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Abstract
Context: Class diagrams are one of the most popular UML models and are fre-
quently used in the early stages of software development. The advantage of using
class diagrams is that they can reflect design decisions and the system’s implemen-
tation structure. Maintainers can use class diagrams to understand the system’s
implementation structure. Yet, as the code evolves, the absence of updating class
diagrams will cause the code implementation to deviate from the class diagram de-
sign. One concern is that such a divergent class diagram does not help maintainers
much in the same way during the maintenance stage. As a solution, reverse engi-
neering methods/tools can reverse code into class diagrams. Yet, another concern
comes up, in most cases, the reverse-engineered class diagrams are not abstract,
and they contain extensive information that will burden the understanding of the
system’s implementation structure. This is because the existing reverse engineering
methods/tools are imperfect as they do not manage to imitate the human ability to
abstract relevant information from the source code. Surprisingly, existing studies on
the characteristics of manual abstraction are based on the opinions and experiences
of participants but do not study actual cases of models and source code. Also, the
methods/technologies used for checking the similarities and differences between the
models and source code are purely structural but do not analyze or take the se-
mantics of the model elements into account when mapping classes from models and
code. The semantics is closely related to abstraction creation. Thereby, a systematic
manual study on the characteristics of manual abstraction is required.

Aim: To fill this gap, this thesis aimed at studying the characteristics of the differ-
ences between the class diagram design and the code implementation by manually
creating the mappings between the class diagram elements/constituents and the
code constructs. Our manual studies can precisely capture the differences between
the class diagram design and source code implementation and investigate the causes
of these differences.

Method: We employed the methodology of five case studies. The five subjects
studied are five Java open-source projects collected from GitHub. They are semi-
randomly selected from the Linholmen dataset [1].

Results: For the differences between the class diagram design and code implemen-
tation, three causes are summarized: various levels of manual abstraction created
in class diagrams, deviations of code implementation from class diagram design,
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and common changes between the class diagram elements/constituents and code
constructs. We contribute to a sorted list of cases corresponding to these three
causes.

Keywords: UML, Models in Open Source Systems, Reverse Engineering, Deviations
between Code and Design, Manual Abstraction in Modeling
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1
Introduction

1.1 Background
The software development life cycle (SDLC) is defined by Stocia et al. [2] as “an
environment that describes the activities performed in each stage of the software
development process.” In the early stages of the SDLC, Unified Modeling Lan-
guage (UML) is widely used to model and visualize system artifacts [3]. Among the
various models of UML, the class diagram is the most commonly used and impor-
tant diagram in object-oriented system modeling [4]. The advantage of using class
diagrams in practice is that it can help software engineers—both developers and
maintainers—to understand systems architectures, behaviors, design choices, and
implementations [5]. Thus, it is easier for developers and maintainers to understand
the structure of the system by looking at the class diagram rather than reading
through the code in detail.

1.2 Challenges
Class diagrams model the information on the domain of interest in terms of objects
organized in classes and relationships between them [6]. They are intensively used in
the early stages of the SDLC to present the system’s structure. Maintainers benefit
from using class diagrams to understand the system’s structure, and thus the places
required to be modified can be located [7]. However, there are three challenges re-
vealed by other authors that are likely to cause the implementation of the source
code to deviate from the design of the class diagram. There is a concern that such
divergent class diagrams cannot help developers and maintainers to understand the
structure of the system in the same way.

These three challenges affect the activities performed by software engineers in dif-
ferent stages of the SDLC. Note that the stages of the SDLC vary depending on
the source [2, 8, 9]. Figure 1.1 illustrates five of the stages: analysis, design, imple-
mentation, testing, and maintenance. This thesis focuses on three of them which
involve the three challenges: design, implementation, and maintenance, respectively
(as shown in Figure 1.1, stages filled in blue). Architects and their teams, developers,
and maintainers are involved in each of these three stages. A detailed description of
the three challenges depicted in Figure 1.1 is as follows:

• Challenge 1 - Creating various levels of manual abstraction on the elements of
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the class diagram during the design stage: Osman [p. 45, 10] proposed that
class diagrams with a low level of detail are used to show a high-level abstrac-
tion of the structure of the system. However, little is known about which level
of abstraction the architects and their teams create during the design phase.

• Challenge 2 - Missing or unfollowed parts of the class diagram during the
implementation stage: Guéhéneu [5] proposed that class diagrams produced
during the design stage are often forgotten during the implementation stage,
under time pressure usually. Truong et al. [11] investigated that many created
designs are only partially followed during implementation. Thus, missing or
unfollowed parts of the class diagram will cause the implementation of the
source code to deviate from the design of the class diagram.

• Challenge 3 - Missing updates of the class diagram during the maintenance
stage as the code evolves: Osman et al. [12] proposed that the frequency of
updating UML models is low, and a new feature of the system is introduced in
a new version/release, which should result in an update of the class diagram.
We agree with the assertion by Osman et al. [13] that keeping diagrams up
to date with code evolution is often a challenge. Figure 1.1 illustrates that
code evolves over time from implementation to maintenance. However, if the
class diagram remains static (without update) as the code evolves, it does not
reflect the new features introduced to the system.

Figure 1.1: Three challenges involved in the staged SDLC are likely to cause the
implementation of the source code to deviate from the design of the class diagram;
thereby, differences between the class diagram and the source code are introduced.
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1.3 Goal and Motivation
As aforementioned, the divergent class diagrams cannot be used in the same way
by software engineers for understanding the system’s implementation structure. As
a solution, reverse engineering methods/tools can reverse code into class diagrams.
Yet, the reverse-engineered class diagrams, in most cases, are not abstract and with
extensive information which will burden the software engineers’ understanding of
the system’s implementation structure. This is due to the inability to provide input
of manual abstraction characteristics for reverse engineering tools/methods. Thus,
the tools/methods cannot manage to imitate humans to abstract relevant informa-
tion only. Yet, the characteristics of manual abstraction can only be achieved by
flexible manual studies based on the fact humans can jointly interpret the semantics
conveyed by different model elements based on a full understanding of the relevant
code implementation. Thus, the goal of this thesis aims at manually discovering the
characteristics of manual abstraction created in the model elements.

The goal of this thesis is motivated by the following holds:

No actual case of the models and source code is studied in terms of
manual abstraction characteristics: So far as we know, the existing studies on
the characteristics of manual abstraction are based on the opinions and experiences
of the participants, yet do not study an actual case of models and source code. The
consistency checks of the differences and similarities between the design and code
are purely structural and do not take semantics conveyed by model elements into
account. Yet, semantics conveyed by model elements is key for studying the manual
abstraction characteristics. Given that different systems have their own specified
implementation structures, the desired functionalities require code structures that
are interrelated and cooperated while also taking into account the application of
the specific architecture and design patterns. These factors need to be considered
jointly, which can only be achieved by flexible manual studies of models and source
code.

1.4 Case Study Subjects
In order to investigate the characteristics of the differences between the source code
and class diagram, we employed the methodology of five case studies. It is necessary
to access a dataset that includes a set of projects with class diagrams and corre-
sponding source code. However, such a dataset is rare and difficult to access since
the industrial models and source code is often not accessible for research. To address
this issue, we decided to make use of models used in Free/Open Source Software
(FOSS) projects. Thus, we used Lindholmen Dataset [1] created by Hebig et al. to
do this thesis work.

The Lindholmen Dataset [1] holds 3 295 open source projects of GitHub, which in-
clude together 21 316 UML models. The model files are in two formats (images and
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standard files). We first selected 5 projects in Java programming languages from
that dataset as our study subjects. Then the selected class diagrams introduced to
the project are limited to image format only, and we referred to them as manually
created architectural models (mcAMs). The model elements we studied are
classes, attributes, operations, and relationships (i.e., dependencies, usages, associ-
ations, aggregations, compositions, inheritances, and realizations).

1.5 Definition of Terminologies
We defined the following terminologies or used definitions given by others, enabling
the reader to understand the research questions (RQs) formulated in section 1.6.

As defined in the source [14], commit is a snapshot of changes made to the staging
area, where holds the files to be included in the next commit.

Version(s) of source code (voSC) is represented by a collection of source code
files found in the repository after a commit (before next commit).

Concepts are described by classes created in the mcAM. To be specific, a concept
can be described by an abstract (super-) class of the class or a non-abstract (normal)
class of the class.

Note that regarding the definition of concepts, one can argue that concepts can be
described by both classes and relationships between these classes from the mcAM.
However, we argue that concepts are described only by classes from the mcAM.
This is because the differences in attributes and operations from the classes between
the mcAM and the source code would lead to differences in relationships. These
correlated differences we aim to study.

Map to a voSC refers to mapping one or more concepts described in the mcAM
to one or more classes of that voSC. Note that human judgments are involved in the
mapping since the naming of classes in the mcAM and source code might be different.

A voSC v is conformable to the mcAM if for every concept described in the
mcAM the following holds: for the concept a there is a Map to the voSC v, or there
is a second concept b in the mcAM described by the superclass of the class that
describes the concept a and for this second concept b there is a Map to that voSC
v.

The latter case can be illustrated by the following example:

Example: This example is taken from the repository of one of our study projects,
i.e., ZooTypers [15] on GitHub. As seen in Figure 1.2, there are five concepts in
the mcAM: Pet, Dog, Cat, Fish, and Penguin, which are described by the superclass
Pet, and four subclasses Dog, Cat, Fish, and Penguin that are derived from that
superclass Pet, respectively. Figure 1.3 illustrates that a voSC that only includes
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a class Pet that can be mapped to the superclass Pet of the class, e.g., Dog in the
mcAM is conformable to the mcAM, since for the concept, e.g., Dog, there is a
second concept Pet described by the superclass Pet of the class Dog that describes
the concept Dog, and for this second concept Pet, there is a Map to that voSC.

Figure 1.2: In the mcAM, for the
concept, e.g., Dog, there is a second

concept Pet is described by the
superclass Pet of the class Dog that

describes the concept Dog.

Figure 1.3: For the superclass Pet of
the class Dog that describes a second
concept Pet of a conceptDog in the
mcAM, the class Pet in this voSC is

considered to be mapped to that
superclass Pet of the class Dog in the

mcAM.

Conformable source code (cSC) refers to a voSC that is conformable to the
mcAM.

1.5.1 Examples of Mappings between mcAM Concepts and
voSC

To illustrate how mappings are created between mcAM concepts and voSC, the fol-
lowing examples are brought out:

Note that regarding the following examples, for a concept a, the naming of the class
b that describes the concept a in the mcAM and the naming of the mapped class c of
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the class b in the voSC v might be different. However, class b and class c are ontolog-
ically identical since they describe the same concept with highly similar attributes
and operations and thereby, class b in the mcAM is considered to be mapped to
class c in the voSC v.

Case 1 - A class that describes a concept in the mcAM can be mapped to one class
in the voSC.

Example of Case 1: This example is taken from the repository of one of our study
projects, i.e., ZooTypers [15] on GitHub. As observed in the comparison between
Figure 1.4 and Figure 1.5, the naming of the class, i.e., SinglePlayModel in the mcAM
differs from the naming of the class i.e., SinglePlayerModel in the voSC. This might
be due to a misspelling of the name of the class SinglePlayModel in the mcAM.
However, the class SinglePlayModel in the mcAM and the class SinglePlayerModel
in the voSC are ontologically identical since they both have highly similar attributes
and operations and thereby these two classes are considered to describe the same
concept SinglePlayerModel. Therefore, the class SinglePlayModel in the mcAM is
considered to be mapped to the class SinglePlayerModel in the voSC.

Figure 1.4: A class SinglePlayModel
describes a concept SinglePlayerModel
in the mcAM, yet the naming of the

class SinglePlayModel with a
misspelling.

Figure 1.5: The class
SinglePlayerModel in this voSC has

highly similar attributes and operations
with the class SinglePlayModel in the

mcAM and thus, the class
SinglePlayModel is considered to be

mapped to the class SinglePlayerModel
in this voSC.

Case 2 - A class that describes a concept in the mcAM can be mapped to more
than one class in the voSC.

Example of Case 2: This example is taken from the repository of one of our study
projects, i.e., RaiseMeUp [16] on GitHub. Figure 1.6 illustrates that a concept dec-
orators is described by a class ItemDecorator in the mcAM. Decorators are part of
the decorator design pattern [17]. Thereby, the naming of the class ItemDecorator
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and the relationships between ItemDecorator and the subclass Upgrade derived from
the superclass Item possibly imply the decorator design pattern is applied in this
project. One or more decorators of the decorator design pattern might be further
planned to decorate the subclass Upgrade derived from the superclass Item in the
mcAM.

To confirm whether the decorator design pattern is applied in the voSC and the con-
cept decorators created in the mcAM remains in the voSC, we checked the detailed
implementation of the voSC illustrated in Figure 1.7. Then we can know that the
classes Slot, LeftUpgradeSlot, and RightUpgradeSlot are indeed the classes related
to decorators of the decorator design pattern. Also, these classes are the extension
of the interface Icon embedded in the Java library. Note that a MVC architectural
pattern is adopted in the voSC. With this as a basis, in the voSC, the subclass
Upgrade derived from the superclass Item is a Model-related class, and the interface
Icon is invoked in a View-related class that is responsible for communicating with
that subclass Upgrade. Therefore, these three classes in the voSC are considered to
be related to decorators and are considered to be mapped to that class ItemDeco-
rator in the mcAM since the concept decorators indeed remains in the voSC, and
thereby described by those three classes.

Figure 1.6: In the mcAM, a concept,
i.e., decorators is described by a class
ItemDecorator, which might imply the

decorator design pattern would be
applied in the voSC.

Figure 1.7: In this voSC, the concept
decorators in the mcAM is described by
the superclass Slot, and the subclasses
LeftUpgradeSlot, and RightUpgradeSlot
derived from the superclass Slot. These

three classes are the extension of the
interface Icon embedded in the Java

library. This interface Icon is invoked
in a class related to View, which is

responsible for communicating with the
subclass Upgrade derived from the

superclass Item in the mcAM.

Case 3 - In the mcAM, for concept a, there is a second concept b described by the
superclass of the class that describes the concept a and for this second concept b,
that superclass in the mcAM can be mapped to one class in the voSC.
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Example of Case 3: This example is taken from the repository of one of our study
projects, i.e., RaiseMeUp [16] on GitHub. Figure 1.8 illustrates that in the mcAM,
for the concept, e.g., Dog, a second concept Pet is described by the superclass Pet
of the class that describes the concept Dog. For the second concept Pet, there is a
Map to this voSC, i.e., mapping that superclass Pet in the mcAM to one class Pet
in the voSC (see Figure 1.9).

Figure 1.8: In the mcAM, for the
concept, e.g., Dog a second concept Pet

is described by the superclass Pet of
the class Dog that describes the

concept Dog.

Figure 1.9: This voSC only includes
one class Pet that can be mapped to
the superclass Pet of the class, e.g.,

Dog in the mcAM.

Case 4 - A class that describes a concept a in the mcAM can be mapped to an
additional superclass (not in the mcAM, but added to the voSC) that describes a
concept a in the voSC (ignoring that one or more additional subclasses derived from
that superclass (not in the mcAM, but added to the voSC as well) describe one or
more additional concepts (not in the mcAM, but added to the voSC)).

Example of Case 4: This example is taken from the repository of one of our
study projects, i.e., Neuroph [18] on GitHub. Figure 1.10 illustrates that a concept,
i.e., InputFunction is described by a class InputFunction in the mcAM. Figure 1.11
illustrates that this concept InputFunction remains in the voSC and is described by
one additional superclass InputFunction (not in the mcAM, but added to the cSC).
Therefore, the class InputFunction in the mcAM is considered to be mapped to that
superclass InputFunction in the voSC.

8
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Observed from the comparison between Figure 1.10 and Figure 1.11, an additional
concept, e.g., Max not in the mcAM is added to the voSC and is described by an
additional subclass Max (not in the mcAM is added to the voSC). For this additional
concept Max, there is a second concept InputFunction described by the superclass
InputFunction of the class Max that describes the additional concept Max in the
voSC and for this second InputFunction, the superclass InputFunction is considered
to be mapped to the class InputFunction in the mcAM.

Figure 1.10: A concept, i.e.,
InputFunction is described by a class

InputFunction in the mcAM.

Figure 1.11: The concept
InputFunction in the mcAM is

described by a superclass
InputFunction that not in the mcAM

but added to the voSC.

1.5.2 Ideal Selection of One cSC among Multiple cSCs of a
mcAM

In a project’s GitHub repository, commits are throughout the SDLC as the code
evolves. Thus, a project has different voSC as the code evolves. A mcAM may
have one or more cSCs, i.e., one or more voSCs that are conformable to the mcAM.
However, considering the time constraints and we want to study more projects, we
decided to select only one cSC of them. Compared with other cSCs of the mcAM,
this cSC should ideally cover the most attributes and operations associated with the
concepts in the mcAM. However, this cannot be guaranteed since it is not possible
for us to check the voSC one by one (referring to the detailed methodology employed
illustrated in section 3.2). This will lead to a threat, which will be illustrated in
section 5.6.

To illustrate how one cSC among multiple cSCs for a mcAM is selected, the follow-
ing example is given:

This example is taken from the repository of one of our study projects, i.e., EAPLI_PL_2NB
[19] on GitHub. Figure 1.12 illustrates in the mcAM there are eight concepts that
are described by eight classes, i.e., BaseUI, BaseController, IncomeRegisterUI, Reg-
isterIncomeController, Income, IncomeTyperRepository, CheckingAccount, and In-
comeRepository, respectively.

9
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Figure 1.12: In the mcAM, eight concepts are described by eight classes, i.e.,
BaseUI, BaseController, IncomeRegisterUI, RegisterIncomeController, Income,
IncomeTyperRepository, CheckingAccount, and IncomeRepository, respectively.

10
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Below are two examples of two cSCs of the mcAM depicted in Figure 1.12. As
observed in the comparison between Figure 1.13 and Figure 1.14, these two cSCs
cover all eight concepts in the mcAM. The only difference between these two cSCs is
the cSC represented by Figure 1.14 covers four more operations (underlined in blue)
than the cSC represented by Figure 1.13. Thus, we would ideally want to select the
cSC illustrated in Figure 1.14.

Figure 1.13: A cSC of the mcAM
covers all eight concepts in the mcAM.

Figure 1.14: Compared with the cSC
illustrated in Figure 1.13, this cSC of

the mcAM covers four more operations.

1.6 Research Questions
To reach the goal of this thesis of studying the characteristics of manual abstraction,
we formulated the following research questions:

RQ1: Does the cSC of the mcAM cover all elements planned out in that mcAM?
As mentioned in section 1.5, if a mcAM has multiple cSCs, we will select only one
cSC of them. A possibility is that the selected cSC cannot cover all elements (i.e.,
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attributes and operations) planned out in that mcAM. This will cause the differ-
ences between the cSC of that mcAM and that mcAM.

RQ2: What causes the differences between the cSC of the mcAM and that mcAM?
With the answer to RQ2, we can get a list of cases that cause the differences between
the cSC of the mcAM and that mcAM. Could these cases be categorized into some
common causes?

RQ3: What are the differences between the cSC of the mcAM and that mcAM?
With the answer to RQ3, we can conclude some common causes that cause the
differences between the cSC of the mcAM and that mcAM.

1.7 Contributions
The results of this thesis provide a sorted list of cases that cause the cSC to devi-
ate from the mcAM and a sorted list of suspected cases inferred by these observed
cases. These suspected cases are considered to exist possibly and would also lead
to the differences between the mcAM and the cSC. In accordance, this thesis will
have the following implications for the reverse engineering and modeling community:

1. To provide input for future improvement of reverse engineering meth-
ods/tools in terms of abstractness: So far as we know, reverse engineering is
imperfect as it does not manage to imitate the human ability to abstract relevant
information from the source code. Guéhéneu [5] proposed that no existing main-
stream reverse engineering tool produces abstract yet precise class diagrams. The
concluded cases of creating various manual abstraction on the model elements can
be used as such input.

2. To provide input for developing mapping rules which can be used for
the consistency check(s) between the model design and code implementa-
tion: Existing methods/technologies developed for the consistency checks between
code and design are purely structural and do not take the semantics conveyed by the
model elements into account. Yet, the semantics is closely related to the manual ab-
straction characteristics. Thereby, the sorted list of cases of the differences between
the code and design, which was yielded from manually studying five Java projects
based on interpreting the semantics of the model elements, can provide such input.

3. To provide a guideline for designing model elements to avoid over-
abstraction and over-specification: Given the abstract nature of the model, the
model elements can be modeled at various levels depending on the design decisions
made by architects. When it comes to design decisions for creating different elements
of the class diagram during the design stage, little is known about which design
decisions are inclined to be acceptable and unacceptable by developers in the code
implementation. This can result from over-specifying the model elements yet losing
the abstractness. Thereby, the developers disagree with these design decisions made
by architects, and they make different decisions in the code implementation. On
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the other hand, this can also result from over-abstracting the model elements. This
leads to vague design decisions that cannot be accepted by developers in the code
implementation, given that the developers need to settle these vague design decisions
down and further specify the detailed implementation for these decisions. Then the
deviations of the code from the design come up. Thus, the concluded cases of the
differences caused by developers’ deviations from the architects’ design decisions
allow us to create this guideline.

1.8 Structure of the Paper
This thesis presents a systematic manual study of the characteristics of the differ-
ences between the mcAM and one cSC of that mcAM by analyzing five open-source
Java projects on GitHub. The structure of this thesis is outlined as follows: In
Chapter 2, the relevant theoretical knowledge and early research done by others are
described. Chapter 3 details the methodology of the five case studies employed. The
results of this thesis work are illustrated in Chapter 4. The threats to the validity of
this thesis are described and discussed in Chapter 5. This thesis work is concluded,
and the future work of this thesis is suggested in Chapter 6.
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2
Theory and Related Work

In this chapter, in order to help the reader understand the work of this thesis,
the relevant theoretical knowledge of Java and UML is first described. This lays the
ground for understanding the constituents of a mcAM and thereby every constituent
in that mcAM can be mapped to the corresponding constructs of one cSC of that
mcAM. After that, related early work done by other authors on reverse engineering
and models in open-source systems is presented and discussed. The former work
provided the inspiration for this thesis and from which this thesis originated. The
study subjects of this thesis relied on the outcomes of the latter work.

2.1 Theory
In order to detect the differences between the mcAM and the cSC of that mcAM,
for each model constituent in the mcAM, there must be a map to the corresponding
construct(s) of the cSC of that mcAM. Only with knowledge of Java and UML can
one understand how to map every element in a mcAM to the corresponding con-
struct(s) of a cSC of that mcAM.

As Java and UML evolve, multiple versions of their specifications exist at different
times. On the other hand, the mcAM and the first voSC found in the repository of
each project were created at different times. For the five projects studied, in order
to ensure that these mcAMs and voSCs included in the projects matched the appro-
priate versions of Java and UML specifications, respectively, it is critical to identify
when the earliest mcAM and voSC were created in the repository. This is because
the creation date of the Java specifications and UML specifications used should be
ideally as close as possible to the creation date of the earliest created mcAM and
voSC, and in turn, later versions have new updates that may not adapt to these
mcAMs and voSCs. After checking, the earliest mcAM and voSC were created on
July 8, 2011, and August 24, 2011, respectively. In consequence, Java SE7 speci-
fications (released in July 2011) [20] and UML v2.4.1 superstructure specifications
(released in July 2011) [21], respectively, were selected as the basis for this study.

2.1.1 Related Java Knowledge
Relevant Java knowledge needs to be understood, including Java syntax/specifications
and the OO paradigm. Of particular interest part Java specifications, along with
several related concepts in the OO paradigm, which can help to understand how
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abstraction is able to be created over the cSC.

2.1.1.1 Java SE7 Specifications

Of particular interest part of Java SE7 specifications is illustrated in the following:

Framework is a set of classes and interfaces which provide a ready-made architec-
ture [22].

Collection framework provides the ready-made classes and interfaces needed to
represent a group of objects (also called instances) as a single entity in Java [22].
For example, the Map interface with the corresponding classes, e.g., HashMap, is
used to present a group of instances.

2.1.1.2 Object-Oriented (OO) Paradigm

Several related concepts of the OO paradigm are described in the following, accord-
ing to the source [20, 23, 24, 25, 26, 27].

Object are often referred as an instance or an array of a class in Java and all
objects created belong to a certain class [20, 25]. Objects are an encapsulation of
information and behavior relative to some entity of the application domain under
consideration [25]. In real systems many objects with similar information (data)
and behavior (functionality) can be found [25].

Class captures those objects with similar information (data) and behavior (func-
tionality) and classes can be viewed as an abstract data type [25]. Class is defined as
including at least two types of features: attributes (also called variables, fields or
data members), which stand for the stored information and methods (also called
operations or function members), which represent the behavior [25].

