. Lastly, the event engine provides the interface to external software. Exter-
nal software uses the event engine by registering a set of functions with the Service
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Figure 3.3: Overview of the data flow in the system

manager to be called when any of the verification states change and another set for
when the either hand is moved, raised, or lowered.
The system’s software is build in a modular fashion. This modularity is created by
separate but communicating services described above. Each service is powered by its
own thread but the execution of these threads is tied to the rate at which new depth
images becomes available. All service threads wait for the next depth image once all
required computations for the current image are done. The architectural complexity
of this setup is made relatively simple by the fact that no memory resource is written
to by more than one thread even though several threads might read that memory.
In general, a thread may read from objects attached to other services but may only
write to the object attached to the own service.
The services used by the system are displayed in Fig. 3.3 and consists of one head
point tracker coupled with a Head point verification, two hand point trackers, each
coupled with a Hand point verification, and two Hand motion classifiers. Fig. 3.3
also shows how data are passed between services. Once the Kinect manager signals
that a new image is ready, all the services fetch it. The head point tracker provides
the head point, as described in section 3.5.1, for other services to read. One of these
services is the head point verification service. It uses the head point together with
the depth image to determine if the head point is reasonably attached to a head,
as described in section 3.5.2. The head verification service announces completed
verification to the head tracker and to the event engine.
The second service that makes use of the head point, in addition to the depth data,
is the hand point tracker, as described in section 3.5.3. The hand point tracker
announces events to the event engine when hands are raised and lowered. The hand
point provided by the hand point tracker is then in turn used by the hand verification
service together with the head point in order to verify the hand. Similarly to the
head point verification, the verification information is then announced to the hand
point tracker and the event engine. The last service, which only uses the hand point,
is the hand motion classifier and its function is specified in section 3.5.5. This service
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Figure 3.4: The system’s debug view with all the visual representations of the com-
ponents visible and labelled. Note that the labels have been added for clarification;
they do not appear in the actual debug view.

announces an event to the event engine when a hand is moved.

3.7 Debug view
The system has a debug view that is shown in Fig. 3.4. The initial purpose of the
debug view was to facilitate the development of the system by making it possible
to quickly determine how a feature functions. The debug view is constructed from
the raw depth image provided by the Kinect with representations of the system’s
different components drawn upon it. The different components are named in the
figure. The included components consists of the head reference point provided by the
head tracker, the head extent points which are placed by the head verification, the
hand point and the history of hand points that forms the hand trajectory provided by
the hand tracker, the hand verification path that is created by the hand verification
and finally, the Historical centre point that is used by the hand movement classifier.
This debug view is available as a function of the service manager and both colour
and depth images are available for use with any possible future application.
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4
Experimental setup

4.1 Error analysis

4.1.1 Possible error sources
The system has several possible modes of failure. These modes can be divided
into three categories, head misidentification error, hand misidentification error and
verification error.

4.1.1.1 Head identification error

Head misidentification error occurs when the point the head tracker takes to repre-
sent the head does not correspond to the user’s head. This can happen if the user
is not in the foreground, either because the user has left the picture entirely or if
there is another object in front of the user. The head tracker relies on the head
verification to detect this error. This error causes the verification to put the head
tracker into search mode until a correct point is found. This means that the system
will not function normally until the situation that first caused the error is corrected.

4.1.1.2 Hand identification error

Hand misidentification error is what happens when the system is correctly tracking
the user’s head but fails to register a hand. This error has two types. In the he true
negative, the user attempts to raise a hand but the system fails to detect it, this can
happen if if the user has not raised the hand properly and it is still too close to the
body. The second error type occurs when the hand tracker detects an object that is
not a hand. The most likely cause for this is that an object enters the foreground.
This error is handled by the hand verification that will simply cause the system to
ignore any object that is not connected to the head point without passing over the
background, i.e. it disqualifies any object that is not connected to the user.

4.1.1.3 Verification error

Verification is a set of processes that are designed to catch errors in the other parts
of the system and to let it recover from them. The verification processes are separate
for the head and hand trackers and they are not immune to errors themselves.
Verification errors comes in two types, the first error type occurs when the verifica-
tion fails for a valid point. This can happen for the head point verification if the
head has an unusual shape, for example if the user is wearing a hat or has a large
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hair cut. For the hand point verification, this can happen if the user’s entire arm
is not inside the Kinect’s view and the hand therefore appears separate from the
body. The second error type occurs when the verification passes for an invalid point.
This can happen for the head point verification if the detected object happens to be
shaped like a head even though it is not the user’s head.