Encapsulation is a technique for minimizing interdependencies among separately-
written modules by defining strict external interfaces [26]. An encapsulated module
can only be accessed by clients (that is, other modules that make use of this module)
via this interface [27]. Implementation details are “hidden” within the module. The
primary reason for requiring encapsulation is to make it possible to change (improve)
the implementation of a module without having to change (and/or recompile) the
module’s clients [27].

Take Java as an example. For the encapsulation of attributes included in a class,
all attributes about that class should be set to private unless they are specifically
declared public [25]. The public setter and getter operations set for the attributes of
a class are called its interfaces and should only be the “tip of the iceberg” with the
hidden part that is called the implementation [25]. Those interfaces of a class allow
the supplier class to render the values of those attributes to the customer class [25].
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Inheritance allows the subclass that extends the superclass to be arranged in a
hierarchical structure [24, p. 451], and thereby a subclass to take on the general at-
tributes and operations of that superclass in the inheritance chain so that attributes
and operations then form part of the definition of the subclass for code reuse [23,
p. 63].

2.1.2 Unified Modeling Language (UML)
UML is a modularly structured language that can provide specific components of
primary interests for a specific domain or application [21, p. 1]. UML is a de facto
standard formalism for software design and analysis [6]. With some existing case
tools such as Enterprise Architect [28] and IntelliJ IDEA [29], specific constituents
of UML can be handily visualized to accommodate the specific requirements. Of
particular interest are class diagrams used for modeling the information on the do-
main of interest in terms of objects (instances) organized in classes and relationships
between them [6]. Thus, the specific constituents of UML that are most likely to
be required in most cases for constructing a class diagram are classifiers (classes),
classifiers’ (classes’) embedded text notation for attributes and operations, and rela-
tionships between classifiers (classes). As mentioned above, they can all be visualized
with a case tool; these constituents are detailed separately in this section.

2.1.2.1 Graphical Notation for Classifiers

Classifier refers to a classification of instances describing a set of instances that
have features in common [21, p. 51], in which the textual notation for attributes
and operations is embedded.

Figure 2.1 presents examples of graphical notation for a class Window at three dif-
ferent levels of abstraction: suppressed (on the top left corner), analysis (on the
right), and implementation (on the bottom left corner) [21, p. 50]. However, for
different systems, at which level or in the fluctuations between these levels a class is
constructed actually depends on different design decisions made by different archi-
tects during the design stage. In some cases, they may determine to model a specific
part of the system that is of primary interest at a low level (e.g., an implementation
level) to give developers more insight into that part of the system during the imple-
mentation stage. On the contrary, for the part of a system that is of less interest,
they may determine to model that part of the system at a higher level relative to
the level of implementation (e.g., a suppressed or an analysis level).

As seen in Figure 2.1, if the class Window is constructed at an analysis or implemen-
tation level, details of its embedded textual notation for attributes and operations
are (more or less) laid out. However, the meta-textual notation defined for them in
[21] is far more comprehensive than any of the three illustrated in Figure 2.1. Take
Figure 2.1 as an example, aiming at leaving the reader with an impression of what a
class is possibly like at various abstraction levels. That means in general, the layout
of a graphical class is composed of three primary sections. These three sections are
elaborated in the following with the aid of a given example shown on the right of
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Figure 2.1.

• Upper section (mandatory): Contains the name of the class, e.g., Window
[30].

• Middle section (optional): Contains one or more attributes of the class
Window, and they are used to describe the qualities of Window [30], e.g., the
attribute size: Area is used to describe the size of an instance of the class
Window. Noteworthy, this section is only required when describing a specific
instance of a class [30].

• Bottom section (optional): Includes class operations displayed in list for-
mat, each operation, e.g., hide() takes up its own line [30]. The opera-
tions describe how a class interacts with data [30], e.g., for the operation
attachX(xWIN: XWindow), the class Window references class XWindow as a
parameter data type, and thereby an interaction between the class XWindow
and the class Window comes out.

Figure 2.1: Three abstraction levels of graphical class notation: suppressed (on
the top left corner), analysis (on the right), and implementation (on the bottom

left corner) [21, p. 50]. Compared with the suppressed level with only the specified
name of a class, another two levels present a more comprehensive layout of a class

with more or less) textual notation for attributes and operations embedded.

2.1.2.2 Conversions of BNF

To standardize the textual notation for attributes and operations embedded in the
classifier, legal formats are first specified, i.e., the Backus-Naur Form (BNF) con-
versions (as depicted in Figure 2.2). The legal formats make the textual notation
for attributes and operations more easily interpreted.

Note that the specification of BNF conversions applies to both earlier serial UML
v1.0 specifications series and the latest serial v2.0 specifications series.
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Figure 2.2: Specification of Backus-Naur Form (BNF) conversions [21, pp. 16–17].

2.1.2.3 Textual Notation for Attributes

Reference to [21, pp. 129–130], the notation for attributes defined is depicted in
Figure 2.3.

Note that attributes are a legacy terminology of the earlier UML v1.0 specifications
and are referred to as properties in the UML v2.4.1 superstructure specifications.
Property (denoted in Figure 2.3) and attribute are ontologically identical. Termi-
nology attributes are used in this thesis.

Figure 2.3: Textual notation for attributes [21, pp. 129–130].
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This thesis work focuses on five constituents of the attributes’ textual notation:
name, prop-type, multiplicity, default and visibility [21, p. 129] (as depicted in Fig-
ure 2.3, underlined in pink). These five constituents are referred to as name, attribute
type, multiplicity, default value, and visibility, respectively, in this thesis. The def-
initions of these constituents used in this thesis and the reasons why they are of
interest are detailed in the following.

Note that although their corresponding definitions are depicted in Figure 2.3, some
of them may still need to refer to earlier UML v1.5 specifications [31]. In this way,
these two versions of definitions are able to complement each other. This will en-
hance the comprehensibility of those constituents.

• Reference to the definition of name in the UML 1.5 specifications, Chapter 3,
Part 5, Section 3.25 “Attribute”, name is an identifier string, usually a simple
word, to represent an attribute [31, p. 42].

Names are mandatory for attributes’ textual notation. Names are not mere
identifiers for attributes; in particular, they carry relevant semantics related
to the static data structure of the classifier [32]. Semantics preservation is a
main objective of the refinement of design into code [32]. Thereby, attributes
names are expected to enhance our comprehensibility on mappings between
the attributes in the mcAM and cSC. That means based on the semantics
related to the attributes in the mcAM, their corresponding attributes in the
cSC that represent similar semantics are able to be identified.

Note that considering attributes in the mcAM can be referred to as either
variables or constant variables in the cSC. In accordance, an attribute in the
mcAM can be modeled as as variable or a constant variable that will be im-
plemented in the cSC. Referring to Java naming conversions, the naming of
variables should be in camel case [33] and the naming of the declared class
constant variables should be all in uppercase letters with words separated by
underscores (“_”) [34]. These naming conversions are represented in the same
way as they are in the mcAM. Thus, by observing the naming conversions of
attributes in the mcAM, one can infer whether an attribute in the mcAM can
be mapped to a variable or a constant variable in the cSC.

• Reference to UML v1.5 specifications, Chapter 3, Part 5, Section 3.25 “At-
tribute” [31, p. 42], attribute type refers to either name of the classifier or a
language-dependent string that maps into a primitive data type in Java.

There are two reasons for us to study the differences in attribute types. The
first reason is that the attribute types might be related to relationships between
classifiers (also instances). For example, the relationships of association, ag-
gregation, and composition between classifier A and B should first satisfy that
classifier A references classifier B as the type of an attribute included in clas-
sifier A. Then, to confirm exactly the relationship between classifiers A and
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B, based on the definitions of relationships in this section, it demands us to
check the detailed implementation of the cSC.

Although the attribute type (name of the classifier) is critical for understand-
ing the relationships between classifiers, the attribute type is an option (as
illustrated in Figure 2.3). In essence, the possibility of omitting the attribute
types by architects when designing the mcAM cannot be excluded. This is the
second reason. The omission of the attribute types is a kind of abstraction.
Opposite to this case, there would be two other cases caused by developers’
disagreements in the implementation of the cSC with respect to the abstrac-
tion created by architects in the mcAM. These two cases are 1. The attribute
type in the mcAM is removed in the cSC. 2. The attribute type in the mcAM
and cSC is specified differently.

• Multiplicity is specified in the textual notation for both attributes and op-
erations. Thereby, its definition and the reason why it is a focus in this thesis
are detailed separately in subsubsection 2.1.2.6.

• Default value is an expression that evaluates to the default value or values
of the attribute [21, p. 113]. Referring to the notation for attributes depicted
in Figure 2.3, the default value is an option. Thus, assume a possibility that
when designing attributes/variables in the mcAM, some architects may intend
to omit the specification of default values and choose to leave them out for de-
velopers to initialize the variables in the cSC. The reason for this is that these
architects may have taken into account the need to cater to new requirements
in the future, and thus the values of variables will be updated by developers
one or more times during the implementation of the cSC. This will cause the
default value not in the mcAM to be added to the cSC.

Opposite to the omission of the default values of the attributes (variables),
some architects may over-specify the default values of attributes (variables) in
the mcAM. However, developers may disagree with this, and they choose to
remove the specified values in favor of other approaches, such as adopting pub-
lic setter operations of these attributes (variables) to initialize the attributes
(variables) and update their values one or more times in the cSC. Note that
the prerequisite for using public setter operations is that the attributes (vari-
ables) declared in the classifier should be set to private.

On the other hand, for the design of attributes (constant variables) in the
mcAM, considering that a constant variable should be assigned a value once
across the life-cycle of the program, a query is whether the architects intended
to specify a default value for a constant variable in the mcAM or not.

As mentioned previously, there would be a case - the differences in attributes
caused by the conversion of variables and constant variables between the
mcAM and cSC. Thus, another query as to whether this case has an impact on
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the specification of default values in the mcAM and cSC. As we all know, the
variables are likely to be updated one or more times in the cSC. In particular,
assume that variables in the mcAM, which may not hold default values, are
converted to constant variables with default values assigned in the cSC. This
will lead to another case - the default value not in the mcAM is added to cSC.
However, differing from the former case, this case is considered to be caused
by the deviations between the implementation of the cSC and the design of
the mcAM.

• Visibility is specified in the textual notation for both attributes and opera-
tions. Thereby, its definition and the reason why it is a focus in this thesis are
detailed separately in subsubsection 2.1.2.5.

Except for the five constituents of attributes’ textual notation illustrated above, the
other two constituents of ‘/’ and prop-modifier(attr-modifier) are not considered to
be the focus due to the absence of the relevant cases in the five projects studied.

2.1.2.4 Textual Notation for Operations

Reference to [21, pp. 107–108], the textual notation for operations defined is de-
picted in Figure 2.4.

Figure 2.4: Textual notation for operations [21, pp. 107–108].

This thesis work focuses on four constituents of the operations’ textual notation:
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name, parameter-list, return-type, and visibility [21, p. 107] (as shown in Figure 2.4,
underlined in pink). They are referred to name, parameter list, and return type, and
visibility, respectively, in this thesis. The definitions of these constituents used in
this thesis and the reasons why they are of interest are detailed in the following.

Note that although their corresponding definitions are depicted in Figure 2.4, some
of them may still need to refer to earlier UML v1.5 specifications [31]. In this way,
these two versions of definitions are able to complement each other. This will en-
hance the comprehensibility of those constituents.

• Reference to the definition of name in the UML 1.5 specifications, Chapter 3,
Part 5, Section 3.26 “Operation”, name is defined as an identifier string to
represent an operation [31, p. 44].

Names are mandatory for the operations’ textual notation. Names are not
mere identifiers for operations; in particular, they carry relevant semantics
related to the behavioral status of the classifier [32]. Semantics preservation
is a main objective of the refinement of design into code [32]. Thereby, op-
erations names are expected to enhance our comprehensibility on mappings
between the operations in the mcAM and cSC. That means based on the se-
mantics related to the operations in the mcAM, we are able to identify their
corresponding operations in the cSC that represent similar semantics. Some-
times, the semantics of the operations in the mcAM might remain in the cSC.
However, for the operations, their implementation in the cSC might deviate
from their design in the mcAM. This is because developers disagree with the
design decisions of operations made by architects in the mcAM; rather, they
make different decisions of operations in the cSC. The characteristics of such
deviations in operations between the mcAM and cSC are what this thesis aims
to study.

• Parameter list is defined as a list of parameters of the operation [21, p. 108]
(as depicted in Figure 2.4).

Considering Java syntax, i.e., the construct of an operation, e.g., a parame-
ter cannot be specified with a default value. Thereby, the default value will
be excluded in this thesis work. For the parameter, none of the five projects
studied have relevant cases with respect to the constituents (i.e., parm-property
and direction). Thus, these two constituents will also be excluded. To this
end, only three constituents (i.e., parameter-name and type-expression, and
multiplicity) of the parameter are the focuses of this thesis work. They are
referred to parameter name and paramter type, and multiplicy, respectively, in
this thesis.

– Reference to the definition of parameter name in the UML 1.5 specifica-
tions, Chapter 3, Part 5, Section 3.26 “Operation”, parameter name is
defined as an identifier string to represent a parameter [31, p. 45].
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Parameter names are mandatory for the specification of operations. How-
ever, compared with the names specified for attributes and operations,
here the parameter names are considered more related to identifiers for
operations parameters. The reason for this is that the semantics of the
names specified for operations can help us already to do mappings be-
tween the operations in the mcAM and cSC.

– Parameter type is defined as an expression that specifies the type of
the parameter [21, p. 108] (as depicted in Figure 2.4). The parameter
type can be either primitive data type or nonprimitive data type that is
represented by name of the classifier.

For the specification of parameters, compared with the parameter names,
parameter types should be taken more concern, since the parameter
type(s) of an operation is(are) related to the relationships between classi-
fiers. For example, classifier A references classifier B as a parameter type.
This implies a dependency between classifiers A and B (i.e., classifier A
depends on classifier B for its implementation). However, if the parame-
ter type specified in the mcAM is changed or removed in the cSC, which
will further lead to changes in the relationships between these classifiers
(or involving other classifiers). Such differences in relationships between
classifiers in the mcAM and cSC are what this thesis aims to study.

– Multiplicity (referring to the subsubsection 2.1.2.6)

• Reference to UML v1.5 specifications, Chapter 3, Part 5, Section 3.25 “Oper-
ation”, return type is defined as a language-dependent specification of the
implementation type (i.e., the primitive data type in Java), or types of the
value returned by the operation (i.e., the nonprimitive data type in Java) [31,
p. 45].

Note that the colon and the return type are omitted if the operation does not
return a value (as for Java void) [31, p. 45]. Thereby, if no return value is
specified for an operation in the mcAM, yet void is shown as a return type in
the cSC, we do not regard this change as a difference in return types between
the mcAM and cSC.

The reason for us to study the differences in return types is that the differences
in return types might lead to the changes in relationships between classifiers in
the mcAM and cSC. For example, classifier A references classifier B as a return
type. This implies a dependency between classifiers A and B (i.e., classifier
A depends on classifier B). If the return type from classifier B is changed or
removed as a void, this will further lead to changes in the relationship between
these classifiers (or involving other classifiers). Such differences in relation-
ships between classifiers in the mcAM and cSC are what this thesis aims to
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study.

• Visibility (referring to the subsubsection 2.1.2.5)

Except for the four constituents of operations’ textual notation illustrated above,
the other constituent oper-property is not the focus of this thesis, since there is no
relevant case associated with the five projects studied.

2.1.2.5 Visibility

Reference to UML 1.5 specifications, Chapter 2, Part 2, Section 2.5 “Core” [31,
pp. 35–36], the definitions of feature and visibility are given in the following:

Feature is defined as an attribute or operation, which is encapsulated within a
classifier [31, p. 35].

Visibility is defined as specifying whether Feature can be seen and referenced by
other classifiers [31, p. 36].

Four types of visibility and their denotations are illustrated as below:

• Public (denoted by the symbol ‘+’) - Any outside classifiers with visibility to
classifier A can use the Feature of classifier A [31, p. 36].

• Protected (denoted by the symbol ‘#’) - Any descendent of the classifier A
can use the Feature of classifier A [31, p. 36].

• Private (denoted by the symbol ‘−’) - Only the classifier A itself can use the
Feature itself, or nested classifier B within classifier A can use the Feature of
classifier A [31, p. 36].

• Package (denoted by symbol ‘∼’) - Any classifier declared in the same package
(or a nested subpackage, to any level) as the owner of the Feature can use the
Feature [31, p. 36].

Osman et. al [35] proposed that software engineers prefer to leave Private Opera-
tions and Protected Operations out, to make a class diagram simplified. However, it
has not been validated in a case, and to what extent they are left out is unknown.
Thus, this thesis indeed wants to fill this gap. Considering the encapsulation of at-
tributes in the OO paradigm, one inquiry is for simplifying a class diagram, whether
the public set for the setter and getter operations of those private attributes are
preferred to be excluded or even public for those operations and private for those
encapsulated attributes are all excluded.

In another source [36], Osman et. al investigated that “counting the number of
public operations” is the most important metric for indicating the importance of
a class. This is from a reverse direction to analyze how to recover an important
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class for a reverse-engineered class diagram; rather, from the forward direction, for
(both important and secondary important) classes, whether the exclusion of the
public set for operations relates to the types of operations is a question (based on
the three types of operations defined in this thesis: constructors, setter or getter
operations, and operations (besides setter and getter operations, which is detailed
in section 4.3). Thus, those inquiries motivate this thesis to study the visibility in
both attributes and operations.

2.1.2.6 Multiplicity

Multiplicity is defined as an inclusive interval of non-negative integers beginning
with a lower bound and ending with a (possibly infinite) upper bound [21, p. 95].

The textual notation for multiplicity specified by BNF is depicted in Figure 2.5.
Only the multiplicity range is the focus since the other constituents of multiplic-
ity are absent in the five mcAMs studied. Considering the Java specifications, the
multiplicity in the mcAM can be either an array or a collection, and then the mul-
tiplicity range should be [0,+∞] [7].

Multiplicity is specified in the attributes and operations for three constituents that
are related to data types. These three constituents are attribute type, parameter
type, and return type. There are two reasons for focusing on the multiplicity of these
three constituents. The first reason is that there might be differences in the inter-
face types provided in the collection, e.g., Set<name of the classifier> in the mcAM
changed into List<name of the classifier> in the cSC. The second reason is that the
multiplicity not in the mcAM might be added to the cSC, e.g., name of the classifier
in the mcAM is changed into List<name of the classifier> in the cSC. Multiplicity
is a property of these three constituents and represents the number of instances of
the classifier, so multiplicity along with the constituents, should be considered in
parallel. On the other hand, the multiplicity and the relationships of aggregation
and composition are correlated (referring to their corresponding definitions and se-
mantics in subsubsection 2.1.2.7).

Note that the multiplicity placed at the end of an association is not the focus of this
thesis, as it is not easy to manually check how many invocation sites of the instances
in the cSC.

Figure 2.5: Syntax for a multiplicity string [21, p. 98].
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2.1.2.7 Graphical Notation for Relationships

The aim of this thesis is to study seven types of relationships of the mcAM: depen-
dencies, usages, associations, aggregations, compositions, inheritances (also known
as generalizations), and realizations. Reference to UML v1.5 specifications, Chapter
3, Part 5 [31, pp. 34–93], and UML v2.4.1 specifications [21], their definitions are
given as follows (note that due to the unavailability of clear definitions of some re-
lationships, their definitions should be better detailed with their semantics in order
to enhance their comprehensibility):

Dependency is defined as a relationship that relates the model elements (con-
stituents) themselves and does not require a set of instances for its meaning [31,
p. 90]. Dependency signifies that a class requires another class for its specification
or implementation [21, p. 61], so dependency indicates a situation in which a change
to the target element may require a change to the source element in the dependency
[31, p. 90].

Usage is defined as a relationship where one class requires another class for its full
implementation or operation [21, p. 139].

Note that in the metamodel, Usage is a Dependency in which the client requires the
presence of the supplier.

A binary association refers to an association among exactly two classes (includ-
ing the possibility of an association from a class to itself) [31, p. 68].

Aggregation refers to a type of whole/part of a binary association relationship.

Composition refers to a strong form of aggregation that requires a part instance
to be included in at most one composite at a time [21, p. 38]. If a composite is
deleted, all of its parts are normally deleted with it [21, p. 38].

Inheritance refers to a taxonomic relationship between a more general superclass
and a more specific subclass [21, p. 38]. Each instance of the subclass is also an in-
direct instance of the superclass [21, p. 70]. Thus, the subclass inherits the features
of the superclass [21, p. 38].

Realization refers to a relationship between a class and an interface implying that
the class supports the set of features owned by the interface and any of its parent
interfaces [21, p. 89].

The graphical notation for the seven types of relationships defined above is depicted
in Figure 2.6.
Of particular note, according to the definitions of the relationships of dependency,
association, aggregation, and composition, four corresponding levels (from 1 to 4) of
abstraction defined are depicted in Figure 2.7. The higher the level of abstraction,
the lower the level.
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Figure 2.6: Graphical notation for seven types of relationships.
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Figure 2.7: Four abstraction levels specified for four relationships - dependency,
association, aggregation, and composition, respectively.

2.2 Related Work
This section consists of two parts. The first part is related to the currently existing
reverse engineering methods/tools. The second part describes the usage of models
in the software development practice.

2.2.1 Reverse Engineering
Müller et al. [37] refined the definition of reverse engineering in [38] as “a process
of analyzing a subject system to identify its current components and their interre-
lationships and to extract and create system abstractions and design information.”
Reverse engineering methods/tools play a key role in legacy systems based on the
absence of a design. In particular, class diagrams are often poorly to be updated
during development and maintenance [39, 13]. There is a concern that such a diver-
gent class diagram cannot help software maintainers in the same way understand the
system’s architecture during maintenance later on. Thereby, as a solution, reverse
engineering methods/tools can be used to automatically generate reverse-engineered
class diagrams that are extracted from the current code. Such a reverse-engineered
class diagram can represent the up-to-date system’s architecture.

2.2.1.1 Manual Abstraction Created over Code

The class diagrams produced during the design and implementation phases of the
SDLC can be referenced by software maintainers during the maintenance phase to
understand the system’s architecture. However, in some cases, class diagrams may
contain volumes of information [35]. This makes it hard for software maintainers to
understand the system’s architecture [35]. Thereby understanding how abstraction
is manually created by software engineers and thus condensing/simplifying class
diagrams is essential. For this purpose, Osman et al. [35] conducted a survey to
investigate how manual abstraction is created over code. This survey involves 32
software developers, with 75% of the participants having more than 5 years of expe-
rience with class diagrams [35]. As a result, they found the important elements in a
class diagram are class relationships, meaningful class names, and class properties
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[35]. Also, the information that should be excluded in a simplified class diagram
is GUI-related information, Private and Protected operations, Helper classes, and
Library classes [35]. However, these findings are needed to be validated in a case.
The five case studies employed in this thesis can help validate these findings to some
extent.

2.2.1.2 Solutions and Attempts to Provide Abstraction for Reverse-
Engineered Class Diagrams

To make reverse-engineered diagrams both abstract and precise is a primary goal in
the reverse engineering community. Thereby, concepts related to diagrams conden-
sation/simplification or diagrams abstractness are first proposed along with several
technologies developed later on aiming at archiving this goal.

Guéhéneu [5] proposed that both abstract and precise reverse engineering tools do
not yet exist on the market. Guéhéneu [7] started by developing a tool named
PTIDEJ aiming to produce precise reverse-engineered class diagrams, in particular,
to infer use, association, aggregation, and composition relationships based on the
consideration of lacking clear definitions of those relationships. PTIDEJ [7] per-
forms even more accurately than class diagrams manually created by humans. Sub-
stantially, Guéhéneu [5] argued that the lack of abstraction with respect to current
existing reverse engineering tools is because of the lack of clear definitions of class di-
agrams’ constituents. Thereby, Guéhéneu systematically studied constituents of the
class diagrams in reference to UML 1.5 specifications and refined their definitions.
Guéhéneu [5] then exemplified the study with PTIDEJ to reverse Java programs as
UML diagrams abstractly and precisely.

We agree with the assertion in [5] proposed by Guéhéneu, i.e., the definitions of
some constituents of class diagrams are vague and verbose. Thus, the refinements of
definitions in [5, 40] by Guéhéneu helped this thesis work a lot in regard to mappings
between mcAM constituents and cSC constructs.

The lack of abstraction with respect to reverse engineering tools/methods is pro-
posed by other authors as well, according to the source [35, 41, 39]. The resultant
diagram generated by reverse-engineering methods/tools is often very cluttered [41].
This is of little help to software engineers in understanding the system’s architecture
since it is hard for them to locate the key places of primary interest.

Regarding condensation of reverse-engineered class diagrams to enhance their com-
prehensibility, Osman et al. [42] proposed an approach by using a supervised clas-
sification algorithm where design metrics (e.g., number of operations, number of
attributes, etc.) as the input. Yet, an elemental question left out is which elements
of the system’s architecture should be selected for accommodating various levels of
abstraction [39]. An extension of Osman et al.’s work is conducted by Thung et al.
They used design metrics [42] created by Osman et al. and further added additional
network metrics (e.g., betweenness centrality, closeness centrality, etc.) in their ap-
proach [41]. As a result, it reaches a 9% improvement compared to the approach
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developed by Osman et al. Considering there is one concern of Thung et al.’s work,
i.e., the generalization to other projects, Mersam and Peter [39] used semantic web
technologies to improve the condensation process. Two main contributions of their
work are V-OntModel, and a condensation architecture [39]. The former aims to
help overcome the lack of missed information on software evolution, such as classes
in a class diagram [39]. The latter aims to reach further a high level of abstraction
of the class diagrams and gain comprehension [39]. The condensation architecture
in which classes are ranked according to a decision list, then a final decision can
be made on the candidate classes to be excluded from a reverse-engineered class
diagram [39].

The findings in our thesis on the characteristics of the differences caused by manually
creating various abstractions can provide input for improving the abstractness of
future reverse engineering methods/tools. The reason for this is this thesis took the
semantics information revealed behind the class diagrams into account during the
mappings between mcAM constituents and cSC constructs.

2.2.1.3 Consistency Check(s) between Code and Design

Reverse-engineered diagrams are generated by extracting information from code
based on the absence of a design that can be referenced. Rather, the consistency
check(s) between code and design is based on the existence of an existing design.
We agree with the assertation proposed by Antoniol et al. [32]. If the design exists,
evolving it and then mapping it to code is a preference since the existing design
includes context and high-level semantic information. However, a bias exists in
reverse-engineered designs, multiple semantics are candidate explanations for the
same piece of code [32], e.g., in Java, classifier A references B as an attribute type
can represent either an aggregation or a composition between classifiers A and B.
Thereby, evolving designs are considered of higher quality provided that traceability
with code is maintained [32].

Various methods and models exist for checking the consistency between code and
design. Still, Antoniol et al. [32] compared different design-code traceability meth-
ods based on different class properties (e.g., class names) and property combinations
(e.g., the names of class operations and attributes prefixed with class names). They
found that the methods based on class names perform best [32]. Dennis et al. [43]
defined a matching between classifiers based on three approaches, i.e., matching
based on names, metric profile, and package information, and their combination.
They found that “matching based on names” performs best. It is not hard to find
that Antoniol et al. and Dennis et al. all investigated that class names play the
most important role in mappings between entities in design and constructs in code.
However, for those classes that have not been successfully matched, there is a lack of
systematic study on why deviations are between them (or their names). This thesis
work will fill this gap by investigating the differences in class names and summariz-
ing the reasons for these differences. In consequence, providing input for improving
future methods/tools of consistency check(s) between code and design.
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There is a lack of manual and systematic study into defining a set of mapping rules
between code and design. The researchers mentioned above are inclined to use mod-
els and methods (sometimes leverage specific metrics) to directly investigate which
class properties or combinations of properties are given more weight in the contri-
bution to the consistency check between code and design. However, the tools and
methods they used did not help them yield great gains in discovering the similari-
ties and differences in class properties’ interrelationships. Differences in the internal
linkage of class properties are considered to potentially imply abstraction. Thus,
the cases of the differences between the mcAM and cSC provided in this thesis can
provide input for refining future mapping rules.

Differing from focusing on similarities and differences between the code and design,
Shatnawi and Alzu’bi [44] focused on the deviations in three quality factors reusabil-
ity, extendibility, and understandability. Thereby, they proposed a quality model
named QMOOD [44] that uses object-oriented (OO) metrics to measure internal
properties of the software (e.g., encapsulation, inheritance, and coupling) and exter-
nal quality attributes (e.g., reusability, and understandability), aiming to find the
correspondence between the design and implementation. As a result, inheritance,
polymorphism, abstraction, composition, understandability, and extendibility are
found to have the highest correspondence between code and design [44].

This thesis also argues that the internal properties mentioned above are noteworthy
since they are built upon abstraction. The characteristics of abstraction are what
this thesis aims to study.

2.2.2 Models in Software Development Practice
Existing studies on the usage of models in software development will be presented
first. This will give the reader a context for the use of models. After that, some
related work in creating the dataset/database that stores models will be presented.
The created dataset/database can be used to answer a range of questions on model
usage in FOSS. Considering that the models and code from the industry are often
not accessible, the five studied subjects of this thesis are yielded from that dataset.

2.2.2.1 Usage of Models

Surprisingly, most studies so far on UML usage are based on the opinions and expe-
riences of the participants rather than studying the actual models. Baltes and Diehl
[45] conducted an online survey with 394 participants involved to investigate the
use of sketches and diagrams in software engineering practice. They found that the
majority of participants related their sketches to methods, classes, or packages but
not to source code artifacts with a lower level of abstraction [45]. Yatani et al. [46]
interviewed 9 Ubuntu contributors to investigate how and why they used diagrams.
The study shows that the interviews used diagrams yet did not use them consistently
[46]. The use and practices of diagramming are influential in FOSS development,
yet one concern is that it is far from simple at times in regard to diagramming [46].
Chung et al. [47] questioned 230 contributors from 40 various FOSS projects and
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interviewed eight participants in regard to sketching and drawing diagrams. They
found the usage of sketching and drawings in the FOSS is infrequent.

We are convinced that the characteristics of manual abstraction provided by us
would contribute to enabling software developers to gain insight into how to cre-
ate a class diagram at an appropriate abstraction level to accommodate the re-
quired system’s implementation structure, i.e., to avoid over-specification and under-
specification in model elements. If a class diagram is created at an appropriate man-
ual abstraction level, it will play a key role in helping software engineers understand
and avoid misunderstanding of the system’s implementation structure.

2.2.2.2 Dataset/Database of Models

It is hard to access industrial projects that include class diagrams and their corre-
sponding source code. Thus, we decided to make use of models in FOSS. Karasneh
et al. [48] adopted a crawling approach to acquire so far more than 700 UML class
diagrams, and they converted them into xmi. stored in a searchable database af-
terward. Hebig et al. [1] mentioned that the lack of available data is the reason
why so far, no answers could be given to several basic questions on the amount of
UML files in open-source projects, such as whether the UML models are static or
updated. Thus, they adopted a semi-automated approach to collect UML stored
in images (.jpeg, .png, .gif, .svg, and .bmp) and standard formats (.xmi and .uml
files) by randomly scanning ten percent of all GitHub projects (1.24 million) [1]. As
a result, they gained a list of 3 295 open source projects, including 21 316 UML
models. The Lindholmen dataset [1] is the first corpus established in the modeling
community.

Compared to Hebig et al.’s work, in Karasneh et al.’s work, one concern is that the
number of collected class diagrams is small. Yet, another concern is that no model
context except for model artifacts is provided. This thesis aims to study the actual
cases of models and code, so we need to have the corresponding source code of the
model. The code information can be accessed via the links to the project provided
in the Lindholmen dataset [1]. Thus, we decided to make use of the Lindholmen
dataset [1] to obtain the eligible data.
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3
Methodology

This chapter describes the methodology of multiple case studies employed in this
thesis. Case study allows research to be conducted in a specific, natural setting and
with low obtrusiveness to study a particular software engineering phenomenon [49].
Thereby, the case study is suitable for studying the characteristics of the differences
between the mcAM and the cSC of that mcAM since no human obtrusiveness is
involved. The overall process of the methodology is illustrated in Figure 3.1.

Figure 3.1: The overall process of the methodology.

First, we accessed Lindholmen dataset [1] (Step 1). This dataset is a collection of
open-source projects from Github [1]. These projects include UML files with their
corresponding source code. The information of Lindholmen dataset [1] is detailed
in section 3.1.

We selected five Java non-academic projects from that dataset as the study sub-
jects (Step 2). For each project, there might be one or more mcAMs included in
the project, yet only one of them will be selected as the study subject. Also, there
might be multiple cSCs of a selected mcAM in the project’s repository. Still, only
one cSC of that mcAM will be selected. The ideal selection of one mcAM and one
cSC of that mcAM from a project is illustrated in section 3.2.
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In Step 3, we selected IntelliJ IDEA (IDEA) as our reverse engineering tool for
reversing the source code into a class diagram. The reason we selected this tool is
detailed in 3.3.

A spreadsheet comparison template is designed (Step 4). This template is used to
record the information on the project, the information of the selected mcAM and
the cSC of that mcAM, as well as the differences between the mcAM and the cSC
of that mcAM. The meaning of each column that forms this comparison template
is detailed in section 3.4, followed by how we turned mcAM and the cSC of that
mcAM into pictures for differentiating.

With the support of IDEA (selected from Step 3) and the comparison template
(designed in Step 4), it allows differences between the mcAM and the cSC of that
mcAM to be easily identified and thus be recorded in the comparison template.
Afterward, those recorded differences are analyzed to answer the RQs (Step 5).

3.1 Open Source Repositories Access
The Lindholmen dataset [1] used in this thesis is a large modeling corpus, and it was
derived from mining GitHub’s open-source repositories. Hebig et al. [1] collected
UML stored in images formats (.jpeg, .png, .gif, .svg and .bmp) and standard for-
mats (.xmi, and .uml files) by randomly scanning ten percent of all GitHub projects
(1.24 million). After scanning and collecting data, they got this dataset, a list of 3
295 open source projects which include together 21 316 UML models [1]. The collect-
ing process is without specific programming language restrictions and domain type
restrictions. Thus, this dataset can support this thesis work for selecting five Java
projects with generalization in a highly natural setting. That means those selected
projects can represent the practices in the real world. Furthermore, the Lindhol-
men dataset [1] comprises two csv files, i.e., UMLFiles_List and Project_FileTypes.
Only the former is accessed because this file includes a list of links of UML files to
all projects [1]. These links allow the UML files to be accessed directly.

3.2 Data Selection
Due to the time constraints of this thesis work, a pragmatic scope is necessary.
Thus, five Java projects would be feasible for us to study. As aforementioned, these
five projects are selected from the Lindholmen dataset [1]. The criteria for choosing
these five projects are: First, they should not come from academia, as they are not
real practices in the industry, which is a threat to the validity that will be illustrated
in section 5.6. Second, the five mcAMs selected from those five projects should be
in image format with the existence of their corresponding cSC(s). Selecting class
diagrams in image format can save us time and allow us to acquire information on
the class diagrams directly. This means that an additional step is required compared
to other .xmi and .uml files, which is to use an automatic reverse engineering tool
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to process the files and generate the corresponding class diagrams in image format.

3.2.1 Definition of Terminologies
The following terminologies are defined by us or with reference to the definitions
given by other authors, which allows the reader to understand the ideal selection of
one mcAM from a project and the ideal selection of one cSC among multiple cSCs
of that mcAM in this section.

Reference to the source [50], manual abstraction (MA) is defined as using high-
level elements in the mcAM containing fewer details than the requirement for the
implementation to represent the implementation structure of the system.

Disagreements (disAGTs) refer to developers’ deviations from the design deci-
sions made by architects in the mcAM.

Common changes (CC) refer to the differences that are not caused by disAGTs
and MA between the mcAM and the cSC of that mcAM.

Note that for the definitions of the three terminologies given above, a sorted list of
cases corresponding to them is provided in Chapter 4. These cases will enhance the
reader’s comprehension of those definitions.

3.2.2 Ideal Selection of One mcAM from a Project
As aforementioned in section 3.2, the selected mcAM should first be in image for-
mat. Second, the mcAM should have the corresponding cSC that can be found in
the repository. If only one mcAM is included in a project, we select that mcAM.
If there are multiple mcAMs that are included in a project, considering the time
constraints and the fact that we want to study more projects, we would ideally want
to select one of them to study. The following two cases need to consider:

Case 1 - A mcAM with one or more updates: As the code evolves, a mcAM is
sometimes updated one or more times. However, we would ideally want to select
the latest update of the mcAM as the study subject. We cannot guarantee that
compared with other legacy mcAMs, the latest updated mcAM is the most accu-
rate. This is only about a decision that needs to make in the case that the mcAM
with one or more updates, and we expect to select one only to study. This is be-
cause we do not expect to study a legacy mcAM that cannot reflect the up-to-date
implementation structure of the system. One concern is that the voSC that includes
the latest mcAM might not be fully implemented, so accordingly, there is no map
for some mcAM concepts. Nevertheless, this concern can be dealt with by selecting
one ideal cSC of the latest updated mcAM (proposed in section 3.2.3).

Case 2 - Multiple mcAMs are created to represent a system, and these mcAMs
might represent different parts of the system: If it is the case, we would ideally want
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to select one of them to study randomly. It is difficult to set criteria for an ideal
mcAM we need to select since the number of concepts or attributes and operations
associated with the concepts is independent of the complexity of the system, i.e.
the more concepts or more attributes and operations created in a mcAM does not
imply that the system it represents is more complicated. Thus, randomly selecting
one mcAM will not introduce any bias.

3.2.3 Ideal Selection of One cSC among Multiple cSCs of
that mcAM

As mentioned in section 1.5.2, if multiple cSCs correspond to one mcAM, only one
cSC of them will be selected. Also, this cSC should ideally cover most attributes
and operations of the mcAM compared to other cSCs; otherwise, the missed at-
tributes and operations will result in overestimating the differences caused by MA
and disAGTs in the results. This is a threat to the validity, which will be described
in section 5.6. Considering time constraints, assuming that a project has hundreds
or thousands of voSCs, it is not feasible for us to check all voSCs one by one to know
which of them are cSCs of the mcAM and, further which cSC is the best selection.
Thus, it cannot be guaranteed that the finall y selected cSC is without any missed
attributes and operations which are implemented in other cSCs. However, we tried
to select a cSC that is approximately close to an ideal cSC. In order to shorten the
time spent on selecting an ideal cSC and study more projects, a process is proposed
(see Figure 3.2). Note that regardless of when the selected mcAM was created in
the SDLC, the voSC that includes the selected mcAM is always the first selection.
This voSC is considered likely to be a cSC of the selected mcAM since they were
created at the same time.

Figure 3.2 illustrates a case that the selected mcAM is created based on the exist-
ing source code as the code evolves. We first check every concept in the mcAM to
know whether there is a map to that voSC. If so, this voSC is a cSC of the mcAM.
However, considering that a mcAM may have multiple cSCs, to prevent the overes-
timation of the differences caused by MA and disAGTs, we would want to map the
voSC before and after that voSC to the mcAM. As long as an ideal cSC that covers
most attributes and operations is found, we will stop the mapping. Note that if
there are several ideal cSCs, i.e., cSCs that cover the most attributes and operations
in the mcAM compared to other cSCs, we will select one of them randomly.

If for one or more concepts in the mcAM, there is no map to that voSC, that means
that voSC is not a cSC of the mcAM. This situation has not been encountered in
our studies. Nevertheless, we proposed a process in the dashed line (as shown in
Figure 3.2) to accommodate this situation. This process aims to help find an ideal
cSC. We also proposed the following two reasons, with a respective case assumed as
well, to explain this situation.

Reason 1: For the voSC before that voSC, there might be one or more voSC that
are the cSC(s) of the mcAM, yet as the code evolves, the cSC(s) has been changed

38



3. Methodology

several times, which leads to the fact that voSC is no longer a cSC of the mcAM.

Reason 2: For the voSC after that voSC, there might be one or more voSC that
are the cSC(s) of the mcAM. That implies some development work may not be done
yet, so as the code evolves, one or more concepts in the mcAM will be implemented
in the following voSC.

It is difficult to distinguish between both cases by looking at one voSC. However,
this issue can be dealt with by comparing the number of classes in the voSC with
the number of concepts in the mcAM. If the number of classes in that voSC is much
more than the number of concepts in the mcAM, yet for some of the concepts in the
mcAM, there is no map to that voSC. This case will be assumed to be caused by
reason 1. If the concepts that have a map in that voSC are less than the concepts
in the mcAM, i.e., too little source code information about the classes that we can
map to, for the concepts in that voSC, this case will be assumed to be caused by
reason 2. For both cases, it requires us to continuously check the voSC before that
voSC in reverse order and continuously check the voSC after that voSC, respectively,
until an ideal cSC is selected. That means the selected cSC reaches a peak where it
covers most attributes and operations (before the next cSC covers fewer attributes
and operations compared to it, or the next voSC is not a cSC, i.e., for some concepts
in the mcA, there is no map to that voSC).

Figure 3.2: The selection process of one ideal cSC among multiple cSCs of the
selected mcAM.
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Besides the case illustrated in Figure 3.2, another two cases we need to consider:
1. The selected mcAM may have been created at the start of the project with or
without the corresponding source code. For this case, we need to continuously check
the voSC after that voSC until an ideal cSC is selected. 2. The selected mcAM may
have been created at the end of the project. For this case, we need to continuously
check the voSC before that voSC in reverse order until an ideal cSC is selected. The
continuous check is the same way as in the two cases mentioned above.

3.2.3.1 Time and Resource Consumption

One question that might arise in the ideal selection of one cSC among multiple cSCs
of the selected mcAM is the time and resource consumption. For each of the five
projects studied, the voSC that includes the selected mcAM is all a cSC of that
selected mcAM. In regard to that voSC/cSC of a project, the time taken highly
depends on the coverage of attributes and operations in it. If fewer attributes and
operations are covered by it, the more left uncovered attributes and operations that
we need to check for creating the mappings between the voSCs and mcAM and vice
versa.

As observed from the five projects studied, for three of them, the finally selected
ideal cSC is the voSC/cSC that includes the selected mcAM. Thus, the time for
selecting that ideal cSC would be possibly around half a day. For the other two
projects, the time span between the voSC that includes the selected and the finally
selected cSC in terms of creating is less than ten days. The time would be taken
around one day. In regard to the “continuous” checking process, there might be some
voSCs that are irrelevant to the mcAM. Thus, they can be quick to be skipped. The
voSC(s) related to the mcAM are the concerns. Once the changes in a voSC that
is related to mcAM were found, it was unnecessary for us to download those voSCs
from the repository; rather, we online checked the related classes’ source code files
in the repository to locate the changes, respectively. Thus, the storage resource is
not consumed much, and only some cache will be consumed. Yet, it is essential to
take related digital or hands notes in regard to the “continuous” checking process,
e.g., commit A covers one more attribute a than commit B and with recording their
corresponding creation time. Then, the timeline at least would be clearly known
by us. Note that if the timeline is constrained to very few days, yet there is still a
possibility that a huge amount of voSCs involved in it. It is hard to know how many
of them are related to the mcAM since some of them might be used to describe the
other parts of the system not modeled by the selected mcAM. Thus, we can only
illustrate the issue of time consumption at a descriptive level.

Note that we did not encounter a situation where the voSC that includes the selected
mcAM is not a cSC for that mcAM. Thus, the approximate time expected to be
taken in that situation is unknown.
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3.3 Automatic Reverse Engineering Tool Selec-
tion

To simplify the cSC selection process, as an aid, the automatic reverse engineering
tool can mimic humans via automatically abstracting classes. Thereby the classes
can be abstracted over the detailed code implementation and laid out in the reverse-
engineered class diagram. Then the mappings between the classes from mcAM and
voSC are easily created, and the cSC(s) can be confirmed afterward. Thereby, the
only requirement for selecting an automatic reverse engineering tool is high precise-
ness in capturing the classes.

We compared Enterprise Architect (EA) and IntelliJ IDEA (IDEA). They can both
capture the classes precisely. Considering our proficiency in using the tool, IDEA
was chosen as our automatic reverse engineering tool. Notably, we always used the
source code as a benchmark to identify the differences between mcAM and cSC,
especially considering the fact that existing tools cannot fully and correctly identify
the relationships in the source code. Another note is that the selection of an ideal
cSC is semi-manual based on the fact that we only selected the related classes’ source
files to be visualized by the selected tool.

3.4 Spreadsheet Comparison Template Design
The scope of this thesis is to investigate five projects, so the results of these five
projects are needed to be aggregated. Thereby, a spreadsheet comparison template
is needed to be created. The comparison template designed consists of 29 columns
that are used to record 5 types of information in order: (i) Information about the
project. (ii) Information on the mcAM. (iii) Information on the cSC. (iv) The
differences between the mcAM and the cSC of that mcAM. (v) Additional notes.
Considering the limited space on the page, the comparison template is designed to
be too long to be clearly visible. Thus, it will be divided into five parts according
to those five types of information. Each part will be explained separately, with cor-
responding explanations.

Figure 3.3 shows that the columns from A to G (with a grey background) are used
to record information (i). This allows us to have a general understanding of the
background of the project. An explanation of each column is as follows:

• A - Repo. Name and Link: The name of the project’s repository and the
link to the repository. This link helps us to easily access the repository as soon
as we need to get some information about the project.

• B - SDLC: The time span is from the first commit creation time in the repos-
itory to the last commit creation time.

• C - No. voSC: The number of voSC found in the repository.
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• D - No. Contributors: The number of contributors who contributed to the
repository.

• E - Lang.: Lang. refers to languages.

Note that this thesis focuses only on Java programming projects.

• F - Arch. Pattern: Arch. pattern refers to the architectural pattern used
in the project.

• G - Type: There are two types of projects: industrial and uncertain. If the
information available in the repository cannot help us to confirm whether a
project is from the industry, then it will be defined as an uncertain project.

Note that here the available information that can be looked up refers to the
following:

– Profile of the contributors, e.g., work information, which can imply whether
a contributor is an employer at a company or an organization or a student
when they build that repository.

– The documents found in the repository document the information con-
taining the relevant information with respect to the types of the project.

Figure 3.3: Record information about the project.

Figure 3.4 shows that the columns from H to N (with a green background) are used
to record information (ii). An explanation of each column is given below:

• H - ID of the voSC that Includes the mcAM: ID refers to a unique
7-length identifier of a commit, which can be found in the commit history.

• I - mcAM Created Date: The creation date of the mcAM can be found in
the repository, and it should be in DD-MM-YYYY format.

• J - mcAM Link: The link to the mcAM. That allows us to track the mcAM
easily via this link.
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• K - No. Concepts: The number of concepts created in the mcAM.

• L - No. Attrib.: The number of attributes that are associated with the
concepts in the mcAM.

• M - No. Ops.: The number of attributes that are associated with the con-
cepts in the mcAM.

• N - No. Relatsh: The number of relationships between the concepts in the
mcAM.

Figure 3.4: Record information of the mcAM.

Figure 3.5 shows that the columns from O to X (with a blue background) are used
to record information (iii). An explanation of each column is given below:

• O - cSC ID: ID refers to a unique 7-length identifier of a commit, which can
be found in the commit history.

• P - cSC Created Date: The creation date of the cSC that can be found in
the repository, and it should be in DD-MM-YYYY format.

• Q - cSC Link: The link to the cSC. That allows us to track the source code
easily via this link.

R - No. Cls.: The number of classes in the cSC.

Note that classes here refer to classes associated with mappings from one or
more concepts in the mcAM to the cSC.

• S - No. Attrib.: The number of attributes that are associated with the
classes (counted in column R) in the cSC.

• T - No. Ops.: The number of operations that are associated with the classes
(counted in column R) in the cSC.
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• U - No. Relatsh.: The number of relationships that are associated with the
classes (counted in column R) in the cSC.

• V - All Attrib. Covered? (0/1): To check whether all attributes created
in the mcAM are covered by the cSC (0 = No, 1 = Yes).

• W - All Ops. Covered? (0/1): To check whether all operations created in
the mcAM are covered by the cSC (0 = No, 1 = Yes).

• X - All Relatsh. Covered? (0/1): To check whether all relationships
created in the mcAM are covered by the cSC (0 = No, 1 = Yes).

Figure 3.5: Record information of the cSC.

Figure 3.6 shows that the columns from Y to AA (with a dark green background)
are used to record information (iv). An explanation of each column is given below:

• Y - Diff. Caused by MA: To record the cases of the differences caused by
MA.

• Z - Diff. Caused by disAGTs: To record the cases of the differences caused
by disAGTs.

• AA - Diff. Caused by CC: To record the cases of the differences caused by
CC.

Figure 3.6: Record the differences between the mcAM and the cSC of that
mcAM.

Figure 3.7 shows that column AB is used to record information (v). This column
helps us to record additional information that cannot be filled into the columns from
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A to AA.

Figure 3.7: Record additional notes.