4.1.2 Effect and severity analysis
The possible errors are ranked by severity as follows:
Head point verification errors are the most severe because they cause the system
to stop functioning nominally. The most severe error is a false positive error for
the head point verification. With this error, the system is in a state where it is
not indicated that it is in error and detection of raised hands will not function.
Recovering from this error consists of removing the object the system tracks as a
head.
A true negative error for the head verification means that the current head point
is taken to be erroneous and the system will search for a new point continuously.
The system will not function because it will not be able to register raised hands in
this state. A false positive error for hand point verification results in the system
registering a raised hand where there is none. This can be very disrupting for the
user experience because it issues unintended control input. This error is recovered
from by the removing the detected object.
A true negative error for hand point verification causes the system to fail to register
a raised hand. This error is less disruptive than the false positive error because
instead of something unexpected happening, something expected failed to happen.
This error is commonly caused by that the entire arm is not visible by the Kinect
and is recovered from by ensuring the user is in centre view of the Kinect.
Errors that do not occur for the verification but for the head and hand trackers
are less severe because they will be automatically recovered from if the user returns
to default position in centre view of the Kinect with both arms lowered. These
errors can, however, still be disrupting. The system will not function during a
head misidentification error but it will recognise the error as long as the head point
verification works and will be able to advice the user to return to the default position.
The system will not be able to detect raised hands during a true negative hand
misidentification error. This error is recovered from by the user raising the hand
more, separating it further up and to the side away from the body. A false positive
hand misidentification error occurs when an object enters the expected hand regions.
The error is recovered by removing the object.

4.2 Evaluation protocol for user interaction
It is necessary to test under what circumstances the system enters the different error
modes in order to determinate the system’s robustness. These test should be con-
ducted by letting a user unfamiliar with the technical details of the system perform
a scenario resembling normal operation. The scenario consists of the following steps
and fulfilling a number of criteria at each step:
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1. Set up the system by plugging in the Kinect, directing the Kinect towards the
empty user’s seat and start up the software.

• Ensure that the head point verification fails for as long as there is not a
user in the Kinect’s view.

2. Let the user take a seat in view of the Kinect.
• Ensure that the head point is placed on top of the user’s head.
• Ensure that the head point verification succeeds.
• Ensure that no hand point is registered by the hand tracker.
• If a hand point is registered by the hand tracker, note if the hand point

verification fails or not.
3. Let the user raise one hand.

• Ensure that the system detects the raised hand.
• If the system does not detect the raised hand, determine if this is caused

by hand point verification error or hand misidentification.
4. Instruct the user move the raised hand in specific directions.

• Ensure that the system detects the movements in the specified directions.
• Note all other movements detected by the system

5. Let the user lower the raised hand
• Ensure that the system registers the lowering of the hand.

6. Repeat step 3. and 4. for the other hand.
Failure to meet any of the above criteria should be noted together with how well
it recovers and the cause of the error. Errors can be insignificant, with automatic
recovery and without the user noticing; minor, noticed by the user but can be
recovered by when the user returns to the default position and major, the user
notices and is unable to recover the system without instruction. The system needs
to be able to pass the above scenario with at most only minor errors in order to be
considered robust.

4.3 Evaluation protocol of the technical operation
The technical operation is evaluated in order to determine how the system fulfils
the criterium provided in Section 3.1.1 to ensure that the system is perceived as
responsive and fluid. This property is determined by the time elapsed between a
user performing an action and the action being registered by the system. According
to Miller [?]the maximum time a system can take between a user action and response,
without disrupting the user with a perceived delay is one second and this value is
taken as the upper allowed time limit for the system’s response time. This definition
excludes the time to perform an action, e.g. raise a hand, because the tested property
is not how fast the system can be operated by a user but how the system is responsive
to the user’s actions.
This test is practically performed by using a timer that is started when the user
presses a key. The user presses the key at the moment the user completes an action
is completed. The timer then runs until an action is registered by the system. The
time reached by the timer when the action is registered is the response time. The
response time of pressing a key on a modern computer is very small, less than 10
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ms, and is insignificant to the required precision of the measurement. The actions
to be timed are

• Raising of hand
• Movement of hand
• Lowering of hand

Each action is timed at least 10 times and average, maximum and minimum times
are noted.
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5.1 User interaction evaluation results

The system was tested using the protocol provided in Chapter 4 using four test
subjects. The subjects were fellow students. The subjects was instructed to take
place in front of the Kinect and to follow the instructions. The test subjects all had
very similar experience with the system and the outcome was documented at each
step of the evaluation the system’s practical performance.

1. The system functioned correctly after set up and did not erroneously detect a
head that was not present for any of the test subjects.

2. All test subjects has successfully registered by the system after seating them-
selves in front of the Kinect after some adjustments made to the head verifi-
cation to allow for less wide heads.
The system made no spurious hand reading for any of the subjects while sitting
normally with hands down in front of the Kinect. The System did however
detect objects in the periphery of the Kinect view as raised hands, but because
these objects failed verification, they were not registered.