3.4.1 Turning mcAM and cSC into Pictures for Differenti-
ating

The comparison template designed in section 3.4 can assist us in recording the dif-
ferences in texts between the mcAM elements and cSC constructs. Yet, for some
of the specific differences, we will use the related partial pictures turned by the
mcAM and reverse-engineered class diagrams generated by the automatic reverse
engineering tool (IDEA) to illustrate. This can ease the reader’s understanding of
these differences and makes it easier for us to give examples to illustrate them. This
is because the huge deviations in the cSC implementation from the mcAM design
cause some differences between them. The semantics conveyed by mcAM elements
are thereby implemented by complicated cSC constructs. Some of the complicated
cSC implementations are better illustrated by using the related partially generated
reverse-engineered class diagrams with detailed explanations.

For detecting the differences between the mcAM and cSC, we initially intended to
use an automatic reverse engineering tool to help us achieve that. Yet, after try-
ing to use the tool for a long time, we found that the tool’s usage (not limited to
IDEA we adopted yet for another tool EA we tried out) is very limited. The tools
can only help us detect the structural differences, and any other non-structural
differences that need to take the semantics into account cannot be revealed by a
reverse-engineered class diagram generated by the tool. In consequence, we decided
to always use the source code as a baseline for detecting the differences between
the mcAM and cSC. Thus, the selected tool IDEA is only considered an aid for
us to give partial screenshots (pictures) from the generated reverse-engineered class
diagrams to illustrate the examples of the given differences.

In the comparison, we first manually selected the related classes’ source code files to
be visualized by IDEA. That means the mapping from classes between the mcAM
and cSC is fully completed by humans. Then we manually create one-to-one map-
pings from the mcAM elements to the cSC constructs in terms of attributes and
operations. For any non-conformance between the mcAM and cSC, in terms of at-
tributes and operations, or any of them from the mcAM found to be missed in the
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reverse-engineered class diagrams, we will check the relevant detailed cSC implemen-
tation to fully understand the roles of related classes, functionalities of attributes,
and operations associated with these classes. Then the one-to-many and many-to-
many manual mappings from the mcAM to the cSC can hereby be created by jointly
taking the semantics of the mcAM attributes, operations, and relationships into ac-
count. Finally, the differences related to semantics can thereby be detected. For
studying the differences between the relationships, given the fact that relationships
are highly dependent on the design of the attributes and operations, understanding
the detailed cSC implementation is a must here. We never used the tool IDEA as
an aid for helping us to detect the differences in relationships since IDEA cannot
even correctly recognize the relationships that exist in the cSC implementation and
then visualize them therein.

To illustrate how we turn mcAM and the reverse-engineered class diagrams gener-
ated by IDEA into the corresponding partial screenshots/pictures to differentiate
them, we give the following example, taken from one of our study subjects, i.e.,
EAPLI_PL_2NB [19] on GitHub:

As mentioned previously, for every class in the mcAM, in terms of its attributes and
operations, we first manually create respective one-to-one mappings from the mcAM
to the cSC. Thus, in this example, for the class CheckingAccount, we checked its in-
cluded elements, e.g., attributes, one by one, e.g., income: Income (see Figure 3.8).
It is observed that this attribute from the mcAM is missed in the reverse-engineered
class diagrams generated by IDEA (see Figure 3.9). Note that we purely named
such a reverse-engineered class diagram generated by IDEA over the detailed cSC
implementation as cSC in our illustration. Considering that the linkage between
the classes CheckingAccount and IncomeRepository from the mcAM remains in the
cSC, built on the fact that an attribute type of an instance of IncomeRepository is
specified in CheckingAccount. We can indeed infer that missed attribute is replaced
with new attribute incomeRepo: IncomeRepository (not in the mcAM yet added to
the cSC).

Note that we are inclined to turn the pictures from the mcAM and cSC with re-
spect to the two classes CheckingAccount and IncomeRepository rather than only
one class ChckingAccount to illustrate the fact that the attribute income: Income
of ChckingAccount is replaced with new attribute incomeRepo: IncomeRepository
in the cSC. This is because we jointly took the semantics conveyed by attribute
income: Income in CheckingAccount and the linkage between CheckingAccount and
IncomeRepository in the mcAM into account.
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Figure 3.8: For the class
CheckingAccount, the attributes, e.g.,

income: Income is modeled in the
mcAM.

Figure 3.9: For the class
CheckingAccount, that attribute

income: Income from the mcAM is
replaced with fully new attributes

incomeRepo: IncomeRepository in the
cSC.

To enable the reader to know how we recorded such a difference illustrated above
in our design comparison template, we gave the following Figure 3.10 to illustrate.
It is observed that we first recorded the class name which we were checking, i.e.,
CheckingAccount. Then we recorded the attribute income: Income from the mcAM
is missed in the cSC, followed by that it is replaced by a new attribute incomeRepo:
IncomeRepository in the cSC.

Figure 3.10: We recorded the difference, i.e., attributes from the mcAM are
replaced with new attributes not in the mcAM yet added to the cSC, differentiated

into disAGTs in our designed comparison template.
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4
Results

The results of this thesis work are presented in this chapter, aiming to answer the
RQs in section 1.6. Information about the project manually studied is presented
first, allowing the reader to understand the project’s background. After that, three
primary causes that cause the differences between the mcAM and cSC, namely MA,
disAGTs, and CC, are concluded. A sorted list of their cases is presented as well.
Regarding the cases of the differences caused by MA and disAGTs, not only do they
have their own cases, but some of them are opposed to each other. An explanation
for each of these cases is given, followed by a corresponding example to illustrate.

4.1 Information on the Project Studied
With the help of the template designed in section 3.4, the information on the five
projects studied is presented in Table 4.1. Note that columns from “Repo. name
and link” to “Type” have the same meaning as the corresponding columns from A
to G in that template explained in section 3.4.

Table 4.1: The project background (∼ = around).

ID Repo. name and link SDLC No.
cSC

No.
contributors Lang. Arch.

pattern Type

1 ZooTypers [15] ∼1.5 months 745 5 Java MVVM Uncertain
2 RaiseMeUp [16] ∼1.5 months 24 2 Java MVC Uncertain
3 EAPLI_PL_2NB [19] ∼2 months 483 9 Java MVVM Industrial
4 FreeDaysIntern [51] ∼30.5 months 449 3 Java Uncertain Uncertain
5 NeurophChanges [18] ∼28 months 534 7 Java Spring MVC Industrial

4.2 Suspected Cases

Table 4.2 illustrates the cases that we suspected might exist in other voSC(s)/cSC(s),
caused by MA and disAGTs. This is based on the fact that we only selected one cSC
among multiple cSC(s) for a project, and those suspected cases might be hidden in
other voSC(s)/cSC(s) not selected by us previously. On the other hand, considering
some cases of MA and disAGTs are opposed to each other since the design decisions
made on the mcAM design are unfollowed and different decisions are taken in the
cSC implementation. We can infer the opposite from the case we observed. Those
cases are able to be covered in our future work or might provide some inspiration
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for others who want to study those cases.

Referring to Table 4.3, case MC-2, considering the specificity of applying design
patterns in projects, a design pattern is not limited to only one way that can be
adopted for its implementation. Therefore, it is possible that the over-specification
of the classes related to design patterns in a mcAM is not followed; instead, another
way is taken to address the same concern that the design pattern has in the cSC im-
plementation. Those over-specified classes from the mcAM are possibly condensed
in the cSC implementation. Thus, case SDC-1 can hereby be inferred.

Considering the possibility of converting the constant variables from the mcAM to
variables in the cSC, the default values assigned to the constant variables from the
mcAM might be removed accordingly in the cSC. To be specific, assigning default
values to variables might be less common during the mcAM design, as they are very
likely to be updated frequently in the cSC implementation to cater to the new re-
quirements involved. However, if a constant variable is modeled out with a specified
default value in the mcAM, it is possible that the architects want to emphasize the
importance of this value. Thereby, case SDA-1 is inferred by us.

Out of the consideration of the code reuse and inheritance concept of the OO
paradigm, in reference to Table 4.3, case MA-5 was observed by us in the past.
Yet, we still cannot exclude the possibility that one or more attributes in the super-
class are downshifted to its subclasses in the hierarchical chain (i.e., case SDA-2).
It is considered not to be an ideal decision made in the code implementation, though.

With reference to Table 4.3, case MA-6, the opposite to it might be because the
attributes are over-specified in the mcAM. Yet, those over-specified attributes are
redesigned as one condensed attribute during the cSC implementation (i.e., case
SDA-3). The same as to case SDO-1, the over-specified operations from the mcAM
are redesigned into one operation in the cSC.

Referring to Table 4.3 cases MR-2 and MR-3, an aggregation or a composition
from the cSC can be modeled as an association in the mcAM to show the linkage
between different classifiers (or their instances). However, compared with an asso-
ciation, there is a constrain on an aggregation and a composition - that must be
built on the fact that B (part) can be accessed through a field of A (whole) [40], i.e.,
an attribute specified in A, where instances of B are referenced. Thereby, a more
explicit restriction on the relationships is a deviation of the cSC from the mcAM.
This can lead to cases SDR-1 and SDR-2.

Considering the abstraction level of an association is higher than an aggregation
and a composition, as a basis, we can infer case SMR-1 that might exist in other
voSCs/cSC(s), i.e., a composition from the cSC is modeled as an aggregation. This
case indeed covers manual abstraction.
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Table 4.2: Suspected cases caused by MA and disAGTs potentially exist in other
voSC(s)/cSC(s) not selected by us previouslt.

Case ID Suspected cases for MA Case ID Suspected cases for disAGTs

Classes SDC-1 Multiple classes are created in the mcAM, yet only
one class is implemented in the cSC.

Attributes SDA-1 The default value in the mcAM is removed in the cSC.

SDA-2

One or more attributes in the hierarchical structure
in the mcAM, i.e., the superclass, are
downshifted to one or more subclasses

inherited from this superclass in the cSC.

SDA-3 Multiple attributes are created in the mcAM, yet
only one attribute is implemented in the cSC.

Operations SDO-1 Multiple operations are created in the mcAM, yet
only one operation is implemented in the cSC.

Relationships
(between classifiers
A and B)

SDR-1
An aggregation between A (whole) and B (part) from the mcAM

is changed into an association between
A (origin) and B (target) in the cSC.

SDR-2
A composition between A (whole) and B (part) from the mcAM

is changed into an association between
A (origin) and B (target) in the cSC.

SMR-1
A composition between A (whole) and B (part)

from the cSC is modeled as
an aggregation in the mcAM.

4.3 Cases of the Differences Caused by MA and
disAGTs

Table 4.3 presents a sorted list of cases caused by MA and disAGTs. Here the model
elements of classes, attributes, operations, and relationships are the focus. Some of
the cases caused by MA and disAGTs are opposite to each other. The reason for
this is that the architects might sometimes over-specify some parts of the system,
yet the developers disagree with those design decisions, and they make different
decisions when developing the system. An example of each of these cases is also
given (note that a case might exist in one or more projects and might have one or
more examples in a project, yet we only select one example from a project as the
representation to illustrate that case).

Another note is that the naming of the classes, attributes, and operations between
the mcAM and cSC might be different. This might be involved in the presented
examples. However, such naming differences do not affect the fact that they are the
same class, attribute, and operation. This thesis considers the naming differences
to be caused by CC, which will be elaborated in section 4.4.
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Table 4.3: Cases for the differences caused by MA and disAGTs (∗ = own case,
<> = opposite).

Case ID MA Case ID disAGTs

Classes MC-1 Hierarchical inheritance structures not created
in the mcAM are added to the cSC <> DC-1 Hierarchical inheritance structures in the mcAM

are removed in the cSC

MC-2 One class created in the mcAM is divided into more than
one class in the cSC (related to the specific design patterns) <> Referring to Table 4.2, case SDC-1

Attributes MA-1 Additional attributes not in the mcAM are
added to the cSC <> DA-1 Attributes in the mcAM are removed in the cSC

DA-2*
Attributes from the mcAM are replaced by
additional attributes (that are not in the

mcAM added to the cSC) in the cSC

MA-2*

An attribute of classifier A whose type can indicate an aggregation
or a composition between classifiers A and B from

the cSC is modeled out by the naming of the association
between them in the mcAM

MA-3* The additional attribute type not in the mcAM
is added to the cSC

DA-3* The attribute type in the mcAM and cSC is different
(two causes, see Figure 4.40)

MA-4 The additional default value not in the mcAM
is added to the cSC <> Referring to Table 4.2, case SDA-1

DA-4* Converting variables from the mcAM to
constant variables in the cSC

DA-5* The default value not in the mcAM is added to the cSC
(caused by case DA-4*)

MA-5

One or more common attributes in one or more
subclasses in the mcAM are upshifted to the

hierarchical structure in the cSC, i.e.,
the superclass inherited by these subclasses

<> Referring to Table 4.2, case SDA-2

MA-6 One attribute created from the mcAM is divided into
more than one attribute in the cSC <> Referring to Table 4.2, case SDA-3

Operations MO-1 Additional operations not in the mcAM are added to the
cSC (three subcases, see Figure 4.7) <> DO-1 Operations in the mcAM are removed in the cSC

MO-2 Additional parameter names not in the mcAM
are added to the cSC <> DO-2 The parameter names in the mcAM are removed

in the cSC

MO-3 Additional parameter types not in the mcAM
are added to the cSC <> DO-3 The parameter types in the mcAM are removed

in the cSC

DO-4* The parameter type in the mcAM and cSC is different
(caused by cause 2 of DA-3*)

MO-4 Additional return types not in the mcAM
are added to the cSC <> DO-5 The return types in the mcAM are removed and

as void in the cSC

MO-5*

Multiplicity (referring to the collection-related interfaces)
specified for the return type without its corresponding

implementation interfaces/classes specified
in the mcAM, yet with them specified in the cSC

MO-6* The default parameters of the operation (in Android) in the cSC
are omitted in the mcAM

MO-7 One operation created in the mcAM is divided into
multiple operations in the cSC <> Referring to Table 4.2, case SDO-1

DO-6*
One or more operations from classifier A in the mcAM

are moved to classifier B in the cSC
(related to the particular architectural patterns)

Relationships
(between classifiers
A and B)

MR-1

Additional relationships not in the mcAM are added
to the cSC (two subcases with their six and two

corresponding concluded causes,
respectively, see Figure 4.12)

<> DR-1 Relationships between A and B from the mcAM
are removed in the cSC (one cause, see Figure 4.45)

MR-2

An aggregation between A (whole) and B (part) from the cSC
is modeled as an association between A (origin)

and B (target) in the mcAM
(two causes, see Figure 4.13)

<> Referring to Table 4.2, case SDR-1

MR-3
A composition between A (whole) and B (part) from the cSC

is modeled as an association between A (origin)
and B (target) in the mcAM (one cause, see Figure 4.13)

<> Referring to Table 4.2, case SDR-2

Referring to Table 4.2, case SMR-1 <> DR-2
A composition between A (whole) and B (part)
from the mcAM is changed into an aggregation

in the cSC (one cause, see Figure 4.45)

DR-3*
Relationships between A and B from the mcAM

are replaced by new relationships
in the cSC (two causes, see Figure 4.45)
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4.3.1 Cases of MA - Classes
4.3.1.1 Case MC-1 - Hierarchical inheritance structure not created in

the mcAM is added to the cSC

Explanation of case MC-1: This case covers manual abstraction that hides one or
more subclasses derived from one superclass implemented in the cSC in the mcAM.
This also means the superclass inherited by these subclasses implemented in the
cSC can be modeled as a class in the mcAM.

Example of case MC-1 (selected from project 5): As observed in the com-
parison between Figures 4.1 and 4.2, the subclasses, e.g., Max derived from the
superclass inputFunction implemented in the cSC are hidden in the mcAM.

Figure 4.1: The subclasses, e.g., Max
implemented in the cSC are hidden in

the mcAM. Also, the superclass
InputFunction inherited by these

subclasses in the cSC is modeled as a
class in the mcAM.

Figure 4.2: A hierarchical inheritance
structure with the corresponding

additional two subclasses not in the
mcAM is added to the cSC.

4.3.1.2 Case MC-2 - One class created in the mcAM is divided into
more than one class in the cSC (related to the specific design
patterns)

Explanation of case MC-2: In the mcAM, a particular design pattern can be im-
plied by the naming of a class and the relationships between that class and another
one or more classes. Yet, one concern is that the detailed implementation of that
design pattern from the cSC is more or less condensed in the mcAM. On the other
hand, a design pattern can be implemented in different ways in the cSC, depending
on the different decisions made by developers. Thus, there might be a case that
the design pattern-related class in the mcAM is divided into multiple classes to be
implemented in the cSC. These classes in the cSC are intended to implement the
design pattern modeled by that class in the mcAM.

Example of case MC-2 (selected from project 2): Figure 4.3 illustrates that
a concept decorators is described by a class ItemDecorator in the mcAM. Decora-
tors are part of the decorator design pattern [17]. Thereby, the naming of the class
ItemDecorator and the relationships between ItemDecorator and the subclass Up-
grade derived from the superclass Item possibly imply the decorator design pattern
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is applied in this project. One or more decorators of the decorator design pattern
might be further planned to decorate the subclass Upgrade derived from the su-
perclass Item in the mcAM. To confirm whether the decorator design pattern is
applied in the cSC and the concept decorators created in the mcAM remains in the
cSC, we checked the detailed implementation of the cSC illustrated in Figure 4.4.
Then we can know that the classes Slot, LeftUpgradeSlot, and RightUpgradeSlot are
indeed the classes related to decorators of the decorator design pattern. Also, these
classes are the extension of the interface Icon embedded in the Java library. Note
that a MVC architectural pattern is adopted in the cSC. With this as a basis, in
the cSC, the subclass Upgrade derived from the superclass Item is a Model-related
class, and the interface Icon is invoked in a View-related class that is responsible
for communicating with that subclass Upgrade. Therefore, these three classes in the
cSC are considered to be related to decorators and are considered to be mapped to
that class ItemDecorator in the mcAM since the concept decorators indeed remains
in the cSC, and thereby described by those three classes.

Notably, the class ItemDecorator from the mcAM is divided into the three corre-
sponding classes, Slot, LeftUpgradeSlot, and RightUpgradeSlot, for representing the
decorator design pattern. The relationships of realization and composition related
to ItemDecorator to be linked with Upgrade are thereby removed simultaneously.

Figure 4.3: In the mcAM, a concept,
i.e., decorators is described by a class
ItemDecorator, which might imply the

decorator design pattern will be applied
in the cSC.

Figure 4.4: In the cSC, the concept
decorators in the mcAM is described by
the superclass Slot, and the subclasses
LeftUpgradeSlot, and RightUpgradeSlot
derived from the superclass Slot. These

three classes are the extension of the
interface Icon embedded in the Java

library. This interface Icon is invoked
within a View class, which is

responsible for communicating with the
subclass Upgrade derived from the

superclass Item in the mcAM.
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4.3.2 Cases of MA - Attributes

4.3.2.1 Case MA-1 - Additional attributes not in the mcAM are added
to the cSC

Explanation of case MA-1: This case covers manual abstraction that hides at-
tributes implemented in the cSC from mcAM. The level of abstraction created for
the attributes depends on the architects’ different design decision-making according
to the required implementation structure of the system.

Note that a limitation exists here: this thesis did not investigate the project’s con-
text. Project’s context, to some extent, relates to the implementation requirements
of the system, e.g., some project description documents in the repository. Therefore,
it is unknown why some attributes not planned out in the mcAM are added to the
cSC.

Example of case MA-1 (selected from project 3): Referring to Table 4.4, for
the class IncomeRepository, an additional attribute, i.e., instance: IncomeReposi-
tory, not in the mcAM is added to the cSC.

Table 4.4: The corresponding example of the case MA-1.

Class mcAM cSC
IncomeRepository instance: IncomeRepository

4.3.2.2 Case MA-2∗ - An attribute of classifier A whose type can indicate
an aggregation or a composition between classifiers A and B
from the cSC, is modeled out by the naming of the association
between them in the mcAM

Explanation of case MA-2∗: The attribute type (represented by the name of the
classifier) is essential for understanding exactly how different classifiers are linked.
For example, if classifier A references classifier B as an attribute type, this indicates
an aggregation or a composition (depending on the detailed implementation of the
cSC) between classifiers A and B. However, to emphasize the links between the
classifiers, the architects sometimes choose to name the relationships in the mcAM
with the names of these attributes (whose specified types can indicate relationships
between classifiers) in the cSC rather than specifying these attributes directly in the
mcAM.

Example of case MA-2∗ (selected from project 4): As observed in the com-
parison between Figures 4.5 and 4.6, the naming of the association between the
classes LaborBilling and PhaseLabor in the mcAM is specified with the name of
the attribute lb: LaborBilling, i.e., lb in the cSC. lb indicates the links between the
classes LaborBilling and PhaseLabor.

55



4. Results

Figure 4.5: The naming of the
association between the classes
LaborBilling and PhaseLabor is

specified with the attribute name lb in
the cSC.

Figure 4.6: In the cSC, the attribute
name lb indeed exits in the class

PhaseLabor.

4.3.2.3 Case MA-3∗ - The additional attribute type not in the mcAM is
added to the cSC

Explanation of case MA-3∗: This case covers manual abstraction that hides the
attribute types in the cSC from mcAM. This is because the architects have different
decisions in the design of mcAM attributes.

Note that attribute types are cSC constructs. It is impossible not to specify them
in the cSC. Thereby, no opposite case caused by disAGTs exists.

Example of case MA-3∗ (selected from project 4): As observed in Table 4.5,
the attribute named id is not specified with a type in the mcAM yet is specified
with a type String in the cSC.

Table 4.5: The corresponding example of the case MA-3∗.

Class mcAM cSC
Project id id: String

4.3.2.4 Case MA-4 - The additional default value not in the mcAM is
added to the cSC

Explanation of case MA-4: The default value of an attribute in the mcAM is
optional. There are three ways to initialize a member variable (an attribute): 1.
Assigning a default value to the member variable directly. 2. The initialization
of a member variable can be done within one or more constructors of the classifier
for different instances of different classifiers at runtime. 3. The initialization of a
member variable can be done within the setter method of that variable. The latter
two ways aim for the encapsulation of the attributes. Note that due to the syntax
of the class diagram, the detailed implementation behind ways 2 and 3 cannot be
shown in the mcAM, even though the architect might intend to initialize a variable
via these two ways.
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Although the above three ways can initialize a member variable, only architects and
developers have a consensus that adopting way 1 can lead to this case. To be spe-
cific, some architects may not intend to assign the default values for some specific
variables in the mcAM; however, the developers can either adopt way 1 to initialize
a member variable or, based on the adoption of way 1, further adopt way 2 or/and
way 3 to enable the default value of that attribute to be updated one or more times.
Conversely, if the architects intend to assign a default value to a member variable
by adopting way 2 or way 3; rather the developers adopt way 1 to initialize that
member variable in the cSC. This will lead to another case DA-5∗ - The default
value not in the mcAM is added to the cSC. This case is considered to be caused by
disAGTs and is elaborated in subusbsection 4.3.6.5.

Example of case MA-4 (selected from project 2): Comparing Figures 4.7 and
4.8, for the attributes, e.g., email of the class UserBuilder, a default value “” not
in the mcAM is added to that attribute in the cSC. Also, the public setter method
setEmail(email: String): UserBuilder of that attribute provided in the cSC can
allow the introduced default value “ ” to be updated one or more times for different
instances of different classifiers.

Figure 4.7: In the mcAM, for the
attributes, e.g., email, a default value is

not assigned.

Figure 4.8: A default value “ ” not in
the mcAM is added to the attribute

email.

4.3.2.5 Case MA-5 - One or more common attributes in one or more
subclasses in the mcAM are upshifted to the hierarchical struc-
ture in the cSC, i.e., the superclass inherited by these subclasses

Explanation of case MA-5: The architects may sometimes over-specify the com-
mon attributes possessed by one or more subclasses derived from one superclass
in the mcAM. However, considering the inheritance concept of the OO paradigm,
the developers might first abstract those common attributes of the subclasses in the
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mcAM and then upshift these attributes to the hierarchical structure, i.e., the super-
class inherited by these subclasses in the cSC. By doing so, those common attributes
can be hidden, and only one or more of its derived subclasses in the cSC can access
them. Code reuse is thus achieved. This means those upshifted attributes in the su-
perclass in the cSC can be inherited by its subclasses and form part of its subclasses.

Example of case MA-5 (selected from project 2): Comparing Figures 4.9 and
4.10, the common attribute image of the subclasses Food and Upgrade in the mcAM
is upshifted to the hierarchical structure, i.e., the superclass Item they derive from
in the cSC. As a result, in the cSC, that upshifted attribute image of the superclass
Item can be inherited by its two subclasses Food and Upgrade for sharing and reusing.
Note that for the attribute image, its specified attribute type in the mcAM and cSC
is different, i.e., Image and String. The difference in attribute types is considered to
be caused by disAGTs, which is illustrated by another case DA-3∗ (in subsubsection
4.40).

Figure 4.9: In the mcAM, for the
subclasses Food and Upgrade, there is a

common attribute image.

Figure 4.10: The common attribute
image of the subclasses Food and

Upgrade in the mcAM is upshifted to
their superclass Item in the cSC.

4.3.2.6 Case MA-6 - One attribute created from the mcAM is divided
into more than one attribute in the cSC

Explanation of case MA-6: This case covers manual abstraction that hides the
multiple attributes in the cSC as one attribute from the mcAM.
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Example of case MA-6 (selected from project 2): As observed in Table 4.6,
for class Dao, its attribute instance: DAO from the mcAM is divided into more than
one attribute in the cSC, e.g., users: Map<Integer, User> and pets: Map<Integer,
Pet>.

Table 4.6: The corresponding example of the case MA-6.

Class mcAM cSC

DAO instance: Dao users: Map<Integer, User>
pets: Map<Integer, Pet>

4.3.3 Cases of MA - Operations
Note that to avoid any confusion on the terminologies “operations” and “methods”
used in the remainder of this thesis, “operations” used in the mcAM are represented
by the methods (with condensing implementation details) in the cSC. They are
ontologically identical.

4.3.3.1 Case MO-1 - Additional operations not in the mcAM are added
to the cSC (three subcases)

Explanation of case MO-1: This case covers manual abstraction that hides oper-
ations implemented in the cSC from the mcAM. The level of abstraction created for
the operations depends on the architects’ different design decision-making according
to the required implementation structure of the system.

Note that a limitation exists here: this thesis did not investigate the project’s con-
text. Project’s context, to some extent, relates to the implementation requirements
of the system, e.g., some project description documents in the repository. Therefore,
it is unknown why some operations not planned out in the mcAM are added to the
cSC.

We observed the following 3 subcases:

• Subcase 1 - One or more constructors of the classifier

Explanation of subcase 1: Reference to the Java SE7 specifications [20],
constructors are not defined as methods. However, it is observed that the con-
structors can be shown to be part of the operations in the mcAM. Thereby, one
or more constructors of the classifier are considered operations in this thesis.

Example of subcase 1 (selected from project 3): Referring to Table
4.7, with respect to subcase 1, an additional constructor Income() not in the
mcAM is purely added to the class Income in the cSC.
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• Subcase 2 - One or more setter and getter operations for the encapsulation of
the attributes (variables only)

Explanation of subcase 2: Considering the concept encapsulation of the
OO paradigm, attributes need to be set to private, and their corresponding
public setter and getter methods need to be provided for accessing and updat-
ing the values of these private attributes. Note that here the attributes refer
to variables only. This is because a constant variable cannot be accessed and
initialized by using the public setter and getter methods since the setter and
getter methods cannot ensure that a constant variable is invoked once only
across the life cycle of the program.

The encapsulated attributes can be the additional attributes (not in the mcAM
added to the cSC) or the attributes created in the mcAM. Thereby, we iden-
tified the following two causes for subcase 2:

– Cause 1 - One or more setter or/and getter operations are purely added
to the cSC for the encapsulation of attributes (variables only).

Example of cause 1 (selected from project 2): As observed in Ta-
ble 4.7, an additional setter operation setPrice(): int not in the mcAM is
purely added to the class Item in the cSC. This added setter operation in
the cSC aims to encapsulate the attribute price: int created in the mcAM.

– Cause 2 - One or more setter or/and getter operations are purely added
to the cSC for the encapsulation of attributes (variables only) that are
caused by another case titled MA-1.

Example of cause 2 (selected from project 2): As observed in Table
4.7, an additional setter operation setId(id: int): UserBuilder not in the
mcAM is added to the class UserBuilder in the cSC.

Notably, this added setter operation is used for encapsulating the at-
tribute id: int = 0. This attribute is an additional attribute that is not
in the mcAM yet is added to the class UserBuilder in the cSC.

• Subcase 3 - One or more operations (besides setter and getter operations)

Explanation of subcase 3: Since the constrictors are not considered meth-
ods in Java, the methods in the cSC (besides the setter and getter methods)
can be modeled as the operations in the mcAM.

Example of subcase 3 (selected from project 1): As observed in Table
4.7, an additional operation, e.g., onPause(): void, not in the mcAM is purely
added to the class SinglePlayer in the cSC.
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The above three differentiated subcases with their corresponding causes are illus-
trated in Figure 4.7.

Figure 4.11: Three subcases correspond to this case with their corresponding
causes.

Table 4.7: Corresponding examples of the causes for the three subcases of case
MO-1.

Subcase ID Cause No. Class mcAM cSC
1 Income Income()
2 1 Item setPrice(): int

2 UserBuilder setId(id: int): UserBuilder
3 SinglePlayer onPause(): void

4.3.3.2 Case MO-2 - Additional parameter names not in the mcAM are
added to the cSC

Explanation of case MO-2: Regarding the design of the parameters in the mcAM,
the architects may sometimes not intend to specify the parameter names for some
of the parameters. Then in the cSC, the developers design and specify the parame-
ter names for those parameters that are unspecified with names in the mcAM. The
parameter names are simply identifiers for parameters, yet the parameter types can
imply the invocations between classifiers (or instances). Thus, Regarding the design
of the parameters in the mcAM, a possibility is that some architects may prefer to
leave the parameter type out solely. However, the possibility of leaving both param-
eter names and parameter types to be designed and implemented in the cSC by the
developers cannot be excluded.
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Example of case MO-2 (selected from project 2): As observed in Table 4.8,
in the mcAM, the parameter name is unspecified for the parameter type String of
the operation setName(String): PetBuilder in the class UserBuilder. However, a
parameter name name is specified for that parameter type String of that operation
in the cSC.

4.3.3.3 Case MO-3 - Additional parameter types not in the mcAM are
added to the cSC

Explanation of case MO-3: Regarding the design of the parameters in the mcAM,
the architects may sometimes not intend to specify the parameter types for some
of the parameters. Then in the cSC, the developers design and specify parameter
types for those parameters that are unspecified with types in the mcAM under the
implementation requirements of the system.

Example of case MO-3 (selected from project 3): Referring to Table 4.8, it
is observed that in the mcAM, the parameter type is unspecified for the operation
SetIncomeType() of the class IncomeRegisterUI. However, in the cSC, a parameter
type List<IncomeType> is added to that operation. Note that in this case, the
name and type of the parameters are unspecified in pairs in the mcAM and added
in pairs in the cSC.

4.3.3.4 Case MO-4 - Additional return types not in the mcAM are added
to the cSC

Explanation of case MO-4: If the operation does not return a value, the colon
and return type are omitted, e.g., void in Java and C++ [31, p. 45]. However,
in this case, if the return type, i.e., void together with the colon, is omitted in the
mcAM yet shown as void in the cSC. This change is not considered to be a difference.

Regarding the design of the operations in the mcAM, the architects may sometimes
not intend to specify the return types for some of the operations. Then in the cSC,
the developers design and specify the parameter types for those operations that are
unspecified with return types in the mcAM under the implementation requirements
of the system.
Example of case MO-4 (selected from project 1): As observed in Table 4.8,
in the mcAM, the return type is unspecified for the operation onKeyDown(key: int,
event: KeyEvent) of the class SinglePlayer. However, in the cSC, a return type
boolean is added to that operation.

4.3.3.5 Case MO-5∗ - Multiplicity (referring to the collection-related in-
terfaces) specified for the return type without its corresponding
implementation interfaces/classes specified in the mcAM, yet
with them specified in the cSC

Explanation of case MO-5∗: Regarding the design of the return types (referring
to the collection interfaces) in the mcAM, the architects might sometimes under-
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specify them. This means the architects do not intend to specify their correspond-
ing implementation classes and interfaces regarding the specific collection interfaces.
Yet, in the cSC, if the interfaces are intended to be implemented, their correspond-
ing implementation interfaces and classes need to be specified. Taking Map as an
example, it is specified purely as Map in the mcAM. Rather, for its implementation,
it is needed to be specified with its corresponding implementation classes/interfaces,
e.g., HashMap. In accordance, the return type will become Map<key, value> = new
HashMap<key, value> in the cSC.

Note that the specified corresponding implementation classes/interfaces with respect
to the interfaces are cSC constructs. It is impossible not to specify them in the cSC.
Thus, there is no opposite case caused by disAGTs.

Example of case MO-5∗ (selected from project 2): Referring to Table 4.8, it
is observed that in the mcAM, the return type Map interface is specified for the op-
eration named listUser(); however, the implementation class HashMap of that Map
interface requires Map to be construed as Map<key, value> in the cSC. Thereby,
that operation from the mcAM is implemented as listUsers(): Map<Integer, User>
in the cSC.

4.3.3.6 Case MO-6∗ - The default parameters of the operation (in An-
droid) in the cSC are omitted in the mcAM

Explanation of case MO-6∗: This is a particular case for the cases mentioned
above, i.e., MO-2 and MO-3. For Android development, multiple embedded APIs
in the library can be leveraged directly in the cSC instead of manually building
the code. Thus, for designing the operations in the mcAM, the architects may
sometimes skip the design of the parameters of those operations (methods) that are
embedded APIs in the library. Then in the cSC, the developers directly leverage
these embedded operations (methods) from the library. Note that the reference to
those embedded operations (methods) can be generated automatically by modern
compilers, such as IntelliJ IDEA.

Note that the parameter types and parameter names are cSC constructs. It is im-
possible not to specify them in the cSC. Thus, there is no opposite case caused by
disAGTs.

Example of case MO-6∗ (selected from project 1): Referring to Table 4.8,
it is observed that onCreate(savedInstanceState: Bundle): void is an embedded op-
eration (method) in the Android library. In the mcAM, this operation’s default
parameters are omitted, and it is shown as onCreate(). However, since the com-
piler can parse and generate its complete default parameters, these omitted default
parameters are able to be automatically filled in in the cSC.
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4.3.3.7 Case MO-7 - One operation created in the mcAM is divided into
multiple operations in the cSC

Explanation of case MO-7: For inheritance hierarchies in the mcAM, i.e., more
than one subclass derived from one superclass, the architects may sometimes create
only one particular operation for that superclass in the mcAM. This operation de-
scribes the corresponding operations associated with those subclasses derived from
that superclass in the mcAM. Thus, in the cSC, this particular operation of the
superclass will be divided into corresponding multiple operations associated with
those subclasses derived from that superclass.

Example of Case MO-7 (selected from project 2): In the detailed cSC imple-
mentation, a hierarchical inheritance structure exits, i.e., two subclasses Food and
Upgrade inherit from a superclass Item in the mcAM. As observed in Table 4.8,
an operation eraseItem(mit: Item): boolean is created with respect to the super-
class Item within the class Control in the mcAM. However, this operation is divided
into two corresponding operations delFood(f: Food): boolean and delUpgrade(u: Up-
grade): boolean associated with those two subclasses Food and Upgrade in the cSC,
respectively. Thus, these two operations from the cSC are hidden in the mcAM
and thereby described by only one operation eraseItem(mit: Item): boolean in the
mcAM.

Table 4.8: Six corresponding examples of the cases titled MO-2, MO-3, MO-4,
MO-5∗, MO-6∗, and MO-7.

Example
No.

Case
ID Class mcAM cSC

1 MO-2 UserBuilder setName(String): PetBuilder setName(name: String): PetBuilder

2 MO-3 IncomeRegisterUI selectIncomeType() selectIncomeType(listIncomeType:
List<IncomeType>): IncomeType

3 MO-4 SinglePlayer onKeyDown(key: int, event: KeyEvent) onKeyDown(key: int, event: KeyEvent): boolean
4 MO-5∗ DAO listUser(): Map listUsers(): Map<Integer, User>
5 MO-6∗ TitlePage onCreat() onCreate(final savedInstanceState: Bundle): void

6 MO-7 Control eraseItem(mit: Item): Boolean delJob(Job)
delUpgrade(Upgrade): Boolean

4.3.4 Cases of MA - Relationships
The following two Figures 4.12 and 4.13 can give the reader an overview of the re-
mainder of this subsection. To be specific, we concluded three cases of MA in terms
of relationships, namely cases MR-1 and MR-2, and MR-3, with their corresponding
causes. Case MR-1 (with the corresponding subcases and the causes) is illustrated
in Figure 4.12. Cases MR-2 and MR-3 (with their corresponding causes) are illus-
trated in Figure 4.13. Each case (with the corresponding causes) will be respectively
detailed in the following subsubsections.
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Figure 4.12: Case MR-1 with the corresponding subcases and causes.
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Figure 4.13: Cases MR-2 and MR-3, with the corresponding causes.
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4.3.4.1 Case MR-1 - Additional relationships not in the mcAM are
added to the cSC (two subcases with their six and two cor-
responding concluded causes, respectively)

Explanation of case MR-1: This case covers manual abstraction that hides the
different types of relationships in the cSC from the mcAM. This is because of the
different decision-making of the design of the mcAM relationships.

We observed the following two subcases for this case with their six and two cor-
responding concluded causes, respectively. The corresponding examples for these
causes are given to illustrate each of these causes:

• Subcase 1: Additional association not in the mcAM is added be-
tween classifiers A (origin) and B (target) in the cSC

Explanation of subcase 1: This subcase covers manual abstraction that
hides the association between classifiers A and B in the cSC from the mcAM.

We concluded the following six causes for this subcase, with their correspond-
ing examples to illustrate each of these causes:

– Cause 1: (i)∗ The introduction of another case MO-3, i.e., additional
parameter types not in the mcAM are added to A in the cSC. (ii)∗ In the
cSC, an operation of B is invoked in that parameter type-related opera-
tion of A (from i).

Explanation of cause 1: The parameter types from the cSC hidden in
the mcAM will lead the related associations to be hidden in the mcAM.
This is because the parameter types (specified by the instance(s) of B)
in A are involved in the operation invocations between A and B in the
cSC. Thereby, if these parameter types from the cSC are hidden in the
mcAM, their related associations from the cSC are possibly also hidden
in the mcAM.

To confirm the existence of an association in the cSC, an instance of A
must send a message to an instance of B [40]. This can be represented
by the fact that an operation of B is invoked by an operation of A in the
cSC. An association hereby can be confirmed to exist between A and B
in the cSC.

Note that considering the syntax of the mcAM, the operation invocations
between A and B cannot be modeled out in the mcAM.

Example of cause 1 (selected from project 4): Figure 4.14 illus-
trates that no relationship is modeled between the classes LaborBilling
and Pattern in the mcAM. Yet, Figure 4.15 illustrates that in the cSC,
an operation getId() of LaborBilling is invoked within an operation get-
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PhaseLabor(LaborBilling, Phase): PhaseLabor of Pattern. Thereby, an
association can be inferred to exist between the classes LaborBilling and
Pattern in the cSC. Notably, these parameter types, e.g., LaborBilling,
from the cSC are not modeled out in the mcAM but they are indeed
involved in the operation invocations between LaborBilling and Pattern
in the cSC. Thus, we considered that the parameter types from the cSC
hidden in the mcAM can lead their related associations to be hidden in
the mcAM.

Figure 4.14: In the mcAM, no
association is modeled between the
classes LaborBilling and Pattern.

Figure 4.15: In the cSC, an operation
getId() of LaborBilling is invoked in an
operation getPhaseLabor(LaborBilling,
Phase): PhaseLabor of Pattern. Yet,

the parameter types of the latter
operation, e.g., LaborBilling, are not

modeled out in the mcAM (as shown in
Figure 4.14).

– Cause 2: (i) Association is partially implied by the return type (speci-
fied by the instance(s) of B) modeled in A in the mcAM. (ii)∗ In the cSC,
instances creation between A and B

Explanation of cause 2: The return type (specified by the instance(s)
of B) modeled in A in the mcAM implies that a fact that an instance of
A sends a message to an instance of B [40]. This instance of B further
responds to this message sent by A. This response from B can be repre-
sented by returning an instance of B created in an operation of A.

Note that considering the syntax of the mcAM, instances creation be-
tween A and B cannot be modeled out in the mcAM.

Example of cause 2 (selected from project 3): Figure 4.16 illus-
trates that no relationship is modeled between the classes BaseController
and CheckingAccount in the mcAM. Of particular note, in the mcAM, the
return type of the operation buildCheckingAccount(): CheckingAccount,
i.e., CheckingAccount has already partially implied an association that
might exist between BaseController and CheckingAccount in the cSC. To
confirm this, as illustrated in Figure 4.17, an instance of CheckingAc-
count is indeed created within that operation buildCheckingAccount():
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CheckingAccount of BaseController in the cSC. This instance is further
returned to that operation. Thus, an association is inferred to exist be-
tween BaseController and CheckingAccount in the cSC. Yet, this asso-
ciation in the cSC is hidden from the mcAM and partially implied by
the return type CheckingAccount modeled in BaseController from the
mcAM.

Figure 4.16: In the mcAM, no
relationship is modeled between the

classes BaseController and
CheckingAccount. Plus, the return type

CheckingAccount modeled in
BaseController in the mcAM can

partially imply an association to exist
in the cSC.

Figure 4.17: In the cSC, an instance
of CheckingAccount is created within
the operation buildCheckingAccount():
CheckingAccount of BaseController,

further being returned to this
operation.

– Cause 3: (i) Association is partially implied by the parameter type
(specified by the instance(s) of B) modeled in A in the mcAM. (ii)∗ In
the cSC, operation invocations between A and B
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Explanation of cause 3: The existence of an association between A
and B in the cSC must build on the fact that an instance of A sends a
message to an instance of B [40]. This can be represented by the opera-
tion invocations between A and B.

Note that considering the syntax of the mcAM, operation invocations
between A and B cannot be modeled out in the mcAM.

Example of cause 3 (selected from project 2): Figure 4.18 illus-
trates that no relationship is modeled between the classes ItemVisitor and
Food in the mcAM. Plus, the parameter type specified for the operation
of ItemVisitor, e.g., Food, implies that the operations of Food might be
invoked in that parameter type-related operation, i.e., visit(Food): void
in the cSC.

Figure 4.19 illustrates for Food, an operation getPrice(): int its inherits
from the superclass Item is indeed invoked within visit(Food): void of
ItemVisitor in the cSC. This means the instances of ItemVisitor send
a message to the instance Food, and their lifetimes are not related. An
association thereby can be inferred to exist ItemVisitor and Food in the
cSC, yet this association in the cSC is hidden from the mcAM.

Figure 4.18: In the mcAM, no relationship is modeled between the classes
ItemVisitor and Food. Yet, an instance of Food, i.e., is specified as a parameter

type of the operation named visit of ItemVisitor in the mcAM.
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Figure 4.19: In the cSC, for Food, its operation getPrice(): int inherited from the
superclass Item is indeed invoked within visit(Food): void of ItemVisitor in the

cSC.

– Cause 4: In the cSC, instances creation between A and B

Explanation of cause 4: The existence of an association between A
and B in the cSC must build on the fact that an instance of A sends a
message to an instance of B [40]. This can be represented by the instances
creation between A and B.

Note that considering the syntax of the mcAM, instances creation be-
tween A and B cannot be modeled out in the mcAM.

Example of cause 4 (selected from project 1): Figure 4.20 illus-
trates that no relationship is modeled between the classes SinglePlayer
and TitlePage in the mcAM. Yet, Figure 4.21 illustrates that an instance
of TitlePage is created within an operation pausedMainMenu(View): void
of SinglePlayer in the cSC. This is regarded that the instances of Sin-
glePlayer send a message to that instance of TitlePage. Thereby, an
association is inferred to exist between SinglePlayer to TitlePage in the
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cSC, yet this association is hidden from the mcAM.

Figure 4.20: In the mcAM, no relationship is modeled between the classes
SinglePlayer and TitlePage.

Figure 4.21: In the cSC, an instance of TitlePage is created within an operation
pausedMainMenu(View view): void of SinglePlayer.

– Cause 5: (i)∗ In the cSC, B is declared as a local variable in an operation
of A. (ii)∗ Based on (i), an instance of B is invoked in that operation of
A (from i).

Explanation of cause 5: The existence of an association between A
and B in the cSC must build on the fact that an instance of A sends a
message to an instance of B [40]. This can be represented by the above
holds - (i) and (ii).

Note that considering the syntax of the mcAM, local instances creation
and further operation invocations between A and B cannot be modeled
out in the mcAM.
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Example of cause 5 (selected from project 2): Figure 4.22 illus-
trates that no relationship is modeled between the classes UserBuilder
and Control in the mcAM. Yet, Figure 4.23 illustrates that an instance
of UserBuilder is declared as a local variable named userbuilder within the
operation newUser(int, String, String, String) of Control (in the mcAM
)/RaiseMeUp (in the cSC). Plus, the operations, e.g., setEmail(): String
of userbuilder, are further invoked within the same operation. An asso-
ciation is thereby inferred to exist between UserBuilder and Control in
the cSC, yet this association is hidden from the mcAM.

Figure 4.22: In the mcAM, no relationship is modeled between the classes
UserBuilder and Control.

Figure 4.23: In the cSC, an instance named userBuilder of UserBuilder is
created within the operation newUser(int, String, String, String) of Control. Plus,
an operation of userBuilder, e.g., setEmail(): String, is further invoked with the

same operation of Control (in the mcAM )/RaiseMeUp (in the cSC).

– Cause 6: (i)∗ The introduction of another case MO-1, i.e., an additional
operation of A whose parameter type is specified by the instance(s) of B,
not in the mcAM is added to A in the cSC. (ii)∗ The specified instance(s)
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of B is(are) further passed to another operation of C that is invoked in
the additional operation of A (from i). (iii)∗ Within that operation of C
(from ii), an operation of B is finally invoked.

Explanation of cause 6: The operations from the cSC hidden in the
mcAM might lead to their related associations being hidden in the mcAM
as well. This is because those hidden operations from the cSC involve the
operation invocations between A and B in the cSC. Of particular note,
the operation invocations between A and B might involve one or more
other classes in between. If so, this turns out to be an indirect operation
invocation between A and B.

Example of cause 6 (selected from project 2): Figure 4.24 il-
lustrates that no relationship is modeled between the classes Food and
Control in the mcAM. Yet, Figure 4.25 illustrates that an instance of
Food is specified as a parameter type of the additional operation remove-
Food(Food: f): boolean of Control/Controll (not in the mcAM added to
the cSC) in the cSC. This instance, named f, is used in another operation
delFood(f) of another C class Dao. Within Dao, an operation getName()
of Food inherited from the superclass Item is further invoked within that
operation delFood(Food): boolean in the cSC. An association is thereby
inferred to exist between UserBuilder and Control in the cSC, yet this
association is hidden from the mcAM.

Figure 4.24: In the mcAM, no relationship is modeled between the classes Food
and Control.
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Figure 4.25: In the cSC, an instance of Food (named f ) is specified as a
parameter type of an additional operation removeFood(Food): boolean of
Control/RaiseMeUp. This instance of Food is used in another operation

delFood(f): boolean of another class Dao. Plus, in Dao, an operation of Food, e.g.,
getName(), is further invoked with that delFood(Food): boolean.

• Subcase 2 - Additional aggregation not in the mcAM is added be-
tween classifiers A (whole) and B (part) in the cSC

Explanation of subcase 2: This subcase covers manual abstraction that
hides the aggregation between classifiers A and B in the cSC from the mcAM.

We concluded the following two causes for this subcase:

– Cause 1: (i)∗ The introduction of another case MA-1, i.e., an additional
attribute (whose type is specified by the instance(s) of B) not in the
mcAM, is added to A in the cSC. (ii)∗ In the cSC, the instance(s) of B
is(are) further created within an operation of A. (ii)∗ In the cSC, an op-
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eration of B is invoked in an operation of A, based on (ii). (iv)∗ Notably,
the instances of B are not exclusive to the corresponding instances of A.

Note that another case MO-1 might be involved in (ii), i.e., the operation
where instance(s) of B is(are) created is an additional operation (not in
the mcAM added to the A) in the cSC.

Explanation of cause 1: The attributes or-and operations in the cSC
hidden from the mcAM possibly lead to the related aggregations/compositions
in the cSC being hidden from the mcAM. This is because the definition
of aggregations/compositions requires that the instance(s) of B must be
accessed via an attribute type of A which is specified by the instance(s)
of B, according to the source [40].