3. The system suffered some issues with registering raised hands. The test sub-
jects, when instructed to raise their hand with no further specification, tended
to keep it too close to the body for the system to register it. This issue was
overcome for all subjects by displaying the system’s graphical interface and
register log combined with the instruction to raise the hand "more" until the
system responded. The subjects was able to register a raised their hands
at will after learning the necessary extent a hand needed to be raised to be
successfully registered.
One exception to this was a problem with the hand verification that occurred
on a few occasions. The problem occurred because of bad positioning of the
Kinect sensor. The Kinect was aimed to much upwards and failed to capture
the lower part of the test subject which resulted in that the the elbow of the
subject’s raised arm was out of view of the Kinect. Because the arm had no
visible connection to the head but extended from what appeared to be from
out of the image, the hand verification failed.

4. The system was not universally able to register the subjects’ movements when
moving intuitively. In other words, the user’s intuitive movements in specific
directions was not registered as such by the system. Later, the subjects was
able to reliably register movements after the they had some time to learn the
correct motions.
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5. The system was able to successfully register the lowering of hands for all
subjects.

6. Once the system was understood for the right hand, the subjects had no issues
in using the left hand in a similar capacity.

5.2 Technical evaluation results
The results of the different tests performed according to the procedure in Section
4.3:
Raising hand The hand raising action was performed 18 times. The longest time

recorded between the user completed raising the hand was 1089 ms and the
shortest recorded time was 618 ms. The average recorded time was 890 ms
with a standard deviation of 114 ms .

Moving hand The hand was moved 12 times and the system registered the move-
ment before it was deemed complete by the user every time. In terms of this
test, hand movements are recorded instantaneously upon completion of the
action.

Lowering hand The hand lowering action was performed 20 times. The largest
time recorded was 615 ms for the user to lower the hand and the shortest was
147 ms. The average recorded time was 445 ms with a standard deviation of
162 ms.

5.3 Discussion
The user interaction tests show that the system is fairly robust but it has a learning
curve. It is not reasonable to expect a user with no experience with the system to be
able to use it without some introduction. The necessary introduction time for users
to become accustomed with the workings of the system was reduced by displaying
for the user the debug screen showing the the depth image of the user and the user’s
actions as they are registered.
Part of the learning curve is related to the setting up the system. It is not entirely
trivial to set up the Kinect sensor such that the detection system works. If the
Kinect is aimed too high, the system might be unable to register the raising of a
hand because part of the arm falls outside of the Kinect’s view. If the Kinect on
the other and is aimed too low, there is the possibility that the system fails to track
the head if it falls outside the image.
The combination of these two issues puts into question how well the system fulfils
the requirement for intuitiveness. It is apparent that a completely unfamiliar user
might struggle to effectively use the system. This seems to be a problem that is not
isolated to this system but indeed to the Kinect as a control device for games at
large. It is a nice way of expanding the possible range of user control, but it has
been consistently unreliable throughout its history.
For the intention of creating a user interface to be primarily used by users with
unknown level of physical impairment and experience with technology, any sort of
touchless control device, which includes the Kinect, should only be adopted with
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serious caution. The simple magnitude of movements required for such a system to
function should create concern for user ergonomy. A Kinect-based control system
keeps the user physically and this may be desired, but it should probably never be
used without the option for a physical controller.
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6
Conclusion and future work

6.1 Conclusion
This project has sought to create a system that provides a touchless control device
for use with a partner agent. This has been achieved with the use of a Kinect and
the depth image it produces. The basic problem that the created system is meant to
solve is how to reliably track a user. The approach this project has taken to resolve
this problem has been to create the system based on only very simple principles. The
system is fundamentally built around reducing the complexity of the data provided
by the Kinect’s depth image into a few manageable points representing the head
and possible raised hands. In the process of producing these points, the system uses
minimal knowledge of human anatomy, i.e. the system does not have an internal
model for the shape of the human body. Instead, hand and head points are simply
selected based on the regions they appear in and accepted if they pass verification.
This naïvety of the system to avoid tracking a human body is both a strength and
a weakness. The strength is that it makes the system very predictable; a user who
is familiar with the system will not be surprised by its behaviour because of its
simplicity. The downside is that this system might be difficult to use without that
familiarity. This makes system only partially fulfils the requirements of the system
presented in Section 3.1. It is functional but is not necessarily practical for an
inexperienced user. Furthermore, it is questionable whether or not learning to use
this system is worth the effort compared to using, for example, keyboard and mouse
or a console controller. Control methods such as those are as easy to learn but offer
much more precise control and are less physically straining.

6.2 Future work
Because of its simplicity, the developed method for gesture recognition shows limited
potential to be further developed. Any sort of improvement would have to include
some sort of tracking of the user’s body which this method specifically sought to
avoid. For the development for a control device for a partner agent, it is suggested
that a review of physical handheld devices is made and be tested directly with the
intended senior target demographic. Controllers that should be of interest should
include standard keyboard and mouse, console controllers for XBox and Playstation,
and fighting sticks (specially designed controllers made to mimic the controls on
arcade machines).
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