Example of cause 1 (selected from project 5): Figure 4.26 illus-
trates that no aggregation is modeled between the classes Neuron and
NeuralNetwork in the mcAM. Yet, as illustrated in Figure 4.27, in the
cSC, an additional attribute, i.e., inputNeurons: NeurophArrayList<Neuron>,
not in the mcAM is added to NeuralNetwork in the cSC. The type of
this attribute, i.e., NeurophArrayList<Neuron> implies an aggregation,
or a composition between Neuron and NeuralNetwork. The instance in-
putNeurons further invokes its operation size() with the operation get-
InputsCount(): int of NeuralNetwork, and the instances of NeuralNetwork
synchronously send a message to the instance inputNeurons of Neuron.
Plus, the instances of Neuron are not exclusive to their corresponding in-
stances of NeuralNetwork, i.e., the instances of Neuron also created within
another class Layer. Thereby, an aggregation between Neuron and Neu-
ralNetwork can be inferred to exist in the cSC. Yet, this aggregation in
the cSC is hidden from the mcAM.

Figure 4.26: In the mcAM, no relationship is modeled between the classes
Neuron and NeuralNetwork.
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Figure 4.27: In the cSC, an additional attribute inputNeurons:
NeurophArrayList<Neuron> not in the mcAM is added to the class

NeuralNetwork. The operation size() of Neuron is further invoked within the
operation getInputsCount(): int of NeuralNetwork. Plus, the instances of Neuron

are contained by not only NeuralNetwork but also by Layer in the cSC.

– Cause 2: (i)∗ The introduction of another case MA-1, i.e., an additional
attribute (whose type is specified by the instance(s) of B) not in the
mcAM, is added to A in the cSC; plus, the instance(s) of B is(are) first
created within A body. (ii)∗ In the cSC, an operation of B is invoked in
an operation of A based on (i). (iii)∗ Notably, the instances of B are not
exclusive to the corresponding instances of A.

Explanation of cause 2: Compared with the cause 1 mentioned above,
the only difference between causes 1 and 2 is that the instance(s) of B
is(are) first created within A body for cause 2. Yet, for cause 1, the in-
stance(s) of B is(are) created within an operation of A.

Example of cause 2 (selected from project 2): Figure 4.28 illus-
trates no aggregation is modeled between the classes Job and Dao in the
mcAM. Yet, as illustrated in Figure 4.29, in the cSC, an additional at-
tribute, i.e., jobs: Map<Integer, Food>, not in the mcAM is added to
Dao in the cSC. The type of this attribute (a collection of Job instances),
i.e., Map<Integer, Job>, implies either an aggregation or a composition
possibly to exist between Job and Dao in the cSC. An operation put() (an
API) is further invoked in the operation getJob(): Map<Integer, Job>
of Dao with the instance jobs. However, the instances of Job are also
contained by another class Pet. The lifetimes of Job and Dao are thereby
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not related. Thus, an aggregation can be inferred to exist between Job
and Dao in the cSC. Yet, this aggregation in the cSC is hidden from the
mcAM.

Figure 4.28: In the mcAM, no relationship is modeled between the classes Job
and Dao.

Figure 4.29: In the cSC, an additional attribute jobs: Map<Integer, Food> not
in the mcAM is added to the class DAO and it is further created in Dao body. An

operation put() (an API) is further invoked in the operation getJob():
Map<Integer, Job> of Dao with the instance jobs. However, the instances of Job

are contained by not only DAO but also by another class Pet in the cSC.
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4.3.4.2 Case MR-2 - An aggregation between A (whole) and B
(part) from the cSC is modeled as an association between A (origin)
and B (target) in the mcAM (two causes)

Explanation of case MR-2: This case covers manual abstraction that mod-
els the aggregation from the cSC as an association in the mcAM.

We concluded the following two causes for this case, with their corresponding
examples to illustrate each of these causes:

– Cause 1: (i) The introduction of another case MA-2∗, i.e., the nam-
ing of the association between A and B in the mcAM, is modeled by an
attribute name of A from the cSC. (ii)∗ In the cSC, the attribute name-
related type is specified by the instance(s) of B in the cSC based on (i).
(iii)∗ In the cSC, the instance(s) of B is(are) created in an operation of A.
(iv)∗ In the cSC, an operation of B is invoked in an operation of A based
on (iii). (v)∗ Yet, in the cSC, the instance(s) of B is(are) not exclusive to
the corresponding instances of A.

Explanation of cause 1: Referring to the case MA-2∗ in subsubsection
4.3.2.2, the naming of the association between A and B in the mcAM
is specified by an attribute name contained in A from the cSC. This
attribute-related type is specified by the instances of B, which can in-
dicate the existence of an aggregation or a composition (relying on the
detailed cSC implementation) between A and B in the cSC. Regarding
this case, it refers to an aggregation. This is built on the fact - (ii), (iii),
(iv), and (v) mentioned above.

Example of cause 1 (selected from project 4): Figure 4.30 illus-
trates that in the mcAM, an association is modeled between the classes
Employee and Schedule. Also, the naming of this association is specified
by the name of an attribute schedlist: ArrayList<Schedule> of Employee
from the cSC, i.e., schedlist. Figure 4.31 illustrates that in the cSC, the
type of this attribute, i.e., ArrayList<Schedule>, indicates that a group
of instances of the class Schedule (ranged in [0,+∞]) is referenced as an
attribute type of the class Employee. These instances are further initiated
within the operation Employee(Integer id, String nm, String position) of
Employee. Yet, the instances of Schedule are contained not only by the
instances of Employee in the cSC but also by the instances of another
class MainClass. An aggregation thus can be inferred to exist in the cSC
rather than that association modeled in the mcAM.
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Figure 4.30: The aggregation between Employee and Schedule from the cSC is
modeled as an association in the cSC. Plus, the naming of this association in the
mcAM is specified by an attribute name (whose related type is specified by the

instances of Schedule) of Employee from the cSC.

Figure 4.31: In the cSC, an attribute type ArrayList<Schedule> contained in the
class Employee means a group of instances of the class Schedule declared in

Employee. These instances of Schedule are further created within the operation
Employee(Integer, String, String) of Employee in the cSC. However, the instances
of the class Schedule are contained not only by the instances of Employee but also

by the instances of another class MainClass in the cSC.
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– Cause 2: (i) In the mcAM, the aggregation from the cSC is partially
implied by the attribute type (specified by the instance(s) of B) of A in
the mcAM. (ii)∗ In the cSC, instance(s) of B is(are) indeed created in
an operation of A. (iii)∗ In the cSC, an operation of B is invoked in an
operation of A based on (ii). (iv)∗ Yet, in the cSC, the instance(s) of A
is(are) not exclusive to the corresponding instances of B.

Explanation of cause 2: Either an aggregation or a composition be-
tween A and B from the cSC can be implied by the attribute type (spec-
ified by the instance(s) of B) modeled in A in the mcAM. Yet, due to the
different decision-making by architects in terms of the design of the MA
relationships, they may choose to simply model such an aggregation or a
composition from the cSC as an association in the mcAM. In this case, it
refers to an aggregation in the cSC. This is based on the fact - (ii), (iii),
and (iv) mentioned above.

Example of cause 2 (selected from project 3): Figure 4.32 illus-
trates that in the mcAM, an association is created between the classes
Income and IncomeRepository. Yet, the attribute type (a collection of
instances) of IncomeRepository in the mcAM, i.e., List<Income>, possi-
bly implies the existence of either an aggregation or a composition in the
cSC. However, due to the different decision-making by architects during
the mcAM relationships design, they choose to simply model such an
aggregation or composition between Income and IncomeRepository from
the cSC as an association in the mcAM.

Figure 4.33 illustrates that the attribute modeled in the mcAM, i.e.,
listIncome: List<Income> indeed exists as listIncome: ArrayList<Income>
in the cSC. The referenced collection of instances of Income by Incom-
eRepository, i.e., List<Income>, is created within the operation Incom-
eRepository() of IncomeRepository in the cSC. The instances of Income
are further invoked within another operation save(Income): void of In-
comeRepository in the cSC. An aggregation thereby can be inferred to ex-
ist between Income and IncomeRepository in the cSC. Yet, the instances
of Income are contained by not only the corresponding instances of In-
comeRepository but also by the corresponding instances of another class
RegisterIncomeController. Thus, this aggression is not a composition in
the cSC.
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Figure 4.32: An aggregation between
Income and IncomeRepository from the

cSC is partially indicated by the
attribute type (instances of Income) of
IncomeRepository, i.e., List<Income>,

in the mcAM.

Figure 4.33: In the cSC, the type of
the attribute named listIncome is

specified by a collection of instances of
Income, i.e., ArrayList<Income> in

IncomeRepository . This collection of
instances of Income is further created

within an operation IncomeRepository()
of IncomeRepository. Plus, the

instances of Income are invoked within
an operation save(Income): void of

IncomeRepository in the cSC. Yet, the
instances of Income are contained by
not only IncomeRepository but also

another class RegisterIncomeController
in the cSC.

4.3.4.3 Case MR-3 - A composition between A (whole) and B
(part) from the cSC is modeled as an association between A (origin)
and B (target) in the mcAM (one cause)

Explanation of case MR-3: This case covers manual abstraction that mod-
els the composition between classifiers A (whole) and B (part) from the cSC
as an association in the mcAM.

We concluded the following cause for this case, with the corresponding exam-
ple to illustrate this cause:
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– Cause 1: (i) In the mcAM, the composition in the cSC is partially im-
plied by the attribute type (specified by the instance(s) of B) modeled in
A. (ii) ∗ In the cSC, the attribute type-related attribute (from i) indeed
exists in A. (iii)∗ In the cSC, the instance(s) of B is(are) created in an
operation of A. (iv)∗ In the cSC, an operation of B is invoked in an op-
eration of A based on (iii). (v)∗ The instance(s) of B created (from iii)
is(are) exclusive to the corresponding instances of A.

Explanation of cause 1: If an instance of A is modeled out as an at-
tribute type in A in the mcAM, this can indicate either an aggregation
or a composition, which might exist in the cSC. Yet, due to different
decision-making by architects, they might sometimes choose to model
that aggregation or composition as an association in the mcAM. To con-
firm whether it is an aggregation or a composition in the cSC, checking
the detailed cSC implementation is essential. In this case, it refers to a
composition from the cSC based on the fact - (ii), (iii), and (iv) men-
tioned above.

Example of cause 1 (selected from project 1): Figure 4.34 illus-
trates that an association is modeled between the classes SinglePlayer
and SinglePlayModel in the mcAM. Of particular note, an instance of
SinglePlayModel is modeled out as an attribute type in SinglePlayer in
the mcAM. This thereby indicates either an aggregation or a composition
that might exist in the cSC, which is yet modeled as an association in
the mcAM.

Figure 4.35 illustrates in the cSC an instance of SinglePlayerModel is
indeed referenced as an attribute type of SinglePlayer in the cSC. This
instance named model is further created within the operation onCre-
ate(Bundle): void of SinglePlayer in the cSC and is further invoked in
an operation onKeyDown(int, KeyEvent): boolean of SinglePlayerModel
in the cSC. Of particular note, this instance model is exclusive to the cor-
responding instances of SinglePlayerModel. A composition thereby can
be inferred to exist between SinglePlayer and SinglePlayerModel in the
cSC. Yet, this composition between SinglePlayer and SinglePlayerModel
from the cSC is modeled as an association in the mcAM.

Notably, here the class name SinglePlayModel in the mcAM is different
from the class name SinglePlayModel in the cSC. Yet, they are actually
the same class since they have highly similar attributes and operations.
Class name differences are considered to be caused by CC, which is illus-
trated in section 4.4.
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Figure 4.34: A composition between
the classes SinglePlayer and

SinglePlayModel from the cSC is
modeled as an association in the

mcAM.

Figure 4.35: In the cSC, an instance
model of the class SinglePlayerModel
that is modeled out as an attribute
type in the class SinglePlayer in the

mcAM is indeed declared as an
attribute type of the class SinglePlayer
in the cSC. This created instance model
of SinglePlayerModel is further invoked

within an operation of
SinglePlayerModel, e.g.,

onKeyDown(int, KeyEvent): boolean.
Plus, in the cSC, this instance model is

exclusive to the corresponding
instances of SinglePlayer.

4.3.5 Cases of disAGTs - Classes

4.3.5.1 Case DC-1 - Hierarchical inheritance structures in the mcAM
are removed in the cSC

Explanation of case DC-1: In the mcAM, a concept a can be described by a
superclass or a class. If the architects decide to model a concept as a superclass
for its subclasses, their corresponding second concepts b(s) can be described by
this superclass. However, a possibility is that the architects might sometimes
over-specify the subclasses for a superclass, yet the developers disagree with
this; rather, they decide to remove the subclasses derived from that superclass
in the cSC. Thereby, the corresponding hierarchical inheritance structures in
the mcAM will be removed in the cSC.

Example of case DC-1 (selected from project 2): Comparing Figures
4.36 and 4.37, a hierarchical inheritance structure in the mcAM is removed in
the cSC. To be specific, the four subclasses Dog, Cat, Fish, and Penguin in the
mcAM are removed in the cSC, along with their superclass Pet in the mcAM
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being changed into a class in the cSC.

Figure 4.36: A hierarchical
inheritance structure in the mcAM.

Figure 4.37: The hierarchical
inheritance structure in the mcAM is

removed in the cSC. Solely the
superclass Pet in the mcAM is

remained yet changed into a class in
the cSC.

4.3.6 Cases of disAGTs - Attributes
4.3.6.1 Case DA-1 - Attributes in the mcAM are removed in the
cSC

Explanation of DA-1: This case covers deviations between the mcAM de-
sign and cSC implementation in terms of attributes. Those over-specified
attributes from the mcAM are removed in the cSC.

Example of DA-1 (selected from project 2): As observed in Table 4.9,
for the class User, the attribute pets: List<Pet> from the mcAM is removed
in the cSC.
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Table 4.9: The corresponding example of the case DA-1.

Class mcAM cSC
User pets: List<Pet>

4.3.6.2 Case DA-2∗ - Attributes from the mcAM are replaced with
additional attributes (that are not in the mcAM added to the cSC)
in the cSC

Explanation of case DA-2∗: In terms of attributes, there are deviations be-
tween the mcAM design and cSC implementation. One possibility is replacing
the attributes modeled from the mcAM with fully new attributes in the cSC.

Example of case DA-2∗ (selected from project 3): As observed in the
comparison between Figures 4.38 and 4.39, for the class CheckingAccount, all
its attributes, i.e., income: Income and amount: BigDecimal in the mcAM
are replaced with fully new attributes incomeRepo: IncomeRepository and
expenseRepo: ExpenseRepository in the cSC.

Figure 4.38: For the class
CheckingAccount, the attributes
income: Income and amount:

BigDecimal are modeled in the mcAM.

Figure 4.39: For the class
CheckingAccount, all its attributes in

the mcAM are replaced with fully new
attributes incomeRepo:

IncomeRepository and expenseRepo:
ExpenseRepository in the cSC.

4.3.6.3 Case DA-3∗ - The attribute type in the mcAM and cSC is
different (two causes)

Explanation of case DA-3∗: The attribute type can be either name of
the classifier or ProgrammingLanguageDataType. Regarding Java, the former
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refers to a non-primitive data type, and the latter refers to a primitive data
type.

According to this, we concluded the following two causes for this case:

– Cause 1: Conversion between non-primitive data types.

Example of cause 1 (selected from project 2): As observed in Ta-
ble 4.10, for the operation ownedItems of the class Pet, its date type is
changed from the interface List (a non-primitive data type) in the mcAM
to another interface Map (a non-primitive data type) in the cSC.

– Cause 2: Conversion of non-primitive and primitive data types.

Example of cause 2 (selected from project 2): Table 4.10 illustrates
that for the operation owner of the class Pet, its data type changed from
the class User (a non-primitive data type) to int (a primitive data type).

Table 4.10: Two corresponding examples of the causes for case DA-3∗.

Example
No. Causes Class mcAM cSC

1 1 Pet ownedItems: List<Item> ownedItems: Map<Item, Integer>
2 2 Pet owner: User owner: int

The above two causes are illustrated in Figure 4.40.

Figure 4.40: Two causes for case DA-3∗.

4.3.6.4 Case DA-4∗ - Converting variables from the mcAM to con-
stant variables in the cSC

Explanation of case DA-4∗: This case covers the deviations of the cSC
from the mcAM in terms of the types of variables.

Example of case DA-4∗ (selected from project 1): Referring to Table
4.11, it is observed that the naming of the attribute is changed from num-
WordsDisplayed from the mcAM to NUM_WORDS in the cSC. To be specific,
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the attribute name numWordsDisplayed in a camel-case represents a variable
in the mcAM. However, the developers disagree with the design of this variable
in the mcAM, and they convert it to a constant variable, i.e., all letters of the
attribute name NUM_WORDS in uppercase.

4.3.6.5 Case DA-5∗ - The default value not in the mcAM is added
to the cSC

Explanation of case DA-5∗: This case is caused by subcase 1 of case
DA-4∗, i.e., converting one or more variables in the mcAM to one or more
constant variables in the cSC. There are two methods to initialize a constant
variable in the cSC: 1. Assigning a value to the constant variable only if the
constant variable is without an assignment prior to being assigned [52]. 2.
The initialization of a constant variable can be done within one or more con-
structors of the classifier. Method 2 is for ensuring that constant variables are
only initialized once for different instances created from different classifiers.
Of particular note, if method 2 is adopted, considering the syntax of the class
diagrams, the initialization of a constant variable within a specific constructor
cannot be shown in the mcAM. This cannot lead to this case; rather, taking
subcase 1 of case DA-5∗ as a basis, further adopting method 1 can lead to this
case.

Below is an example of method 1 adopted in the cSC.

Example of case DA-5∗ (selected from project 1): Taking subcase 1
of case DA-4∗ as a basis, i.e., a variable named numWordsDisplayed in the
mcAM is converted to a constant variable named NUM_WORDS in the cSC.
As observed in Table 4.11, for the class SinglePlayer, an additional default
value 5 not assigned to the variable numWordsDisplayed: int in the mcAM is
assigned to its converted constant variable NUM_WORDS: int in the cSC.

Note that the attribute naming here is different in the mcAM and cSC, i.e.,
numWordsDisplayed in the mcAM and NUM_WORDS in the cSC. The at-
tribute naming difference(s) is(are) illustrated in the example for case DA-4∗

(in subsubsection 4.3.6.4).

Table 4.11: The corresponding example of the cases DA-4∗ and DA-5∗ .

Class mcAM cSC
SinglePlayer numWordsDisplayed:int NUM_WORDS: int = 5
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4.3.7 Cases of disAGTs - Operations
4.3.7.1 Case DO-1 - Operations in the mcAM are removed in the
cSC

Explanation of case DO-1: According to the implementation requirements
of the system, the architects might sometimes over-specify the operations in
the mcAM. Yet, the developers disagree with that, and in the implementation
of the cSC, they decide to remove some of those over-specified operations in
the mcAM.

Example of case DO-1 (selected from project 2): Referring to Table
4.12, it is observed that for the class Pet, an operation eat(food: Food) from
the mcAM is removed in the cSC.

4.3.7.2 Case DO-2 - The parameter names in the mcAM are re-
moved in the cSC

Explanation of case DO-2: This case covers a deviation from the mcAM to
the cSC in terms of the parameters. The over-specified parameters from the
mcAM are removed in the cSC, and their related types are thereby removed
as well.

Example of case DO-2 (selected from project 2): As observed in Table
4.12, for the operation named modifyPet of the class Control, the specified
parameter name kit is paired with the related type Pet from the mcAM to be
removed in the cSC.

4.3.7.3 Case DO-3 - The parameter types in the mcAM are re-
moved in the cSC

Explanation of case DO-3: According to the implementation requirements
of the system, the architects might sometimes over-specify the parameter types
in the mcAM. Yet, the developers disagree with that, and in the implementa-
tion of the cSC, they decide to remove some of those over-specified parameter
types in the mcAM. Notably, by doing this, those types-related names are
removed as well.

Example of case DO-3 (selected from project 2): As observed in Table
4.12, for the operation named modifyPet of the class Control, a parameter type
Pet specified for it from the mcAM is removed in the cSC.

4.3.7.4 Case DO-4∗ - The parameter type in the mcAM and cSC
is different (one cause)

Explanation of case DO-4∗: Of particular interest is considering the con-
cept encapsulation of the OO paradigm, public setter or/and getter operations
provided for encapsulating private attributes. If the encapsulated attribute’s
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type planned out from the mcAM is changed in the cSC, it likely leads to
its corresponding setter operation’s parameter type from the mcAM being
changed in the cSC. Thereby, the conversion of attribute types requires spe-
cial attention (referring to case DA-3∗, in subsubsection 4.3.6.3).

Example of case DO-4∗ (selected from project 2): As observed in
the comparison between Figures 4.41 and 4.42, first, for the attribute named
owner, an attribute type User (a non-primitive data type) specified for it in the
mcAM is changed to int (a primitive data type) in the cSC. Accordingly, the
parameter type specified for its setter operation named setOwner() is changed
from User in the mcAM to int in the cSC.

Figure 4.41: In the mcAM, for the
attribute named owner, User (a

non-primitive data type) is specified.
Also, for its setter operation named

setOwner(), a parameter type User is
specified.

Figure 4.42: In the cSC, for that
attribute named owner its specified

type User in the mcAM changed to int
instead. Accordingly, for the setter

operation named setOwner() of that
attribute, its parameter type changed

from User to int.

4.3.7.5 Case DO-5 - The return types in the mcAM are removed
and as void in the cSC

Explanation of case DO-5: According to the implementation requirements
of the system, the architects might sometimes over-specify the return types in
the mcAM. Yet, the developers disagree with that, and in the implementation
of the cSC, they decide to remove some of those over-specified return types in
the mcAM.

Example of case DO-5 (selected from project 2): As observed in Table
4.12, for the class Control, an operation is named modifyPet(). A return type
Boolean specified for it from the mcAM is removed and as void in the cSC.

90



4. Results

Table 4.12: Four corresponding examples of the cases DO-1, DO-2, DO-3 and
DO-5.

Example
No.

Case
ID Class mcAM cSC

1 DO-1 Pet eat(food: FOOD)
2 DO-2 Control modifyPet(kit: Pet): Boolean modifyPet(): void
3 DO-3 Control modifyPet(kit: Pet): Boolean modifyPet(): void
4 DO-5 Control modifyPet(kit: Pet): Boolean modifyPet(): void

4.3.7.6 Case DO-6∗ - One or more operations from classifier A in
the mcAM are moved to classifier B in the cSC (related to the
particular architectural patterns)

Explanation of case DO-6∗: This case is about the developers’ design de-
cisions to deviate from the mcAM in the cSC in terms of the application of
specific architectural patterns. As we know, different architectural patterns
are applied to address specific concerns. The related classes thereby take on
different roles. One possibility is that the work intended to be assigned to the
class from the mcAM was reallocated to other classes in the cSC.

Example of case DO-6∗ (selected from project 2): As observed in the
comparison between Figures 4.43 and 4.44, in the mcAM, an operation in the
class DAO, e.g., listUser(): Map, is moved to the class RaiseMeUp as the
corresponding operation, e.g., listUsers(): Map<Integer, User> in the cSC.
This is because of the divergences of the cSC implementation from the mcAM
design in terms of the MVC architectural pattern. To be specific, Dao is a
Model class related to the database, and RaiseMeUp is a Controller class. The
operation listUser from the mcAM is initially planned out, aiming at getting
a list of user data from the dataset (as illustrated in Figure 4.44). Consider-
ing the application of the MVC in the project, that operation modeled from
the mcAM should be contained in a Controller class, which is responsible for
managing the data from the Model-related class rather than executing data
operations inside the Model-related database. Thus, here a deviation comes
up from the mcAM design to the cSC implementation regarding the usage of
the MVC architectural pattern.

Note that the operation name in the mcAM and cSC is different here, i.e., lis-
tUser() and listUsers(). This is considered to be caused by CC. The operation
name differences are illustrated in section 4.4. Besides, the return type in the
mcAM and cSC is also different here, i.e., Map<> and Map<Integer, User>.
This is considered to be caused by MA, which is illustrated in another case
MO-5∗ (referring to subsubsection 4.3.3.5).
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Figure 4.43: In the mcAM, for the class DAO, the operations, e.g., listUser():
Map is created.

Figure 4.44: In the cSC, the operation, e.g., listUser(): Map created in the class
DAO from the mcAM is moved to another class RaiseMeUp/Controll as

listUsers(): Map<Integer, User>. Then it is used for getting a list of user data
from the Model-related class Dao in the cSC.

4.3.8 Cases of disAGTs - Relationships
We concluded three cases of disAGTs in terms of relationships, namely Cases
DR-1, DR-2, and DR-3∗ (with the corresponding causes). They are illustrated
in Figure 4.45, thereby giving the reader an overview of the remainder of this
subsection.

Notably, each case will be detailed separately in the following subsubsections.
Also, the respective example of every cause is given for the illustration.
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Figure 4.45: Cases DR-1, DR-2, and DR-3∗, with the corresponding causes.

4.3.8.1 Case DR-1 - Relationships between A and B from the mcAM
are removed in the cSC (one cause)

Explanation of case DR-1: This case is about the deviations between
mcAM design and cSC implementation in terms of relationships. Here, it
refers to removing the relationships from the mcAM in the cSC.

We concluded the following cause for this case, with the corresponding exam-
ple to illustrate:

– Cause 1: (i) The introduction of cause 2 - conversion of non-primitive
and primitive data types - of case DA-3∗ - the attribute type in the mcAM
and cSC is different.

Explanation of cause 1: In the mcAM, an aggregation or a composi-
tion between A and B can be implied by an attribute type (specified by
the instance(s) of B) in A. However, if this attribute type in the mcAM
is converted to a primitive data type, such as int in the cSC, then the
related link between A and B will be removed.

Example of cause 1 (selected from project 2): As observed in
the comparison between Figures 4.46 and 4.47, for the attribute named
owner, its type is converted from an instance of User in the mcAM to a
primitive data type int in the cSC. This leads to the related composition
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between the classes Pet and User from the mcAM being removed in the
cSC.

Figure 4.46: In the mcAM, a
composition is created between the

classes Pet and User.

Figure 4.47: In the cSC, the attribute
type whose type is specified by an
instance of User from the mcAM is

converted to a primitive data type int.
This leads to the corresponding

composition between Pet and User
from the mcAM being removed in the

cSC.

4.3.8.2 Case DR-2 - A composition between A (whole) and B (part)
from the mcAM is changed into an aggregation in the cSC (one
cause)

Explanation of case DR-2: This case covers deviations between the mcAM
design and cSC implementation in terms of changing the composition modeled
from the mcAM into an aggregation in the cSC.

We concluded the following cause for this case, with a corresponding example
to illustrate:

– Cause 1: (i) In the cSC, the instance(s) of B are not exclusive to the
corresponding instances of A.

Explanation of cause 1: To distinguish aggregation from a composi-
tion is that the lifetime of B is not related to the lifetime of A. In other
words, the instances of A are not exclusive to the corresponding instances
of A, according to the source [40]. Thus, in this case, the instance(s) of
B is(are) not contained by A but also by another one or more classes in
the cSC.

Example of cause 1 (selected from project 5): Figure 4.48 illus-
trates that a composition is created between the classes Layer (whole)
and Neuron (part) in the mcAM. Yet, as illustrated in Figure 4.49, the
instances of Neuron are contained by not only Layer but also by another
class NeuralNetWork. This means that the lifetime of Neuron is not
related to the lifetime of Layer. An aggregation rather than that compo-
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sition modeled from the mcAM is thereby inferred to exist between Layer
and Neuron in the cSC.

Figure 4.48: In the mcAM, a
composition is modeled between the

classes Layer and Neuron.

Figure 4.49: In the cSC, the instances
of Neuron are contained by not only

Layer but also NeuralNetWork.

4.3.8.3 Case DR-3∗ - Relationships between A and B from the
mcAM are replaced with new relationships in the cSC (two causes)

Explanation of case DR-3∗: This case covers deviations between mcAM
design and cSC in terms of relationships, i.e., replacing the relationships mod-
eled from the cSC with new relationships in the cSC.

We concluded the following two causes for this case, with the corresponding
examples to illustrate each of these causes:

– Cause 1: Cause 1: (i) The introduction of another case DA-2∗, i.e., the
attributes of A modeled from the mcAM (whose types are not specified
by the instance(s) of B) are replaced by additional attributes that are
not in the mcAM added to A in the cSC. (ii) The types of the attributes
(from i) are specified by the instance(s) of B.

Explanation of cause 1: For the attribute type of A, which is specified
by the instance(s) of B from the mcAM, either an aggregation or a com-
position can be hereby implied to exist in the cSC. This can be further
confirmed based on the fact that these instances of B are created in an
operation of A and further invoked within an operation of A.

Example of cause 1 (selected from project 3): Figure 4.50 illus-
trates that an association is created between the classes CheckingAccount
and IncomeRepository in the mcAM. Yet, this association from the mcAM
is replaced with an aggregation in the cSC instead. This is because the at-
tributes created for CheckingAccount in the mcAM, e.g., income: Income,
are replaced with fully new attributes, e.g., incomeRepo: IncomeRepos-
itory in the cSC (see Figure 4.51). Thereby, either an aggregation or
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a composition is inferred to exist between CheckingAccount and Incom-
eRepository in the cSC based on the specified type of that attribute i.e.,
an instance of IncomeRepository. This instance is further created within
the operation CheckingAccount() of CheckingAccount; plus, an operation
save() of this instance is invoked within another operation add(Income):
void of CheckingAccount in the cSC. Thereby, an aggregation can be in-
ferred to exist between CheckingAccount and IncomeRegister in the cSC.
In addition, the instances of IncomeRepository are also contained by an-
other class ValuesCalculator. Thus, this aggregation is confirmed as not
a composition.

Figure 4.50: In the mcAM, an
association is created between

CheckingAccount and
IncomeRepository.

Figure 4.51: For CheckingAccount,
the attributes from the mcAM, e.g.,

income: Income, are replaced with fully
new attributes, e.g., incomeRepo:
IncomeRepository in the cSC. The

specified attribute type, an instance of
IncomeRepository, is created within an

operation CheckingAccount() of
CheckingAccount in the cSC. This
instance is further invoked within

another operation add(Income): void of
CheckingAccount in the cSC.
Furthermore, the instances of

IncomeRepository are contained not
only by CheckingAccount but also by
another class ValuesCalculator in the

cSC.
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– Cause 2: (i) Design patterns modeled from the mcAM are redesigned
in the cSC (related to the particular architectural patterns applied in the
cSC).

Explanation of cause 2: In terms of design patterns, there are devia-
tions between the mcAM design and cSC implementation. These devia-
tions may be related to deviations from mcAM to cSC in terms of specific
architectural patterns. Of particular note is that the design patterns may
cooperate with the architectural patterns used to build the system in the
cSC and address the specific system’s concerns. Specifically, the struc-
tural design patterns modeled from the mcAM are possibly redesigned
to accommodate the actual architectural patterns applied in the cSC.
Thus, deviations from a particular architectural pattern may affect the
implementation of the design pattern in the mcAM. The relationships
associated with that design pattern might be changed accordingly. No-
tably, a possibility is that concepts described by those classes related to
the architectural patterns or-and architectural patterns from the mcAM
and cSC are yet consistent. This means that although deviations exist in
relationships from the mcAM to cSC, however, it is just about making
different decisions for addressing the same concern.

Example of cause 2 (selected from project 2): As observed in Fig-
ure 4.52, an observer design pattern [17] can be implied based on the fact
that the naming of the class PetObserver and the significant indicator of
the observer design pattern, i.e., the operation update(): void of PetO-
bserver ; plus, the association relates to PetObserver to be linked with
the class Pet. Pet is an observable class, and PetObserver is an observer
class. An association is created between Pet (origin) PetObserver (tar-
get) in the mcAM.

Yet, in the cSC, that association from the mcAM should be reversed, i.e.,
an association exists between Pet (target) PetObserver (origin). This
is possibly due to the particular MVC architectural pattern applied in
the cSC. To be specific, PetObserver and Pet are Model classes, which
are managed by the Controller class RaiseMeUp in the cSC. Figure 4.53
illustrates that the operation, e.g., getCurrentPet() of RaiseMeUp is in-
voked within an operation, e.g., PetObserver() of PetObserver in the cSC,
and the operation getEnergy() of Pet is further invoked with the help of
RaiseMeUp. Thereby, an indirect association between PetObserver (ori-
gin) and Pet (target) is built up, with RaiseMeUp in between.
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Figure 4.52: In the mcAMA, an
association is created between Pet

(origin) PetObserver (target).

Figure 4.53: RaseiMeUp (target) is
linked with Pet (origin); RaseiMeUp
(origin) is linked with PetObserver

(target). Thus, an indirect association
between Pet (origin) PetObserver

(target) is built up.

4.4 Cases of the Differences Caused by CC
We concluded seven cases for the differences caused by CC in terms of the
model elements, namely classes, attributes, and operations. These seven cases
are illustrated in Table 4.13. Note that cases CA-2, CO-3, and CO-4 are re-
lated to data types where different classifiers (or their instances) interact.

The corresponding causes concluded for these seven cases are illustrated in
Figure 4.54. Thereby, this table and figure provided can give the reader an
overview of the remainder of this section. To be specific, each case will be
detailed separately in subsubsections, with the corresponding examples(s) to
explain.

Table 4.13: Seven cases of the differences caused by CC.

Case ID CC
Classes CC-1 Naming of classes in the mcAM and cSC is different (three causes, see Figure 4.54)
Attributes CA-1 Naming of attributes in the mcAM and cSC is different (two causes, see Figure 4.54)

CA-2 Naming of attribute types in the mcAM and cSC is different (two causes. see Figure 4.54)
Operations CO-1 Naming of operations in the mcAM and cSC is different (four causes, see Figure 4.54)

CO-2 Naming of parameters in the mcAM and cSC is different (two causes, see Figure 4.54)
CO-3 Naming of parameter types in the mcAM and cSC is different (one cause, see Figure 4.54)
CO-4 Naming of return types in the mcAM and cSC is different (one cause, see Figure 4.54)

98



4. Results

Figure 4.54: Causes for the cases caused by CC.
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4.4.1 Cases of CC - Classes
4.4.1.1 Case CC-1 - Naming of classes in the mcAM and cSC is
different (three causes)

Explanation of case CC-1: This case is related to common changes between
mcAM and cSC in terms of class names.

We concluded the following three causes for this case, with the corresponding
examples to illustrate each of these causes:

– Cause 1: Misspelling.

Explanation of cause 1: Due to some typo errors, the class names are
possibly misspelled in the mcAM. Yet, they got corrected in the cSC.

Example of cause 1 (selected from project 1): Referring to Table
4.14, it is observed that the class name SinglePlayModel from the mcAM
is corrected as SinglePlayerModel in the cSC.

– Cause 2: Renaming.

Explanation of cause 2: Considering the semantics carried by classes,
their names from the mcAM are possibly renamed in the cSC. This can
be confirmed by checking the attributes and operations included in the
class; also, the relationships related to this class with other classes.

Example of cause 2 (selected from project 2): As observed in Table
4.14, the class name Control from the mcAM is renamed as RaiseMeUp
in the cSC. This is because this project applies a MVC design pattern,
Control from the mcAM means a Controller class. Yet, it is purely re-
named by the project’s name, i.e., RaiseMeUp.

– Cause 3: Synonyms.

Explanation of cause 3: Plenty of synonyms exist in the dictionary.
Out of individual preferences, the developers might replace the class
names from the mcAM with synonyms in the cSC.

Example of cause 3 (selected from project 3): As observed in Table
4.14, the class name IncomeRegisterUI from the mcAM is replaced with
a synonym RegisterIncomeUI in the cSC. They carry exactly the same
semantics, a UI-related class.
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Table 4.14: Three corresponding examples of the causes for case CC-1.

Example
No. Causes mcAM cSC

1 Misspelling SinglePlayModel SinglePlayerModel
2 Renaming Control RaiseMeUp
3 Synonyms IncomeRegisterUI RegisterIncomeUI

4.4.2 Cases of CC - Attributes

4.4.2.1 Case CA-1 - Naming of attributes in the mcAM and cSC
is different (two causes)

Explanation of case CA-1: This case is related to common changes between
mcAM and cSC in terms of attribute names.

We concluded the following two causes for this case, with the corresponding
examples to illustrate each of these causes:

– Cause 1: Synonyms.

Explanation of cause 1: Plenty of synonyms exist in the dictionary.
Out of individual preferences, the developers possibly replace the at-
tribute names from the mcAM with synonyms in the cSC.

Example of cause 1 (selected from project 2): Referring to Table
4.15, it is observed that the attribute name name from the mcAM is
replaced with a synonym username in the cSC. They carry exactly the
same semantics, a name.

– Cause 2: Conversion of case types.

Explanation of cause 2: The naming conversions in Java possibly cause
the deviations between mcAM and cSC in terms of attribute names.

Example of cause 2 (selected from project 2): As observed in
Table 4.15, the attribute name valueDog in camel-case from the mcAM
is changed into valuedog, all letters in lowercase in the cSC.

Table 4.15: Two corresponding examples of the causes for case CA-1.

Example
No. Causes Class mcAM cSC

1 Synonyms User name: String username: String
2 Conversion of case types Food valueDog: Integer valuedog: int
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4.4.2.2 Case CA-2 - Naming of attribute types is different (two
causes)

Explanation of case CA-2: This case is related to common changes be-
tween mcAM and cSC in terms of the naming of the attribute types. This
can be only caused by unintentional human mistakes involved in the mcAM
design. This is because the attribute types are code constructs; if there is
any unintentional mistake involved in the cSC implementation process, these
mistakes will be promoted by compilers and hereby be corrected by developers.

We concluded the following two causes for this case, with the corresponding
examples to illustrate each of these causes:

– Cause 1: Misspelling.

Explanation of cause 1: Due to some typo errors, the naming of the
attribute types from the mcAM possibly involves misspelling. Yet, it got
corrected in the cSC.

Example of cause 1 (selected from project 3): Referring to Table
4.16, it is observed that the naming of the attribute type IncomeType
involves misspelling. This can be inferred by observing its related name
incomeTypePository, which carries the semantics of the existence of a
class IncomeTypeRepository. In the cSC, that attribute type IncomeType
from the mcaM is corrected as IncomeTypeRepository in the cSC.

– Cause 2: Wrapper class from the mcAM versus the data types it in-
cludes in the cSC.

Explanation of cause 2: Referring to the definition of attribute type,
an attribute type can be either a primitive data type or a non-primitive
data type. Interestingly, the architects possibly model an attribute type
as a wrapper class (a non-primitive data type), such as Integer rather
than int (a primitive data type) included in Integer.

Example of cause 2 (selected from project 2): As observed in Table
4.16, the attribute type Integer from the mcAM is changed into int in
the cSC.

Table 4.16: Two corresponding examples of the causes for case CA-2.

Example
No. Causes Class mcAM cSC

1 Misspelling RegisterIncomeController incomeTypeRepository:
IncomeType

incomeTypeRepository:
IncomeTypeRepository

2
Wrapper class from the mcAM

versus the data types it
includes in the cSC

Pet money: Integer money: int
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4.4.3 Cases of CC - Operations

4.4.3.1 Case CO-1 - Naming of operations in the mcAM and cSC
is different (four causes)

Explanation of case CO-1: This case is related to common changes between
mcAM and cSC in terms of operation names.

We concluded the following four causes for this case, with the corresponding
examples to illustrate each of these causes:

– Cause 1: Misspelling.

Explanation of cause 1: Due to some typo errors, the operation names
are possibly misspelled in the mcAM. They got corrected in the cSC.

Example of cause 1 (selected from project 1): Referring to Table
4.17. The operation name SinglePlayModel from the mcAM is corrected
as SinglePlayerModel in the cSC.

– Cause 2: Synonyms.

Explanation of cause 2: Plenty of synonyms exist in the dictionary.
Out of individual preferences, the developers might replace the operation
names from the mcAM with synonyms in the cSC.

Example of cause 2 (selected from project 4): Referring to Table
4.17, the operation name getNumberOfHours from the mcAM is replaced
with a synonym getNoOfHours in the cSC. They carry exactly the same
semantics, getting the number of hours.

– Cause 3: Conversion of case types.

Explanation of cause 3: The naming conversions in Java possibly cause
the deviations between mcAM and cSC in terms of operation names.

Example of cause 3 (selected from project 1): Referring to Table
4.17, the operation name setbackground, all letters in lowercase from the
mcAM is changed into setBackground in camel-case in the cSC.

– Cause 4: Conversion of singular and plural.

Explanation of cause 4: The conversion of singular and plural carries
semantics about the conversion of the concepts of one and more enti-
ties/instances.

Example of cause 4 (selected from project 2): As observed in Table
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4.17, the operation name listFood from the mcAM carries the semantics
of one Food instance. Yet, it is exactly a collection of Food instances
based on the fact that the related return type Map, a collection-related
interface, is used to specify that operation. That singular name listFood
from the mcAM is corrected as a plural name listFoods in the cSC to
make the semantics carried by the name consistent with the semantics
reflected by the related return type.

Table 4.17: Four corresponding examples of the causes for case CO-1.

Example
No. Causes Class mcAM cSC

1 Misspelling SinglePlayModel SinglePlayModel(diff: States.difficulty,
am: AssetManager, wordsDis: int)

SinglePlayerModel(diff: States.difficulty,
am: AssetManager, wordsDis: int)

2 Synonyms Pattern getNumberOfHours() getNoOfHours(): Integer
3 Conversion of case types PreGameSelection setbackground(view: View) setBackground(view: View): void
4 Conversion of singular and plural DAO listFood(): Map listFoods(): Map<Integer, Food>

4.4.3.2 Case CO-2 - Naming of parameters in the mcAM and cSC
is different (two causes)

Explanation of case CO-2: This case is related to common changes between
mcAM and cSC in terms of parameter names.

We concluded the following two causes for this case, with the corresponding
examples to illustrate each of these causes:

– Cause 1: Misspelling.

Explanation of cause 1: Due to some typo errors, the parameter names
are possibly misspelled in the mcAM. They are corrected in the cSC.

Example of cause 1 (selected from project 1): As observed in Table
4.18, the parameter name savedInstaceState from the mcAM is corrected
as savedInstanceState in the cSC.

– Cause 2: Own language.

Explanation of cause 2: Interestingly, we observed that the architects
might use pronouns to describe the related parameter type. This is not
caused by MA and disAGTs; rather, we consider it to come from individ-
ual preferences. Yet, the usage of pronouns might be too comprehensive
and a little imprecise in describing a parameter type.

Example of cause 2 (selected from project 2): Referring to Table
4.18, the parameter name who, a pronoun, from the mcAM is changed
into u in the cSC. They carry exactly the same semantics, but this can
only be inferred by the same parameter type, namely User related to
them. Both parameter types are comprehensive.
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Table 4.18: Two corresponding examples of the causes for case CO-2.

Example
No. Causes Class mcAM cSC

1 Misspelling SinglePlayer onCreat(savedInstaceState: Bundle) onCreat(savedInstanceState: Bundle): void
2 Own language Control eraseUser(who: User): Boolean removeUser(u: User): Boolean

4.4.3.3 Case CO-3 - Naming of parameter types in the mcAM and
cSC is different (one cause)

Explanation of case CO-3: This case is related to common changes between
mcAM and cSC in terms of the naming of parameter types.

We concluded the following cause for this case, with the corresponding exam-
ple to illustrate:

– Cause 1: Conversion of uppercase and lowercase.

Explanation of cause 1: It might be common to have the conversion
of uppercase and lowercase regarding the names. And we observed the
following example.

Example of cause 1 (selected from project 1): Referring to Table
4.19, the naming of the parameter type Char with the initial capitaliza-
tion from the mcAM is converted to char with all of its letters in lowercase
in the cSC.

Table 4.19: The corresponding example of the cause for case CO-3.

Example
No. Causes Class mcAM cSC

1 Conversion of uppercase and lowercas SinglePlayModel typedLetter(letter: Char) typedLetter(letter: char): void

4.4.3.4 Case CO-4 - Naming of return types in the mcAM and cSC
is different (one cause)

Explanation of case CO-4: This case is related to common changes between
mcAM and cSC in terms of the naming of return types.

We concluded one cause, i.e., own language, for this case. Yet, this cause is
particularly interesting. Thus, we use the following two examples to illustrate
this cause.

– Cause 1: Own language.

Explanation of cause 1: We observed that the architects might some-
times use their own language to convey semantics. In this way, the struc-
ture of the system related to the linkage between different classifiers (or
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their instances) can be presented in the mcAM.

Example 1 of cause 1 (selected from project 3): As observed in Ta-
ble 4.20, the return type list from the mcAM is changed into List<IncomeType>
in the cSC. list is neither a primitive data type nor a non-primitive data
type. It conveys the semantics defined by architects. To be specific, in
the mcAM, an attribute list: List<IncomeType> is created in the same
class IncomeTypeRepository where the operation getIncomeTypes(): list
is contained. The name of that attribute i.e., list, is used to specify the
return type of the operation named getIncomeTypes in the mcAM. In this
way, the linkage between the classes IncomeTypeRepository and Income-
Type can be hereby presented in the mcAM.

Example 2 of cause 1 (selected from project 3): Referring to Table
4.20, it is observed that the return type IncomeTypes from the mcAM is
changed into List<IncomeType> in the cSC. According to the specifica-
tion of List<IncomeType>, we can know that IncomeType is a class; also,
a collection of this class is referenced by the instances of RegisterIncome-
Controller in the cSC. Yet, in the mcAM, the return type is specified
by a plural string. This is used to convey the semantics that a collec-
tion of instances of IncomeType is possibly referenced by the instances of
RegisterIncomeController in the cSC.

Table 4.20: Two corresponding examples of the cause for case CO-4 (∗ =
particular interest).

Example
No. Causes Class mcAM cSC

1 Own language∗ IncomeTypeRepository getIncomeTypes(): list getIncomeTypes(): List<IncomeType>
2 RegisterIncomeController getincomeTypes(): IncomeTypes getIncomeTypes(): List<IncomeType>

4.4.4 Ratios of Cases with Related Projects
Table 4.21 presents the ratios of the cases of MA, disAGTs, and CC discovered
among the five projects studied, with the related projects. It is observed that
we finally concluded 40 cases. Among these cases, 18 are caused by MA, 15
are caused by disAGTs, and 7 are caused by CC. For MA, 4 of 18 are their own
cases. For disAGTs, 7 of 15 are their own cases. For the other respective 14
and 8 cases of MA and disAGTs, we observed that some of them are opposite
to each other. One concern is that if one of the opposite paired cases of MA
and disAGTs has not been observed, that unobserved case can be inferred by
the other observed. We named such inferred cases as suspected cases, which
is presented in Table 4.2.
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Table 4.21: Ratios of the cases with involved projects (∗ = own case).

ID
No. of cases MA Project disAGTs Project CC Project

1 MC-1 5 DC-1 2 CC-1 1, 2, 3, 5
2 MC-2 2 DA-1 2 CA-1 1, 2, 4
3 MA-1 1, 2, 3, 4 DA-2∗ 3 CA-2 2, 3
4 MA-2∗ 4 DA-3∗ 2 CO-1 1, 2, 4
5 MA-3∗ 4 DA-4∗ 1 CO-2 1, 2
6 MA-4 2 DA-5∗ 1 CO-3 1
7 MA-5 2 DO-1 2, 4 CO-4 2, 3
8 MA-6 2 DO-2 2
9 MO-1 1, 2, 3, 4 DO-3 2
10 MO-2 1, 2, 3, 4 DO-4∗ 2
11 MO-3 2, 3, 4 DO-5 2
12 MO-4 1, 2, 3, 4 DO-6∗ 2
13 MO-5∗ 2 DR-1 2
14 MO-6∗ 1 DR-2 5
15 MO-7 2 DR-3∗ 2, 3
16 MR-1 1, 2, 3, 4, 5
17 MR-2 3, 4
18 MR-3 1

Total no. 18 15 7 40

4.4.5 Typical/Common Cases with Related Projects
We define that cases involved in three or above three projects are typical/common
cases. A sorted list of 9 typical/common cases with the related projects is pre-
sented in Table 4.22. Of particular note, there is no typical/common case
caused by disAGTs. Among these 9 cases, 6 cases and 3 cases are related to
MA and disAGTs, respectively.

For MA, it is common for the additional attributes and operations not in the
mcAM yet to be added to the cSC (in regard to the respective cases MA-
1 and MO-1). With respect to cases MO-2 and MO-3, it is common for the
additional parameter names and types not in the mcAM yet to be added to the
cSC. One concern here is that they might be paired up to be added to the cSC
since the parameter name is the identifier of the parameter type. Surprisingly,
the return types are also common for not specified in the mcAM yet added
to the cSC (in regard to case MO-4). Of particular interest, case DR-1 is
involved in every project we studied. To be specific, additional relationships
not in the mcAM are added to the cSC, which is quite common. Moreover, for
CC, it is common to have differences in the naming of classes, attributes, and
operations between the mcAM and cSC (in regard to respective cases CC-1,
CA-1, and CO-1).
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Table 4.22: Typical/common cases with related projects.

ID
No. of cases MA Project CC Project

1 MA-1 1, 2, 3, 4 CC-1 1, 2, 3, 5
2 MO-1 1, 2, 3, 4 CA-1 1, 2, 4
3 MO-2 1, 2, 3, 4 CO-1 1, 2, 4
4 MO-3 2, 3, 4
5 MO-4 1, 2, 3, 4
6 MR-1 1, 2, 3, 4, 5

Total No. 6 3 9

4.4.6 Aggregated Results of the Cases for the Project

For the five projects studied, the respective list of sorted cases of MA, dis-
AGTs, and CC are presented in the following:

Table 4.23 illustrates the sorted list of cases of MA, disAGTs, and CC for
project 1. It is observed that there are 12 cases involved in project 1, and
among these cases, 6 cases of MA, 2 cases of disAGTs, and 4 cases of CC.

Table 4.23: Project 1 - Respective differentiated cases of MA, disAGTs, and CC
(∗ = own case).

Case ID
No. of cases MA disAGTs CC

1 MA-1 DA-4∗ CC-1
2 MO-1 DA-5∗ CA-1
3 MO-2 CO-1
4 MO-4 CO-2
5 MO-6∗

6 MR-3
Total no. 6 2 4 12

Table 4.24 presents the sorted list of cases of MA, disAGTs, and CC for project
2. It is observed that there are 29 cases involved in project 2, and among these
cases, 12 cases of MA, 11 cases of disAGTs, and 6 cases of CC.
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Table 4.24: Project 2 - Respective differentiated cases of MA, disAGTs, and CC
(∗ = own case).

Case ID
No. of cases MA disAGTs CC

1 MC-2 DC-1 CC-1
2 MA-1 DA-1 CA-1
3 MA-4 DA-3∗ CA-2
4 MA-5 DO-1 CO-1
5 MA-6 DO-2 CO-2
6 MO-1 DO-3 CO-4
7 MO-2 DO-4∗

8 MO-3 DO-5
9 MO-4 DO-6∗

10 MO-5∗ DR-1
11 MO-7 DR-3∗

12 MR-1
Total no. 12 11 6 29

Table 4.25 presents the sorted list of cases of MA, disAGTs, and CC for project
3. It is observed that there are 12 cases involved in project 3, and among these
cases, 7 cases of MA, 2 cases of disAGTs, and 3 cases of CC.

Table 4.25: Project 3 - Respective differentiated cases of MA, disAGTs, and CC
(∗ = own case).

Case ID
No. of cases MA disAGTs CC

1 MA-1 DA-2∗ CC-1
2 MO-1 DR-3∗ CA-2
3 MO-2 CO-4
4 MO-3
5 MO-4
6 MR-1
7 MR-2

Total no. 7 2 3 12

Table 4.26 presents the sorted list of cases of MA, disAGTs, and CC for project
4. It is observed that there are 12 cases involved in project 4, and among these
cases, 9 cases of MA, 1 case of disAGTs, and 2 cases of CC.
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Table 4.26: Project 4 - Respective differentiated cases of MA, disAGTs, and CC
(∗ = own case).

Case ID
No. of cases MA disAGTs CC

1 MA-1 DO-1 CA-1
2 MA-2∗ CO-1
3 MA-3∗

4 MO-1
5 MO-2
6 MO-3
7 MO-4
8 MR-1
9 MR-2

Total no. 9 1 2 12

Table 4.27 presents the sorted list of cases of MA, disAGTs, and CC for project
5. It is observed that there are 4 cases involved in project 5, and among these
cases, 2 cases of MA, 1 case of disAGTs, and 1 case of CC.

Table 4.27: Project 5 - Respective differentiated cases of MA, disAGTs, and CC.

Case ID
No. of cases MA disAGTs CC

1 MC-1 DR-2 CC-1
2 MR-1

Total no. 2 1 1 4
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5
Discussion

In this chapter, the reflection on the methodology of data selection is presented
first, followed by the discussion in regard to the limitations of the reverse engi-
neering tools and the advantages of manual studies. The guideline enlightened
by the cases that we have discovered is detailed and discussed. Last but not
least, the related technologies that can automatically heal the discovered cases
are discussed. Finally, the identified threats to the validity of this thesis work
are presented.

5.1 Reflection on Data Selection
In the data selection, we assumed that the voSC that includes the selected
mcAM is most likely to be the cSC of that mcAM since the voSC and that
mcAM are created at the same time. This assumption can be considered reli-
able based on the fact that in regard to the five projects we studied, for each of
them, the voSC that includes the mcAM is proven to be a cSC of that mcAM.
Considering that no study exists on how to select the modeled code for the
model in regard to GitHub open-source projects, our assumption can thereby
be taken by other researchers as a good starting point for selecting the modeled
code (cSC) of the model (mcAM). Accordingly, a number of questions about
the models and modeled code can thereby be answered, e.g., for the GitHub
projects which use models, whether the modeled code are likely to be created
before or after the created model in the commit history.

We did not encounter a situation in which the voSC that includes the selected
mcAM is not a cSC of the mcAM. However, this situation cannot be excluded.
Thereby, we proposed two reasons for this situation, with the corresponding
cases of these two reasons to illustrate this situation (in section 3.2.3). We
point out that the comparison between mcAM concepts and cSC classes in
terms of number is a significant indicator for respective decisions made on
comparing the voSCs before or after that voSC (that includes the selected
mcAM) for selecting an ideal cSC among multiple cSCs of a mcAM. Never-
theless, these two proposed reasons and their corresponding cases need to be
validated by the actual case in the future.

111



5. Discussion

5.2 Limitations of Reverse Engineering Tools

In fact, in the beginning, we intended to adopt an automatic reverse engi-
neering tool to visualize the code. Then we considered once the one-to-one
mappings from the mcAM to the cSC are created in terms of classes, at-
tributes, operations, and even relationships, the related differences can hereby
be detected by our tool. Obviously, purely relying on an automatic reverse en-
gineering tool to detect the differences is not an ideal approach, given the fact
that the differences caused by MA, disAGTs, and even CC in terms of classes,
attributes, operations, and relationships cannot be fully detected. Taking
cause 1 of case CO-4 (in subsubsection 4.4.3.4) as an example, the architects
might use their “own language” rather than the syntax of the model elements
defined in UML to convey the semantics of the return type. Yet, the conveyed
semantics can only be fully and precisely interpreted by a full understanding
of the cSC implementation. That means we need to fully understand the pri-
mary roles taken over by the classes and the functionalities of every related
attribute and operation associated with the classes, and especially the inter-
relations between the attributes and operations in the cSC. This is because
the relationships are highly dependent on the design of the attributes and op-
erations. For instance, a composition or an aggregation between classifiers A
(whole) and B (part) must be built on the fact that the instances of B are
created in A.

Tools can help us identify some structural differences through visualization,
but the generated reverse-engineered class diagrams cannot reveal other non-
structural differences. This is caused by the fact that they cannot take the
semantics conveyed by the mcAM elements into account and thereby automat-
ically create one-to-many or many-to-many mappings between the mcAM and
cSC. This can only be achieved by manual studies, which can jointly interpret
the semantics conveyed by different model/mcAM elements. Based on our
complete understanding of the relevant cSC implementation, the selected tool
(IDEA) is considered only an aid for us to turn the relevant reverse-engineered
class diagrams generated over the code into pictures. These pictures are used
to illustrate the examples of the cases. The source code is always taken as a
baseline to identify the differences between the mcAM and the cSC of that
mcAM.

One point that can be taken from here is that only the classes of the cSC related
to the mcAM concepts are essential to be visualized for studying the charac-
teristics of the differences. This step is done by manual selection. Considering
that there might be a large number of classes in a project, the unrelated classes’
source code files do not need to be visualized, which even hinders the capture
of class information. Moreover, if a project applies a particular architectural
pattern, knowing about it is a plus in the file selection. This is because the
related classes’ source code files that are respectively differentiated into the
corresponding directory/package of the architectural pattern can be quickly

112



5. Discussion

located, and thereby selected to be visualized by the tool.

5.3 Advantages of Manual Mappings
As mentioned in section 5.2, compared with using a tool, one advantage of
manual studies/mappings is jointly taking the semantics conveyed by different
model/mcAM elements into account and thereby one-to-many, and many-to-
many mappings between the mcAM elements and the cSC constructs can be
created. The differences between the mcAM and cSC can thereby be fully and
precisely detected. Another advantage is that we can scale the mappings up to
a larger blueprint, with the consideration of the specific architectural patterns
and design patterns applied in the projects. Of particular note, the architec-
tural patterns and design patterns might sometimes cooperate to address the
particular system’s implementation concern. While few cases in our results
(e.g., cases MC-2 and DO-6∗) are related to their usage, we suggest manual
studies on the characteristics of manual abstraction need to take the architec-
tural patterns or-and design patterns used in the project into account. Some
related similarities can thereby be discovered in regard to manual abstraction.

5.4 Guideline Enlightened by Cases
Adapting the architectural and design patterns to solve the particular system’s
concerns. As observed from the discovered MA cases, if a project applies a
particular design pattern or-and architectural pattern, this will increase the
difficulty of modeling the related model elements from the cSC out in the
mcAM. This is because the particular design pattern or-and architectural pat-
tern may cooperate to address the particular system’s implementation concern.
For that reason, the semantics conveyed by the related model elements need to
be jointly considered. This means how to adapt the design pattern and archi-
tectural pattern to each other to address the same concern/goal. Of particular
note here, we should not be constrained by the fixed structure of a particu-
lar design pattern frequently used in a model design or even purely naming a
key class to represent the usage of a particular design pattern in the project
(referring to case MC-2 in subsubsection 4.3.1.2). We suggest that the model
design in regard to a particular design pattern or-and an architectural pat-
tern should be based on a full understanding of the system’s implementation
structure and knowing about the concern needed to be solved. Then focusing
on addressing that concern, the design pattern or-and architectural pattern is
designed accordingly to adapt to that concern.

Being proactive in specifying model constituents related to data types. As we
know, the relationships of association, aggregation, and composition between
the classifiers are dependent on three model constituents related to data types
(i.e., attribute types, parameter types, and return types). Furthermore, the
conversion of primitive and non-primitive data types in regard to those three
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model constituents will lead to the removal or addition of the related rela-
tionships. Thereby, when it comes to modeling these data types-related model
constituents in a model, we need to be proactive in the potential circumstances
that will be triggered (e.g., referring to cause 2 of case DA-3∗ in subsubsection
4.3.6.3).

Following the concepts of OO paradigm. In essence, model design and Java
code implementation are related to the conceptualization of abstraction. Thus,
a good design must follow the concepts of OO paradigm, such as encapsulation
and inheritance. This can allow the design decisions made in the model prone
to be accepted by developers in the code implementation. The abstraction
concept of design and implementation can thus be synchronized. Referring to
the example of case MA-5 (in subsubsection 4.3.2.5), we are not convinced that
the common attributes are modeled in the respective subclasses rather than
moving them into the superclass inherited by these subclasses in a hierarchical
chain is a good design. This is because code reuse is not achieved. Code reuse
not achieved also adapts to another possible case not observed, i.e., common
operations are modeled in the respective subclasses rather than moving them
into the superclass inherited by these subclasses in a hierarchical chain.

Trade-off between over-specification and over-abstraction in regard to hierar-
chical inheritance structure. We observed that a case, namely case MC-1 (in
subsubsection 4.3.1.1), covers MA that hides the subclasses from the cSC in
the mcAM and only models the superclass inherited by these subclasses from
the cSC out in the mcAM. Accordingly, this modeled superclass in the mcAM
can describe the respective second concepts of the concepts described by one
or more subclasses derived from that superclass in the cSC. However, on the
contrary, we also observed another case caused by disAGTs, namely case DC-1
(in subsubsection 4.3.5.1), where the over-specified subclasses from the mcAM
are removed in the cSC, and thereby the corresponding inheritance chain is
removed as well. Thus, for designing a hierarchical inheritance structure in
the model, one concern is that we would ideally consider whether the inher-
itance structure is necessary and whether the commonalities of the objects
of the subclasses can be differentiated into an object of a superclass. Before
the related abstract concepts are formed, it would be ideal to stay away from
over-specifying subclasses. This is not only poorly abstracted but also possibly
misleading the developers in the code implementation.

Paying attention to the naming conversions. Of particular interest, we should
pay attention to the naming convention of a constant variable (named by let-
ters all in uppercase) and a variable (in camel case) in a model design. This
will have an impact on specifying the related default values. That means for a
variable created in the model, there is no need to assign a default value to it.
This is because the default value is likely to be updated frequently in the code
implementation. Yet, in regard to creating a constant variable in a model, this
might depend on different decision-making by the architect. To be specific,
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a constant variable can only be initiated once across the program life cycle.
Thus, if the architect wants to emphasize the value of the constant variable,
then the corresponding default value will be assigned accordingly.

Rethinking the model design of relationships. In [40], Guéhéneu and Albin-
Amiot refined the definitions for relationships of association, aggregation, and
composition. This provides invaluable input for us to identify the related re-
lationships in the cSC from the mcAM. The causes for the deviations of the
cSC from mcAM in terms of relationships can thereby be concluded. From
the concluded causes, we found that in some cases, an association between
A (origin) and B (target) in the cSC is possibly already implied by the pa-
rameter types or/and return types specified by the instance(s) of B within A.
This is because they enable the instance of A to send a message to an in-
stance of B (given the definitions by Guéhéneu and Albin-Amiot). The same
to an aggregation or a composition between A (whole) and B (part) that can
possibly be implied by the attribute types (specified by the instance(s) of B)
within A body. Yet, those associations or aggregations are not modeled out in
some cases. We cannot exclude the possibility that this might be due to dif-
ferent mcAM design decision-making. Yet our concluded causes for why some
associations and aggregations not in the mcAM are added to the cSC could
provide input for the architect to think about whether it is necessary for these
implicit relationships to surface in the model design for a particular system
implementation. In addition, considering the maintenance burden imposed by
the cyclic relations as they are mutually binding, whether there is a need to
refactor the implementation structure.

5.5 Related Technologies for Healing the Cases
In regard to the mapping of classes between code and design, Antoniol et al.
[32] discovered that the class name is the class property that performs best
among the other properties (e.g., class methods and class fields). Dennnis et
al. [43] suggested that the package information would help limit the space for
searching the related class differentiated into the specific directory. Thereby,
the corresponding class can be easily located. In accordance with our man-
ual mappings between model and code in terms of classes, we agree with the
opinion of Dennnis et al., i.e., package information does help the selection of
the related class. Thus, with package information as a plus, one can use the
automatic method [32] developed by Antoniol et al. to create the mapping
from the classes between the code and design. Thereby, the left classes that
are not successfully matched can be mapped manually.

Model-Driven Engineering (MDE) offers an approach to address the inability
of third-generation languages to alleviate the complexity of platforms and ex-
press domain concepts effectively [53]. Plus, one can use Object Constraint
Language (OCL) to specify precise and unambiguous constraints on model
elements, which can be used to validate, analyze, and transform software sys-
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tems [54, 55]. Thus, the joint usage use of MDE and OCL allows the code to
be automatically generated by the model with the validation for the required
system’s implementation. This can also help to reduce the risk of errors and
inconsistencies that can arise when generating code manually [56], and allows
the generated code to be fully consistent with the model. Thereby, the de-
viations of the code from the model can be fully automatically eliminated.
However, this requires a highly refined model design.

Software reflexion models [57] can be used to conduct the consistency checks
between design and code in terms of relationships, built on the assumption
that the mapping exists between design and code. With the code and design
as a basis, the mappings can be defined manually, which serves as the input
of the reflection models. A reflexion model can thus be created, and the “ab-
sence” and “divergence” relationships of the code from the design can further
be detected [57]. Noteworthy, we accept the refinement of the definitions of the
binary relationships of association, aggregation, and composition by Guéhéneu
and Albin-Amiot [40]. Based on this, we identified the relationships that ex-
ist in the cSC and then manually created the mappings between the code
(cSC) and design (mcAM). Thereby, the cases we summarized for MA and
disAGTs in terms of relationships can provide such input for a software reflex-
ion model. We agree with the assertion by Guéhéneu and Albin-Amiot [40]
that the gap between model design and code implementation will be bridged
once the consensus definitions of the relationship between model design and
code implementation can be guaranteed.

For the slightly varying naming in the code from the model in terms of the
model constituents of class name, attribute name, and operation name, a Java
parser related to the abstract syntax tree (AST) can be used to locate the
relevant places of the code and further generate a tree. The name of related
code constructs can be changed accordingly, and the tree-represented code
can automatically be adapted to the model. However, from another perspec-
tive, since AST cannot accept non-formalized syntax, if a model constituent is
defined by “own language” to convey the semantics, that constituent cannot
be parsed and is further matched with the parsed related code constructs in
formalized syntax (an example with reference to the cause 1 of case CO-4 in
subsubsection 4.4.3.4). Interestingly, if that non-formalized syntax defined by
“own language” do help software engineers to understand the implementation
structure by using such a related model, is there a need to enable the code and
model to synchronize would be a good inquiry, given the usage of drawing.

5.6 Threats to Validity
In [58], Gren proposed a set of checklists regarding the existing four types
of validity threats (i.e., internal, external, construction, and conclusion). We
referred to these checklists and then categorized these identified threats into
three types: threats to construction validity, threats to external validity, and
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conclusion validity. Each of these threats is detailed in this section.

5.6.1 Threats to Construction Validity
Own subjective definitions of the “differences”. Individuals might have their
own definitions of the “differences” between the mcAM and the cSC of that
mcAM. Yet, we considered this due to the lack of systematic studies of the
mcAM elements/constituents definitions. Thereby, it demands us to give clear
definitions for the constituents of attributes and operations being studied in
the mcAM. We take the UML v2.4.1 specifications [21] as the basis to define
every constituent in the mcAM. By referring to the Java SE7 specifications
[59] that is published at the approximate time of that UML v2.4.1 specifica-
tions [21], the mappings between the mcAM elements/constituents and cSC
constructs can be created precisely. This is because we exclude the threat that
the latest UML specifications might not adapt to the mcAMs we studied. In
consequence, this threat to the construction validity can be eased.

Underestimation of the differences caused by MA and disAGTs. Considering
the data selection in section 3.2, if multiple cSCs correspond to one mcAM,
only one cSC is selected among those cSCs. We cannot ensure that the selected
cSC is without any missed attributes and operations that will be implemented
in other voSCs. This will lead to results that underestimate the differences
caused by MA and disAGTs. However, considering the time constraints and
the size of the projects, if a project has hundreds or thousands of voSCs, it
is not possible for us to check the voSC one by one to confirm which of them
are cSCs. However, we argue that the perfect selection regarding the cSC
does not exist. This is because, still, the possibility that the missed attributes
and operations in a particular cSC will be implemented in other voSCs/cSCs,
cannot be excluded. That means the differences not investigated in the se-
lected cSC might exist in other voSCs/cSCs and vice versa. Thereby, the
summarized causes caused by MA in this thesis can provide valuable inputs
for future mapping rules development between the model/mcAM and the mod-
eled code/cSC. On the other hand, the concluded causes caused by disAGTs
can enable software engineers to know which design decisions of the mcAM
are prone to deviate in the cSC.

5.6.2 Threats to External Validity
Coverage of project domain types. This thesis focuses only on Java domain
projects. However, the investigation of the differences between the mcAM
and the cSC of that mcAM has scaled the cSC up to its related architectural
pattern. Thereby, the reliability of our results can be guaranteed as the differ-
ences, to some extent, are related to the specific architectural patterns applied
in the project. On the other hand, two of the five projects selected for study
can be confirmed as coming from the industry. The remaining three projects
are uncertain (due to the lack of the project’s information in the repository).
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However, to ensure the generalization in the data selection process, the rele-
vant information of each project that can be found in the repository has been
manually gone through. This is intended to avoid, as much as possible, these
five projects coming from academia, such as teaching materials, thesis, home-
work, etc. For the causes of MA, disAGTs, and CC, their cases are concluded
by employing five case studies. Thus, this thesis work is considered a qualita-
tive analysis. We are convinced that this qualitative analysis provides valuable
inputs for developing future mapping rules between the model/mcAM and the
modeled code/cSC in terms of Java.

5.6.3 Threats to Conclusion Validity
Limitation of the Lindholmen dataset [1]. Five thesis study subjects are yielded
from this dataset. As described in section 3.1, this dataset is a set of open-
source projects collected from GitHub with the UML models used in these
projects. The model files are limited to image formats (.jpeg, .png, .gif, .svg,
and .bmp) and standard formats (.xmi, and .uml files) without considering
the models embedded in pdf, powerpoint, etc [1]. One concern is that we only
studied the class diagrams in image formats, not for standard formats, even
the other formats e.g., pdf, not covered by the Lindholmen dataset. Yet, given
the limitations of manual studies, it is not ideal for us to study models in
formats other than images. Taking .xmi as an example, the information in
the .xmi file can be too extensive, making it hard for us to abstract the key
elements/constituents of the model/mcAM and then create the mappings be-
tween these elements and the constructs of the modeled code/cSC. Thereby, we
are convinced that image format models are the best choice for manual studies.
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In this chapter, this thesis work is concluded first, followed by suggested ex-
tensions to this thesis work.

6.1 Conclusion
In most cases, the existing reverse engineering tools/methods can not reverse
code into class diagrams with abstraction. This is due to the lack of input
in regard to the characteristics of manual abstraction. Yet, to investigate the
characteristics of manual abstraction, we need to interpret the semantics con-
veyed by the model elements. This must build on the full understanding of
the relevant code implementation, especially given that different systems have
their own required implementation structure. Thus, to study the characteris-
tics of manual abstraction with taking the semantics conveyed by the model
elements into account, a systematic manual study of the actual case is required.

To fill this gap, we manually studied five Java projects in regard to the differ-
ences between the model (mcAM) and the modeled code (cSC). The manual
mappings are created between the mcAM elements/constituents and cSC con-
structs in terms of model elements of classes, attributes, operations, and rela-
tionships. As a result, we concluded 18 MA-related cases, which can be used
as the input for future improvement of the reverse-engineering methods/tools
in terms of abstraction. Besides, another two causes for the differences be-
tween the mcAM and cSC were also found in the manual mapping process,
namely disAGTs, and CC. In consequence, this thesis concluded three primary
causes for the differences between the model (mcAM) and modeled code (cSC),
namely MA, disAGTs, and CC. The respective 18, 15, and 7 cases for MA,
disAGTs, and CC are provided as well. In all, a sorted list of 40 cases for the
differences between the model (mcAM) and modeled code (cSC) is provided.

Of particular interest is the fact that in the case of MA and disAGTs, they
do have their own cases, yet some of them are opposite to each other. This is
because the decisions made in the mcAM design are not acceptable in the cSC
implementation, and thereby different decisions are taken. Thus, one concern
arises as to how to create a model at an appropriate level of manual abstraction
that would be easily accepted by the developer in the code implementation.
The cases of MA and disAGTs can provide this guideline. Moreover, in regard
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to the consistency checks of the differences and similarities between the model
and modeled code, this is a lack of developing mapping rules between the model
and modeled code. Existing checks are purely structural without interpreting
the semantics conveyed by the model elements. Thus, our concluded 40 cases
of MA, disAGTs, and CC can provide input for developing such mappings
rules in the future.

6.2 Future Work
Covering additional OOP languages and conducting the quantitative analysis
could be a future extension of this thesis work, which is detailed in this section.

6.2.1 Covering Additional OOP Projects
Merely Java projects are selected as the thesis study subjects. However, con-
sidering the generalization of our results, future work can consider covering
additional OOP projects, such as C++, and the generalization will be bet-
ter guaranteed. While different OOP languages have their own specifica-
tions/structures, the essence of MA characteristics is expected to be more
or less adaptable to other OOP languages. This is because all OOP projects
follow the concepts of the OO paradigm. Thus, the characteristics of MA,
disAGTs, and CC that we investigated will provide valuable insights into the
differences between the model and the modeled code in terms of other OOP
languages.

6.2.2 Quantitative Analysis
This thesis provides a qualitative analysis of the differences between mcAM
and the cSC of that mcAM by conducting five case studies with the aim of
discovering the MA characteristics. However, the extent to which the MA cre-
ated in the mcAM is more acceptable in the implementation of the cSC will be
of interest. Thus, a quantitative analysis is needed to investigate which MA
cases concluded are more acceptable than others during the implementation
of the cSC.
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A
Corresponding mcAMs in the

Five Projects Studied

The corresponding five mcAMs of the five Java projects studied are presented
in the following, which is used for illustrating the examples of the cases pre-
sented in Chapter 4.

Figure A.1: Selected mcAM included in project 1.

I



A. Corresponding mcAMs in the Five Projects Studied

Figure A.2: Selected mcAM included in project 2.
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Figure A.3: Selected mcAM included in project 3.
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Figure A.4: Selected mcAM included in project 4.
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Figure A.5: Selected mcAM included in project 5.
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